Preprint
Article

Life cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming vs. Biomass Gasification

Altmetrics

Downloads

2560

Views

1063

Comments

0

This version is not peer-reviewed

Submitted:

04 January 2022

Posted:

10 January 2022

You are already at the latest version

Alerts
Abstract
CONTEXT– Energy is widely involved in human activity and corresponding emissions of SOX, NOX and CO2 from energy generation processes affect global climate change. Clean fuels are desired by society because of their reduced greenhouse gas emissions. Hydrogen is once such candidate fuel. Much hydrogen is produced from fossil fuel, with biomass being an alternative process. OBJECTIVE– The project compared the environmental impact of hydrogen production by natural gas steam reforming vs. biomass gasification. METHOD–Environmental impact was calculated from the input and output data from life cycle inventory analysis. The impact assessment was focused on greenhouse gas emission, acidification, and eutrophication. Models of the two processes were developed and analysed in OpenLCA. The agribalyse database was used to connect inventory flow data to environmental impacts. FINDINGS– For all three metrics, biomass gasification had lower impacts than natural gas steam reforming, sometimes by large margins. For biomass gasification the silica sand production contributes most to all three impact categories, whereas for natural gas steam reforming it is the LPG extraction.
Keywords: 
Subject: Engineering  -   Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated