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The effect of physical manipulatives on children’s numerical strategies 

Abstract 

This paper addresses the role of manipulatives in learning by focusing on how their representational 

properties affect the strategies children employ in problem solving. Two studies examined the effect of 

physical materials (compared to no materials and pictorial materials) on children’s (aged 4-7 years) problem 

solving strategies in a numerical (additive composition) task. The first study showed how children (n=32) 

not only identified more solutions using physical materials compared with no materials, but that using 

manipulatives fostered conceptually more developed strategies: relating consecutive solutions to each other 

systematically in exploring the space of permutations The second study demonstrated the unique benefits 

of physical manipulation by comparing children’s (n=100) solutions and strategies using materials they 

could or could not spatially manipulate (physical v pictorial). As with the first study, children in the 

physical materials condition had more solutions and showed more conceptually developed strategies 

compared with the children in the pictorial condition. There was no advantage in providing children with a 

record of all their solutions. The paper discusses how this work focusing on the role of the representational 

properties of physical materials contributes to the wider debate about if and how manipulatives support 

learning. 

1. Introduction  

Despite considerable research on manipulatives and their continued use in education, it remains unclear if, 

and how, manipulatives support children’s learning. In the present study, we sought to inform this debate 

by focusing on the way the representational properties of manipulatives influence young children’s 

problem-solving strategies in an additive composition task. The two studies reported provide evidence that 

the representational properties of manipulatives can support children’s strategies when exploring part-

whole relationships. 

1.1 The learning benefits of manipulatives 

Manipulatives are physical materials such as blocks or tiles that are used pervasively in children’s learning, 

particularly in mathematics. These materials have attracted considerable research interest over the last few 

decades, not least with the intention of informing teachers of how and when to use the materials to 

support children’s learning. 

In the last decade, there has been renewed research interest into manipulatives, largely attributable to two 

reasons. Firstly, empirical work is needed to contribute to theoretical developments surrounding children’s 

manipulation and interpretation of symbolic representations (Martin, 2009; Uttal, O'Doherty, Newland, 

Hand, & DeLoache, 2009), as well as claims that cognition may be inseparably linked to prior sensori-

motoric experience (Lakoff & Núñez, 2000; Wilson, 2002). Secondly, understanding how physically 

manipulating representations supports learning is needed to address questions generated by recent interest 

in the use of digital learning materials for young children using touchscreens (Pitchford, 2015). Indeed, a 

common approach has been to compare the learning benefits of physical versus virtual manipulatives (Gire 



et al., 2010; Klahr, Triona, Strand-Cary, & Siler, 2008). Yet, such a dichotomy may be rendered invalid by 

the new and evolving forms of digital interaction: from devices such as Tablets (e.g. iPad) to digitally 

augmented physical materials (‘Tangibles’), because of the close coupling between input (physical 

manipulation) and output (computer displays) – see BLIND FOR REVIEW]. These new digital 

opportunities emphasise a need for a more thorough grasp of how and when physically manipulating 

materials is important for learning. 

In trying to understand the mechanisms by which manipulatives support learning, we can draw upon a 

range of relevant empirical studies. However, findings often seem contradictory, where manipulatives have 

been found to have a positive (Canobi, Reeve, & Pattison, 2003; Fuson & Briars, 1990), negative (e.g. 

Resnick & Omanson, 1987; Uttal, Scudder, & DeLoache, 1997), or insignificant effect on learning 

(compared to no materials or other materials, e.g. Baroody, 1989; Fennema, 1972). Although a recent 

meta-analysis suggests a slight positive effect (Carbonneau, Marley, & Selig, 2012), there remains a lack of 

consensus (McNeil & Jarvin, 2007). What these studies do highlight is that the effect of manipulatives on 

learning will depend upon the context in which they are used. And, in order to predict their effect in 

different contexts, we require a better understanding of how they influence children’s thinking and learning. 

Clearly, the potential effect of manipulatives will depend upon a range of interrelated factors, not least: the 

task at hand; the type of manipulative; children’s initial understanding, and the teacher, who plays a pivotal 

role in structuring the environment and helping children connect concrete and abstract representations 

(Brown, McNeil, & Glenberg, 2009). The teacher’s role will clearly be substantial, yet their approach will be 

informed by an improved understanding of how materials influence children’s thinking. By furthering our 

understanding of how manipulatives support learning, we can offer teachers a clearer guide for when to use 

these materials.  

1.2 Theories about how manipulatives support learning 

Various authors have described ways in which manipulatives may support young children’s learning. In a 

summary of the ‘manipulatives debate’, McNeil and Jarvin (2007) identify three reasons commonly put 

forward: manipulatives provide an additional channel for conveying information; activate real-world 

knowledge; and improve memory through physical actions. These proposed mechanisms are reflected in 

other work (Gravemeijer, 1991; Halford & Boulton-Lewis, 1992), however, because they are relatively high 

level, they lack sufficient explanatory power to predict when manipulatives will or will not support learning. 

More recently, the work of Martin and Schwartz (2005) has attempted to address this issue by proposing a 

theory focusing on the cognitive benefits of physical actions: the Theory of Physically Distributed 

Learning.  

Although the Theory of Physically Distributed Learning (PDL) proposes to inform the wider debate on 

the relationship between action and cognition, the more specific empirical focus has been on the use of 

manipulatives in mathematics. To position their theory, the Martin and Schwartz put forward a framework 

for how individuals learn with physical objects using two dimensions: the stability or adaptability of ‘the 

environment’ (in this case physical objects), and the stability or adaptability of one’s ideas (Figure 1). In this 

framing, the authors use the term ‘offloading’ to describe how the stable structure of materials may help 



thinking in a task, and distinguish this mechanism from actively manipulating materials to support thinking 

(Repurposing) or how the stable structure of the materials may foster changes in thinking (Induction). 

Physically Distributed Learning is the term given to describe when physically manipulating the 

environment can lead to changes in thinking (i.e. learning). 

 

Fig 1: Four ways in which physical actions support learning by degree of stability of the environment and ideas (Martin & 

Schwartz, 2005, p. 588) 

To test PDL, Martin and Schwartz compared children’s (11-12 year old) learning of fraction concepts 

using two materials: one that could be physically manipulated (tiles and pie pieces), with one that had the 

same structure but could not be physically manipulated (squares on paper). Children solved fraction 

operator problems (such as one third of 12) using both materials in counterbalanced conditions. Each 

solution received an interpretation score that reflected the child’s verbal answer and an adaptation score 

that reflected the child’s physical arrangement of the pieces (equal partitioning of materials into spatial 

groups). It was found that physical materials conferred an advantage for both the number of adaptations 

(partitions) and interpretations (correct answers) thereby offering support for PDL. This theory has also 

received support in a study comparing younger children’s (4-5 years old) use of physical and pictorial 

materials in addition and geometry tasks (Martin, Lukong, & Reaves, 2007). 

PDL provides a theoretical framework for understanding how physical manipulation supports children’s 

numerical development. Furthermore, the authors also suggest when PDL will occur: when children have 

‘incipient understanding’ in the task domain. Incipient understanding is framed in terms of children’s 

familiarity and knowledge in the problem task. If children have too low knowledge, the physical 

environment may influence their actions but they may not be prepared to reinterpret and learn from the 

result of their actions. In contrast, if they have too high knowledge, they may simply use materials to enact 

their existing ideas. What is not clear, however, is whether PDL applies to all incipient concepts: whether 

there are times when physically manipulating materials may not affect, or even hinder, learning. Therefore, 

one aim of the studies reported in this paper is to apply the theory of PDL to a different task domain. 

One limitation of PDL theory at present is that the cognitive processes by which interpreting different 

adaptations (configurations of manipulatives) will foster new ideas is fairly underspecified. If children’s 

actions are not informed by domain knowledge, what is leading them to adaptations that are worth ‘re-



interpreting’? And what is the process by which children develop new ideas simply from perceiving 

particular adaptations (spatial configurations)? With respect to the fraction study, what is prompting 

children to create equally partitioned groups of objects? And how do these partitioned groups help 

children re-interpret their understanding of fractions? In order to begin to address these questions, we set 

out to study a simpler domain, related to the fractions domain and involving concepts underpinning 

understanding of fractions, which led us in turn to study a younger age group. 

Thus, the contribution of this paper is to inform the debate surrounding the role of physical materials by 

extending the Theory of Physically Distributed Learning to a different concept and age group. The target 

concept is additive composition: how numbers can be composed in different ways. This concept is 

fundamental to younger children’s numerical development and underpins later numerical concepts, 

including the fractions domain studied by Martin and Schwartz (2005).  

Our previous work [Blind for Review], discussed below, demonstrated how the manipulative properties of 

materials (ability to move multiple or single blocks at a time) influenced children’s strategies in this 

partitioning problem. A limitation of this work was the absence of a control condition to examine how 

manipulatives influenced strategy compared to no materials, or a condition that offered a representation 

that could not be adapted spatially (represented by fixed squares on paper). The studies in this paper 

address this gap in our previously published studies and also address a further limitation of our work and 

that of Martin and Schwartz: evaluating the significance of a representational limitation of physical 

materials. Unlike some other external representations such as paper, manipulatives only provide a record of 

the last solution identified, not of previous solutions – in other words, manipulating physical materials 

leaves no record of previous solutions. This may be significant in a problem that requires children to 

identify and track multiple solutions.  

1.3 The effect of representational properties on children’s strategies 

The Theory of Physical Distributed Learning can be related to earlier work of Scaife and Rogers (1996) 

who drew attention to how the environment can influence thinking. According to their theory of External 

Cognition, thinking can be described as a cognitive interplay between internal and external representations 

(Scaife & Rogers, 1996). Within a particular task, external representations change the cognitive demands of 

problem solving and hence affect how easily children are able to carry out particular strategies. For 

example, providing children with physical materials to solve ‘7 + 3’ can help reduce the demands of 

counting (e.g. by helping keep track of items counted) using a ‘count-all’ strategy. Providing a particular 

quantity represented by the external representation may significantly reduce the demands of a problem: 12 

tiles will likely support attempts to solve the problem of calculating 1/3 from 12 more than providing 11 

or 13 tiles.  

Therefore, the properties of materials, such as their spatial representation of groupings, can influence the 

demands of carrying out children’s existing strategies: quadrants 2 and 3 in Figure 1 (Offloading and 

Repurposing). But what if children lack sufficient conceptual understanding to inform a (successful) 

strategy? We propose that in this case, the representational properties of materials are able to prompt and 

facilitate particular strategies. This is because materials have particular affordances, which can enable or 

facilitate certain physical actions or sensory perception (Gibson, 1977; see Hartson, 2003) In other words, 



physical materials can inform and influence children’s strategies by prompting and facilitating certain 

actions, as well as children’s ability to interpret these actions. The following section looks more closely at 

the manipulative and perceptual properties of physical representations to consider how they might 

influence children’s actions and interpretations. 

The affordances of physical materials can prompt particular actions. These might include: grasping 

multiple blocks, collating blocks into a single pile, moving blocks into different groups, stacking blocks, 

creating symmetrical groups, or simply touching (tagging) blocks. The context will influence children’s 

actions: when given materials for a mathematical problem, children may be aware that moving blocks into 

different groups may be more appropriate than building a tower1. If children lack strategies with which to 

inform their actions with materials, the affordances of materials therefore offer a stimulus for action. In 

other words, the less developed are children’s existing strategies, the more their actions with materials may 

be elicited by the affordances of materials.  

Manipulatives may therefore prompt particular actions during problem solving. They also offer certain 

visual and tactile information that may affect what children interpret and how easily they can do so. 

Manipulating materials can create new spatial configurations, where spatial location offers information 

about the relatedness of information (Larkin & Simon, 1987), such as how objects are numerically 

grouped. For example, 12 objects can be partitioned into groups such as 6 and 6, or 5 and 7, or 4 groups of 

3, depending on how they are spatially arranged. Spatial properties can even affect how easily groups are 

enumerated by providing a means to visually identify when to stop counting objects in a group. It is even 

possible to enumerate small groups perceptually (without counting) a process called ‘subitizing’ (Mandler & 

Shebo, 1982). Touching objects can offer a further mode to help keep track when counting (Alibali & 

DiRusso, 1999), and interestingly, subitizing can also be achieved tactilely (Riggs et al., 2006). 

The perceptual affordances of manipulatives may therefore offload the demands of enumerating groups. 

This is important because it facilitates children’s task of interpreting the result of their actions. Taking the 

aforementioned fraction problem as an example, having created four groups using 12 objects, it is relatively 

easy for children to enumerate that there are three objects in all four groups. Such interpretation may be 

significant if children have an incipient idea that fraction problems involve partitioning objects into equal 

groups. 

In previously published work [blind for review], we investigated the representational properties of physical 

materials by comparing children’s actions and strategies with physical blocks compared with virtual (on-

screen) squares where manipulation was constrained through using a mouse. In order to predict the effect 

of constraining children’s actions with materials, a small study was first carried out that video-recorded 

children’s actions with physical materials when solving a partitioning problem requiring them to identify all 

the ways to partition a number into two groups (e.g. 9 and 1, 8 and 2, 7 and 3 etc.). The study helped to 

illustrate and explain the role of various representational properties in children’s problem solving.  

                                                           

1 Although as, Uttal et al (1997) argue, children’s prior experiences may lead them not to interpret physical 

materials as numerical representations, citing the example of using blocks to recreate notation in an 

addition problem. 



In terms of perceptual properties, children often used tactile information: touching or covering objects to 

help keep track when counting (Figure 2a) or to remember what to move next. Children also used spatial 

information to support thinking, commonly moving blocks into different groups to identify new solutions, 

but also in other ways, such as moving blocks away from the body to keep track of what blocks to move 

next. As previously argued, creating small spatial groups of blocks may have helped children enumerate 

quantities perceptually (e.g., through subitizing). The perceptual properties of materials may therefore have 

helped children interpret the result of their actions with materials. The physical properties of the 

manipulatives properties, however, may have played a more significant role in children’s strategies. 

Video data analysed in our study illustrated how children were able to easily grasp and then manipulate 

single or multiple blocks at a time. Blocks could be slid, lifted or even dropped into different groups 

quickly and with seemingly little cognitive demands. Therefore, children were able to explore a range of 

spatial changes efficiently. Significantly, two strategies reflected two particular actions. For one strategy, 

children would use one hand to move one block from one group to another (Figure 2b). This strategy 

reflected consecutive solutions that differed by one (e.g. 7 and 2, then 8 and 1). In the other strategy, 

children would grab a group of blocks in each hand and swap over hands (Figure 2c). This strategy 

reflected consecutive solutions that were commutative (e.g. 7 and 2, then 2 and 7). This observation led to 

the prediction that constraining actions using the mouse (so children could only move one object at a time) 

would significantly increase the use of the strategy identifying consecutive solutions that differed by one 

(and reduce the use of the other strategy). This prediction was supported [REF]. This study therefore 

demonstrated the relationship between the representational properties of physical materials and the actions 

generated when solving certain numerical problems. The study did not, however, identify if and how 

children’s strategies with manipulatives differ significantly compared to using no materials, or (as with the 

experimental set-up of the study by Martin and Schwatrz, 2005) a non-manipulable external representation 

such as squares on paper.  

     

Figure 2: a) use of perceptual properties b) single block manipulation c) swapping groups of blocks  

1.4 Summary 

Physical materials, therefore, have particular manipulative and perceptual properties that may influence 

children’s problem solving actions and how they interpret resulting representational states in relation to the 

problem. Whilst this influence on action and interpretation is relevant to the broader scope proposed by 

the theory of Physical Distributed Learning, the focus of this paper is on numerical problem solving where 

manipulatives reflect quantities. In this context, a key benefit of manipulatives may be the ability to create 

and recreate spatial configurations with ease. However, whilst manipulatives do provide information about 

the last representational state created, action with materials necessarily removes a record of this last state 

(because materials are physically moved from one place to another). Significantly, manipulatives do not 



provide a record of previous states, leading Kaput (1993) to refer to manipulatives being constrained to the 

‘eternal present’. In contrast, materials such as paper do provide a record of previous actions – through the 

trace of annotations. For this reason, children are able to ‘show their working’. There may, therefore, be a 

representational ‘trade-off’ between spatial manipulation and record of previous actions. The roles of these 

representational properties are explored in the studies reported in this paper. 

1.5 Aims 

This paper examines if, and how, manipulatives can influence children’s problem solving strategies, by 

reporting two studies examining the effect of physical materials on children’s problem solving strategies 

within a numerical task. The studies aim to balance ecological validity (by employing materials and tasks 

familiar in a classroom) with experimental manipulation aiming to illuminate the role of particular 

representational properties. 

The first study examines the effect of physical materials on children’s problem solving in comparison to no 

materials. The research question addressed is: 

 Do physical materials significantly affect the types of strategies children use in a numerical task 

compared to no materials? 

By comparing physical materials to a no materials condition, it is not clear whether any differences found 

are attributable to physical manipulation or simply the presence of an external representation. The second 

study therefore focuses on the unique benefits or limitations of physically manipulating materials by 

comparing children’s problem solving in the same task using physical materials with pictorial 

(diagrammatic) materials. Consequently, this study echoes the experimental design of PDL in a different 

domain but with a focus on representational properties and strategy. The second study further examines 

the effect of providing children with a record of all their previous solutions (representational states), 

thereby evaluating the trade-off between spatial manipulation and record of previous actions previously 

described. The research question addressed is: 

 What are the benefits and limitations of spatial manipulation of materials on children’s numerical 

strategies? 

1.6 Task Domain – Additive Composition 

With the aim of examining the effect of physical materials on children’s numerical strategies, it is important 

to identify a task that a) reflects a significant concept in children’s numerical development b) offers a range 

of strategies and c) can be approached using different materials including manipulatives. In this regard, the 

studies focused on the concept of additive composition: an understanding that numbers can be composed and 

decomposed into small numbers. This concept is significant in young children’s numerical development 

(Baroody, 2004; Resnick, 1983), notably as a foundation to their understanding of the decade structure 

(Nunes & Bryant, 1996). 

1.6.1 Additive Composition task 

Various tasks have been identified for assessing additive composition (see Cowan, 2003), such as the use of 

decomposition strategies in addition. These assessment tasks are generally single answer problems where 



children’s understanding is inferred from the strategies needed to solve them. These assessment tasks can 

be contrasted with activities where children focus on identifying how a number can be decomposed. Jones, 

Thornton, Putt, Hill, Mogill, & VanZoest (1996), for example, describe a partitioning task where children 

are asked to identify as many ways as possible to decompose a number. They present a problem using a 

story context and concrete materials as follows:  

“The man in the yellow hat shook 2 bags. ‘I had 10 candies and put some in one bag and the rest in the other”, he told 

George. How many could be in each bag?”’ (p. 316) 

This task therefore seems ideal for our present purposes because a) it addresses an important numerical 

concept (additive composition) and b) offers a range of strategies for solving and c) can be studied using 

physical materials.  

1.6.2 Task Strategies 

In Jones et al.’s (1996) partitioning task, children are given the task of identifying all the different 

combinations of two parts (P1 and P2) for a given whole (W). For each valid solution, these parts combine 

to make the whole: P1 + P2 = W, for example: 2+6=8. As P1 or P2 can equal zero there are a total of 

W+1 solutions; for example, when partitioning the amount 3 into two parts, there are four solutions (3+0, 

2+1, 1+2, 0+3).  

The children’s task is therefore to identify a valid solution for P1 and P2, to then to identify more solutions 

ensuring that the value of P1 and P2 are different each time (keeping track of what solutions have been 

given), and to continue so that all possible values of P1 and P2 have been identified (keeping track of 

solutions left to identify). There are at least five identifiable strategies for how a child might identify 

solutions mentally as illustrated in Table 1: 

Table 1: Possible strategies in the partitioning task 

Strategy Description Example of expected 

verbal solution pattern 

Strategy label in 

Studies 

1 Identify P1 such that P1 ≤ W. Then identify P2 

through approximation 

E.g. 2 & 5 following 4 & 3 

(i.e. no clear relation) 

other 

2 Identify P1 such that P1 ≤ W. Then calculate P2 by 

counting down from W or up to W 

E.g. 2 & 5 following 4 & 3 

(i.e. no clear relation) 

other 

3 Recall P1 and P2 of previous solution and reverse 

such that P1=P2 and P2=P1  

E.g. 2 & 5 following 5 & 2 

(i.e. reverse parts) 

commutative 

4 Recall P1 and P2 of previous solution and change 

values by one (P1+/-1, P2 +/-1) maintaining 

P1+P2 = W  

E.g. 2 & 5 following 1 & 6  

(i.e. parts differ by one) 

compensation 

5 Recall solution from declarative memory E.g. 2 & 5 following 4 & 3 

(i.e. no clear relation) 

other (unlikely) 



 

This task therefore offers a range of possible strategies. Although this paper focuses on if (and how) 

physical materials influence children’s strategies, it is also possible to consider whether they foster more or 

less conceptually developed strategies. Here is it possible to draw upon the work of Fuson (1992) who 

describes specific stages of children’s numerical concepts. In her paper, Fuson describes a developmental 

step from the Numerable Chain level, where children understand that numbers form a sequence that can be 

broken (a whole into two parts), to the Bi-directional chain level, where the whole number sequence becomes 

a series of embedded cardinal amounts. Fuson also describes the relationship between these levels and the 

type of addition / subtraction strategies children might employ. The Numerable chain is reflected in 

children’s ability to count up / down / on from one part to another. This procedural ability reflects 

strategy 22 (See Table 1). In contrast, the Bi-directional chain level is reflected in decomposition strategies: 

recomposing parts to facilitate addition (e.g. 6 + 5 into 5 + 5 + 1). The use of such a strategy has been 

proposed as evidence of understanding of additive composition. We argue that this process of 

recomposing parts is reflected in strategy 4, where children relate a solution to the previous one. Strategy 3 

also reflects relating a solution to the previous one, but through re-ordering rather than recomposing 

(Commutativity). We therefore argue that by relating consecutive solutions, strategies 3 and 4 are 

conceptually more developed strategies than 1 and 2. Strategy 5 is not discussed, as children in our study 

were unfamiliar with the amounts to partition (therefore had not had the opportunity to commit to 

memory). 

Consequently, the partitioning task offers the opportunity to examine and compare two measures: a) the 

number of solutions identified and b) the type of strategies used to identify solutions, where strategies 3 

and 4 (‘related’) are considered more developed than 1 and 2 (‘unrelated’). Whilst many studies focus on 

the first of these measures, the second is most relevant for this paper: can physical materials significantly 

affect children’s numerical strategies? 

2. Study 1: Do physical materials significantly affect the types of strategies 

children use in a numerical task compared to no materials? 

2.1 Introduction 

This study examined whether the use of physical materials significantly influence children’s numerical 

strategies, and whether in this particular problem, they foster conceptually more developed or less 

developed strategies than no materials. One possibility is that the physical materials foster the use of less 

developed strategies: Strategies 1 and 2. This is because materials can offload the demands of calculating 

individual solutions in the partitioning task. Rather than counting each solution mentally, children need 

only to partition objects into two groups and count the amount in each (P1 and P2) to give a verbal 

solution. An alternative possibility is that physical materials foster the use of more developed strategies 2 

                                                           

2 Strategy 2 is arguably more developed than Strategy 1 but is considered comparable, mainly for the 

practical difficulty of identifying when children are estimating as small quantities can be enumerated 

visually (subitized).  



and 3. This is because providing a visual representation of each solution encourages children to identify a 

related solution: for example, having identified the solution 2 & 5, children need only swap over amounts 

to identify the solution 5 & 2 (commutative). To find such an effect would be significant, not just because 

physical materials are encouraging a more developed strategy, but such a strategy corresponds to one that 

children can employ in the later absence of materials. A final possibility is of course that using physical 

materials has no effect on strategy use. 

2.2 Method 

2.2.1 Design 

In order to increase power and reduction in error variance for this study, a within subjects design was used 

with Condition (Physical/No Materials) as the within subjects independent variable. The dependent 

variable was the number of correct solutions. These solutions were then coded according to a scheme 

developed in this study in order to create a further dependent measure: the number of solutions identified 

using particular strategies.  

2.2.2 Participants 

Thirty-two children took part in this study (17 girls and 15 boys, age range 68 to 82 months; M=74.2; 

SD=3.86 months). Children were from two classes in the same year group in a local school in [blind for 

review] whose parents had signed and returned a consent form (56% response). The school is a larger than 

average primary school, with 345 pupils, and situated in a suburb that is recognised as having a high social, 

educational and economic level. This is reflected in the small proportion of children that receive free 

school meals (2% compared to national average of 16%). In this study, all but one child had English as 

their first language and one child was reported as having additional support needs. (This child was 

competent in the task and included in the analysis.) 

2.2.3 Materials and Procedure 

Sessions took place individually on a table in the corridor outside the class. They were held during lessons 

when noise levels in this area were acceptably low, and lasted between five and ten minutes. The sessions 

were presented as follows (always in this order): 

1. Introduction to problem context 

2. Condition 1 Example partitioning problem (with 3) with or without materials 

3. Condition 1 Problem: partitioning 6 

4. Condition 2 Example partitioning problem (with 3) without or with materials 

5. Condition 2 Problem: partitioning 7 

The order of condition (Physical/No Materials) for the problems was counterbalanced, changing for each 

child in turn. The order of children reflected an alphabetic class list, which made it easier for the class 

teacher to know who was next and was deemed sufficiently randomised for this within subjects design. 

The materials used in this study were small plastic Unifix® blocks (2cm2) of the same colour (blue) (Figure. 

3). These materials are common across early years classrooms in the UK. 



 

Figure 3: Physical Materials in Study 1 

2.2.3.1 Introduction to problem 

The interviewer explained that the purpose of the research was to find out what children find easy and 

difficult about number questions. Children were then presented with the story context for the partitioning 

problems. They were introduced to a character: ‘Jon’ (Figure 4), and told how this character likes to buy 

bananas and put them in his two bowls. The bowls were different colours (red and green – no child was 

colour blind); this was done to emphasise the difference between commutative solutions (i.e. 3+5 is a 

different solution from 5+3). The interviewer explained that the aim was to try to help Jon by telling him 

all the different ways he could keep his bananas in the two bowls. 

 

Figure 4: Image used to provide story context to problem 

2.2.3.2 Example problem 

Before each partitioning problem in both conditions, the interviewer presented an example to help 

children understand the task demands and what constituted a valid solution. The interviewer explained: 

“One day, Jon bought 3 bananas [interviewer shows image of 3 bananas]. Watch how I use [my head/these 

blocks] to help me find all the ways the three bananas could be in the two bowls.” In the Physical condition the 

interviewer placed three blocks on the table. In the No Materials condition, the interviewer pointed to their 

own head (the teacher of the class had explained how this prompt was used when children were being 

asked to solve problems mentally). 

The interviewer then identified the four ways to partition three in the following order: 3+0, 1+2, 2+1, and 

0+3. This order was chosen to reduce the likelihood of prompting a particular strategy. These solutions 

also intended to highlight that commutative solutions were considered unique and that zero was a valid 

solution (we expected children to understand that zero was valid from the study context and our prior 

work, as well as the literature (Clarke, Cheeseman, & Clarke, 2006)).  

In the Physical condition, the interviewer partitioned the blocks before identifying the solution. 

Partitioning blocks involved moving the blocks into left and right groups in front of the interviewer. The 



blocks were not re-collected after each solution but moved directly from one solution to the next3. In the 

No Materials condition, the interviewer simply pointed to the corresponding bowls when stating the verbal 

solutions. In the demonstration, the interviewer explained that there could be “three in the red bowl and none in 

the green”, “one in the red bowls and two in the green”, “two in the red bowl and ...” On this third solution, the 

interviewer purposefully paused and looked at the child to prompt the child to say the solution (two in the 

green). If the child did not answer, the interviewer used the image of the bananas and repeated “two in the 

red bowl and …” All children were able to complete this, as well as the final solution which again the 

interviewer prompted “and none in the red bowl and ...” (three in the green). The prompts for children to 

complete the solution were to ensure understanding and for children to practise giving numerical answers 

for each part. 

2.2.3.3 Partitioning problems 

After the demonstration problem, the interviewer removed the picture of the three bananas but kept the 

picture of the stick figure and the two bowls. The children were then told that on another day Jon went 

shopping and bought 6 (then 7) bananas. The order of total amount to partition was the same for all 

children: 6 followed by 74. Similarly to the above example, in the Physical condition, children were 

presented with the correct total number of blocks to partition, which were placed in a line in front of the 

child.5  

Children were then asked to use the blocks (or “use their heads” in the No Materials condition) to tell the 

interviewer all the ways in which Jon could put the 6 or 7 bananas in the two bowls. The interviewer did 

not touch the blocks during children’s problem solving. The children were reminded that, for each 

solution, they were to say how many there were altogether in each bowl so that the interviewer could write 

down their answers. After solving the first partitioning problem, the interviewer presented the example and 

partitioning problem in the other condition. Condition order was counterbalanced between children. 

2.2.3.4 Prompts given during problem solving 

For all problems, if children did not respond after 10 seconds they were prompted by the interviewer: “can 

you think of any ways that Jon can put the [6/7] bananas in the two bags?” If there were significant pauses after 

children had identified the first solution, the interviewer prompted by saying “is that all the ways or can you 

think of any more ways?” The session ended after two prompts had been given or if the child indicated that 

                                                           

3 The blocks therefore provided a record of the last solution created. It was decided not to recollect blocks 

as a) this was considered more ecologically valid and b) this was considered an important representational 

affordance of manipulatives not to design out of the study.  

4 This was not counter-balanced due to sample size. We recognize this limitation, although 

counterbalanced conditions should have mitigated possible effects.  

5 Providing this amount likely offloaded the demands of using physical materials; however, the focus of the 

study was on if and how materials influenced children’s strategies (where offloading demands might 

arguably encourage a less efficient strategy). It is interesting to reflect upon how various manipulatives 

offer this representational benefit (e.g. bead string or abacus when partitioning ten).  



he/she had finished. If a child used non specific words such as ‘some’ or ‘the rest’ when identifying 

solutions, the interviewer prompted by asking “so how many is ‘some’/‘the rest’?  

The interviewer wrote down all solutions given by the children so that they could see that their answers 

were being recorded (and that they were therefore important to the task) although they could not see what 

was actually being written down. Children generally said or pointed to the bowl to which they were 

referring (e.g., ‘three in that one’) but if it was not clear the interviewer prompted “three in which bowl?” The 

interviewer recorded the left bag as referring to the first part and right as the second.  

2.3 Results 

2.3.1 Correct solutions  

Solutions were initially coded as correct or incorrect. Correct solutions were then further coded as being 

unique or repeated (see Figure 5). A repeated solution was any solution that had been given previously (in 

the same addend order). Each child received a score for the number of unique correct solutions identified 

in each condition6. Henceforth, unique correct solutions will simply be referred to as correct solutions and 

repeated correct solutions will be referred to as repeated solutions. If a score was incorrect, it did not 

matter whether it was repeated or not. The distribution of group data was tested (Kolmogorov-Smirnov) 

and revealed significant departures from normality for scores on the first problem, partitioning 6 

(D(32)=0.17, DF=32, p<0.05), although not the second (D(32)=0.13, p=ns). A Wilcoxon test was 

therefore carried out and showed there were no significant differences for correct solutions between the 

first (Mdn=5) and second problems (Mdn=5) (Z=-0.70, p=ns). 

The distribution of group data was tested (Kolmogorov-Smirnov) and revealed no significant departures 

from normality for scores in the Physical condition (Kolmogorov-Smirnov: D(32)=0.161, p<0.05). A 

Wilcoxon test revealed that children identified significantly more correct solutions in the Physical condition 

(Mdn=6) than the No Materials condition (Mdn=4) (Z=-4.50, p<0.0005). In addition, the effect size was 

found to be fairly large (d=1.09, r=0.48) using Cohen’s d for paired samples (Cohen, 1988). Children 

typically only gave one incorrect solution if any, but were more likely to do so in the No Materials (18 

children) than Physical condition (4 children).  

2.3.2 Strategy 

In order to examine differences in the possible strategies used between conditions, a coding scheme was 

first developed for correct solutions. 

                                                           

6 In all studies carried out on this problem, scores were categorized to compare performance on problems 

of different total amount accordingly: no solutions, single solution, more than one but less than half total 

solutions, and more than half solutions. It was found that analyses using these coded scores revealed 

differences in the same direction and magnitude. Therefore, the analyses reported henceforth just 

examined the absolute number of correct solutions.  

 



2.3.2.1 Coding Scheme 

Two key strategies for partitioning were previously identified: commutative and compensation. A commutative 

strategy was defined as reversing the order of parts of the previous solution. A compensation strategy was 

defined when adding one to one part and taking one from the other. It is thereby possible to examine each 

solution children gave (after the first solution) in terms of its relationship to the previous solution and use 

this to infer strategy. For example, the solution ‘1+6’ after ‘6+1’ might arguably reflect a commutative 

strategy. Similarly, the solution ‘2+5’ after ‘1+6’ might reflect a compensation strategy.7 

Clearly, this form of coding allows both type 1 and 2 errors: a solution identified using a strategy might not 

be coded because children did not actually verbalise the initial solution. Equally a solution might be coded 

although it only followed the previous by chance. However, as these errors should be equally as likely to 

occur in each condition, it should be possible to compare conditions to examine any significant 

differences.  

It is important to note that a solution that is coded as neither compensation nor commutative does not mean 

that children were not relating successive solutions. Indeed a couple of children seemed to apply a 

combination of commutative and compensation at the same time (e.g., swapping over and moving one object: 

e.g., ‘1+6’ following ‘7+0’). However, these were less clear and not frequent, and any solution after the first 

that was not coded as compensation or commutative was coded as other. The coding flow diagram is presented 

in Figure 5.  

                                                           

7 Identifying 3+4 following 4+3 (or visa versa) falls under compensation and commutative; yet it is difficult to 

know which strategy children are employing. Solutions of this pattern were coded as compensation for several 

reasons: a) this was suggested by the patterns of solutions (e.g. preceded by and/or followed by a 

compensation solution) b) observations in the physical condition (moving one block not swapping groups 

of blocks as associated with other commutative solutions c) we had no reason to believe that any coding 

errors would not be as likely to occur in either condition. 



 

Figure 5 Coding of Strategies 

2.3.2.2 Differences in strategy use between conditions 

Using the coding scheme, it was possible to give each child a score in each condition for the number of 

compensation, commutative and other solutions given. The maximum number of commutative solutions possible 

for partitioning 6 and 7 was three. The maximum number of compensation and other solutions for partitioning 

6 was six, and for partitioning 7 was seven. The median and interquartile scores are shown in Table 4. 

Whilst 19 children identified at least one commutative solution in the Physical condition, less than half (10) 

did so when solving the partitioning problems without materials. Similarly, whilst most children (28) 

identified at least one compensation solution in the Physical condition, only 14 did so in the No Materials 

condition. Wilcoxon tests8 showed that children identified significantly more commutative solutions (Z=-

2.25, p<0.05) and significantly more compensation (Z=-3.69, p<0.01) solutions in the Physical condition than 

the No Materials condition. There were no significant differences between conditions for the number of 

other solutions (Z=-0.39, p=ns). 

 

Table 2: Medians (IQR) for strategy solutions in the Physical and No Materials conditions 

                                                           

8 Considering the median scores of zero in the No Materials condition, another way to approach analysis 

would have been to categorise scores according to whether children identified at least one solution or not, 

and then carry out paired sampled tests on the binomial distributions. However, Wilcoxon tests will be 

reported in this paper as a) significance levels for differences between conditions were unchanged, and b) 

this acknowledges the interval data for the majority of children in one of the within subjects conditions. 



 Commutative Compensation Other 

Physical 1* (0, 2) 1.5* (1, 2.75) 2 (1, 2) 

No Materials 0 (0, 1) 0 (0, 1) 1 (0.25, 2) 

*Significant differences between conditions (p<0.05) 

 

Although these tests revealed a significantly greater number of commutative and compensation solutions in the 

Physical condition, it might be argued that this can be explained by the fact that children in the Physical 

condition simply identified more correct solutions overall (although the difference in other solutions was 

not significant). Indeed, Spearman Rank order correlations revealed significant positive relationships 

between compensation solutions and overall solutions in the No Materials (r=0.465, p<0.01) and Physical 

conditions (r=0.506, p<0.005), and similarly, significant positive relationships between commutative solutions 

and overall solutions in the No Materials (r=0.606, p<0.001) and Physical (r=0.471, p<0.01) conditions. 

However, whilst the correlation between other solutions and overall solutions was large in the No Materials 

condition (r=0.718, p<0.001), this was not significant in the Physical condition (r=0.231, p=ns). In other 

words, when children used materials, a greater number of correct solutions reflected a greater number of 

related (compensation and commutative) but not unrelated (other) solutions. 

Therefore, analysis of the relationship between the number of strategy solutions and overall solutions 

supports the prior analysis of differences between conditions for the strategies used. Children identified 

more solutions overall in the Physical condition and this is reflected in a greater number of compensation and 

commutative solutions but not in other solutions. The differences between conditions are more clearly 

illustrated in Figure 6 according to the total number of strategy solutions identified in each condition.  

 

 



Figure 6: Total number of coded strategies identified by children in each condition9 

2.3.2.3 Initial Solution – Equal Partitioning 

The strategies analyzed above were for solutions given after the first. However, it was interesting to notice 

differences in the pattern of first solutions given. For many children, the first solutions given for 

partitioning 6 were 3 & 3: and equal partitioning. For partitioning 7, many children identified an initial 

solution that was as close to equal as possible: 3 & 4 or 4 & 3. By coding such first solutions as ‘equal 

partitioning’, it was possible to examine differences between the two conditions. A signed ranked test was 

carried out to test differences between binomial data for each condition and found significantly more equal 

partitioning solutions in the Physical condition (+ve=18, -ve=4, ties=10, p<0.005). This lends further 

support that the representational properties of physical material significantly affected children’s strategies. 

2.4. Discussion 

This study examined the effect of physical representations on children’s partitioning strategies. As 

expected, children identified more partitioning solutions with Physical materials than without. It is not 

uncommon for studies to interpret this advantage as support for the use of materials. In this paper, 

however, it is the effect on strategies that is considered significant. This study demonstrated that a) physical 

materials did significantly change what strategies children used with materials than without and b) physical 

materials fostered the use of conceptually more developed strategies. In other words, rather than using 

physical materials to offload the demands of identifying solutions independently of each other, the 

materials prompted children to identify solutions that were related to each other. This is significant. An 

important stage of children’s numerical development is developing an understanding of how number can 

be decomposed and recomposed in different ways and the relation between these ways. This 

understanding can be directly related to a common curriculum objective of identifying number bonds to 

ten (e.g. 1 & 9, 2 & 8, etc.). Baroody (2006) has argued that mastery of number bonds requires 

understanding of how numbers are related. 

A further finding from this study was the influence of physical materials on children’s initial solution. With 

materials, children were much more likely to identify an ‘equal partitioning’ solution. This is particularly 

significant because this is arguably not the most efficient way to start this particular problem as there is then 

no commutative solution when parts are equal (e.g. 4 and 4), and a compensation strategy would only 

identify about half of all solutions (i.e. requires children to subsequently find a way to identify remaining 

solutions). This lends further support that, in the absence of a planned strategy, children’s actions are 

prompted by the affordances of materials. This finding may also help explain the benefit of physical 

materials in Martin and Schwartz’ (2005) fraction study: by prompting children to partition materials into 

equal parts, manipulatives may have encouraged effective strategies for solving fraction problems (where 

partitions are equal).  

                                                           

9 As described, the total possible number of compensation and other solutions is greater than the total number 

of commutative solutions  



Whilst this study shows the benefits of materials in a particular problem, it is unclear what representational 

properties of physical materials supported problem solving. It is possible that simply providing an external 

representation of the amount to partition was sufficient. The following study examines the unique benefits 

of spatial manipulation by comparing physical and pictorial materials in the same task. As well as 

examining the benefits of spatial manipulation, the study looks at the limitations of spatial manipulation of 

physical materials: that actions necessarily removed any record of previous actions/solutions.  

3. Study 2: What are the benefits and limitations of spatial manipulation of 

materials on children’s numerical strategies? 

3.1 Introduction 

As articulated in PDL theory, adapting physical materials, in contrast to pictorial materials, can create new 

spatial configurations. Whilst the materials therefore provide visual information on the last representational 

state created, further action necessarily remove all evidence of this last configuration: manipulatives do not 

provide a record of prior actions. As Kaput (1993) states: manipulatives are constrained by the ‘eternal 

present’. In contrast, with materials such as paper, actions are recorded through annotation. This ‘cognitive 

trace’ offers the possibility to review prior actions to inform plans of subsequent actions. Yet, the extent to 

which this supports children’s problem solving is not clear. Not only will there be demands in revisiting 

and interpreting prior actions, but in order to recognise the value of this record, children arguably already 

possess a good conceptual overview of the task at hand. 

Examining the benefits of a ‘representational record’ is important, not simply to evaluate the relative 

limitations of physical materials over other representations, but because it is possible to address such 

limitations through digital design. As argued by Kaput and others (e.g. Sarama & Clements, 2009) have 

argued, digital materials are able to overcome the drawbacks of their physical counterparts by providing a 

means to record and revisit prior actions on materials. Consequently, this study can help evaluate the 

relative merits of this design possibility in this specific domain. 

3.2 Method 

3.2.1 Design 

A 2x2 between subjects design was used with Material (Physical/Pictorial) and Record10 (No 

Record/Record) as the two independent variables, resulting in four independent groups: Physical Record, 

Physical No Record, Pictorial Record and Pictorial No Record. The primary dependent measure was the 

verbal solutions provided by children for three partitioning problems, which were then coded according to 

strategy using the previous coding scheme. 

                                                           

10 We use the term ‘record’ to describe the representational feature enabling children to refer back to 

previous solutions during action; however, we recognise that manipulatives do provide a record of the last 

solution before subsequent action, and later discuss this study design limitation. 



3.2.2 Participants 

One hundred children took part in this study (54 girls and 46 boys; age range 53 months to 87 months; 

M=70.79 months; SD=9.98 months). Children were from three consecutive year group classes at a local 

primary school in the [Blind for Review] area. The percentage of children receiving free school meals is 

slightly above the national average (a measure of Social Economic Status). There were 2 children with 

English as a second language and 1 with additional support needs. These children did not have significant 

difficulties with the problems so they were included in the analysis. Children were randomly assigned 

(using a random number generator) to one of the four conditions.  

3.2.3 Materials and Procedure 

In this study, children solved three partitioning problems: partitioning 711, then 8, then 9 in all conditions; 

however, as they used the same materials, they were only given one example partitioning problem (with 3) 

before problems. The procedure for this study was identical to Study 1 apart from two key differences: the 

materials provided and a different story context. 

3.2.3.1 Story context 

It was decided to present the children in this study with a different story context from that given to the 

children in Study 1. The problem structure was isomorphic but used cows in fields rather than fruit in bags 

for two main reasons. Firstly, because some children were younger, it was felt that a clear visual image of 

the two partitioning areas would support children’s understanding. Secondly, it was expected that this 

problem was less hypothetical: cows can change fields over time, whereas a person is not likely to change 

objects in two bags (or reflect on the change). Importantly, it is also less logical for cows to be equally 

partitioned between two fields than fruit in bags. 

The interviewer then explained the problem: the farmer kept cows in the fields but, because the gate was 

open, the cows kept wandering from one field to the other. The interviewer then explained what was 

required: to help the farmer by telling him “all the different ways the cows can be in the two fields”, and then told 

the children to watch an example showing them what this meant. The materials used in the demonstration 

and problem are described below as they differed according to which condition the child was in. 

3.2.3.2 Materials in each Condition 

Physical No Record 

Similarly to Study 1, children in this group were presented with a line of counted out red blocks (2cm3 

wooden blocks) in front of them for each problem. The interviewer did not recollect these blocks during 

problem solving. 

Physical Record 

                                                           

11 Unlike Study 1, this meant children began with an odd number to partition; however, Study 1 found 

children partitioned ‘equally’ for odd and even numbers. Moreover, children in Study 2 received the same 

problem order in all four conditions. 



This used the same set-up to the Physical No Record condition, however, whenever children verbally 

identified a solution, the interviewer quickly recreated the configuration of the blocks children had made 

on the right hand side of their workspace using black wooden blocks (as illustrated in Figure 7). It was 

decided that the interviewer, not child, would create this record, and not use the blocks children had just 

manipulated, in order not to interrupt children’s use of the physical representation. The interviewer would 

start at the top of this space and create successive configurations under each other so that a maximum total 

of 13 configurations would fit in this space. As the maximum number of correct solutions was 10 it was 

decided to stop children after 13 solutions (where children would have given at least four incorrect or 

repeated solutions). 

 

Figure 7: Example of Record solutions created in the Physical Record condition 

Pictorial No Record 

Children in this group were provided with a sheet of paper with rows of squares (equal to the partitioning 

amount). The squares were 2cm2 white with a black border separated by a 1.5cm gap (see Figure 8). Each 

sheet of paper was 6cm by 30cm. In the example, the interviewer demonstrated annotating around the 

squares for partitioning (similar to Martin and Schwartz, 2005). After each verbal solution, the interviewer 

removed (and concealed) this piece, and replaced with an identical set of squares for their next solution. 

 

Figure 8: Pictorial materials used in conditions 

Pictorial Record 

Children in this group were provided with an A3 (Portrait) sheet of paper with 13 aligned rows of the 

number of squares to partition (Figure 9). The squares were identical to the Pictorial No Record condition, 

and were aligned in order to facilitate comparison between solutions. In all conditions, it was decided to set 

a maximum number of solutions for the children.  

 



 

Figure 9: Pictorial materials used in Pictorial Record condition (13 rows) 

3.3 Results 

3.3.1 Correct solutions  

All children therefore received a score between 0 and 27 for the number of correct solutions identified 

(maximum score of 8, 9,and 10 for partitioning 7,8,9 respectively). The distribution of group data was 

tested (Kolmogorov-Smirnov) and revealed no significant departures from normality for scores on any of 

the conditions: Physical No Record (D(25)=0.12, p=ns); Physical Record (D(25)=0.12, p=ns); Pictorial No 

Record (D(25)=0.14, p=ns); and Pictorial Record (D(25)=0.17, p=ns). Analysis of Variance was therefore 

carried out with Material (Physical/Pictorial) and Record (Record /No Record) as between-subjects 

variables.  

Analysis revealed a significant main effect for Materials (F(3,96)=4.29, p<0.01) with Cohen’s (1988) effect 

size value (d = .70) suggested a moderate to high practical significance, but failed to reveal a main effect for 

Record (F(1,96)=0.64, p=ns). There were also no significant interaction effects (F(1,96)=0.05, p=ns). The 

means for each condition and factor are shown in Figure 10. A Freidman test showed that there were no 

significant differences in the total number of solutions identified between the three partitioning problems 

(χ2=0.88, DF=2 p=ns). 



 

Figure 10: Mean Correct Solutions in the four conditions (Physical/Pictorial – Record/No Record) 

3.3.2 Strategy  

Using the Coding scheme developed in Study 1, children’s solutions were coded according to commutative 

and compensation (related) and other (not commutative/compensation) solutions. Mann-Whitney tests 

revealed no differences in the number of strategy solutions identified between the Record and No Record 

conditions for Compensation: (U=1208.5, Z=-0.28, p=ns), but a significant difference for Commutative 

(U=940.5, Z=2.13, p<0.05), with children identify more commutative solutions in the No Record 

condition. On further inspection this seems to be explained by greater number of commutative solutions 

identified in the Physical No Record condition (total of 65 commutative solutions) compared to the Physical 

Record condition (total of 39 commutative solutions), rather than between Pictorial conditions (Totals of 13 

and 14 accordingly). In contrast, there were significantly more compensation (U=937.5, Z=-2.18, p<0.05) 

solutions identified in the Physical conditions than Pictorial. Similarly, there were significantly more 

commutative solutions in the Physical condition (U=722.00, Z=-3.98, p<0.01). Whilst 32 out of 50 children 

identified at least 1 commutative solution in the Physical condition, only 14 out of 50 did in the Pictorial 

conditions and half of these only identified 1 commutative solution.  

As well as related solutions, it was found that children in the Physical condition also identified significantly 

more other solutions than children in the Pictorial conditions (U=941.5, Z=-2.14, p<0.05); there were no 

differences in other solutions between the Record and No Record conditions (U=1013, Z=1.63, p=ns). 

Median scores for strategies in the Physical and Pictorial conditions are shown in Table 3. 

Table 3: Median (IQR) scores for coded strategies in the Physical and Pictorial conditions 

 Commutative Compensation Other 



Physical 

1 (0, 3)  6 (1.75, 9)  7 (2, 9)  

Pictorial 

0 (0, 1)  3 (0, 6.25)  4 (0, 8)  

3.3.3. Initial Solution: Equal partitioning  

Similarly to Study 1, children’s first solution using blocks was commonly equal partitioning; however, there 

were no significant differences in the number of equally partitioned first solutions between the groups or 

main conditions. 

3.4. Discussion 

This study supports the predictions of PDL by finding that children interpreted significantly more 

partitioning solutions using physical materials than pictorial materials. It was further found that providing 

children with a record of previous representational states they had created did not support problem solving 

in this study, despite children being explicitly shown how this record showed what solutions they have 

previously identified. Indeed, the only difference found was that children identified significantly more 

commutative solutions when using blocks without a record of previous solutions than with such a record. 

This finding is difficult to interpret, but might be that children were slightly distracted by the record, 

thereby mitigating the beneficial effects of manipulatives on this particular type of strategy.   

It seems therefore, in this problem, children did not perceive any benefit from having a record of all their 

previous actions to plan their subsequent actions. However, a possible limitation was that children in the 

Physical No Record condition did have a record of their last solution (until they acted upon the materials). 

It may therefore have been more balanced to have provided children in the Pictorial No Record condition 

with visual access to their last annotated solution until they started creating their next solution. 

Alternatively, the interviewer could have recollected children’s blocks after each solution in the Physical 

No Record condition. It was decided not to do this, as this would have eliminated a key affordance of the 

materials (although an additional physical condition could have been created). It is possible therefore that 

the study design unfairly favoured physical materials over pictorial materials. However, if the ability to see 

the last solution created before starting the next solution was significant, we would have expected 

performance in the Pictorial Record condition to have been better. Instead, it seems that it is the ability to 

manipulate the previous representational state that is significant, thereby demonstrating the iterative 

relationship between action and interpretation.  

It is interesting that children did not seem to benefit from a record of their previous solutions, given that 

this record could at least inform them of what solutions they had and had not identified. However, young 

children can find planning difficult (Ellis & Siegler, 1997), and may have lacked sufficient problem 

understanding to know how to use this record. Moreover, adopting a successful strategy (e.g. compensation) 

would render this record less necessary. Nevertheless, it is important to note that the record in this study 

referred to an iconic representation; it is possible that asking children to create a symbolic representation to 

record their solutions (e.g. using written numbers) would have been more beneficial, not least because it is 

much quicker to refer to and compare previous solutions.  



Children in this study also identified significantly more solutions that were related to the previous 

solutions: compensation and commutative, when using physical materials. This suggests that in using physical 

materials, children had more opportunity to recognise these important numerical relations. In contrast to 

Study 1, however, they also identified significantly more other solutions. Consequently, it is possible that the 

benefits of physical materials simply helped children to identify more solutions, perhaps for motivational 

reasons. 

It is not clear how PDL accounts for possible motivational effects. Using physical, as opposed to other 

representations, might encourage children to adapt the materials more, thereby leading them to develop 

more ideas. Nevertheless, there was reason to believe that the advantage of the materials in this study was 

not purely motivational. Firstly, there were no clear signs of loss of motivation in either condition (e.g., loss 

of visual concentration). Secondly, sessions were relatively short (around 12 minutes on average), especially 

for the older children where the advantage of physical materials was still clear. Finally, if children were 

losing motivation, a fall in performance over the three problems might have been expected, yet there were 

no such differences in either condition. Therefore, although it is not possible to rule out motivation as a 

key factor in differences between conditions, it is unlikely to be the only factor. 

Interestingly, there were no differences in the number of equal (or the closest to equal possible, e.g. 3 and 

4) partitioning solutions between physical and pictorial conditions. Therefore, this suggests that the 

prompt to partition equally was not attributable to the manipulative properties of the external 

representation. This raises the question of why children did not partition pictorial materials equally in 

Martin and Schwartz’ fraction study. Two possibilities are that, firstly, children were required to partition 

into varying types of equal groups in Martin and Schwartz’s study (e.g. 3 partitions for 12), in contrast, in 

this study they only partitioned amounts into two groups. Perhaps more importantly was the decision in 

this study to present pictorial materials in a line (affording symmetry); they were presented randomly in the 

fraction study. The decision to present materials linearly in this study aimed to not disadvantage the 

pictorial condition unnecessarily. Furthermore, it is arguably more typical, and hence ecologically valid to 

present pictorial materials in such a linearly arranged configuration. 

4. Conclusions 

We currently lack an explanatory model that allows us to predict if and when physical materials, or 

‘manipulatives’, will support children’s learning. This paper has focused on the representational properties 

of manipulatives, helping to explain similar work that has found that children provide more solutions using 

manipulatives than using a pictorial representation or with no external representation. However, the more 

significant focus of this paper concerns how physical representations can encourage the use of more 

efficient strategies - strategies that can be employed in the later absence of materials. By further examining 

the manipulatives properties of materials, the studies in this paper both support and help to elucidate an 

existing theoretical model - PDL. 

4.1 Implications for the Theory of Physically Distributed Learning 

According to PDL, physically manipulating the environment can lead to changes in thinking (i.e. learning) 

when children have incipient ideas. However, it is not clear if and how the representational properties of 



manipulatives can foster particular actions that can subsequently be interpreted. The studies in this paper 

suggest that manipulatives can encourage particular actions such as moving objects into equal groups, 

swapping over groups of objects, or moving objects on by one between groups. Such actions represent 

numerically significant part-whole relationships. Consequently, the representational properties of 

manipulatives may lead to changes in children’s thinking through the iterative relationship between external 

and internal representations (Scaife & Rogers, 1996) 

In support of PDL, the second study showed how manipulatives supported children more than paper-

based representations – allowing them to identify significantly more consecutive solutions that were 

related. However, it was not quite clear if this was a generalised effect as children identified more solutions 

using all strategies including ‘other’. It is important to note a clear methodological difference in the set up of 

this study compared to Martin and Schwartz: children were provided with the initial amount, and the 

materials in physical and pictorial conditions were presented linearly. In contrast, in Martin and Schwartz’s 

study, children were not given the correct initial amount and representations were presented in random 

configurations. This may have favoured the physical condition, where manipulation allows children to 

create more ordered configurations (indeed, many of our children lined up blocks), and also to count out 

and remove unrequired materials.  

4.2 Generalizability of findings 

It was predicted in this paper that the representational properties of physical materials would influence 

children’s strategies. Rather than simply creating more unrelated solutions, manipulatives encouraged 

children to create configurations that related to the previous configurations: moving a single block from 

one group to another or swapping over groups. Manipulatives may therefore support problem solving 

when they encourage actions that correspond to more particular procedures or concepts; for example, 

exploring the way quantities can be partitioned equally in different ways for fraction problems, exploring 

odd and even numbers, or even exploring multiplication as repeated addition of equal amounts. The ways 

in which children were able to partition and then recollect groups of blocks may be important in children’s 

early strategies for combining amounts in addition, or separating amounts for subtraction. Indeed, it has 

been proposed that children’s early experiences with objects provides the foundation for such thinking 

later (Resnick, 1983).  

It is important to consider when the actions encouraged by manipulatives may not be the most beneficial 

for learning. For example, in our studies, partitioning equally to begin with was not the most efficient 

strategy. Similarly, in our previous work, we found that children were more likely to employ a less 

developed count-all strategy for addition problems when using manipulatives compared to paper or no 

materials [blind for review]. There are also some numerical strategies that are not easily represented 

through actions with physical materials, such as doubling the amount of objects or combining a collection 

of ten objects when exploring tens and units. This is where virtual manipulatives may offer particular 

benefits by enabling designers to create certain perceptual and manipulative properties that are not easily 

produced physically (e.g. Figure 11). Indeed, Sarama & Clements (2009) describe such benefits of virtual 

materials alongside other benefits such as linking concrete and symbolic representations with feedback. 

Recording and replaying students’ actions may be another benefit of virtual materials.  



 

Figure 11: Virtual Manipulatives12 

4.3 From Problem solving to Learning 

The studies in this paper focus on problem solving in a short-term context. Therefore it is difficult to 

evaluate claims about longer term effects on learning and conceptual development. Nevertheless, there are 

several observations that are significant. Firstly, physical materials fostered the use of strategies that 

children can employ without materials (and older children do in the form of ‘decomposition’ strategies in 

addition, see  Martins-Mourao & Cowan, 1998). Secondly, a couple of children changed to these more 

developed strategies using materials during the session and continued to do so. This suggests a certain 

amount of self-evaluation. Thirdly, several children were observed to enumerate blocks without seeming to 

count, even when looking away, whilst identifying related solutions – suggesting they may have employed 

the strategy mentally. Finally, the pattern of solutions of one child was of particular interest. When 

partitioning 8 using physical objects, the child changed to a compensation strategy, moving objects one at a 

time. In the first couple of solutions (7 & 1, 6 & 2), they clearly counted out the larger amount (touching 

blocks to support counting). After this, they continued moving one block at a time but without any clear 

counting. Significantly they identified the following solutions: 5 & 3, 4 & 2, 3 & 1. This tentatively suggests 

that the child was attempting to identify solutions mentally (making the error of subtracting from both 

parts), whilst continuing with the same physical actions. Further work could examine how these observed 

behaviours play out over time: whether or not children move toward more developed strategies over 

repeated sessions and whether they display more signs of independence from materials. 

The iterative relationship between procedural and conceptual knowledge (Rittle-Johnson, Siegler, & Alibali, 

1999) suggests that the result of encouraging more developed strategies may be significant for learning in 

this domain. However, as Rittle-Johnson et al. (1999) argue, whilst there is evidence demonstrating how 

conceptual knowledge can develop from children’s improved procedural knowledge, the relationship is not 

clearly defined and there are examples where one does not lead to the other. The authors therefore suggest 

that: “procedural knowledge may only lead to greater conceptual knowledge under certain circumstances, such as after extensive 

                                                           

12 National Library of Virtual Manipulatives: http://nlvm.usu.edu  

http://nlvm.usu.edu/


experience using the procedure, or when the relation between the procedure and the underlying concepts is relatively 

transparent.” (Rittle-Johnson et al., 1999, p. 177).  

The degree of transparency between physical materials and the concepts they are meant to represent is one 

of significant debate (Stacey, Helme, Archer, & Condon, 2001) but does raise an important question 

concerning the generalizability of findings from this study: to what extent do manipulatives represent 

different types of numerical concepts? Indeed, the problems presented in this study referred to physical 

things (bananas/cows) and may have unfairly benefited the use of a physical representation. It is possible 

that the benefits of manipulatives are significantly mitigated in numerical problems that are not as easily 

represented through collections of objects (e.g. time or distance problems). An interesting question for 

further work is the change of value of physical representations in this task when the problems are 

presented only symbolically.  

4.4 Limitations 

A challenge of research into educational materials such as manipulatives is that of balancing ecological 

validity with an experimental approach aiming to elucidate a complex relationship of variables. The first 

study intended to maintain ecological validity by employing a common manipulative, in a curriculum 

relevant problem with an interviewer’s role of simulating a teacher who has set up a learning environment 

but is trying to encourage children’s independent problem solving. Yet, many aspects of the study are less 

familiar, from the interviewer’s capacity to record children solutions to the demonstration and prompts 

that were balanced across children. A myriad of decisions, such as providing children with the initial 

amount of materials to the use of a concrete problem context, is likely to have influenced children’s 

performance (and possibly exaggerated the benefits of manipulatives). For this reason, the effect of 

materials on children’s strategies is perhaps more illuminating than the finding that children provided more 

solutions. 

The challenge of maintaining ecological validity was more pronounced in the second study, where the 

nature of each condition may not have been familiar to children, and findings may have been quite 

different if children had been provided with an opportunity to familiarise themselves with the materials. 

Significantly, the study examined the role of providing a record of solutions to children, yet the decision to 

let children manipulate the same set of blocks meant that they did have a record of the last solution 

created. In the Pictorial No Record condition, children did not have such a record, although the lack of 

differences between the Pictorial No Record and Pictorial Record conditions suggests this may not have 

been too influential. This methodological issue does raise pertinent questions about the role played by the 

representational properties of manipulatives, and the ease in which they may be ‘designed out’ in 

comparison studies. 

4.5 Implications for Education 

This paper has intended to contribute toward the goal of informing teachers about how and when to use 

manipulatives in the classroom. A clear limitation is that the study has examined the use of materials in a 

particular context, using a particular problem, and a particular type of material; it is likely that changing 

these variables would have impacted children’s performance. Nevertheless, we believe the findings are 

informative for two main reasons. 



Firstly, the study was designed to be experimental but not unfamiliar to a typical classroom. The materials 

(Unifix Blocks) are widespread with limited extraneous features intended to reduce the risk of distracting 

children (Uttal et al., 1997) and support transfer (Kaminski, Sloutsky, & Heckler, 2009). The problem task 

used is highly relevant to a common numerical goal of learning number bonds to ten. Therefore, on a 

more specific level, the studies contribute to other work (e.g. Baroody, 2006) aiming to support this more 

specific educational goal. 

A more significant contribution, however, is the broader message of aiming to develop children’s thinking 

with materials to support their later ability without materials. The findings from this study demonstrate 

how physical materials are able to make important numerical relationships explicit, such as how amounts 

can be added in any order, and how the materials can be presented in a way to help children independently 

explore these relationships.  

This paper aims to contribute to the on-going debate about if and how manipulatives support learning by 

drawing attention to how the representational properties of the materials can prompt particular problem 

solving actions. It has been emphasised throughout the paper that the influence of materials will very much 

be mediated by a host of factors, most significantly the teacher’s role. Through greater understanding in 

this area, it may be possible to offer clearer guidance to teachers on how and when to use these.  
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