Preprint
Article

Dynamic Threshold Selection for the Classification of Large Water Bodies within Landsat-8 OLI Water Index Images

Altmetrics

Downloads

2048

Views

1021

Comments

0

Submitted:

29 December 2016

Posted:

29 December 2016

You are already at the latest version

Alerts
Abstract
Surface water distribution extracted from remote sensing data has been used in water resource assessment, coastal management, and environmental change studies. Traditional manual methods for extracting water bodies cannot satisfy the requirements for mass processing of remote sensing data; therefore, accurate automated extraction of such water bodies has remained a challenge. The histogram bimodal method (HBM) is a frequently used objective tool for threshold selection in image segmentation. The threshold is determined by seeking twin peaks, and the valley values between them; however, automatically calculating the threshold is difficult because complex surfaces and image noise which lead to not perfect twin peaks (single or multiple peaks). We developed an operational automated water extraction method, the modified histogram bimodal method (MHBM). The MHBM defines the threshold range of water extraction through mass static data; therefore, it does not require the identification of twin histogram peaks. It then seeks the minimum values in the threshold range to achieve automated threshold. We calibrated the MHBM for many lakes in China using Landsat 8 Operational Land Imager (OLI) images, for which the relative error (RE) and squared correlation coefficient (R2) for threshold accuracy were found to be 2.1% and 0.96, respectively. The RE and root-mean-square error (RMSE) for the area accuracy of MHBM were 0.59% and 7.4 km2. The results show that the MHBM could easily be applied to mass time-series remote sensing data to calculate water thresholds within water index images and successfully extract the spatial distribution of large water bodies automatically.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated