
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

Scaling up Multidimensional Recurrent

Neural Networks for image segmentation

IDSIA
Istituto Dalle Molle di Studi sull’Intelligenza Artificiale

Relatore: Prof. Matteo Matteucci
Correlatore: Prof. Jürgen Schmidhuber

Tesi di Laurea di:
Marco Romelli, matricola 816281

Anno Accademico 2015-2016

To my family

iii

iv

An algorithm must be seen to be
believed.

Donald E. Knuth

v

vi

Abstract

This work is the final result of the double degree program in association with USI (Uni-
versità della Svizzera Italiana) and has been conducted in the Swiss AI lab IDSIA (Isti-
tuto Dalle Molle di Studi sull’Intelligenza Artificiale).

In the machine learning community, interest in neural networks and deep learning
have recently seen a continuous growth. In this context Multidimensional Recurrent
Neural Networks (MDRNNs) allowed to bring the power of recurrent neural networks
(RNNs) to data other than simple sequences and they have the potential to advance
the state-of-the-art in many challenging problems, like image segmentation or video
classification.

Given this interest in MDRNNs, the main contribution of this thesis is an efficient
implementation of an MDLSTM layer, which is the Long Short Term Memory (LSTM)
extension of MDRNNs. Moreover a simple CPU parallelization of the algorithm is im-
plemented and evaluated against the single core version. We also show that this paral-
lelization achieves speedups comparable to what has been achieved on convolutional
neural networks with GPU implementations.

Finally the MDSLTM layer is integrated in an hybrid architecture with convolutional
layers to perform semantic image segmentation, which is a difficult unsolved problem
in computer vision. This architecture achieves near state of the art results on a popular
image segmentation benchmark with no need for any pre or post processing.

vii

viii

Acknowledgements

I would like to thank Jürgen Schmidhuber and Matteo Matteucci for their availability
to supervise this thesis. I would also like to thank IDSIA for having provided me with
the hardware I needed.

A special thank goes to Klaus Greff and Rupesh Srivastava for their precious tutoring
along all the duration of this work.

A thank goes also to all my classmates at Università della Svizzera Italiana, with
whom I shared good times and adversities. I’m also grateful to Cinzia and Ivan, for
their willingness to listen to my thoughts.

Most of all, I would like to thank my family for their constant love and support,
especially in the difficult moments.

ix

x

Contents

Contents xi

List of Figures xiii

Sommario 1

Introduction 5

1 Machine learning and neural networks 9

1.1 Neural networks and machine learning . 9
1.1.1 Network training . 11

1.2 Convolutional neural networks . 13
1.2.1 Working principle . 13
1.2.2 Training tricks . 15

1.3 Recurrent neural networks . 16
1.3.1 Backpropagation through time . 16
1.3.2 Bidirectional RNNs . 18
1.3.3 Vanishing gradient problem . 19

2 Multidimensional recurrent neural networks 23

2.1 MDRNN . 23
2.1.1 Network training . 24

2.2 Multidimensional long short-term memory 25
2.2.1 Complexity . 26

2.3 Related work . 26

3 Image segmentation 29

3.1 Image segmentation problem . 29
3.2 CRFs for image segmentation . 30
3.3 Neural networks for image segmentation 31

3.3.1 CNN-MDRNN hybrid for image segmentation 31

xi

xii Contents

4 Implementation details 35

4.1 Implementation environment . 35
4.1.1 Caffe architecture . 36

4.2 MDLSTM implementation and design decisions 37
4.2.1 Implementation . 38
4.2.2 Testing . 41

4.3 Scaling up performance . 42
4.3.1 Single core performance . 42
4.3.2 CPU parallelization . 43

5 Experimental results 51

5.1 Sift flow dataset . 51
5.2 Experimental results . 54

5.2.1 Architectures . 54
5.2.2 State of the art . 54
5.2.3 Result analysis . 56

6 Conclusion 63

6.1 Future work . 63

Bibliography 65

Figures

1.1 Illustration of the perceptron. 9
1.2 Illustration of a multilayer perceptron . 10
1.3 Convolutional network architecture . 14
1.4 A simple recurrent neural network . 16
1.5 The hidden layer of a bidirectional recurrent neural network 18
1.6 A simple recurrent unit compared to an LSTM block 19

2.1 Illustration of a 2-dimensional RNN . 24

3.1 Abstract representation of a basic CNN-MDRNN. 32

4.1 Influence of network direction on the performance of the network. . . . 43
4.2 Correlation between the number of hidden units and the performance of

MDLSTM layer. 44
4.3 Potential thread synchronization pattern . 45
4.4 Scaling of forward and backward steps to higher number of threads. . . 46
4.5 Total running time for different number of threads and hidden units. . . 47
4.6 Caffe GPU performance . 48
4.7 Improvement of speedup as a function of the hidden units with 32 threads. 49

5.1 Examples of images from the SIFT FLOW dataset. 52
5.2 Class frequency distribution of labels in SIFT FLOW. 53
5.3 DAG represention of 50-50 CMDLSTM. 56
5.4 Confusion matrix on test set for the best network. 57
5.5 Plot of training loss vs test loss of best network and a smaller one. 59
5.6 Some interesting examples of segmentation with corresponding true labels. 60

xiii

xiv Figures

Sommario

Questo lavoro è il risultato finale del programma di doppia laurea in collaborazione con
USI (Università della Svizzera Italiana) ed è stato condotto nel laboratorio Svizzero di
intelligenza artificiale IDSIA (Istituto Dalle Molle di Studi sull’Intelligenza Artificiale).

Le reti neurali sono uno strumento matematico molto potente ampiamente utiliz-
zato nell’apprendimento automatico per affrontare problemi che non sono facilmente
risolvibili con approcci più tradizionali. Questi problemi sono tendenzialmente sem-
plici dal punto di vista umano ma estremamente difficili per una macchina ed è per
questo che la ricerca è ancora in atto per migliorarne i risultati. Le reti neurali sono
particolarmente utili in questo contesto in quanto sono in grado di estrarre, attraverso
una fase di apprendimento automatico, informazioni utili alla soluzione del problema.

Negli ultimi anni sono state proposte molte architetture di rete differenti. In questa
tesi ci focalizziamo su Multidimensional Recurrent Neural Networks (MDRNNs) [26].
Questa architettura è un’estensione delle più tradizionali Recurrent Neural Networks
(RNNs) e permette di gestire sequenze in ingresso non limitate ad una singola dimen-
sione (tempo) ma a più dimensioni. Questo ci permette di utilizzarla per operare su
immagini, video e dati complessi come immagini di risonanza magnetica, portando i
vantaggi delle recurrent neural networks a un nuovo insieme di problemi che hanno
una natura intrinsecamente multidimensionale.

Uno di questi problemi è la segmentazione semantica di immagini, nella quale ogni
pixel di un’immagine deve essere classificato in una categoria a scelta tra n a dispo-
sizione. Sono stati proposti molti metodi in letteratura per approcciare il problema, ma
nessuno è ancora considerato la soluzione definitiva. Considerando che le MDRNNs
permettono di gestire dati bidimensionali in modo naturale, si adattano bene a questo
compito e hanno il potenziale di avanzare lo stato dell’arte.

Contributi

Implementazione di MDRNN

Il contributo principale di questa tesi è rappresentato da un’implementazione efficiente
di MDRNN, che risulta abbastanza versatile da poter essere utilizzato dalla comunità
scientifica.

1

2 Figures

Con questo obiettivo in mente, un layer MDRNN è stato implementato all’interno
della libreria open source Caffe [34], la quale permette di combinare il layer imple-
mentato con un ampio numero di layer differenti e di creare architetture di rete com-
pletamente nuove.

Parallelizzazione su CPU

Per sfruttare al meglio la potenza delle MDRNNs, è stata implementata una versione
multicore del codice in modo tale da poter addestrare reti con un elevato numero di
parametri. Per realizzare la parallelizzazione è stato utilizzato OpenMP e il risultato è
stato analizzato per quantificare lo speedup raggiunto.

Benchmark per segmentazione semantica di immagini

L’implementazione realizzata è stata valutata sul dataset SIFT FLOW [41]; un bench-
mark standard per la segmentazione semantica di immagini. I risultati sono stati anal-
izzati e confrontati con i metodi allo stato dell’arte. In particolare questa tesi fornisce
due contributi principali:

• Una nuova architettura che combina MDRNN con Convolutional Neural Networks
(CNNs). Questo approccio permette alla rete di trarre vantaggio dai benefici
riconosciuti alle CNNs e allo stesso tempo di estenderne le possibilità grazie alla
capacità delle MDRNNs di inferire dipendenze a lungo termine.

• L’addestramento della MDRNN più grande disponibile in letteratura. Le imple-
mentazioni fino a questo momento erano state limitate dall’esecuzione single
core; per questo motivo è stata sfruttata l’implementazione multicore per ad-
destrare una rete particolarmente complessa e i risultati sono stati comparati a
quelli disponibili in letteratura.

Struttura della tesi

Iniziamo nel Capitolo 1 con un’introduzione sulle reti neurali e il machine learning,
partendo da una breve storia sul multilayer perceptron e il corrispondente algoritmo
di training detto backpropagation. Ci focalizziamo poi sulle convolutional neural net-
works e le innovazioni che hanno portato. Infine introduciamo le recurrent neural
networks e il loro algoritmo di training.

Il Capitolo 2 si focalizza sulle Multidimensional Recurrent Neural Networks. Viene
prima spiegato il loro funzionamento e l’algoritmo usato per il training, per poi passare
alla loro estensione con unità LSTM (long short-term memory) che viene chiamata
MDLSTM. Per finire questo capitolo fornisce una panoramica dei lavori più importanti
correlati alle MDRNNs presenti in letteratura.

3 Figures

Nel Capitolo 3 introduciamo il problema della segmentazione di immagini. In-
iziamo con una definizione del problema e delle sue varianti per poi passare ad illus-
trare i Conditional Random Field (CRF), che sono il metodo attualmente più utilizzato
per affrontare il problema. Il capitolo conclude spiegando come le reti neurali possono
essere applicate alla segmentazione semantica di immagini e introduce una nuova ar-
chitettura che combina CNNs e MDRNNs per approcciare il problema.

Il capitolo 4 si focalizza sui dettagli implementativi e le decisioni di design intraprese
durante lo sviluppo. La prima parte spiega il motivo della scelta di Caffe come libreria
di partenza su cui sviluppare il nuovo layer e fornisce una panoramica del codice single
core. Successivamente viene proposto un metodo per la parallelizzazione su CPU e
viene valutata la sua performance a confronto con la versione single core.

Per finire il Capitolo 5 applica la nuova architettura basata su MDLSTM al problema
di segmentazione di immagini, focalizzando l’attenzione sul dataset SIFT FLOW. Viene
prima descritta la struttura del dataset e successivamente vengono analizzati i risultati
della rete più performante, utilizzando come metrica principale l’accuratezza al livello
dei singoli pixel.

4 Figures

Introduction

This work is the final result of the double degree program in association with USI (Uni-
versità della Svizzera Italiana) and has been conducted in the Swiss AI lab IDSIA (Isti-
tuto Dalle Molle di Studi sull’Intelligenza Artificiale).

Neural networks are a powerful mathematical model widely used in machine learn-
ing to tackle problems that are not easy to address with traditional methods. Such
problems are typically easy for humans but extremely hard for a machine, so research
is still going on to find better ways to accomplish these tasks. Neural networks are
particularly useful in those contexts since they are able to automatically extract the in-
formation needed to solve the problem and many variants have been proposed in the
past years.

In this thesis we focus on multidimensional recurrent neural networks (MDRNNs)
[26]. This network architecture is an extension of recurrent neural networks which
allows to handle inputs that are not limited to a single time dimension, allowing to
handle images, videos or even more complex data like magnetic resonance imaging.
This allows to bring the power of recurrent neural networks (RNNs) to a new set of
problems which have an intrinsic multidimensional structure.

One of such problems is semantic image segmentation, in which each pixel of a
given image needs to be labeled into one out of n categories. Many approaches have
been proposed in the literature to solve the problem, but none of them is considered
the definitive solution. Since MDRNNs allow to handle 2-dimensional data in a natural
way, they fit well to this problem and have the potential to advance the state-of-the-art.

Contributions

MDRNN implementation

The main contribution of this thesis is represented by an efficient implementation of a
MDRNN which is versatile enough to be used by the scientific community.

With this objective in mind, an MDRNN layer is implemented in the open source
library Caffe [34], which allows to combine it with a vast catalog of other layers.

5

6 Figures

Parallelization on CPU

To better exploit the power of MDRNNs, a parallel CPU version is implemented in order
to be able to train larger networks than what is found in the literature. OpenMP is used
to parallelize the code and the performance of this implementation is evaluated in order
to quantify the achieved speedup.

Semantic image segmentation benchmark

The realized implementation is evaluated on SIFT FLOW [41]; a semantic image seg-
mentation benchmark. The results are analyzed and compared to other state-of-the-art
methods. In particular, this thesis gives two main contributions to the field:

• A novel architecture combining the MDRNN layer with convolutional neural net-
works (CNNs). This approach would allow the network to take advantage from
the known benefits of CNNs, while using the power of MDRNNs to extend the
capabilities of the network with long term dependencies.

• The training of the biggest MDRNN network in the literature, thanks to the ef-
ficient CPU parallelization. Implementations so far have been limited by their
single core performance; for this reason we try to use the advantages of a paral-
lel implementation to train a particularly big network and compare its results to
the smaller ones.

Thesis structure

We begin in Chapter 1 with an introduction on neural networks and machine learn-
ing, starting with a brief history of the multilayer perceptron and the corresponding
training with backpropagation. We then focus on convolutional neural networks and
the innovations that came with them. Finally this chapter introduces recurrent neural
networks and their training algorithm.

Chapter 2 focuses on multidimensional recurrent neural networks. It first explains
the general principle of MDRNNs and the corresponding training equations. Subse-
quently it explains the extension of MDRNNs with LSTM units, called multidimensional
long short-term memory (MDLSTM). Finally this chapter gives a brief review of the
most important work related to MDRNNs in the literature.

In Chapter 3 we introduce the problem of image segmentation. We start with a def-
inition of the problem with its variants and then we explain conditional random fields,
which are the most used method in the literature used to solve this problem. The
chapter concludes explaining how neural networks apply to semantic image segmenta-
tion and introduces a novel network architecture involving a combination of CNNs and
MDRNNs to approach the problem.

7 Figures

Chapter 4 focuses on the implementation details and design decisions made during
the development process. The first part explains the choice of Caffe as the supporting
tool and gives an overview of the single core implementation. Afterwards a CPU paral-
lelization approach is proposed and the corresponding realization is evaluated against
the single core version.

Finally Chapter 5 applies the MDLSTM layer to the problem of image segmentation,
focusing on the SIFT FLOW dataset. We first describe the dataset structure and then
analyze the results of the best network architectures focusing in particular on the pixel-
wise accuracy.

8 Figures

Chapter 1

Machine learning and neural networks

This chapter provides an overview on artificial neural networks, focusing in particular
on the network architectures that are most related to this work. Section 1.1 contains an
overview of neural networks in general, with a brief explanation of their applications in
machine learning. In Section 1.2 we discuss convolutional neural networks, which own
most of the state of the art results on the computer vision field. Section 1.3 explains
recurrent neural networks and the vanishing gradient problem. In this context LSTM
is introduced as a way to solve this problem.

1.1 Neural networks and machine learning

The first appearance of an artificial neural network is in the work of Rosenblatt [46]
where he introduced the perceptron. This type of network tries to imitate the basic work-
ing principles of neurons using small computational units combined together through
weighted connections. The result of this idea is the mathematical model represented
in Figure 1.1. The inputs xi are composed together (using multiplication) with the

∑

x1

x2

x3

xn

…

w1

w2

w3

wn

g(·) y

Figure 1.1. Illustration of the perceptron.

9

10 1.1 Neural networks and machine learning

Figure 1.2. Illustration of a multilayer perceptron. Image from [50].

weights wi and summed together. After that, the result goes through a function g(·)
which, in the case of the perceptron, is the sign1 function. The overall result is a math-
ematical function, shown in Equation 1.1.

y = g

Ç nX

i=1

wi · xi

å
(1.1)

Since the time of their first appearance, many other architectures were proposed
and the success of neural networks has been continuously growing. One of the most
successful and famous one is the multilayer perceptron (MLP). This type of network is a
natural extension of the perceptron in which, instead of having a single node, there are
many nodes arranged in a feed-forward architecture as depicted in Figure 1.2. As we
can see, the inputs on the left are forwarded to the first hidden layer, which computes
its activations and forwards them to the next layer and so on until the output layer.
From this intuition it’s easy to derive the formula in Equation 1.2, in which hj is the
activation of unit j, wi j is the weight of the connection from unit i to unit j and g(·) is
an activation function.

hj = g

Ç nX

i=1

wi j · hi

å
(1.2)

The choice of g is crucial for the correct behavior of the network and it will be discussed
in more detail in Section 1.1.1.
It’s important to notice that the connections in this architecture go in a single direction,
so that there are no loops or self connections. This is a peculiarity of feedforward net-
works and is in contrast with recurrent neural networks which are described in Section
1.3.

1si gn(x) =

8
><
>:

+1 if x > 0

0 if x = 0

�1 if x < 0

11 1.1 Neural networks and machine learning

The reason of the success of neural networks is probably because they work partic-
ularly well in practice and they contributed to big improvements in machine learning.
In this field we can distinguish three different types of problems:

• Supervised learning: given a set of exemplar input-output pairs (training set),
learn a model that is able to predict the output given a new (never seen) input.

• Unsupervised learning: differently from supervised learning, there are no output
examples but only inputs. The goal is to find a meaningful structure in the input.

• Reinforcement learning: an agent (program) learns to act in an environment by
perceiving and receiving rewards for his actions.

Even though neural networks have been successfully applied to all the problems above,
this thesis will focus on supervised learning.

1.1.1 Network training

In supervised learning we can distinguish between two main tasks:

• Regression: the value to predict is continuous (e.g. a real number). To accom-
plish this task with the multilayer perceptron we usually set the output activation
function to be linear.2

• Classification: the value to predict is categorical (e.g. a binary value [0,1]). In
this case sigmoidal activations are usually used for output layers.

Despite the specific task, non-linear units like sigmoid or hyperbolic tangent are used
in the hidden layers in order to avoid the network to compute a simple linear function.

Neural networks can be applied to both types of problems and the process of teach-
ing the network to predict the right values is called network training. More specifically
the training process aims to minimize a given error function E with respect to a set of
parameters ✓ .

One of the most commonly used error functions for the regression task is the mean
square error which, with a single output unit is defined as:

E(✓) =
1

2n

nX

k=1

(yk � tk)2 (1.3)

where n is the number of training examples, yk is the network output (implicitly defined
on the parameters ✓ and the input xk) and tk is the corresponding target value. The
argument ✓ of the error function is important because it represents the weights of the
network and is the set of parameters that we can tune to minimize the error.

2A linear unit simply computes f (x) = x , sigmoid is �(x) = 1
1+e�x and hyperbolic tangent is tanh(x) =

ex�e�x

ex+e�x .

12 1.1 Neural networks and machine learning

As we said, MSE is used for regression while for classification what is usually used
is the cross entropy error function (binomial or multinomial) which in general takes the
following form:

E(✓) = �1
n

nX

k=1

[tk log yk + (1� tk) log (1� yk)] (1.4)

Despite of this, the network principle remains the same and also the training algorithm
is general and doesn’t change with the error function.

Many algorithms have been proposed to perform the error minimization, among
which backpropagation is the most commonly used one. The continuous form of the
algorithm was derived in the early 60s [36, 8] but its first application to neural networks
is attributed to Werbos [54].

The principle of backpropagation is to alternate forward and backward passes through
the network in order to compute gradients with respect to both internal parameters and
inputs. Those gradients are then used by a numerical optimization method called gra-
dient descent, in order to update the weights of the network in a way that follows the
slope of the gradient. The basic update formula for gradient descent is

Wt+1 =Wt �µrE(Wt) (1.5)

where µ is called learning rate and is usually a value in the range [0, 1]. As we can
notice everything boils down to the computation of the gradient of the error function
with respect to the weights. In practice this is where back propagation comes in. It is
an iterative procedure with every iteration being divided into two parts:

• Forward: present a set of inputs from the training data to the network and com-
pute the error between the output and the target. This gives the term E(Wt).

• Backward: compute the gradient of the error with respect to all the network
parameters and apply the update rule 1.5.

It’s important to notice that this is a local search method, which means it exploits local
informations about the function but it can’t have a global view so it can’t find a global
minima in the general case.

If the weight update happens after having accumulated the gradient information
over all the dataset we talk about batch learning. If instead we make the update rule
change the parameters after having seen a subset of the training examples we have
the so called stochastic gradient descent (SGD). Even tough the batch version is more
mathematically rigorous, it’s often the case that SGD performs better in practice, partic-
ularly on large datasets, achieving faster convergence and sometimes finding a better
minimum [7]. Moreover it has been proven that computing the gradient the way SGD
does it, gives us an unbiased estimate which approximate the full gradient.

13 1.2 Convolutional neural networks

When training neural networks, two opposite problems can arise: underfitting and
overfitting. In the first case the model hasn’t got enough expressive power to learn the
dataset so the error stays high. In the second case the network learns “too much” by
memorizing the training examples and lose its ability to generalize on new data. To
fight the first problem usually it’s sufficient to increase the complexity of the model,
for example by adding more parameters (e.g. hidden units). Models suffering from
underfitting are said to have high bias. The second problem is more tricky and many
solution have been proposed in the literature. One of the common ways of reducing
overfitting is to get more data for the training set. This solution is not always possible
or sufficient, so a series of techniques which fall under the name of regularization were
invented. A model suffering of overfitting is said to have high variance. It’s important
to note that there is always a bias/variance tradeoff and is important to try to find the
best compromise when training a neural network.

1.2 Convolutional neural networks

A particular category of neural network that achieved amazing results in many tasks of
machine learning are convolutional neural networks (CNNs). They were first proposed
by Fukushima [19] and improved in the following years by many contributors, among
which LeCun et al. [40] was the first to apply backpropagation to this architecture.
Thanks to an efficient GPU implementation by Ciresan et al. [12] they finally improved
upon state of the art results on many datasets and they are now among the most widely
used classifiers on a vast variety of tasks.

1.2.1 Working principle

Convolutional neural networks are a particular instance of feedforward network cre-
ated with the specific assumption that the input is an image or, more in general, a 3D
volume as shown in Figure 1.3a. For example a standard RGB image of size HxW would
have a volume with shape (3, H, W) where the first dimension is called depth or chan-
nels. The main component of a CNN is the convolution layer. This particular layer uses
a receptive field combined with a convolution operator to transform an input volume to
an output volume. The depth dimension of the output volume can be seen as neurons,
so that each neuron sees a local region of its input as shown in Figure 1.3b. Neurons
in the same spatial dimension see the same region of input but compute their output
with different weights, also called filters or kernels.
The size of the output volume is controlled by four parameters:

• Depth: as already said, this parameter controls the number of neurons (stacked
along the channel dimension) which are connected to the same input region.

14 1.2 Convolutional neural networks

(a) Illustration of layers arranged in 3D volumes. (b) Illustration of receptive field.

Figure 1.3. Convolutional network architecture, represented as a sequence of vol-
umes transformations. Images from [1].

• Kernel size: usually a small integer, is the size of the receptive field. For example
if the receptive field is a 5⇥ 5 grid, the kernel size is 5.

• Stride: this parameter tells how much we jump along the spatial dimension of
the input. For example a stride of 1 means that we move our kernel shifting it by
one pixel every time. The larger the stride, the less overlapped are the receptive
fields and the smaller is the output volume.

• Padding: additional zeros that we can add to the border of the input volume,
usually to make it have the same height and width of the output volume.

The spatial size of the output volume can be computed as

O =
W � F + 2P

S + 1
(1.6)

where W is the input size (e.g. height), F is the kernel size, P is the padding and S is
the stride.

To compute the value of a neuron we use the standard convolution operator: given
a kernel K of size k and an image I , the output for a given pixel (x , y) is:

G(x , y) =
sX

i=�s

sX

j=�s

I(x + i, y + j) · K(i, j) with s =
õ

k
2

û
(1.7)

Many tricks have been proposed to speedup the convolution process, many of which
exploit the Fourier frequency domain transformation and efficient GPU parallelizations
(see [43] and [52]).

15 1.2 Convolutional neural networks

1.2.2 Training tricks

Besides an efficient implementation, many “tricks” have been developed to make train-
ing of CNNs feasible, especially for deep3 architectures with millions of trainable pa-
rameters. The following are the most commonly used ways to improve CNN’s training.

Rectified linear units

ReLu activations are a particular kind of non-linearity which was argued to be more
biologically plausible and proved to be more effective than the standard sigmoid and
hyperbolic tangent functions [22]. Its definition is simply f (x) = max(0, x) which is
just thresholding at zero. This type of activation has proven to be particularly effective
in terms of speedup of training and overall behavior of the network. Its main advantage,
in contrast to other sigmoidal functions, is the non-saturating behavior which allows
them to always have a gradient greater than zero.

Pooling layer

It’s common to put a pooling layer after a sequence of convolution-ReLu layers to down-
sample the volumes along the spatial dimension, reducing their size. Its principle is
similar to the convolution layer, having a kernel sliding on the input volume but, in-
stead of applying the convolution operator, it applies a function that reduces the input
matrix to one single scalar. One of the most used functions for this purpose is MAX ,
hence the name max-pooling, but also average and L2-norm have been used.
The main purpose of this layer is to reduce the complexity of the network, resulting in
faster training and improved generalization.

Dropout

Dropout is a technique introduced by [30] aimed at improving generalization and pre-
venting overfitting. The main idea is to randomly remove some units with the corre-
sponding input and output connections during training. For example we can have a
fixed probability p of keeping an unit and 1� p of removing it (typically p is around
0.5). This can be seen as training 2n many different networks [49] where n is the to-
tal number of units. At test time the virtual models are averaged by multiplying the
weights of the network (without dropout) by p.

3With the term “deep” we refer to the field of deep learning, which is a branch of machine learning that
tries to train complex multilayer architectures to solve traditional problems [47].

16 1.3 Recurrent neural networks

Figure 1.4. A simple recurrent neural network. Image from [24].

1.3 Recurrent neural networks

So far the focus has been on feed forward neural networks, where there are no loops
or self connections in the network topology. This constraint is relaxed in the so called
recurrent neural networks (RNNs). Many variant of this architecture have been pro-
posed, among which the most simple one is the simple recurrent network depicted in
Figure 1.4. As we can see there are the usual input, output and hidden layers but in
the hidden layer we have the additional recurrent connections. This topology allows
the network to have memory of the past inputs making it suitable for problems where
past context is important like sequence labeling (e.g. handwritten text recognition and
speech recognition).

1.3.1 Backpropagation through time

Many algorithms have been proposed to train a RNN [33] but in this thesis we will focus
on backpropagation through time (BPTT) proposed by Werbos [55]. This algorithm is
based on the concept of unfolding the network in time, which means that we transform
the recurrent structure into a more familiar feedforward architecture with as many
hidden layers as the length of the input sequence. This operation allows us to use the
standard forward-backward procedure like if we are training a simple MLP.

17 1.3 Recurrent neural networks

Forward pass

The forward pass is similar to the one of a multilayer perceptron, with the exception
that we need to consider activations coming from one step back in time. Given an input
sequence x to a network with I input units and H hidden units the the activations for
the hidden layer can be computed as

at
h =

IX

i=1

wih x t
i +

HX

h0=1

rhh0 b
t�1
h0 (1.8)

bt
h = g(at

h) (1.9)

where xi is the input i at time t, wih is the weight from input unit i to hidden unit
h, rhh0 is the recurrent weight from hidden unit h to hidden unit h0 and bt�1

h0 is the
activation of unit h0 at the previous timestep. Equation 1.8-1.9 can be also written in
matrix notation, which turns out to be quite helpful for implementation:

a

t =Wx

t +Rb

t�1 (1.10)

b

t = g(at) (1.11)

In the previous equations W 2 RH⇥I is the input weight matrix, R 2 RH⇥H is the recur-
rent weight matrix while a, x and b are all vectors of size H.

Backward pass

As in standard backpropagation, we need to compute the partial derivatives of the loss
with respect to the weights, knowing the derivatives of the loss with respect to the

network output
⇣
�t

k =
@ L
@ bt

k

⌘
. The deltas for the hidden units can be computed as

�t
h = g 0(at

h)

Ç KX

k=1

�t
kwkh +

HX

h0=1

�t+1
h0 rh0h

å
(1.12)

where the meaning of all the components is the same as in the forward pass, whk is
the weight from hidden unit h to output unit k and g 0(·) is the derivative of the g(·)
function. This rule is applied starting from the end of the sequence (t = T) and going
back until t = 0. Having the deltas for the hidden units, is then possible to compute
the update for the weights:

@ L
@ wi j

=
TX

t=1

�t+1
j bt

i (1.13)

As for the forward pass, both the previous computations can be vectorized:

�h

t = g 0(at)
�
W

T�k

t +R

T�h

t+1
�

(1.14)

18 1.3 Recurrent neural networks

Figure 1.5. Illustration of the hidden layer of a bidirectional recurrent neural net-
work. Image from [3].

@ L
@W

=
TX

t=1

h�h

t+1,bti (1.15)

In the above equations h·, ·i denotes the outer product and ?T denotes the matrix trans-
pose.

1.3.2 Bidirectional RNNs

In some kind of problems the concept of time in the sequence is not constrained to
follow a particular direction, allowing in principle to use the “future” of the sequence
itself. Examples of such problems come out when the input is spatial (e.g. protein
secondary structure prediction) or when the output of classification can be delayed
to some natural break in the sequence (e.g. in speech recognition we can wait for a
pause). Obviously this is not applicable to problems like stock price prediction, where
we don’t have access to future context.

Standard RNNs process the input sequence in a single direction, but an extension
called bidirectional recurrent neural network (BRNN) proposed by Schuster and Paliwal
[48] allows to process a sequence starting both from its “start” and its “end”. The
principle is to apply two standard RNNs independently to the sequence starting from
the beginning and from the end and keeping track of the activations of both as shown
in Figure 1.5. This simple solution allows the recurrent network to have access to the
full context of a sequence, which generally allows a much better performance in term
of accuracy.

19 1.3 Recurrent neural networks

Figure 1.6. A simple recurrent unit compared to an LSTM block. Image from [27].

1.3.3 Vanishing gradient problem

It has been proven that a simple RNN with a sufficient number of hidden neurons can
approximate any differentiable trajectory [28]. It has also been shown that, while a
standard MLP can approximate any continuous function, a recurrent neural network
can in principle learn any algorithm. Even though this is a strong theoretical result, this
type of networks don’t work as expected in many kind of real problems and are particu-
larly difficult to train correctly. One of the main reasons for this is the so called vanishing
gradient problem [32] which is a behavior of RNNs in which the gradient information
coming from the output layer gets smaller and smaller as it goes through the hidden
layers and finally vanishes, preventing the weights from being updated correctly. This
problem affects all types of networks but is particularly prominent in recurrent neural
networks because their output can depend on an input seen many timesteps into the
past.

Many solution have been proposed to the problem, among which the most famous
one (and the one used in this thesis) is the long short-term memory (LSTM) by Hochre-
iter and Schmidhuber [31], described in the following section.

Long short-term memory

The principle of LSTM is to substitute the standard recurrent unit of a simple RNN
with a more complex structure composed of gates and various recurrent connections
as shown in Figure 1.6. As we can see an LSTM block is composed of three gates and
a cell-state in addition to the usual input and output:

• Input gate: controls the information that get into the cell. It gets connections
from the input and the previous output, sum them up and pass the result throw

20 1.3 Recurrent neural networks

a sigmoid non-linearity.

• Output gate: controls what goes out from the cell. It works the same way as the
input gate.

• Forget gate: allows the block to selectively forget its internal state. Again it works
the same way as the other gates.

• Cell state: it’s the internal state of the cell. It sums the inputs from the input gate
multiplied with the forget gate with the block input multiplied by the previous
state. Its output goes throw a sigmoidal non-linearity and gets multiplied by the
output of the output gate.

In Figure 1.6 we can also see peepholes connections (blue arrows), that was introduced
by Gers et al. [20] as a way to allow the cell to learn precise timings. Those connections
are useful in problems where the network has to “count” the timesteps elapsed from a
particular event in the past. In this thesis they will be ignored since we don’t deal with
such type of problems. Moreover it was recently shown that they have little influence on
practical problems [27] and this allows to simplify the forward and backward formulas
which are shown below in vectorized form. There W? represents rectangular input
weight matrices, R? represents square recurrent weight matrices, b? represents bias
weights and � is the elementwise multiplication of two vectors.

Forward pass

z

t =Wzx
t +Rzy

t�1 + bz (1.16)

z

t = g(zt) (Block input) (1.17)

i

t
=Wix

t +Riy
t�1 + bi (1.18)

i

t = �(i
t
) (Input gate) (1.19)

f

t
=W f x

t +R f y

t�1 + b f (1.20)

f

t = �(f
t
) (For get gate) (1.21)

o

t =Wox

t +Roy

t�1 + bo (1.22)

o

t = �(ot) (Output gate) (1.23)

c

t = z

t � t

t + c

t�1 � f

t (Cell state) (1.24)

y

t = h(ct)� o

t (Block output) (1.25)

Backward pass

Given the deltas �t = @ L
@ y

t coming from the layer above, the deltas for the internal
components of the LSTM can be calculated as follows:

�y

t =�t +R

T
z �z

t+1 +R

T
i �i

t+1 +R

T
f �f

t+1 +R

T
o �o

t+1 (1.26)

21 1.3 Recurrent neural networks

�o

t = �y

t � h(ct)��0(ot) (1.27)

�c

t = �y

t � o

t � h0(ct) +�c

t+1 � f

t+1 (1.28)

�f

t = �c

t � c

t�1 ��0(ft
) (1.29)

�i

t = �c

t � z

t ��0(it
) (1.30)

�z

t = �c

t � i

t � g 0(zt) (1.31)

The deltas for the input can be computed by summing all the contributions from the
LSTM cell:

�x

t =W

T
z �z

t +W

T
i �i

t +W

T
f �f

t +W

T
o �o

t (1.32)

Finally the gradient with respect to the weights (input, recurrent and bias) can be
computed using dot product the same way as shown with the simple RNN (see Equation
1.15).

22 1.3 Recurrent neural networks

Chapter 2

Multidimensional recurrent neural

networks

This chapter focuses on the main topic of this thesis, which are multidimensional recur-
rent neural networks. In Section 2.1 we describe the most simple version of MDRNN.
Section 2.2 introduces the LSTM extension of MDRNNs, the so called multidimensional
long short-term memory. Since recently MDRNNs are receiving a lot of interest, in Sec-
tion 2.3 we discuss some of the related work present in the literature, trying to point
out their strengths and weaknesses.

2.1 MDRNN

It can happen that a particular problem is well described by using multiple dimensions.
This is the case for example with images, videos and electron magnetic resonances
(EMR). A proposal aimed at exploiting this structure are multidimensional recurrent
neural networks (MDRNNs) by Graves et al. [26] which are a particular case of DAG-
RNNs [5] and a special case of structured backpropagation [23]. This type of network
extends the concept of sequence to multiple time dimensions and allows to bring the
power of recurrent neural networks to a vast variety of new problems. MDRNNs have
been successfully applied to image classification, image segmentation [26] and offline
handwriting recognition [25]. Nonetheless in the first two cases they were applied to
“toy” datasets which are not suitable to demonstrate the power of the model and there
is a lack of experimental results with more challenging problems.

The principle of a MDRNN is to arrange the structure of the hidden units so that we
can see the input like a sequence in a multidimensional space. Taking the 2-dimensional
case as an example (like an image), as we can see from Figure 2.1, the units are ar-
ranged on a grid and connected such that the further away they are from the start of
the sequence, the more context is available to the them. This is a desirable property be-
cause, unlike simple or convolutional neural networks, it allows to take decisions based

23

24 2.1 MDRNN

d1

d2

Figure 2.1. Illustration of a 2-dimensional RNN. Following the arrows, we can see
that the green unit has context available from all the blue units.

on pixels very far from each other. Notice that every circle in Figure 2.1 is actually a
stack of units representing the number of hidden neurons of the MDRNN. Every stack
is connected to the next one with a recurrent weight matrix R 2 RH⇥H where H is the
number of hidden neurons. The result is that with d dimensions we have d different
recurrent matrices (one along each dimension).

Like RNNs can be extended to bidirectional RNNs, MDRNNs can be extended to
multidirectional MDRNNs by making the input sequence start at any of the 2D possible
different corners which is also the number of MDRNN layers we need. For example
in an image we have D = 2 so the number of hidden layers we need is 22 = 4 which
coincide with the four corners of the image.

2.1.1 Network training

The training of a MDRNN with D dimensions can be accomplished by extending the
standard BPTT algorithm for RNNs described in section 1.3. The following are the
equations for the forward and backward passes:

Forward

a

p =Wx

p +
DX

d=1

R

d
b

pd� (2.1)

b

p = g(ap) (2.2)

Backward

�h

p = g 0(ap)

Ç
W

T�k

p +
DX

d=1

R

T,d�h

pd+

å
(2.3)

25 2.2 Multidimensional long short-term memory

In the above formulas ?p denotes a value at the current timestep p while ?pd� and ?pd+

represent respectively the previous and the future value from the current timestep along
dimension d. As we can notice, there is only one weight matrix W from input to the
MDRNN layer but we have D different recurrent matrices, denoted with R

d .

2.2 Multidimensional long short-term memory

MDRNNs suffer from the same issues of simple RNNs including the vanishing gradient
problem. For this reason in this thesis we focus on the LSTM extension of multidi-
mensional networks (MDLSTM). The formulas for the forward and backward are very
similar to the normal LSTM formulas with the difference that we have D recurrent
weight matrices for each gate and also D different forget gates (instead of only one),
each one connected to the previous cell state only along dimension d. The following
are the vectorized formulas with the same notation used before:

Forward pass

z

p =Wzx
p +

Ç DX

d=1

Rz,dy

pd�

å
+ bz (2.4)

z

p = g(zp) (Block input) (2.5)

i

p

=Wix
p +

Ç DX

d=1

Ri,dy

pd�

å
+ bi (2.6)

i

p = �(i
p

) (Input gate) (2.7)

f

p

n =W fn
x

p +

Ç DX

d=1

R fn,dy

pd�

å
+ b fn

(2.8)

f

p

n = �(f
p

n) (For get gates) (2.9)

o

p =Wox

p +

Ç DX

d=1

Ro,dy

pd�

å
+ bo (2.10)

o

p = �(op) (Output gate) (2.11)

c

p = z

p � i

p +
DX

d=1

c

pd� � f

p

d (Cell state) (2.12)

y

p = h(cp)� o

p (Block output) (2.13)

Note that writing f

p

n we denote the forget gate at timestep p along the d th of the D
dimensions.

26 2.3 Related work

Backward pass

�y

p =�p +
DX

d=1

R

T
z,d�z

pd+ +
DX

d=1

R

T
i,d�i

pd+ +
DX

d=1

R

T
o,d�o

pd++

DX

n=1

DX

d=1

R

T
fn,d�f

pd+
n (2.14)

�o

p = �y

p � h(cp)��0(op) (2.15)

�c

p = �y

p � o

p � h0(cp) +
DX

d=1

�c

pd+ � f

pd+
d (2.16)

�f

p

n =
DX

d=1

�c

p � c

pd� ��0(fp

n) (2.17)

�i

p = �c

p � z

p ��0(ip) (2.18)

�z

p = �c

p � i

p � g 0(zp) (2.19)

2.2.1 Complexity

Since the forward and backward passes require one pass each through the data se-
quence, the overall complexity of MDRNN training is linear in the number of data
points and the number of network weights [26]. Notice that the number of weights
is quadratic in the number of hidden units, so that if the number of hidden units is n,
the number of weights is O(n2), making it difficult to scale to an high number of hidden
units.

In the case of the multidirectional variant, as we already said, the number of possi-
ble directions is O(2d), which multiplies the previous complexity for a single direction.
This exponential scaling is attenuated by the fact that the overall power of the network
is dominated by the total number of parameters and so it’s possible to use layers with
a small number of units without loosing the model power [26].

2.3 Related work

One of the ways proposed to deal with multidimensional data is represented by multidi-
mensional hidden Markov models (MHMM). This approach has the advantage of being a
natural extension of HMMs, which have a strong theory behind and well studied proper-
ties with known algorithms to solve the most common problems. The drawback is that
the computational complexity of the Viterbi algorithm used for inference is exponential
in the number of data samples and the memory required is exponential in the number
of dimensions. Even though many approximate solutions have been proposed, none
of them is capable of fully exploiting the power of the model. Moreover HMMs build

27 2.3 Related work

upon the Markov assumption, which make very difficult for them to take advantage of
long-term context.

Another approach by Donahue et al. [15] combines CNNs with LSTM cells to tackle
problems like video classification, image captioning and video description. In this work
LSTM are used to model the 1-dimensional sequential component of the problem, while
CNNs (or MRF) where used for handling images (or frames). The main point is that
the LSTM cells used in this architecture are 1-dimensional and applied to monodimen-
sional sequences. The authors were able to integrate the two components into a single
architecture that has the advantage of being trainable end-to-end.

A recent approach aimed to extend RNNs to image data is ReNet by Visin et al.
[53] which uses standard 1-dimensional RNNs to perform classification by presenting
the image (divided into flattened patches) to many different RNNs that process it in
different directions. This approach has the advantage of allowing to use the more
simple 1-dimensional RNN architecture and, compared to MDRNNs, allows to use a
higher number of hidden units due to its lower computational complexity and higher
parallelizability.

Finally Kalchbrenner et al. [35] propose an architecture very similar to the MDLSTM
but with a slightly different way of arranging internal connections. This modification
should have the advantage of improving the stability of the network, which is discussed
in Section 4.2.1.

28 2.3 Related work

Chapter 3

Image segmentation

In this chapter we talk about the image segmentation problem and how it is addressed
with neural networks. In Section 3.1 we talk about the general problem of image seg-
mentation. In Section 3.2 we talk about the most used classical approach to semantic
image segmentation, which involves the use of conditional random fields. Section 3.3
deals with the application of neural networks to image segmentation and proposes a
new approach to solve the problem involving a combination of MDRNNs and CNNs.

3.1 Image segmentation problem

An image segmentation is the partition of an image into a set of non-overlapping re-
gions whose union is the entire image. The purpose of segmentation is to decompose
the image into parts that are meaningful with respect to a particular application [29].
As can be seen from the definition, the problem heavily depends on the particular ap-
plication and was tackled in many different ways in the literature.

First of all we should distinguish between three types of problems, which distinguish
on what is known about the image and how much the user interact during the process:

• Unsupervised: the segmentation is carried out with no prior knowledge about
the image and without the intervention of an operator.

• Semi-supervised: is similar to unsupervised, with the difference that an operator
gives some initial hints on the correct segmentation.

• Semantic: the segmentation is performed based on prior knowledge given by a
set of pre-segmented (usually by humans) images.

The majority of classical methods belongs to the first two categories. Those algorithms
try to perform a meaningful segmentation by considering some local features of the
image. For example a simple thresholding algorithm uses the color of pixels to segment
an image into two parts (e.g. foreground and background). More complex methods

29

30 3.2 CRFs for image segmentation

like Mumford-Shah [10] aim to minimize some potential functional defined over the
image. Other methods like GraphCut model the problem as a Markov random field and
then minimize an energy function defined over it.

For the third category the most used method involves the use of conditional random
fields (CRFs) as we will see in Section 3.2.

In the following sections we are going to focus on the third category, which is the
target of this thesis.

3.2 CRFs for image segmentation

As mentioned in the previous section, the semantic segmentation problem has been
usually approached in the literature with the help of conditional random fields. A CRF
is a type of discriminative undirected probabilistic graphical model which encodes the
conditional distribution P(Y|X), where Y is a set of target variables and X is a set of
observed variables [37]. In the context of semantic image segmentation, Y represent
the labels so that Yi is the label associated to pixel i in an image I . It turns out that this
conditional probability can be modeled with a Gibbs distribution so that

P(Y= y|I) = 1
Z(I)

e�E(y|I) (3.1)

In the previous formula, E(y|I) is an energy function also dependent on the structure
of the CRF. In the case of fully connected pairwise CRF of Krähenbühl and Koltun [38],
the energy function is a combination of a unary component u(yi) that measures the
cost of assigning label yi to pixel i and a pairwise energy component p(yi , yj) which
quantify the cost of assigning both label yi to pixel i and label yj to pixel j.

It’s important to note that usually a CRF method is applied as post-processing after
an independent classifier has generated an initial prediction. For example some works
use manual feature extracted from the images while other (like Farabet et al. [18]) use
a CNN as an automatic feature extractor. Feature extraction is a crucial component of
those approaches and most of the time is not applied directly on the image pixels but
rather on superpixels extracted from the image, which are contiguous cluster of pixels
characterized by a strong continuity (within some criterion that can be task dependent).
The advantage of working on superpixels instead of pixels is that the computational
complexity is heavily reduced, allowing most CRF based methods to be applicable. This
approach has the clear disadvantage that if the initial superpixel division is wrong, no
matter how good the segmentation method is, the final result will be wrong.

In a recent approach, Zheng et al. [56]were able to train a CRF based classifier end-
to-end by transforming the CRF to an equivalent RNN and combining it with CNNs. This
approach achieved state of the art results on image segmentation but due to its nature
it’s more similar to the approaches that will be described in Section 3.3.

31 3.3 Neural networks for image segmentation

3.3 Neural networks for image segmentation

The problem of semantic image segmentation can be modeled in the context of machine
learning. In fact we can see it as a particular kind of classification task where, given a
set of images and their corresponding ground truth segmentations, we want to train a
classifier able to map each pixel of an image into one of L categories.

Given this formulation, it’s possible to apply any classifier from machine learning
to image segmentation, including neural networks. Despite this, simple NNs like the
multilayer perceptron are not very effective for this task. Lets say we want to segment
each pixel of a grayscale image of size 128 ⇥ 128 into 10 possible classes; we would
need a MLP with 16384 input units and an output layer of 163840 units. Adding a
few hidden layers of reasonable size, this network becomes quite big and difficult to
train. Moreover the MLP doesn’t offer any advantage to exploit the 2D structure of the
problem, since the layers of a MLP are designed to see the input as a 1-dimensional
vector. What is usually done to reduce the complexity is to apply the network to a
set of features extracted from the image instead of the image itself. This can improve
performance but requires to manually chose the image features, which is often a non-
trivial task.

This issues with MLP brought researchers to explore other architectures to solve this
problem. One of the first successful proposals was the Pulse-Coupled Neural Network
(PCNN) by Eckhorn et al. [17] which is a recurrent neural network inspired by the
visual cortex of cats. Other, more recent proposals are based on convolutional neural
networks like [11, 4, 42]. The advantage of using CNNs is that, unlike the classical MLP,
they naturally exploit the 2D structure of images using many layers with receptive fields
of different sizes. This allows to extract important relationships between neighboring
pixels which is crucial in a task like image segmentation.

Another recent approach involves the use of a combination of RNNs and CNNs
called recurrent convolutional neural network (R-CNN) [45]. This approach has the
advantage of being able to exploit large input context using less parameters compared
to a feed forward architecture.

3.3.1 CNN-MDRNN hybrid for image segmentation

In this thesis we propose a novel method to combine the power of CNNs with the
flexibility of MDRNNs. The idea is simply to feed a raw input image to one ore more
convolution layers (with optional pooling, ReLu and dropout layers) and then pass
the output of those layers to a set of MDRNN layers (usually an MDLSTM for each
direction). The output of the MDRNNs is then concatenated and upsampled to match
the size of the input image. In Figure 3.1 we can see the general structure of a CNN-
MDRNN hybrid. More in details, the raw image of size H⇥W⇥C goes to the Conv1 block
which represent any combination of convolutional, pooling and non-linearity layers.
Usually it is just a convolution layer without any addition.

32 3.3 Neural networks for image segmentation

Conv1

MDRNN1

MDRNN2

MDRNN3

MDRNN4

Conv2

SoftmaxInput image

Figure 3.1. Abstract representation of a basic CNN-MDRNN.

The output of Conv1 is sent to four MDRNN layers (one for each direction). In this
thesis we will use MDLSTM layers which are in general better than simple MDRNNs
with simple units.

The output of the MDLSTM layers is then concatenated along the depth dimension
and forwarded to the Conv2 block. This block is important because it’s responsible to
make the output volume match the spatial dimensions of the input image and also have
the correct depth dimension to match the number of classes. If the spatial dimensions
were shrank during the previous steps, following the idea described by Long et al. [42],
a so called deconvolution layer is used to upsample them to the correct size. This layer
works by inverting the forward and backward steps of the convolution layer. The ad-
vantage of using it is that it can learn any linear or non-linear upsampling scheme,
which is clearly more powerful than using a fixed upscaling strategy like bilinear inter-
polation in the post-processing phase.
Finally a softmax layer over the depth dimension is applied to get the pixel-wise class
probabilities which directly map to the final segmentation.

This type of architecture offers many advantages which can be summarized in the
following points:

• Since the input goes through convolution layers, the raw image can be used in-
stead of handcrafted features. This is because CNNs are good to automatically
extract general image features and features useful to the specific problem.

• Having convolution layers before the MDRNN blocks allows to use the properties
of convolution to downscale the input image to a reasonable size. This virtu-
ally allows to handle images of any size. Moreover we can use this property to
downscale the input to a reasonable size before the MDRNN blocks, which are
the more time-consuming layers.

• The MDLSTM layers allow the network to have full context available for the clas-

33 3.3 Neural networks for image segmentation

sification of a single pixel. This is an advantage over standard CNNs which are
able to see only a local context for any given pixel. Moreover the result of the four
MDRNN blocks can in principle be computed in parallel, allowing a substantial
speedup.

• The network is trained end-to-end, without any preprocessing or postprocess-
ing required. This is useful because it allows the user to train its own network
with low effort and doesn’t require to invent particular procedures to adapt the
network to this particular problem.

34 3.3 Neural networks for image segmentation

Chapter 4

Implementation details

This chapter will discuss the implementation details of the MDLSTM layer used in this
thesis. More in details, Section 4.1 discusses the choice of the library in which the layer
is implemented. Section 4.2 addresses the implementation of the MDLSTM layer itself
and the corresponding design decisions. Finally Section 4.3 analyzes the performance
of the layer and proposes a CPU parallelization, comparing it to the serial version.

4.1 Implementation environment

One of the purposes of this thesis is to provide a good implementation of the MDLSTM
described in Section 2.2. One of the possibilities was to develop a stand alone MDRNN
implementation from scratch similarly on what was done by Graves et al. [26]. This
approach has the advantage of allowing full control over the internal behavior of the
network and doesn’t impose any constraints on the architecture or the choice of pro-
gramming language. On the other end, there are important disadvantages against such
a solution: having to develop everything from scratch, a lot of components have to be
written in addition to the MDLSTM layer, like the input layer handling the data and
the output layer to compute the pixel-wise loss. This process is time consuming and
increases the risk of introducing bugs in the code, possibly compromising the stability
of the whole software. Moreover, to implement the CNN-MDLSTM hybrid proposed
in Section 3.3.1, many non-trivial additional layers are needed like convolution and
deconvolution. Having to implement everything would have been an huge amount of
work and certainly error prone.

Given the disadvantages of a custom implementation, we opted for a realization
inside an existing library. There are many possibilities in the machine learning commu-
nity, among which some of the most famous are:

• Torch7 [13] based on the scripting language LuaJIT and an underling CUDA/C
implementation.

35

36 4.1 Implementation environment

• Theano [6] based on Python with a C core.

• Caffe [34] written in C++ with Python and MATLAB wrappers.

All the above are open source projects under active development and are suitable for
this thesis but the choice fell on Caffe. The reason resides in the versatility to build
the network architecture and the availability of many good layers like convolution,
deconvolution, pooling and non-linearities. In addition the design of Caffe (discussed
in Section 4.1.1) allows to focus on the specific layer we want to develop, without
worrying about other parts of the network.

4.1.1 Caffe architecture

Caffe is an open source deep learning library maintained by the “Berkeley Vision and
Learning Center”. It is designed to be fast, easy to use/deploy and easy to extend.
These goals are achieved through a good modular design and the use of configuration
files.

Modularity of Caffe is achieved through three main components which are de-
scribed in the following sections.

Blob

A blob is the memory container of everything that needs to move inside the library. It is
essentially a 4-dimensional array used to store everything from input data to layer pa-
rameters. For example, in the case of input data its dimensions are N xC xH xW which
essentially represents a sequence of N volumes of size C xH xW (channels, width and
height). Blobs are stored in contiguous regions of memory (like normal arrays); this is
an important characteristic influencing some of the implementation decision described
in Section 4.2.
Blobs also keep themselves synchronized across CPU and GPU using particular func-
tions to access their content which trigger the synchronization if needed. In particular
each blob has two kind of content: data and diff. The first one is used to store data gen-
erated during the forward pass while the second is used to store the deltas computed
during the backward and needed to update the parameters. The functions to access
those contents are {cpu,gpu}_data(), mutable_{cpu,gpu}_data(), {cpu,gpu}_diff() and
mutable_{cpu,gpu}_diff(). The mutable functions are used to access the blob’s content
and modify it while the others are read-only functions.

Layer

Layers are the building blocks of a network and the most important part of Caffe. They
are organized in a DAG structure, usually visualized with data at the bottom and layers

37 4.2 MDLSTM implementation and design decisions

stacked on top of each other. Each layer has to follow a particular interface which
defines three methods:

• setup: this method is executed once at network initialization and is responsible
to do one time operations like dimension and parameters checks.

• forward_{cpu,gpu}: these methods perform the forward step of the layer, taking
the input from the bottom layer and computing the output to pass to the top layer.

• backward_{cpu,gpu}: these methods perform the backward pass taking the gra-
dient passed from the above layer and computing the gradient with respect to
the internal weights and the input. The first one is stored inside the layer into
the diff part of blobs while the latter is propagated down to the bottom layer.

Solver

Once the network is designed, the solver is responsible to carry out the forward and
backward passes of each layer, get the gradients and update the weights accordingly.
There are currently three solvers available in Caffe:

• Stochastic gradient descent: the standard update rule described in Section 1.1,
using the gradient along with a momentum term.

• Nesterov’s accelerated gradient: it implements the method described in Nesterov
[44]. It’s similar to the previous one but it takes the gradient on weights with
added momentum.

• AdaGrad [16]: it uses the whole history of gradients to compute the current one.

The solver is also responsible for keeping track of the training history, taking periodical
snapshots of the network and perform network testing.

Besides the above components, another important part of Caffe are the configura-
tion files. Both the solver parameters and the network architecture can be fully specified
using configuration files written with the Google protobuf format. This allows to easily
specify the network structure, enabling the user to change every parameter without
being aware of the internal implementation of Caffe.

Finally another important part of this library is represented by tests. Every new
layer or solver developed for Caffe has to provide a good set of unit tests covering
its functionalities. This enforcement allows contributions from the community to be
merged with the main project with less effort.

4.2 MDLSTM implementation and design decisions

In the context of this thesis a MDLSTM layer was developed for Caffe. The process
involved the realization of an MDLSTM layer, the corresponding tests and some little

38 4.2 MDLSTM implementation and design decisions

changes in other components that will be described later.

4.2.1 Implementation

The first decision made for the development was to focus on the LSTM extension of
MDRNNs (MDLSTMs). This is mainly due to the fact that LSTM works better in most
of practical cases and it allows to “ignore” the vanishing gradient problem, which can
easily come out in long sequences involved with image segmentation.

The second decision was to constrain the MDLSTM to be 2-dimensional. This is en-
couraged by the strong focus of Caffe towards images, which are intrinsically bidimen-
sional. Implementing a generic MDLSTM would have led to a much more convoluted
code with probably the need to change the data (input) layers of Caffe to handle objects
more complex than images. Moreover the blob container is fixed to be 4-dimensional
which is the number of dimensions needed to handle images. Since this thesis focuses
on the problem of image segmentation there was no need for this extra effort.

Finally, since Caffe encourages every layer to be as independent as possible, we
decided to not insert the input layer of MDLSTM network into the implementation.
Instead we let it to other layers of Caffe (e.g. convolution) which are able to output
“arbitrary” volumes. Using a convolution layer with st r ide = 1 and kernel_size =
1 it’s equivalent to have a standard fully connected layer as input of the MDLSTM.
The drawback of this approach is that we force the MDLSTM layer to expect as input
a volume of size H1 ⇥W1 ⇥ 5C1; the depth must be a multiple of 5 because the 2-
dimensional LSTM cell has 5 gates (input gate, block input, output gate and two forget
gates) and every gates wants its own input volume.

Whenever possible the code was written in vectorized form using various BLAS
routines. As stated previously, a new layer in Caffe needs to define three methods
(setup, forward and backward); the pseudocode for those methods is shown in the
following listings.

void LayerSetUp(const vector<Blob<Dtype>*>& bottom, const

vector<Blob<Dtype>*>& top) {,!

// Load parameters (number of hidden units and direction)

// Initialize weight blobs

}

As mentioned earlier, the setup method is run once at layer initialization and is re-
sponsible for getting the configuration parameters and preparing some of the internal
variables needed by the layer.

void Forward_cpu(const vector<Blob<Dtype>*>& bottom, const

vector<Blob<Dtype>*>& top) {,!

// Loop on the bottom layers

39 4.2 MDLSTM implementation and design decisions

for (int bottom_id = 0; bottom_id < bottom.size(); ++bottom_id) {

// Loop on mini-batch

for (int i = 0; i < batch_size; ++i) {

for (int x : first_dimension) {

for (int y : second_dimension) {

// Compute and store the activations of all gates taking

input from *bottom,!

// Put in *top the result of the forward

}

}

}

}

}

The forward method of the previous code snippet takes the bottom blobs as input and
computes the activations for all the gates of MDLSTM as described in Equations 2.4,
putting the output in the top blob.

void Backward_cpu(const vector<Blob<Dtype>*>& top,

const vector<bool>& propagate_down, const vector<Blob<Dtype>*>&

bottom) {,!

for (int bottom_id = 0; bottom_id < bottom.size(); ++bottom_id) {

for (int i = 0; i < batch_size; ++i) {

for (int x : reversed_first_dimension) {

for (int y : reversed_second_dimension) {

// Compute and store deltas

}

}

// Propagate gradients with respect to input down to *bottom

}

// Reset gradients of internal weights to 0

// Compute the update for internal weights

for (int i = 0; i < batch_size; ++i) {

for (int x : first_dimension) {

for (int y : second_dimension) {

// Compute and store gradient of weights

}

}

}

}

40 4.2 MDLSTM implementation and design decisions

}

The last method is the backward described in Equations 2.14. It first computes the
deltas for all the internal parts of the MDLSTM cell and then uses those deltas to com-
pute the gradients with respect to the weights.

There are three main types of operations involved in the layer’s code: matrix-vector
multiplication, matrix-vector addition and element-wise operations.
The first two are performed using the gemm and axpby routines of BLAS. The third is
performed with a simple for loop.

const int ld_step = bottom[bottom_id]->width() *
bottom[bottom_id]->height();,!

strided_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num_, 1, num_,

abs(alpha_x), Whzx, num_, bh + bh_[bottom_id]->offset(i, 0, x -

alpha_x, y), ld_step, (Dtype) 1., bz + bz_[bottom_id]->offset(i,

0, x, y), ld_step);

,!

,!

,!

strided_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num_, 1, num_,

abs(alpha_y), Whzy, num_, bh + bh_[bottom_id]->offset(i, 0, x, y

- alpha_y), ld_step, (Dtype) 1., bz + bz_[bottom_id]->offset(i,

0, x, y), ld_step);

,!

,!

,!

strided_cpu_axpby<Dtype>(num_, (Dtype) 1., bottom_data +

bottom[bottom_id]->offset(i, 0, x, y), ld_step, (Dtype) 1., bz +

bz_[bottom_id]->offset(i, 0, x, y), ld_step);

,!

,!

int start = bz_[bottom_id]->offset(i, 0, x, y);

int end = bz_[bottom_id]->offset(i, num_, x, y);

for (int e = start; e < end; e += ld_step) {

bz[e] = tanh(bz[e]);

}

The above listing shows the computation of the z

p =Wzx
p+
ÄPD

d=1 Rz,dy

pd�
ä

in the for-
ward step as defined in Equation 2.4. More specifically, since the input to the MDLSMT
layer is handled by a separate convolution layer, Wz is the identity matrix. Moreover
x

p is bottom_data, Rz,d are Whzx and Whzy, y

pd� is bh and finally z

p is bz.
Given the way the code was vectorized, at a given timestep (x , y)we need to be able

to access all the values of the corresponding hidden units both at the current timestep
and in the past: (x � 1, y) and (x , y � 1). Due to the memory layout of blobs, those
values are not stored in contiguous memory regions. To avoid explicit looping over

41 4.2 MDLSTM implementation and design decisions

the blobs, the stride parameter of BLAS routines was used to access the right memory
regions. Even if this approach worked in practice, it is also limiting since it doesn’t
allow to access any subregion of a given blob. This is the reason why it wasn’t possible
to avoid the explicit looping over the images of a single batch.

The code for the backward pass was implemented analogously to the forward, al-
ways trying to vectorize as much as possible and using a very similar scheme.

State explosion problem

After the results obtained on MNIST (see Section 4.2.2) we moved towards a different
dataset composed of larger images. Training on such dataset caused the loss to explode
towards infinity in a few epochs. After some investigation we found that the source of
the problem was the explosion of the values of the cell state computed with Equation
2.12, which contains an unconstrained summation that causes the result to suddenly
grow at values too big for a float variable. The problem was solved by switching to
double precision variables which allows to handle much bigger numbers.

Even if this modification allowed to avoid the crashing of the software, it does’t
solve the underling problem which causes the state to grow to uselessly high values.
A possible solution would be to use the modification proposed by Kalchbrenner et al.
[35], which claims an alternative architecture similar to MDLSTM that doesn’t suffer
from instability problems.

This architecture deserves investigation but it’s also worth to explore other possible
solutions.

4.2.2 Testing

As we said previously, every new layer in Caffe ships with its own set of unit tests. Since
the main work of a layer is carried on in the forward and backward methods, those are
the parts that need to be tested.

For what concerns the forward part, it was tested against a little manually computed
example with the help of a simple Python prototype. This is not ideal but it’s the only
way to test the forward step alone.

The backward step (together with the forward) was tested using a numerical check
of the gradient. Caffe allows to compute the numerical gradient of the network and
check if it’s close to the computed gradient within a certain threshold.

There are a total of four different tests for the backward (one for each direction)
and they are ran with a fixed size input and weight matrices initialized with random
numbers drawn from a normal distribution. This makes the tests not reproducible but
allows to explore more configurations compared to a fixed initialization.

When all the above tests passed, a simple problem was used to verify the effective
learning of the MDLSTM layer. In particular a simple MDLSTM network was trained
on the MNIST database [39].

42 4.3 Scaling up performance

The network was composed of a first convolution layer with stride and kernel size
of 1 (equivalent to a fully connected layer). After it we used 4 MDLSTM layers (one
for each direction) with 25 hidden units each followed by a final fully connected layer
with 10 outputs.

The convolution and fully connected layers were initialized with the xavier method
[21]. The MDLSTM layers were initialized using a zero-centered gaussian with 0.1
standard deviation.

This network achieved 98.5% accuracy on the validation set, which is a good re-
sult given the low effort in trying to optimize the parameters and architecture of the
network.

4.3 Scaling up performance

In this section we evaluate the performance of the MDLSTM layer and we propose a
CPU parallelization method which achieves a good speedup compared to the single core
version. For all the experiments we used the SIFT FLOW dataset (described in section
5.1) of RGB images of size 256⇥256. Since images of such size are quite big to handle, a
convolution layer with kernel and stride of 2 is used to downsample the images to 128⇥
128 which is a more reasonable size. Despite of this, all the measurements consider
only the MDLSTM layers and keep out everything else. Every experiment was ran for
10 iterations; this means that if our mini-batch size is n, the number of images seen by
one experiment is 10n.
All the measurements have been performed on a 64 core machine with 128GB of RAM.

4.3.1 Single core performance

The performance of the single core version is evaluated with a simple architecture with
four MDSLTM layers (one for each direction). Each of them was timed independently
and the results are then combined.

Influence of direction

The performance of the single core version was first evaluated independently for the
four directions of the MDLSTM layer. This was because it is possible in theory to have
differences among them due to different memory access patterns. As we can see in Fig-
ure 4.1, the total time for each square is approximately constant, meaning that there
are no significant differences in the performance of layers with different directions. The
plot also shows a low variance in the results, which is a bit higher for longer computa-
tion times.

Since the differences in performance are negligible, from now on there will be no
distinction between the different directions, considering them all together as a single
layer.

43 4.3 Scaling up performance

Figure 4.1. Influence of network direction on the performance of the network.

Figure 4.1 contains an anticipation of the result with multiple threads, which will
be discussed in Section 4.3.2.

Influence of hidden units

The performance on single core is mainly affected by the size of the input and the
number of hidden units. As we already said, the first have been set to 128⇥ 128 and
we varied the latter with the values [10, 20,30, 40,50, 60,70]. The mini-batch size was
fixed to 32. In Figure 4.2a we can see the result of the experiments. As expected the
correlation between number of hidden units and execution time is well represented by
a quadratic polynomial, which gives an R-squared of 0.988. Despite of this, as shown
in Figure 4.2b, a linear fit considering only hidden units less than 50 is pretty good with
an R-squared coefficient of 0.982. This is expected because the number of parameter
grows quadratically with the number of hidden units and the complexity is linear in the
number of parameters.

Those results show that with typical values of hidden units the layer performs pretty
well. The overall behavior is quadratic but close to linear in the range of 10�50 hidden
units and since it’s uncommon to see more hidden units, it’s fair to say that the layer
implementation is good.

4.3.2 CPU parallelization

Even if the single threaded version of the MDLSTM layer is good, it was still too slow
compared to other layers of Caffe like convolution. For this reason we explored a par-
allelization strategy to increase the performance in order to train bigger networks.

44 4.3 Scaling up performance

(a) Quadratic fit of the data. (b) Linear fit of the data.

Figure 4.2. Correlation between the number of hidden units and the performance
of MDLSTM layer.

There are many ways to parallelize a neural network. The most common approach
recently used is GPU parallelization, in particular the CUDA technology offered by
Nvidia allowed to achieve incredible speedups on convolutional architectures in the
last few years. Even if this approach can offer an important speedup thanks to the big
amount of computational units (1000-4900), it is not easily applicable to the MDLSTM
layer. This is because such layer has an intrinsic serial component given by the “time”
nature of its approach, which limits the achievable parallelism.

A more traditional approach is to exploit multicore CPUs. A recent multicore CPU
offers much less computational units (4-64) compared to a recent GPU but it has the
advantage that the single units are much more powerful. As a result it’s simpler to
achieve a good parallelization on CPU compared to GPU.

Among the various candidate parallelization points, we decided to exploit mini-
batch parallelization. This means that multiple threads are spawned to compute each
image of the current mini-batch independently and then combine the results to get the
same output as of the single threaded version. This strategy doesn’t decrease the com-
putation time needed by one single image but instead improves the overall throughput
of the layer, allowing to process more images in the same period of time.

The desired result was obtained using OpenMP [14], which is a C++/Fortran API
to develop parallel applications. The main advantage of OpenMP is that it allows to
parallelize the code through the use of compiler directives instead of directly modifying
the source. In particular the ability of OpenMP to parallelize for loops came really useful
for our purpose.

The chosen approach involved the parallelization of the outer loop of both the for-
ward and backward passes. In particular, for the forward pass we parallelized the
second loop (over the mini-batches); since there is no dependency between different
images the result is that no more synchronization is needed inside the method.

45 4.3 Scaling up performance

Figure 4.3. Potential thread synchronization pattern. Different colors represent
different critical sections.

In the backward pass the first part (since it doesn’t have any dependencies or con-
flicts) was parallelized in the same way as the forward. The second part, involving the
computation of the gradients with respect to the internal weights, followed the same
principle but required some synchronization inside. In particular there are 10 oper-
ations in this section, each of them involving a write on one different weight matrix.
Since the weight matrices are shared across the different images of the mini-batch,
some synchronization was required to avoid race conditions. Each of the 10 operations
was wrapped in a different critical section so that if a thread is inside one of them, no
other threads can enter it, but they can still enter other critical sections which are not
busy.

From the previous description it’s clear that in the forward pass we can achieve the
best speedup, that in theory can be as high as the number of threads. This is not true
for the backward since synchronization is involved.

In Figure 4.3 we can see an example of one of the possible schedules for the update
step in the backward pass. We can clearly see that two threads can never be in the
same critical section at the same time, but thanks to the fact that we have many of
them we can still achieve a good parallelism. In the general case of n threads, batch
size of n, m critical sections and assuming all the sections require one unit of time, the
best theoretical speedup (ignoring super-linear effects) is as follows:

Sbest =
mn

m+ n
(4.1)

Since in the implementation of this thesis we have m= 10, the best theoretical speedup
with this approach is

lim
n!+1

10n
10+ n

= 10 (4.2)

This result is only theoretical and represents an upper limit to the achievable speedup
for the update step in the backward pass. It’s also important to note that, having a par-
allelization over the images of a mini-batch of size n, the best number of threads to use
is kn with k 2 N. This is because we want the workload of threads to be balanced in
order to not let any threads be waiting for long time.

To have a better understanding of the performance improvement, a series of per-
formance measurements was performed and they are shown in the next section.

46 4.3 Scaling up performance

(a) Results for the forward pass. (b) Results for the backward pass.

Figure 4.4. Scaling of forward and backward steps to higher number of threads.

Performance comparison

To quantify the performance improvement of the parallelization strategy described in
the previous section, a series of experiments was set up. The network used for the
experiments was the same as the one described at the beginning of Section 4.3.

In the first set of experiments, we fixed the mini-batch size to 32 and measured the
performance of forward and backward passes. We fixed the number of hidden units in
the set [10, 20,30] and varied the number of threads in the set [1, 2,4, 8,16, 32]. The
separated results for forward and backward are shown in Figure 4.4. As we can see,
increasing the number of threads reduces considerably the execution time for both the
forward and backward passes. This improvement is stronger for the forward pass; as
we can see, even if the execution times for forward and backward on a single core are
similar, moving to 16 or 32 threads gives a better improvement to the forward compared
to the backward. This is understandable for the reasons described in Section 4.3.2.

Another observation we can make is that the higher is the number of hidden units,
the higher is the achievable speedup. For example with 10 hidden units the speedup
on 32 threads is approximately 4x for the forward and 2.5x for the backward. On the
other end, with 30 hidden units the same speedups are 14.5x and 5.3x. This is probably
because with more hidden units the workload for every single thread increases a lot and
so the effect of overheads due to thread management and synchronization are lowered.

Finally we noticed that the backward pass usually achieves better speedups with
smaller amount of threads. For example the best number of threads for the forward
turned out to be [16,32, 32] respectively for 10, 20 and 30 hidden units while the
best numbers for the backward were [8, 8,16]. This is again explainable by the extra
synchronization involved in the backward, which puts additional overhead given by the
fact that more threads have to check the critical sections to see if they can run. The fact
of having 10 different critical sections increases this overhead so the workload needed
to amortize this effect is considerable.

The total running time combining forward and backward is shown in Figure 4.5. It’s

47 4.3 Scaling up performance

Figure 4.5. Total running time for different number of threads and hidden units.

clear that the overall behavior seen in the separated plots is maintained. It can also be
noticed that an higher number of threads is not always the best solution. For example
in the case of 10 hidden units the best speedup of approximately 3x is obtained with 16
threads while using 32 we got only 2.3x. It’s difficult to know a priori what is the best
number of threads, but it turns out that with higher workloads we need more threads.
This means that with more hidden units (more than 30) is safe to assume that the best
speedup is achieved with 32 threads.

Pushing the speedup

Having seen that the achieved speedup increases with the number of hidden units, this
number was pushed as high as possible to see what is the maximum achievable gain
in performance. We therefore fixed the number of threads to 32 and run experiments
for higher values of hidden units to see how high the speedup can become. Figure 4.7
shows the result of those experiments. We can see that, as expected, the speedup grows
with the number of hidden units. For the forward pass an apparent limit is reached a
bit below the 18x speedup. For what concerns the backward, an apparent limit isn’t
reached and the best achieved speedup is around 7x. The combination of the two passes
gives an overall speedup of nearly 10x which can be considered good.

As a comparison metric, as shown in Figure 4.6, the basic GPU implementation of
the convolution layer in Caffe on a high-end Nvidia card achieves a 11x speedup which
is comparable to our CPU result. The image also shows a 14x speedup with the cuDNN
library. This improvement is due to fine optimization at the memory level specific for

48 4.3 Scaling up performance

Figure 4.6. Caffe GPU performance. [2]

the CUDA architecture, so it’s not comparable to a generic approach like the one we
chose for this work.

49 4.3 Scaling up performance

(a) Forward pass speedups.

(b) Backward pass speedups.

(c) Overall speedups.

Figure 4.7. Improvement of speedup as a function of the hidden units with 32
threads.

50 4.3 Scaling up performance

Chapter 5

Experimental results

In this chapter the MDLSTM layer and the CNN-MDLSTM architecture described in
Section 3.3.1 are evaluated on a standard segmentation dataset. Section 5.1 describes
the dataset and how it was prepared for the experiments. Section 5.2 presents the
results of the most interesting network topologies, comparing them to the state of the
art results in the literature.

5.1 Sift flow dataset

The dataset used for the experimental evaluation is the SIFT FLOW dataset [41]. This
is composed of 2688 natural RGB images of size 256 ⇥ 256, taken in various types
of environments. The macro-categories of images are maritime, urban, forest, moun-
tain and open-country. Each image has been manually segmented into 33 classes (34
considering the presence of a missing or “unknown” label).

For all the experiments the dataset was split into 2200 images for training and 288
for validation. The dataset ships with additional 200 images explicitly meant to be used
as test set.

In Figure 5.1 we can see some samples of what kind of images we can find in SIFT
FLOW. As we can see there is a strong focus on both natural environments and urban
environments, while other types of image like objects or animals are nearly absent.

Figure 5.2 shows the distribution of the labels. We can see that there are some very
common classes, like “sky” and “building” which cover most of the pixels. In fact, the
4 most frequent classes cover around 65% of the dataset. On the other hand, many
classes are very rare like “bird”, “moon” and “cow”. These classes are even missing
from the test set and, as we will see, this highly unbalanced distribution will strongly
affect the classifier learning behavior.

A strange peculiarity of the dataset is represented by the missing (unknown) values.
This class represents the 5th most common label and this is unexpected since in the
original dataset description is not even mentioned. We decided to make no distinction

51

52 5.1 Sift flow dataset

(a) Coast category. (b) Forest category. (c) Highway category.

(d) Insidecity category. (e) Mountain category. (f) Street category.

Figure 5.1. Examples of images from the SIFT FLOW dataset.

53 5.1 Sift flow dataset

Figure 5.2. Class frequency distribution of labels in SIFT FLOW.

54 5.2 Experimental results

between it and other labels during training, handling the “unknown” pixels as any other
pixel of the dataset. Only during test time we ignored all the “unknown” pixels.

5.2 Experimental results

In this section we present the results obtained on SIFT FLOW with some of the trained
networks and compare them to other methods in the literature.

5.2.1 Architectures

All the networks were a variant of the CNN-MDLSTM hybrid (CMDLSTM) described
in Section 3.3.1. The input layer was a convolution layer with kernel_size = 3 and
st r ide = 1 followed by a MAX-POOLING layer with kernel_size = 4 which downscales
the input images to 64⇥ 64.

Every MDLSTM layer was actually a multi-directional variant of MDLSTM with all
the four directions. Whenever we used multiple MDLSTM layers, they were interleaved
with fully convolutional layers.

At the end we have a deconvolution layer with kernel_size = 4 and st r ide = 4 to
make the upsample of the volumes to the original image size, which is 256⇥ 256.

All the layers were randomly initialized sampling from a random gaussian with zero
mean and standard deviation of 0.01. The only exception is the last deconvolution
layer in which we used the initialization technique from Glorot and Bengio [21] which
is called Xavier initialization.

The batch size was set depending on the number of available cores. The machines
used for training had 8 or 64 cores, so on the first we used a batch size of 4 while on
the second we set it to 32.

The learning rate was fixed to 0.05 when the batch size was 4 and 0.1 when the
batch size was 32. The momentum was always fixed to 0.9.

5.2.2 State of the art

There are many publications using the SIFT FLOW dataset to report their results. From
those we extracted the most important ones and summarized them in Table 5.1.

The result from Byeon et al. [9] is an MDLSTM with no convolutions. This approach
also uses a windowing system to handle the input which downscales the images and a
corresponding upscaling method (post-processing) to get the final segmentation.

The rCNN by Pinheiro and Collobert [45] is a particular architecture which realizes
a recurrent convolutional network. This approach feeds a CNN with its previous out-
put and achieves very good results. It has a variable speed depending on the internal
parameters, but it ranges from 0.2 to 10 seconds per image.

55 5.2 Experimental results

Method Pixel acc. [%] Class acc. [%] # Parameters

MDLSTM [9] 70.1 20.9 168K
rCNN [45] 77.7 29.8 -

multiscale CNN [18] 78.5 29.6 -
MRF [51] 76.2 29.1 -

50_CMDLSTM 71.6 20.1 216K
70_CMDLSTM 73.5 21.2 358K

50-50_CMDLSTM 74.4 24.1 366K

Table 5.1. The current state of the art results on the top, plus the result obtained by
the method proposed in this thesis in the bottom part. Pixel accuracy is the overall
percentage of correctly classified pixels. Class accuracy is the average accuracy over
the different classes weighted in the same way. The results reported for our method
ignore pixels labeled as “unknown”, which is what we believe it’s done by the other
methods (even if they are not explicit). In the names “X-Y_CMDLSTM” the first
part represent the number of hidden units used for each MDLSTM layer.

The multiscale CNN approach by Farabet et al. [18] involves the use of a convo-
lutional architecture. The result in Table 5.1 was obtained with an additional post-
processing step, required to get the accuracy level reported in the table.

The final result of Tighe and Lazebnik [51] was obtained with an approach based
on Markov random fields and it is also quite slow, reporting a 31 seconds time for the
classification of a single image with a parallel implementation.

In contrast, the results of our CMDLSTM approach were obtained with no need for
pre or post processing. Moreover our implementation is also relatively fast, achieving
a throughput of 1.9 seconds per image with the biggest network.

Focusing on the results of our method, we can see how it generally has a slightly
lower accuracy (74.4% vs 78%) and also a lower average class accuracy (24% vs 30%)
compared to the state of the art. This suggests that the CMDLSTM has troubles when it
comes to predict less frequent classes, while it has performance comparable to the other
methods on the most frequent classes. From Table 5.1 we can also see how increasing
the number of parameters and/or the number of layers led to an improvement both in
overall accuracy and in mean class accuracy. Taking into consideration the “unknown”
class would have given around 3% worse pixel accuracy but a slightly better mean class
accuracy.

For the above reasons, even if our accuracy results are a bit worse that the cur-
rent state-of-the-art, we can claim that we are close to it. Furthermore we have room
for a lot of improvement since we didn’t optimize the architecture both in terms of

56 5.2 Experimental results

hyper-parameters and structure. This was mainly due to the short time available for
experiments (around two months) and the long time required by the training of a single
network (from a few days to entire weeks) even with the parallel implementation. In
the next section we will give more details about these results.

5.2.3 Result analysis

Figure 5.3. DAG represention of 50-50
CMDLSTM.

As shown in Table 5.1, the best result was
achieved with the “50-50_CMDLSTM”
network depicted in Figure 5.3, which
has two stacked MDLSTM layers of 50
hidden units each. This is the biggest
network we were able to train given the
time limitations. Moreover in the limits
of our knowledge, it’s the biggest MDL-
STM based network trained in the liter-
ature, with approximately 366K parame-
ters. In this section we analyze the results
obtained on the test set by this architec-
ture in more details.

The first interesting plot to analyze is
the confusion matrix, which is a table re-
porting for each true label of the dataset,
the percentage of predicted labels for all
the classes. As a consequence of this con-
struction, the diagonal of this matrix con-
tains the accuracy result on each class.
The overall confusion matrix is shown in
Figure 5.4a. In general each row of the
matrix sums up to 1 but we can see that
some of the rows (cow, desert and moon)
have only light values; this is because
those classes are missing from the test set.

Another observation we can make is
that many classes get labeled as building
really often. This is understandable in
cases of window and door but it’s more
strange for classes like person and car.
A possible explanation can be that the
building class is really common in the
dataset and as a consequence the network learns to predict it very well, sacrificing
accuracy on other classes that come together with it. The same behavior doesn’t show

57 5.2 Experimental results

(a) Whole confusion matrix.

(b) Focus on the most common classes and some of the others.

Figure 5.4. Confusion matrix on test set for the best network.

58 5.2 Experimental results

up for the other very common class sky. This can be because it’s easier to detect and
usually it’s not contaminated by many other classes like in the case of building.

As we said the building class is source of many errors, but also other classes cause
systematic confusion to the network:

• Prediction of building instead of awning, balcony, window and door.

• Prediction of sky instead of bird and sun.

• Prediction of road instead of crosswalk and sidewalk.

These types of errors don’t influence much the accuracy since they all involve rare
classes, but on the other hand they have a big influence on mean class accuracy which
doesn’t take into consideration the frequency distribution of labels.

Looking at Figure 5.4b the differences between common and rare classes are even
more clear. For example the network predicts sky and building with an accuracy around
90% but totally fails to predict person and sun.

Figure 5.4b also shows that we achieve a fairly good accuracy on the “unknown”
class. This suggests that probably it would have been better to ignore it at train time and
just consider pixels with that class as “unlabeled”. This would allow to avoid predicting
it at test time and would have probably given us a slightly higher accuracy.

Figure 5.5 shows the training and test losses over time of both the network with best
accuracy and a much smaller one. We can clearly see that the bigger network achieves
better results and also has a faster convergence, meaning that having more parameters
actually allows the model to learn more.

Another interesting observation is that the bigger network runs into a bit of overfit-
ting, as showed by the substantial distance between the train and test losses. This is an
expected behavior with a big network and suggests that some regularization strategy
should be adopted to reduce this effect. Techniques like dropout [49] have shown to
allow great improvements and should be tested in this context since they can poten-
tially allow a better generalization and, as a consequence, an improvement in accuracy.
Unfortunately it was not possible to do that due to time constraints.

To conclude Figure 5.6 shows some segmentation examples produced by our method.
In the first row we have an example of good segmentation, in which the network cor-
rectly distinguishes between water, sky and mountain. The only little problems are in
the foggy region on the left, where the network predicts sky instead of mountain.

The second row shows a particularly difficult image, in which a wood is reflected
by the water of a river/lake. First of all the human labeler made a distinction between
plants (green) and trees (dark gray) while our network understandably classifies the
whole wood as trees. On the other hand the human had no trouble classifying the
water as river, while the network had problems due to the reflection of trees on the
water. Despite of this it was still able to recognize most of the water in the image.

59 5.2 Experimental results

(a) Single layer network with 50 hidden units (216K parame-
ters).

(b) 50-50 CMDLSTM (366K parameters).

Figure 5.5. Plot of training loss vs test loss of best network and a smaller one.

60 5.2 Experimental results

Figure 5.6. Some interesting examples of segmentation with corresponding true
labels. From left to right: original image, human labeled ground truth and network
output. Same color corresponds to same label.

61 5.2 Experimental results

The third row shows a problem with human labeling, where all the people together
with the road on which they are walking on are labeled as person. This is a clear
mistake by the human which can cause problems during training. On the other hand
our network gets confused in the bottom region and is not able to correctly classify the
people as person, but at least it partially understands that they are walking on a road.

Finally the last row shows another weird labeling from the human operator, which
decided to classify the bell tower with the label unknown. On the other hand our
method correctly classify the whole construction as a building.

From those examples (and other not shown here) we can infer that our method
works really well on images that have a clear distinction between classes and without
superpositions, like panorama images or skyscrapers. Conversely it has problems when
the image has many different uncommon classes in it, like in a urban environment with
cars and people on roads and buildings.

62 5.2 Experimental results

Chapter 6

Conclusion

The aim of this thesis was to investigate the power of MDRNNs, focusing in particular
on the problem of semantic image segmentation.

We first developed a MDLSTM layer for the open source library Caffe in order to
have an efficient and versatile implementation to use in tests. To achieve an even faster
performance we used OpenMP to parallelize the code. Our measurements showed that
the achieved speedup is near to 10x on a 64 cores machine, which is comparable to
speedups achieved through the use of GPUs.

Afterwards we integrated the MDLSTM layer with convolution layers in order to
create a convolutional MDLSTM (CMDLSTM), which was able to combine the advan-
tages of CNNs with the power of MDLSTMs. This architecture was also able to tackle
the problem of image segmentation without the need of any pre or post processing and
allowed the end-to-end training of the model.

Thanks to the full integration of our layer with Caffe, the effort to implement this
architecture was minimal and we were able to test it on a well known semantic image
segmentation dataset. Chapter 5 shows the results obtained on this dataset. We show
that the obtained results are very close to the current state of the art and we present
ideas for improving them.

6.1 Future work

The first thing we would like to investigate is how to prevent the state explosion prob-
lem described in Section 4.2.1. In our implementation we went around this issue by
switching from single precision to double precision floating point variables. This is a
temporary solution which doesn’t tell us why the problem happens and how to avoid
it.

Another interesting extension to this work would be to explore the possibility of
implementing an efficient GPU parallelization of the MDLSTM layer and compare it to
the OpenMP CPU implementation. A GPU version of the layer would have the potential

63

64 6.1 Future work

to achieve very high speedups, with the advantage of being usable with the other GPU
layers of Caffe.

Since we had little time for experiments, we would also like to explore the potential
of the CMDLSTM architecture more thoroughly, as we believe that it has the potential to
advance the state of the art in the field. This boils down to trying more combinations of
MDLSTM and CNN layers, together with ways of preventing overfitting as the network
gets larger.

Bibliography

[1] Convolutional neural networks for visual recognition, July 2015. URL https:

//cs231n.github.io/.

[2] Accelerate machine learning with the cudnn deep neural network library,
2015. URL http://devblogs.nvidia.com/parallelforall/accelerate-

machine-learning-cudnn-deep-neural-network-library/.

[3] 2015. URL http://zhaoshuaijiang.com/2014/12/15/paper_rnn_tts/.

[4] Jose M Alvarez, Theo Gevers, Yann LeCun, and Antonio M Lopez. Road scene
segmentation from a single image. In Computer Vision–ECCV 2012, pages 376–
389. Springer, 2012.

[5] Pierre Baldi and Gianluca Pollastri. The principled design of large-scale recur-
sive neural network architectures–dag-rnns and the protein structure prediction
problem. The Journal of Machine Learning Research, 4:575–602, 2003.

[6] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. Theano: a cpu and gpu math expression compiler. In Proceedings of the
Python for scientific computing conference (SciPy), volume 4, page 3. Austin, TX,
2010.

[7] Léon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the
Trade, pages 421–436. Springer, 2012.

[8] Arthur E. Jr. Bryson and Yu-Chi Ho. Applied optimal control: Optimization,
estimation, and control: Arthur e. bryson, jr. and yu-chi ho: Blaisdell publish-
ing company (a division of ginn and company), waltham, mass. (1969), 481
pp. Automatica, 6(6):825 – 826, 1970. ISSN 0005-1098. doi: http://dx.doi.
org/10.1016/0005-1098(70)90033-6. URL http://www.sciencedirect.com/

science/article/pii/0005109870900336.

[9] Wonmin Byeon, Thomas M Breuel, Federico Raue, and Marcus Liwicki. Scene
labeling with lstm recurrent neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3547–3555, 2015.

65

https://cs231n.github.io/
https://cs231n.github.io/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://zhaoshuaijiang.com/2014/12/15/paper_rnn_tts/
http://www.sciencedirect.com/science/article/pii/0005109870900336
http://www.sciencedirect.com/science/article/pii/0005109870900336

66 Bibliography

[10] Antonin Chambolle. Image segmentation by variational methods: Mumford
and shah functional and the discrete approximations. SIAM Journal on Applied
Mathematics, 55(3):827–863, 1995. doi: 10.1137/S0036139993257132. URL
http://dx.doi.org/10.1137/S0036139993257132.

[11] Dan Ciresan, Alessandro Giusti, Luca M. Gambardella, and Jürgen
Schmidhuber. Deep neural networks segment neuronal membranes in
electron microscopy images. In F. Pereira, C.J.C. Burges, L. Bottou,
and K.Q. Weinberger, editors, Advances in Neural Information Process-
ing Systems 25, pages 2843–2851. Curran Associates, Inc., 2012. URL
http://papers.nips.cc/paper/4741-deep-neural-networks-segment-

neuronal-membranes-in-electron-microscopy-images.pdf.

[12] Dan C Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and Jürgen
Schmidhuber. Flexible, high performance convolutional neural networks for im-
age classification. In IJCAI Proceedings-International Joint Conference on Artificial
Intelligence, volume 22, page 1237, 2011.

[13] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-
like environment for machine learning. In BigLearn, NIPS Workshop, number
EPFL-CONF-192376, 2011.

[14] Leonardo Dagum and Rameshm Enon. Openmp: an industry standard api for
shared-memory programming. Computational Science & Engineering, IEEE, 5(1):
46–55, 1998.

[15] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Sub-
hashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent
convolutional networks for visual recognition and description. arXiv preprint
arXiv:1411.4389, 2014.

[16] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. The Journal of Machine Learning
Research, 12:2121–2159, 2011.

[17] Reinhard Eckhorn, Herbert J Reitboeck, Martin Arndt, and Peter Dicke. Feature
linking via stimulus-evoked oscillations: experimental results from cat visual cor-
tex and functional implications from a network model. In Neural Networks, 1989.
IJCNN., International Joint Conference on, pages 723–730. IEEE, 1989.

[18] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning
hierarchical features for scene labeling. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 35(8):1915–1929, 2013.

http://dx.doi.org/10.1137/S0036139993257132
http://papers.nips.cc/paper/4741-deep-neural-networks-segment-neuronal-membranes-in-electron-microscopy-images.pdf
http://papers.nips.cc/paper/4741-deep-neural-networks-segment-neuronal-membranes-in-electron-microscopy-images.pdf

67 Bibliography

[19] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 36(4):193–202, 1980.

[20] Felix Gers, Jürgen Schmidhuber, et al. Recurrent nets that time and count. In Neu-
ral Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International
Joint Conference on, volume 3, pages 189–194. IEEE, 2000.

[21] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In International conference on artificial intelligence
and statistics, pages 249–256, 2010.

[22] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In International Conference on Artificial Intelligence and Statistics, pages
315–323, 2011.

[23] Christoph Goller and Andreas Kuchler. Learning task-dependent distributed rep-
resentations by backpropagation through structure. In Neural Networks, 1996.,
IEEE International Conference on, volume 1, pages 347–352. IEEE, 1996.

[24] Faustino Gomez and Jüergen Schmidhuber. Sequence learning and recurrent neu-
ral networks, 2013.

[25] Alex Graves and Jürgen Schmidhuber. Offline handwriting recognition with mul-
tidimensional recurrent neural networks. In Advances in Neural Information Pro-
cessing Systems, pages 545–552, 2009.

[26] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Multi-dimensional
recurrent neural networks. CoRR, abs/0705.2011, 2007. URL http://arxiv.

org/abs/0705.2011.

[27] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R Steunebrink, and Jür-
gen Schmidhuber. Lstm: A search space odyssey. arXiv preprint arXiv:1503.04069,
2015.

[28] Barbara Hammer. On the approximation capability of recurrent neural networks.
Neurocomputing, 31(1):107–123, 2000.

[29] RM Haralick and LG Shapiro. Robot and computer vision (vols. 1 and 2), 1992.

[30] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

[31] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

68 Bibliography

[32] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gra-
dient flow in recurrent nets: the difficulty of learning long-term dependencies,
2001.

[33] Herbert Jaeger. Tutorial on training recurrent neural networks, covering BPPT,
RTRL, EKF and the" echo state network" approach. GMD-Forschungszentrum In-
formationstechnik, 2002.

[34] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional ar-
chitecture for fast feature embedding. In Proceedings of the ACM International
Conference on Multimedia, pages 675–678. ACM, 2014.

[35] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-term memory.
arXiv preprint arXiv:1507.01526, 2015.

[36] Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):
947–954, 1960.

[37] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[38] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected crfs
with gaussian edge potentials. arXiv preprint arXiv:1210.5644, 2012.

[39] Yann LeCun and Corinna Cortes. Mnist handwritten digit database. AT&T Labs
[Online]. Available: http://yann. lecun. com/exdb/mnist, 2010.

[40] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to
handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[41] Ce Liu, Jenny Yuen, Antonio Torralba, Josef Sivic, and William T Freeman. Sift
flow: Dense correspondence across different scenes. In Computer Vision–ECCV
2008, pages 28–42. Springer, 2008.

[42] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. arXiv preprint arXiv:1411.4038, 2014.

[43] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional
networks through ffts. arXiv preprint arXiv:1312.5851, 2013.

[44] Yurii Nesterov. A method of solving a convex programming problem with conver-
gence rate o (1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[45] Pedro HO Pinheiro and Ronan Collobert. Recurrent convolutional neural net-
works for scene parsing. arXiv preprint arXiv:1306.2795, 2013.

69 Bibliography

[46] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of
brain mechanisms. Technical report, DTIC Document, 1961.

[47] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, 2015.

[48] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.
Signal Processing, IEEE Transactions on, 45(11):2673–2681, 1997.

[49] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-
ting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[50] Fernando de Souza Campos Paulo R. Aguiar Eduardo C. Bianchi Thiago M. Geron-
imo, Carlos E. D. Cruz. 2013-01-16. URL http://www.intechopen.com/books/

export/citation/BibTex/artificial-neural-networks-architectures-

and-applications/mlp-and-anfis-applied-to-the-prediction-of-hole-

diameters-in-the-drilling-process.

[51] Joseph Tighe and Svetlana Lazebnik. Superparsing: scalable nonparametric im-
age parsing with superpixels. In Computer Vision–ECCV 2010, pages 352–365.
Springer, 2010.

[52] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Pi-
antino, and Yann LeCun. Fast convolutional nets with fbfft: A gpu performance
evaluation. arXiv preprint arXiv:1412.7580, 2014.

[53] Francesco Visin, Kyle Kastner, Kyunghyun Cho, Matteo Matteucci, Aaron
Courville, and Yoshua Bengio. Renet: A recurrent neural network based alter-
native to convolutional networks. arXiv preprint arXiv:1505.00393, 2015.

[54] Paul Werbos. Beyond regression: New tools for prediction and analysis in the
behavioral sciences. 1974.

[55] Paul J Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, 1990.

[56] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet,
Zhizhong Su, Dalong Du, Chang Huang, and Philip Torr. Conditional random
fields as recurrent neural networks. arXiv preprint arXiv:1502.03240, 2015.

	Contents
	List of Figures
	Sommario
	Introduction
	Machine learning and neural networks
	Neural networks and machine learning
	Network training

	Convolutional neural networks
	Working principle
	Training tricks

	Recurrent neural networks
	Backpropagation through time
	Bidirectional RNNs
	Vanishing gradient problem

	Multidimensional recurrent neural networks
	MDRNN
	Network training

	Multidimensional long short-term memory
	Complexity

	Related work

	Image segmentation
	Image segmentation problem
	CRFs for image segmentation
	Neural networks for image segmentation
	CNN-MDRNN hybrid for image segmentation

	Implementation details
	Implementation environment
	Caffe architecture

	MDLSTM implementation and design decisions
	Implementation
	Testing

	Scaling up performance
	Single core performance
	CPU parallelization

	Experimental results
	Sift flow dataset
	Experimental results
	Architectures
	State of the art
	Result analysis

	Conclusion
	Future work

	Bibliography

