COMPUTERS & SECURITY 53 (2015) 79—108

Available online at www.sciencedirect.com

ScienceDirect

Computers
&
Security

journal homepage: www.elsevier.com/locate/cose

T Security of Software Defined Networks:

A survey

Izzat Alsmadi’, Dianxiang Xu

@ CrossMark

Department of Computer Science, Boise State University, 1910 University Drive, Boise, ID 83725, USA

ARTICLE INFO ABSTRACT

Article history:

Received 21 January 2015
Received in revised form

19 March 2015

Accepted 21 May 2015
Available online 4 June 2015

Keywords:

Software defined networking
Security

Software Defined Security
Networking

Network security

Software Defined Networking (SDN) has emerged as a new network architecture for dealing
with network dynamics through software-enabled control. While SDN is promoting many
new network applications, security has become an important concern. This paper provides
an extensive survey on SDN security. We discuss the security threats to SDN according to
their effects, i.e., Spoofing, Tampering, Repudiation, Information disclosure, Denial of
Service, and Elevation of Privilege. We also review a wide range of SDN security controls,
such as firewalls, IDS/IPS, access control, auditing, and policy management. We describe
several pathways of how SDN is evolving.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Today Internet-based systems, such as cloud services and
social networks, change their network requirements (e.g.,
bandwidth demand, topology, and routing information)
dynamically. Hardwired networks, however, have very
limited ability to cope up with such frequent changes. To
address this issue, Software Defined Networking (SDN) has
emerged as a new network architecture that allows for more
flexibility through software-enabled network control. The
basic idea is to separate control plane from data plane into a
program, called controller, for dynamic orchestration of
network components.

While SDN is enabling new network applications, security
has become an important concern as security is not yet a
built-in feature in the SDN architecture. Research has shown
that various security attacks can be conducted against SDN

* Corresponding author. Tel.: +1 2089726299.

E-mail address: izzatalsmadi@boisestate.edu (I. Alsmadi).
http://dx.doi.org/10.1016/j.cose.2015.05.006

0167-4048/© 2015 Elsevier Ltd. All rights reserved.

through different network components. As SDN relies on
software, code vulnerabilities also have an important impact
on SDN security. Moreover, SDN offers abundant opportu-
nities for implementing security controls as SDN controller
applications. Such software solutions can enable more flexible
security controls in dynamic and virtualized network envi-
ronments. They provide a practical means for software-
defined security control.

In this paper, we conduct an extensive survey on SDN se-
curity. We study the security threats to SDN according to their
effects, i.e., Spoofing, Tampering, Repudiation, Information
disclosure, Denial of Service (DoS), and Elevation of Privilege
(STRIDE). This classification of security threats, known as
STRIDE (Howard and LeBlanc, 2001), has been widely applied
to threat modeling of computer, software, and network sys-
tems. We also review a wide range of SDN security control
applications, such as firewalls, Intrusion Detection/Protection

mailto:izzatalsmadi@boisestate.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2015.05.006&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

80 COMPUTERS & SECURITY 53 (2015) 79—108

System (IDS/IPS), access control, auditing, and policy man-
agement. In addition, we discuss several open issues and
research topics that worth further investigation.

The rest of the paper is organized as follows. To facilitate
discussions on SDN security, Section 2 briefly introduces the
architecture of SDN. Section 3 reviews SDN security threats
and countermeasures according to the STRIDE classification.
Section 4 focuses on SDN security controls. Section 5 con-
cludes this paper.

2. SDN architecture

SDN aims at providing open, centralized, decoupled, pro-
grammable, flow-based, and dynamic network switching
mechanisms.

m Open: Traditional networking components such as
switches and routers are vendor specific. They provide
limited ability for users to experiment their own
networking protocols on live networks with real traffic.
With SDN, developers can develop middle-boxes that
interact with the controller and network switches. Many
controller platforms are open source, such as OpenDay-
Light, Floodlight, Ryu, and Beacon.

m Centralized: The control of different switches is co-

allocated in one logical place, i.e. the controller. In design

terms, this is about splitting “the what” from “the how”.

Such architecture is capable of handling very dynamic

network situations. For example, network traffic based on

dynamically changing usage demands may require
switches to suddenly join or leave a particular virtual
network.

Decoupled: Network functionalities include tasks related

to two in-cohesive components: control and data. Splitting

data from control improves overall reusability and main-
tainability of network systems. Policies are decoupled from
switches' rules. User level security policies should be
expressive and close to users' language and terms, whereas
network level information (i.e. Flow or firewall rules)
should be simple and close to network attributes.

Furthermore, in SDN, virtual or logical network is decou-

pled from the physical network.

m Programmable: Controller can be accessed and pro-
grammed by user level applications or middle-boxes. Such
programmability is considered a major characteristic of
SDN. Developers can modify open source controller mod-
ules. Programmability in SDN can be extended far more
than just writing applications or modifying controller
functionality. It can offer network administrators the
ability to write policies and monitor OpenFlow networks.

m Flow-based management: SDN shifts networks from IP-
based to flow-based management and control. While
flow-level control is technically possible in traditional
networks, routing protocols make decisions based on IP
addresses. SDN is a flow-based architecture, where for-
warding decisions in switches are made according to flows.
Records or rules in switches and firewalls are per flow. This
will impact many applications that depend on network
traffic. For example, typical firewall rules deny or permit

packets based on source or destination IP, MAC addresses
or ports. Future firewall rules may become more dynamic
and be updated frequently based on real time traffic.

= Dynamic: A major advantage of software over hardware is
that it can accommodate frequent changes for more dy-
namics and flexibility. Configuration or reconfiguration of
hardware is labor intensive. Software can be programmed
to respond to activities and make decisions dynamically.
This is extremely important to those applications with
highly dynamic bandwidth demand, such as cloud
computing, dynamic datacenters, smart devices, and social
networks.

Fig. 1 shows an overall architecture of SDN, with the
consideration of the most recent technological advances. We
will use this architecture as a reference throughout the paper.

SDN architecture can be divided largely into controller core
or internal modules and external modules. The core modules
can be seen in the central or inner rectangle of Fig. 1 including:
Network manager, APIs, Network Operating System (NOS),
internal services and drivers. A bare bone controller should at
least contain those modules that represent main functional-
ities. External modules of SDN controller can be divided logi-
cally into 4 parts interacting with the controller from the 4
different directions:

e Southbound section: This can be considered as the most
currently popular direction of interaction between the
controller and its switches. The OpenFlow protocol is a
southbound interface to the controller that represents the
connecting bridge between the controller and forwarding
elements such as switches. Having a non-vendor-specific
protocol is important to allow all vendors join this open
architecture.

Recent improvements on SDN architecture proposed a
service abstraction layer (SAL) or a hypervisor in this sec-
tion to enable controller and protocols to evolve without
impacting each other. Open source FlowVisor can be
considered as an instance of SALs.

Northbound section: All types of applications (also called
middle-boxes) that want to interact with the controller and
underlying network or traffic can be typically designed in
this section. There are some proposals of a standard pro-
tocol or interface similar to OpenFlow. REST API can be
considered a significant achievement toward that goal
although it does not represent a standard and a secure
method to communicate with the controller. In addition,
there are no clear agreements regarding handshaking
methods between the northbound applications and the
controller, how to manage communicative permissions or
authorization, or how to handle decisions' conflicts. SDN-
specific policy programming languages such as Pyretic
and Frenetic also communicate with the controller through
northbound section. It is highly desirable that all the se-
curity applications such as firewall, access control, IDS/IPS
use a common API for interactions with the controller.

From security perspectives, many concerns are raised that
enabling applications to interact with controller that may
have special privileges can cause several security risks.

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108 81

Firewall Access
Control

IDS/IPS

Monitoring
Balancer
etc.

Northbound API: OpenDayLight REST, Procera, Frenetic, FML, etc.ﬁ

|
)

/ Controller internal services: Path, Security, SAN, etc.

Network

’7 Manager

S19]|0J3U0D) JBYIO

(mo)442dAH “8'3) s|dv punog 1seN\‘

\ =
[
4
IBIE
o
5 12
Q. 3
Network APIs o :| = ?
2 2 o
S = S
Network Control 0S S5 :| © =
= L] o
|| &
Drivers For: L2-L3, OpenFlow, DOVE, etc. —‘ 2 @
3
S
= S

EIEAN

Service Abstraction Layer or Network Hypervisors (e.g. FlowVisor)
%ﬁ
Southbound API: OpenFlow, ForCES, IRS, etc.

Switch vSwitch Router

Access Data Plane

Point Physical Network

Fig. 1 — SDN architecture.

Security may come unintentionally from normal applications
or network users tampering network configuration or archi-
tecture. Risks may also come intentionally from hacking
methods that can possibly compromise those applications.

e East and West sections. Currently both east and west
bound sections are used for the same purpose; manage-
ment of an SDN distributed architecture. For examples
different instances of controllers in a distributed archi-
tecture should communicate frequently and pass control
and management information. There are different possible
SDN distributed architectures to implement. In one type, a
vertical or hierarchical architecture may exist where a top
layer controller may have several low level controllers.
Upper layer controller main functionalities include control,
management, monitoring and tasks' distribution for the
different SDN low level instances. In other types, different
controllers may perform different functionalities (e.g. load
balancing, security control, layer 3 switching, layer 4
routing, etc.). Further, controllers can share same tasks and
load can be allocated to new instances of controllers in real
time based on resources' needs, consumptions, etc.

There are different kinds of flows that travel through SDN
networks. From a high level perspective, they can be classified
into messages for configuration, feature requests, flow/port/
table modification, installation of forwarding entries, statis-
tics, control-plane protocols and packets’ punting. Here is a
list of those flow messages:

1. OpenFlow messages: Controllers use those messages to
define switches' policies. There is a mode called “in-band”

wherein a virtual switch; vSwitch can include hidden flows
that neither controller nor user can override.

2. Packet in messages: Destiny of new packets entering the
network and reaching a switch is decided by the controller.
When an OpenFlow switch receives packets, it tries to
match them with its flow table rules. If there is no match,
packets are forwarded to the controller to make a decision
about them. The controller makes decisions on all new
packets or packets that do not match any flow rule in the
switch flow table(s). New flow rules are then added
dynamically to switches based on controller decisions.

3. Datapath flows: Those are vSwitch internal flows and can
be used for caching.

4. Controller-to-switch messages: They are initiated or trig-
gered by the controller. Those may include asking a switch
about its features or sending packets to a switch for for-
warding, and flushing earlier packets.

5. Switch to controller notification messages: Those are
usually called event-based messages, such as: packet-in,
flow-removed, port status and errors.

6. Symmetric messages: Two-way messages between
controller and switches such as hello, echo and vendor
messages.

7. Flow statistics: Those are generated by forwarding devices
and collected by the controller.

The virtual switch is a program that processes network
traffic between the Ethernet Network Interface Card (NIC) and
the Virtual Machines (VMs). With virtual switches, virtual
machines can act like real hosts in networks. The open
vSwitch works with a centralized controller to manage virtual
switches as one logical switch. In addition to OpenFlow,

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

82 COMPUTERS & SECURITY 53 (2015) 79—108

OVSDB is another type of southbound APIs, designed to pro-
vide advanced management capabilities for Open vSwitches
[Kreutz et al., 2013]. Some controllers support only OpenFlow
in the southbound APIs section. As an open architecture,
OpenDayLight controller tries to extend this limitation to
include a wide range of APIs including, in addition to Open-
Flow and OVSDB: NETCONF, PCEP, SNMP, BGP and LISP. Most
of those protocols were included to cover backward compat-
ibility with traditional networks.

The forwarding engine in SDN switches has no local con-
trol. It is remotely controlled by the central controller.
Switches may lose communication with the controllers. Their
message requests may time out. In some cases, they may try
to communicate with back up controllers, if exist. They can be
switched to “fail secure mode” or “fail standalone mode”
states. Those are the same states that a switch is in when it
just starts a new fresh connection with the controller (i.e. has
an empty flow table). An OpenFlow switch can be set to
different modes. In reactive mode, no default set of flow en-
tries are specified in OpenFlow for new switch connections.
Behaviour of the switch in such cases can depend on whether
it is an OpenFlow only or a hybrid (i.e. OpenFlow and legacy).
As an alternative, some initial default rules can be added or
flushed to the switch where such mode can be a mixed be-
tween passive or traditional switching and new or reactive
switching modes.

Digital certificates are communicated between switches
and the controller. They usually include embedded informa-
tion from hardware components and are signed by site-
specific private keys. This occurs from both ways; the
controller and each switch. Digital certificates, widely used in
e-commerce, are electronic identity credentials that use
encryption methods. The strength of encryption scheme de-
pends on whether the users use strong encryption keys or not.
Switches communicate by default with the controller through
port 6653. Controllers include, or should include, a certificate
manager, to issue and maintain certificates for authenticated
users and switches. When switches join the network or the
controller, they may have flow records in their flow tables.
Controller can have the option to delete all those flows or keep
them.

Security testing of communication channels in SDN should
include the evaluation of several aspects. Handshaking or
communication methods between the different parties (e.g.
controller, switches, and top level applications) should be
thoroughly evaluated to make sure that attacks such as Man
in the Middle (MiM) are not possible. Control and conflict
management should be also evaluated to make sure that
messages from different parties will not cause any conflict or
at least there is a clear conflict resolution scheme. All security
applications/controls such as those listed later in this paper
should eventually have one common Application Peripheral
Interface (API), with all issues we mentioned earlier formal-
ized. This API/protocol should provide interactions between
those security, control or management applications and the
controller.

Given that SDN is a new architecture that is expected to
impact several traditional applications or environments, we
will focus on showing how security threats and controls will
be influenced by SDN. We will then show how such

components are going to be implemented in SDN environ-
ment and what are some of the distinguished characteristics
in comparison with traditional systems or networks.

3. SDN security threats and
countermeasures

In this section, we will use traditional STRIDE threats model
[Howard and LeBlanc, 2001] to analyze the type of threats that
SDN network can be exposed to. While this model is proposed
based on traditional networks, threats described below can be
generic and be applicable to networks in general. As an
alternative, threats on SDN can be classified based on SDN
major functional components described earlier in Fig. 1 and
the type and nature of attacks that each component can be
subjected to. Attacks on SDN can be also classified based on
the type of assets or resources a typical SDN may have. For
example, attacks can be focused on switches' flow tables
where those flow tables include information related to
network management; switching, routing and access control.
Attacks can be also focused on the controller as the central
location for management and control. The channel between
the controller and the switches is another major attacks’
target where such channel involves important messages that
can be hijacked. At the top level, controller communicates
with high level applications using a standard interface (e.g.
REST). Such interface can be also attacked in order to trick the
controller to allow malicious applications to join the network
and interact with the controller, the network and its traffic.

3.1. Spoofing

Spoofing refers to a process where network information (e.g.
IP, MAC, ARP, etc.) is forged intentionally to hide the actual
identity of traffic originator or attacker. For example, users
may use spoofed IP addresses to access network resources.
Spoofing is often part of a larger attack, such as SYN flooding,
Smurf, and DNS amplification [Yao et al., 2011]. Spoofed ad-
dresses can also be part of a botnet or a zombie network to
launch Distributed DoS; (DDoS) attacks. Currently spoofing
threats in SDN primarily include Address Resolution Protocol
(ARP) spoofing and IP spoofing.

3.1.1. ARP spoofing

ARP spoofing involves linking an attacker MAC address to a
legitimate IP address. The original purpose of ARP is to resolve
IP to MAC addresses. The ARP spoofing attack may cause
traffic to be hijacked from the original intended receiver and,
as a result, a legitimate user or host is knocked out of the
network. IP to MAC mapping tables can be used to detect ARP
spoofing.

[Matias et al., 2012] proposed an Address Resolution Map-
ping (ARM) module in the controller that tracks MAC ad-
dresses from authorized users or hosts. Controller then
consults this ARP module and discards ARP responses that are
not verified by the ARP module. In OpenFlow, ARP poisoning is
possible between the controller and switches if the optional
SSL encryption is not used. ARP cache poisoning occurs when
an attacker is located in the same subnet of the victim

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108 83

network (e.g. internal attacks). Attacker can use scanners to
listen to network traffic between network components. [Al-
Shabibi, 2014] has developed an anti ARP poisoning switch
application in the POX OpenFlow controller.

ARP spoofing attacks can be countered with packet level
information. [Zaalouk et al., 2014] divided attacks' detection
methods into high and low resolution methods based on the
amount of information given to it as input. Low resolution
attacks require information at the flow, not the packet level.
Packet level details are only required at high resolution level
attacks. For example, attacks like DoS and Domain Name
Server (DNS) amplification can be handled with information at
the flow level details. On the other hand, ARP spoofing and
cache poisoning attacks require information at the packet
level.

3.1.2. IP spoofing

IP spoofing is usually used as an opening to other types of
security attacks, such as DNS tampering or amplification. A
DNS is a directory that associates IP addresses to domain
names. To reroute traffic to illegitimate websites, an attacker
may manipulate DNS directory. This can be also part of a large
flooding or worm spreading attacks. What all spoofing
methods have in common is that they try to redirect traffic to
illegitimate hosts. They can also be considered to achieve Man
in the Middle (MiM) attacks. Spoofing can be mitigated by a
proper authentication scheme. Strong password and encryp-
tion methods should be enforced to avoid unauthenticated
intrusion.

IP address validation methods can be also used to counter
IP spoofing. Internet Engineering Task Force (IETF) formalized
a standard for Source Address Validation Improvement
(SAVI). SAVI verifies addresses of packets based on a binding
validation. Based on OpenFlow Virtual source Address Vali-
dation Edge (VAVE), [Yao et al,, 2011] extended SAVI to solve
the address resolution problem. VAVE module, embedded in
the controller, verifies the address of external packets that
have no records in the flow table. Flow entries are inspected
based on the validation module and based on a dataset of
white lists to judge whether to allow or drop the flows. An
explicit rule to drop the flow is added in the flow table once
spoofing is detected. [Feng et al., 2012] extended the solution
of VAVE using OpenRouter; an OpenFlow extension of tradi-
tional routers. Each router has a collective network view of
address assignment and routing. Software Defined Filtering
Architecture (SEFA); another countermeasure of the same IP
based or router based spoofing, is a successor to VAVE [Yao
et al.,, 2014]. In addition to collecting and building flow rules
in routers, SEFA adds filtering rules based on spoofing
occurrences.

Existing research discussed hiding hosts' identities to
protect them against several types of attacks including
spoofing [Jafarian et al., 2012; Kampanakis et al., 2014, and Yao
et al.,, 2011]. This is a form of dynamic network configuration
where network information is either frequently changing or is
hidden from externals. Network information not only in-
cludes IP or MAC addresses, but also topology and routing
tables. In an attempt to hide end users’ identities and protect
them from scanners and spoofing, [Jafarian et al., 2012] pro-
posed a moving target defence approach. End hosts and their

identities should be continuously and randomly changed to
avoid being targeted by adversaries. OpenFlow assigns virtual
IP addresses to end hosts that can be mapped to actual or
physical IP addresses.

In SDN, controller should have a method to isolate its local
network information from the external networks. Similar to
Network Address Translation (NAT), controller can have ta-
bles to transform external to internal addressing. In fact,
OpenFlow can do this natively as OpenFlow devices can
rewrite the packets’ header fields which will make them
appear as coming from external addresses. This NAT trans-
lation should be communicated with many middleboxes
while at the same time be hidden from externals
[Fayazbakhsh et al., 2013]. OpenFlow networks and other
network virtualization methods allow users to divide the
network into slices and make flows behave differently in the
different slices regardless if they will have the same real IP
addresses or not. For example, it may be required for business
purposes to direct some particular flows to a security control
(e.g. a firewall). Alternatively it may be required to allocate
more bandwidth and resources to some particular traffic.

Spoofing or forged IP addresses may occur from within the
network. Based on the nature of IP address forging, source
address validation from within the network can be difficult to
detect. [Xiao et al., 2013] extended an earlier research about
OpenRouter. In general, an SDN approach may not need a
dedicated router where routing functionalities are included in
OpenFlow controller and switches.

3.2 Tampering

Tampering is the deliberate and unauthorized modification or
destruction of network information, such as topology, flows in
flow tables, policies, and access lists. For example, an intruder
may try to inject flow rules that will cause network mis-
behaviour. They may inject flow table or firewall rules that will
deny legitimate hosts or allow illegitimate hosts. Intruders
may also try to tamper topology information and conse-
quently cause some traffic to be hijacked. In SDN controller
distribution, different controllers communicate with impor-
tant information. It is very important to secure this commu-
nication channel from being hijacked or tampered [Othman
and Okamura, 2013].

Security threats may target firewall or flow table rules.
[Porras et al., 2012a,b] described the security problem of dy-
namic flow tunnelling related to conflicts in interpreting flow
rules. This problem occurs since rules are evaluated one by
one. An attacker may try to orchestrate more than one rule
where all those flows collectively violate firewall rule(s) while
on the other hand, no single flow violates any firewall rule. In
their proposed solution, they tried to check the conflict be-
tween flows and firewall rules based on all possible combi-
nations of incoming flows. Nonetheless, this may not be
scalable or applicable to complex scenarios.

As a flow-based traffic management, SDN can help pre-
venting unintended traffic tampering. Packets can be inspec-
ted before they go on the wire for their destination for some
integrity attributes. Validation results can be carried out with
the traffic to be checked at the destination point. Tampering
can be mitigated by distributing auditing and monitoring

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

84 COMPUTERS & SECURITY 53 (2015) 79—108

across several network points [Bellessa et al., 2011]. If one
pointis attacked, the rest of the network points can be used to
detect and correct such tampering.

To protect against tampering, controller should manage
and routinely check encryption methods and legitimate con-
nections. The main limitations of Transport Layer Security
(TLS) encryption used in OpenFlow are that first it is optional
to use or enforce by users and second is that many actual
controllers are not even implementing or adopting it. Another
related issue is controller failure modes (fail safe and fail
secure modes). It is possible to compromise integrity or
confidentiality when controller or switches are pushed to
switch to one of those failure modes.

In virtual environments, different logical networks share
the same physical or network resources. As a result, there is a
serious concern about the level of correctness and integrity
not only from external editing or tampering but also from
internal modifications. Existing experiments showed that
slices or VMs in the same tenant or cloud datacentre have a
possibility that one VM may access resources from the other
VMs sharing the same physical resources [Ristenpart et al.,
2009; Zhang et al, 2012]. Same concern can be also
mentioned in other scenarios where virtual separated re-
sources share same physical resources (e.g. different testbed
experiments, different wireless or home network users, etc.).
Can security tools verify beyond doubt that logical separation
or isolation guarantees no interactions between the different
virtual networks?! How could this be guaranteed and what
kinds of tests to be conducted to proof or certify that? It is
expected in future that such certificates will be possibly
required or demanded from cloud or ISP service providers.

3.3. Repudiation

“Repudiation is the denial by one of the entities involved in a
communication of having participated in all or part of the
communication” (ISO, 1989). Non-repudiation, which is
considered as a legal rather than technical concept, tries to
make sure that such denial does not occur. The receiver needs
to verify that packets are sent from the actual sender included
in the packet header and the sender needs to verify that
packets sent to the actual receiver included in the packet
header. Non-repudiation is often related to accountability,
which is about holding individuals or entities accountable or
liable for their actions.

3.3.1. Non-repudiation verification

In current web, e-commerce, etc. indirect or remote types of
communication, this repudiation or denial from one party
that they were part of this communication can be caused
typically as a result of Man in the Middle (MiM) attacks in
which an intruder in the middle masquerades to both parties
that he/she is the other party. As such, encryption can be an
effective MiM counter measure and hence repudiation. Based
on this assumption, we describe encryption based methods in
this section for non-repudiation verification.

Encryption methods are used to verify to communication
partners that messages were authenticated from originating
sources and were not tampered throughout the network.
Research has showed security problems with Secure Socket

Layer/Transport Layer Security (SSL/TLS) encryption that is
used in OpenFlow algorithm for the communication between
controller and switches. [Namal et al., 2013] proposed alter-
native encryption schemes, HIP-BEXv1 and HIP-EEX that offer
better security features for non-repudiation, DoS, and MiM
threats.

Third party verifications (e.g. Public Key Encryption PKE
and digital certificates) can be used to eliminate repudiation.
Currently, such security mechanism and architecture (i.e.
PKE) is used widely in e-commerce systems and business
transactions. Message transfer digests are also used to provide
digital receipts regarding a message. Signal chaining can be
also used to provide non-repudiation. For example, an audit
system should include the step routes or sequence that a
message or a packet went through between original sender
and final receiver.

Proper auditing and logging methods for all types of ac-
tivities that occur in flow tables can help in non-repudiation.
Those can be provided as proofs about traffic activities.
However, trade-off between performance and logging should
be put in place to properly select what exactly to audit. Even
logging and auditing methods themselves can be tampered by
some security attacks. [Porras et al., 2012a,b] proposed Fort-
Nox, a flow-based authentication system, to provide a security
audit trail for flow rule commands, rules’ conflicts, and reso-
lution outcomes. It is not clear; however, what Meta infor-
mation is included in the audit or how conflicts can be
handled. In addition to flow attributes described in OpenFlow
specifications, for auditing we may need to know other in-
formation such as application ID, privilege level, flow time and
date. If a security breach occurs, this information is useful for
incident investigation.

[Andersen et al., 2008] proposed Accountable Internet
Protocol (AIP) as a replacement to the Internet Protocol IP. The
goal was to add more information in addition to those typi-
cally exist in packet headers that can uniquely identify the
sender application, user, machine, etc. [Bifulco and Karame,
2014] proposed a location based identification of hosts in
addition to the IP address that is associated with the public
key encryption of the user or the host.

Non-repudiation verification in very agile and dynamic
networks can be difficult to achieve. There are many SDN use
cases (e.g. Bring You Own Device (BYOD), campus networks,
peer to peer networks) that require non-repudiation-related
qualities where current networks can hardly provide
[Feamster et al., 2013a,b; Bakshi, 2013]. In these networks,
users and their network preferences vary all the time.
Handling non-repudiation is nontrivial given the large num-
ber of users and the agility of the network. SDN programma-
bility and its ability to define users or hosts based on flows can
be important tools to achieve such quality attributes more
robustly.

3.3.2. Accountability

Current SDN architecture holds each controller accountable
for its own switches. Inter-domain communication exchange
between the different controllers is not supported [Huang
et al,, 2013; Huang et al., 2014]. Packets related to switches in
other controllers’ networks are going to be dropped by the
local controller. However, there are many use cases that

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108 85

justify the need for different controllers to exchange infor-
mation especially as a single controller network is not a
practical network design for most production networks.
Different controllers should exchange information through
well defined-interfaces so that they will not interfere with
each other or cause security problems.

[Karame, 2013] discussed accountability issues related to
QoS. Communication partners need to exchange information
related to: Response time, error rate, etc. This is one of the
current serious challenges in cloud computing related to
Service Level Agreement (SLA). Network attacks can have a
direct impact on network metrics where they may delay
response time or cause some traffic not to be sent on time or
correctly. Who should be liable in such cases?! How could is-
sues related to conflicts in SLA and accountability be solved?!
Karame, 2013 proposed a security approach based on Open-
Flow that can handle some of the concerns in this specific
aspect.

Accountability can be challenged by several network
components including security controls. Security controls in
most cases act as barriers that limit the ability to audit traffic
resources. For example, NAT or proxy systems hide the
identity of internal hosts where a firewall may not be able to
know traffic source or actual host IP address. This is because
there is an internal mapping in the NAT/proxy between in-
ternal to external IP addresses. In this scope, [Fayazbakhsh
et al.,, 2013] proposed FlowTags as a system to allow security
middle-boxes to identify applications. Tagging information
should be integrated with flow information. Different appli-
cations which generate flows are expected to add this flow tag
information based on a uniform standard (i.e. Through a
FlowTag controller module). FlowTag module should handle
rewriting packets’ headers to include FlowTag information
from originating middle-box.

3.4. Information disclosure

Information disclosure attacks have no direct intention to
destroy or disrupt the network but to spy on its information. In
addition to the sensitive information that attackers try to get,
they will initially try to sniff network information such as to-
pology, nodes' features, or communication details among
nodes. The impacts of SDN architecture on scanning attacks can
be mixed. The controller is a central location for control of all
network switches. Being able to invade the controller, the
attacker can have a tremendous network access. On the other
hand, data is isolated from the controller, unlike traditional
switches where control is co-located with the data inside the
switch. In SDN, flow rules exist in switches’ flow tables. If in-
truders succeed to access those switches directly, they can
tamper flow rules and cause traffic to go to wrong destinations.
If they succeed to disconnect a switch from communicating
with the controller, they can assume control and cause a sig-
nificant traffic miss-direction. If they could hijack traffic from a
legitimate host, they can impersonate that host and join the
network as a spy. Man in the Middle (MiM) attack is an infor-
mation disclosure attack that targets information in transit and
not in premises. MiM attacks are currently seen to be signifi-
cantly possible in the current OpenFlow architecture [Benton
et al, 2013]. Current encrypted scheme in OpenFlow

communication, TLS, is optional. In addition, communication in
the northbound interface with the controller is not yet stan-
dardized. Added applications with possible vulnerabilities can
be used to launch MiM attacks and access controller resources.

3.4.1. Scanning countermeasures

Scanning methods and tools are often used in the initial steps
of information disclosure attacks. Network scanners search
through the network for potential information leakage and
vulnerability.

Encryption methods can be used to counter scanning based
attacks. The fact that the switches in SDN are remotely
controlled can be a security threat by itself. As mentioned
before, TSL/SSL encryption between the controller and its
switches is left optional as of the last visited version of
OpenfFlow (i.e., 1.4). It is not clear whether OpenFlow switches
only ensure one-to-one control relation (i.e. between each
switch and its controller) and how it is enforced. In other
words, can an intruder succeed in having a secondary control
rule on the switch without disconnecting the actual
controller? Does the switch or the controller guarantee that
there is only one controller connection coming to or going
from the switch?

Active security methods can be used to detect scanners (i.e.
if external tools are used to scan the target network). [Mehdi
et al., 2011] described using OpenFlow flow information for
traffic anomaly detection including the detection of scanning
worms. [Schehlmann and Baier, 2013] extended the approach
and made it more scalable at ISP level networks. They used
NetFlow to filter initial suspicious traffic and then redirect it
for further analysis to OpenFlow based detection system.

Several methods have been proposed to prevent OpenFlow
network scanning. Some of them used an active approach to
counter sniffer/scanner attackers [Hand et al., 2013]. Some are
based on responding to the scanner with incorrect or fake
traffic or fighting back by flooding the attacker with large
traffic. Other methods continuously change the identity of
hosts [Jafarian et al., 2012; Kampanakis et al., 2014].

Some methods for hiding local identities from external
users can also be used to counter sniffers or scanners. They
include Virtual Private Networks (VPNs), Network Address
Translation (NAT), and proxy, although their original pur-
poses are not related to hiding hosts identities. For example,
[Mendonca et al., 2012] introduced AnonyFlow, an OpenFlow-
based anonymization service. Unlike traditional NAT where
translation occurs between virtual and real IP addresses,
AnonyFlow uses special anonymity IDs that other parties can
only see instead of the IP addresses.

3.4.2. Information disclosure countermeasures

To protect private information, there are other actions to
consider. White listing and black listing can be used to filter
traffic. White and black listings in traditional networks are
defined based on IP and MAC addresses. They can be also used
in OpenFlow networks. As OpenFlow switches can interact
with flow level information, we can define metrics based on
flows and then define black and white listings based on flow
level information. This may prevent some attacks that use for
example large traffic where some attributes can't be identified
based on IP or MAC addresses.

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

86 COMPUTERS & SECURITY 53 (2015) 79—108

[Kloeti et al., 2013] proposed several recommendations to
reduce information disclosure in OpenFlow networks. For
example, intelligent rules for time out randomization can
make it difficult for scanners or sniffers to understand
network patterns. Similarly this can be applied to the
response time between controller and switches. A monitoring
tool can detect the difference in response time between
sending a new and an existing flow rule. The existence of such
difference in response time is an indicator of an OpenFlow
network. Countering this type of information sniffing can take
several scenarios. In one option, this can be countered using a
fully proactive approach where all flow rules are installed by
network administrators. Directed and intelligent counter
measure methods can be also effective in making fake
response time based on the nature of the network attack.
Attack tree models proposed by [Kloeti et al., 2013] and several
other researchers can be used to automatically detect the type
of network attack. However, such models still seem to be
highly semantic and do not include metrics that can be
directly interpreted or related to flow or packet level data.
Some useful flow or packet metrics are APf (Average Number
of Packets in Per Flow (ANPPF), Average of Bytes per flow (ABf),
Average of Duration per flow (ADf), Percentage of Pair-flow
(PPf) and Growth of Single flow (GSf) [Feng et al., 2009].

3.5. DoS

DoS attacks are among the most serious threats because they
affect network performance, increase latency, and drop of
legitimate packets. They may even disable the whole network
or stop it from functioning. For OpenFlow networks, DoS can
be more devastating as there is a continuous flow between
controller and switches. The continuous communication be-
tween controller and switches can tempt attackers to push
flows between the controller and the switches and interrupt
the normal network activities. Flooding and DNS amplifica-
tion are considered as flow level resolution attacks because
flow-level information is enough for detecting such attacks
[Zaalouk et al., 2014]. Flow level information is usually enough
to detect most types of DoS attacks. Typically traffic infor-
mation collected from flow header is at the flow level. Flow
based attack detection systems that rely only on the header
information can address the following network threats: DoS,
scans, worms and botnets. Those four types of attacks have
some common signatures. For example, they have a large
unbalanced traffic between fan in and fan out where most
traffic is going in one direction. In most cases large traffic will
be coming in. However, if the local machine is a botnet or a
victim, it can be sending a large volume of traffic. Port number
can be also a valuable information in those types of attacks
where there are known ports to be widely used. Other types of
network attacks may require packet level information in order
to be detected. As flow-based networks, SDN provides native
methods for DoS detection [Sperotto et al., 2010]. Information
extracted from flow headers is valuable for DoS detection.
Some DoS attacks cause variation in traffic volume that is
visible from flow view. Semantic-based DoS attacks, however,
may not be detected by traffic volume change.

The main distinguished feature of DoS attacks is the large
traffic size. Methods to detect the large size of traffic are the

most popular techniques used to detect flooding or DoS.
However, false positive alarms may arise where such large
traffic is coming from or going to legitimate hosts. There are
other methods to detect possible flooding. One method is
related to studying the difference in volume between
incoming and outgoing traffic. Typically in communication
between a source and a destination, there will be traffic going
from the two sides. If traffic is large and going from one side
with no single response from the other side, this can be an
indication of a flooding case. In TCP transmission for example,
even if data is from one side to the other, receiver will send
ACK messages periodically. Even UDP transmission will have
a request/response from the application layer.

In DNS amplification, public DNS servers can be used to
increase the effect of DDoS. This can cause a very large scale
network or Internet disruption. Recent reports (2013) showed
one of the largest DoS attacks in history on the website (www.
Spamhaus.Org) that is launched based on DNS amplification.
Monitoring and continuously retrieving the top DNS queries
can help us detect DNS amplification. For example a query
that asks the name server for all the records in that domain
results in a large response that causes traffic amplification.
Controller (limit traffic) decision choice can be designed in a
way that limits such cases.

Loops can cause DoS or can be used for network attacks. In
such loops, packets travel from one switch to another without
reaching their final destination. [Kazemian et al., 2013;
Kordalewski and Robere, 2012] have discussed how to
handle loops in OpenFlow networks.

To conduct DoS attacks in SDN, attacker may push a large
volume of traffic that keeps randomly changing flow attri-
butes [Shin and Gu, 2013; Shin et al., 2013a,b]. This is to ensure
that every flow is new, from the switch perspective, and hence
will be sent to the controller for making a decision about. An
attacker can use a traffic generator that ensures to change
attribute values per flow. As each attribute has a wide range of
valid and invalid inputs (e.g. IP address: 0.0.0.0 to
255.255.255.255), the number of possible flows can be enor-
mous. Such attack can have two goals: First, it will flood the
switch flow table and saturate it with illegitimate rules. This
may disable the flow table ability to accept legitimate rules.
The second goal for attackers to send this large amount of
flows is that this flood of flows will keep the controller busy
from responding to legitimate flows from other switches and
may bring it to a failure. Strong and reliable encryption
methods can help in securing the private communication
between switches and the controller. However, they cannot
prevent flooding or DoS as those are launched from hosts
sending traffic to OpenFlow networks. The Avant-Guard sys-
tem proposed in [Shin et al., 2013a,b] as an enhancement to
OpenFlow, showed that it is possible to handle DoS attacks
and eliminate their negative impact on the network.

3.5.1. Detection of DoS

[Braga et al., 2010] discussed a lightweight method to detect
DDosS attacks in SDN. The main challenge was to distinguish
normal packets from DDoS flooding packets. They classified
network traffic into an attack or normal traffic based on Self
Organizing Maps (SOM). The flow features selected were based
on earlier approaches [Feng et al, 2009], including APf

http://www.Spamhaus.Org
http://www.Spamhaus.Org
http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108 87

(Average Number of Packets in Per Flow (ANPPF), Average of
Bytes per flow (ABf), Average of Duration per flow (ADf), Per-
centage of Pair-flows (PPf) and Growth of Single-flows (GSf).
Those metrics or attributes are continuously collected and
monitored for detection of possible DDoS. A major concern is
that monitoring and maintaining such huge amount of data
will significantly degrade controller performance which is
already overwhelmed with other tasks. Having a dedicated
separate module or controller to perform such task can be a
more realistic solution. [Shirali-Shahreza and Ganjali, 2013a,b]
proposed to sample traffic to reduce controller traffic over-
head from the monitoring process.

A simple method to detect possible DoS attacks is to keep
monitoring the volume of traffic flows. Threshold can be
specified on what can be considered large or abnormal traffic.
Once this threshold is exceeded, a DoS occurrence can be
triggered [Chu et al., 2010] and controller inserts a flow rule to
drop packets. Similarly, traffic map or patterns can be
analyzed frequently to predict if some traffic is abnormal or
large [Braga et al., 2010]. [Suh et al., 2010] proposed a content
based networking architecture. Controller triggers DoS alert if
traffic exceeds a certain threshold. Rules are then inserted in
switches by the controller to eliminate source of DoS.

[Schehlmann and Baier, 2013] proposed an OpenFlow
based approach to detect and mitigate botnets. Botnets are
networks or groups of compromised hosts that are used to
launch attacks such as DDoS, to propagate worms or send
spams. Their proposed solution, COFFEE, utilizes SDN ability
to have access to all traffic to reduce rate of false detections.

In TCP connections, acknowledgement message (TCP ACK)
is required to verify communication between senders and
receivers. However, it can also be triggered by a flooding or
DosS attack. [Shin et al., 2013a,b] proposed a simple algorithm
to handle TCP ACK packets. [Liyanage et al., 2014] proposed a
security layer or interface to coordinate the communication
between OpenFlow switches and the controller. A show case
of TCP SYN DosS attack is used to evaluate the model. Attack
includes occupying all packets and IP address possible com-
binations. Network performance is measured through the
attack to evaluate the time it takes the network to figure and
clear out the attack.

[Benton et al., 2013] evaluated OpenFlow vulnerabilities for
DoS and integrity attacks. They showed that OpenFlow pro-
tocol and its communication mechanism between controller
and switches should be thoroughly investigated. [Dover, 2013]
conducted an experiment to simulate DoS attacks on Flood-
light controller using methods such as TCP SYN or ARP cache
poisoning. A vulnerability discovered in Floodlight that dis-
connects an old switch if a new switch is registered with the
same data path ID (DPID) as of the old one. Such vulnerability
can be used by malicious switches to claim to be legitimate.
The only information attackers need is the DPID which can be
acquired from the controller REST APIL.

Yuzawa, 2013 presented a simple use case for using sFlow
monitoring tool for DDoS attacks' detection in OpenFlow. The
goal was to counter DDoS without disrupting normal traffic.
They used the module “static flow pusher” from Floodlight
controller and claimed that no commercial virtual switch
showed the same expected response as the open source vir-
tual switch (vSwitch).

[YuHunag et al., 2010] proposed an autonomic DDoS
detection system based on OpenFlow. The system uses the
simple volume count (i.e. flows/packets per time) to judge the
occurrence of DoS or DDoS. The problem with such simple
metric is that many false positive alarms may occur where
large volume traffic can be legitimate.

While some studies argued that OpenFlow networks have
more problems with DoS than traditional networks, Yuzawa
(2013), Dillon and Berkelaar (2014) showed that SDN can pro-
duce a better way of handling Remote Triggered Black Hole
(RTBH). This is a technique in traditional WAN networks to
countermeasure DoS attacks by instructing routers to drop all
traffic to the target. They used OpenFlow traffic flow statistics
to monitor traffic volume and alert for a significant increase in
size attributes (e.g. byte and packet counters). They used the
mathematical standard deviation measure to evaluate
whether certain flows are significantly above average. Packet
symmetry is also used as an indicator of DoS in that the dif-
ference between incoming and outgoing flows for a particular
host is very high.

3.5.2. Countermeasure of DoS

DoS can be handled by effective and dynamic response
methods to handle occurrences of DoS. Rate or limit traffic by
the controller and monitor abnormal traffic behaviours are
also important countermeasures. We discussed in an earlier
section some countermeasures for spoofing. Similarly, there
are some proposals for active countermeasures of DoS or
flooding attacks in SDN networks specifically [Koponen et al.,
2011]. Active response means to take an offensive action to
counter an attack.

An attacker can focus DoS on the messages from data
plane or switches to the controller and try to saturate both
switch flow table and controller resources; data-to-control
saturation attacks [Wang et al, 2014]. Protection mecha-
nisms should ensure that controller and switches have the
ability to quickly recover from such flooding. The mechanism
should also be able to distinguish legitimate from fake traffic.
Passive or dormant monitoring agents are proposed to be
triggered only when they see the occurrence of fake flooding.

[Koponen et al., 2011] proposed FII (Framework for Internet
Innovation) to deal with inter domain DoS, based on the IP
addressing scheme AIP [Andersen et al., 2008]. AIP includes
information about hosts in packet header related to the host
with a global ID, rather than an IP address. This may help
eliminating attacks that hijack hosts based on their IP ad-
dresses. They claimed that their approach is focusing on
availability to ensure that each participant in a communica-
tion can reach the destination. The approach divides handling
DoS into two parts: Inter and intra-domain attacks. For local,
or intra-domain attacks, each domain should be given the
choice to select their own way of validating local hosts. On the
other hand, FII provides a united method to handle DoS inter-
domains attacks. As a countermeasure, a shut up message
(SUM) can be issued to intruders attacking the network with
DosS attacks.

Flooding or DoS can also be solved by flow rules optimi-
zation or rule-merging in flow tables. Flow tables can be
dynamically flooded with rules to cause buffer overflows or to
saturate switch memory and cause it to be closed down or

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

88 COMPUTERS & SECURITY 53 (2015) 79—108

deny service for legitimate hosts or traffic. Hence, it is
necessary for switches to have a dynamic ability to continu-
ously re-evaluate flow table rules and merge flows that can be
merged. However, such evaluation and decision process itself
is intelligent and complex. Based on the current OpenFlow
architecture, such intelligence does not exist in switches.
Further, if the controller will do this, it can add an extra
overhead on controller resources.

3.6. Elevation of privilege

Once entering the system, attacker tries to elevate their access
privilege to access system resources and applications that
require special permissions. The ability to detect privilege
elevation attacks requires a robust and intelligent auditing
process. For example, [Ramachandran et al., 2009] proposed
Pedigree, a system to trace executed applications through
tagging them with special identification. A major problem
with logging or auditing methods is scalability because they
store a large amount of data which may affect storage,
memory, and bandwidth. Since privileges are allocated in
authorization or access control modules, escalation attacks
often target those modules and try to tamper information in
those modules. Several approaches have been proposed to
give users the right level of permission [Clark et al., 2009;
Naous et al., 2009; Foster et al., 2011; Porras et al., 2012a,b;
Katta et al., 2012; Wen et al., 2013].

[Porras et al., 2012a,b] proposed a fine grained RBAC system
based on OpenFlow. The idea is to give privilege on a flow-
basis rather than on a user or host basis. One advantage of
this flow-based authentication is that a user needs to be
verified frequently on a flow by flow basis. In other words, a
user is not always guaranteed or denied. This may reduce the
problem of privilege escalation as users are frequently
screened for possible privilege escalation. Another advantage
is that controller can be isolated from all other flows. In
addition, internal flows can be distinguished from external
flows. Permissions can then have a lifecycle that starts and
ends with the flow life cycle. A source authentication module
is included to allow each flow rule insertion in switches to be
verified through a digital signature. If no signature is provided
lowest priority is given. However, this may open the oppor-
tunity for privilege escalation later on (i.e. within the switch
flow table). Using default or least privilege approach has an
advantage of not dropping flows if authentication failed.
However, it does not solve the security attacks coming from
privilege escalation. In addition, many current attacks start
their intrusion by attacking a legitimate application and
compromising it. The victim application privileges are then
used for further attacks. Perhaps a hybrid approach is neces-
sary to combine between such privilege or permission system
in addition to another module that can track applications’
“usage profile”. A legitimate application that is suddenly
changing the way it communicates with other applications or
destinations should trigger a security alert.

[Wen et al., 2013] proposed PermOF, a fine grained access
control management system that includes comprehensive
access levels for controller and network resources. Simple
limited authorization levels with only two or three authori-
zation levels (including the administrator) can be an easy

target to tamper with or cause privilege escalation. Including a
relatively large number of access levels should result in
limiting the use of high level administration capabilities that
can have very powerful access and modification privileges.
The proposed approach provides a set of 18 possible permis-
sion levels. A default minimum privilege is given to applica-
tions. Controller API calls trigger communication with the
applications. One challenge for such approach is whether
different operating systems can generate the same process
IDs (which they don't) or else we need to tag process ID per
operating system or in a separate special tagging system.

3.7. SDN attacks vs classical attacks

In this closing section of attacks, we will focus on how attacks
are going to be different in SDN in comparison with attacks on
classical networks. As a new architecture, SDN can expose
both new security opportunities and challenges. Attackers
will eventually investigate SDN strengths and weaknesses
and will try to maximize exploits based on vulnerabilities. For
example, zero-day attacks refer to attacks committed based
on newly discovered vulnerabilities. A significant amount of
such attacks are expected to be exposed in the coming years
impacting SDN. Examples of some of those zero-day attacks
are discussed in some research papers (e.g. [Kloeti et al,
2013]).

SDN can be categorized as a dynamic network where a
significant amount of traffic is exchanged between controller
and its switches. DoS attacks can be a significant threat to SDN
in comparison with classical networks that do not have a
central controller frequently exchanging data and control
with switches. DoS attacks are expected to be larger in
numbers in SDN. However, if SDN is implemented or designed
correctly, their security controls should be dynamic and
autonomous in a sense that they will eventually discover and
eliminate DoS attacks. On the other hand, spoofing may have
less chances of occurrence in SDN when compared with
classical networks. This is since all spoofing techniques
depend on tricking a network service (e.g. DNS, ARP, etc.)
based on obsolete information. Updates in SDN are dynamic
and frequent and hence changes in the network such as the
inclusion/exclusion of hosts, IP addresses, MAC addresses,
etc. should be quickly discovered and accommodated.

SDN controller and its channel of communication with its
switches (i.e. OpenFlow) will be the most vulnerable points
that are expected to be attacks’ targets. SDN depends on
splitting data from control in switches and allocate switches
control remotely and centrally in a software controller. SDN
has several positive goals for such direction. However, this
direction has also its payoffs. From a security perspective,
MiM attacks can possibly occur between controller and its
switches where a switch can be compromised or controlled by
an intruder. SDN architecture tries to approach this problem
by dedicating a special connection between the controller and
switches in a separate physical and logic subnet from the rest
of switch ports. However, that does not eliminate completely
the possibility of compromising the communication between
the controller and its switches.

One of the ambitious goals of SDN is to be able to design
dynamic and programmable security controls that can fully

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108

89

operate with least or no human interaction. Those security
controls can respond in real time to network changes and
security threats and respond accordingly. However, once
those controls exist we may see new types of attacks that were
unconventional in classical networks. For example, it may
become possible to create ghost or fake network nodes that
are intelligently crafted by expert hackers based on their
knowledge of software controllers, their APIs, middle-boxes,
etc.

There is also a serious security threat from high level or
northbound middle-boxes or applications that can be devel-
oped to communicate with the controller. Those user defined
and controlled applications can interact with the controller to
provide commands or pull information from the underlying
network. Those applications exist in typical users environ-
ments, operating systems, Internet connected hosts. Such
environment has a significant amount of threats where it is
possible to attack and compromise a middle-box application
thatis interacting with the controller. The special relation and
privileges given to such application from the controller can be
a significant power exposed by attackers. In principle while
one of the major goals of SDN was to enable users to interact
with and control underlying network, however, a possible
payoff is that such privilege can be abused intentionally by
attackers or unintentionally by network users.

Table 1 below summarizes contributions in SDN-based
attacks or threats. In comparison with classical networks,
while the general types of attacks are not expected to change
significantly, however, opportunities for some types of attacks
are expected to increase.

4. SDN security controls

Security controls aim at providing access to legitimate users,
protecting systems from attacks, and providing mitigation
and countermeasures when attacks occur. Complexity and
exact duties of each control can vary from one domain to
another. Control main tasks can generally include detection,
logging, protection and counter measures.

4.1. SDN firewalls

Firewall is one of the most popular security mechanisms.
Firewalls are responsible for monitoring network traffic to
allow or prevent their passage or intrusion based on certain
criteria specified by users or network administrators. Typi-
cally, they work in layers 2—3 (i.e., data-link and network
layers) of the OSI 7-layers model. Firewall rules can be defined
to prevent or permit traffic based on IP addresses, ports, pro-
tocols, and MAC addresses. While traditional firewalls have
been well-studied, the research on SDN firewalls is still
evolving. An SDN controller itself performs some of the tasks
that are typically accomplished by traditional firewalls. For
example, controllers in SDN make decisions related to the fate
of flows and write relevant flow rules in switches’ flow tables.

4.1.1. SDN firewalls vs traditional firewalls
In terms of attributes used in firewall rules, the current
implementations of SDN firewalls are similar to traditional

)
7]
1]
-
00
o
-
a
<
v
-
©
@
(7]
1)
-
4]
)
v
IS
]
=]
©
4
[=]
(7]
I
Lol
]
2
i)
©
[

)
©
(]
-

S

(=

Counter measures

Detection methods and challenges

Packet level information [Zaalouk et al., 2014], Anti ARP switch application [Al-Shabibi, 2014]
OpenRouter [Feng et al., 2012], SEFA [Yao et al., 2014], Moving target defense [Jafarian et al., 2012]

Distributed auditing and monitoring [Bellessa et al., 2011]. Improve

ARM [Matias et al., 2012]

ARP Spoofing
IP Spoofing
Tampering

SAVI [Yao et al., 2011]

Problems with TLS and encryption methods [Namal et al., 2013],

[Meyer and Schwenk, 2013], Tampering in virtual environments

[Ristenpart et al., 2009; Zhang et al., 2012]
TLS encryption problems and alternatives [Namal et al., 2013],

Flow-based authentication methods [Porras et al., 2012a,b], AIP: [Andersen et al., 2008], Location

based identification [Bifulco and Karame, 2014], FlowTags [Fayazbakhsh et al., 2013]

Repudiation

[Meyer and Schwenk, 2013], BYOD [Feamster et al., 2013a,b; Bakshi, 2013],
SDN distributed controllers [Huang et al., 2013; Huang et al., 2014]

OpenFlow security challenges; MiM [Benton et al., 2013]

Flow based anomaly detection [Mehdi et al., 2011] [Schehlmann and Baier, 2013], Hiding identity
methods: [Jafarian et al., 2012, Kampanakis et al., 2014, [Mendonca et al., 2012], Intelligent crated

flow rules [Kloeti et al., 2013]

Information

disclosure

Flow based DoS mitigation [Schehlmann and Baier, 2013], DoS active countermeasures

[Koponen et al., 2011], FIT inter-domain DoS counter Koponen et al., 2011]

SDN can be more attractive to DoS [Shin and Gu, 2013; Benton et al., 2013,
Shin et al., 2013a,b]. DoS detection based on Flow level information

DoS

[Braga et al., 2010, Sperotto et al., 2010, Chu et al., 2010, Suh et al., 2010,
Yuzawa, 2013, Zaalouk et al., 2014], lightweight DDoS detection, reduce

SDN traffic [Shirali-Shahreza and Ganjali, 2013a,b]

Rule based access control [Porras et al., 2012a,b], PermOF; fine grained access control management system [Wen et al., 2013]

Privilege

Escalation

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

20 COMPUTERS & SECURITY 53 (2015) 79—108

firewalls. On the other hand, recent versions of OpenFlow
have expanded the list of attributes that can be included in
flow rules. This will eventually impact future implementa-
tions of SDN firewalls.

The major impact that SDN has on firewalls is that the SDN
controller make decisions on flows fate. In traditional net-
works, this was the main role of the firewall. In SDN, controller
acts as a firewall (coarse grain firewall). Controllers continu-
ously evaluate or know current topology by using a link dis-
covery module. Controller generates LLDP and broadcasts
packets routinely to neighboring switches. Based on response
from those switches, controller can frequently predict current
network topology. Controller also includes a learning switch
module that learns about new devices based on their MAC
addresses. Rules can be added dynamically by the controller
to the switches’ flow tables. If a new flow is added to the
network, the learning switch checks input and output
switches of the flow and also the best route for the flow. This is
then added as a new rule to the proper switch.

In SDN, controllers store rules or Access Control Lists (ACL)
for all network switches. Such connection (i.e. between fire-
wall and switches) does not exist in traditional networks. As a
result, firewall rules in traditional networks are static and are
not connected to network traffic. Those rules are added and
evaluated manually by network administrators. It is hence
possible that some rules in traditional firewalls are obsolete or
inapplicable. On the other hand, flow table rules in SDN are
very dynamic. Obsolete rules are eventually removed from
flow tables.

As the recent versions of OpenFlow have extended flow
attributes, SDN based firewalls can be more specific and deal
with flow or packet level attributes. OpenFlow 1.0 includes 12
header fields. In addition to those fields, there are new fields
related to IP protocol, VLAN, etc. OpenFlow 1.2 and above in-
cludes 40 header fields, giving users more ability to control or
interact with network flows. Having control at the flow level
enables network administrators to perform tasks that were
not possible using traditional networks. In some cases, they
want to perform traffic redirection through middle-boxes.
This problem is quite common in the cloud environment
where the automatic configuration of a new instance of a VM
or tenant will not be completed as network administrators
have no control on middle-boxes (e.g., a firewall) to instruct
those middle-boxes to allocate resources to the new VM or
tenant [Sherry et al., 2012; Gibb et al., 2012; Gember et al., 2013;
Mysore et al., 2013].

4.1.2. SDN-based firewalls

In SDN, a firewall module can be added typically as a north-
bound (REST) API to the controller. REST APl is a standard add-
on environment for interacting with most SDN controllers. It
allows user-developed applications to communicate with the
controller. Firewall rules are different from flow table rules
although they may look similar.

Several papers have discussed how to implement SDN-
based firewall modules. [Casado et al., 2006] proposed SANE,
as a protection architecture for enterprise networks through
defining a single protection layer. This is one of the early
contributions to centralized control in the network operating
systems or the SDN controller. Switches and other network

components have simple and minimally trusted forwarding
elements. In this early SDN architecture, controller includes
access control rules instead of having them in firewalls in
traditional networks. One of the explicit stated goals related to
centrality is to unite all security effort and information in one
place. This, however, may have different interpretations. The
centrality of rules’ decisions in the controller should not be
mixed with combination of functions as different security
controls are not cohesively performing the same tasks. The
idea of a central controller offers another advantage because a
firewall module interacting with the controller can have a
global view of the whole network.

[Hu et al., 2014a,b] proposed FlowGuard; an SDN based
monitoring framework for detecting possible conflicts be-
tween firewall rules and flows. Whenever network state
changes occur, FlowGuard checks path spaces to see if a fire-
wall policy is violated. In this study, several challenges and
opportunities of SDN-based firewalls are discussed, such as
the ability to dynamically evaluate policy changes, conflict
issues in flow table rules, the centrality of the controller, and
the firewall ability to perform stateful traffic inspection.

[/ia and Wang, 2013] proposed SDN based firewalls for P2P
networks. The firewall module is provided as an API to be
integrated with SDN. P2P networks' use case may benefit from
SDN because P2P networks have very dynamic users (who
frequently enroll and leave). Bandwidth or network demand
varies also frequently. The flexibility that SDN has over
traditional networks and its ability to dynamically accom-
modate users’ demands fit most of P2P use cases. As security
is always a major concern of P2P networks, SDN solutions
need to provide security mechanisms to prevent possible
intrusions.

[Suh et al., 2014] presented an SDN based firewall over POX
controller. They used attributes from OpenFlow 1.1 to allow
users to add firewall rules. They showed preliminary experi-
mental results based on generated flows. [Sethi et al., 2013]
formally modeled SDN controller behavior. They assessed the
validity of their model using a simple stateful firewall module.
An instance of a simple scenario to prevent direct connection
from the Internet to the enterprise network is used in the
evaluation. The activities or processes between the firewall,
controller and switches are formally defined. In general
formal modeling approaches are applied on low scales and
have scalability limitations.

4.1.3. SDN-based stateful firewalls

With the ability of SDN to have a global view of the network, it
is hoped that stateful analysis of the network or particular
flows will be possible. Stateless network analysis studies
packets or flows individually without considering other
packets, flows, or flow rules and without looking at some
other network, system or environmental variables. On the
other hand, stateful analysis takes combined views of the
whole rules or traffic in the network. A stateful firewall should
be able to record and keep track of traffic history. It may also
need to handle different protocols together (e.g. TCP, UDP,
ARP, ICMP, etc.). Controller can trigger stateful packet in-
spection by ordering switches to send all packets to it (i.e. all
attributes with wild card values). However, there are several
challenges in implementing such feature. For example, real

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108 91

time scenarios make it hard to observe many packets over a
period of time. Reconstructing a complete stream may not be
possible given that some content may change across the
network between forward and reverse traffics or due to for-
warding. The dynamic change of the topology makes the
verification of current/historical variables very complex.
Switches may dynamically change or rehash some header
entries when they forward packets to destinations. Those are
some examples of the challenges and the open research areas
on how to conduct stateful firewall tasks based on SDN.

A complete stateful packet inspection in the whole
network can occur only through the controller and not
switches. Packet level information in the controller is pro-
vided with a limited access [Shirali-Shahreza and Ganjali,
2013a,b]. Forwarding planes are stateless and without the
controller active monitoring of flows stateful inspection is
impossible [Song, 2013].

Stateful firewalls can be used to detect security attacks.
[Katta et al., 2012] presented Flog, in which a stateful firewall
application can be built using programming languages, in few
lines. They used stateful firewalls for detecting possible ma-
licious code from insiders. However, their approach repre-
sents only a small example of what a stateful firewall should
do. Flog saves senders and receivers’ addresses and assume
that externals are trusted if they previously received packets
from network internals.

[Zhu et al., 2014] introduced SFA, stateful forwarding
abstraction in SDN data plane. The goal is to provide packets
stateful network processing that may require upper layers (L4-
L7) information. A forwarding processor (FP) is proposed to
extend SDN controller functionality. Packets are forwarded to
this processor which will perform further processing on those
packets, including state related storage and inspection. FP
module can also interact with events or triggers from the
controller itself such as network or topology related changes.

[Stoenescue et al., 2013] proposed using symbolic execu-
tion for networks' stateful checking. They developed a tool
called Sym-Net to model basic stateful middle-boxes. Network
stateful checking can help in making contextual firewall de-
cisions. Those decisions do not depend only on L2-L3 infor-
mation but can have information from possibly all network
layers. While progresses in this area are very premature,
however SDN features promise the expansion and advances
in this area. Similar to most security challenges that face SDN
solution, robustness and scalability are major issues. In the
case of stateful inspections, heavy memory resources, storage
and network resources are all required and necessary to
conduct stateful inspection at mature levels or cases. State
explosion is also another challenge. If we consider the
network state as the traffic flows and rules in the network, this
means that any single change in one of those flows or network
elements will cause a state change. This can produce a
tremendous amount of possible states.

[Fayaz and Sekar, 2014] proposed FlowTest to test stateful
network cases of firewalls and policies in SDN. They focused
on data plane testing to systematically test stateful behaviors.
Policies typically include high level stateful instructions. For
example, a policy may say “Block unsolicited connections
from the Internet”. Such policy has no reference to any (L2-L3)
information. This requires firewalls to work beyond L2-L3

layers. States are specified per TCP connections (i.e., null, new,
established, or invalid). They represent traffic states, not
network states. A proxy module that operates at the session
level is also proposed to support in the process of stateful
inspection. A proxy state is expressed based on HTTP objects.

4.1.4. Hybrid firewalls

Hybrid firewalls refer to firewalls that work in an environment
with mixed SDN and traditional networks. [Pan et al., 2013]
proposed FlowAdapter to handle flows in heterogeneous
OpenFlow switches. Flow tables in OpenFlow switches should
be able to deal with legacy hardware. In addition some field
types exist in flow tables have no equivalents in legacy
switches. In fact, OpenFlow protocol itself is evolving where
earlier versions have 12 attributes and new versions have 40.
There is always a need to support backward compatibility and
at the same time ensure that valuable information is not
dropped or ignored due to such transformation. Adaptors are
necessary to provide such transformation dynamically.

The process of transforming firewall ACLs from one system
to another or from one domain to another can be time
consuming. Typically security administrators use the
expression “The devil is in the details” to indicate that the real
complex and time consuming part of the process is not the
technical part. Existing research discussed migrating firewall
ACLs from traditional networks to SDN [Gamayunov et al,,
2013]. Those reports claim that the process can take less
time and effort given the ability of SDN or OpenFlow network
to evaluate policy rules automatically.

[Shin et al., 2013a,b] proposed a security framework to
allow legacy security systems interact with OpenFlow
network. [Hand et al., 2013] introduced “active security” as a
programming environment to configure and evaluate fire-
walls’ configurations. They extended Floodlight by connecting
it to open source IDS Snort along with some other applica-
tions. Active detection means combination of monitoring and
prevention or detection with protection. However, this inter-
action between Snort and SDN is primitive and not coordi-
nated (i.e. no real time interaction). Snort log output is
extracted when alerts occur and is then added as an input to
the controller. In typical complex scenarios, major concerns
will be related to detection accuracy and also performance or
network overhead. There are some other trials to integrate
Snort with OpenFlow. The challenge is that SDN collects and
inserts flows in a structure that is not compatible with tradi-
tional networking that current Snort versions are adopting.

4.2. Access control

SDN is a candidate to offer flexible and dynamic access control
solution. [Casado et al., 2009] proposed Ethane SDN architec-
ture that allows managers to enforce hosts’ controls through
fine grained access control policies. Ethane represents an
early effort in SDN that inspired the OpenFlow protocol and
central management of network or global policies. Ethane
used flow based networks and a central controller. Switches
direct flows to the controller to make decisions about. Policies
are held in a central controller.

Inspired by Ethane, [Nayak et al., 2009] discussed dynamic
access control and monitoring in SDN networks. An access

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

92 COMPUTERS & SECURITY 53 (2015) 79—108

control system called Resonance is connected directly with
real time monitoring which can accelerate the cycle from
getting information alerts to taking actions. Access control
system can be closer to the action points and can respond and
take actions in real time based on current traffic. Traditional
middle-boxes such as firewalls, etc. are often placed at the
edge of the network. The study showed that dealing with ac-
cess control dynamic interactions in SDN can be easier than
that in traditional networks. Access control policies are
enforced based on flow level information and real time alerts.
Monitoring subsystems are integrated with the controller to
assist in the access control process. Similar to Ethane, the
controller enforces access controls through policies that are
installed in switches.

[Wen et al., 2013] proposed PermOF, a fine-grained access
control system in SDN. The major goal is to secure the
controller and secure communication with the controller.
PermOF includes a list of 18 possible permission levels for
minimizing possible intrusion or privilege escalation. The
permission system is combined with run time isolation (be-
tween controller and applications). It offers a default least
privilege permission for OpenFlow applications. The ability to
successfully isolate applications from the controller is a key
for the applicability of such approaches.

[Yamasaki et al., 2011] proposed an SDN based VLAN so-
lution for campus networks. In addition to the VLAN IDs
problem, authors indicated an overhead problem related to
the extensive time required to implement and maintain VLAN
database. Access Management Function (AMF) module is
added to track and authenticate users or hosts. System is
evaluated with 10,000 IDs. Evaluations showed that SDN based
solution can outperform traditional solution. SDN solution is
also dynamic and is expected to reduce a significant amount
of maintenance overhead.

[Kinoshita et al., 2012] proposed an approach for OpenFlow
based access control and authentication system for wireless
campus networks. They pointed out two limitations in
[Yamasaki et al., 2011] approach and proposed enhancements
on those limitations. The first limitation is related to the
inability of the earlier system to work in anonymous user
authentication mode. The second limitation is related to the
cost of users' DB maintenance. Rather than dealing with in-
dividuals, they can be clustered into groups and authentica-
tion can be made based on the users’ groups. This can reduce
the size of the DB that authentication system needs to search
through. Authentication system needs not to look for names,
but rather for groups which may also help in dealing with
anonymous users.

[Wu et al., 2013] discussed programmable virtual networks
(PVN) in the cloud based on MAC isolation. A PVN server is
proposed in OpenStack to act as an OpenFlow controller. Local
agents are delivered in the network to support PVN controller
to filter traffic based on MAC addresses.

4.3. IDS/IPS

Intrusion detection/protection systems (IDS/IPS) stop or allow
packets based on thorough investigation of packets using data
mining, pattern recognition, signature matching with existing
inventory of threats, etc. Unlike traditional IDS, SDN IDS can

utilize the tremendous amount of flow information in real
time. SDN can change the way security mechanisms are
distributed. For example, an IDS exists in one location in
traditional networks (usually in the network premises). In
SDN, IDS tasks can be distributed through the switches or
agents in the network. Controller or one of its modules can
orchestrate the process [Rothenberg et al., 2012].

4.3.1. Integration with traditional tools

Existing research has tried to integrate some popular IDSs
such as Snort with SDN [Ballard et al., 2010 and Xing et al.,
2013]. Integrating Snort with SDN faces several challenges.
SDN controller typically receives samples, not complete flows
which contradict with how Snort works. A common way to set
things up is for the controller to receive the first packet or the
first few packets of a given flow. Once having received those,
the controller installs rules in the switches that will handle
the rest of the packets in that flow. This is done because
typically sending each packet to the controller is impractical.
Since Snort expects to see every packet in a flow, we will not
be able to put Snort inside the controller effectively without
vastly impacting the performance and the structure of
OpenFlow network. An alternative design would be to create a
service in the controller to manage a set of machines running
Snort and to install rules that redirect traffic to the machines
running Snort.

Snort has its own limitations when it comes to the type of
attacks it can detect. While being a good open source IPS/IDS
(with a rule based language combining signature, protocol and
anomaly based inspection), Snort is still reliant on regular
signature updates. It has no way to detect higher level exploits
such as web exploits (e.g. malicious Java Scripts). Snort may
not also help with attacks such as: Advanced Persistent
Threats (APTs). SDN and Snort differ also in the way they
collect, reroute and monitor traffic. In traditional networking
span ports are used to reroute traffic for monitoring or secu-
rity applications. In SDN, data can be extracted from the
controller through northbound APIs. Filters can be applied in
SDN to extract traffic based on certain criteria and command
controller to rewrite traffic based on those criteria.

[Xing et al., 2013] investigated integrating Snort with
OpenFlow networks. SnortFlow is capable of reconfiguring the
cloud system on the fly to detect and counter intrusions. This
work came as an extension or enhancement for NICE system
in [Chunget al., 2013a,b]. It uses Snort for coordinated attacks'
detection. SnortFlow includes three components: A daemon
to collect alerts data from Snort agent, an alert interpreter to
parse alerts and decide which traffic to target, and finally
rules’ generator that will inject rules in OpenFlow switches.
Changes caused by the new rules are saved to allow possible
roll-back or restoration. Countermeasures to take are classi-
fied based on cost and intrusiveness. Careful consideration
should be made on the proper counter measure to take so that
it will not interrupt normal operations.

FRESCO and its successor project SE-Floodlight [Shin et al.,
2013a,b] produced several security applications related to
SDN. One of those recent extensions is FlowBoss. FlowBoss is
hosted in SE-Floodlight and it imitates in OpenFlow what
Snort is doing in traditional networks. Network policies can be
specified to prevent unauthorized access. Policies can be also

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108 93

specified to rate limit traffic in certain times, or filter traffic
based on certain characteristics.

4.3.2. SDN IDS implementation

[Goodney et al., 2010] presented an implementation of SDN-
based NIDS on the NetFPGA networking platform. It can be
used to test FPGA algorithms for Deep Packet Inspection (DPI)
or high speed programmable packet processing. The module
can conduct network intrusion detection through DPI.

[Skowyra et al., 2013a,b] discussed OpenFlow based NIDS in
embedded mobile devices and Cyber-Physical Systems (CPS).
Applications or case studies include robotic transport and
biomedical devices as they have similar threat models. In
general, mobile devices are subjected to attacks within the
device coverage range (i.e. modem, Wi-Fi or Bluetooth).
Encryption is usually suggested as the main security mecha-
nism to eliminate such attacks. However, for some small
commercial applications, strong encryption methods can be
infeasible or expensive. Location based security mechanisms
may not protect from local users or insiders. Proposed IDS or
Learning IDS (L-IDS) can be used to support encryption or
location based security mechanisms. Anomalies are defined
based on several characteristics: Packets’ sent, position, time
passed, size, etc. For each one of those characteristics, normal
range is specified. Deviation from such normal range can be
classified as an anomaly.

[Kerner, 2012] represents Indiana University experience
with building an (Intrusion Protection System) IPS based on
SDN. Major advantages of the new system were related to load
balancing and the ability of the network to handle and
distribute traffic based on security controls. Global policy
based network security management is another important
goal that SDN based IPS is expected to achieve.

[Chung et al., 2013a,b] presented a system on Network
Intrusion Detection/Protection System (NIDS/NIPS) in the
virtual networks using OpenFlow based programmable APIs. A
graph based analytical attack model is proposed to detect and
counter attacks on VMs. The system periodically scans VMs
and decides based on the severity of detected vulnerability to
put the VM in an inspection state or not. In the attack graph,
each node represents either a pre- or post-condition of an
exploit. The graph can provide details of connectivity between
different vulnerabilities or exploits. An Alert Correlation
Graph (ACG) is mapped to a Scenario Attack Graph (SAG) that
includes the exploit, steps to reach the exploit and its post-
condition or results. They focused on a small subset of flow
information including only five attributes: Source and desti-
nation MAC and IP addresses in addition to the protocol.

[Heorhiadi et al., 2012] discussed NIDS problems from
scalability perspective. SDN flexibility methods can offer
promising solutions to this challenge and load can be
distributed or sliced among different controllers. Tradition-
ally, IDS needs to monitor all traffic which is very time
consuming and produce a large volume of traffic for analysis.
IDS or NIDS load can be reduced by replicating the traffic to the
nodes that are off-path after making sure that they are
available and have free resources. In addition, the fact the
SDN controller can aggregate data from different switches in
one location can also be an important characteristic to intru-
sion detection or protection systems. The central NIDS

module periodically collects information about traffic and
policies. It can be also triggered by certain traffic changes or
events. The traffic itself needs to be classified or categorized
into different classes. Each class can be subjected to different
types of NIDS analysis. An intelligent engine can be used for
initial analysis of traffic to specify the type of analysis to
subject the traffic to. This can be an evolutionary process that
learns from past experience or traffic and improve accuracy in
future.

[Braga et al., 2010] is an example of using SDN for the
assessment of security vulnerabilities. This work focused on
the detection of DDoS attacks. Similarly, [Mehdi et al., 2011]
focused on anomaly detection methods based on SDN in
home networking. They evaluated the impact of SDN on
traditional anomaly detection methods and measured the
efficiency of intrusion detection methods based on low traffic
rates.

[Giotis et al., 2014] proposed combining OpenFlow with
sFlow to improve flow-based anomaly detection. Flow statis-
tics can be a good source for inspecting possible anomaly
behaviours in the network. Collecting statistical data through
the controller faces a serious scalability issue. Consequently
there are many research proposals to outsource this task to a
separate supporting module. [Giotis et al., 2014] conducted a
study with high packet rates (up to 130,000 packets per sec-
ond). Flow information collected is based on a subset of at-
tributes from the old version of OpenFlow that includes only
12 attributes. They evaluated data collection based on native
OpenFlow and also using sFlow. Native methods can be
applicable in low to medium size traffic. This is since there are
some limitations on the size of flow entries in the switches’
flow tables. The sFlow approach decouples the flow collection
process from the forwarding logic where packet samples
provide all necessary information. This can show a significant
reduction in size.

The above work focused on information related to (L2-L3)
layers without looking at the actual packets' contents. [Shirali-
Shahreza and Ganjali 2013a,b] proposed an extension to cur-
rent OpenFlow protocol to allow controller to have access to
packets’ contents. Current information exchanged between
the controller and switches is largely related to routing in-
formation. The goal is to use such information for security
applications including NIDS/NIPS or anomaly detection tools.
In some cases, samples rather than the complete traffic are
sent to the controller. Different sampling methods (e.g.
deterministic or stochastic sampling) can be requested by the
controller based on the nature of the security application or
middle-box. Full packets are only requested under certain
conditions.

4.4. SDN policies

SDN is expected to facilitate automatic configuration,
assessment, and enforcement of network policies. While
policies in traditional networks are embedded in firewalls and
their ACLs, SND allows for policies at different levels of
abstraction. Thus, we separate our discussion on SDN policies
from that on firewalls.

Policies that regulate operational activities are considered
high level guidelines that can be translated and enforced by

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

94 COMPUTERS & SECURITY 53 (2015) 79—108

low level security mechanisms such as firewalls, proxies, etc.
Traditionally, the translation from high level policies to con-
crete security mechanisms is mostly conducted manually by
network administrators. SDN brings a new opportunity for
security policies to be interpreted, updated, evaluated and
enforced by automatic tools with least human intervention.

4.4.1. SDN policy languages

Policy languages have been proposed for writing formal or
semi-formal policies. The main goal is to bridge the gap be-
tween two different levels of abstraction: Human natural
languages in which administrators start writing high level
policies and low level rules that machines can understand or
interpret.

[Hinrichs et al. (2008, 2009)] proposed Flow based Man-
agement Language (FML) to express access lists and policies
for NOX controller. FML itself is based on DATALOG,; a
declarative logic language used in the connection with data-
bases. In the core of policies there are rules and Access Control
Lists (ACLs). Policy enforcement is implemented using a de-
cision tree to reach the right matchingrule for the current flow
or the packet based on the rules in the flow table and/or the
firewall. FML maintains states related to lists of users and
their devices or hosts. Access control decision is then made
based on the values of those flow fields or attributes. In
addition to “allow” and “deny”, there are other decisions in
FML: Waypoints, avoid, and rate limit. Waypoints or reference
points are defined to mark certain known points (e.g. hosts, a
server, a gateway). “Waypoint” and “avoid” are opposite to
each other (i.e. to order traffic to reroute or skip those network
points). Rate limit indicates a rate limitation (i.e. maximum
allowance) on the traffic.

[Ballard et al., 2010] proposed ALARMS, a flow-based
specification language to interact with OpenFlow flows. This
can be used as a tool with administrators to enforce policies
through controlling and routing traffic. The work extended
earlier FML to include attributes related to the flow content.
This enables access control and manipulation beyond L2-L3
layers. For example, a security administrator may want to
limit chat or peer to peer applications. They may want to limit
programs that consume a large amount of bandwidth. Previ-
ous FML fields have little abilities to allow administrators to
make policies based on actual packets’ contents.

[Foster et al., 2011] introduced the Frenetic language for
programming network switches. Frenetic is developed not
only for policies but also to generally assist in network ser-
vices; routing, access control and traffic monitoring. It has two
levels of abstraction; high level to construct and manipulate
network traffic and low level to interact with switches. This
may solve the contradictory constraints that policies need to
handle: on one hand they need to be expressive enough to
cover administrative high level requirements, and on the
other hand they need to implement these requirements as
rules in switches in their terms (i.e. flows). One problem with
NOX controller [Gude et al., 2008] that Frenetic tried to solve is
the modularity issue of policy rules if written through
controller program. In general, it is not modular or reusable to
write policy rules inside the controller program. Rules are
expected to be very modular as they may change frequently.
Hence, it is very important to separate them from the

controller code. A Frenetic program can be developed to
represent an instance including network policies. This pro-
gram will be able to enforce policies through the controller.
[Monsanto et al., 2012] introduced the NetCore language for
expressing packets' forwarding policies in SDN. It includes
constructs to analyze packets and historical traffic patterns.
New algorithms are designed in Frenetic for compiling rich
policies and for managing controller and switches’
interactions.

[Foster et al., 2013] contribution is an improvement on
Frenetic. It showed a rich query syntax (e.g., Not equal,
GroupBy, Select, Limit, Every) that can help optimizing policy
rules and allow administrators to have more control and se-
mantic in writing policy rules. The controller can then handle
transforming those policy rules into low level details under-
stood by switches. [Katta et al., 2012] proposed (Flog), a
network programming language that can be considered as
hybrid between FML and Frenetic.

To improve expressiveness in network and security pol-
icies, [Voellmy et al., 2012] introduced Procera; a control ar-
chitecture that includes a declarative policy language based
on functional reactive programming. Procera tries to help
network designers to implement expressive policies without
the need to use programming languages. Procera includes
signals and signal functions as reactive concepts. Signals are
like transient functions where functions are attached with a
period of time. Signal functions or constructs cause trans-
formations on signals. There are other research papers related
to Procera and network programming. [Voellmy and Hudak,
2011] discussed examples of applications using network pro-
gramming including a learning switch and traffic monitoring
applications. [Kim and Feamster, 2013] extended the work of
Procera and described how it can help in network manage-
ment. Main goal was to propose a solution that can compro-
mise between the need for rich and expressive high level
policy features and at the same time the need to interact with
low level details at the switches or networking components'
level.

[Anderson et al., 2014] proposed NetKAT network pro-
gramming language based on a mathematical structure called
Kleene Algebra with Tests (KAT). NetKAT can be used to ex-
press OpenFlow requirements through adding and interacting
with flows. It provides a high level algebra for complex
reasoning and query of flows.

4.4.2. SDN security and network policies

[Casado et al., 2007] described the interactions between the
controller and security policies as rules injected by the
controller in switches. Those however were imitating tradi-
tional ACLs. [Nayak et al., 2009] proposed the Resonance se-
curity mechanism for dynamic access control evaluation
based on flow level information. Resonance interacts with
high level policies to make decisions on flows. It uses a policy
specification framework based on traditional or existing ac-
cess control frameworks.

[Feamster et al.,, 2010] used OpenFlow to solve policy
problems in campus and enterprise networks. They tackled
two challenges; access and information flow controls. The gap
between high level expressive policies and low level access
controls exist in switches or firewalls continue to be a serious

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108 95

challenge for administrators in dealing with large networks.
For information flow control, traditional approaches are host
based. If the host is compromised, the information flow can go
out of control.

[Ferguson et al.,, 2012] introduced the concept of Hierar-
chical policies. Policies can be composed of or contained in
other policies. A policy tree is then constructed based on the
hierarchical relations between the different policies.

[Wang et al., 2012] presented a security management ar-
chitecture with interactive policy enforcement. Their version
of the controller is supported with a policy table that interacts
with packets while they are traversing the network. Perfor-
mance can be an issue here especially as the model is applied
on a small size network with only 50 users. They utilized
different security service elements including: IDS, protocol
identification, virus scanning, load balancing, traffic moni-
toring and content inspection. [Son et al., 2013] introduced
Flover model checking system to verify OpenFlow-based flow
policies. They focused on testing for non-bypass-ability or to
test that current flows adhere to firewall rules. They extended
earlier approaches by including new features such as “set”
and “goto”.

Policy migration from traditional networks to SDN was also
the subject of many research papers [Vanbever et al., 2013;
Vanbever et al. 2014; Zhang et al., 2014]. Policy migration is
considered another advantage for using SDN where it is ex-
pected that the process of migrating policies is less time
consuming in SDN in comparison with traditional networks.
Traditionally, the migration process which is manually imple-
mented can take alongtime and man power specially to address
out of date or conflicting rules. Typically, the term “The devil is
in the details” is used to show that the process is not complex
from a technical but from an operational or practical perspec-
tive. Policy migrations can be a good show case of SDN use cases.

[Gibb et al., 2012] proposed outsourcing some network
functionalities from the controller to external components. A
policy API is included with several enabled features that are
location independent from the controller. Those features can
be called on demand whenever needed. The management and
control of those features are outsourced from the controller to
improve performance and reduce centrality. This proposal is
close to the concept of web services offered in Service Ori-
ented Architecture (SOA). Services are known and accessed by
their public interfaces. Service providers are separated from
consumers where the same service can be used in different
contexts. From security perspectives, communication be-
tween service providers and the controller is critical. It should
be developed with security in mind as those interfaces can act
as back doors to access the controller and its core modules.

4.4.3. Policy enforcement

Automatic enforcement of security policies is an important
task that SDN can achieve. [Bellessa et al., 2011] presented an
approach to dynamically enforce flow level policies in cloud
networks. Policies are written by administrators in high level
languages. Those policies are then interpreted by the policy
evaluation and compliance monitoring system (ODESSA)
based on the network components and actual flows. In other
words, ODESSA is responsible to transfer abstract policies into
concrete implementation based on network specifications.

[Fayazbakhsh et al., 2013] focused on the issue of consis-
tent policy enforcement and flow tracing or tracking. In their
proposed enhancement to SDN architecture, they proposed to
add contextual information to flows. In this proposal a
southbound-controller middle-box will add tags to outgoing
packets where those tags can be used for systematic policy
enforcement. Currently OpenFlow is the only standard pro-
tocol in the southbound-controller communication. Those
applications may dynamically change packets' headers. Such
headers’ modifications may have a negative impact on policy
enforcement and may mislead the process that enforces those
policies. In some cases, the same application that is supposed
to perform policy enforcement may change those headers and
consequently make the process difficult on itself.

[Qazi et al., 2013] proposed a middle-box layer to deal with
traffic steering for those middle-boxes. A flow correlation
mechanism is proposed to handle the issue of packets’
induced transformation mentioned in the previous research
[Fayazbakhsh et al., 2013]. There proposed solution; called
SIMPLE, tried to deal with existed OpenFlow architecture and
constraints. This solution represents a policy enforcement
layer to manage communication between middle-boxes and
the data plane. This design however, imposes a special pur-
pose controller to interact with switches and middle-boxes.
However, it is not clear how this special purpose controller
is going to communicate, with OpenFlow protocol and with
the main controller.

[Kazemian et al., 2013] discussed another challenge in
policy enforcement and evaluation; real time issues. Due to
the rapid change of network state, performing policy checking
frequently can be resource and time consuming from practical
considerations. In addition, such network rapid change may
require policies to be frequently reevaluated. NetPlumber is
proposed as a possible solution to this challenge. NetPlumber
utilized a previous approach on static checking for the same
authors called “Header Space Analysis, HSA”. NetPlumber
frequently checks for state change based on studying rules'
change from a dependency graph modeled from those rules.
In the graph, nodes represent forwarding rules from switches'
flow tables and edges represent next hop dependency in those
rules. Probe or check nodes can be used to incrementally
check policy or invariants for possible modifications. Different
events trigger changing the rules’ graph and consequently
require policy reevaluation.

[Bari et al.,, 2013] presented PolicyCop as an OpenFlow
based interface or policy management framework. The
framework allows monitoring specific parameters in the
network and adjusting them based on Service Level Agree-
ment (SLA). The framework contains several functional com-
ponents including: A policy validator, checker, enforcer, traffic
monitor, topology manager, etc.

4.5. Monitoring and auditing

Monitoring and auditing are very important tools for many
security controls. A significant opportunity in SDN networks is
related to the amount of details that can be gathered at the
flow and even the packet level. This was difficult or resource
consuming to achieve in traditional IP networks.

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

926 COMPUTERS & SECURITY 53 (2015) 79—108

4.5.1. Traffic monitoring tools

[Nayak et al., 2009] proposed Resonance; an OpenFlow based
solution that provides continuous monitoring distributed
across the network. Network elements or switches forward
traffic to the controller. As an early contribution in OpenFlow,
this paper shows how the nature of OpenFlow architecture or
process flow can help, natively, the monitoring process.

[Ballard et al., 2010] proposed OpenSAFE (Open Security
Auditing and Flow Examination). This is a tool that leverages
SDN to improve network monitoring. Monitoring tools use
Span ports in order to create copies of network traffic for
monitoring purposes. Usually network tools allow a limited
number of Span ports. Firewall modules and IDS in traditional
networks usually use one or more of those Span ports. This is
why such monitoring tools cause significant network over-
head if fully implemented. Filters that are used to reroute
traffic can look similar to those firewall rules or flow tables.
They can be built using the same match fields or features.
However, there should be more expressive tools/mechanisms
to reconstruct packets than those available in firewall or flow
table rules. They include mathematical operations such as
less than, more than, and sorting options related to the
collection, query and statistics of traffic. With the use of
OpenFlow networks, OpenSAFE can direct spanned traffic in
arbitrary ways while such traffic can be used by several
simultaneous services or security controls such as IDS and
firewalls.

[Huang et al, 2011] proposed implementing dynamic
measurements aware routing or forwarding for traffic moni-
toring. They discussed three challenges related to traffic
monitoring: The dynamic assessment of traffic importance,
flow aggregation, and finally how to perform traffic moni-
toring with least network disruption or network overhead?
Information from OpenFlow switches are used in those tasks.
Flow importance is estimated through its size. Controller can
retrieve size of flows using flow-query/flow-expire messages.

[Shin and Gu, 2012] introduced CloudWatcher as a moni-
toring tool for cloud services. Some packets, based on security
concerns, will be detoured to a security check point for further
security inspection. The application includes three modules:
Device and policy manager, routing rule generator and flow
rule enforcer. This work addressed two issues in cloud traffic
monitoring: The need to consider both insider and outsider
threats and to consider that cloud networks are very dynamic
where hosts or network components may change frequently.
CloudWatcher is proposed as a controller northbound appli-
cation. It should provide this monitoring service to different
available security mechanisms. Security Aware Routing (SAR)
is also proposed in CloudWatcher paper. SAR is used in some
traditional networks such as Ad-hoc networks. SAR algo-
rithms try to ensure that packets should go through certain
security check points (e.g. firewalls, access control, etc.) for
packets’ checking.

[Argyropoulos et al., 2012] proposed PaFloMon passive
slice-based monitoring tool for OpenFlow networks. The
target is OFELIA European open SDN testbed. Slices in this
case represent different users or experiments that are using
the testbed. The monitoring tool sFlow is used and integrated
with OFELIA. SFlow can help in monitoring and statistics as
well as instrumentation for conducted experiments.

The level of details a monitoring tool can collect related to
flow information is very important. [Shirali-Shahreza and
Ganjali, 2013a,b] proposed FleXam; an extension to current
OpenFlow protocol. The goal is to allow controller to have
access to packet level information and packets' contents. Such
information is necessary and required by most security
mechanisms. Current information exchanged between the
controller and switches is at the flow level that does not
include packets’ contents and is related to routing informa-
tion only. Some approaches such as that of [Mehdi et al., 2011]
proposed a solution where controller will not install flow
based rules in the switches. This causes the switches to send
packet level information to the controller. However, this
approach may not be realistic given that the controller will be
overwhelmed with packets and the overall network delivery
time will be slow. As an alternative, those packets can be sent
to a special monitoring tool. A compromised solution is pro-
posed between those two alternatives. FleXam enables the
controller to access samples of packet level information in
switches. Those samples are selected based on controller
choice using some statistical algorithms (i.e. statistical
sampling).

[Raumer et al., 2014] discussed also sampling in OpenFlow
traffic. They differentiate between security monitoring and
Quality of Service (QoS) monitoring. In security monitoring,
we are looking for possible traffic patterns that may indicate
an attack. Sampling methods have no significant impact then
on security monitoring, given a detection of an attack. How-
ever, in QoS monitoring, sampling can show incorrect picture
of network health. For example a particular sample we are
investigating may show good performance while the rest of
traffic is facing an opposite situation. Same thing can be said
given other quality attributes.

[Qazi et al., 2013] pointed out that SDN firewalls and other
security controls are not going to strictly work in the L2/L3
layers as in traditional networks. They presented a policy
enforcement layer specifically for traffic steering or moni-
toring. This policy can manage traffic steering based on users'
or applications’ requirements.

[Chowdhury et al.,, 2014] discussed quality factors and
trade-off in traffic monitoring. The trade-off is usually be-
tween monitoring accuracy, timeliness and network over-
head. Optimizing one of the three quality attributes can be at
the account of the other two factors. Payless is proposed as a
monitoring framework. The goal is to best optimize moni-
toring given the three quality attributes mentioned earlier.
Monitoring information from Payless can be exchanged with
different security controls or applications. Payless provides a
standard RESTful API that allows tools to make and retrieve
traffic queries.

[Yu et al., 2013] focused on performance monitoring in
OpenFlow networks. They proposed a push-based approach
where the network switches initiate information related to
performance degradation or problems. Such approach can
reduce overhead where information is only sent when per-
formance degradation occurs. Calibration is required to
compute normal performance range in a particular network.
Any deviation from that range can then be reported by the
network. FlowSense tool is developed to measure flow-based
bandwidth consumption. They focused on two OpenFlow

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108 97

messages between switches and the controller: PacketIn and
FlowRemoved. Those are relevant to measuring flow band-
width as they represent the start and the end of a flow stream,
respectively.

[Karame, 2013] focused on security issues in network
measurement tools and the impact of OpenFlow switches.
Author investigations showed that most measurement tools
are not developed with security in mind. Host or end to end
measurements trust hosts and ignore possible insiders’
threats or threats that compromise hosts. Author analyzed
several examples of network security threats. Author also
showed examples of how OpenFlow can be better improved in
terms of security in response to selected security threats.
Namely author selected two issues: Bottleneck bandwidth
estimation and network coordinate measurements. Author
proposed a scheme based on OpenFlow to secure communi-
cation or flow traffic from being attacked or compromised.

[Zaalouk et al., 2014] evaluated SDN features such as
network visibility and control centralization as possible so-
lutions for some security vulnerabilities. They proposed
OrchSec; an orchestrator that utilizes network monitoring and
SDN control to develop security applications. This architec-
ture may mitigate some attacks that do not need a deep look at
packets’ contents (e.g. Worms, DoS, etc.).

4.5.2. Traffic management

[Curtis et al., 2011a,b] proposed Mahout, a traffic management
system for dealing with large or elephant traffics. There are
many security threats or attacks that push large traffics. Ex-
amples of those include: Worms, DoS or flooding. Mahout is a
controller based on OpenFlow architecture where hosts, rather
than the switches, are expected to monitor possible large traf-
fics. Hosts monitor such large traffic in coordination with the
controller which manages the process of handling this large
traffic. Each host monitors possible large traffics and commu-
nicates with the controller once a large trafficis detected. Native
single OpenFlow controllers suffer from scalability issues
especially in dealing with large traffic. Using the host to handle
large traffics can relieve the network from handling and waiting
for traffic in progress which can be delayed for several possible
reasons or problems. To detect possible large traffics from end
hosts, their socket buffers can be used. A threshold is set as a
variable which can define the edge of a large traffic volume.

[Jain et al., 2013] discussed a WAN SDN based solution for
routing and traffic engineering in B4 Google data centres.
OpenFlow is used to manage switches and optimize band-
width usage. Google SDN solution includes OpenFlow
controller and also Network Control Applications (NCAs). NCA
directives' and switches' events are used by controller to
maintain network state.

[Wang et al., 2013] discussed the problem of traffic load
variation and how to handle it in OpenFlow networks. Traffic
is continuously studied and investigated to predict possible
traffic overload. NetFuse causes little overhead over the
network or the controller as it uses traffic data already
collected by the controller. It is important to predict whether a
large traffic is related to normal or intrusion causes. Such
problem can be classified as difficult; Nondeterministic Poly-
nomial (NP) especially as the term (large traffic) is subjective
and vary in size and threshold based on the nature of the

traffic and the reason for packets’ aggregation. Machine
learning classification algorithms can be applied in this
particular subject. NetFuse tries to find the best reasonable
flow aggregation and the possible overloading reason.

[Jose et al., 2011] proposed a solution based on OpenFlow
switches. The process is based on switches to count packets in
traffic as traffic traverses. Once the size passes a certain
threshold, a flag can be raised that this traffic is large. One
problem with this solution is that it delays the discovery of a
large traffic till it passes. This is justified by authors as a trade-
off between accuracy and low overhead. Examples of several
attacks that may use large traffics are shown and how their
proposed solution can be used to handle those types of at-
tacks. As mentioned earlier, one problem with identifying a
large traffic is in selecting the threshold itself. This is since
this threshold value is subjective and context dependent. In
other words, what can be considered large for some applica-
tions will be considered normal for others.

[Sun et al., 2014] proposed a traffic management solution
(HONE) based on joint information from OpenFlow network
and end hosts. Data is processed locally in the end hosts. A
trade-off between host and network elements is discussed.
Applications in the host have a better visibility into applica-
tions’ behaviours while have little knowledge about the
network behaviour. On the other hand, network switches
have the opposite picture. Consequently an effective moni-
toring or traffic management approach should try to integrate
information from both sides together. One challenge with
handling host-based network management however is that
hosts have several components and applications that interact
with the network and information about the network exist in
several locations. HONE agents run on hosts in addition to a
module that interacts with OpenFlow switches.

[Choi et al., 2014a,b] discussed OpenFlow management and
control challenges given the centrality and scalability issues.
They proposed an SDN monitoring agent or middle-box
(SUMA). SUMA is proposed to integrate logically manage-
ment, control and monitoring services. SUMA takes the
overhead of the monitoring process from the controller. It
alerts the controller in case anomaly behaviours occur. They
demonstrated some attack scenarios and how they can be
detected using SUMA. This middle-box acts in the southbound
section between the controller and switches. One problem
with such approach is that it changes significantly SDN ar-
chitecture that currently has only OpenFlow as the only
adopted protocol in this side.

[Rasley et al., 2014] introduced Planck, traffic management
framework for providing scalable traffic data with short or
small time scales using port mirroring mechanisms. Traffic
from switches is mirrored to a designated port. Traffic data is
an important asset for all security applications. Collecting and
analyzing such data with high accuracy, real time and least
network overhead contribute to improving security controls
and attacks’ detections. Mirroring in OpenFlow has an
advantage over traditional mirroring using Span ports. This is
since mirroring in OpenFlow can be customized. We can
specify or extract certain traffic based on customized criteria
or query. Different security tools can extract different infor-
mation based on their needs. This makes the mirroring pro-
cess very focused and optimized.

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

98 COMPUTERS & SECURITY 53 (2015) 79—108

4.6. Security control for mobile SDN

The idea of separating control plane from data plane can be
extended to wireless networks. Traditionally control is mixed
between software and hardware where different mobile ven-
dors have different architectures. The process of adding new
functionalities can be very slow and complex. Wireless or
cellular SDN refers to extending SDN architecture to wireless
or cellular networks. In this section, we will focus on research
contributions in SDN mobile networks in particular. Terms
such as: SDW, SDC, SD Mobile Networks (SDMNs), or even
CellSDN are used to refer to SDN-based mobile implementa-
tions. For simplicity and consistency, we will use SDW.

SDW controller is expected to provide fine-grained policies
based on subscribers' attributes. Controller northbound APIs
or middle-boxes provide many services such as: Mobility
manager, accounts or subscribers’ manager, radio source
manager, policy and charging managers, interference man-
ager, and infra-structure routing. It may also include security
applications such as firewalls and IDSs.

One of the major SDN goals was to come up with a uniform
or a standard switch architecture for the different networking
vendors. In wireless, there are typically different cellular ser-
vice providers as well as different manufacturing companies.
Having a standard communication architecture can be
consequently very important and useful.

[Li et al., 2012] proposed an approach for SDN wireless
(SDW) with fine grained policy management. The SDW
approach is expected to be cheaper than traditional wireless
approaches due to the ability to use OpenFlow switches that
should be cheaper than traditional ones. As traditional wireless
switches are expensive, carriers may overuse them based on
load requirements. Interference can be also reduced in SDW
where controllers of different carriers can have a global view
of their network and consequently can better communicate
and improve issues related to interference. Different tech-
nologies and carriers may communicate effectively through
this common new open architecture. New features such as
usage based cost or pricing are possible using SDW. Virtuali-
zation in wireless and cellular networks will have new chal-
lenges to deal with related to: Billing, interference, radio
signals, etc. where such issues should be revisited given the
new architecture for both possible benefits and challenges.

[Hampel et al.,, 2013] argued that SDN can be an effective
architecture to solve problems in mobile networks. They
proposed vertical forwarding as an extension to current
OpenFlow to handle mobility policy or access control man-
agement or in particular fine grained forwarding. The concept
of vertical forwarding is used to distinguish their proposal
from OpenFlow forwarding schemes between switches and
their controller (i.e. horizontal controller). Vertical forwarding
is proposed to extend this forwarding to include legacy ele-
ments of network components.

[Namal et al., 2013] discussed the idea of switch mobility
and the secure change of IP addresses. They presented a
system to perform this change employing IPsec encapsulated
security payload. Current issues in OpenFlow which make it
inapplicable in its current format to wireless networks are
discussed. For example, first, changing addresses will disrupt
flow processing. It should be ensured that, such process

occurs very fast and dynamic. This may also impact secure
session management required for secure communication be-
tween switches and the controller. The fact that mobile net-
works are very dynamic and very fast moving in terms of
active users can both give opportunities and impose chal-
lenges to applying SDN on mobile networks. HIP (RFC 5201:
Host Identity Protocol) security method is adopted to be used
in OpenFlow connection to enhance existing communication
method from a security perspective. HIP identifies a host
either by a host identifier or a host identity tag. An extension
to wireless on switches called (flow control agent) is also
proposed which should update controller of the new location
information for location based services.

[Skowyra et al, 2013a,b] discussed security issues in
embedded mobile devices and Cyber-Physical Systems (CPS).
A Learning Intrusion Detection System (LIDS) is proposed
based on OpenFlow networks for detecting and mitigating
security attacks. Anomaly behaviour is defined as statistically
different flow traffic from a user defined normal traffic.

[Ding et al., 2014] discussed how SDN can benefit mobile
networks in terms of security aspects in particular. One of the
major challenges in mobile networks is that there is an
increasing bandwidth demand that current infrastructure is
not keeping up with. Mobile services are also evolving rapidly
in terms of nature and complexity. They also presented some
SDN security solutions in general and classified those solu-
tions into five categories: Enterprise, home networks, edge
access, cloud, and general. SDN can provide the virtualization
abstraction layer necessary to integrate different Internet
Service Provider (ISP) platforms or services. Complexity and
details of different wireless protocols can be shielded behind
this abstraction layer. Programmability feature should be able
to greatly improve policy management and administration
not only related to security functions but also to business
functions such as billing, accounting, service subscription, etc.
Several design challenges are described in order to implement
SDN in mobile networks including: Mobility, roaming, moni-
toring overhead, multi-access, multi-operators issues, inter-
operability, responsiveness, compatibility, adaptation,
simplicity and finally deployment and how SDN can be
compatible with current mobile technologies. Paper proposed
a security enhancement framework dedicated for SDN solu-
tions in mobile networks.

Strong security mechanisms in mobile applications may
cause significant resources and performance overhead. To
deal with such problem, [Hurel et al, 2014] proposed
outsourcing security controls in mobiles to the cloud so that
they can work as security services on demand. This may
clearly solve the issue of using mobile resources. However, in
terms of performance, it may go from one challenge to
another. This is since, those security controls need to be very
transparent and fast. Once those security mechanisms are in
the cloud, they will be accessed through the Internet or public
networks which can suffer from periodic traffic jams. In the
same problem (i.e. mobiles resources’ constraining), [Gember
et al., 2012] proposed an enterprise centric offloading frame-
work that leverages SDN.

As a new architecture, SDN in mobile networks can bring
both opportunities and challenges. [Liyanage et al.,, 2014]
focused on security challenges that SDW may bring. They

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108 929

focused on the issue of channel or communication security.
Current SSL/TLS optional encryption method in OpenFlow has
some security concerns [Meyer and Schwenk, 2013]. An
alternative communication security mechanism is proposed
based on Host Identity Protocol (HIP) that is independent from
OpenFlow protocol. A security interface or gateway (SecGW) is
proposed as a layer between the controller and OpenFlow
switches to hide the identity of the controller. Each switch is
embedded with a local security agent (LSA) that should allow
communication of the switch with SecGW. This may prevent
types of Man in the Middle (MiM) attacks as SecGW is
communicating with the switches through those embedded
security agents. IPSec tunnels encryption is used for the
communication between SecGW and LSAs or the switches.

4.7. SDN Wi-Fi networks

In this section, we discuss SDN in home networking and
campus networks. Many early SDN use cases that were used
to promote SDN were related to this category in particular.
The wireless networks are very agile. Consequently security
control and management are far more important and complex
if compared with wired networks. Wi-Fi has some unique is-
sues (e.g. billing management) to handle in comparison with
other networks. In addition, security problems in Wi-Fi and
the use of illegitimate intrusion to private networks are very
popular. Handling AAA (Authentication, Access and Ac-
counting) and differentiating them from each other is another
challenge that faces current systems that manage Wi-Fi net-
works. This is since current methods assume one user ac-
count and management systems for the three functions.
Existing research proposed solutions for this problem based
on SDN [Suresh et al., 2012; Kang et al., 2013; Pentikousis et al.,
2013; Dangovas and Kuliesius, 2014].

In SDN Wi-Fi security in particular, once SDN is extended
to cover wireless routers, access points and switches, existed
encryption algorithms such as WEP, WAP 1 and 2 should be
revisited and assessed based on this new architecture. This is
since those encryption methods assume that home access
points or routers include data and control. However, based on
SDN, controller will be separated from data and will not exist
within those devices. Encryption methods should exist be-
tween users and the controller from one side and also be-
tween the controller and the access points from another side.

One of the most serious security concerns in Wi-Fi or home
networking is dealing with third party applications. Those can
pose threats to both local users and ISPs. On the other hand,
ISPs, for many reasons, can't enforce strict security policies on
their customers to control what they can download, use, etc.
Home users vary widely on the nature of applications they
install or use or on the type of environments they use those
applications in. A security model should then handle very
agile and largely ambiguous spectrum of possible threats.

[McKeown et al., 2008] discussed some of the values of
using OpenFlow networks in Universities or campus net-
works. Those are typical examples of large networks of users
and hosts. In addition, those networks are very dynamic;
many new students enroll each year and many others leave.
Typically Universities allow students to bring their own de-
vices and most users access the network through wireless

access points or smart phones. Such networks can be a good
show case for OpenFlow; programmable networks. Several
examples on how OpenFlow can be a good solution are
presented.

Feamster with several other colleagues have several papers
in SDN in general and in home networking in particular
[Feamster et al., 2004; Mundada et al., 2009; Nayak et al., 2009;
Ramachandran et al., 2009; Anwer et al., 2010; Voellmy et al.,
2010; Feamster et al., 2010, 2013a,b; Koponen 2011; Voellmy
et al., 2012]. Some of those papers [e.g. Feamster et al., 2004]
represent early proposals to change traditional networking
architecture to a programmable architecture. Those contri-
butions along with several others contributed to emerging
SDN. SDN Research Group RG was formulated and a project
called Bismark (http://projectbismark.net/) was established in
coordination with Internet Engineering Task Force (IETF).
Their main focus was the applications of SDN in home
networking. The project proposed a security architecture in
home networking for monitoring traffic and dealing with se-
curity attacks. SDN and its programmability nature can
introduce great benefits to home networking management.
Examples of management aspects that can be utilized based
on SDN architecture for home networking in particular
include: Usage cap management, parental control and band-
width management. Those can all be offered for users in real
time. Procera event based programming language is proposed
to write and evaluate policies. Policy language and layer can
be used to facilitate communication with the controller. Upper
layers or layers in the northbound section can use Procera and
other policy languages such as FML to communicate with the
controller.

[Mehdi et al., 2011] focused on anomaly detection methods
based on SDN in home networking. It is advocated that
deploying SDN anomaly detection solutions at home
networking is capable of detecting more and accurately ma-
licious codes in comparison with those deployed in ISP pre-
mises. The impact of SDN on traditional anomaly detection
methods is evaluated. They measured the efficiency of intru-
sion detection methods based on low traffic rates.

[Schulz-Zander et al., 2014] proposed AeroFlux; scalable
wireless SDN architecture to support large Wi-Fi enterprises
and carrier deployments. Application aware services are
implemented to optimize resource allocation based on appli-
cations’ requirements or needs. Controller tasks can be
divided between local controllers and a global one. Global
controller control tasks that are not time critical.

Yap et al. have published several papers on SDN Wi-Fi
networks [Yap et al., 2009; Yap et al. 2010, 2011]. [Yap et al,,
2011] discussed security issues in Wi-Fi and a solution based
on OpenFlow. The proposed solution can accomplish the
logical separation of three different functionalities: Authenti-
cation, access and accounting. Wi-Fi users should not be held
accountable for information content that was downloaded
from unaccounted users using their Wi-Fi networks. This is a
simple example to show that there is a need to decouple the
three previously mentioned aspects and identify users for each
one of the three separate from each other. For example, let's
consider a public restaurant that provides access to the
Internet. Users should have their own accounts that distin-
guish them from each other. Future implementations of such

http://projectbismark.net/
http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

100 COMPUTERS & SECURITY 53 (2015) 79—108

separation may help achieving (open Wi-Fi) for public services
where users who have Wi-Fi in their homes can open it for
public services. However, there are some challenges that SDN
are expected to address, such as mapping login to traffic and
traffic to authentication services, rate limiting, etc.

The Clome project described a migration process from
home networking to the cloud [Nabi and Alvi, 2014]. Several
advantages as well as challenges are presented in this
migration. OpenFlow solution can make the transformation
process faster and easier. Management tasks such as: Ac-
counting, auditing, billing, etc. can be implemented in very
flexible and customized based on SDN programmability.

4.8. Privacy protection

Protecting privacy is important because many security attacks
(e.g. information disclosure, tampering, and non-repudiation)
target users' private information. The impact of SDN on privacy
is two-fold: On one hand, SDN, through its programmability and
flexibility features, can give ISPs the ability to customize privacy
and control services to different users based on their preferences
[Stallings, 2013]. For example, users can provide their ISP with
their preferences on what websites or service to permit, block, or
log. On the other hand, such wealthy information can be used by
ISPs for marketing purposes. The evolution of network tech-
nologies such as SDN is expected to isolate the dependency of
policies on low level layers' information [Paterson, 2014]. This
will eventually give ISPs the ability to track their customers based
on high level applications, usage profile, traffic, data etc. While
such information can provide rich wealthy information from
commercial perspectives, on the other hand, it may cause sig-
nificant privacy concerns. Cloud, ecommerce and health infor-
mation systems are important network environments in which
customers' or users’ information is sensitive from privacy as well
as cost perspectives [Thuemmler et al., 2013].

Network Address Translation (NAT) and Carrier Grade NAT
(CGN) are techniques used to provide mass network services.
They can hide internal hosts' identities from externals. NAT is
used to allow many users to be able to use the same real or
registered IP address over the Internet. It resolves IP addresses'
conflicts through replacing unregistered IP addresses with
registered IP ones. It is used in: Servers, routers, firewalls, etc.
where the device maintains a state table to translate unreg-
istered to registered IP addresses. Packets are then translated
from the unregistered address to the registered one or the
opposite before moving inward or outward. Logging and
tracing private addresses should be handled separately as
typically those will not be available based on NAT. Similarly,
CGN acts like a proxy to allow several users share one public IP
address. It is offered as one of the solutions for IP address
exhaustion. Typically it is implemented in mobile dedicated
hardware. OpenFlow can offer a better solution to CGN with a
flexible, robust and cost-effective approach [Donley, 2013].
Traffic can be also better monitored and managed from the
different subscribers. [Olteanu and Raiciu, 2012] focused on a
case study for using OpenFlow to isolate and distinguish
traffic from different hosts in CGN for stateful network pro-
cessing purposes.

[Mendonca et al., 2012] introduced AnonyFlow; an Open-
Flow based “in-network” anonymization service. AnonyFlow

is claimed to cause less network overhead in comparison with
other approaches. AnonyFlow is claimed to be able also to
perform intra-domain anonymity. Users’ privacy protection
through the Internet can be a significant safe guard from
many security attacks targeting users and their private in-
formation. Primary target for this approach is end-point log-
ging (e.g. from third parties). IP addresses are translated to
anonymity IDs that other (i.e. destination) parties can only
see. AnonyFlow is responsible for the translation between
those IDs and hosts or IP addresses.

[Kopsel and Woesner 2011; Kotronis et al., 2013; Suné et al.,
2014] discussed privacy issues in SDN testbeds. They proposed
a privacy and availability layer in those testbeds to act as a
proxy for managing the connections with remote users. Net-
works of different users can be separated using slicing tech-
niques (e.g. FlowVisor).

[Khan et al., 2013] focused on P2P traffics detection and
privacy protection based on OpenFlow switches. P2P traffic is
usually characterized by two things. First, large files are
exchanged in those networks and consequently a large
bandwidth is required. Second, users vary frequently which
makes privacy and anonymity critical issues.

4.9. Security controls of BYOD

Bring Your Own Device (BYOD) is widely popular in companies,
schools, or public places. BYOD is about users who have their
own: Laptops, tablets, or smart phones. They want to use those
devices for both business and home or personal purposes. There
is no clear distinction inside those devices of what is personal
and what is for business activities. Accounts in emails, social
networks, etc. are usually used for both purposes. Currently,
enterprises struggle to find the best way to handle dealing with
BYOD situation. Preventing such devices is not any more
feasible given that all users have one or more of those devices
with them all the time and given that preventing and moni-
toring users not to carry those small devices is hard to imple-
ment or enforce. Preventing users or asking them to dedicate
different devices for work and personal usage is also hard to
implement or guarantee. Finally, accepting and embracing the
usage of those devices without any security control is very risky.
The major security threat in BYOD is related to the data in the
device and the risk that it can be hacked by intruders. A some-
what similar case is how to handle guests’ access accounts to
enterprise networks in companies, universities, hotels, airports,
etc. Security and accountability are two major concerns for
allowing users to access the network and its services. Preventing
them to use the network is not a proper alternative. The com-
monality in both situations is the need for security controls that
are very agile and temporal. Current security controls are static
and do not have the ability to continuously screen and change
policies based on real time scenarios.

An SDN based solution to BYOD by HP is implemented in
Ballarat Grammar school in Australia [HP, 2013]. HP SDN
Sentinel security solution is shown to provide a realistic ac-
cess control solution for such dynamic situations. Security
threats from users and devices were detected and countered
in real time.

[Hand et al., 2013] proposed using SDN to handle security
problems when dealing with BYOD. While proposed solution

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108 101

may not be able to access and install security agents in users’
mobile devices, however SDN based active security ap-
proaches can continuously monitor those mobile devices and
disconnect them in case of any security concern.

SDN has some features that can make it a candidate to
solve dealing with BYOD; however, SDN may have a scalability
problem given the very frequent network and control update
information required when using a large number of mobile
devices [Awobuluyi, 2014]. [Shoji et al., 2014] introduced the
concept: Bring You Own Network (BYON). The goal is to opti-
mize mobile networks’ resource utilization. A solution based
on programmable network is presented. To avoid compro-
mising security, network should align each user or device to a
particular network slice. This requires fine-grained and dy-
namic access control to manage and keep tracking of those
users and devices.

[Suresh et al., 2012; Schulz-Zander et al., 2014] argued that
the existing solutions for programmable Wi-Fi networks
depend only on client-side modification which may not
handle situations such as BYOD. They proposed Odin to pro-
vide features that enterprise and service providers need to
implement from their server side.

4.10. Security control of open SDN labs

SDN open labs or testbeds are open network labs where users
internally or remotely are given access to perform their lab
experiments using the network resources. Those open
research labs were early motivators for SDN. This is because
traditional switches and routers are rigid and vendor closed.
Those traditional networking components do not give exper-
imenters the ability and flexibility to try their own algorithms
and test them on production networks. Currently, SDN makes
it possible to have such open networking labs (e.g. GENI,
OFELIA, PlanetLab, VINI, and G-Lab). However, security con-
trols and mechanisms are still evolving in those labs and there
are many open issues and serious concerns. A similar case to
open labs is related to conducting locally networking experi-
ments. Researchers in the networking or related areas may
want to conduct experiments using their own machines.
Conducting some experiments while connecting to the pro-
duction network can cause a risk to the network. On the other
hand, isolating them completely in a static manner may not
allow them to use the network and its resources that they
need for their routine tasks. A solution to security and access
control in open labs should be easy to implement. The solu-
tion should be also easy to disable (e.g. when the experiment
is completed, etc.). Further, monitoring and tracking for those
devices should be simple to initiate or update and largely
conducted automatically with little or no human intervention.

[Kleban et al., 2013] demonstrated that security controls in
open labs are unique and has no current “off-the-shelf” so-
lution. In those labs, there is a concern of confidentiality
problem not only from externals but also from internals.
Network virtualization methods that allow different users in
those systems to share the same physical or network re-
sources while having different logical environments may fail
in certain scenarios. The goal of security testing in those en-
vironments is then to evaluate how much such vulnerable
scenarios are real or how often they can happen.

Open labs may not be necessary open for public. They can
be a company or vendor open lab which can be used for cloud
data centres [DeCusatis et al.,, 2013]. In this specific paper
[DeCusatis et al., 2013], an SDN based lab is proposed for re-
provisioning and reuse in cloud datacentres.

Open labs can be illegally accessed using spoofed identi-
ties. Users may try to change their identity to get legitimate
access to those labs. Some papers evaluated security vulner-
abilities in those Open or public labs [Siaterlis and Masera,
2009; Li and Hong, 2011, Li et al., 2011]. Spoofing is inevitable
as those networks require a pre-authorization process in
which many users may not qualify. Typically, two way cer-
tificates are constructed to ensure that only authorized users
can access Open labs through encrypted channels. A user who
has access to one node can, theoretically access and intrude
experiments in other nodes. This may harm the integrity of
the results of the experiments. If a node in the Open labs is
infected with malicious code, this may also spread to hosts of
users who are conducting experiments. A user who has an
access to such network may run a sniffing tool to get network
information about connected users. Sniffing the information
of both IP and MAC addresses is an important asset to conduct
ARP cache poisoning attacks.

[Li et al., 2011] discussed quality requirements in Open
labs. In terms of security and accountability, several security
control mechanisms and vulnerabilities are discussed.
Several challenges that make security control mechanisms on
those Open labs very difficult are described. One of the serious
challenges in those Open labs is that ownership of resources,
users and groups is distributed in a complex unaccountable
manner. Further, experiments are conducted through the
Internet with a large amount of information or data
exchanged. A threat model is proposed of three layers: Control
framework and administration, slices and experiments and
finally the Internet or outsiders. Typically, different experi-
ments are conducted on different slices. While slices can
share the same physical architecture, each slice should be
allocated its own virtual: Memory, switches, topology, etc.
Several types of security attacks such as: DoS, spoofing, cache
poisoning and flooding are investigated and how such attacks
can be mitigated. Fears also exist where legitimate users may
intentionally or unintentionally spread attacks through the
lab. For example, when their own machines are possibly vic-
tims of botnets or worms and without their knowledge they
could be contributing to an attack. Breaking the isolation be-
tween the different slices or experiments may cause security
problems or may risk the integrity of the experiments.

[Moraes et al., 2014] proposed FITS; a secured and flexible
architecture for Open labs based on OpenFlow networks. FITS
(Future Internet Open labs with Security) provides low cost
smart cards for authenticating users. TLS encryption is also
used over the communication channel. The other security
features adopted in the Open labs include: Strong slices’
isolation of the four main resources (i.e. network, topology,
bandwidth and memory or forwarding tables) and also VPN-
based interconnections. FITS uses open source Xen for
network virtualization. To ensure virtualization and isolation
between the different experiments a VLAN tag is inserted in
each packet.

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

102 COMPUTERS & SECURITY 53 (2015) 79—108

4.11. SDN Vs classical security controls

In Section 4 we described different types of security controls
and how those controls are going to evolve based on SDN.
Some security controls (e.g. firewalls, IDS/IPS, access controls)
are known in classical networks. However the functionality of
those controls will change based on SDN specially as those
controls will be able to dynamically interact with the under-
lying networks in real time and hence can make proactive or
responsive decisions in response to network changes, needs,
attacks, etc. For example, one of the most significant problems
in classical firewalls is related to how to configure/reconfigure
and maintain firewall rules or access control lists. Typically a
large company firewall can include a very large number of
firewall rules. Different rules can have different target access
entry/exits (e.g. in/out: ports, IP addresses, MAC addresses). In
classical networks rules are written manually by network
administrators and can be only evaluated, or updated manu-
ally also by network administrators or users. No tools can
effectively exist to screen out frequently rules for possible
conflicts or obsoleteness. Rule conflicts are typically solved by
short-cut solutions such as: first match or priority based rules
overriding. All those examples of problems in classical fire-
walls are expected to be solved in SDN firewalls. Ultimately an
SDN firewall should be fully programmable and autonomous
in a sense that it can adjust its rules to accommodate network
changes, new threats or attacks, etc. While research is already
going in this direction, it is acknowledged that reaching the
goal of such fully programmable firewalls requires solving
several hard problems or challenges. From a security
perspective and sense control decisions are going to be taken
by unattended firewalls, risks should be assessed that such
decisions are not going to cause a serious network change,
failure, etc. Safe and static rules should also exist to take
controls if a monitoring system decides that firewall decisions
are not realistic.

The amount of information collected from the network is
tremendous. SDN opens the possibility of exposing and using
such information. Research in artificial intelligent, data min-
ing, etc. should take place to evaluate best methods to use in
making decisions, in real time, related to several hard prob-
lems. For example those hard problems include whether a
certain traffic is a threat or not, whether a certain topology
change is necessary or not, what security counter measure to
take and how to select one control measure over the others
based on impact, cost leverage, etc. While all such types of
problems are hard in terms of the amount of information and
variables to collect, time is very critical where it is important
to make real time decisions or else decisions can be invaluable
if they are late.

In the second category of SDN controls, we described
several examples of security controls that were not popular or
used in traditional networks and where we believe that they
will be used to a significant extent in SDN (e.g. security for:
BYOD, BYON, testbeds, home networking). Those types of
security controls or architectures become viable with the
evolving SDN architecture. They become also viable with the
evolution of the networks, Internet, etc. By having the
network and its traffic controllable by software applications,
security controls can be more flexible and agile. Their rivals

(i.e. attacks and threats) are also expected to evolve to better
challenge the new architecture and the new security controls.
For example, recent years showed a significant rise in smart
phones or Wi-Fi attacks. Such rise is expected to continuously
grow especially as SDN is expected to spread to wireless,
mobile, etc.

Table 2 summarizes research focus in security controls in
SDN environment and how they are going to evolve in com-
parison with security controls in classical networks.

5. Conclusion

We have presented an overview of the existing research in
SDN security, focusing on security threats, and security con-
trols. Itis important to note that the landscape of SDN security
changes with the advances in SDN research and development.
For instance, a new protocol or API introduced to SDN may
incur particular security threats and thus require specific
countermeasures.

To conclude this paper, we discuss several SDN security
issues and research topics. While they suggest directions of
further research, they are by no means an exhaustive list.

Insider threats: Insiders often have more privileges
particularly when they have access to the controller modules
or resources in SDN. Several insider intrusions in SDN are
studied in [Juba et al., 2013; Popa et al., 2010; Shin and Gu, 2012;
Duncan et al., 2012; He et al., 2014]. In virtualized SDN envi-
ronments, security attacks can propagate intentionally or
unintentionally from within the same physical network. A
compromised VM can escalate problems to other VMs espe-
cially as they run on the same physical elements. Security
measures should be continuously evaluated to ensure that
logically isolated tenants sharing the same physical network
are completely isolated from each other. Compromising the
controller resources is another type of insider threats. Appli-
cations interacting with the controller through controller APIs
can be used as back doors. Given that the controller has
tremendous privileges, such attacks can cause serious
network damages.

Virtual attacks: In principle, a new virtual network can be
established without following a certain network topology or IP
addressing space. Such black or dark network can exist without
being physically noticed. Special vulnerability assessment
tools should be developed to evaluate how likely such sce-
narios can be real for a particular network. In SDN, migration
of hosts should be implemented automatically in addition to
accompanied tasks such as triggering the proper ports or
network topology elements. While this is considered a sig-
nificant advantage, if implemented improperly, it may imply
serious security risks.

Security-embedded routing: SDN makes it possible to
embed security in traffic flows that helps transport trafficin a
secure manner. It goes beyond the concept of security aware
routing used to direct internal or external traffic for security
checking or auditing [Shin and Gu, 2012]. In security-
embedded routing, a routing protocol can act as a carrier
that helps not only in guiding the traffic but also in protecting
it. Similar to telecommunication carriers, for example, a
routing protocol can be multiplexed or modulated with the

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108 103

Table 2 — SDN security controls research progress.

Security control

Research evolution trends

Firewalls

Access Control

IDS/IPS

Policy Management

Monitoring and Auditing

Dynamical allocations of firewalls [Sherry et al., 2012; Gibb et al., 2012; Gember et al., 2013;
Mysore et al., 2013], SDN-Based Firewalls [Hu et al., 2014a,b], [Jia and Wang, 2013], [Suh

et al., 2014] [Suh et al., 2014], Stateful firewalls access [Shirali-Shahreza and Ganjali,
2013a,b], [Katta et al., 2012], [Zhu et al., 2014], [Stoenescue et al., 2013], [Fayaz and Sekar,
2014], Hybrid SDN-classical firewall issues [Pan et al., 2013], [Gamayunov et al., 2013],
[Shin et al., 2013a,b], [Hand et al., 2013]

SDN-dynamic access control [Casado et al., 2009], [Nayak et al., 2009], Fine grained access
control [Wen et al., 2013], SDN VN [Kinoshita et al., 2012], [Yamasaki et al., 2011], [Wu et al.,
2013

Integration with classical tools [Chung et al., 2013a,b], [Xing et al., 2013], [Shin et al,,
2013a,b], SDN IDS/IPS implementation [Goodney et al., 2010], [Kerner, 2012], [Heorhiadi

et al., 2012], [Skowyra et al., 2013a,b], [Giotis et al., 2014], Applications [Braga et al., 2010],
[Mehdi et al., 2011], [Shirali-Shahreza and Ganjali, 2013a,b]

SDN policy languages [Hinrichs et al. (2008, 2009)], [Ballard et al., 2010], [Foster et al., 2011],
[Gude et al., 2008], [Voellmy and Hudak, 2011], [Monsanto et al., 2012], [Voellmy et al., 2012],
[Katta et al., 2012], [Foster et al., 2013], [Anderson et al., 2014], Migration from classical
network [Vanbever et al., 2013; Vanbever et al., 2014; Zhang et al., 2014], policy enforcement
[Bellessa et al., 2011], [Fayazbakhsh et al., 2013], [Qazi et al., 2013], [Kazemian et al., 2013],
[Bari et al., 2013]

Traffic monitoring tools [Nayak et al., 2009], [Ballard et al., 2010], [Huang et al., 2011], [Jose
et al., 2011], [Shin and Gu, 2012], [Argyropoulos et al., 2012], [Yu et al., 2013], [Karame, 2013],
[Shirali-Shahreza and Ganjali, 2013a,b], [Raumer et al., 2014], Traffic management [Curtis
et al., 2011a,b], [Jain et al., 2013], [Wang et al., 2013], [Sun et al., 2014], [Choi et al., 2014a,b],
[Rasley et al., 2014]

Mobile Security Control

[Li et al., 2012], [Gember et al., 2012], [Hampel et al., 2013], [Namal et al., 2013], [Skowyra

et al., 2013a,b], [Ding et al., 2014], [Hurel et al., 2014], [Liyanage et al., 2014],

Wi-Fi Networks

[Feamster et al., 2004; [McKeown et al., 2008], Mundada et al., 2009; Nayak et al., 2009;

Ramachandran et al., 2009; Anwer et al., 2010; Voellmy et al., 2010; Feamster et al., 2010,
2013a,b; Koponen, 2011; Voellmy et al., 2012], [Suresh et al., 2012; Kang et al., 2013;
Pentikousis et al., 2013; Dangovas and Kuliesius, 2014]

Privacy Protection
et al., 2014]

Security Controls of BYOD

Security Control of Open Labs

[Mendonca et al., 2012], [Stallings, 2013], [Thuemmler et al., 2013], [Donley, 2013], [Suné

[HP, 2013], [Hand et al., 2013], [Awobuluyi, 2014], [Shoji et al., 2014]
[Kopsel and Woesner, 2011], [Li et al., 2011], [Kleban et al., 2013], [DeCusatis et al., 2013],

[Kotronis et al., 2013], [Suné et al., 2014], [Moraes et al., 2014]

traffic in a way that makes it not readable in transit. When it
reaches the destination, a demodulation process can
demodulate or decrypt the traffic at the destination premises.
Policy life cycle: SDN offers a potential for automatic
implementation of policy life cycle activities. The major
problem with policy management is related to the gap be-
tween low level mechanisms and high level user re-
quirements. Policies need to be richer in context than low
level firewall rules in traditional networks. They need to be
more expressive and comprehensive to cover a wide range of
possible packets. They should be managed by the controller
and supporting modules, and accessible and extendable by
administrators. Policies should be evaluated automatically
with high levels of performance, reliability and scalability.
While the existing research has discussed some of these is-
sues, full support of policy life cycle remains to be seen.
On-demand security services: One of the potentials of SDN
is enabling Internet or cloud service providers to provide
customized on-demand security services. Customers may
decide the details of security services that they want from
those service providers. An inventory of security services can
be provided where customers can select from. Not only cus-
tomers can select to opt-in or out those security services, they
can also decide their parameters. For example, an ISP may
provide a website blocker or parent control service. Customers

can select to enable it at a certain time, for a certain period or
for a particular host or user. They may also decide the nature
of the websites they want to allow or block. Those can be
available on their accounts and they can frequently view and/
or change.

Application access control: Network security controls
permit/deny traffic based on network level information (i.e. IP,
MAC addresses, port number or protocol). A limitation is that
many applications can't be prevented from using the network
without denying them based on their host. Most security at-
tacks compromise certain applications and it is impractical to
deny the host completely. SDN global policies can have the
ability to perform access control based on two levels of in-
formation: User/host and switch/network. A central access
control module can be developed as part of the controller to
keep tracking of the information from those levels and
consequently permit/deny traffic. Such fine-grained access
control system can update access control information
dynamically.

Internet security check points: One evolution that SDN
may bring to the Internet is the transference from IP to flow
based traffic management. This can enable the implementa-
tion of Internet check points. Many use cases have the need to
check security threats in flows through the communication
channels, not only at source and destination premises. Such

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

104 COMPUTERS & SECURITY 53 (2015) 79—108

central check points can be a first defense layer on national or
enterprise gateways. Countries, states, and companies at large
may decide to have a central security gateway to screen
certain traffic coming to or going from their premises. An in-
ventory of on-demand security services can be offered by
those security check points. Sample security services are
border control, pinholing (e.g. timed open ports), translation
services (e.g., IPv4-IPv6 exchanging), QoS marking and verifi-
cation, and traffic metering.

REFERENCES

Al-Shabibi, Ali. POX Wiki, Stanford University, [Online]. Available:
https://openflow.stanford.edu/display/ONL/POX-+Wiki, last
edited by Murphy McCauley on Aug 11, 2014.

Anderson Carolyn Jane, Nate Foster, Arjun Guha, Jean-

Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, et al.
NetkAT: semantic foundations for networks. POPL; 2014.
p. 113—26.

Andersen David G, Hari Balakrishnan, Feamster Nick,

Teemu Koponen, Daekyeong Moon, Scott Shenker.
Accountable internet protocol (AIP). In: SIGCOMM'08; August
17-22, 2008. Seattle, Washington, USA.

Anwer Muhammad Bilal, Motiwala M, Tariq M, Feamster N.
Switchblade: a platform for rapid deployment of network
protocols on programmable hardware. ACM SIGCOMM
Comput Commun Rev 2010;40(4):183—-94.

Argyropoulos Christos, Dimitrios Kalogeras,

Georgios Androulidakis, Vasilis Maglaris. PaFloMon - a slice
aware passive flow monitoring framework for OpenFlow
enabled experimental facilities. EWSDN 2012:97—102.

Awobuluyi Olatunde. Periodic control update overheads in
openflow-based Enterprise networks. In: IEEE 28th
International Conference on Advanced Information
Networking and Applications; 2014.

Bakshi Kapil. Considerations for software defined networking
(SDN): approaches and use cases. In: Aerospace Conference.
IEEE; 2013. p. 1-9.

Ballard Jeffrey, Ian Rae, Aditya Akella. Extensible and scalable
network monitoring using OpenSAFE. In: Proceedings of the
2010 Internet Net- work Management Conference on Research
on Enterprise Networking, ser. INM/WREN'10. Berkeley, CA,
USA: USENIX Association; 2010.

Bari Md Faizul, Shihabur Rahman Chowdhury, Reaz Ahmed,
Raouf Boutaba. PolicyCop: an autonomic QoS policy
enforcement framework for software defined networks. In:
Software defined networks for future networks and services
(SDNA4FNS); 2013.

Bellessa John, Evan Kroske, Reza Farivar, Mirko Montanari,
Kevin Larson, Roy Campbell. NetODESSA: dynamic policy
enforcement in cloud networks. In: Proceedings of the 2011
IEEE 30th Symposium on Reliable Distributed Systems
Workshops (SRDSW'11); 2011.

Benton Kevin, Jean Camp, Chris Small. OpenFlow vulnerability
assessment. In: Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking.
ACM,; 2013. p. 151-2.

Bifulco Roberto, Karame Ghassan. Towards a richer set of services
in software-defined networks. In: SENT'14; 23 February 2014.
San Diego, CA, USA.

Braga Rodrigo, Edjard Mota, Alexandre Passito. Lightweight DDoS
flooding attack detection using NOX/OpenFlow. In: Proceedings
of the IEEE Conference on Local Computer Networks (LCN),
Denver, CO, USA, 11—14 October 2010; 2010. p. 408—15.

Casado Martin, Tal Garfinkel, Aditya Akella, Freedman M]J,
Boneh D, Nick McKeown, et al. SANE: a protection architecture
for enterprise networks. In: Proceedings of the 15th
conference on USENIX Security Symposium. ser. USENIX-
SS'06, Berkeley, CA, USA, vol. 15; 2006.

Casado Martin, Michael Freedman, Justin Pettit, Jianying Luo,
Nick McKeown, Scott Shenker. Ethane: taking control of the
enterprise. ACM SIGCOMM Comput Commun Rev
2007;37(4):1—12. ACM.

Casado Martin, Michael Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, et al. Rethinking enterprise
network control. IEEE/ACM transactions on Networking (TON)
2009;17(4):1270—83. August 2009.

Choi Taesang, Song Sejun, Park Hyungbae, Yoon Sangsik,

Yang Sunhee. SUMA: software-defined unified monitoring
agent for SDN. NOMS; 2014a. p. 1-5.

Choi Taesang, Saehoon Kang, Sangsik Yoon, Sunhee Yang,
Sejun Song, Hyungbae Park. SUVMF: software-defined unified
virtual monitoring function for SDN-based large-scale
networks. CFI; 2014b.

Chowdhury Shihabur Rahman, Bari Md Faizul, Ahmed Reaz,
Boutaba Raouf. PayLess: a low cost network monitoring
framework for Software defined Networks. NOMS; 2014.

p. 1-9.

Chu YuHunag, MinChi Tseng, YaoTing Chen, YuChie Chou,
YanRen Chen. A novel design for future on-demand service
and security. In: 12th IEEE International Conference on
Communication Technology (ICCT); 2010.

Chung Chun-Jen, Khatkar Pankaj, Xing Tianyi, Lee Jeongkeun,
Huang Dijiang. NICE: network intrusion detection and
countermeasure selection in virtual network systems. IEEE
Trans Dependable Secure Comput - TDSC 2013a;10(4).

Chung Chun-Jen, Cui JingSong, Khatkar Pankaj, Huang Dijiang.
Non-intrusive process-based monitoring system to mitigate
and prevent VM vulnerability explorations. In: 9th IEEE
International Conference on Collaborative Computing
Networking Applications and Worksharing (CollaborateCom
2013); 2013.

Clark Russ, Feamster Nick, Nayak Ankur, Reimers Alex. Pushing
Enterprise security down the network Stack. GT-CS-09—-03.
Georgia Institute of Technology; 2009. Tech. Rep.

Curtis Andrew, Mogul Jeffrey, Tourrilhes Jean,

Yalagandula Praveen, Sharma Puneet, Banerjee Sujata.
DevoFlow: scaling flow management for high-performance
networks. SIGCOMM Comput Commun Rev
2011a;41(4):254—65.

Curtis Andrew, Kim W, Yalagandula P. Mahout: low-overhead
datacenter traffic management using end-host-based
elephant detection. In: IEEE INFOCOM'11; 2011.

Dangovas Vainius, Kuliesius Feliksas. SDN-driven authentication
and access control system. In: The International Conference
on Digital Information, Networking, and Wireless
Communications (DINWC); 2014. p. 20—-3.

DeCusatis C, Haley M, Bundy T, Cannistra R, Wallner R, Parraga J,
et al. Dynamic, software-defined service provider network
infrastructure and cloud drivers for SDN adoption. In: IEEE
International Conference on Communications 2013: IEEE
ICC'13—2nd Workshop on Clouds. Networks and Data Centers;
2013.

Dillon C, Berkelaar Michael. OpenFlow (D)DoS mitigation.
Technical report. February 9, 2014., http://www.delaat.net/rp/
2013-2014/p42/report.pdf.

Ding Aaron Yi, Jon Crowcroft, Sasu Tarkoma, Hannu Flinck.
Software defined networking for security enhancement in
wireless Mobile networks. Elsevier computer networks
(COMNET), vol. 66; 2014,

Donley Chris. Leveraging openflow in DOCSIS® networks.
CableLabs; 2013.

https://openflow.stanford.edu/display/ONL/POX+Wiki
https://openflow.stanford.edu/display/ONL/POX+Wiki
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref1
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref1
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref1
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref1
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref1
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref2
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref2
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref2
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref2
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref2
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref3
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref3
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref3
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref3
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref3
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref4
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref4
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref4
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref4
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref4
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref5
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref5
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref5
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref5
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref6
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref6
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref6
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref6
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref7
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref7
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref7
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref7
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref7
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref8
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref8
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref8
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref8
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref8
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref9
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref9
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref9
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref9
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref9
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref10
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref10
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref10
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref10
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref10
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref11
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref11
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref11
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref12
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref12
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref12
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref12
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref12
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref12
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref13
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref13
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref13
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref13
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref13
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref14
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref14
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref14
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref14
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref14
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref15
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref15
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref15
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref15
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref15
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref16
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref16
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref16
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref16
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref17
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref17
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref17
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref17
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref18
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref18
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref18
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref18
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref18
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref19
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref19
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref19
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref19
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref20
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref20
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref20
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref20
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref21
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref21
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref21
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref21
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref21
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref21
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref22
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref22
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref22
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref22
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref23
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref23
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref23
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref23
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref23
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref23
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref24
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref24
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref24
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref24
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref25
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref25
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref25
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref25
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref25
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref26
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref26
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref26
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref26
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref26
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref26
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref26
http://www.delaat.net/rp/2013-2014/p42/report.pdf
http://www.delaat.net/rp/2013-2014/p42/report.pdf
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref28
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref28
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref28
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref28
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref29
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref29
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref29
http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108 105

Dover Jeremy. A denial of service attack against the open
floodlight SDN controller. Dover Networks LLC; Dec 2013.
Research report.

Duncan Adrian, Creese Sadie, Goldsmith Michael. Insider attacks
in cloud computing. In: TrustCom; 2012.

Fayaz Seyed, Vyas Sekar. In: Testing stateful and dynamic data
planes with FlowTest HotSDN'14; August 22, 2014. Chicago, IL,
USA.

Fayaz Seyed, Sekar Vyas, Yu M, Mogul J. FlowTags: enforcing
network-wide policies in the presence of dynamic middlebox
actions. In: Proceedings of the Second Workshop on Hot
Topics in Software Defined Networks. ACM; 2013.

Feamster Nick, Hari Balakrishnan, Jennifer Rexford,

Aman Shaikh, van der Merwe Jacobus. The case for separating
routing from routers. In: Proceedings of the ACM SIGCOMM
Workshop on Future Directions in Network Architecture, ser.
FDNA'04. New York, NY, USA: ACM; 2004. p. 5—12.

Feamster Nick, Nayak Ankur, Kim Hyojoon, Clark Russel,
Mundada Yogesh, Ramachandran Anirudh, et al. Decoupling
policy from configuration in campus and enterprise networks.
In: Local and Metropolitan Area Networks (LANMAN), 17th
IEEE Workshop on. IEEE; 2010.

Feamster Nick, Jennifer Rexford, Ellen Zegura. The road to SDN:
an intellectual history of programmable networks. Technical
Report. Princeton, NJ, USA: Princeton University; 2013a.

Feamster Nick, Rexford Jennifer, Shenker Scott, Clark Russel,
Hutchins Ron, Levin Dave, et al. SDX: a software-defined
internet exchange, ONS '13 research track, Apr. 2013b.

Feng Tao, Bi Jun, Hu Hongyu, Yao Guang, Xiao Peiyao. InSAVO:
Intra-AS IP source address validation solution with
OpenRouter. In: INFOCOM2012; 2012.

Feng Yifu, Dongqi Wang, Bencheng Zhang. Research on the active
DDosS filtering algorithm based on IP flow. In: 2009 Fifth
International Conference on Natural Computation. IEEE; 2009.
p. 628—32.

Ferguson Andrew, Arjun Guha, Chen Liang, Rodrigo Fonseca,
Shriram Krishnamurthi. Hierarchical policies for software
defined networks. In: Proceedings of the First Workshop on
Hot Topics in Software Defined Networks, ser. HotSDN'12.
New York, NY, USA: ACM; 2012. p. 37—42.

Foster Nate, Rob Harrison, Michael Freedman,

Christopher Monsanto, Jennifer Rexford, Alec Story, et al.
Frenetic: a network programming language. In: ICFP; Sep 2011.

Foster Nate, Arjun Guha, Mark Reitblatt, Alec Story,

Michael Freedman, Naga Praveen Katta, et al. Languages for
software-defined networks. IEEE Commun Mag
2013;51(2):128—34.

Gamayunov Dennis, Platonov Ivan, Smeliansky Ruslan. Toward
network access control with software-defined networking. In:
SDNFW; 2013.

Gember Aaron, Grandl Robert, Junaid Khalid, Shen Shan-Hsiang.
Towards software-defined middlebox networking. In:
HotNets'12; 2012.

Gember Aaron, Grandl Robert, Junaid Khalid, Akella Aditya.
Design and implementation of a framework for software-
defined middlebox networking. In: SIGCOMM,; 2013. p. 467—8.

Gibb Gibb, Hongyi Zeng, Nick McKeown. Outsourcing network
functionality. In: Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, ser. HotSDN'12. New
York, NY, USA: ACM; 2012. p. 73-8.

Giotis K, Argyropoulos C, Androulidakis G, Kalogeras D,
Maglaris V. Combining OpenFlow and sFlow for an effective
and scalable Anomaly detection and mitigation mechanism
on SDN Environments. Comput Netw 2014;62:122—36.

Goodney Andrew, Narayan Shailesh, Bhandwalkar Vivek,

Cho Young. Pattern based packet filtering using NetFPGA in
DETER infrastructure. In: 1st Asia NetFPGA developers
workshop; Daejeon, Korea; June 14, 2010.

Gude Natasha, Koponen Teemu, Pettit Justin, Pfaff Ben,

Casado Martin, McKeown Nick, et al. NOX: towards an
operating system for networks. Comput Commun Rev
2008;38(3):105—10.

Hampel Georg, Steiner Moritz, Bu Tian. Applying software-
defined networking to the telecom domain. In: Proceedings of
the 16th IEEE Global Internet Symposium in Conjunction with
IEEE Infocom, Turin, Italy; April 2013.

Hand Ryan, Michael Ton, Eric Keller. Active security. In: Twelfth
ACM Workshop on Hot Topics in Networks (HotNets-XII),
College Park, MD; November 2013.

He Jin, Mianxiong Dong, Kaoru Ota, Mingyu Fan, Guangwei Wang.
NetSecCC: a scalable and fault-tolerant architecture without
outsourcing cloud network security. 2014. CoRR abs/
1405.0660.

Heorhiadi Victor, Reiter Michael, Sekar Vyas. New opportunities
for load balancing in network-wide intrusion detection
systems. CoNEXT 2012:361-72.

Hinrichs Timothy, Natasha Gude, Martin Casado, John Mitchel,
Scott Shenker. Expressing and enforcing flow-based network
security policies. Technical report. University of Chicago;
2008.

Hinrichs Timothy, Natasha Gude, Martin Casado, John Mitchel,
Scott Shenker. Practical declarative network management. In:
Proceedings of the 1st ACM Workshop on Research on
Enterprise Networking, WREN *09. New York, NY, USA: ACM;
2009. p. 1-10.

Howard Michael, LeBlanc David. Writing secure code. Redmond,
WA: Microsoft Press; 2001.

HP. Ballarat Grammar secures BYOD with HP Software defined
network and Sentinel SDN security application. 2013. http://
h17007. www1.hp.com/docs/byod/Ballarat%20Grammar%
20v9.pdf.

Hu Hongxin, Han Wonkyu, Ahn Gail-Joon and Zhao Ziming.
FlowGuard: building robust firewalls for software-defined
networks, HotSDN'14, August 22, 2014a, Chicago, IL, USA.

Hu Hongxin, Gail-Joon Ahn, Wonkyu Han, Ziming Zhao. Towards
a reliable SDN firewall. ONS; 2014b.

Huang Guanyao, Chuah Chen-Nee, Raza Saqib,

Seetharaman Srini. Dynamic measurement-aware routing in
practice. Netw IEEE 2011;25(3):29—34.

Huang Wun-Yuan, Hu Jen-Wei, Chou Ta-Yuan, Liu Te-Lung.
Design and implementation of real-time flow viewer across
different domains. In: Advanced Information Networking and
Applications Workshops (WAINA), 27th International
Conference on; 2013. p. 619—24.

Huang Wun-Yuan, Chou Ta-Yuan, Hu Jen-Wei, Liu Te-Lung.
Automatical end to end topology discovery and flow viewer on
SDN. In: 28th International Conference on Advanced
Information Networking and Applications Workshops; 2014.

Hurel Gaétan, Rémi Badonnel, Abdelkader Lahmadi,

Olivier Festor. Outsourcing Mobile security in the cloud. Lect
Notes Comput Sci 2014;8508:69—73.

ISO. Information processing systems — open systems
interconnection — basic reference model — part 2: security
architecture. 1989. ISO 7498—1.

Jafarian Jafar Haadi, Ehab Al-Shaer, Qi Duan. Openflow random
host mutation: transparent moving target defense using
software defined networking. In: Proceedings of the ACM
Workshop on Hot Topics in Software Defined Networks
(HotSDN), Helsinki, Finland; 13—17 August 2012. p. 127—-32.

Jain Sushant, Alok Kumar, Subhasree Mandal, Joon Ong,

Leon Poutievski, Arjun Singh, et al. B4: experience with a
globally-deployed software defined WAN. In: Proceedings of
the ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, Hong Kong, China; 13—17 August 2013.

p. 3—14.

http://refhub.elsevier.com/S0167-4048(15)00070-X/sref30
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref30
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref30
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref31
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref31
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref32
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref32
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref32
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref33
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref33
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref33
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref33
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref33
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref34
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref34
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref34
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref34
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref34
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref34
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref35
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref35
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref35
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref35
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref35
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref37
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref37
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref37
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref38
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref38
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref38
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref39
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref39
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref39
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref39
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref39
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref40
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref40
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref40
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref40
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref40
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref40
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref41
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref41
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref41
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref42
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref42
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref42
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref42
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref42
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref42
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref43
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref43
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref43
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref44
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref44
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref44
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref44
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref45
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref45
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref45
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref45
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref46
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref46
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref46
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref46
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref46
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref47
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref47
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref47
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref47
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref47
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref48
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref48
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref48
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref48
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref49
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref49
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref49
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref49
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref49
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref50
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref50
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref50
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref50
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref51
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref51
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref51
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref52
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref52
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref52
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref52
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref53
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref53
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref53
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref53
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref54
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref54
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref54
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref54
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref55
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref55
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref55
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref55
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref55
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref55
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref56
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref56
http://h17007.www1.hp.com/docs/byod/Ballarat%20Grammar%20v9.pdf
http://h17007.www1.hp.com/docs/byod/Ballarat%20Grammar%20v9.pdf
http://h17007.www1.hp.com/docs/byod/Ballarat%20Grammar%20v9.pdf
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref58
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref58
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref59
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref59
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref59
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref59
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref60
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref60
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref60
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref60
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref60
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref60
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref61
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref61
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref61
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref61
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref62
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref62
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref62
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref62
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref62
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref62
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref65
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref65
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref65
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref65
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref65
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref65
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref65
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref66
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref66
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref66
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref66
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref66
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref66
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref66
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref66
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref67
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref67
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref67
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref67
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref67
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref67
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref67
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref67
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref67
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref67
http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

106 COMPUTERS & SECURITY 53 (2015) 79—108

Jia Xinpei, Wang J. Distributed firewall for P2P network in data
center. In: ICCE-China Workshop (ICCE-China). IEEE; 2013.

p. 15-9.

Jose Lavanya, Yu Minlan, Rexford Jennifer. Online measurement
of large traffic aggregates on commodity switches. In: Proc. of
the USENIX HotICE Workshop; 2011.

Juba Yutaka, Hung-Hsuan Huang, Kyoji Kawagoe. Dynamic
isolation of network devices using OpenFlow for keeping LAN
secure from intra-LAN attack. In: 17th International
Conference in Knowledge Based and Intelligent Information
and Engineering Systems - KES2013. Procedia Computer
Science, 22; 2013. p. 810-9.

Kang Joon-Myung, Hadi Bannazadeh, Hesam Rahimi,

Thomas Lin, Mohammad Faraji, Alberto Leon-Garcia. In: IEEE
International Conference on Communications Workshops
(ICC). Software-Defined Infrastructure and the Future Central
Office; 9—13 June 2013.

Kampanakis Panos, Perros Harry, Beyene Tsegereda. SDN-based
solutions for moving target defense network protection. In:
IEEE SDN Architecture and Applications. Sydney: Australia;
June 16, 2014.

Karame Ghassan. Towards trustworthy network measurements.
In: TRUST; 2013. p. 83—-91.

Kotronis Vasileios, Schatzmann Dominik, Ager Bernhard. On
Bringing Private Traffic into Public SDN Testbeds. HotSDN’13.
August 16, 2013. Hong Kong, China.

Katta Naga Praven, Jennifer Rexford, David Walker. Logic
programming for software-defined networks. In: ACM
SIGPLAN Workshop on Cross- Model Language Design and
mplementation, ser. XLDI; 2012.

Kazemian Peyman, ChangMichael, Zeng Hongyi, Varghese George,
McKeown Nick, Whyte Scott. Real time network policy
checking using header space analysis. NSDI; 2013.

Kerner Sean Michael. OpenFlow can provide security, too. May 14,
2012. http://www.enterprisenetworkingplanet.com/
datacenter/openflow-can-provide-security-too.html.

Khan Hassan, Khayam Sayed, Golubchik Leana, Rajarajan M,
Michael Orr. Wirespeed, Privacy-preserving P2P traffic
detection on commodity switches. SPS; 2013.

Kim Hyojoon, Feamster Nick. Improving network management
with software defined networking. Commun Mag IEEE
2013;51(2):114-9.

Kinoshita Shunichi, Toshiki Watanabe, Junichi Yamato,

Hideaki Goto, Hideaki Sone. Implementation and evaluation
of an OpenFlow-based access control system for wireless LAN
roaming. In: Computer Software and Applications Conference
Workshops (COMPSACW), IEEE 36th Annual. IEEE; 2012.

p. 82-7.

Kleban Janusz, Marc Bruyere, Clegg Richard G, Landa Raul,
Grzegorz Danilewicz, Janusz Kleban, et al. Abstraction layer
for implementation of extensions in programmable networks,
collaborative project co-funded by the European commission
within the seventh framework Programme. 2013.

Kloeti Rowan, Vasileios Kotronis, Paul Smith. OpenFlow: a
security analysis. In: Proceedings of the 8th Workshop on
Secure Network Protocols (NPSec), Part of IEEE ICNP,
Gottingen, German; October 2013.

Koponen Teemu, Scott Shenker, Hari Balakrishnan,

Nick Feamster, Igor Ganichev, Ali Ghodsi, et al. Architecting
for innovation. Comput Commun Rev 2011;41(3):24—36.

Kopsel Andreas, Woesner Hagen. OFELIA - Pan-European test
facility for OpenFlow experimentation. ServiceWave 2011:311-2.

Kordalewski Dave, Robere Robert. A dynamic algorithm for loop
detection in software defined networks. Technical report. Fall
2012.

Kreutz Diego, Fernando Ramos, Paulo Verissimo. Towards secure
and dependable software-defined networks. In: Proceedings of
the second ACM SIGCOMM Workshop on Hot Topics in

Software Defined Networking. ACM; 2013. p. 55—60.
HotSDN'13, August 16, Hong Kong, China.

Liyanage Madhusanka, Ylianttila Mika, Gurtov Andrei. Securing
the control channel of software-defined mobile networks. In:
Proc. of 1st IEEE WoWMoM Workshop on Software Defined
Networking Architecture and Applications. Sydney, Australia;
June 2014.

Li Erran, Morley Mao, Jennifer Rexford. Toward software-defined
cellular networks. In: Software Defined Networking (EWSDN),
2012 European Workshop on; 2012. p. 7—12.

Li Dawei, Hong Xiaoyan, Jason Bowman. Evaluation of security
vulnerabilities by using ProtoGENI as a launchpad. Houston,
USA: IEEE Globecom; Dec. 2011.

Matias Jon, Borja Tornero, Alaitz Mendiola, Jacob Eduardo,
Nerea Toledo. Implementing layer 2 network virtualization
using OpenFlow: challenges and solutions. In: European
Workshop on Software Defined Networking; 2012.

McKeown Nick, Anderson Tom, Balakrishnan Hari,

Parulkar Guru, Peterson Larry, Rexford Jennifer, et al.
Openflow: enabling innovation in campus networks. ACM
SIGCOMM Comput Commun Rev 2008;38(2):p.69—74.

Mehdi Sayed Akbar, Khalid Junaid, Ali Khayam Sayed. Revisiting
traffic anomaly detection using software defined networking.
In: Recent advances in intrusion detection. Springer; 2011.

p. 161-80.

Mendonca Marc, Seetharaman S, Obraczka K. A flexible in-
network IP anonymization service. In: The IEEE ICC Workshop
on Software Defined Networks; 2012.

Meyer Christopher, Schwenk Jorg. Lessons learned from previous
SSL/TLS attacks - a brief chronology of attacks and
weaknesses. IACR Cryptology ePrint Archive. 2013.

Monsanto Christopher, Foster Nate, Harrison Rob, Walker David. A
compiler and run-time system for network programming
languages. In: Principles of Programming Languages (POPL); 2012.

Moraes Igor, Diogo Mattos, Lyno Ferraz, Elias Campista,

Marcelo Rubinstein, Luis Costa, et al. FITS: a flexible virtual
network testbed architecture. Comput Netw 2014;63:221—37.

Mundada Yogesh, Sherwood Rob, Feamster Nick. In: An openflow
switch element for click, in symposium on click modular
Router. Citeseer; 2009.

Mysore Radhika, Porter George, Vahdat Amin. FasTrak: enabling
express lanes in multi-tenant data. In: CONEXT'13; December
9-12, 2013. Santa Barbara, California, USA.

Nabi Zubair, Alvi Atif. Clome: the practical implications of a
cloud-based smart Home. 2014. CoRR abs/1405.0047.

Namal Suneth, Ahmad Ijaz, Gurtov Andrei, Ylianttila Mika.
Enabling secure mobility with OpenFlow. In: Proc. IEEE
software defined networks for future networks and services
(SDN4FNS); November 11-13, 2013. Trento, Italy.

Naous Jad, Ryan Stutsman, David Mazieres, Nick McKeown,
Nickolai Zeldovich. Delegating network security with more
information. In: Proceedings of the 1st ACM Workshop on
Research on Enterprise Networking, ser. WREN'09. New York,
NY, USA: ACM,; 2009. p. 19-26.

Nayak Ankur, Reimers Alex, Feamster Nick, Clark Russ.
Resonance: inference-based dynamic access control for
enterprise networks. In: Proceedings of the Workshop on
Research on Enterprise Networking (WREN), Barcelona, Spain;
21 August 2009. p. 11-8.

Olteanu Vladimir, Raiciu Costin. Efficiently migrating stateful
middleboxes. In: SIGCOMM'12; August 13—17, 2012. Helsinki,
Finland.

Othman Othman, Okamura Koji. Securing distributed control of
software defined networks. [JCSNS Int] Comput Sci Netw
Secur September 2013;13(9).

Pan Heng, Guan Hongtao, Liu Junjie, Ding Wanfu, Lin Chengyong,
Xie Gaogang. FlowAdapter: enable flexible multi-table
processing on legacy hardware. HotSDN; 2013. p. 85—90.

http://refhub.elsevier.com/S0167-4048(15)00070-X/sref68
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref68
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref68
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref68
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref69
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref69
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref69
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref70
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref70
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref70
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref70
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref70
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref70
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref70
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref71
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref71
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref71
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref71
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref71
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref71
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref72
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref72
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref72
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref72
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref73
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref73
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref73
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref168
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref168
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref168
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref168
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref74
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref74
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref74
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref74
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref75
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref75
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref75
http://www.enterprisenetworkingplanet.com/datacenter/openflow-can-provide-security-too.html
http://www.enterprisenetworkingplanet.com/datacenter/openflow-can-provide-security-too.html
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref77
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref77
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref77
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref78
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref78
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref78
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref78
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref78
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref79
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref79
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref79
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref79
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref79
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref79
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref79
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref80
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref80
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref80
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref80
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref80
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref81
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref81
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref81
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref81
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref81
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref82
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref82
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref82
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref82
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref83
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref83
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref83
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref84
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref84
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref84
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref85
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref85
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref85
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref85
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref85
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref85
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref85
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref85
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref167
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref167
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref167
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref167
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref167
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref86
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref86
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref86
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref86
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref86
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref86
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref87
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref87
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref87
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref88
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref88
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref88
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref88
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref89
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref89
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref89
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref89
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref89
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref90
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref90
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref90
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref90
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref90
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref90
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref91
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref91
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref91
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref92
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref92
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref92
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref92
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref93
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref93
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref93
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref94
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref94
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref94
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref94
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref95
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref95
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref95
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref96
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref96
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref96
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref97
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref97
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref98
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref98
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref98
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref98
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref99
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref99
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref99
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref99
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref99
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref99
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref100
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref100
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref100
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref100
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref100
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref100
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref101
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref101
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref101
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref101
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref102
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref102
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref102
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref103
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref103
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref103
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref103
http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

COMPUTERS & SECURITY 53 (2015) 79—108 107

Paterson Nancy. End user privacy and policy-based networking. J
information Policy 2014;4:28—43.

Pentikousis Kostas, Wang Yan, Hu Weihua. MobileFlow: toward
software- defined mobile networks. Commun Mag IEEE
2013;51(7):44—53.

Popa Lucian, Yu Minlan, Ion Stoica Steven, Sylvia Ratnasamy.
CloudPolice: taking access control out of the network. In:
Proceedings of the 9th ACM Workshop on Hot Topics in
Networks (HotNets); 2010.

Porras Phillip, Shin Seungwon, Vinod Yegneswaran, Martin Fong,
Mabry Tyson, Guofei Gu. A security enforcement Kernel for
OpenFlow networks. In: HOTSDN; 2012.

Porras Phillip, Shin Seungwon, Vinod Yegneswaran, Martin Fong,
Mabry Tyson, Guofei Gu. A framework for enabling security
controls in OpenFlow networks. ACM; 2012b.

Qazi Zafar, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar,
Minlan Yu. SIMPLE-fying middlebox policy enforcement using
SDN. In: ACM SIGCOMM,; August 2013.

Ramachandran Anirudh, Mundada Yogesh, Bin Tariqg Mukarram,
Feamster Nick. Securing enterprise networks using traffic
tainting. Technical Report GTCS-09—15. Atlanta, GA: Georgia
Institute of Technology; 2009. Tech. Rep.

Rasley Jeff, Stephens Brent, Dixon Colin, Rozner Eric, Felter Wes,
Agarwal Kanak, et al. Low-latency network monitoring via
oversubscribed port mirroring. ONS; 2014.

Raumer Daniel, Schwaighofer Lukas, Carle George. MonSamp: a
distributed SDN application for QoS monitoring. In: 1st
Workshop on Software-defined Networking (SDN'14), Warsaw,
Poland; 2014.

Ristenpart Thomas, Tromer Eran, Shacham Hovav,

Savage Stefan. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In: Proc.
ACM CCS; 2009. p. 199-212.

Rothenberg Christian Esteve, Nascimento Marcelo Ribeiro,
Salvador Marcos Rogerio, Correa Carlos, de Lucena Sidney,
Raszuk Robert. Revisiting routing control platforms with the
eyes and muscles of software-defined networking. In:
HotSDN; 2012.

Schehlmann Lisa, Harald Baier. COFFEE: a concept based on
OpenFlow to filter and erase events of botnet activity at high-
speed nodes. In: INFORMATIK; 2013.

Schulz-Zander Julius, Nadi Sarrar, Stefan Schmid. AeroFlux: a
near-Sighted controller architecture for software-defined
wireless networks. ONS; 2014.

Sethi Divjyot, Narayana Srinivas, Malik Sharad. Abstractions for
model checking sdn controllers. In: FMCAD; 2013.

Sherry Justine, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy,
Sylvia Ratnasamy, Vyas Sekar. Making middleboxes someone
Else's problem: network processing as a cloud service. In:
Proceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communication; 2012.

Shin Seungwon, Porras Phillip, Yegneswaran Vinod, Fong Martin,
Gu Guofei, Tyson Mabry. FRESCO: modular composable
security services for software-defined networks. In: NDSS; 2013.

Shin Seungwon, Gu Guofei. Cloudwatcher: network security
monitoring using OpenFlow in dynamic cloud networks (or:
How to provide security monitoring as a service in clouds?). In:
Proceedings of the 20th IEEE International Conference on
Network Protocols (ICNP), ser. ICNP'12. Washington, DC, USA.
IEEE Computer Society; 2012. p. 1—6.

Shin Seungwon, Yegneswaran Vinod, Porras Phillip, Gu Guofei.
Avant-guard: scalable and vigilant switch flow management
in software-defined networks. In: Proceedings of the ACM
Conference on Computer and Communications Security, ser.
CCS'13. ACM; 2013b.

Shin Seungwon, Gu Guofei. Attacking software defined networks:
a first feasibility study. In: Proceedings of the Second ACM

SIGCOMM Workshop on Hot Topics in Software Defined
Networking; 2013. p. 165—6.

Shirali-Shahreza and Ganjali Sajad Yashar. Efficient
implementation of security applications in OpenFlow
controller with FleXam, HotSDN'13, August 16, 2013a, Hong
Kong, China.

Shirali-Shahreza, Ganjali Sajad Yashar. FleXam: flexible sampling
extension for monitoring and security applications in
OpenFlow, HotSDN'13, August 16, 2013b, Hong Kong, China.

Siaterlis Christos, Masera Marcelo. A review of available software
for the creation of testbeds for internet security research. In:
International Conference on Advances in System Simulation -
SIMUL; 2009.

Skowyra Rick, Bahargam Sanaz, Bestavros Azer. Software-defined
IDS for securing embedded Mobile devices. In: Proceedings of
HPEC'13: The IEEE high Performance Extreme Computing
Conference, Waltham, MA, September 2013a.

Skowyra Rick, Lapets Andrei, Bestavros Azer, Kfoury Assaf.
Verifiably-safe software-defined networks for CPS. In:
Proceedings of HiCoNS'13: The ACM International Conference
on High Confidence Networked Systems. Philadelphia,
Pennsylvania: CPS week; May 2013b.

Shoji Yozo, Manabu Ito, Kiyohide Nakauchi, Lei Zhong,
Yoshinori Kitatsuji, Hidetoshi Yokota. Mobility management
in the networks of the future world. In: IEEE Consumer
Communications and Networking Conference (CCNC 2014);
2014.

Son Sooel, Shin Seungwon, Yegneswaran Vinod, Porras Phllip,
Gu Guofei. Model checking invariant security properties in
OpenFlow. In: IEEE International Conference on
Communications (ICC), Budapest, Hungary; June, 2013.

Song Haoyu. Protocol oblivious forwarding: unleash the power of
SDN through a future-proof forwarding plane. In: Proceedings
of HotSDN; 2013.

Sperotto Anna, Schaffrath Gregor, Sadre Ramin, Morariu Cristian,
Pras Aiko, Stiller Burkhard. An overview of IP flow-based
intrusion detection. IEEE Commun Surv TUTORIALS
2010;12(3). THIRD QUARTER.

Stallings William. Software-defined networks and OpenFlow.
Internet Protoc J 2013;16(1).

Stoenescu Radu, Popovici Matei, Negreanu Lorina, Raiciu Costin.
SymNet: static checking for stateful networks. In:
HotMiddlebox'13; December 9, 2013. Santa Barbara, CA, USA.

Suh Junho, Choi Hoon-gyu, Yoon Wonjun, You Taewan Ted,
Kwon Taekyoung, Choi Yanghee. Implementation of content-
oriented networking architecture (CONA): a focus on DDoS
countermeasure. In: Proc of 1st European NetFPGA Developers
Workshop, Cambridge, UK; Sep. 2010.

Suh Michelle, Park Sae Hyong, Lee Byungjoon, Yang Sunhee.
Building firewall over the software-defined network
controller. In: February 16~19, ICACT2014; 2014.

Sun Peng, Yu Minlan, Michael] Freedman, Rexford Jennifer,
Walker David. HONE: joint host-network traffic management
in software-defined networks.] Netw Syst Manag (JNSM) April
2015;23(2):374—99.

Suné Marc, Bergesio Leonardo, Woesner Hagen, Rothe Tom,
Kopsel Andreas, Colle Didier, Puype Bart,

Simeonidou Dimitra, Nejabati Reza, Channegowda Mayur,
Kind Mario, Dietz Thomas, Autenrieth Achim,

Kotronis Vasileios, Salvadori Elio, Salsano Stefano,

Korner Marc, Sharma Sachin. Design and implementation of
the OFELIA FP7 facility: The European OpenFlow testbed.
Comput Netw 2010;61:132-50.

Suresh Lalith, Julius Schulz-Zander, Ruben Merz, Anja Feldmann,
Teresa Vazao. Towards programmable Enterprise WLANs with
Odin. In: Proc. HotSDN; 2012. Helsinki, Finland.

Thuemmler Christoph, Miiller Julius, Covaci Stefan,

Magedanz Thomas, De Panfilis Stefano, Jell Thomas, et al.

http://refhub.elsevier.com/S0167-4048(15)00070-X/sref104
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref104
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref104
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref105
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref105
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref105
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref105
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref106
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref106
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref106
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref106
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref107
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref107
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref107
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref108
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref108
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref108
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref109
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref109
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref109
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref110
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref110
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref110
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref110
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref110
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref111
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref111
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref111
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref112
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref112
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref112
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref112
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref113
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref113
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref113
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref113
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref113
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref114
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref114
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref114
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref114
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref114
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref115
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref115
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref115
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref116
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref116
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref116
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref117
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref117
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref118
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref118
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref118
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref118
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref118
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref118
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref119
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref119
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref119
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref120
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref120
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref120
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref120
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref120
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref120
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref120
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref121
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref121
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref121
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref121
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref121
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref122
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref122
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref122
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref122
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref122
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref123
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref123
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref123
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref123
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref124
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref124
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref124
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref124
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref124
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref125
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref125
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref125
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref125
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref126
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref126
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref126
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref127
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref127
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref127
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref127
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref128
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref128
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref129
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref129
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref129
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref130
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref130
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref130
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref130
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref130
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref131
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref131
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref131
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref132
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref132
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref132
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref132
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref132
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref169
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref169
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref169
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref169
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref169
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref169
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref169
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref169
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref169
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref169
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref169
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref169
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref133
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref133
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref133
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref134
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref134
http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

108 COMPUTERS & SECURITY 53 (2015) 79—108

Applying the software-to-data paradigm in next generation e-
health hybrid clouds. ITNG; 2013. p. 459—63.

Vanbever Laurent, Stefano Vissicchio. Enabling SDN in old school
networks with software-controlled Routing Protocols. In:
Open network Summit (Research track). Santa Clara, CA, USA;
March 2014.

Vanbever Laurent, Reich Joshua, Benson Theophilus, Foster Nate,
Rexford Jennifer. HotSwap: correct and efficient controller
upgrades for software-defined networks. In: ACM SIGCOMM
HotSDN 2013 Workshop. Hong Kong, China; August 2013.

Voellmy Andreas, Kim Hyujoon, Feamster Nick. Procera: a
language for high-level reactive network control. In:
Proceedings of the 1st Workshop on hot topics in software
defined networks; August 2012. p. 43—8.

Voellmy Andreas, Agarwal Ashish, Hudak Paul, Feamster Nick,
Burnett Sam, Launchbury John. Don't configure the network,
program it!, Domainspecific programming languages for
network systems. Tech. Rep. YALEU/DCS/RR-1432. Yale
University; July 2010.

Voellmy Andreas, Paul Hudak. Nettle: functional reactive
programming of OpenFlow networks. In: PADL; Jan 2011.

Wang Haopei, Xu Lei, Gu Guofei. Of-guard: a DoS attack prevention
extension in software-defined networks. ONS; 2014.

Wang Juan, Yong Wang, Hongxin Hu, Qingxin Sun, He Shi,
Longjie Zeng. Towards a security-enhanced firewall
application for OpenFlow networks. CSS; 2013. p. 92—103.

Wang Xiang, Liu Zhi, Qi Yaxuan, Li Jun. LiveCloud: A Lucid
Orchestrator for Cloud Datacenters. In: 2012 IEEE 4th
International Conference on Cloud Computing Technology
and Science; 2012.

Wen Xitao, Chen Yan, Hu Chengchen, Shi Chao, Wang Yi.
HotSDN, towards a secure controller platform for openflow
applications. In: HotSDN; 2013.

Wu Yong-juan, Liang Jun-xue, Zhang Hua, Lin Zhao-wen, Yan Ma,
Zhong Tian. Programmable virtual network instantiation in
IaaS cloud based on SDN. J China Universities Posts
Telecommun 2013;20(Suppl 1):121-5.

Xiao Peiyao, Jun Bi, Tao Feng. O-CPF: an OpenFlow based intra-AS
source address validation application. In: CFI'13, June 05 — 07;
2013. Beijing, China.

Xing Tianyi, Huang Dijiang, Xu Le, Chung Chun-Jen,

Khatkar Pankaj. SnortFlow: a openflow-based intrusion
prevention system in cloud environment. In: Second GENI
Research and Educational Experiment Workshop; 2013.

Yamasaki Yashuiro, Miyamoto Yoshinori, Yamato Junichi,
Hideaki Goto, Hideaki Sone. Flexible access management
system for campus VLAN based on OpenFlow. In: Applications
and the Internet (SAINT), 2011 IEEE/IPS] 11th International
Symposium on. IEEE; 2011. p. 347-51.

Yao Guang, Bi Jun, Xiao Peiyao. Source address validation
solution with OpenFlow/NOX architecture. In: Proceedings of
the IEEE International Conference on Network Protocols
(ICNP), Vancouver, BC, Canada; 17—20 October 2011. p. 7—12.

Yao Guang, Bi Jun, Tao Feng, Xiao Peiyao, Duangi Zhou.
Performing software defined route-based IP spoofing filtering
with SEFA. In: ICCCN2014; 2014.

Yap Kok-Kiong, Sherwood Rob, Kobayashi Masayoshi, Huang Te,
Chan Michael, Handigol Nikhil, et al. Blueprint for introducing
innovation into wireless mobile networks. In: Proceedings of

the Second ACM SIGCOMM Workshop on Virtualized
Infrastructure Systems and Architectures; 2010. p. 25—32.

Yap Kok-Kiong, Kobayashi Masayoshi, Underhill David,
Seetharaman Srinivasan, Kazemian Peyman, McKeown Nick.
The Stanford OpenRoads deployment. In: WiNTECH'09:
Proceedings of the Fourth ACM International Workshop on
Wireless Network Testbeds, Experimental Evaluation and
Characterization. ACM; 2009.

Yap Kok-Kiong, Yiakoumis Yiannis, Kobayashi Masayoshi,

Katti Sachin, Parulkar Guru, McKeown Nick. Separating
authentication, access and accounting: a case study with
OpenWiFi. Open Networking Foundation; 2011. Tech. Rep.

Yu Curtis, Lumezanu Cristian, Zhang Yueping, Singh Vishal,
Jiang Guofei, Madhyastha Harsha. FlowSense: monitoring
network utilization with zero measurement cost. In: Passive
and active measurement. Springer; 2013. p. 31—41.

YuHunag Chu, Tseng Min-Chi, Cen YaoTing, Chou YuChieh,
Chen YanRen. A novel design for future on-demand service
and security. In: Proceedings of the International Conference
on Communication Technology (ICCT), Nanjing, China; 11-14
November 2010. p. 385—8.

Yuzawa Tamihiro. OpenFlow 1.0 actual use-case: RTBH of DDoS
traffic while keeping the target. 2013. Online, http://
packetpushers.net/openflow-1-0-actual-use-case-rtbh-of-
ddos-traffic-while-keeping-the-target-online.

Zaalouk Adel, Rahamatullah Khondoker, Ronald Marx,

Kpatcha Bayarou. OrchSec: an orchestrator-based architecture
for enhancing network-security using Network Monitoring
and SDN control functions. In: NOMS; 2014. p. 1-9.

Zhang Shuyuan, Laurent Vanbever, Sharad Malik. In-band update
for network routing policy migration. In: IEEE ICNP 2014
(Concise papers track). Raleigh, North Carolina, USA; October
2014.

Zhang Yingian, Juels Ari, Reiter Michael K, Ristenpart Thomas.
Cross-VM side channels and their use to extract private keys.
In: ACM Conference on Computer and Communications
Security; 2012. p. 305—16.

Zhu Shuyong, Bi Jun, Sun Chen. SFA: stateful forwarding
abstraction in SDN data plane. USENIX/Open Networking
Summit Research Track (ONS14), Santa Clara, USA 2014.

Izzat Alsmadi: An associate professor in software engineering. He
is currently working as an assistant research professor in the
department of computer science at Boise State University (BSU).
He is also in a leave from department of CIS at Yarmouk Univer-
sity, Jordan. He has his master and PhD in Software Engineering
from North Dakota State University. His research interests
include: Software security, software engineering, software
testing, social networks and software defined networking.

Dianxiang Xu: Professor and graduate coordinator in the depart-
ment of computer science at Boise State University (BSU). He
joined Boise State University in August 2013. His prior teaching
and research experience has included posts at Dakota State Uni-
versity, North Dakota State University, Texas A&M University,
Florida International University, and Nanjing University. He is a
senior member of the IEEE. His research interests include: Soft-
ware security, software engineering, security policy, software
testing, computer forensics and software defined networking.

http://refhub.elsevier.com/S0167-4048(15)00070-X/sref134
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref134
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref134
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref135
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref135
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref135
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref135
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref136
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref136
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref136
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref136
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref137
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref137
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref137
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref137
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref137
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref138
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref138
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref138
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref138
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref138
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref139
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref139
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref140
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref140
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref140
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref141
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref141
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref141
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref141
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref166
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref166
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref166
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref166
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref142
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref142
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref142
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref165
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref165
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref165
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref165
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref165
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref143
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref143
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref143
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref143
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref144
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref144
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref144
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref144
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref145
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref145
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref145
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref145
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref145
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref145
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref146
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref146
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref146
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref146
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref146
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref146
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref147
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref147
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref147
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref148
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref148
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref148
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref148
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref148
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref148
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref149
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref149
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref149
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref149
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref149
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref149
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref150
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref150
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref150
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref150
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref151
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref151
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref151
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref151
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref151
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref152
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref152
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref152
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref152
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref152
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref152
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref152
http://packetpushers.net/openflow-1-0-actual-use-case-rtbh-of-ddos-traffic-while-keeping-the-target-online
http://packetpushers.net/openflow-1-0-actual-use-case-rtbh-of-ddos-traffic-while-keeping-the-target-online
http://packetpushers.net/openflow-1-0-actual-use-case-rtbh-of-ddos-traffic-while-keeping-the-target-online
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref154
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref154
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref154
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref154
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref154
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref155
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref155
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref155
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref155
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref156
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref156
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref156
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref156
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref156
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref157
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref157
http://refhub.elsevier.com/S0167-4048(15)00070-X/sref157
http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006

	Security of Software Defined Networks: A survey
	1. Introduction
	2. SDN architecture
	3. SDN security threats and countermeasures
	3.1. Spoofing
	3.1.1. ARP spoofing
	3.1.2. IP spoofing

	3.2. Tampering
	3.3. Repudiation
	3.3.1. Non-repudiation verification
	3.3.2. Accountability

	3.4. Information disclosure
	3.4.1. Scanning countermeasures
	3.4.2. Information disclosure countermeasures

	3.5. DoS
	3.5.1. Detection of DoS
	3.5.2. Countermeasure of DoS

	3.6. Elevation of privilege
	3.7. SDN attacks vs classical attacks

	4. SDN security controls
	4.1. SDN firewalls
	4.1.1. SDN firewalls vs traditional firewalls
	4.1.2. SDN-based firewalls
	4.1.3. SDN-based stateful firewalls
	4.1.4. Hybrid firewalls

	4.2. Access control
	4.3. IDS/IPS
	4.3.1. Integration with traditional tools
	4.3.2. SDN IDS implementation

	4.4. SDN policies
	4.4.1. SDN policy languages
	4.4.2. SDN security and network policies
	4.4.3. Policy enforcement

	4.5. Monitoring and auditing
	4.5.1. Traffic monitoring tools
	4.5.2. Traffic management

	4.6. Security control for mobile SDN
	4.7. SDN Wi-Fi networks
	4.8. Privacy protection
	4.9. Security controls of BYOD
	4.10. Security control of open SDN labs
	4.11. SDN Vs classical security controls

	5. Conclusion
	References

