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Abstract 39 

The primary objective of the European Space Agency’s 7th Earth Explorer mission, BIOMASS, is to 40 

determine the worldwide distribution of forest above-ground biomass (AGB) in order to reduce the 41 

major uncertainties in calculations of carbon stocks and fluxes associated with the terrestrial biosphere, 42 

including carbon fluxes associated with Land Use Change, forest degradation and forest regrowth. To 43 

meet this objective it will carry, for the first time in space, a fully polarimetric P-band synthetic aperture 44 

radar (SAR). Three main products will be provided: global maps of both AGB and forest height, with 45 

a spatial resolution of 200 m, and maps of severe forest disturbance at 50 m resolution (where “global” 46 

is to be understood as subject to Space Object tracking radar restrictions). After launch in 2022, there 47 

will be a 3-month commissioning phase, followed by a 14-month phase during which there will be 48 

global coverage by SAR tomography. In the succeeding interferometric phase, global polarimetric 49 

interferometry Pol-InSAR coverage will be achieved every 7 months up to the end of the 5-year mission. 50 

Both Pol-InSAR and TomoSAR will be used to eliminate scattering from the ground (both direct and 51 

double bounce backscatter) in forests. In dense tropical forests AGB can then be estimated from the 52 

remaining volume scattering using non-linear inversion of a backscattering model. Airborne campaigns 53 

in the tropics also indicate that AGB is highly correlated with the backscatter from around 30 m above 54 

the ground, as measured by tomography. In contrast, double bounce scattering appears to carry 55 

important information about the AGB of boreal forests, so ground cancellation may not be appropriate 56 

and the best approach for such forests remains to be finalized. Several methods to exploit these new 57 

data in carbon cycle calculations have already been demonstrated. In addition, major mutual gains will 58 

be made by combining BIOMASS data with data from other missions that will measure forest biomass, 59 

structure, height and change, including the NASA Global Ecosystem Dynamics Investigation lidar 60 

deployed on the International Space Station after its launch in December 2018, and the NASA-ISRO 61 

NISAR L- and S-band SAR, due for launch in 2022. More generally, space-based measurements of 62 

biomass are a core component of a carbon cycle observation and modelling strategy developed by the 63 

Group on Earth Observations. Secondary objectives of the mission include imaging of sub-surface 64 

geological structures in arid environments, generation of a true Digital Terrain Model without biases 65 

caused by forest cover, and measurement of glacier and icesheet velocities. In addition, the operations 66 



4 

 

needed for ionospheric correction of the data will allow very sensitive estimates of ionospheric Total 67 

Electron Content and its changes along the dawn-dusk orbit of the mission.  68 

 69 

1. Introduction: The role of biomass in the global carbon cycle and climate 70 

For millennia, humanity has depended on woody biomass from forests as a source of materials and 71 

energy (Rackham and Moody, 1996; Radkau, 2012), and this dependence shows no sign of abating. For 72 

example, around a third of the world’s population relies on biomass for energy, and in sub-Saharan 73 

Africa around 81% of the energy use by households is provided by burning woody biomass (World 74 

Bank, 2011). At the same time, forest, and its associated biomass, has often been treated as an 75 

impediment to development, and huge tracts have been cleared, and continue to be cleared, to make 76 

way for agriculture, pasture and agro-forestry (FAO, 2016). However, a significant shift in the 77 

relationship between mankind and biomass has occurred as climate change has become of pressing 78 

international concern and the role of forest biomass within this process has become clearer (IPCC, 2007, 79 

2013).  80 

Climate change is intimately connected with the global carbon balance and the fluxes of greenhouses 81 

gases, especially carbon dioxide (CO2), between the Earth’s surface and the atmosphere 82 

(Intergovernmental Panel on Climate Change (IPCC), 2007, 2013). In particular, an unequivocal 83 

indication of man’s effect on our planet is the accelerating growth of atmospheric CO2. The principal 84 

contribution (around 88%) to this growth is emissions from fossil fuel burning, with most of the 85 

remainder arising from Land Use Change in the tropics (Le Quéré, 2018). However, the increase in the 86 

concentration of atmospheric CO2 between 2007 and 2016 is only about half (44%) of the emissions. 87 

Because CO2 is chemically inert in the atmosphere, the “missing” half of the emissions must flow back 88 

into the Earth’s surface. Current estimates (Le Quéré et al., 2018) suggest that around 28% of the total 89 

emissions are taken up by the land and 22% by the oceans (leaving around 6% unaccounted for), but 90 

there are large uncertainties in these values, especially the land uptake, whose value has usually been 91 

estimated as a residual that ensures the total amount of carbon is conserved, as expressed in eq. (1): 92 

 Uland = Eff + Elb – (ΔCatmos + Uocean) .      (1) 93 
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Here Eff denotes fossil fuel emissions; Elb is net land biospheric emissions, comprising both Land Use 94 

Change and ecosystem dynamics, and including alterations to biomass stocks linked to process 95 

responses to climate change, nitrogen deposition and rising atmospheric CO2; ΔCatmos is the change in 96 

atmospheric CO2; and Uland and Uocean are net average uptake by the land and ocean respectively. In eq. 97 

(1) the quantities on the right-hand side are typically estimated on an annual basis or as a decadal 98 

average, using a mixture of measurements and models, to yield Uland. However, in Le Quéré et al. (2018) 99 

Uland is estimated independently using dynamic global vegetation models. Under both approaches Uland 100 

has the largest uncertainty of any term in eq. (1), estimated as 0.8 GtC/yr, which is 26% of its estimated 101 

value of 3.0 GtC/yr (1 GtC = 109 t of C which is equivalent to 3.67x109 t of CO2). Moreover, the Land 102 

Use Change flux (which is the difference between emissions from forest loss and uptake of CO2 by 103 

forest regrowth) has an uncertainty of 0.7 GtC/yr, which is 54% of its estimated value of 1.3 GtC/yr. 104 

Since the fractional carbon content of dry biomass is around 50% (though with significant inter-species 105 

differences [Thomas and Martin, 2012]), biomass change is a fundamental component in these two land 106 

fluxes, controlling the emissions from forest disturbance and the uptake of carbon by forest growth (e.g. 107 

Pan et al. 2011). This is why above-ground biomass (AGB) is recognised as an Essential Climate 108 

Variable (ECV) within the Global Climate Observing System (2015, 2017). 109 

Climate change concerns have therefore made it imperative to obtain accurate estimates of biomass and 110 

its changes. Unfortunately, where this information is most needed – the tropics – is where almost no 111 

data have been gathered (Schimel et al., 2015). This is in contrast to forests in the temperate and southern 112 

parts of the boreal zones whose economic importance has driven the development of extensive national 113 

inventories (although there are vast areas of Alaska, Northern Canada, and East Eurasia that do not have 114 

forest inventories because of their low economic importance). The tropical forests cover an enormous 115 

area (~18 million km2) and offer huge logistical challenges for ground-based biomass inventory. They 116 

are also crucial in political efforts to mitigate climate change. In particular, the United Nations 117 

Convention on Climate Change (UNFCCC) through its Reduction of Emissions from Deforestation and 118 

Degradation (REDD+) initiative (UNFCCC, 2016) aims to use market and financial incentives to 119 
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transfer funds from the developed world to the developing countries in the tropical belt to help them 120 

reduce emissions by preservation and management of their forests (UN-REDD Programme, 2008).  121 

Estimates of biomass losses have focused on deforestation, i.e. conversion of forest land to other land 122 

use, which results in complete removal of AGB. However, also significant, but missing from most 123 

current estimates, is forest degradation. This is the loss of part of biomass, for instance removal of large 124 

stems for timber or of understorey plants for replacement by cocoa, or through increased fire along forest 125 

edges.  126 

UN-REDD and related programmes have given significant impetus to the acquisition of more in situ 127 

data in developing countries and this adds to the information available in the periodic reports of the 128 

United Nations (UN) Food and Agriculture Organisation (FAO) (FAO 2006, 2010, 2016). However 129 

national data in many cases have large gaps, sampling biases, inconsistency of methods, lack spatially 130 

explicit information and contain unrepresentative samples, particularly in developing countries. As a 131 

result, major efforts have been made to formulate more consistent global approaches that combine forest 132 

inventory and satellite data to estimate AGB. Such endeavours have been greatly hampered by the fact 133 

that, up until the launch of the Global Ecosystem Dynamics Investigation (GEDI) instrument (see 134 

below), there has never been any spaceborne sensor designed to measure biomass, so space-based 135 

estimates of biomass have relied on opportunistic methods applied to non-optimal sensors, with the 136 

limitations this implies. 137 

In the tropics, the most significant developments have been based on forest height estimates derived 138 

from the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation 139 

Satellite (ICESat) before its failure in 2009 (Lefsky, 2005, 2010). Combining GLAS data with other 140 

EO and environmental datasets and in situ biomass measurements has led to the production of two pan-141 

tropical biomass maps (Saatchi et al. 2010; Baccini et al. 2012) at grid scales of 1 km and 500 m 142 

respectively; differences between these maps and differences between the maps and in situ data are 143 

discussed in Mitchard et al. (2013, 2014). Refinements of these maps have been produced by Avitabile 144 

et al. (2016) and Baccini et al. (2017) based on essentially the same satellite datasets. 145 
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For boreal and temperate forests, methods have been developed to estimate Growing Stock Volume 146 

(GSV, defined as the volume of wood in all living trees in an area with diameter at breast height above 147 

a given threshold) from very long time series of C-band Envisat satellite radar data (Santoro et al. 2011). 148 

Multiplying these GSV estimates by wood density allowed Thurner et al. (2014) to estimate the carbon 149 

stock of forests north of 30°N. Reliable GSV estimates using these methods are only possible at spatial 150 

resolutions much coarser than the underlying radar data: by averaging to 0.5°, the relative RMS 151 

difference between estimated GSV and reference data was consistently found to lie in the range 20–30% 152 

(Santoro et al. 2013). Further refinements to the methodology and its combination with ALOS PALSAR-153 

2 data are given in the Final Report of the ESA GlobBiomass project (Schmullius et al., 2017). 154 

L-band radar offers access to biomass values up to around 100 t/ha before losing sensitivity (e.g. 155 

Mitchard et al., 2009). Under the JAXA Kyoto and Carbon Initiative, the ALOS L-band PALSAR-1 156 

acquired a systematic five-year archive of forest data before its failure in April 2011 (Rosenqvist et al., 157 

2014). PALSAR-2 launched in spring 2014 and has continued this systematic acquisition strategy, but 158 

current JAXA data policy makes scene data very expensive. Annual mosaics are freely available and 159 

have been used to map woodland savanna biomass at continental scale (Bouvet et al., 2018), but the 160 

mosaics combine data from different times and environmental conditions, so further processing may be 161 

needed to exploit them for biomass estimation (Schmullius et al., 2017). L-band data will also be 162 

acquired by the two Argentinian Microwave Observation Satellites (SAOCOM), the first of which was 163 

launched on October 8, 2018, with the second due in 2019. Their main objectives are measurements of 164 

soil moisture and monitoring of hazards, such as oil spills and floods, and their value for global forest 165 

observations is not yet clear.  166 

C-band (Sentinel-1, Radarsat) and X-band (Tandem-X) radar instruments are in orbit but at these 167 

frequencies most of the backscatter is from the leaves and small twigs, so they have limited value for 168 

biomass estimation except within the context of long time series at C-band (Santoro et al. 2011) and, 169 

for TanDEM-X, when a ground Digital Terrain Model (DTM) is available and the height-to-biomass 170 

allometry is robust (Persson et al., 2017; Askne et al., 2017). 171 
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An exciting new development is the deployment on the International Space Station of the NASA GEDI 172 

lidar instrument after its launch on December 5, 2018 (see Section 10). This mission aims to sample 173 

forest vertical structure across all forests between 51.5 S and 51.5 N, from which estimates of the 174 

mean and variance of AGB on a 1 km grid will be derived. In addition, ICESat-2 launched on September 175 

15, 2018; although it is optimised for icesheet, cloud and aerosol applications, and uses a different 176 

technical approach from ICESat-1 based on photon counting, preliminary results suggest that it can 177 

provide information on both forest height and structure.  178 

It is against this scientific and observational background that BIOMASS was selected by the European 179 

Space Agency (ESA) in 2013 as its 7th Earth Explorer mission, and the satellite is now under production 180 

by a consortium led by Airbus UK for launch in 2022. The initial mission concept is described in Le 181 

Toan et al. (2011), but there have been major developments since that time in almost all aspects of the 182 

mission: the measurement and calibration concepts, the scientific context, the methods to recover 183 

biomass from the satellite data, the exploitation of biomass in carbon cycle and climate modelling, the 184 

availability of P-band airborne campaign data and high quality in situ data, and the overall capability to 185 

estimate biomass from space. It is therefore timely to provide a comprehensive description of the current 186 

mission concept, and this paper sets out to do so.  187 

After a review of the mission objectives (Section 2), the associated measurement techniques 188 

(polarimetry, polarimetric interferometry [Pol-InSAR] and SAR tomography [TomoSAR]) are 189 

described in Section 3.  Pol-InSAR and TomoSAR require the combination of multi-temporal stacks of 190 

data; this imposes very strong conditions on the BIOMASS orbit pattern, with significant consequences 191 

for the production of global biomass products (Section 4). The orbit pattern also imposes strong 192 

requirements on the ability of the AGB and height inversion techniques, discussed in Section 5, to adapt 193 

to changing environmental conditions. Section 6 deals with the use of BIOMASS data to estimate severe 194 

forest disturbance, while Section 7 describes the development of the reference datasets to be used for 195 

algorithm calibration and product validation. In Section 8 we discuss developments in how BIOMASS 196 

data can be used to estimate key carbon cycle and climate variables. Section 9 addresses a range of 197 

secondary objectives. Section 10 provides a view on how BIOMASS complements other upcoming 198 
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missions devoted to forest structure and biomass, in particular the GEDI lidar and the NASA-ISRO 199 

NISAR L- and S-band mission. Finally, Section 11 discusses how BIOMASS will contribute to an 200 

overall system for measuring biomass and its changes in the context of a global carbon cycle 201 

management scheme and presents our general conclusions. 202 

2. BIOMASS mission objectives and data properties 203 

The primary objective of the BIOMASS mission is to determine the worldwide distribution of forest 204 

above-ground biomass (AGB) in order to reduce the major uncertainties in calculations of carbon stocks 205 

and fluxes associated with the terrestrial biosphere, including carbon fluxes associated with Land Use 206 

Change, forest degradation and forest regrowth. In doing so, it will provide support for international 207 

agreements such as REDD+ and UN Sustainable Development Goals (#13: climate action; #15: life on 208 

land). In addition it has several secondary objectives, including mapping sub-surface geology, 209 

measuring terrain topography under dense vegetation and estimating glacier and icesheet velocities 210 

(ESA, 2012). 211 

Although BIOMASS aims at full global coverage, it will at least cover forested areas between 75 N 212 

and 56 S, subject to US Department of Defense Space Object Tracking Radar (SOTR) restrictions. 213 

These restrictions do not currently allow BIOMASS to operate within line-of-sight of the SOTR radars 214 

and mainly exclude the North American continent and Europe (Fig. 1, reproduced from Carreiras et al., 215 

2017). For secondary applications, if global coverage is not possible, data will be collected on a best 216 

effort basis after covering the primary objectives, with priorities defined as in ESA (2015).  217 
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 218 

Fig. 1. Global ecological regions of the world (FAO 2012) with the area affected by Space Objects 219 

Tracking Radar (SOTR) stations highlighted in yellow. Only land areas between 65o South and 85o 220 

North are represented (figure reproduced courtesy of Joao Carreiras). 221 

 222 

The BIOMASS data product requirements to meet the primary mission objectives are (ESA, 2015): 223 

1. Above-ground forest biomass (AGB), defined as the dry weight of live organic matter above 224 

the soil, including stem, stump, branches, bark, seeds and foliage woody matter per unit area, 225 

expressed in t ha-1 (FAO, 2009). It does not include dead mass, litter and below-ground biomass. 226 

Biomass maps will be produced with a grid-size of 200m x 200m (4 ha). 227 

2. Forest height, defined as upper canopy height according to the H100 standard used in forestry 228 

expressed in m, mapped using the same 4 ha grid as for biomass. H100 is defined as the average 229 

height of the 100 tallest trees/ha (Philip, 1994). 230 

3. Severe disturbance, defined as an area where an intact patch of forest has been cleared, 231 

expressed as a binary classification of intact vs deforested or logged areas, with detection of 232 

forest loss being fixed at a given level of statistical significance. 233 

Further properties of these products are defined in Table 1. Note that:  234 
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 The biomass and height products will be produced on a 4 ha grid, while the disturbance product 235 

is at the full resolution of the instrument after averaging to 6 looks in azimuth, i.e., around 50 236 

m x 50 m. This is because the large changes in backscatter associated with forest clearance 237 

mean that disturbance can be detected using less precise estimates of the polarimetric 238 

covariance and coherence matrices than are needed for biomass and height estimation.  239 

 If the true AGB exceeds 50 t ha–1 then the RMS error (RMSE) of its estimate is expected to 240 

depend on biomass and be less than AGB/5. For all values of AGB < 50 t ha–1 the RMSE is 241 

stipulated to be 10 t ha–1 or better, though it is likely that changes in ground conditions, such as 242 

soil moisture, may cause the RMSE to increase beyond this value. Similarly, the RMSE of 243 

estimates of forest height should be less than 30% of the true forest height for trees higher than 244 

10 m. 245 

 Below-ground biomass cannot be measured by BIOMASS (or any other remote sensing 246 

instrument), but can be inferred from above-ground biomass using allometric relations 247 

combined with climate data (Cairn et al., 1997; Mokany et al., 2006; Thurner et al., 2014). In 248 

particular, Ledo et al. (2018) used an extensive tropical, temperate and boreal forest dataset to 249 

develop a regression, with just tree size and mean water deficit as predictor variables, which 250 

explains 62% of the variance in the root-to-shoot ratio. Therefore, throughout this paper, 251 

‘biomass’ denotes ‘above-ground biomass’. 252 

Table 1 Summary of primary BIOMASS Level 2 products. Achieving global coverage requires 425 253 

days during the initial Tomographic Phase and 228 days for each cycle of the subsequent Interferometric 254 

Phase. RMSE indicates Root Mean Square Error. “Global” is to be understood as subject to Space 255 

Object Tracking Radar restrictions (Carreiras et al., 2017). 256 

 257 

Level 2 

Product 

Definition Information Requirements 

Forest 

biomass 

Above-ground biomass expressed 

in t ha–1. 

 200 m resolution 
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 RMSE of 20% or 10 t ha–1 for biomass < 50 

t ha–1 

 1 biomass map every observation cycle 

 global coverage of forested areas 

Forest height Upper canopy height defined 

according to the H100 standard  

 200 m resolution  

 accuracy required is biome-dependent, but 

RMSE should be better than 30% for trees 

higher than 10 m 

 1 height map every observation cycle 

 global coverage of forested areas 

Severe 

disturbance 

Map product showing areas of 

forest clearance 

 50 m resolution 

 detection at a specified level of significance 

 1 map every observation cycle 

 global coverage of forested areas 

 258 

3. The BIOMASS system and measurement techniques 259 

 260 

BIOMASS will be a fully polarimetric SAR mission operating at P-band (centre frequency 435 MHz) 261 

with 6 MHz bandwidth, as permitted by the International Telecommunications Union under a secondary 262 

allocation (the primary allocation is to the SOTR system). The choice of P-band is mandatory for 263 

measuring biomass with a single radar satellite (necessary for affordability within the ESA cost 264 

envelope) for three main reasons (ESA, 2008, 2012; Le Toan et al., 2011): 265 

1. P-band radiation can penetrate the canopy in all forest biomes and interacts preferentially with 266 

the large woody vegetation elements in which most of the biomass resides; 267 

2. Backscatter at P-band is more sensitive to biomass than at higher frequencies (X-, C-, S- and 268 

L-bands); lower frequencies (e.g. VHF) display even greater sensitivity (Fransson et al., 2000) 269 

but present formidable challenges for spaceborne SAR because of ionospheric effects;  270 
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3. P-band displays high temporal coherence between passes separated by several weeks, even in 271 

dense forest (Ho Tong Minh et al., 2012), allowing the use of Pol-InSAR to estimate forest 272 

height and retrieval of forest vertical structure using tomography. 273 

Here (1) is the crucial physical condition: it underlies the sensitivity in point (2) and, through the relative 274 

positional stability of the large woody elements, combined with the greater phase tolerance at longer 275 

wavelengths, permits the long-term coherence needed for (3). 276 

The satellite will carry a 12 m diameter reflector antenna, yielding a single-look azimuth resolution of 277 

~7.9 m. A polarimetric covariance product will also be generated by averaging 6 looks in azimuth, 278 

giving pixels with azimuth resolution ~50 m. Because of the allotted 6 MHz bandwidth, the single-look 279 

slant range resolution will be 25 m, equivalent to a ground range resolution of 59.2 m at an incidence 280 

angle of 25. Roll manoeuvres will allow the satellite to successively generate three sub-swaths of width 281 

54.32, 54.41 and 46.06 km, giving a range of incidence angles across the combined swath from 23 to 282 

33.9. It will be in a sun-synchronous orbit with a near dawn-dusk (06:00 ± 15 min) equatorial crossing 283 

time; the Local Time of the Ascending Node (LTAN) will be on the dawn-side, the system will be left-284 

looking and the orbit inclination will be 98, with the highest latitude in the northern hemisphere 285 

attained on the night-side. This orbit is chosen to avoid the severe scintillations that occur in the post-286 

sunset equatorial ionosphere (Rogers et al., 2013). Observations will be made during both the ascending 287 

and descending passes. 288 

BIOMASS displays major advances compared to all previous SAR missions in its use of three 289 

complementary technologies to provide information on forest properties: polarimetry (PolSAR), Pol-290 

InSAR and TomoSAR. All acquisitions will be fully polarimetric, i.e. the amplitude and phase of the 291 

HH, VV, HV & VH channels will be measured (HV indicates horizontal polarization on transmit and 292 

vertical polarization on receive, with the other channels being similarly defined).  This is in itself an 293 

advance, but BIOMASS will also be the first mission to systematically employ the Pol-InSAR technique 294 

to measure forest height. Even more innovative is its tomographic capability, which will allow three-295 

dimensional imaging of forests. 296 



14 

 

The Tomographic Phase will immediately follow the initial 3-month Commissioning Phase, and will 297 

provide tomographic mapping of all imaged forest areas. Global coverage requires 425 days (~14 298 

months) in order to provide 7 passes, each separated by 3 days, for each tomographic acquisition. The 299 

remainder of the 5-year mission will be taken up by the Interferometric Phase, during which 3 passes, 300 

each separated by 3 days, will be combined in 3-baseline Pol-InSAR. Each cycle of the Interferometric 301 

Phase will require 228 days (~7 months) to provide global coverage. Note that these techniques are 302 

nested: the data gathered for tomography will yield multiple Pol-InSAR and PolSAR measurements, 303 

and each Pol-InSAR image triplet also provides three PolSAR images.  304 

Associated with the highly innovative measurement concepts of the mission are completely new 305 

challenges in external calibration arising from the orbital pattern needed for the tomographic and Pol-306 

InSAR phases of the mission (Section 4), the strong effects of the ionosphere at P-band, and the lack of 307 

pre-existing P-band data except over very limited parts of the globe. Together these create problems 308 

that can only be solved by combining infrequent visits to instrumented calibration sites with systematic 309 

exploitation of the properties of distributed targets and targets of opportunity. An overall approach to 310 

addressing these problems, including ionospheric correction, radiometric and polarimetric calibration, 311 

and providing the required geolocation accuracy is described in Quegan et al. (2018). 312 

4. The BIOMASS orbit and its implications 313 

In the Tomographic Phase, BIOMASS needs to be placed in a very precise repeat orbit in which a given 314 

scene is imaged 7 times with 3-day spacing. These acquisitions will be from slightly different positions 315 

separated by 15% of the critical baseline (i.e. 0.823 km) at the equator, which is necessary to preserve 316 

coherence. In this orbit, it takes 18 days to acquire the 7 images needed for each of the 3 sub-swaths, so 317 

that tomography over the full swath (comprising the 3 sub-swaths) occupies a period of 60 days. Once 318 

this has been achieved, a drift manœuvre will raise the satellite in altitude and then return it to its 319 

nominal altitude of 671.9 km. This allows the Earth to rotate below the satellite, and the next 320 

tomographic acquisition period covers a new swath that is adjacent to the previous one. Repeating this 321 

sequence 6 + 1/3 times yields global coverage and takes 425 days (the extra third corresponds to 322 

coverage in swath 1). The orbit pattern for the Interferometric Phase uses essentially the same concept, 323 
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but because only 3 images are needed to form the Pol-InSAR product, imaging a full swath requires 324 

only 24 days, and global coverage takes 228 days. 325 

These properties of the BIOMASS orbit pattern, driven by the requirement for global coverage using 326 

coherent imaging techniques, have profound implications for biomass retrieval in time and space. 327 

Acquisitions in adjacent swaths are separated by 2 months in the Tomographic Phase and by a little less 328 

than a month in each cycle of the Interferometric Phase. Hence there are likely to be significant changes 329 

in environmental conditions between different swaths that make up the global coverage. In addition, 330 

because each cycle of the Interferometric Phase takes 7 months, the acquisitions become steadily more 331 

out of phase with annual geophysical cycles, such as the Amazonian and West African inundation 332 

cycles. This means that the BIOMASS inversion algorithms have to be sufficiently robust that they are 333 

negligibly affected by environmental changes. Incomplete compensation for such changes will manifest 334 

themselves as systematic differences between adjacent swaths or repeat swaths gathered in different 335 

cycles. As an example, boreal forests freeze during winter and their backscatter significantly decreases, 336 

so the winter season will most likely not be useful for biomass estimation. 337 

 338 

5. Forest AGB and height estimation techniques 339 

 340 

BIOMASS will exploit properties of all three SAR techniques, PolSAR, Pol-InSAR and TomoSAR, to 341 

estimate biomass, while both Pol-InSAR and TomoSAR will provide estimates of forest height. 342 

However, because BIOMASS will be the first spaceborne P-band SAR, the experimental data needed 343 

to support the development and testing of these techniques is based on limited airborne and ground-344 

based measurements. Six major ESA airborne campaigns were carried out (BioSAR-1, -2 and -3 in the 345 

boreal zone, and three in tropical ecosystems: TropiSAR in French Guiana, AfriSAR in Gabon and 346 

Indrex-2 in Indonesia) using the E-SAR and F-SAR (DLR, Germany) and SETHI (ONERA, France) P-347 

band SARs (see Table 2, which includes the objectives of the campaigns and essential properties of the 348 

test-sites). These campaigns have provided the most accurate and complete set of P-band SAR (PolSAR, 349 

Pol-InSAR and TomoSAR) and associated in situ data currently available over boreal and tropical 350 
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forests. In addition, long-term continuous P-band tower-based measurements were made in French 351 

Guiana (Tropiscat), Ghana (Afriscat) and Sweden (Borealscat) to investigate diurnal and seasonal 352 

variations in backscatter and temporal coherence. Earlier P-band datasets from the NASA AirSAR 353 

system were also helpful, especially tropical forest data from Costa Rica, to extend the range of tropical 354 

biomass values (Saatchi et al., 2011), and NASA was heavily involved in the AfriSAR campaign, 355 

providing lidar coverage of the AfriSAR test-sites (Labrière et al., 2018). No specific ESA campaigns 356 

were conducted in temperate forests, but substantial amounts of tomographic data are available for such 357 

forests from experimental campaigns carried out by DLR. 358 

Table 2 Campaign data used in developing and testing BIOMASS retrieval algorithms. 359 

 360 

Campaign Objectives Test sites Time Forest conditions 

TropiSAR, SETHI 

(Dubois-Fernandez et 

al., 2012) 

Biomass estimation 

in tropical forest; 

temporal stability of 

coherence  

Paracou & 

Nouragues, 

French Guiana 

Aug. 2009 Tropical rain 

forest, AGB 300-

500 t/ha, lowland 

and hilly terrain 

Indrex-2, E-SAR 

(Hajnsek et al., 

2009a) ; not 

tomographic 

Height retrieval in 

tropical forest ; 

measurement of 

repeat-pass temporal 

decorrelation 

Sungai-Wai & 

Mawas, Borneo, 

Indonesia 

Nov. 2004 Tropical rain 

forest. 

Sungai-Wai: 

lowland, AGB ≤ 

600 t/ha; Mawas: 

peat swamp, AGB 

≤ 200 t/ha 

Tropiscat: 

Ground-based high 

temporal resolution 

measurements 

(Koleck et al., 2012) 

Measurement of 

long-term temporal 

coherence and 

temporal variation 

Paracou, French 

Guiana 

Aug. 2011 

- Dec. 

2012 

Tropical rain 

forest, AGB ca. 

400 t/ha 
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of backscatter in 

tropical forest 

BioSAR-1, E-SAR 

(Hajnsek et al., 2008) 

Biomass estimation 

and measurement of 

multi-month 

temporal 

decorrelation 

Remningstorp, 

southern Sweden 

Mar. - 

May 2007 

Hemi-boreal 

forest, low 

topography, AGB 

≤ 300 t/ha 

BioSAR-2, E-SAR  

(Hajnsek et al., 

2009b) 

Topographic 

influence on 

biomass estimation  

Krycklan, 

northern Sweden 

Oct. 2008 Boreal forest, 

hilly, AGB ≤ 300 

t/ha 

BioSAR-3, E-SAR  

(Ulander et al., 

2011a, b) 

Forest change and 

multi-year 

coherence relative to 

BioSAR-1 

Remningstorp, 

southern Sweden 

Sept. 2010 Hemi-boreal 

forest, low 

topography, AGB 

≤ 400 t/ha (more 

high biomass 

stands than in 

BIOSAR-1) 

AfriSAR, SETHI and 

F-SAR 

Biomass estimation 

in tropical forest; 

temporal stability of 

coherence 

Sites at Lopé, 

Mondah, 

Mabounie and 

Rabi, Gabon 

July 2015 

(SETHI) 

Feb. 2016 

(F-SAR) 

Tropical forest 

and savannah, 

AGB from 50 to 

500 t/ha 

Afriscat: Ground-

based high temporal 

resolution 

measurements 

Measurement of 

long-term temporal 

coherence and 

temporal variation 

of backscatter in 

tropical forest 

Ankasa, Ghana July 2015 - 

July 2016 

Tropical forest, 

low topography,  

AGB from 100 to 

300 t/ha 
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Borealscat: Ground-

based high temporal 

resolution 

measurements 

(Ulander et al., 2018; 

Monteith and 

Ulander, 2018) 

Time series of 

backscatter, 

tomography, 

coherence and 

environmental 

parameters in boreal 

forest. 

Remningstorp, 

southern Sweden 

Dec. 2016, 

ongoing 

Hemi-boreal 

forest, spruce-

dominated stand, 

low topography, 

AGB = 250 t/ha  

 361 

5.1 Estimating AGB 362 

Some key findings from these campaigns are illustrated in Fig. 2, where the P-band HV backscatter 363 

(given as 0 in dB) is plotted against the biomass of reference plots from a boreal site (Remningstorp, 364 

Sweden) and two tropical sites (Paracou, French Guiana and La Selva, Costa Rica). The data are not 365 

corrected for topographic or soil moisture effects, and the lines correspond to linear regression fits to 366 

the log-log form of the data. The sensitivity of backscatter to biomass is clear across the whole range 367 

of biomass covered, though with large dispersion in the boreal forest and the high biomass tropical 368 

forest in French Guiana. Also clear is that, for a given biomass, the HV backscatter is considerably 369 

larger in boreal than tropical forest. This corrects an error in Fig. 2 of Le Toan et al. (2011) where mean 370 

backscatter differences between the boreal and tropical data were ascribed to calibration errors and 371 

removed by shifting the data. The careful calibration of the datasets shown in Fig. 2 indicates that the 372 

difference is real and that different physical and biological factors (such as forest structure) are at play 373 

in the different forest types. 374 
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 375 

Fig. 2. P-band backscatter at HV polarisation (𝛾𝐻𝑉
0 ) over tropical and boreal forests against the biomass 376 

of in situ reference plots. Data from Paracou, French Guiana, were acquired by the SETHI SAR system 377 

in 2011 (Dubois-Fernandez et al., 2012), those from La Selva, Costa Rica, in 2004 by the AIRSAR 378 

system (Antonarakis et al., 2011) and those from Remningstorp, Sweden, by the E-SAR system in 2007 379 

(Sandberg et al., 2011).  380 

 381 

The regression lines indicate that in natural units the HV backscatter is approximately related to 382 

biomass, W, by a power law relationship, i.e. 383 

 𝛾𝐻𝑉
0 = 𝑐𝑊𝑝          (2) 384 

where c and p are parameters. Analysis in Schlund et al. (2018) indicates such relationships are found 385 

for the full set of available P-band SAR datasets that are supported by adequate in situ data except where 386 

there is strong topography. Although the model coefficients (and their coefficients of determination) 387 

vary across datasets, they are not significantly different when similar AGB ranges are considered.  388 

Despite this strong regularity in the relation between HV backscatter and biomass, exploiting it to 389 

estimate biomass faces a number of problems: 390 
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a. Dispersion in the data. For the boreal data in Fig. 2, major factors causing dispersion in the 391 

backscatter values are slope and soil moisture variations.  The Krycklan campaign over boreal forest 392 

in Sweden (Table 2) clearly shows that topography severely affects the power law relationship 393 

given by eq. (2) (Soja et al., 2013). This is particularly obvious in Krycklan because in this region 394 

most of the highest biomass stands are located in sloping areas. As demonstrated in Soja et al. 395 

(2013), however, adding terms involving the 𝛾𝐻𝐻
0 /𝛾𝑉𝑉

0  ratio and slope to the regression significantly 396 

reduces the dispersion, at the expense of including two extra parameters. Note that the HH/VV ratio 397 

was included because of its lower sensitivity to soil moisture, and that the regression inferred from 398 

the Krycklan site in N. Sweden could be successfully transferred to Remningstorp 720 km away in 399 

S. Sweden. The associated relative RMSEs in AGB using the combined BioSAR-1 and -2 data were 400 

27% (35 t/ha) or greater at Krycklan and 22% (40 t/ha) or greater at Remningstorp. However, more 401 

recent unpublished analysis including the BIOSAR-3 data indicates that further coefficients are 402 

needed to achieve adequate accuracy. Another study for Remningstorp (Sandberg et al., 2014) 403 

found that AGB change could be estimated more accurately than AGB itself: analysis based on 404 

2007 and 2010 data gave a RMSE of 20 t/ha in the estimated biomass change, i.e. roughly half the 405 

RMSEs of the individual AGB estimates. The algorithm used was based on finding areas of little 406 

or no change using the HH/VV ratio and applying polarization-dependent correction factors to 407 

reduce the effect of moisture variation. 408 

Unlike in Sweden, very little environmental change occurred during the TropiSAR campaign in 409 

French Guiana, and the major effect affecting the relation given by eq. (2) was topography, which 410 

greatly increased the dispersion. Methods to reduce this were based on rotating the spatial axes and 411 

normalization to account for the variation in the volume and double bounce backscatter with 412 

incidence angle (Villard and Le Toan, 2015). This allowed the sensitivity of the HV backscatter to 413 

biomass to be recovered, and AGB could then be estimated from the polarimetric data with relative 414 

RMSE < 20%. However, because the approach is based on regression and there was little temporal 415 

change in conditions during the campaign, it contains no provision for dealing with large seasonal 416 

variations in backscatter like those observed in the Tropiscat data (Bai et al., 2018) and expected in 417 

BIOMASS data.  418 
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b. Algorithm training. Regression methods need training data, but in many parts of the world, and 419 

especially in the tropics, there are very few high quality permanent in situ sampling plots, almost 420 

all funded under science grants. Significant efforts are being made by ESA, in collaboration with 421 

NASA, to work with and extend the existing in situ networks in order to establish a set of well-422 

documented reference sites that could be using for training and validation. Part of the challenge in 423 

doing so is to ensure that the set of reference sites is large enough and representative enough to 424 

capture the major variations in forest types and conditions.  425 

c. Physical explanation. Despite its remarkable generality, as demonstrated in Schlund et al. (2018), 426 

the physical basis of eq. (2) is not well-understood except in certain limiting cases (see below). 427 

Hence it is essentially empirical and at present we cannot in general attach meaningful physical 428 

properties to the fitting parameters or derive them from scattering models. In particular, it has no 429 

clear links to well-known decompositions of polarimetric backscatter into physical mechanisms 430 

(e.g. Freeman and Durden (1998); Cloude and Pottier (1996)). In addition, in boreal forests this 431 

relation depends on both total AGB and tree number density, so that unambiguous estimates of 432 

AGB require information on number density or use of height information combined with height- 433 

biomass allometric relations (Smith-Jonforsen et al., 2007) 434 

To get round these problems with the regression-based approaches, the current emphasis is on 435 

estimating biomass using a model-based approach that brings together three key factors: the capabilities 436 

of the BIOMASS system, the observed properties of the vertical distribution of forest biomass and our 437 

knowledge about the physics of radar-canopy interactions as embodied in scattering models.  438 

Its starting point is a simplified scattering model that describes the backscattering coefficient in each of 439 

the HH, HV and VV channels as an incoherent sum of volume, surface and double-bounce scattering 440 

(Truong-Loï et al., 2015). The model involves 6 real parameters per polarization, which are estimated 441 

using a combination of a scattering model and reference data. Biomass, soil roughness and soil moisture 442 

are then treated as variables to be estimated from the data. Initial analysis found that this model was too 443 

complex and the associated parameter estimation was too unstable for this to be a viable approach for 444 

BIOMASS. However, a crucial technical development was to demonstrate that both tomographic and 445 
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Pol-InSAR data can be used to cancel out the terms involving the ground (surface scatter and double 446 

bounce) and isolate the volume scattering term (Mariotti d’Alessandro et al., 2013; Mariotti 447 

d’Alessandro et al., 2018). In the Truong-Loï et al. (2015) formulation, this term can be written as 448 

 𝜎𝑝𝑞
𝑣 =  𝐴𝑝𝑞𝑊𝛼𝑝𝑞 cos 𝜃 (1 − exp (−

𝐵𝑝𝑞𝑊𝛽𝑝𝑞

cos 𝜃
))      (3) 449 

where 𝐴𝑝𝑞 ,  𝐵𝑝𝑞 , 𝛼𝑝𝑞  and 𝛽𝑝𝑞 are coefficients for polarization configuration pq, W is AGB, and 𝜃 is 450 

the local incidence angle. The coefficients 𝛼𝑝𝑞  and 𝛽𝑝𝑞 relate to forest structure, 𝐵𝑝𝑞 > 0 is an 451 

extinction coefficient and 𝐴𝑝𝑞 > 0 is a scaling factor.  452 

Assuming that 𝐴𝑝𝑞 ,  𝐵𝑝𝑞 , 𝛼𝑝𝑞  and 𝛽𝑝𝑞 are space-invariant at a certain scale, these parameters and AGB 453 

can be estimated simultaneously from the measured values of 𝜎𝑝𝑞
𝑣  in the three polarizations, pq = HH, 454 

HV and VV, using a non-linear optimization scheme (Soja et al., 2017, 2018). However, in model (3), 455 

the two biomass-dependent factors, 𝐴𝑝𝑞𝑊𝛼𝑝𝑞   and 1 − exp (−
𝐵𝑝𝑞W𝛽𝑝𝑞

cos θ
), both increase with increasing 456 

AGB for realistic parameters (𝛼𝑝𝑞 > 0 and 𝛽𝑝𝑞 > 0), so interactions between 𝛼𝑝𝑞 ,  𝐵𝑝𝑞 and  𝛽𝑝𝑞 render 457 

the inversion difficult. This problem can be mitigated by using two special cases of the model, both of 458 

which lead to a power law expression as in eq. (2). For the low-attenuation case, i.e., 𝐵𝑝𝑞W𝛽𝑝𝑞 ≪ 1, 459 

eq. (3) can be simplified using a series expansion to: 460 

𝜎𝑝𝑞
𝑣 = 𝐴′𝑊𝑝         (4) 461 

where 𝑝 = 𝛼𝑝𝑞 + 𝛽𝑝𝑞  and 𝐴′ = 𝐴𝑝𝑞𝐵𝑝𝑞, and in the high-attenuation case, i.e., 𝐵𝑝𝑞W𝛽𝑝𝑞 ≫ 1, eq. (3) 462 

can be simplified to:  463 

𝜎𝑝𝑞
𝑣 = 𝐴′𝑊𝑝 cos 𝜃          (5) 464 

where 𝑝 = 𝛼𝑝𝑞 and 𝐴′ = 𝐴𝑝𝑞. In both cases, 𝐴′, 𝑊  and 𝑝 can then be estimated using the scheme 465 

proposed in Soja et al. (2017, 2018). 466 

Note that there is still an inherent scaling ambiguity since the scheme cannot distinguish the unbiased 467 

estimate of AGB, 𝑊0, from any function of the form 𝑎𝑊0
𝑏, where 𝑎  and 𝑏 are calibration constants. 468 

Hence reference data are needed, but these data do not need to cover a wide range of backscatter, slope 469 

and incidence angle conditions, as would be required if any of the models (3) - (5) were to be trained 470 
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directly. One complication is that the temporal and spatial variations of 𝑎  and 𝑏 are are currently 471 

unknown and further work is needed to quantity them. Further refinements may also be needed to reduce 472 

residual effects from moisture variations by, for example, use of the VV/HH ratio in boreal forests as 473 

discussed above. 474 

The effectiveness of this approach is illustrated by Fig. 3, which plots values of AGB estimated with 475 

this scheme against AGB values estimated from in situ and airborne laser scanning data for a set of 200 476 

m x 200 m regions of interest (ROIs). The airborne P-band data used are from the AfriSAR campaign 477 

and were filtered to 6 MHz to match the BIOMASS bandwidth. The estimates are highly correlated 478 

with the reference data (r = 0.97), exhibit only a small amount of bias across the whole biomass range, 479 

and give a RMSE of 41 t/ha (16% of the average biomass). 480 

 481 

Fig. 3. Estimated AGB using the approach described in the text against AGB estimated from in situ and 482 

airborne laser scanning at the La Lopé site in Gabon during the AfriSAR campaign. The running average 483 

given by the blue line indicates only a small positive bias across the whole range of AGB. ROI denotes 484 

Region of Interest. 485 

Further confirmation of the importance of isolating the volume backscatter by using the full power of 486 

tomography is from the TropiSAR tropical forest campaign, where the tomographic intensity (in dB) 487 

measured at 30 m above the ground (representing scattering from canopy elements between ca. 17.5 m 488 

and 42.5 m, given the roughly 25 m vertical resolution of tomographic imaging) was found to be highly 489 
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correlated with AGB (Ho Tong Minh et al., 2014, 2016). The observed sensitivity is about 50 tons/ha 490 

per dB, and the correlation coefficient is about 0.84 at the scale of 1 ha. This striking result has been 491 

replicated in the forest sites investigated during the AfriSAR campaign (Fig. 4), and suggests that the 492 

backscatter from the forest layer centred 30 m above ground should be strongly correlated with total 493 

AGB in the case of dense tropical forests. 494 

Importantly, this finding is consistent with the TROLL ecological model (Chave, 1999), which predicts 495 

that for dense tropical forests the fraction of biomass contained between 20 m and 40 m accounts for 496 

about 35% to 40% of the total AGB, and that this relation is stable over a large range of AGB values 497 

(Ho Tong Minh et al., 2014). Another element in support of the ecological relevance of the 30 m layer 498 

is provided by two recent studies of tropical forests, which observed that: a) correlation between AGB 499 

and the area occupied at different heights by large trees (as derived from lidar) is maximal at a height 500 

of about 30 m (Meyer et al., 2017); b) about 35% of the total volume tends to be concentrated at 501 

approximately 24-40 m above the ground (Tang, 2018).  502 

However, tomographic data will only be available in the first phase of the mission. In addition, 503 

exploiting the relation between AGB and the 30 m tomographic layer requires knowledge of how the 504 

regression coefficients vary in time and space, hence substantial amounts of training data. In contrast, 505 

ground cancellation can be carried out with both tomographic and Pol-InSAR data (so throughout the 506 

mission). This allows the volume scattering term (eq. (3)) to be isolated and hence AGB to be estimated 507 

using the scheme described in Soja et al. (2018), which makes much less demand on the availability of 508 

reference data. 509 
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 510 

Fig. 4. Plot of HV backscatter intensity at height 30 m above the ground measured by tomography 511 

against in situ AGB in 1 ha plots at tropical forest sites investigated during the TropiSAR (Paracou and 512 

Nouragues) and AfriSAR (Lopé, Rabi, Mondah) campaigns. 513 

 514 

The value of tomography for estimating AGB in boreal and temperate forests is less clear, since (a) 515 

these forests in general have smaller heights than in the tropics (so it is more problematical to isolate 516 

the signal from a canopy layer without corruption by a ground contribution, given the roughly 25 m 517 

vertical resolution of the tomographic product from BIOMASS), and (b) the double bounce mechanism 518 

appears to be important in recovering the AGB of boreal forests. Hence ground cancellation (which also 519 

cancels double bounce scattering, since this appears at ground level in the tomographic image) may 520 

noto help biomass estimation in such forests, and the preferred algorithm for BIOMASS in these cases 521 

is still not fixed.  Recent results indicate that ground cancellation improves results in Krycklan, but not 522 

in Remningstorp, most likely because it suppresses direct ground backscattering, which is unrelated to 523 

AGB but is of higher relative importance in Krycklan due to the pronounced topography. 524 

 525 

5.2 Estimating forest height 526 

Forest height estimates will be available throughout the Tomographic and Interferometric Phases, in the 527 

latter case using polarimetric interferometric (Pol-InSAR) techniques (Cloude and Papathanassiou, 528 
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1998, 2003; Papathanassiou and Cloude, 2001) applied to three polarimetric acquisitions performed in 529 

a 3-day repeat-pass interferometric mode. The use of Pol-InSAR to estimate forest height has been 530 

demonstrated at frequencies from X- to P-band for a variety of temperate, boreal and tropical sites, with 531 

widely different stand and terrain conditions (Praks et al., 2007; Kugler et al., 2014; Hajnsek et al., 532 

2009; Garestier et al., 2008), and several dedicated studies have addressed its likely performance and 533 

limitations when applied to BIOMASS data.  534 

Estimation of forest height from Pol-InSAR requires a model that relates forest height to the Pol-InSAR 535 

measurements (i.e. primarily to the interferometric coherence at different polarisations and for different 536 

spatial baselines) together with a methodology to invert the established model. Most of the established 537 

inversion algorithms use the two-layer Random Volume over Ground (RVoG) model to relate forest 538 

height to interferometric coherence (Treuhaft et al., 1996). This relies on two assumptions: 1) all 539 

polarizations “see” (up to a scalar scaling factor) the same vertical distribution of scatterers in the 540 

vegetation (volume) layer; 2) the ground layer is impenetrable, i.e. for all polarizations, the reflectivity 541 

of the ground scattering component is given by a Dirac delta function modulated by a polarimetrically 542 

dependent amplitude. The RVoG model has been extensively validated and its strong and weak points 543 

are well understood. Use of this model to obtain a forest height map is illustrated in Fig. 5 which is 544 

derived by inverting P-band Pol-InSAR data acquired during the AfriSAR campaign in February 2017 545 

over the Pongara National Park, Gabon. This site is covered mainly by mangrove forests, which are 546 

among the tallest mangrove forests in the world, towering up to 60 m. 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 
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 556 

Fig. 5. Forest height map obtained from inverting P-band Pol-InSAR data acquired over the Pongara 557 

National Park, Gabon, in the framework of the AfriSAR campaign in February 2017. 558 

The main challenge for BIOMASS is therefore the development of an inversion formulation able to 559 

provide unique, unbiased and robust height estimates, and which accounts for: 1) the scattering 560 

characteristics at P-band, since the limited attenuation by the forest canopy means that a ground 561 

scattering component is present in all polarisations; 2) the constraints imposed by the BIOMASS 562 

configuration, both the 6 MHz bandwidth and the fact that some temporal decorrelation is inevitable in 563 

the repeat-pass mode (Lee et al., 2013; Kugler et al., 2015). To meet this challenge a flexible multi-564 

baseline inversion scheme has been developed that allows the inversion of the RVoG model by 565 

including: 1) a polarimetric three-dimensional ground scattering component; 2) a vertical distribution 566 

of volume scattering that can adapt to high (tropical) and low (boreal) attenuation scenarios; 3) a scalar 567 

temporal decorrelation that accounts for wind-induced temporal decorrelation of the vegetation layer. 568 

The inversion can then be performed using the three polarimetric acquisitions in the Interferometric 569 

Phase, allowing global forest height maps to be produced every 7 months.  570 

The main limitations in generating the forest height product arise not from the inversion methodology 571 

but from the 6 MHz bandwidth, which constrains the generation of large baselines as well as the spatial 572 

resolution of the data, and the low frequency, which reduces the sensitivity to forest height in certain 573 

sparse forest conditions. On the other hand, the low frequency will provide high temporal stability over 574 

the 3-day repeat period of the Interferometric Phase, which is necessary to establish uniqueness and 575 

optimum conditioning of the inversion problem.  576 

An alternative approach to estimating forest height is by tracing the upper envelope of the observed 577 

tomographic intensities, as reported in Tebaldini and Rocca (2012) and Ho Tong Minh et al. (2016) for 578 

boreal and tropical forests, respectively. This has the advantage of being less computationally expensive 579 

than model-based inversion, and it can be applied in the absence of a specific model of the forest vertical 580 

structure. Importantly, it has been demonstrated using synthetic 6 MHz data simulating BIOMASS 581 
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acquisitions over boreal forests (Tebaldini and Rocca, 2012). However, this approach will only be 582 

possible during the Tomographic Phase of the mission. 583 

 584 

6. Severe forest disturbance  585 

The BIOMASS disturbance product aims to detect high-intensity forest disturbance (effectively forest 586 

clearance) occurring between satellite revisit times. This is a natural extra use of the data gathered for 587 

biomass and height estimation, rather than a driver for the BIOMASS mission, and will contribute to 588 

the overall capability to measure forest loss from space using optical (e.g., Hansen et al., 2013) and 589 

radar sensors (e.g., the pair of Sentinel-1 C-band radar satellites). Changes in the polarimetric 590 

covariance matrix caused by deforestation are relatively large; for example, Fig. 1 indicates that 𝛾ℎ𝑣
0  591 

changes by 5 dB as biomass decreases from 500 t ha-1 to nearly zero, while a change in AGB from 100 592 

to 200 t ha-1 causes 𝛾ℎ𝑣
0  to change by only ~1 dB. Hence change detection is less affected by the 593 

statistical variability inherent in the radar signal, allowing the disturbance product to be produced at a 594 

spatial resolution of ~50 m, instead of 200 m, as for the biomass and height products.  595 

The method proposed for detecting disturbance is firmly rooted in the statistical properties of the 6-look 596 

polarimetric covariance data and uses a likelihood ratio (Conradsen et al., 2016) to test, at a given level 597 

of statistical significance, whether change has occurred relative to previous acquisitions in each new 598 

polarimetric acquisition over forest. Note that this approach does not specify the detection probability, 599 

which would require an explicit form of the multi-variate probability distribution function associated 600 

with disturbed forest. This would be very difficult to characterise in any general sense because change 601 

may affect the covariance matrix in many different ways. Instead it provides a quantitative way to 602 

determine how sure we are that change has occurred; in this respect it is closely related to the Constant 603 

False Alarm Rate approach to target detection (e.g. Scharf, 1991). 604 

A current unknown in this approach is to what extent changes in the covariance matrix of undisturbed 605 

forest caused by environmental effects, such as changing soil moisture due to rainfall events, will 606 

increase the false detection rate. A further issue is that detections are only sought in forest pixels, so an 607 



29 

 

accurate initial forest map is required, preferably estimated from the radar data themselves but possibly 608 

from some other source; this will be progressively updated after each new acquisition.  609 

Some insight into the performance of this approach can be gained using multi-temporal polarimetric 610 

data from PALSAR-2. Fig. 6 shows at the top Pauli format slant range representations of a pair of 611 

images gathered on 8 August 2014 and 8 August 2015 (so in this case the time series has length 2), 612 

below left the detection of change at 99% significance and below right the pixels at which change 613 

occurred marked in red on the image from 2014 (with no forest mask applied). It can be seen that the 614 

areas where change was detected occur in the non-forest regions, while detections in the forest regions 615 

occur as isolated pixels consistent with the 1% false alarm rate implied by the level of significance of 616 

the test.  617 

 618 
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Fig. 6. (Top) Pair of repeat-pass PALSAR-2 images acquired on 8 August 2014 and 7 August 2015 619 

displayed in Pauli image format (red = HH + VV; blue = HH - VV; green = 2HV) and slant range 620 

geometry. (Bottom left) Detection of change at 99% significance level; changed pixels are marked as 621 

black. (Bottom right) Image from 8 August 2014 with changed pixels marked as red. 622 

7. In situ and lidar reference biomass data 623 

Although the model-based inversion proposed for estimating biomass (Section 5.1) minimises the need 624 

for in situ reference data, such data are critical for algorithm development and testing, investigation of 625 

regression-based approaches, and product calibration and validation. The BIOMASS mission faces 626 

three major challenges in providing these supporting data: (i) the key region where reference data are 627 

needed is the tropics, but high quality biomass data are available at only a very limited number of 628 

tropical sites; (ii) biomass will be estimated at a scale of 4 ha (200 m by 200 m pixels) but most plot 629 

data are available at scales of 1 ha or less and the geographical locations of the plots is often not known 630 

to high accuracy; (iii) because of SOTR restrictions (Section 2), reference sites in the temperate and 631 

boreal zones will need to be outside N America and Europe.  632 

ESA are addressing challenge (i) and (ii) by working with existing networks to develop suitable 633 

extensive in situ reference data before launch through the Forest Observation System (http://forest-634 

observation-system.net/). A further encouraging development is the ESA-NASA initiative to 635 

collaborate in developing the in situ data requirements for GEDI, BIOMASS and NISAR. Co-operation 636 

along these lines is already in evidence from joint contributions to the AfriSAR campaign by ESA and 637 

NASA. As regards (iii), for the temperate zone, southern hemisphere sites, e.g. in Tasmania, would be 638 

suitable, while Siberia is the most desirable region for the boreal zone. However, concrete plans to 639 

gather in situ data in these regions are not currently in place. 640 

An important complement to in situ data that helps to address challenge (ii) is airborne lidar data. This 641 

can provide a forest height map and information on canopy structure which, when combined with field 642 

data, allows biomass to be estimated. Lidar data offer many advantages, including: 643 

 A scanning lidar provides a relatively fine scale and accurate map of biomass, which can be 644 

aggregated to the 4 ha resolution cell of BIOMASS (this will allow the effects of variability in 645 

http://forest-observation-system.net/
http://forest-observation-system.net/
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biomass at sub-resolution size to be assessed). Precision at this scale is typically below 10% 646 

and the vast majority of relevant studies indicate that the associated pan-tropical allometry 647 

(Chave et al. 2014) has negligible bias. 648 

 Lidar mapping can cover landscapes with a wide range of biomass levels and different forest 649 

conditions (degraded, regrowth, selectively logged, etc.). 650 

 Forest height with fine resolution (around 1 m) can be estimated at the same time as biomass. 651 

Hence the validation strategy for BIOMASS will involve a combination of in situ reference forest plots 652 

and lidar-derived biomass/height maps. 653 

8. Exploiting BIOMASS data in carbon cycle and climate analysis 654 

Although the primary objectives of BIOMASS are to reduce the major uncertainties in carbon fluxes 655 

linked to Land Use Change, forest degradation and regrowth and to provide support for international 656 

agreements (UNFCCC & REDD+), its products will also play a key role in advancing fundamental 657 

knowledge of forest ecology and biogeochemistry. For example, BIOMASS data will help in 658 

constraining critical carbon cycle parameters, initialising and testing the land component of carbon 659 

cycle and Earth System models (ESMs), and quantifying the forest disturbance regime. 660 

Differences between ESM forecasts of the carbon cycle are currently significant, and lead to major 661 

uncertainties in predictions (Exbrayat et al., 2018). These differences have been linked to variations in 662 

the internal processing of carbon, particularly in the large pools in biomass and soil organic matter 663 

(Friend et al. 2014). Linking biomass mapping to estimates of net primary production (NPP) provides 664 

a constraint on the turnover rate of the biomass pool, a critical model diagnostic (Carvalhais et al., 2014; 665 

Thurner et al., 2014). A recent study (Thurner et al., 2017) found observed boreal and temperate forest 666 

carbon turnover rates up to 80% greater than estimates from global vegetation models involved in the 667 

Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) (Warszawski et al., 2014). The relative 668 

difference between modelled and observed values is shown in Fig. 7, where the red boxes indicate 669 

regions analysed in Thurner et al. (2017) in order to explain these discrepancies. In the boreal zone 670 

(boxes b1 - 4) they were mainly attributed to the neglect of the effects of frost damage on mortality in 671 
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the models, while most of the models did not reproduce observation-based relationships between 672 

mortality and drought in temperate forest transects (boxes t1 - 3).  673 

 674 

 675 

Fig 7. Relative difference between modelled carbon turnover rates and turnover rates inferred from 676 

observations. 1.0 means modelled rate is 100% higher (from Thurner et al., 2017). Red boxes labelled 677 

b (boreal) and t (temperate) were analysed further in Thurner et al. (2017) to explain these discrepancies 678 

(figure reproduced courtesy of Martin Thurner). 679 

The more accurate estimates from BIOMASS, particularly over the tropical belt, will greatly improve 680 

estimation of turnover across the tropics (Bloom et al., 2016). This information will support improved 681 

parameterisation of carbon cycling for ESMs, allowing identification of regional variations in carbon 682 

turnover currently missing from tropical plant functional types (Exbrayat et al., 2018a). A sensitivity 683 

analysis performed using the CARDAMOM system (Bloom et al., 2016; Exbrayat et al. 2018b) 684 

indicates an average reduction of 49.5 ± 29.2% (mean ± 2 std) in the 95% confidence interval of the 685 

estimated vegetation carbon turnover time when the recent pan-tropical biomass map due to Avitabile 686 

et al. (2016) is assimilated. The analysis shows how this error reduction has clear spatial variability with 687 

latitude and between continents (Fig. 8).  688 

Another component of uncertainty in ESMs is in their initialisation of biomass stocks, arising from the 689 

paucity of data in the tropics, Land Use Change and internal model steady states. Data from BIOMASS 690 

will provide the modelling community with a compelling resource with which to understand both steady 691 

state and transient forest carbon dynamics. Observations of the disturbance regime will constrain 692 

modelling of both natural processes of disturbance and mortality and the role of humans (Williams et 693 
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al., 2013). The potential for BIOMASS to monitor degradation (partial loss of biomass) will be critical 694 

for modelling the subtle and slow processes of carbon loss associated with forest edges, fires and human 695 

communities (Ryan et al, 2012; Brinck et al., 2017).  696 

 697 

Fig. 8. The relative reduction in the size of the 95% confidence interval of estimated vegetation carbon 698 

turnover times when using a prior value for biomass at each pixel compared to a run without a biomass 699 

prior. Turnover times were estimated using the CARDAMOM system. The darker areas show where 700 

reduction in relative uncertainty is largest. 701 

Repeated measurements of biomass will allow significant improvements in global monitoring of forest 702 

dynamics, and analysis of associated carbon cycling at fine spatial scales. Current biomass maps (e.g., 703 

Saatchi et al., 2011) provide maps of stocks at a fixed time (or combine observations from several 704 

times). While such data help to constrain the steady state biomass, relevant at regional scales (~1º), they 705 

give little information on the dynamics of forests at finer (ha to km2) scales over time. BIOMASS will 706 

allow detailed, localised, and temporally resolved analyses of forest dynamics to be constrained. The 707 

value of such detailed information has been illustrated in a site level analysis for an aggrading forest in 708 

North Carolina (Smallman et al., 2017). Using in situ carbon stock information as a baseline, the 709 

analysis showed that a model analysis constrained purely by assimilation of 9 sequential annual biomass 710 

estimates (corresponding to the BIOMASS scenario, with 1 estimate in the Tomographic Phase and 8 711 

in the Interferometric Phase) together with time series of Leaf Area Index (LAI, e.g. from an operational 712 

satellite like Sentinel-2) led to significantly smaller bias and narrower confidence intervals in biomass 713 

increment estimates than when LAI and just one biomass estimate, or only management information, 714 
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were assimilated. Bias in estimated carbon use efficiency (the ratio of NPP to gross primary production) 715 

was also significantly reduced by repeated biomass observations. This indicates the potential of 716 

BIOMASS to improve significantly our knowledge of the internal processing of carbon in forests.  717 

9. Secondary objectives 718 

BIOMASS will be the first P-band SAR in space and thus will offer previously unavailable 719 

opportunities for measuring properties of the Earth. As a result, mission planning includes provision for 720 

several secondary objectives, including mapping sub-surface geology, measuring terrain topography 721 

under dense vegetation, estimating glacier and ice sheet velocities and investigating properties of the 722 

ionosphere.  723 

9.1 Sub-surface geology 724 

In very dry environments, long wavelength SAR is able to probe the sub-surface down to several metres, 725 

as was demonstrated at L-band (1.25 GHz) during the first Shuttle Imaging Radar SIR-A mission 726 

(Elachi et al., 1984), which revealed buried and previously unknown palaeo-drainage channels in 727 

southern Egypt (McCauley et al., 1982; Paillou et al., 2003). More complete L-band coverage of the 728 

eastern Sahara acquired by the JAXA JERS-1 satellite was used to produce the first regional-scale radar 729 

mosaic covering Egypt, northern Sudan, eastern Libya and northern Chad, from which numerous 730 

unknown crater structures were identified (Paillou et al., 2006). In 2006, JAXA launched the Advanced 731 

Land Observing Satellite (ALOS-1), carrying a fully polarimetric L-band SAR, PALSAR, which offered 732 

higher resolution and much better signal to noise ratio than JERS-1. This provided an unprecedented 733 

opportunity to study the palaeo-environment and palaeo-climate of terrestrial deserts (Paillou et al., 734 

2010), and led to the discovery of two major palaeo-rivers in North Africa: the Kufrah river, a 900 km 735 

long palaeo-drainage system, which in the past connected southeastern Libya to the Gulf of Sirt (Paillou 736 

et al., 2009; Paillou et al., 2012), and the Tamanrasett River in Mauritania, which connected a vast ancient 737 

river system in the western Sahara to a large submarine channel system, the Cap Timiris Canyon 738 

(Skonieczny et al., 2015). Besides its value in studying the past climates of desert regions, the sub-surface 739 

imaging capability of L-band SAR also helps to build more complete and accurate geological maps in 740 

support of future water prospecting in arid and semi-arid regions (Paillou, 2017). 741 
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 742 

Deeper probing of the sub-surface requires longer radar wavelengths: while L-band can penetrate 1-2 m 743 

into dry sand, a P-band system should be able to probe down to more than 5 m. In June 2010, the first 744 

ever airborne P-band SAR campaign over the Sahara was conducted at a desert site in southern Tunisia 745 

using the SETHI system developed by ONERA (Paillou et al., 2011). Figure 9 shows a comparison 746 

between an ALOS-2 L-band scene and a P-band scene acquired by SETHI over the Ksar Ghilane oasis, 747 

an arid area at the border between past alluvial plains and present day sand dunes.. The P-band data better 748 

reveal the sub-surface features under the superficial sand layer because of the higher penetration depth 749 

and lower sensitivity to the covering sand surface. A two-layer scattering model for the surface and sub-750 

surface geometry is able to reproduce both the L- and P-band measured backscatter levels, and indicates 751 

that the backscatter from the sub-surface layer is about 30 times weaker than from the surface at L-band, 752 

while at P-band the sub-surface contribution is about 30 times stronger than that from the surface. As a 753 

result, the total backscatter is comparable at P- and L-band, as the data show, but the P-band return is 754 

dominated by the sub-surface layer (Paillou et al., 2017). Hence BIOMASS should be a very effective 755 

tool for mapping sub-surface geological and hydrological features in arid areas, offering a unique 756 

opportunity to reveal the hidden and still unknown history of deserts. 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 
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Figure 9. Left: SPOT image of the Ksar Ghilane oasis region in southern Tunisia: palaeo-channels are 770 

hidden by aeolian sand deposits. Middle: ALOS-2 L-band radar image, showing sub-surface features but 771 

blurred by the return from the superficial sand layer. Right: SETHI P-band radar image, clearly revealing 772 

sub-surface hydrological features. 773 

 774 

9.2 Terrain topography under dense vegetation 775 

As an integral part of its ability to make height-resolved measurements of the backscatter in forest 776 

canopies, the tomographic phase of the mission will gain access to the ground phase, and hence will be 777 

able to derive a true Digital Terrain Model (DTM) that is unaffected by forest cover (Mariotti 778 

d’Alessandro and Tebaldini, 2018) and expected to have a spatial resolution of ca. 100 m x 100 m. This 779 

contrasts with the Digital Elevation Models (DEMs) produced by radar sensors at higher frequencies, 780 

such as SRTM (Rodriguez et al., 2015) or Tandem-X (Wessel et al., 2018), in which attenuation and 781 

scattering by dense forest canopies cause biases. Since global tomographic acquisitions occupy the first 782 

phase of the mission, this improved DTM will be available early in the Interferometric Phase, and will 783 

be used to improve the products based on Pol-InSAR and PolSAR. 784 

9.3 Glacier and ice sheet velocities 785 

The velocity fields of glaciers and icesheets can be measured using two classes of SAR techniques: 786 

differential SAR Interferometry (DInSAR) (Massonnet et al., 1993) and offset tracking (Gray et al., 787 

1998; Michel & Rignot, 1999). These techniques measure the ice displacement between two 788 

observations and require features in the ice or coherence between the observations. BIOMASS has the 789 

potential to supplement ice velocity measurements from other SAR missions, since its left-looking 790 

geometry with an inclination angle larger than 90° means that the polar gap in Antarctica will be smaller 791 

than for most other SAR missions, which are right-looking. The polar gap will be larger in Greenland, 792 

but the Greenland ice sheet cannot be mapped due to SOTR restrictions. The primary advantage of 793 

BIOMASS is the higher coherence and longer coherence time resulting from the lower frequency of 794 

BIOMASS compared to all other space-based SAR systems. Its longer wavelength with deeper 795 

penetration into the firn ensures less sensitivity to snowfall, surface melt and aeolian processes (Rignot, 796 
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2008). This is seen when comparing L-band and C-band results (Rignot, 2008; Boncori et al., 2010), 797 

and explains the long coherence time observed in airborne P-band data acquired by the Danish 798 

Technical University POLARIS SAR in the percolation zone of the Greenland ice sheet (Dall et al. 799 

2013).  800 

The range and azimuth components of the ice velocity field will most likely be measured with 801 

differential SAR interferometry (DInSAR) and offset tracking, respectively. At lower latitudes two 802 

velocity components might instead be obtained by combining DInSAR from ascending and descending 803 

orbits, since the range resolution of BIOMASS is too coarse for offset tracking to provide the range 804 

component (Dall et al. 2013). Generally DInSAR ensures less noisy results, and phase unwrapping is 805 

facilitated by the fact that the fringe rate of BIOMASS DInSAR data will be 1/12 of that of Sentinel-1 806 

data, assuming a 6-day baseline in both cases. The very low ice velocities in the interior of Antarctica 807 

call for a long temporal baseline, but a 70-day baseline has been successfully used at C-band (Kwok et 808 

al., 2000), and therefore sufficiently high P-band coherence is not unlikely with the 228-day baseline 809 

provided by the BIOMASS observation cycle. However, ionospheric scintillation is severe at high 810 

latitudes, and without accurate correction will corrupt the ice velocity maps, possibly prohibitively. 811 

Assessment of whether proposed correction techniques (Kim et al., 2015; Li et al., 2015) are sufficiently 812 

accurate will only be possible when BIOMASS is in orbit. 813 

9.4 Ionospheric properties 814 

A major concern in initial studies for BIOMASS was the effect of the ionosphere on the radar signal, 815 

and a crucial factor in the selection of the mission was demonstration that these effects could be 816 

compensated or were negligible in the context of the mission primary objectives (Rogers et al., 2013; 817 

Rogers and Quegan, 2014). However, correction of ionospheric effects (particularly Faraday rotation, 818 

but also scintillation, as noted in Section 9.3) necessarily involves measuring them, which then provides 819 

information on the ionosphere. The dawn-dusk BIOMASS orbit will cover major features of the 820 

ionosphere, including the fairly quiescent ionosphere at low and mid-latitudes, steep gradients around 821 

the dusk-side mid-latitude trough, and large irregularities in the auroral ovals and polar cap. 822 

Measurements of ionospheric Total Electron Content, derived from Faraday rotation (Wright et al., 823 



38 

 

2003) and/or interferometric measurements (Tebaldini et al., 2018), should be possible along the orbit 824 

at spatial resolutions of around a km, giving an unprecedented capability to measure these spatial 825 

structures and their changes, since they will be viewed every two hours as the orbit repeats. 826 

 827 

10. The role of BIOMASS in an overall observing system 828 

BIOMASS will have unique capabilities to map biomass in dense forests, but will form only part of the 829 

overall system of sensors providing information on forest biomass and biomass change, and more 830 

generally on the global carbon cycle. In fact, the next few years will see an unprecedented combination 831 

of sensors either dedicated to or capable of measuring forest structure and biomass. Particularly 832 

important for their links to BIOMASS will be the Global Ecosystem Dynamics Investigation (GEDI) 833 

and NISAR missions. 834 

GEDI will be a near infrared (1064 nm wavelength) light detection and ranging (lidar) sensor onboard 835 

the International Space Station with a 2-year lifetime from deployment in late 2018. It is focusing on 836 

tropical and temperate forests to address three key issues: 1) quantifying the above-ground carbon 837 

balance of the land surface; 2) clarifying the role played by the land surface in mitigating atmospheric 838 

CO2 in the coming decades; 3) investigating how ecosystem structure affects habitat quality and 839 

biodiversity. GEDI will provide the first sampling of forest vertical structure across all forests between 840 

51.5 S and 51.5 N, from which estimates of canopy height, ground elevation and vertical canopy 841 

profile measurements will be derived. Further processing of the ~0.0625 ha footprint measurements 842 

will then yield estimates of the mean and variance of AGB on a 1 km grid. 843 

NISAR (launch 2021) is a joint project between NASA and ISRO (the Indian Space Research 844 

Organization) to develop and launch the first dual-frequency SAR satellite, with NASA providing the 845 

L-band (24 cm wavelength) and ISRO the S-band (12 cm wavelength) sensors. It will measure AGB 846 

and its disturbance and regrowth globally in 1 ha grid-cells for areas where AGB does not exceed 100 847 

t/ha, and aims to achieve an accuracy of 20 t/ha or better over at least 80% of these areas. Its focus is 848 

therefore on lower biomass forests, which constitute a significant portion of boreal and temperate forests 849 

and savanna woodlands. NISAR will give unprecedented L-band coverage in space and time, being 850 
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able to provide HH and HV observations every 12 days in ascending and descending orbits and covering 851 

forests globally every 6 days. The mission is also designed to give global interferometric SAR 852 

measurements for surface deformation and cryosphere monitoring. 853 

These three missions have significant overlaps in science objectives and products, but focus on different 854 

observations, cover different regions, and retrieve different components of AGB at different spatial and 855 

temporal scales. Their complementary nature is brought out by Fig. 10, which shows the coverage of 856 

the three sensors on a map indicating approximate mean AGB. BIOMASS will focus on tropical and 857 

sub-tropical woodlands at 4 ha resolution (though will also cover the temperate and boreal forests of 858 

Asia and the southern hemisphere), NISAR will give global coverage at 1 ha resolution but with AGB 859 

estimates limited to areas where AGB < 100 t/ha, and GEDI will cover the full range of AGB, but with 860 

sample footprints limited to lie within 51.5 latitude. Hence without the data from all three missions, 861 

wall-to-wall estimation of global forest biomass will not be possible. There will, however, still be lack 862 

of temporal and/or spatial coverage in regions where BIOMASS cannot operate because of SOTR 863 

exclusions and where AGB exceeds the 100 t/ha threshold for NISAR. 864 

For lower values of AGB (less than about 50 t/ha) P-band measurements will be much more affected 865 

by soil conditions than L-band, and NISAR should provide more accurate AGB estimates.  The high 866 

temporal frequency of NISAR observations will also allow the effects of soil moisture changes and 867 

vegetation phenology to be mitigated. Currently the theoretical basis of the algorithms proposed for 868 

NISAR and BIOMASS are the same (Truong-Loi et al., 2015), which offers the possibility of a 869 

combined L- and P-band algorithm that optimises the capabilities of each.  In addition, GEDI forest 870 

height and biomass products will be available before the NISAR and BIOMASS missions, so can help 871 

to initialize their algorithms and validate their products. GEDI estimates of the vertical structure of 872 

forests will also be of enormous value in interpreting the BIOMASS Pol-InSAR and tomographic 873 

measurements and in producing a consistent forest height and digital terrain model at fine spatial scale 874 

(around 1 ha).  Conversely, height or backscatter products from NISAR and BIOMASS missions can 875 

provide information on the spatial variability of forest structure and biomass; this may be used in future 876 
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reprocessing to improve both the algorithms that form the GEDI gridded height and biomass products 877 

and the resolution of these products. 878 

Hence the three sensors will be highly complementary, and their combination will provide an 879 

unparalleled opportunity to estimate forest AGB, height and structure globally with unprecedented 880 

accuracy, spatial resolution and temporal and spatial coverage. 881 

 882 

 883 

 884 

 885 

 886 

 887 

 888 

 889 

Fig. 10. Coverage of ESA and NASA-ISRO satellite measurements of forest structure and above-ground biomass 890 

(AGB). The background shows the global coverage area of NISAR, which will be sensitive to AGB values < 100 891 

t/ha (green and yellow). BIOMASS coverage includes the tropical belt, the temperate and boreal zones of Asia, 892 

and the southern hemisphere, while the GEDI Lidar will sample latitudes between  51.5. These two sensors will 893 

cover the full range of forest AGB providing measurements where AGB >100 t/ha (red), so inaccessible to NISAR. 894 

 895 

Discussion 896 

Along with its role in quantifying the biomass and its change, it is important to realize that the BIOMASS 897 

instrument, particularly in its interferometric and tomographic modes, is capable of producing global 898 

measures of important forest properties that are simply unavailable for almost all of the Earth.  Some of 899 

these are practical measurements whose value has been known for years.  For example, in forestry the 900 

ability to predict yield or increase in biomass is increased greatly when one knows both mass and height, 901 

so much so that tree height has been used in yield-table-based forestry to quantify the so-called site-902 

index, the quality of a site for forest enterprise. Hence the information from the BIOMASS satellite and 903 
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the modern digital offspring of classic forestry yield tables could be used to make informed estimates of 904 

expected net production of forest biomass. In similar vein, Section 8 notes how the combination of 905 

biomass with NPP allows the turnover time of carbon within forest vegetation to be estimated. Both 906 

examples illustrate that although forest biomass, height, structure and change are all individually 907 

important, their full significance for climate, carbon cycle, biodiversity, resource management, etc., is 908 

only fully realised when they are combined with each other and with other sources of information.  909 

This perception of biomass as a key variable within a wider information system is implicit in the 910 

recognition of AGB as an ECV (GCOS, 2017). More explicit analysis of its function within a carbon 911 

information and management system is provided by the Group on Earth Observations (GEO) (Ciais et 912 

al., 2010) and the response to this report in the CEOS Strategy for Carbon Observations from Space 913 

(CEOS, 2014). In particular, the CEOS report (Fig. 2.3 and Table 2.1 of the report) indicates where 914 

biomass fits within the set of key GEO satellite requirement areas and core GEO observational elements 915 

necessary to quantify the current state and dynamics of the terrestrial carbon cycle and its components. 916 

Central to the GEO Carbon Strategy is the combination of data and carbon cycle models, not least 917 

because models provide the only way in which the many available space-based and in situ measurements 918 

can be integrated into a single consistent structure for performing carbon flux calculations.  919 

There are many possible forms for these models but data can interact with them in essentially four ways: 920 

by providing estimates of current model state variables, estimates of model parameters, tracking of 921 

processes and testing of model predictions. In addition, data and models can be even more tightly bound 922 

by combining them in a data assimilation structure where both are regarded as sources of information 923 

whose relative contribution to carbon flux estimates is weighted by their uncertainty. There are already 924 

significant developments in exploiting biomass data in these ways, for example initializing the age 925 

structure of forests when estimating the European carbon balance (Bellassen et al., 2011), estimating 926 

carbon turnover time (Thurner et al., 2017), testing Dynamic Global Vegetation Models (Cantú et al., 927 

2018), and full-scale data assimilation (Bloom et al., 2016). Further progress in this direction is to be 928 

expected as we move towards launch in 2022. 929 

Conclusions 930 
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BIOMASS mission will be the first space-based P-band radar, and this completely new view from space 931 

will yield both predictable and unforeseen opportunities to learn about the Earth and its dynamics. 932 

Within the operational constraints imposed by the Space Object Tracking Radar system (Section 2) the 933 

5-year mission will provide global mapping of forest AGB, height and change at 200 m spatial 934 

resolution by combining three different radar techniques, each of them innovative. This is the first 935 

space-based radar mission for which all observations will be fully polarimetric, which is necessary both 936 

to recover biomass information and to correct ionospheric effects. Even more innovative will be this 937 

first systematic use of Pol-InSAR to measure forest height globally, and the first use of SAR 938 

tomography to identify the vertical structure of forests globally. In parallel with these major 939 

technological developments, considerable progress is being made in developing new understanding and 940 

quantitative methods that will allow these measurements to be exploited in carbon cycle and climate 941 

models. This link between measurements and models forms an essential part of meeting the primary 942 

objective of the BIOMASS mission, which is to determine the worldwide distribution of forest AGB in 943 

order to reduce the major uncertainties in calculations of carbon stocks and fluxes associated with the 944 

terrestrial biosphere, including carbon fluxes associated with Land Use Change, forest degradation and 945 

forest regrowth. Of major mutual advantage in meeting this objective will be the information provided 946 

by other space missions flying within the next five years, for which pride of place goes to GEDI and 947 

NISAR, but supplemented by optical and other radar missions. Of great importance is that the structures 948 

for making use of these new data in carbon cycle and climate models are being developed and 949 

implemented. 950 

The physical and technical capabilities embedded in the BIOMASS mission in order to measure 951 

biomass can be turned to many other uses. At present, known applications include sub-surface imaging 952 

in arid regions, estimating glacier and icesheet velocities, and production of a true DTM without biases 953 

caused by forest cover. An originally unforeseen application arising from the need to correct the radar 954 

signal for ionospheric effects is to exploit the high sensitivity of the P-band signal to Total Electron 955 

Content to estimate ionospheric properties and changes along the satellite’s dawn-dusk orbit. This is 956 

likely to be just one amongst many novel uses of the BIOMASS data, whose scope will only become 957 

clear once BIOMASS is in orbit.  958 
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Fig. 1. Global ecological regions of the world (FAO 2012) with the area affected by Space Objects 1327 

Tracking Radar (SOTR) stations highlighted in yellow. Only land areas between 65o South and 85o 1328 

North are represented (figure reproduced courtesy of Joao Carreiras). 1329 

Fig. 2. P-band backscatter at HV polarisation (𝛾𝐻𝑉
0 ) over tropical and boreal forests against the biomass 1330 

of in situ reference plots. Data from Paracou, French Guiana, were acquired by the SETHI SAR system 1331 

in 2011 (Dubois-Fernandez et al., 2012), those from La Selva, Costa Rica, in 2004 by the AIRSAR 1332 

system (Antonarakis et al., 2011) and those from Remningstorp, Sweden, by the E-SAR system in 2007 1333 

(Sandberg et al., 2011).  1334 

Fig. 3. Estimated AGB using the approach described in the text against AGB estimated from in situ and 1335 

airborne laser scanning at the La Lopé site in Gabon during the AfriSAR campaign. The running average 1336 

given by the blue line indicates only a small positive bias across the whole range of AGB. ROI denotes 1337 

Region of Interest. 1338 

Fig. 4. Plot of HV backscatter intensity at height 30 m above the ground measured by tomography 1339 

against in situ AGB in 1 ha plots at tropical forest sites investigated during the TropiSAR (Paracou and 1340 

Nouragues) and AfriSAR (Lopé, Rabi, Mondah) campaigns. 1341 

Fig. 5. Forest height map obtained from inverting P-band Pol-InSAR data acquired over the Pongara 1342 

National Park, Gabon, in the framework of the AfriSAR campaign in February 2017. 1343 

Fig. 6. (Top) Pair of repeat-pass PALSAR-2 images acquired on 8 August 2014 and 7 August 2015 1344 

displayed in Pauli image format (red = HH + VV; blue = HH - VV; green = 2HV) and slant range 1345 

geometry. (Bottom left) Detection of change at 99% significance level; changed pixels are marked as 1346 

black. (Bottom right) Image from 8 August 2014 with changed pixels marked as red. 1347 

Fig 7. Relative difference between modelled carbon turnover rates and turnover rates inferred from 1348 

observations. 1.0 means modelled rate is 100% higher (from Thurner et al., 2017). Red boxes labelled 1349 

b (boreal) and t (temperate) were analysed further in Thurner et al. (2017) to explain these discrepancies 1350 

(figure reproduced courtesy of Martin Thurner). 1351 

Fig. 8. The relative reduction in the size of the 95% confidence interval of estimated vegetation carbon 1352 

turnover times when using a prior value for biomass at each pixel compared to a run without a biomass 1353 
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prior. Turnover times were estimated using the CARDAMOM system. The darker areas show where 1354 

reduction in relative uncertainty is largest. 1355 

Figure 9. Left: SPOT image of the Ksar Ghilane oasis region in southern Tunisia: palaeo-channels are 1356 

hidden by aeolian sand deposits. Middle: ALOS-2 L-band radar image, showing sub-surface features but 1357 

blurred by the return from the superficial sand layer. Right: SETHI P-band radar image, clearly revealing 1358 

sub-surface hydrological features. 1359 

Fig. 10. Coverage of ESA and NASA-ISRO satellite measurements of forest structure and above-1360 

ground biomass (AGB). The background shows the global coverage area of NISAR, which will be 1361 

sensitive to AGB values < 100 t/ha (green and yellow). BIOMASS coverage includes the tropical belt, 1362 

the temperate and boreal zones of Asia, and the southern hemisphere, while the GEDI Lidar will sample 1363 

latitudes between  51.5. These two sensors will cover the full range of forest AGB providing 1364 

measurements where AGB >100 t/ha (red), so inaccessible to NISAR. 1365 


