
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantifying small-scale deforestation and forest degradation in
African woodlands using radar imagery

Citation for published version:
Ryan, CM, Hill, T, Woollen, E, Ghee, C, Mitchard, E, Cassells, G, Grace, J, Woodhouse, IH & Williams, M
2012, 'Quantifying small-scale deforestation and forest degradation in African woodlands using radar
imagery', Global Change Biology, vol. 18, no. 1, pp. 243-257. https://doi.org/10.1111/j.1365-
2486.2011.02551.x

Digital Object Identifier (DOI):
10.1111/j.1365-2486.2011.02551.x

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Global Change Biology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Nov. 2024

https://doi.org/10.1111/j.1365-2486.2011.02551.x
https://doi.org/10.1111/j.1365-2486.2011.02551.x
https://doi.org/10.1111/j.1365-2486.2011.02551.x
https://www.research.ed.ac.uk/en/publications/87668e31-32f1-4c8f-972e-db4e3fda76b6


 1 

Quantifying small-scale deforestation and forest 

degradation in African woodlands using radar imagery 

 

Casey M Ryan
1
, Timothy Hill

1,2
, Emily Woollen

1
, Claire Ghee

1,3
, Edward Mitchard

1
, Gemma 

Cassells
1
, John Grace

1,2
, Iain H Woodhouse

1
 and Mathew Williams

1,2
 

1. School of Geosciences, University of Edinburgh, EH9 3JN. 

2. The National Centre for Earth Observation, Natural Environment Research Council, UK. 

3. Now at: The James Hutton Institute, Invergowrie, Dundee DD2 5DA. 

 

Corresponding Author:  10 

Casey Ryan, tel: +44 131 650 7722  casey.ryan@ed.ac.uk 

Key words: carbon mapping, emissions, land use change, agriculture, machamba, carbon 

stocks, ALOS PALSAR, radar, backscatter 

Word count: 7102 

Running title: Quantifying forest loss in African woodlands 

Page 1 of 38 Global Change Biology



 2 

Abstract 

Carbon emissions from tropical land use change are a major uncertainty in the global carbon 

cycle. In African woodlands, small-scale farming and the need for fuel are thought to be 

reducing vegetation carbon stocks, but quantification of theseprocesses is hindered by the 

limitations of optical remote sensing and a lack of ground data. 20 

Here we present a method for mapping vegetation carbon stocks and theirchanges over a three 

year period in a >1000 km
2
 region in central Mozambique at 0.06 ha resolution. L-band 

synthetic aperture radar imagery and an inventory of 96 plots are combined using regression 

and bootstrapping to generate biomass maps with known uncertainties. The resultant maps 

have sufficient accuracy to be capable of detecting changes in forest carbon stocksof as little 

as 12 MgC ha
-1

 over 3 years with 95% confidence. This allows characterisation of biomass 

loss from deforestation and forest degradationat a new level of detail. 

Total aboveground biomass in the study area was reduced by 6.9±4.6% over three years: 

from2.13±0.12 TgC in 2007 to 1.98±0.11 TgC in 2010, a loss of 0.15±0.10 TgC. Degradation 

probably contributed 67% (96.9±91.0 GgC) of the net loss of biomass, but is associated with 30 

highuncertainty. 

The detailed mapping of carbon stock changes quantifies the nature of small-scale farming. 

New clearances were on average small (median 0.2 ha) and were often additions to already 

cleared land. Deforestation events reduced biomass from 33.5 to 11.9 MgC ha
-1

on average. 

Contrary to expectations, we did not find evidence that clearances were targeted towards areas 

of high biomass. 

Our method is scalableand suitable for monitoring land cover change and vegetation carbon 

stocks in woodland ecosystems, and can support policy approaches towards reducing 

emissions from deforestation and degradation (REDD). 
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Introduction 40 

Deforestation and other land use change is a major component of the anthropogenic carbon 

(C) cycle, transferring 0.9-2.2 PgC year
-1

 from the biota to the atmosphere (Houghton, 

2010).This number is highly uncertain (Denman et al., 2007, Ramankutty et al., 2007, van der 

Werf et al., 2009, Houghton, 2010) and estimates often exclude many of the processes leading 

to degradation of forest land (Houghton, 2010). Deforestation is primarily the result of the 

clearing of land for agriculture (Geist & Lambin, 2002), both for the large-scale production of 

global commodities (DeFries et al., 2010), and, particularly in Africa, for small-scale 

production of food and cash crops (Burgess et al., 2002, Fisher, 2010).In Africa, land use 

changeemissions are thought to be in region of 0.3 ± 0.2 PgC year
-1

(Houghton & Hackler, 

2006, Williams et al., 2007, Ciais et al., in press), but the data underlying these estimates 50 

come from extrapolation of outdated, unreliable and inconsistent national estimates (Grainger, 

2008, Kindermann et al., 2008, FAO, 2010).  

Woodlands, characterised by an open tree canopy and a continuous grass layer, cover 36% of 

vegetated Africa (Mayaux et al., 2004), and as such represent a low density, but large, stock 

of vegetation C(Dewees et al., 2010). African countries dominated by woodlands have high 

population densities, high population growth rates and high, but uncertain,deforestation rates 

(FAO, 2010). As a result, nations dominated by woodlands contribute around half of 

Africa’sdeforestation emissions (based on data from Mayaux et al. (2004) and FAO(2010)). 

Woodlands are particularly difficult to monitor with optical/infraredremote sensing due to 

inter- and intra- annual changes in tree leaf display (Grainger, 1999)and the transient presence 60 

of a substantial grass layer which complicates the interpretation of such satellite imagery 

(Archibald & Scholes, 2007). Consequently, degradation emissions from woodlands are 

highly uncertain, but are thought to be substantial (Ahrends et al., 2010). 
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The standard approach to estimating C emissions from deforestation is based on estimates of 

changes in forest area, aided by increasingly robust estimates of forest area change (Etter et 

al., 2006, Achard et al., 2007, Hansen et al., 2008, Miettinen et al., 2011). Degradation 

emission estimates however, require repeat in situ measurements of carbon density (GOFC-

GOLD, 2010) which are scarce(Ahrends et al., 2010), because they require a large number of 

plots and strata to estimate accurately any changes in mean C density. Recent airborne 

approaches (Asner et al., 2010)have not been widely deployed to date.As a result, changes in 70 

forest C density resulting from fire (Ryan & Williams, 2011) or the selective extraction of 

biomass for fuel or timber (Nepstad et al., 1999), are rarely assessed and have not been fully 

included in emissions estimates (Houghton & Hackler, 2006, Denman et al., 2007). 

Even when combined, the methods outlined above yield large uncertainties on estimates of 

changes in vegetation C stock, let alone on emissions(Houghton et al., 2009).Uncertainty 

stems from three main issues: 1)The use of arbitraryforest/non-forest thresholds whereasC 

stocks are a continuous variable. Such thresholds are a particular problem in woodlands where 

distinct edges are rare; 2) a lack of in situ measurements of C density,and the potential 

artefacts associated with differential land use on research plots; and 3);land that is deforested 

or degraded may not be representative of the forest type in which it is found (Loarie et al., 80 

2009, Houghton, 2010).That is, farmers are likely to target areas for deforestation based on 

careful consideration of agricultural potential. Therefore, land with higher than average soil 

fertility and/or water availability might be expected to have a greater probability of 

conversion to agriculture. The same areas might also be expected to have higher than average 

soil and vegetation C stocks due to the increased productivity. 

Small scale, often shifting, cultivation exemplifies the problem of estimating changes in C 

stocks in forests and woodlands,producing a mosaic landscape that is frequently misclassified 

(Mertz, 2009) and is rarely well-represented by discrete land cover classes. The landscape C 

dynamics (Williams et al., 2008)cannot be adequately described by changes between 
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categories such as degraded land, forest or agriculture (Schmidt-Vogt et al., 2009). 90 

Furthermore, the scale at which small-scale farmers clear forest is constrained by a lack of 

mechanical power and transport. This physical limit results in small farms (scale ~ha) that 

may not be recorded on land use maps or detected with accuracy by coarse-scale (~km
2
) 

satellite-based landcover change analyses. 

Thus, there is a clear need for direct measurement at sub-hectare resolution of changes in C 

stocks due to land cover change (Houghton et al., 2009). Our first aim is to demonstrate a 

method for such measurements in African woodlands at a spatial resolution sufficient to 

characterisesmall scalefarming and degradation. This is achieved by the use of 25 m 

resolution L-band radar imagery to map C stocks and their changes through the years 2007-10 

in an area of central Mozambique. Radar imagery has several advantages for this purpose. 100 

Firstly, cloud and atmospheric effects are largely irrelevant allowing observations at cloudy 

sites. Secondly, L-band (23 cm wavelength)normalised radar cross section (hereafter referred 

to as backscatter)has been shown to have a reasonably direct relationship to woody biomass 

up to a saturation at around 50 MgC ha
-1

(Le Toan et al., 1992, Rignot et al., 1994, Magnusson 

et al., 2007, Karjalainen et al., 2009). These advantages mean that spaceborneradar imagery is 

increasingly used in support of land use mapping in the tropics (van der Sanden & Hoekman, 

1999, Hoekman et al., 2010, Rahman & Sumantyo, 2010). Previous work has shown that L-

band radar backscatteris well-correlated to biomass across several African landscapes 

(Mitchard et al., 2009).  

The resultant C maps allow us to ask several questions about the nature of the processes of 110 

deforestation and degradation: 

• How much carbon is lost to deforestation compared to degradation? 

• Are areas of high carbon density preferentially targeted for land cover change? 

• What is the carbon density of changed areas before and after land cover change? 
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• What size are land cover change events, and how are they clustered in space? 

Methods 

Site description and land use history 

Our study areacovers 1,160 km
2
 in the Gorongosa and Nhamatandadistricts of Sofala 

province in central Mozambique. It is primarily dominated by miombo woodland, the most 

widespread vegetation type in Southern Africa (Frost, 1996). It has a seasonal wet-dry climate 120 

with ~900 mm rain per year, with 82% falling in the five months between November and 

March(Ryan et al., 2011). The vegetation consists of miombo woodland on the well-drained 

flanks of the Rift valley, grading to more scattered savanna on the poorly drained valley floor 

(Tinley, 1977, 1982). The terrain is gently undulating in most of the study area, but in the 

west there are steep slopes associated with the Pungue and Vunduzi rivers (Fig S1). Ninety 

seven per cent of the study area has a slope of < 10°(based on 90m resolutionelevation data 

from the Shuttle Radar Topography Mission (SRTM, Farr et al., 2007, http://srtm.usgs.gov). 

The area is undergoing rapid land use change: in 1992, with the end of the Mozambican civil 

war, there were major population movements in the area, including resettlement of semi-

abandoned rural areas such as Nhambita (Fig 1). The only surfaced road in the area, the EN1, 130 

was rebuilt, along with a bridge over the River Pungue (rehabilitation of both took place from 

1999-2002), connecting the study area and Gorongosa town to the Beira corridor, the major 

area of economic activity in central Mozambique. Gorongosa town has grown rapidly since 

1992 (INE, 2010) with the district population increasing by 50% from 1997 to 2007 to 

117,129. Currently, 69% of the population is aged below 18 years(INE, 2010). Forest or 

woodland loss in the area is primarily the result of: 1) clearance for small scale agriculture, 

notably for maize production on farms of between ~1-2 ha and 2) charcoal production, 

involving the selective removal of medium size stems from an area of ~0.2 ha surrounding 
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temporary kilns. Charcoal is sold along the EN1 highway for transport south to Inchope and 

Beira, but there is also some demand for charcoal and fuel wood in Gorongosa town. In 140 

addition, fire is extensively used to manage the landscape and wild fires are common. 

Frequent and intense fires can reduce biomass in these woodlands (Furley et al., 2008, Ryan 

& Williams, 2011). 

Carbon stock estimation  

The basis of our approach is to produce a three year time series of carbon maps of the area. 

The maps are produced using a combination of satellite radar imagesand in situ carbon stock 

inventories. We deal here only with carbon in the aboveground woody vegetation pool (AGB, 

MgC ha
-1

), although more information on belowground biomass at this site can be found in 

Ryan et al (2011). 

Radar imagery 150 

Synthetic Aperture Radar (SAR) remote sensing can provide information on vegetation 

biomass (Le Toan et al., 1992), as well as many other characteristics of the land surface 

(Woodhouse, 2006a). SAR utilises an active sensor aboard a satellite or plane to send out a 

beam of energy and measures the intensity of the echoes that return to the sensor. The 

parameter of interest is the backscatter (technically the normalised radar cross-section, a 

unitless variable (m
2
/m

2
)). Backscatter can loosely be thought of as the ratio of the power that 

comes back from a patch of ground to the power sent to that patch of ground (based on the 

arbitrary assumption that the ground is an isotropic scatterer). The energy that returns to the 

sensor varies with the proportion of the incident energy that is scattered by the land surface, 

and the directionality of that scattering. When energy of an appropriate wavelength is used, it 160 

interacts with the structural elements of the tree canopy (branches and trunks): typically, more 

woody biomass results in more diffuse scattering and thus more energy being returned to the 

sensor and a higher backscatter value is recorded. Backscatter is also affected by soil 
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roughness (as it changes the directionality of the scattering) and moisture (as it changes the 

total proportion of scattering), as well as other environmental factors. In this study L-band 

(~23 cm wavelength) SAR imagery was used, as it is less affected by soil conditions than 

shorter wavelengths, and is known to be able to detect deforestation and to be sensitive to 

forest biomass due to its ability to penetrate the forest canopy (Almeida-Filho et al., 2005, 

Fransson et al., 2007, Karjalainen et al., 2009, Mitchard et al., 2009). Ten images were 

acquired that covered the study site spanning the dates 23 Jun 2007 to 1 Oct 2010 (Table 1). 170 

All images were for the dry season and two or three were available for each year. 

The technical details of the imagery and processing now follow. Images were obtained from 

the Phased Array L-band Synthetic Aperture Radar sensor aboard the Advanced Land 

Observing Satellite (ALOS PALSAR) in the Fine-Beam Double mode (Shimada et al., 2010). 

All images were acquired on the ascending pass, have an incidence angle centred on 34.3°, 

and were provided at a pixel size of 12.5m with 4 equivalent looks, but then averaged to 25 m 

for 16 equivalent looks. Only Horizontal-send Vertical-receive data are used here, as previous 

studies have shown this polarisation to be more sensitive to biomass than Horizontal-send 

Horizontal-receive (Le Toan et al., 1992, Mitchard et al., 2009).  

The images were processed using the Alaska Satellite Facility’s MapReady software v2.3.6 180 

(ASF, 2010), combined with ~90 m elevation data from the SRTM. Each image was 

converted from digital numbers to backscatter using the calibration coefficients of Shimada et 

al.(2010) and a geometric and radiometric terrain correction was applied.Visual comparison 

with optical imagery (IKONOS and Landsat) showed that the resulting images were well 

geolocated (1-2 pixel error, i.e. 25 -50 m) compared to prominent landscape features such as 

roads, bridges and an airstrip. In particular, the images were very closely geolocated to each 

other: no geolocation differences were visible between the ten images. Commonly,backscatter 

values are used on the logarithmic dB scale, but here untransformed values of backscatter are 
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used,as the backscatter-biomass trendis usually linear in untransformed space, but non-linear 

in dB space. 190 

Ground data 

For each radar scene, backscatter values were converted into carbon density using a 

regression equation based on inventories of 96 plots in the forest, woodland and cropland in 

the south of the study area. These data come from a range of inventories conducted during 

2006-9, and include plots of sizes ranging from 0.1 to 2.2 ha (mean±SD 0.63±0.33 ha, Fig2). 

The inventories include standing trees > 5 cm DBH. Many of the woodland inventory data are 

described in Ryan et al. (2011), as is the site-specific allometric equation for converting stem 

diameter to carbon mass for each stem. Briefly, the data set consist of: fifteen 1 ha square 

permanent sample plots in the woodland and savanna (Ryan et al., 2011), eight 0.28 ha plots 

used in the fire experiments of Ryan and Williams (2011), thirty 0.57 ha plots in a transect 200 

from open savanna to woodland (Woollen et al. in prep; these had a nested sampling design, 

see supplementary information), five 0.5 ha plots in relatively remote woodland, thirty-seven 

plots of 0.1 to 2.2 ha (mean 0.6 ha) on cropland (Ghee, 2009) and one dense forest plot 

consisting of three 0.04 ha subplots. Details of the plot data are given in the supplementary 

information. Every plot is thought to have avoided abrupt land cover change (i.e. 

deforestation) during the study period, assessed by repeat ground visits or satellite imagery; 

however we cannot rule out gradual changes due to aggradation or degradation. 

Regression and Error Propagation 

To convert backscatter images into aboveground biomass (AGB in units of MgC ha
-1

), for 

each timeslice we regress plot mean backscatteragainst plot AGB, assuming that the plot 210 

AGB is consistent over the observational period. We use reduced major axis (RMA) 

regression (Mitchard2011, in review) implemented in MATLABby Trujillo-Ortiz & 

Hernandez-Walls (2010). RMA regression minimises the errors on both axes (rather than just 
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on the Y-axis as in normal regression), which is appropriate because there are errors in both 

data sets and the observer controls neither (Sokal & Rohlf, 1995). 

To estimate error on the predictions from the regression, a 5,000 x 2-fold cross-validation 

procedure was employed. Half the dataset was withheld and used to estimate the root mean 

squared validation error (RMSE), and bias (B) of predictions from each regression. These 

statistics are defined as (Hui & Jackson, 2007): 

B=
Y

i
− Ŷ

i
i

∑
n

RMSE =
(Yi − Ŷi )

2

i
∑

n− 2

 220 

Where Yi is a validation data point (not used in the regression) and Ŷi
 is the prediction from 

the regression. B and RMSE were calculated for all 10 timeslices5,000 times, each time with 

a different random split of the data, and the mean values of B and RMSE for the 5,000 

validations are reported. For indicative purposes the adjusted R
2
 of an ordinary least squares 

regression is also shown in Table 1. 

The temporal covariance of the bias was quantified by looking at the correlation of the bias 

between time steps for each of the 5,000 validations, i.e. by asking if the regression is biased 

high in year x, is it likely to be biased high in subsequent years x+n?  

Regression errors were propagated to the carbon maps with a bootstrap procedure. 

Bootstrapping was used as it implicitly includes any spatial or temporal covariance of the 230 

uncertainty resulting from the AGB-backscatterregressions. For each set of 10carbon maps, 

30,000 realisations were created each using a different regression based on randomly selected 

regression data (resampled with replacement). Derived quantities such as carbon stock 

change, rates of loss, and the deforestation and degradation totals, were also calculated for 

each of the 30,000 bootstraps, allowing the uncertainties introduced by the regression to be 

estimated. All values are reported as the mean ± the standard deviation of the 30,000 
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bootstraps. The number of bootstraps was chosen after initial analysis showed that repeat 

calculation with different random number seeds using 10,000 bootstraps yielded identical 

results to three significant figures. 

Change detection algorithm 240 

One of the aims of this paper is to estimate parameters of pixels before and after land cover 

change. This necessarily involves defining a threshold of change. Here we focus on detecting 

abrupt losses of AGB and define land cover changes (LCC) of interest as being in pixels 

where: 1) AGB is >20 MgC ha
-1

 at the start of the study, thus increasing the likelihood that 

only forested pixels are examined; 2) the AGB of the pixel after the change is reduced to a 

minimum percentage (φ, default 50%) of its initial AGB, a threshold which should exclude 

most natural changes in forest structure; and 3) the probability that the change in AGB 

occurred by chance (given the noise in the data) is <(1-α) (default α = 0.95). The use of a ratio 

to define change is appropriate with SAR imagery in power space, as ratioing SAR images is 

generally preferred to differencing because of its noise characteristics (Rignot & van Zyl, 250 

1993, Radke et al., 2005). 

The time series C(t), where C is the AGB of a pixel over the t=1,…,10 images, provides a rich 

data source with which to detect changes, and the 10 time-slicesallow more confidence in 

using noisy data. For change detection, a simple iterative algorithm locates the time-point of 

change, τ, at which the mean of the preceding values of C(t) is most different to the mean of 

the remaining part of the time series. The mean AGB before (C1) and after (C2) τ are then 

estimated. We use a Monte Carlo procedure to estimate the probability, P, of obtaining the 

change in AGB (C1-C2) by chance, based on sampling from the time series and including the 

RMSE validation errors from the regression (Table 1). A mathematical description is given in 

the supplementary information. 260 
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Once changed pixels have been identified, each LCC event (defined as adjacent changed 

pixels that have identical τ) was automatically converted to a polygon in ARCGIS (ESRI, CA, 

USA)and the area of each polygon calculated. 

Change detection validation 

Two tests were used to produce accuracy statistics for the change detection. To assess 

successful LCC detection we delineated 92 agricultural fields formed by clearing woodland 

between March 2007 and June 2009. These conversions were assessed by visual interpretation 

of multispectral SPOT 4 (20 m resolution) imagery from 7 March 2007 and IKONOS (1 m) 

imagery from 24 June 2009 (an example is shown in Fig6). The edges of the new farms were 

converted by hand to polygons using ARCGIS. These areas of known LCC had a mean area of 270 

1.7±1.5 ha and were well distributed across the study area. Although the AGB of these new 

farms is unknown, visual inspection suggests that very few trees remain and that they have 

crossed the change threshold outlined above. The miss rate is defined as the number of pixels 

on these farms that are not detected as changed. 

To assess false positives, an area of the Gorongosa National Park, termed ‘The Sanctuary’ 

(Fig1) that is extremely unlikely to have undergone human-induced LCC was analysed. The 

Sanctuary is an electric-fenced area of 5,761 ha designed to retain animals imported to the 

Park (not including elephants). Note that this definition of false positive is very broad and 

includes both natural changes to the woodland as well as random errors in detection as ‘false 

positives’.  280 

The sensitivity of the hit rate and false positive rate to the parameters used in the change 

detection algorithm was assessed: φ, the fraction of AGB remaining on a changed pixel was 

varied from 80% to 20%, and α, the threshold P-value above which a LCC event is 

considered significant, from 0.8 to 1.  
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Assessing preferential selection of high biomass areas 

To test whether land with high AGB is preferentially selected for LCC, compared with the 

null hypothesis that LCC is random with respect to AGB, we compare the observed results to 

a pseudo-data set for which the null hypothesis is true. The pseudo data time series of AGB 

for each pixel, denoted C*(t), is constructed as follows: for each pixel, a time series is 

constructed with a constant mean equal to the observed AGB in 2007. Then a random 4% of 290 

pixels are pseudo deforested at a time point randomly selected between t=2 and t=9. At this 

time point, an abrupt change is imposed and the AGB reduced to a mean of 10 MgC ha
-1

. 

Noise was added to the time series by drawing each value from a normal distribution with 

means as described above and standard deviations N(t), the RMSE validation errors from the 

regressions. The change detection algorithm was run as described above to identify pixels that 

were pseudo-changed, estimating the parameters C1* andC2*, the pseudo equivalents of C1 

and C2. The resulting distributions of C1*andC1 are compared using a two sample 

Kolmogorov-Smirnov test to test if the distribution of C1 is larger than C1*. 

Biomass lossdue to deforestation and degradation 

To compare the contributions of deforestation and degradation to the total carbon loss from 300 

the study area, the change (∆C) between the mean AGB of the three images in 2007 (C2007) 

and the mean AGB of the three images in 2010 (C2010) was examined. The image is classified 

into four categories that follow the conventional definition of de/reforestation and 

de/aggradation based on a binary forest/non-forest pixel classification in 2007 and 2010. The 

forest/non-forest classification is made using a default AGB thresholdof 15 MgC ha
-1

. 

However, the effects of varying the threshold from 5 to 20 MgC ha
-1

 were evaluated. 

The deforestation AGB loss (∆D) is defined as the net sum of ∆C for pixels that shift from the 

forest to non-forest classes. Reforestation gain (∆R) is the net sum of ∆C for pixels moving 

from non-forest to forest. Forest de/aggradation (∆GF) is the net sum of ∆C for forest-pixels 
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remaining forest, and non-forest de/aggradation (∆GN) is the net sum of ∆C for non-forest 310 

pixels remaining non-forest. Thus: 

C2007- C2010 = ∆C = ∆D +∆R +∆GF +∆GN 

and net deforestation is: 

∆D,net = ∆D +∆R 

Thus for all terms describing a change in biomass stocks, positive numbers indicate loss of 

biomass and negative values denote gains. 

Results 

Ground data and regression 

The 96 plots ranged in aboveground biomass from 0 to 56 MgC ha
-1

 (mean 15±12 MgC ha
-1

; 

Fig 2; ± indicates one standard deviation throughout). The ordinary least squares regression of 320 

backscatter against AGB gave values of R
2
 from 0.40 to 0.58 (Table 1). For the ten images, 

regression slopes ranged from 1272 to 1803 (MgC ha
-1

)
-1

 (Table 1; Fig3) and this translated 

into moderate variation in estimated carbon stocks through the study period. For 

instance,backscatter values for a pixel over a pseudo invariant patch of protected forest ranged 

from 89-107% of the first image, which translated, to a range of 47-61 MgC ha
-1

 (Fig 4).  

The validation procedure estimated RMSE validation errors of 8.7 – 10.9 MgC ha
-1

 for the 

different time slices (mean error 9.8±0.7 MgC ha
-1

), and mean absolute bias of 1.6±0.1 MgC 

ha
-1

 (Table 1). The worst-case scenario for change detection is that these biases are random 

between each scene, but the covariance of these biases through time was high(Table S1), 

with, for example r>0.86 between the bias in the three scenes from 2007, and r>0.44 for bias 330 

between years.  
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Carbon stocks and changes 

The carbon stocks in the study area exhibit an east-west gradient related to the topography, 

with AGB ~60 MgC ha
-1

 in the undisturbed areas to the west of the Vunduzi river falling to 

~30 MgC ha
-1

 in the centre of the study area (Fig 1). East, towards the floor of the Rift valley, 

substantial biomass is restricted to the river lines and high points. Imposed on this 

topographic pattern, the effects of human disturbance are obvious, with almost no large 

blocks of woodland remaining to the south of the River Pungue and along the west side of the 

highway. However LCC is less apparent to the east of the highway, an area that is part of the 

buffer zone of the Gorongosa National Park. The town of Gorongosa marks the epicentre of a 340 

zone of reduced biomass. 

The study area contained AGB of 2.13±0.12 TgC in 2007 and 1.98±0.11 TgC in 2010, a loss 

of 0.15±0.10 TgC, or 6.9±4.6% of the 2007 AGB over three years. Pixels that lost > 9 tC/ha 

contributed half the total loss in AGB, with the remaining loss being in pixels that lost <9 tC. 

Spatial patterns of carbon stock change 

Looking at the spatial patterns of change in C stocks (Fig 5), there were several areas of 

increasing AGB mainly in the Park and Sanctuary (A; letters refer to points marked on Fig 5; 

names to the sub-areas delineated with green lines in Fig 1) as well as decreases (B). Losses 

were observed all along the highway, but particularly to the west of the road; in comparison, 

to the east of the road in the buffer zone of the Park there are fewer areas of biomass loss (C). 350 

New farms were opened in the area between the Vunduzi river and the road, and a cluster of 

new farms can be seen in the inaccessible region to the west of the river (D). A new power 

line built in the Park is visible along the boundary of the Nhambita sub area (E). An area of 

private land, in which charcoal production and agriculture are not present (Eng. A. Serra, pers 

comm. 2011) stands out clearly from the surrounding decrease in AGB in Mbulawa(F). In 

Nhambita a string of new farms along a previously high AGB river line is visible (G). 
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The probability distribution functions (PDFs) of carbon stocks in the sub areas (Fig 7) provide 

further insight into the AGB stocks and changes. In the inhabited areas (Gorongosa town, 

Nhambita, Mucombeze and Mbulawa) the LCC is evident in the difference between the 2007 

and 2010 PDFs. In contrast, in the Sanctuary, the 2010 PDF is shifted to higher biomass 360 

values compared to 2007, indicating regrowth. The Remote Park shows no change in AGB 

over the study period. Vunduzi, an almost undisturbed, well wooded area, is the only sub-area 

with a normal PDF. The bimodal PDF of Gorongosa appears to consist of a deforested PDF 

similar to Mucombeze combined with a woodland PDF centred on 40 MgC ha
-1

. 

Deforestation and degradation 

The loss of AGB across the study area over the three years was 149±101GgC. Using the 

default threshold of forest being any pixel with AGB > 15 MgC ha
-1

, loss of AGB due to 

deforestation was 92±11GgC (Table 2). This was offset by a reforestation gain in AGB of -

36±4.5GgC, leading to a net deforestation loss of 55±12GgC. This can be compared to forest 

degradation loss of 42±73 GgC and non-forest degradation of 53±43GgC, so that total 370 

degradation is 94±90 GgC. Thus most of the uncertainty in ∆C comes from the degradation 

term. 

Thus, the best guess of the percentage of net biomass lossthat can be attributed to degradation 

is 67% (median of the bootstraps). This result varied only slightly with different thresholds of 

forest/non-forest: from 69% with 10 MgC ha
-1

as the threshold to 65% when using 20 MgC ha
-

1
 as the threshold. This proportion of biomass loss attributed to degradation is highly 

uncertain, with an 80% confidence interval of 21 to 80% (Fig S2). There is a 79% chance that 

degradation was >50% of the net loss of AGB and a 90% chance that it accounted for >21% 

of the net loss. 
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Characteristics of land cover change events 380 

The change detection algorithm was able to detect per-pixel abrupt changes of >12 MgC ha
-1

, 

a threshold that is a function of the noise associated with the measurements of AGB, the 

number of observations and the detection algorithm parameters α and φ. Using the default 

parameters (α = 0.95 and φ = 50%) abrupt LCC was detected in 2.61 % of the study area.  

In total, 3,029 ha were detected as changed in 6,761 events (mean size = 0.45±0.80 ha, 

median = 0.19 ha). Events larger than the median contributed 88% of the total changed area; 

events > 0.5 ha, 70%; and events >1 ha contributed 49% of the total changed area. The mean 

event size (assumed to be false positives) in the Sanctuary (0.14 ha) was smaller than the 

events in the inhabited sub-areas (means 0.34-0.52 ha). In the inhabited areas, event size was 

smallest in Mucombeze (mean 0.34 ha), where forested land is very scarce (26% of land was 390 

forested in 2007) and largest (mean 0.52 ha) in Vunduzi where all land was forested in 2007. 

The other inhabited sub-areas have intermediate event sizes and forest cover. 

The mean change is AGB when an event occurred was for the area to lose 21.3±5.5 MgC ha
-1

, 

being reduced from C1 = 33.5±9.8 to C2 = 11.9±18.4 MgC ha
-1

. The reduction in AGB 

ranged from 12.2-56.9 MgC ha
-1

. With the exception of the Vunduzi sub-area, the mean pre-

change AGB of changed pixels (C1) was never more than 0.7 MgC ha
-1

 higher than if LCC 

was random with respect to AGB (C1*), although the differences were significant to P<0.001 

(Fig7). This suggests that the hypothesis that high AGB pixels are preferentially subject to 

LCC is not true to a substantial extent. However, in the Vunduzi sub-area, C1 (53.6 MgC ha
-1

) 

was 4.7 MgC ha
-1

 higher (P<0.001) than C1* (48.9 MgC ha
-1

), suggesting a modest 400 

preference towards high AGB land, but the number of changed pixels is relatively small (n= 

345).  

Events were significantly clustered (P<0.001) according to the nearest neighbour distance. 

The observed mean distance from one event to the nearest was 87 m compared to 206 m if the 
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events were evenly spaced. Many cleared areas are the result of small expansions to the 

frontiers of already cleared land (example in Fig 6). 

Change detection validation and sensitivity 

Using our default parameters, LCC was detected in 1,646 of the 2,611 validation pixels, a 

miss rate of 35%. Generally, the missed pixels were at the fringes of the events – only in 10 of 

the 90 validation events was no LCC detected – implying that the misses will affect the size 410 

of detected events more than the number. The false positive rate was 0.016% in the Sanctuary, 

equal to 0.005 % year
-1

. The sensitivity analysis (Fig 8) showed that it is possible to suppress 

the false positive rate further, but only at the expense of an increase to the miss rate. A zero 

false positive rate can be achieved in the Sanctuary by reducing φ to 20% (for α >0.95), but 

this gives a miss rate of 74%. Conversely, a lower miss rate can be achieved, say 20%, with φ 

=60% and α=0.9, but this gives a false positive rate of 0.07%. 

Discussion 

Can L-band radar accurately measure changes in biomass? 

Our method was able to detect a loss (6.9±4.6%) of biomass from the landscape over a 

relatively short observation period of three years. This change in biomass (∆C) is equivalent 420 

to a reduction in C density from 18.4 to 17.1 MgC ha
-1

 across the whole study area, a change 

that would be difficult to detect without very accurate stratification and intensive ground-

based sampling. The relative error on the standing stock estimates is 6%, but this increases to 

67% for ∆C,the change in stocks(Table 2). Without the high covariance of the regression 

errors through time (Table S1) the error on the change in stocks would have been higher. 

If the net changes in biomass are split between deforestation and degradation, it is clear that 

most of the uncertainty in ∆C comes from degradation. It is much easier to detect change in 

the small area (77 km
2
) that was deforested and which lost 84.8±9.7 GgC, compared to the 
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very large (643 km
2
) forest-remaining-forest area that probably lost a comparable amount of 

AGB (96.9±91.0 GgC)(Table 2). The nature of the challenge is illustrated by a best guess 430 

assessment of the change in C density for the forest-remaining-forest area from 30.3 to 29.4 

MgC ha
-1

. 

However, at a pixel scale, abrupt change (including degradation) is detectable at 95% 

confidence as long as it exceeds 12 MgC ha
-1

. Per pixel change detection rates were 65%, and 

in 89% of change events some change was detected. These rates are comparable to another 

application of L-band SAR to detect >2 ha clear cuts in Sweden (hit rate = 76%, (Pantze et 

al., 2009)). However it is clear that we are at the limit of the resolution of this technique – the 

ALOS imagery detects new farms as having a bare centre and then a gradient of biomass into 

the surrounding woodland, but on-the-ground observations show that the farm/woodland 

boundary is normally abrupt. Morphological detection techniques have the potential to 440 

improve the very simple per-pixel change detection used here and to reduce false positives. 

Such techniques may also be more accurate in determining the size of each LCC event. 

Backscatter-biomass relationships for space borne L-band backscatter in ‘difficult’ conditions 

(i.e. mixed age stands of multiple species) are reported with similar statistics to that found 

here (e.g. R
2
 = 0.53 (Karjalainen et al., 2009)) and slightly better results have been found in 

even-aged stands (RMSE  = 30% of biomass (Magnusson et al., 2007)), or when considering 

a very wide range of biomass (Mitchard et al., 2009). In comparison, airborne LiDAR has 

regression statistics between the LiDAR metrics and AGB of RMSE of 23.5 MgC ha
-1

, R
2
 = 

0.85 in an example from Peru (Asner et al., 2010). In the present study the comparable figures 

were RMSE = 8.7 tC/h and R
2
 = 0.49, but the difference in RMSE is probably due to the 450 

lower AGB of our study area. 

Williams et al (2008) found that regrowing woodland at this site can accumulate between 0.4-

0.9 MgC ha
-1 

year
-1

 AGB, and we expect that changes in more mature woodland will be less 

than this. However, in two parts of the study area (Fig 5, A) rapid increases in AGB beyond 
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this rate are observed. Observations in this area show rapid woody encroachment, probably 

the result of fire exclusion in the Sanctuary. Stem numbers have approximately doubled in 

four years (data not shown), but biomass has not increased by that rate because the new stems 

are small saplings. This unrealistic sensing of biomass accumulation raises the issue of which 

(combination of) plot characteristics L-band backscatter is most strongly related to – stem 

number, basal area or biomass (Woodhouse, 2006b)? In mixed age, diverse sites this question 460 

has not yet been resolved (Woodhouse, 2006b). If the biomass-backscatter relationship is not 

direct, but is mediated by other stand characteristics(Lucas et al., 2010), then the site-

specificity of the regression parameters needs to be evaluated (Mitchard et al., 2009). 

• How much carbon is lost to deforestation compared to degradation? 

The large uncertainty on the degradation loss makes it difficult to estimate the fraction of 

AGB losses attributable to degradation. However, a best guess is that total degradation was 

67% of total net losses of AGB. This analysis thus provides tentative support for the idea of a 

large and presently un-quantified loss of biomass due to degradation in African woodlands 

and forests. However, we caution against extrapolating this change in AGB to emissions, 

because, firstly, it is likely that many of the areas that are degraded are subsequently 470 

deforested (Ahrends et al., 2010), and secondly, the time period over which a change in 

standing stocks translates into a flux to the atmosphere is currently unknown in this 

ecosystem. 

Loss of AGB in our study area (0.43 MgC ha
-1

 yr
-1

) was lower than has been reported from 

plot data in the surrounds of Dar es Salaam (0.8 MgC ha
-1

 yr
-1

(Ahrends et al., 2010)). This is 

expected given that our study site is ~100 km by road from the nearest city,Chimoio, which 

has a much smaller population and thus pressure for resource extraction is likely to be lower. 

The distinction between deforestation and degradation is logical in the context of the area 

multiplied byC density approach to C stock estimation. However,the advent of high resolution 

maps of C stocks and their change, where the resolution is similar to the area of a single tree 480 
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canopy, means that the distinction becomes ambiguous – in effect degradation is just very 

small scale deforestation. It may be more useful to characterise a land cover change regime in 

terms of the frequency, area (and shape), and intensity of biomass change, as these parameters 

might be more easily related to the extent of different land uses, which is normally the 

information policy makers require. 

• Are areas of high carbon density preferentially targeted for land cover change? 

The difference between the AGB of land that underwent LCC and the mean of comparable 

surrounding woodland was <1 MgC ha
-1

, suggesting there is no substantial preference for 

LCC to be undertaken in high biomass areas (Fig 7). There are some indications that this may 

not be true in all areas (such as Vunduzi), but for now, the hypothesis that emissions might be 490 

substantially higher as a result of preferential deforestation of high AGB areas has not been 

supported. This suggests that the other criteria for the location of new farms dominate (such 

as proximity to existing farms, roads or dwellings) or that AGB is not correlated to the 

agricultural suitability of the land. The latter might be true even if potential AGB and soil 

fertility are correlated because of past land use or other disturbance to AGB. 

• What is the carbon density (MgC ha
-1

) of changed areas before and after land cover 

change? 

After a change event, land was not reduced to zero AGB, but instead averaged 11.9±18.4 

MgC ha
-1

. This result fits with observations on the ground, where large trees are often left in 

newly cleared areas to provide shade, or because of the disproportionate effort needed to 500 

remove them(Ghee, 2009). In addition, trees on deforested land are often ringbarked or 

otherwise killed, but left standing, and as they dry out will scatter radar waves less as their 

dielectric properties change. However, there is evidence ofnon-linearity in the AGB-

backscatter regression at low values of backscatter, so these measurements of very low AGB 

values may be subject to additional uncertainties. This may be because at very low 
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biomass,backscatter will be strongly influenced by the properties of the ground surface, 

including surface roughness and soil moisture. 

• What size are land cover change events, and how are they clustered in space? 

In Central Mozambique, farmers have an arable area of 1.4 ha on average (Simler et al., 

2004). However, most LCC events detected in this study were much smaller than this (mean 510 

0.45 ha), indicating that farms are built up in size by repeated small clearances (Fig 6). The 

significant spatial clustering of LCC events supports this. This ‘death by a thousand cuts’ type 

of woodland clearance poses a stiff challenge for rapid monitoring of LCC: A detection 

system that ignored events < 1 ha would miss the areal majority of LCC in this study area, 

and so might need to operate over long time scales to be effective. 

Limitations  

Despite only using dry season imagery, there is considerable variation through time in the 

backscattervalues of the ALOS PALSAR imagery, and the slope of the backscatter-AGB 

regression. This is presumably due to variations in environmental conditions such as soil 

moisture, which is well known to influence L-band backscatter(Rignot et al., 1994, Pulliainen 520 

et al., 1999, Magnusson et al., 2007, Pantze et al., 2009, Lucas et al., 2010),changes to 

understory vegetation,or sensor calibration drift. This variation suggests that accurate biomass 

change detection with this sensor will require either: invariant features to be present in each 

scene; correction for e.g. the effects of soil moisture with ancillary data sets and models; or 

recalibration to ground data at each time point. We adopted the latter approach here, but with 

an inventory that was not repeated each year, and thus an assumption that plot biomass has 

not changed during the study period. 

Furthermore, there are potentially significant uncertainties associated with the stem diameter-

biomass allometry (Chave et al., 2004) even with the use of a site-specific model. This can 

introduce bias of ~17% (Ryan, 2009). Although the regression procedure used here accounts 530 
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for the random error, the bias will remain and influence estimates of AGB stocks, but not 

change.  

It should also be noted that the L-band biomass-backscatter response is known to saturate at 

the level of biomass typically found in closed canopy forests. Studies report saturation at 

between 30-100 MgC ha
-1

(Mitchard et al., 2009, Lucas et al., 2010), although this appears to 

depend on vegetation structure (Lucas et al., 2010). Thus the method presented here which 

utilises L-bandwill be most useful in low C density woodlands rather than higher density 

forests. The proposed BIOMASS mission would employ P-band radar in an effort to 

overcome this limitation (Le Toan et al.). 

Conclusions 540 

• Multi-temporal L-band radar imagery can be effective in detecting small-scale 

deforestation, but may fail to detect small levels of degradation over large areas. Abrupt 

changes of more than 12 MgC ha
-1

 are detectable at 95% confidence on a 25x25 m pixel 

scale. 

• In this area of Mozambique, land cover change events are mostly small (median = 0.2 ha) 

but range from 0.06-18 ha and reduce aboveground carbon from 33.5 to 11.9 MgC ha
-1

 on 

average. They are strongly clustered together, and many events are the expansion of 

previously cleared land. 

• There was no evidence that the areas that were deforested had a higher biomass than the 

average surrounding woodland. 550 

• Degradation losses are likely to be substantial, with a best guess that they represent 67% 

of the netbiomass loss. This number is extremely uncertain however. 
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Figures and Tables 

Table 1. Regression statistics for the relationship betweenradar backscatter (unitless) and 

aboveground woody biomass (MgC ha
-1

). RMA indicates reduced major axis regression. OLS 710 

ordinary least squares regression. 

 

Date  RMA Slope(MgC ha
-1
)
-1
   RMA Intercept (MgC ha

-1
)  OLS Calibration 

error 
Validation 
error 

Validation 
bias 

  Slope 95% confidence 
interval  

 Intercept 95% confidence 
interval  

 adj R
2
 RMSE  

(MgC ha
-1
) 

RMSE 
 (MgC ha

-1
) 

Bias  
(MgC ha

-1
) 

23-Jun-07  1562 1315–1810  -20.9 -26.6–-15.1  0.39 10.4 10.9 1.7 

08-Aug-07  1268 1082–1453  -13.7 -18.0–-9.5  0.49 9.3 9.9 1.5 

23-Sep-07  1329 1153–1505  -11.0 -14.5–-7.5  0.58 8.4 8.7 1.4 

10-May-08  1647 1417–1877  -22.6 -27.9–-17.3  0.53 8.9 9.3 1.5 

25-Jun-08  1632 1385–1880  -19.9 -25.2–-14.5  0.44 9.8 10.4 1.6 

28-Jun-09  1601 1363–1840  -17.5 -22.3–-12.6  0.47 9.6 10.1 1.6 

28-Sep-09  1303 1115–1490  -11.2 -15.0–-7.4  0.50 9.2 9.6 1.5 

16-May-10  1801 1518–2083  -24.7 -31.0–-18.4  0.41 10.3 10.7 1.7 

01-Jul-10  1679 1431–1926  -25.6 -31.6–-19.6  0.48 9.5 9.9 1.6 

01-Oct-10  1348 1169–1526  -13.3 -17.0–-9.5  0.58 8.4 8.7 1.4 

mean  1517 1295–1739  -18.0 -22.9–-13.1  0.49 9.4 9.8 1.6 
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Table 2. Change in aboveground biomass (AGB) stocks classified by forest/non-forest 

transitions over the period 2007-2010. The threshold for forest is AGB>15MgC ha
-1

. 

Negative changes indicate a gain in biomass stocks. 

 
Transition type Area (km

2
) AGB loss over three years (GgC) 

Deforestation 
(forest� non-forest) 

75 92±11 

Aggradation 
(non-forest� forest) 

48 -36±4.5 

55±12 (33%) 

Forest degradation 
(forest�forest) 

530 42 ±73 

Non-forest degradation 
(non-forest�non-forest) 

507 53±43 

94±90 (67%) 

All 1160 149±101 
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Figure1.Estimated carbon stocks in the study area in a) 2007 and b) 2010. Each image is 

derived from themean of three ALOS PALSAR scenes from that year’s dry season. c) shows 720 

the areas detected as undergoing abrupt change (red) with a probability greater than 95% and 

a reduction in biomass to less than 50% of original biomass. Areas that did not undergo 

change are indicated in grey, and white indicates areas with < 10tC/ha. The maps are 

annotated with the local road network and the “sub-areas” used in Fig 7. (GIS data courtesy of 

ARA-CENTRO). 

Figure 2. Histogram of the aboveground biomass(AGB) of the plots used to estimate and 

validate the AGB-backscatter relationship. Aboveground woody carbon stock is estimated 

from DBH measurements using a site-specific allometric equation.n = 96. 

Figure 3.Regression of radar backscatterfrom ALOS PALSAR and aboveground biomass. Ten 

regressions were performed, one for each image in Table 1, but for clarity only the data and 730 

regression lines from the first (June-2007, open circle, dashed line), sixth (June-2009, closed 

circles, light line) and last (Oct-2010, crosses, heavy line) image are shown. Each line is fit to 

minimise the errors on both axes (RMA regression). 

Figure4. Example time series fora single pixel over a) an undisturbed riverine forest (solid 

line, filled circles) and b) an area of woodland converted to a farm (dashed line, open circles). 

The lines indicate the parameters as estimated by the change detection algorithm. Over the 

protected forest no change was detected (mean AGB of 55.0±4.5 MgC ha
-1

). The new farm 

(illustrated in Fig 6) was created between June 2008 and June 2009. AGB before the change 

point was 42.7±1.8 and 5.3±5.3 MgC ha
-1

afterwards. The probability of this change being 

observed by chance is < 0.001. The points representing the forest pixel have been shifted 740 

forward by 10 days for clarity. 

Figure 5. Carbon stock change in the study area. The image shows the aboveground biomass 

(AGB)in 2010 as a percentage of AGB in 2007. Values greater than 100% indicate areas of 

biomass gain(blue)and below 100% areas of biomass loss (red). Features lettered A-F 

aredescribed in the main text. Areas with AGB <10 tC are shown in white. The red box 

indicates the area shown in Fig 6. The red line shows the EN1 highway. Rivers are marked in 

blue. 

Figure 6. Detail of Fig 5, showing the detected land cover change events. The temporal 

evolution of forest clearance as detected by the radar imagery is shown from 2007 to 2010 

(left panels). The right hand panels show false-colour optical imagery of the same area for 750 

comparison. The outlines of the change events up to July 2009 are overlaid on the middle 

right image. 

Figure7.Probability density functions of aboveground biomass in 2007 (black solid line), 2010 

(grey solid line). Also shown is the AGB of changed pixels prior to change (dashed lines). 

The observed values (grey dashed lines), and the expected value if deforestation was random 

with respect to biomass (black dashed line) are shown. The 2007 and 2010 data are the mean 

of three images. The boundaries of each sub-area (a-g) are shown in Fig 1. No data are shown 

for the changed pixels in the Sanctuary as the number of changed pixels (n=10) was to few to 

produce a meaningful PDF.  

Figure8. Miss rates and false positives for the land cover change detection algorithm under a 760 

variety of definitions of change. The P-value shown on the x axis are the threshold probability 

above which a change event is considered real. The various lines indicate φ, the fraction of 

biomass remaining after change, below which the pixel’s biomass needs to be reduced for the 

change to be detected. A P-value of 0.95 and φ = 50% were used as default values. 
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