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Abstract. Recently, there has been a growing debate over approaches for handling and analyzing
private data. Research has identified issues with syntactic approaches such as k-anonymity and ¢-
diversity. Differential privacy, which is based on adding noise to the analysis outcome, has been
promoted as the answer to privacy-preserving data mining. This paper looks at the issues involved
and criticisms of both approaches. We conclude that both approaches have their place, and that each
approach has issues that call for further research. We identify these research challenges, and discuss
recent developments and future directions that will enable greater access to data while improving
privacy guarantees.

1 Introduction

In recent years, there has been a tremendous growth in the amount of personal data that can
be collected and analyzed. Data mining tools are increasingly being used to infer trends and
patterns. Of particular interest are data containing structured information on individuals.
However, the use of data containing personal information has to be restricted in order to
protect individual privacy. Although identifying attributes like ID numbers and names can
be removed from the data without affecting most data mining, sensitive information might
still leak due to linking attacks that are based on the public attributes, a.k.a quasi-identifiers.
Such attacks may join the quasi-identifiers of a published table with a publicly accessible
table like a voter registry, and thus disclose private information of specific individuals. In
fact, it was shown in [74] that 87% of the U.S. population may be uniquely identified by the
combination of the three quasi-identifiers birthdate, gender, and zipcode. This has lead to
two related research areas: privacy-preserving data mining (PPDM) [3] enables the learning
and use of data mining models while controlling the disclosure of data about individuals;
privacy-preserving data publishing (PPDP) focuses on anonymizing datasets, in order to
allow data disclosure without violating privacy.

The Official Statistics community has long recognized the privacy issues in both data pub-
lishing and release of statistics about data; for overviews see [38, 83]. Statistical Disclo-
sure Limitation has primarily focused on tabular statistics, where a cell represents either
a count of individuals matching that row/column (e.g., age range and income level), or
a sum/average (e.g., years of education by race and state). Methods such as suppres-
sion (e.g., eliminating cells that reflect fewer than, say, five individuals), generalization
by rounding values, or noise addition have been used to prevent individual identification
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[27]. There has been extensive work for ensuring that the combinations of values from such
tables cannot be “solved” to reveal exact values for individuals, e.g. [81]. Such a privacy-
aware release of statistics can be considered as PPDM.

This community has also worked on PPDP, specifically on the generation of privacy-
preserving public use microdata sets. Many techniques were proposed in this context,
including sampling, suppression, generalization (particularly of geographic details and nu-
meric values), adding random noise, and value swapping. There has been work on show-
ing how such methods can preserve data utility; for example, value swapping maintains
univariate statistics, and if done carefully, it can also maintain controlled approximations
to multivariate statistics [61]. The state of practice is based on standards for generalization
of certain types of information (e.g., any disclosed geographic unit must contain at least
10,000 [38] or 100,000 individuals [39]). Following such standards for generalization of
specific types of data, the U.S. Healthcare Information Portability and Accountability Act
(HIPAA) safe harbor rules [26] detail the types and specificity of data generalization that
are deemed to make the data safe for releasing. A problem with this prescriptive approach
is that each new domain demands new rules (e.g., due to different perceptions of the risk
associated with re-identification and disclosure of data of different types, such as census
data vs. health data vs. educational data). The proliferation of domains where data is be-
ing collected and may need to be published in a private manner makes this prescriptive
approach impractical in the new big data world.

Moreover, even this prescriptive approach does not provide a guarantee of individual
privacy, but only an expectation of privacy. For example, the HIPAA safe harbor rules allow
the disclosure of the year of birth and the first three digits of the postal code (typically a
region of roughly a county); if, by some strange anomaly, a county only has one person
born in 1950, then that individual is revealed even though the rules are followed. The
result is that these prescriptive approaches are often very conservative, resulting in lower
utility of the data. The fact that such standards exist, given the knowledge that they do not
provide perfect privacy, suggests that PPDM and PPDP do not need to provide an absolute
guarantee of privacy; adequate privacy (which may vary by domain) can be sufficient.

The Official Statistics research community has developed numerous methods for generat-
ing privacy-protected microdata, but this has not resulted in a standard approach to PPDP.
One difficulty is that much of the work emphasizes methods to produce microdata sets, of-
ten for a particular domain. This makes the work difficult to generalize. There has recently
been an explosion of attempts in the computing research community to provide formal
mathematical definitions that either bound the probability of identification of individuals,
or the specificity of information released about individuals. While much of the earlier (and
current) work in Statistical Disclosure Limitation is highly relevant, a comprehensive sur-
vey and comparative analysis of those methods is beyond the scope of this paper. Herein,
we focus only on the recent definitions offered by the computing research community, and
indicate claims or interpretations that we perceive as misunderstandings that are impacting
the progress of research in this field.

Probably the first formal mathematical model to achieve wide visibility in the computing
research community was k-anonymity, proposed by Samarati and Sweeney [69, 70, 75].
This model requires that each of the released records be indistinguishable from at least
k — 1 other records when projected on the quasi-identifier attributes. As a consequence,
each individual may be linked to sets of records of size at least k in the released anonymized
table, whence privacy is protected to some extent. This is accomplished by modifying table
entries. The above seminal studies, and the majority of the subsequent studies, modify
data by generalizing table entries. However, other techniques have also been suggested to

TRANSACTIONS ON DATA PRIVACY 6 (2013)



On Syntactic Anonymity and Differential Privacy 163

achieve record indistinguishability (see more on that in Section 2). All those techniques first
partition the data records into blocks, and then release information on the records within
each block so that the linkage between quasi-identifier tuples and sensitive values within a
given block is fully blurred.

Several studies have pointed out weaknesses of the k-anonymity model and suggested
stronger measures, e.g., {-diversity [56], t-closeness [53], or 8-likeness [10]. Other studies
attempted to enhance the utility of such anonymized tables, e.g., [33, 78, 48, 86]. Those
models, which we describe in Section 2, are similar to k-anonymity in that they (typically)
generalize the database entries until some syntactic condition is met, so that the ability of
an adversary to link a quasi-identifier tuple to sensitive values is restricted.

Despite the enhanced privacy that those models offer with respect to the basic model of k-
anonymity, they are still susceptible to various attacks. As a result of those attacks, it seems
that part of the research community has lost faith in those privacy models. The emergence
of differential privacy [18], a rigorous notion of privacy based on adding noise to answers to
queries on the data, has revolutionized the field of PPDM. There seems to be a widespread
belief that differential privacy and its offsprings are immune to those attacks, and that they
render the syntactic models of anonymity obsolete. In this paper we discuss the problems
with syntactic anonymity and argue that, while all those problems are genuine, they can be
addressed within the framework of syntactic anonymity. We further argue that differential
privacy too is susceptible to attacks, as well as having other problems and (often unstated)
assumptions that raise problems in practice.

While criticisms of syntactic anonymity stem from its shortcomings in providing full pri-
vacy for the individuals whose data appear in the table, it is imperative also to discuss
the second aspect of PPDP: the utility of the sanitized data for legitimate (non-privacy-
violating) purposes. As we see in the news on a regular basis (such as the changes to
privacy policies and practices of Google and facebook), without regulation utility trumps
privacy: if the choice is between a method that provides privacy but fails to adequately
support data analysis, or sharing data at a greater risk to privacy, the choice will be to share
the data. Another example comes from the U.S. HIPAA Privacy Rule [26], which provides
a clear syntactic mechanism to anonymize data to meet legal standards. This safe harbor
mechanism appears to have received little use in practice. Instead, (limited) datasets are
disclosed only under data use agreements. (Such restrictions on use of de-identified data
seem widespread. For example, even though the NIH database of Genotypes and Pheno-
types (dbGaP) only accepts de-identified individual level data, the (de-identified) individ-
ual level data can only be accessed with an approved Data Use Certification [64].) These
agreements can increase privacy risk, as data can be shared in identifiable form; but also
constrain what can be done with the data. Any new use demands a new agreement, even if
that use poses no additional privacy risk. This results in less freedom in use of the data, as
well as greater potential threats to privacy. As for differentially private data, a study of its
utility is still in order. Until it is clarified how useful it is for practitioners of data mining,
differential privacy has still not reached the maturity to replace other existing models of
PPDM.

Throughout this note we concentrate on data in the form of a table of records, in which
each record is a multidimensional tuple that provides information about a single entity in
the underlying population. Other types of data, such as graph data (as in social networks),
introduce additional complications that we will only discuss briefly.
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1.1 Issues in using privacy technology

The key tradeoff in analysis of privacy-sensitive data is between the risk of privacy viola-
tions and utility of the data. Privacy violations are typically expressed in terms of individ-
ual identifiability, a concept enshrined in most privacy law [23, 26]. A simple interpretation
of immunity against individual identifiability is that for any individual, one should not
be able to identify or learn private information about that individual with probability or
confidence greater than some threshold. (Smaller settings of the threshold imply better
immunity.)

As for utility, it typically refers to two features of the processed data: the ease of use of
that data for data mining and other analysis purposes; and the correctness of conclusions
drawn from the processed data by such analysis. Users of data typically feel that they
are getting full utility out of the original data, and lower utility after privacy-preserving
measures have been taken, but quantifying this loss is difficult. Several measures were
proposed in the literature for the utility of syntactic anonymization, but they do not seem to
be effective in comparing different anonymization approaches (or even different algorithms
within the same approach) to evaluate the impact on data mining [65]. Evaluating the
impact of noise addition techniques on utility would seem more obvious, as the noise can
often be calculated in direct terms of impact on the results (e.g., a Gaussian distribution
around the true answer). However, this evaluation is often non-trivial, as noise addition
may occur on the data itself (as with data modification methods for public use microdata
sets), or on intermediate results (such as noise-based approaches to statistical disclosure
control for frequency counts, or differentially private histograms). Noise addition seems
to run into considerable resistance among practitioners, who are not willing to accept data
which was subjected to noise addition (even though the original data itself may contain
some errors).

There are other important factors that should be weighed in when choosing a privacy-
preserving procedure; e.g., the efficiency and scalability of the algorithm implementing the
selected procedure; or the suitability of the selected solution to the capabilities of the data
custodian (the party that holds the data) and the expected demands of the data users (we
elaborate on that in Section 4). However, those factors are not necessarily in tradeoff with
either risk to privacy or utility.

The tradeoff between privacy risk and utility makes analysis and publishing of privacy-
sensitive data a challenge. Some of the specific issues that arise in privacy preservation
techniques, which, in particular, distinguish between syntactic and noise-based models,
are listed below.

Managing privacy policy. Privacy policy for syntactic models can generally be defined
and understood based on the data schema; parameters have a clear privacy meaning that
can be understood independent of the actual data, and have a clear relationship to the legal
concept of individual identifiability of data. On the other hand, while e-differential privacy
does relate to individual identifiability, the privacy parameter ¢ does not have such a clear
relationship [49]. An appropriate setting of € requires an extensive analysis of the query,
the data, and the universe as a whole. (This is discussed further in Section 6.3.) What this
means is that there is no clear way to set a general policy for a value of ¢ that provides
sufficient privacy.

Open-ended vs. compact distribution. Syntactic models typically provide a compact dis-
tribution (e.g., a generalized value or a set of possible values) for a given anononymized
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data value. Perturbation-based models typically give an open-ended distribution (e.g.,
Gaussian or Laplacian distributions.) This has significant implications for utility: analy-
sis of compact distributions can provide guarantees on correctness of results; open-ended
distributions provide probabilistic bounds that, even if tighter, may not provide the level
of certainty desired [25].

Application to multiple uses of data. Models based on the release of anonymized data
can safely be used for as many distinct uses as desired. Methods that release only query
results require tracking the results: early uses of the data can affect the quality of later
uses, or even result in a threshold beyond which no new queries can be permitted on the
data. While noise can be applied to a data release (e.g., the techniques used in Public Use
Microdata Sets [62]), most recent research has concentrated on answering queries against
the data. It has long been known that care must be taken to ensure that multiple queries
do not violate privacy [17]. Differential privacy does address this, as differentially private
answers to queries are composable, with each consuming a portion of the “privacy budget”.
For example, in order to achieve e-differential privacy over two queries, the answer to each
query can be made noisier so that each complies with ¢/2-differential privacy. However,
if the query stream is not known in advance, adding too little noise to early queries can
prevent reasonable answers to later queries.

There is also an issue of determining how to set a “privacy budget”. Assuming public
access to a dataset, any privacy budget could quickly be exhausted. An alternative is to as-
sign individual privacy budgets, but this requires ensuring that individuals do not collude,
limiting dataset access to individuals who can be authenticated and vetted. This poses
interesting policy challenges for use of differential privacy.

Results with correlated values. Correlation among data values raises a number of issues,
particularly with noise addition techniques. For example, publishing a dataset with noise
added to attributes age and height is challenging: a 5 year-old with a positive noise
added to age and a negative noise added to height would indicate that the true age is prob-
ably less than the published age, and the true height is greater than the published height,
since those two attributes are correlated [42]. The basic definition of differential privacy,
that limits the probability of the noisy outcome belonging to a particular set, accounts also
for multi-dimensional outcomes. However, when attributes are correlated, it is not suffi-
cient to independently add noise to the different attributes using (for example) the Lapla-
cian mechanism of differential privacy. Correlated values in multi-dimensional outcomes
require a careful mechanism design rather than a simple composition of mechanisms for
scalar-valued outcomes.

Syntactic approaches to anonymity must also account for correlation. As a simple ex-
ample, suppose that a record of a 5-year old child was generalized to a record with the
generalized age [5-15], but except for that single 5-year old child, all individuals whose
records were generalized in the same manner are teenagers. Assume, in addition, that the
sensitive attribute is disease, and that the diseases in all other records in the same group
are usually found only in teenagers. Then it may be possible to infer that the remaining
disease in that group afflicts the 5-year old child. More subtle issues with correlation are
discussed in Section 5.1.
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1.2 OQutline

We start with an overview of the two types of privacy models which are at the center of this
study: in Section 2 we describe the main syntactic models of anonymity, and in Section 3
we discuss differential privacy. We then commence our discussion of these two approaches,
towards our conclusion that the two approaches have their place, one alongside the other,
and that both should be further studied, explored and improved.

In Section 4 we explain that those seemingly competing approaches are targeting two dif-
ferent scenarios of privacy-preserving usage of data: PPDP and PPDM. We discuss those
two scenarios and highlight the differences between them. In particular, we show that syn-
tactic models are designed for PPDP, while differential privacy is more suitable to PPDM;
hence, the comparison between the two approaches is an apples-and-oranges comparison.
In particular, one approach cannot replace the other.

In Section 5 we discuss the most important criticisms of syntactic anonymization ap-
proaches, and presents recent work and research directions to deal with these concerns.
Section 6 does the same for noise addition approaches, with a particular focus on differen-
tial privacy.

We conclude in Section 7 with the above mentioned conclusion, and suggest future re-
search directions in both approaches.

2 Syntactic models of anonymity

Herein we survey some of the main models of syntactic anonymity. Most of those models
are based on generalizing table entries. Such data distortion preserves the truthfulness
of data, in the sense that a generalized value defines a group of possible original values.
(Generalization also includes, as a special case, the operation of suppression; suppression
also defines a group of possible original values since usually the dictionary of possible
values for each attribute is known.) Those models provide privacy for the data subjects by
rendering some sort of record indistinguishability.

k-Anonymity and most of the models that evolved from it are based on partitioning the
database records to blocks and then anonymizing the records so that those that appear in
the same block become indistinguishable. In k-anonymity, all blocks are required to be of
size at least k, and the records within each block are replaced with their closure, being the
minimal generalized record that generalizes all of them. Each such block is called a QI-
block (Quasi-Identifier block). All generalized records within the same QI-block agree in
their quasi-identifier attributes, whence, they are indistinguishable to an adversary, under
the assumption that the quasi-identifiers are the only attributes that could be used by an
adversary in a linking attack. An example is given in Table 1; in that example, there are two
quasi-identifiers (age and zipcode), and one sensitive value (disease).

Several studies have pointed out weaknesses of the k-anonymity model and suggested
stronger measures such as ¢-diversity [56], t-closeness [53], or p-sensitivity [79]. The main
weakness of k-anonymity is that it does not guarantee sufficient diversity in the sensitive
attribute within each QI-block. Namely, even though it guarantees that every record in the
anonymized table is indistinguishable from at least £ — 1 other records, when projected on
the subset of quasi-identifiers, it is possible that most (or even all) of those records have the
same sensitive value. Therefore, an adversary who is capable of locating a target individual
in that block of records will be able to infer the sensitive value of that individual with
probability that might be higher than what is desired. For example, an adversary who
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age | zipcode | disease age zipcode | disease
28 10145 measles [21 — 28] | 1 measles
21 10141 hepatitis [21 — 28] | 1**** hepatitis
21 12238 hepatitis [21 — 28] | 1**** hepatitis
55 12256 flu [48 — 55] | 12*** flu
53 12142 angina [48 — B55] | 12** angina
48 12204 angina [48 — b5] | 12*** angina

Table 1: (a) A table (left); (b) a corresponding 3-anonymization (right).

targets a 21 year old person in zipcode 12238 may deduce, from the 3-anonymization in
Table 1, that the person has hepatitis with probability 2/3.

Machanavajjhala et al. [56] proposed the security measure of /-diversity. They suggested
that the sensitive attribute in each QI-block will have at least ¢ “well represented” values.
They offered two interpretations of that measure. In one interpretation, the entropy of the
distribution of sensitive values in that attribute in every Ql-block should be at least log ¢,
for some predetermined value of the parameter ¢. In practice, a simpler interpretation of
(-diversity is usually applied [84]. According to that interpretation, an anonymization is
considered /-diverse if the frequency of each of the sensitive values within each QI-block
does not exceed 1/¢. Table 2 shows an alternative 3-anonymization of Table 1(a). This
anonymization respects 3-diversity.

age zipcode | disease
[21 — 53] | 1¥** measles
[21 — 53] | 1¥** hepatitis
[21 — B5] | 122* hepatitis
[21 — B5] | 122* flu

[21 — 53] | 1**** angina
[21 — 55] | 122** angina

Table 2: A 3-anonymization of Table 1(a) that respects 3-diversity.

The notion of t-closeness is stronger than /-diversity since it demands that the distribu-
tion of the sensitive values within every QI-block would be sufficiently close to its general
distribution in the table. The notion of p-sensitivity, on the other hand, relaxes the notion
of ¢-diversity as it only requires each QI-block to have p distinct sensitive values, but does
not impose any condition on their distribution.

It is important to understand that these definitions do not replace k-anonymity. They offer
essential enhancements to k-anonymity in the sense that one must require them in addition to
k-anonymity. In accord with this, Truta et al. [79] propose algorithms that generate tables
that are both k-anonymous and p-sensitive, and Wong et al. [84] consider the conjunction
of k-anonymity with the last interpretation of ¢-diversity (they call this conjunction of con-
ditions (1/¢, k)-anonymity).

We clarify that point using the example of /-diversity. The diversity of a table is bounded
from above by the number of possible sensitive values (equality holds if and only if the
distribution of the sensitive values is uniform). The diversity of any anonymization of the
table is bounded from above by the diversity of the entire table (equality holds if and only
if the distribution in each QI-block equals the global distribution). Therefore, if the table
has a sensitive attribute with a small number of possible values, all of its anonymizations
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will respect /-diversity with ¢ that does not exceed this number. For example, in the case of
a binary sensitive attribute, one can aim at achieving ¢-diverse anonymizations with ¢ < 2
only. In such a case, if one imposes only ¢-diversity, the blocks of indistinguishable records
could be of size 2. Such small blocks do not provide enough privacy for the individuals
in them, because if an adversary is able to learn the sensitive value of one of those indi-
viduals, it may infer that of the other one as well. If, on the other hand, we demand that
such ¢-diverse anonymizations are also k-anonymous, for a suitable selection of &, then the
adversary would have to find out the sensitive values of at least k/2 individuals before it
would be able to infer the sensitive value of the target individual.

Some variants of the above basic models were also suggested in the literature. For ex-
ample, the so-called Anatomy model [87] also starts by partitioning the table records. But
instead of generalizing the quasi-identifiers of all records in the same QI-block to their clo-
sure, it leaves them unchanged and, instead, randomly shuffles the sensitive values within
each such block. Table 3 illustrates the Anatomy anonymization of Table 1(a) that uses the
same partitioning into QI-blocks as the anonymization in Table 2. The privacy guarantee
remains the same, since an adversary who locates a target individual in some QI-block, can
still infer that the target’s sensitive value is one of the values that appear in that block.

age | zipcode || disease
28 10145 hepatitis
21 10141 angina
53 12142 measles
21 12238 flu

55 12256 hepatitis
48 12204 angina

Table 3: An Anatomy anonymization of Table 1(a) that uses the same partitioning into QI-
blocks as the anonymization in Table 2.

Another variant [2] suggests to publish cluster centers and radii. Such a variant is appli-
cable when the quasi-identifiers take values in a metric space, as is the case with the two
quasi-identifiers in our running example.

Gionis et al. [33, 78] proposed a novel approach that suggests achieving anonymity with-
out basing it on partitioning the data records into QI-blocks. Their non-partition models of
anonymization extend the corresponding partition-based models. They showed that this
extension of the anonymization framework allows achieving similar levels of privacy with
smaller information losses. The recent studies [48, 86] further explored that idea, suggested
corresponding anonymization algorithms, and demonstrated the advantages offered by
such models.

3 Differential privacy

In the middle of the previous decade, the research community began exploring new pri-
vacy notions that are not based on a syntactic definition of privacy, most prominent among
which is differential privacy [18]. Differential Privacy is a formal definition relating uncer-
tainty at an individual level to the noise or randomization used in a privacy mechanism.
Let A be a randomized algorithm that accepts as an input a database D and outputs an
answer to some query on the database. A is said to provide e-differential privacy if for any
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two databases, D; and D, that differ in only one entry, and for any subset .5 of values in
the range of outputs of A, Pr[A(D1) € S] < exp(e) - Pr[A(D;) € S]. Namely, a randomized
algorithm satisfies e-differential privacy if it is e-hard, in the above probabilistic sense, to
distinguish between two databases that differ in any single entry. (The slightly weaker
notion of (¢, §)-indistinguishability [66] adds an additive small term to the upper bound on
the first distribution in terms of the other distribution.)

Owing to its rigorous approach and formal privacy guarantees, differential privacy has
started to be adopted by a growing part of the academic community as the only accept-
able definition of privacy, sometimes to the extent that it is viewed as rendering previous
privacy models obsolete.

A key value of differential privacy is that it is proof against an attacker with strong back-
ground knowledge. The strong attacker assumed by differential privacy knows all records
in the database except for one record, but is still unable to violate the privacy of the indi-
vidual behind that record: the query result would be essentially indistinguishable (modulo
) whether that individual’s record was or was not in the data. The second breakthrough
made by differential privacy is in formulating a general mechanism for adding noise to any
continuous-valued query towards meeting that privacy measure. Another merit of differ-
ential privacy is that it is composable, in the sense that it can support multiple queries on
the data.

3.1 A quick survey of differential privacy results

Many techniques have been proposed for applying differential privacy to specific data pub-
lishing and mining tasks. A survey by Dwork [19] provides a comprehensive review. For
example, differential privacy has been applied to releasing query and click histograms from
search logs [35, 47], recommender systems [58], publishing commuting patterns [55], pub-
lishing results of machine learning [7, 11, 43], clustering [28, 66], decision trees [29], mining
frequent patterns [6], and aggregating distributed time-series [67].

Several recent works have focused on differentially private publishing of count queries.
Hay et al. [37] propose an approach based on a hierarchy of intervals. Li et al. [52] propose
a general framework that supports answering a given workload of count queries, and con-
sider the problem of finding optimal strategies for a workload. Barak et al. [5] show how
to publish a set of marginals of a contingency table while ensuring differential privacy by
means of noise addition. Xiao et al. [88] propose to use the Haar wavelet for range count
queries. They extend their wavelet approach to nominal attributes and multidimensional
count queries. Ding et al. [16] also consider multidimensional count queries. They study
the problem of publishing data cubes for a given fact table (microdata) while ensuring -
differential privacy on one hand, and limiting the variance of the noise for better utility on
the other hand. (A data cube is a set of aggregate counts for a projection of the basic table
on subsets of its attribute set.) Xiao et al. [89] study the problem of differentially private
histogram release based on an interactive differential privacy interface. They propose two
multidimensional partitioning strategies including a baseline cell-based partitioning and
an innovative kd-tree based partitioning.

4 PPDM and PPDP

There is a fundamental difference between the assumptions that underlie differential pri-
vacy and those that underlie syntactic privacy models. In fact, those two seemingly com-
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peting approaches are targeting two different playgrounds.

k-Anonymity and other syntactic notions of anonymity target PPDP. A typical scenario of
PPDP is that in which a hospital wishes to release data about its patients for public scrutiny
of any type. The hospital possesses the data and is committed to the privacy of its patients.
The goal is to publish the data in an anonymized manner without making any assumptions
on the type of analysis and queries that will be executed on it. Once the data is published,
it is available for any type of analysis.

Differential privacy, on the other hand, typically targets PPDM. In PPDM, as opposed to
PPDP, the query that needs to be answered must be known prior to applying the privacy-
preserving process. In the typical PPDM scenario, the data custodian maintains control of
the data and does not publish it. Instead, the custodian responds to queries on the data,
and ensures that the answers provided do not violate the privacy of the data subjects. In
differential privacy this is typically achieved by adding noise to the data, and it is necessary
to know the analysis to be performed in advance in order to calibrate the level of noise to
the global sensitivity of the query and to the targeted differential privacy parameter ¢ [21].
While some differential privacy techniques (e.g., private histograms) are really intermedi-
ate analysis rather than a final data mining model, it is still necessary for the data custodian
to know what analysis is intended to be performed.

In their criticism on syntactic models of privacy and defense of differential privacy, Narayanan
and Shmatikov [63] state that PPDP is a bad idea and that only PPDM may provide suffi-
cient privacy (“an interactive, query-based approach is generally superior from the privacy
perspective to the ‘release-and-forget” approach.”). They acknowledge the impracticality
of that conclusion by adding that “this can be a hard pill to swallow, because it requires de-
signing a programming interface for queries, budgeting for server resources, performing
regular audits, and so forth.” Hence, while interactive approaches do have some advan-
tages in the privacy vs. utility tradeoff, their inherent limitations are such that PPDP is
likely here to stay.

The comments in [63] also miss the point that differential privacy does not necessarily im-
ply an interactive approach. Noise and syntactic generalization have in fact been combined
to support real-world data publishing [62]. The definition of differential privacy supports
a query such as “return the dataset D”, requiring that the returned data have noise added
(as with some public use microdata sets) to ensure that the information related to any indi-
vidual is sufficiently hidden. While differentially private data publishing has been shown
to be possible [54, 8, 22, 36, 68, 12] (see Section 7), there has been little work to show that
such an e-differentially private dataset would be practical and useful.

Data publishing is a widespread practice (see, for example, public use microdata sets');
hence, it is important to develop appropriate techniques for PPDP. Fung et al. [30] argue
that even if the data custodian knows in advance that data will be used for classification,
it is not enough to just build and publish a classifier. First of all, even if the data custodian
knows that the data will be used for classification, it may not know how the user may an-
alyze the data. The user often has application-specific bias towards building the classifier.
For example, some users prefer accuracy while others prefer interpretability, or some prefer
recall while others prefer precision. In other cases, visualization or exploratory analysis of
the data may guide the user toward the right approach to classification for their particular
problem. Publishing the data provides the user a greater flexibility for data analysis. It
should be noted that while data publishing techniques can be customized to provide better
results for particular types of analysis [40, 65, 34, 51], data which is published towards a

1http: / /www.census.gov/main/www /pums.html
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specific data mining goal can still be used for other data mining goals as well.

Mohammed et al. [60] too address the PPDP versus PPDM question. They provide addi-
tional arguments to support the necessity in publishing the data. First, the data custodian
(e.g., a hospital, or a bank) often has neither the expertise nor the interest in performing data
mining. Second, it is unrealistic to assume that the data custodian could attend to repeated
requests of the user to produce different types of statistical information and fine-tune the
data mining results for research purposes.

In conclusion, PPDP is an essential paradigm that coexists alongside PPDM. Differential
privacy is viable for PPDM, but it is still an open question if it can practically support
PPDP. The syntactic notions of privacy that we reviewed in Section 2 are viable solutions
for PPDP.

5 Criticism of syntactic models of anonymity

In this section we describe some of the main criticisms of syntactic models, and explain
why they are a challenge for further research rather than a justified cause to abandon the
models.

5.1 The deFinetti attack

The random worlds model [4] is commonly used to reason about attackers. According
to that model, all tables with specific quasi-identifier values that are consistent with the
published anonymized table are equally likely, and the adversary uses that assumption in
order to draw from the anonymized table belief probabilities regarding the linkage between
quasi-identifier tuples in the table and sensitive values. Based on that assumption, it is ar-
gued in [56] that anonymized tables that are /-diverse prevent inferring belief probabilities
that are larger than 1//.

In [44], Kifer showed that it is possible to extract from ¢-diverse tables belief probabilities
greater than 1/¢ by means of the so-called deFinetti attack. That attack uses the anonymized
table in order to learn a classifier that, given the quasi-identifier tuple of an individual in the
underlying population, is able to predict the corresponding sensitive value with probability
greater than the intended 1/¢ bound.

There are three arguments why that attack is not a solid argument to abandon syntactic
privacy models in favor of differential privacy. First, a recent study of Cormode [13] found
that the attack might not be useful. While Kifer showed that the effectiveness of the attack
reduces with £ (since greater values of £ make the statistical learning process harder), and its
computational complexity grows dramatically, Cormode found that even for small values
of /, the effectiveness of the attack diminishes substantially when the size of the ¢-diverse
blocks grows. Hence, ¢-diverse k-anonymizations are immune to this attack for sufficiently
large values of k.

Second, syntactic models of privacy are no more susceptible to the deFinetti attack than
differential privacy. Indeed, the main finding in [13] is that the accuracy of inference of
sensitive attributes, by means of the deFinetti attack, for differentially private data and /-
diverse data can be quite similar. His conclusion was that “rejecting all such (syntactic)
anonymizations because the deFinetti attack exists is erroneous: by the same logic, we
should also abandon differential privacy”. His final conclusion, with which we concur, is
that depending on the perceived threats, and the consequences of a successful attack, it
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may be appropriate to use de-identification, syntactic methods, differential privacy, or to
withhold release entirely.

The third argument is more fundamental. The deFinetti attack relies on building a clas-
sifier based on the entire database. The question is whether the inference of a general
behavior of the population in order to draw belief probabilities on individuals in that pop-
ulation constitutes a breach of privacy; differential privacy explicitly allows learning gen-
eral behavior as long as it is not dependent on a single individual. To answer this question
positively for an attack on privacy, the success of the attack when launched against records
that are part of the table should be significantly higher than its success against records that
are not part of the table. We are not aware of such a comparison for the deFinetti attack.

It is worth mentioning in this context the recent work by Last et al. [48]. They devised
an algorithm that issues non-partition based anonymizations that are k-anonymous and
{-diverse. They then used those anonymizations in order to learn a classifier. They showed
that the accuracy of that classifier over the original training data records was almost iden-
tical to its accuracy on new testing data records. Namely, even though data is published on
Alice, Bob, and Carol, the “classifier attack” presents a similar level of risk for them, as well
as for David, Elaine, and Frank who were not included in the original table that was used
to generate the published anonymized data and, subsequently, to learn the classification
model. Hence, such an “attack” cannot be regarded as a breach of privacy. It can only be
regarded as a successful learning of the behavior of the general population, which is the
raison d’étre of any data publishing.

5.2 Minimality attacks

The minimality attack [85] exploits the knowledge of the anonymization algorithm in order
to infer properties of the original data and, consequently, of individuals. An anonymized
view of the original data induces a set of “possible worlds” for what the original data
might have been. The knowledge of the anonymization algorithm and its decision making
process enables, sometimes, eliminating some of the possible worlds, and thus increases
the belief of the attacker in certain events to a level that is inconsistent with the desired
privacy requirements.

Cormode et al. [14] conducted a detailed analysis of those attacks and showed that safe-
guards against such attacks can be found within the syntactic framework. They identified
three criteria that render algorithms virtually immune to minimality attacks. The first one
is the use of randomness — the anonymization algorithm must use randomness so that
even an adversary who knows the algorithm cannot carry out the logical reasoning that
underlies the minimality attack. (Note that randomness is not the same as noise addition;
it simply requires that the method have random variability in the choice of how to per-
form syntactic anonymization. For example, an algorithm may face a choice of generaliz-
ing birthdate or address in order to achieve k-anonymity; making this decision randomly,
as opposed to a deterministic optimality criterion, provides protection against minimal-
ity attacks. The generalization itself can still follow a generalization hierarchy rather than
noise addition.) Second, algorithms that have a high degree of symmetry in their grouping
choices are virtually invulnerable. And third, anonymization algorithms that do not jointly
consider the quasi-identifiers and the sensitive attribute in determining the best way to
generalize are immune to minimality attacks.
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5.3 The curse of dimensionality

Aggarwal [1] showed that when the number of quasi-identifiers is large, most of the table
entries have to be suppressed in order to achieve k-anonymity. Due to this so-called “curse
of dimensionality”, applying k-anonymity on high-dimensional data would significantly
degrade the data quality. This is an essential problem, but it may be addressed within the
framework of syntactic privacy.

Mohammed et al. [60] suggested exploiting one of the limitations of the adversary: in
real-life privacy attacks, it can be very difficult for an adversary to acquire complete back-
ground information on target individuals. Thus, it is reasonable to assume that the adver-
sary’s prior knowledge is bounded by at most L values of the quasi-identifiers, for some
integer L that is smaller than the number of attributes in the dataset. Based on this as-
sumption, they defined a new privacy model, called LK C-privacy, for anonymizing high-
dimensional data. That privacy notion ensures that every combination of L quasi-identifier
values is shared by at least K records, and the diversity of the sensitive value in each such
group of records is no larger than 1/C, for some specified parameters L, K, and C. In other
words, LK C-privacy bounds the probability of a successful identity linkage to be at most
1/K and the probability of a successful attribute linkage to be at most 1/C, provided that
the adversary’s prior knowledge does not exceed L quasi-identifiers. They then devised an
anonymization algorithm for this privacy notion and tested it on real-life data. Their ex-
periments showed that this privacy notion and the corresponding algorithm can effectively
retain the essential information in anonymous data for data analysis.

In that context, it is important to understand that not all non-sensitive attributes should be
automatically classified as quasi-identifiers. The data custodian should assess the chances
of an adversary obtaining each of the attributes in the data schema. If the chance of
an adversary getting hold of some attribute is small relative to the chance of acquiring
the sensitive data by other means, then there is no need to consider such an attribute a
quasi-identifier. Indeed, the standard assumption in PPDP is that the candidate table to
be published includes multiple types of attributes. For example, Burnett et al. [9] de-
fine the following types: identifiers — attributes that uniquely identify an individual (e.g.
name); quasi-identifiers — non-sensitive attributes like zipcode, age, or gender, that
could be used in linkage attacks; non-identifiers — non-sensitive attributes that are not
quasi-identifiers, in the sense that an adversary is unlikely to get hold of them; and sen-
sitive attributes — personal attributes of private nature, such as disease or income.

Another important observation that mitigates the curse of dimensionality is that not all
quasi-identifiers are needed for every data sharing purpose. The context in which the data
is to be used (e.g., a medical research, a socioeconomic research, or a marketing research)
may determine a different subset of the attributes that could be relevant in that context.
Hence, instead of a single publication of the entire high-dimensional dataset, it is expected
that the data will be published in several releases, where each release is an anonymization
of a lower dimensional dataset which is a projection of the original dataset onto a subset of
the attributes. In such cases, it is possible to combine information from several releases in
order to breach privacy. Hence, the goal in this context is to protect the private information
from adversaries who examine several releases of the underlying dataset. Algorithms for
anonymizing datasets that are released in this manner were proposed in [72, 73, 80].
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5.4 Composition attacks

Ganta et al. [31] described composition attacks on anonymized data. They considered
settings in which multiple organizations independently release anonymized data about
overlapping populations. An adversary who knows that some target individual occurs in
the intersection of the underlying populations of two (or more) such independent releases,
may use that auxiliary knowledge in order to breach privacy. In their motivating example,
Alice suffers from AIDS and she visits two different hospitals in her city. Those two hos-
pitals independently issue anonymized releases about their patients. An adversary who
knows that Alice appears in both releases may be able to infer that she suffers from AIDS,
by intersecting the sets of sensitive values that may be linked to Alice by each of the two
releases.

As the quality of data mining significantly improves if it is based on larger corpora of data,
the best way to avoid such attacks is for data custodians to collaborate and issue one large
release instead of separate smaller releases. For example, various hospitals in the same city
or state can publish the anonymization of the unified data set that they jointly hold. Several
studies have suggested secure multi-party protocols for computing anonymized views of
databases that are distributed horizontally among several data holders, e.g., [41, 77, 90].

In addition to the improved utility from collaboratively published data, it also protects
against privacy breaches. Malin describes a problem of trail re-identification [57]. He
showed that multiple independent releases of data about an individual, coming from dif-
ferent sources, can result in a privacy violation even if each release independently satisfies
the privacy constraint. He then proceeded to describe a solution to that attack, within the
framework of syntactic anonymization.

6 Criticisms of differential privacy

It is important to be clear about the claims of differential privacy. Differential privacy
bounds the impact an individual has on the outcome (data mining model, or published
dataset.) The main premise is that if knowledge can be gained without an individual’s
data, then that individual’s privacy is not violated — even if the knowledge can be used
to learn private information about the individual. This means that certain types of back-
ground knowledge (e.g., how far an individual deviates from the mean) can be used with
a differentially private result to learn specific values about the individual without violat-
ing differential privacy; the promise of differential privacy is (by design) not absolute se-
crecy. Many of the criticisms of both syntactic anonymity and differential privacy (such as
some background knowledge attacks) presume any disclosure of information about an in-
dividual is a violation; Dwork showed in [18] that this cannot be achieved without entirely
foregoing data utility. The definition of differential privacy sidesteps this issue by provid-
ing relative privacy; participating in the database should only slightly increase the risk of
disclosure. (The additive noise ¢ in (¢, §)-indistinguishability does not necessarily provide
the same protection and must be used carefully, see [20].) That said, differential privacy
is a strong notion of privacy — but it still suffers from a number of practical problems and
limitations.
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6.1 Computing global sensitivity

Computing a realistic bound on the global sensitivity of multidimensional queries requires
a very complex analysis of the domain of all possible tuples in the multidimensional space.
For example, assessing the global sensitivity of queries that relate height and weight, based
only on the ranges of each of those attributes, without taking into consideration their cor-
relation, may give unreasonably high values; specifically, even though a typical range of
heights includes the height 2 meters, and a typical range of weights includes the weight
3 kilograms, it would be devastating to add noise for calculating the body mass index for
protecting against the possibility that the database includes a person with height 2 meters
and weight 3 kilograms. Unrealistic sensitivity values give excessive noise, resulting in
little utility from a differentially privacy result.

While specific types of queries may be amenable to specific techniques that do not pose
these issues (e.g., the previously mentioned histogram queries), in general computing a
global sensitivity that both guarantees privacy and provides usable levels of noise is a dif-
ficult task.

6.2 Non-compact uncertainty

Another problem with the applicability of differential privacy is the inherent uncertainty
in the answer. In disciplines such as biostatistics or biomedical research, it is imperative to
have known bounds on the value of the original data [25]. This is the case with syntactic
anonymization models, in which data is generalized according to accepted generalization
rules. This is not the case with perturbation models in which the correlation between the
original and perturbed data is probabilistic. Because of those reasons, syntactic privacy
models, such as k-anonymity, are still perceived by practitioners as sufficient for mitigating
risk in the real world while maximizing utility, and real life applications still utilize them
for sanitizing data (see [24, 25]).

In addition to the inherent uncertainty in the answer, the quality of results obtained from
a differentially private mechanism can vary greatly. Many of the positive results have been
obtained using histogram-style queries on Boolean data. However, the differentially pri-
vate mechanism of adding Laplacian noise can significantly alter the answer. An example is
provided in [71]: a differentially private query for the mean income of a single U.S. county,
with e = 0.25 (resp. € = 1.0), deviates from the true value by $10,000 or less only 3% (resp.
12%) of the time! This can be extremely misleading, given that the true value is $16,708.
(This is a real-world example of a query with high-income outliers that cause high global
sensitivity. In methods of syntactic anonymity, such outliers may only have local effect on
records that were grouped with them in the same anonymity block.)

Wasserman and Zhou [82] show similar results for the differentially private histogram
method of [21]; substantial error arises with smaller sample sizes. They also formally an-
alyzed such accuracy variation for the exponential mechanism of [59]. They showed that
the accuracy is linked to the rate at which the empirical distribution concentrates around
the true distribution.

6.3 How to set<?

The U.S. HIPAA safe harbor rules [26] specify legally acceptable syntactic anonymizations.
Certain types of identifying information must be removed, and dates and locations have
to be generalized to some extent: locations must be generalized into geographic units that
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have at least 20,000 residents; date of birth must be rounded up to the year of birth only
(unless the age is 90 years or more, in which case wider ranges are required). A simple
“back of the envelope” calculation yields the level k of anonymity that those rules induce.
In differential privacy, on the other hand, little has been done to address the practically
essential question of how to set the privacy parameter . While the definition of differential
privacy clearly addresses the issue of identification (if it is hard to determine whether an
individual is in the database, it is certainly hard to identify that individual’s record in the
database), the way in which ¢ affects the ability to identify an individual is not as clear.
The parameter ¢ in e-differential privacy is not a measure of privacy in the normal sense:
it bounds the impact an individual has on the result, not what is disclosed about an indi-
vidual. Queries that specifically ask information about an individual, e.g. “Is Bob in the
database”, are an exception. In such queries, ¢ directly relates to disclosure of information
on that particular individual. However, for queries that ask more general properties of
the data, the impact of ¢ on identifying an individual is less clear. As shown in [49], for
a given setting of ¢, the confidence an adversary can have that a specific individual is in
the database can change depending on the query, values in the data, and even on values
not in the data. While e-differential privacy does adjust for changes in values in both the
data and values outside the dataset (for example, both are incorporated in the calculation
of the query’s global sensitivity for queries that are based on a numeric function of the data
values), this is not a direct measure of what is revealed about an individual.

This may not be an insurmountable problem; a differential identifiability approach that has
much in common with differential privacy is given in [50]. In differential identifiability,
the adversary model is essentially the same as in differential privacy. The key distinction
is that the parametrization of the noise to be added is based on the posterior confidence an
adversary, knowing the value of ¢, can have about the inclusion of any specific individual in
the database. This mechanism allows calibrating the added noise to enforce identifiability
requirements such as those derived from the HIPAA safe harbor rules. Having said that,
there are limitations and assumptions in the adversary model, such as the assumption of a
uniform prior adversary belief in the presence of individuals in the database, that demand
further research.

6.4 Independence assumption

Many differential privacy mechanisms make some hidden assumptions that are not neces-
sary in syntactic models. One such assumption is that individuals are independent. The
problem becomes quite apparent with relational learning, where values of one individual
can influence what is learned about another. When one individual can influence another,
what does it mean to calculate the sensitivity, or impact that one individual may have on
the query’s result? Suppose, for example, that we want to predict election results in a dif-
ferentially private manner. While removing one individual from the dataset would seem
to change only one vote, the effect on the prediction made by a relational learner may be
significantly larger, depending on the social role of that individual. In the real world, if a
leader of an organization decides to change the candidate whom he supports, many mem-
bers of the organization may consequently also change their vote. In the same sense, a
relational learning function that predicts the outcome of a vote may have sensitivity much
greater than one, as removing an influential individual would lead to changes in the pre-
dicted vote for neighboring individuals. Such dependencies between individuals can thus
cause nearly unbounded (and very difficult to calculate) changes in a query outcome.

The dependence of the applicability of differential privacy on assumptions about the data
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was already shown by Kifer and Machanavajjhala [45]: they proved a no-free-lunch theo-
rem by which differential privacy cannot provide privacy and utility without making as-
sumptions about the data. They argue that the privacy of an individual is preserved when
it is possible to limit the inference of an attacker about the participation of the individual in
the data generating process. This is different from limiting the inference about the presence
of its tuple in the database. For example, Bob’s participation in a social network may cause
edges to form between pairs of his friends, so that it affects more than just the tuple labeled
as “Bob”. The definition of evidence of participation, in turn, depends on how the data are
generated; this is how assumptions enter the picture. Kifer and Machanavajjhala believe
that under any reasonable formalization of evidence of participation, such evidence can
be encapsulated by exactly one tuple only when all tuples are independent, and that this
independence assumption is a good rule of thumb when considering the applicability of
differential privacy.

Achieving meaningful results from differential privacy may require assumptions on the
model for data generation (e.g., all tuples are independent, though not necessarily gener-
ated from the same distribution) [45], new ways of defining what constitutes information
about a single individual [76], or even entirely new privacy definitions [32, 46].

Syntactic models avoid this problem since in such models all individuals are anonymized,
and the method of anonymization is independent of the social relations between the indi-
viduals.

Immunity to background knowledge One of the main claims of differential privacy is
that it is immune to attacks based on the adversary’s background knowledge. In some
cases this claim is not as strong as it might appear. An example is given in [71]: given
relative background knowledge (an individual earns $5M more than the U.S. average),
a differentially private query for the needed information (U.S. average income) can return
quite accurate results — essentially violating the privacy of the rich individual. Hence, some
background knowledge may allow an adversary to learn information on one individual
from a differentially private answer that is computed from the values of other individuals.

7 Summary and conclusions

This study examined two types of privacy models: syntactic models of anonymity and
differential privacy. Those two approaches are sometimes perceived as competing ap-
proaches, and that one can be used instead of the other. The first point that we made in
this study is that the above conception is wrong. We explained that the syntactic mod-
els are designed for privacy-preserving data publishing (PPDP) while differential privacy
is typically applicable for privacy-preserving data mining (PPDM). Hence, one approach
cannot replace the other, and they both have a place alongside the other.

Next, we discussed criticisms of syntactic anonymization models (the deFinetti attack,
minimality attacks, the curse of dimensionality, and composition attacks) and explained
why none is a show stopper. Then, we proceeded to point out problems (or issues that
need to be resolved) with the differential privacy approach. We explained the genuine
difficulty in computing global sensitivity of queries, especially multidimensional ones; we
discussed the problem with the utility of differentially private query answers due to the
inherent uncertainty and the fact that the errors may be significant with high probability;
we raised the question of how to set the differential privacy parameter ¢ and how to relate
it to the probability of identification; and we highlighted some of the hidden assumptions
that underlie differential privacy.
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Our conclusion is that while differential privacy is a valuable weapon in the fight to both
maintain privacy and foster use of data, it is not the universal answer. It provides a way
to deal with a previously unanswered question in PPDM: how to ensure that the model
developed does not inherently violate privacy of the individuals in the training data? While
there are still issues related to both privacy and utility to be resolved, as pointed out in
Section 6, the basic concept is a strong one.

At the same time, PPDP remains a pertinent and essential notion. While privacy advocates
may not like it, societal practice (and laws such as HIPAA and those mandated by [23]) rec-
ognize that the right to privacy must be balanced against the public good. Syntactic models
substantially reduce privacy risk compared to a release of actual data values, and provide
guarantees on the correctness (or range of correctness) of analysis of the anonymized data.
In many cases, this is preferable to many noise addition techniques (particularly the Lapla-
cian noise mechanism for differential privacy), as the latter still allow the possibility that
the result obtained is very far from the true value, and thus extremely misleading.

It should be clarified that the two paradigms are not necessarily exclusive: recent work by
Li, Qardaji, and Su suggests a link [54]. By first randomly selecting a subset of the data, and
then applying k-anonymization, they show that the resulting syntactic anonymization can
be made consistent with (e, ¢)-differential privacy. A key point is that the k-anonymization
algorithm must introduce some random variability in the anonymization process (as rec-
ommended by [14], see Section 5.2). In particular, the generalization function must be
developed using an e-differentially private mechanism. They do require a slight relaxation
of the background knowledge available to the attacker as discussed in Section 3 (see more
details in [54]). A research challenge for PPDP is privacy definitions with adversary mod-
els that capture issues such as data correlation and inherently control potential real-world
problems such as the deFinetti and minimality attacks.

A recent work by Cormode et al. [15], published after the completion of this work, pro-
vides empirical evidence of the need to pursue the study of both approaches. They ad-
vocate the notion of empirical privacy as a measurement tool; it represents the precision
with which the sensitive values of individuals can be inferred from the released data. They
also consider an empirical approach to measuring utility, based on a workload of queries
that can essentially be used to describe the distribution of data and serve as the building
blocks of more complex data analysis. They consider k-anonymity, (-diversity, t-closeness
and differential privacy. Although the theoretical guarantees of these models are different
and cannot be directly compared, the notions of empirical privacy and empirical utility
apply to all of them. Their findings are that the difference between the various models is
less dramatic than previously thought. Differential privacy often provides the best empir-
ical privacy for a fixed (empirical) utility level, but for more accurate answers it might be
preferable to adopt a syntactic anonymity model like ¢-diversity. Hence, the selection of a
suitable privacy model should be made based on the use scenario.

In conclusion, in both paradigms, the issues raised should be viewed as opportunities for
future research, rather than a call for abandoning one approach or the other. Advances in
both paradigms are needed to ensure that the future provides reasonable protections on
privacy as well as supporting legitimate learning from the ever-increasing data about us.
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