
High Impact, Low Maintenance:
Test Automation Strategies
What is test maintenance? And what are the best practises when it
comes to automated test maintenance? Learn all about strategies
and practices to achieve low-maintenance tests in automated GUI
testing with Squish.

WHITEPAPER

Squish

import names
import OS
def inrvokeMenuitem(menu_, item) :
 m ouseClick(waitforObject({ 'type' : 'Me
 m ouseClick(waitforObject({ 'type' : 'Me

def addNameAndAddress (oneNameAndAdd
 i nvokeMenuitern("Edit", "Add . . . ")
 t ype (waitforObject (names.address_
 t ype (waitforObject(names.address_B
 t ype (waitforObject (names.address_
 t ype (waitforObject(names.address_B
 t ype (waitforObject (names.address_

Test Results

tst_adding

Test case
Pass May 17, 2021, 9:23:27 PM

May 17, 2021, 9:23:31 PMFail

tst_adding

Test Suites

tst_adding_data

tst_general REC

REC

Result MessageT ime
TestSuite
 TestCase
 Pass
 Detail
 Pass
 Detail

suite_py
tst_adding
Verified& On startup, the address list....
True expression
Comparison: After adding 3 addresses...
‘3’ and ‘3’ are equal

May 17, 2021, 9:23:27 PM
May 17, 2021, 9:23:27 PM
May 17, 2021, 9:23:32 PM

May 17, 2021, 9:23:38 PM

The Qt Group High Impact, Low Maintenance: Test Automation Strategies 2

What is test
maintenance?

Best practises of
automated test
maintenance?
What is Squish,
how it works?

Who should use it?

High Impact, Low Maintenance: Test
Automation Strategies
The goal of automating GUI testing is to enhance
efficiency by reducing the time spent on manual
testing and allowing our human testers to focus on
more complex and critical tasks. But, how?

Before we discuss the best practices of automated
test maintenance, let’s examine the definition of test
maintenance.

Understanding test maintenance
Regular maintenance of test scripts, whether manual or automated, is essential to
keep them in sync with code changes. This proactive approach not only saves time
and costs but also ensures high-quality tests.

For instance, if the identifying attribute of a UI element (such as Id, class, or Xpath)
changes, the test must be updated accordingly to prevent failures.
However, without a strategic approach, test maintenance can become challenging
and time-consuming. Teams may find themselves constantly fixing broken tests
instead of creating new ones or enhancing existing ones.

This is where low-maintenance tests become invaluable.

What are low-maintenance tests?
Low-maintenance tests are designed to be stable and require minimal updates,
even when the application under test undergoes changes.
These tests are structured to take a long time to break, meaning they can adapt to
application changes without needing frequent and extensive modifications.
The goal is to create resilient test scripts and frameworks that demand less
maintenance effort.

The Qt Group High Impact, Low Maintenance: Test Automation Strategies 3

5 practical examples in achieving low-
maintenance tests with Squish
Here are some strategies and practices by which Squish achieves low-maintenance
tests in automated GUI testing:

Practical example #1: Squish records low-maintenance test cases by default

Robust and stable mechanism for identifying GUI elements
The Squish object map and Object Names
Whenever Squish records a test case, it creates an Object Map and adds a symbolic
name–a real name pair for every object the user interacts with.
When recording a test case or picking objects in the Spy, Squish automatically
creates a name for each object accessed so that it can be identified later, for
example, in a test script.

This name could be a multi-property (real) name for most toolkits. These lead to
more flexible and reliable object identification in the face of application changes.
Symbolic vs Real Names
The Object Map associates each object name with a so-called symbolic name,
which serves as a ‘key’ into the Object Map. Test scripts exclusively reference the
object names by using symbolic names, and the symbolic names are automatically
mapped to the referenced object names as a test case is executed.

The Squish object map is designed to make it easier to maintain test scripts when
the application under test changes its object hierarchy or names.
Instead of repeating object names in multiple spots of the test script code base, the
idea of the Object Map is to maintain a repository of all object names in which each
object name is defined exactly once, centrally.

Changes to the application only require changing the single Object Map entry
mentioning that object name. The symbolic names are independent of the AUT and,
thus don’t need any modification.

Hence, all test scripts remain unchanged, and the test cases replay as before since
each symbolic name mentioned in the test scripts automatically maps to the new
and updated object name.

Strategies and practices to achieve low-
maintenance tests in automated GUI testing
with Squish.

Key takeaways:
•	 You know your AUT better than your tool does. Use your knowledge

about your AUT to anticipate where AUT changes could happen.
•	 Increase the abstraction level further

•	 Use different properties to identify an object
•	 Reduce the number of properties that identify an object

The Qt Group High Impact, Low Maintenance: Test Automation Strategies 4

Practical example #2: Increasing the abstraction level by editing Real Names

When recording tests with Squish, each element in the user interface is identified
by a set of properties that are unique to that specific element. Properties used to
identify elements could be visibility, text contents, parent window, etc.

After recording a test, it may be useful to examine the object map and examine the
properties Squish has selected to uniquely identify the GUI elements.
Keep the following in mind when examining the object map:

•	 Squish may have chosen too many properties, thus making the object too
unique. Imagine that you identify a button based on its text contents. This
text then changes in the next version of the application under test. As a
result, this change breaks your test.
As a knowledgeable developer or tester familiar with the application being
tested, you could have foreseen that the text might change in future
versions and could have used various object properties to identify the
button uniquely.

•	 Squish may have chosen too few properties, increasing the possibility of
ambiguous real names. For example:
A button is identified by its location in a specific menu. When a new
version of the application under test adds a new button to the same view,
suddenly, two buttons match the real name. As a tester/developer, you
could have added more identifying properties to the original button’s real
name to ensure it would stay unique in future updates.

The second example shows that it can be useful to open the object map and
examine the different real names to see whether they contain unnecessary
properties that can be deleted or lack properties that should be added.

Wildcards can be used to match a real name’s text property with multiple different
text values for the specific case of text properties.

Key takeaways:
Your AUT changes will break your test at some point. To ease the pain of fixing
these breaks, you can:

•	 Use the object map
•	 Extract functions
•	 Separate test logic from test data

The Qt Group High Impact, Low Maintenance: Test Automation Strategies 5

Practical example #3: Reducing code repetition

The third practical example highlights the importance of not inlining real names into
test scripts.
In most cases, no additional effort is needed because Squish typically uses symbolic
names in test scripts when recording, thereby removing the actual names from the
scripts.

When manual script writing is employed without the recording feature, it is
important to utilize symbolic names corresponding to actual name entries in the
object map.

In the test script, you should see:

tapObject(waitForObject(names.UIButton))

You should not see:

tapObject(waitForObject({“”type”: “UIButton”,
“visible”: 1, “window”: {“type”: “UIWindow”,
“visible”: 1}}))

By using only symbolic names in the script, less code repetition is achieved.

Practical example #4: Extracting methods and sharing code among test cases

In this practical example, we’ll look at how the IDE in Squish facilitates the process
of creating and refactoring functions by providing tools for standard refactoring.
This ensures that the code remains well-maintained.

Additionally, Squish allows for the creation of shared functions, centralizing changes
in a single file and ensuring that calls to these functions in different test scripts
remain unaffected.

These shared functions can be utilized by any test case within a specific test suite.

1.	 Screenshot Verification
In Squish IDE, the user can use the new screenshot as the “Expected Image.” If
an application change causes the screenshot to fail, using the failed image as the
“Expected Image” adjusts the test script for the new GUI.

Squish also allows the user to choose a different screenshot comparison mode
depending on the use case, such as the threshold property, correlation, histogram,
etc.

Key takeaways:
One major advantage of using object mapping in test scripts is that when
changes or updates are needed for an object’s properties, you only have to
make the modifications in the object map rather than updating every instance
of the object reference in the script code. This greatly simplifies maintenance
and reduces the potential for errors in the test scripts.

The Qt Group High Impact, Low Maintenance: Test Automation Strategies 6

2.	 Retry mechanism in Object Not Found dialog
Upon “Object Not Found,” Squish IDE allows you to pick a different object. Using the
new object name, you can retry running the test script.
If a waitForObject command runs into the specified (or default) timeout during test
execution, the Object Not Found dialog automatically opens.

The dialog shows the error message generated for the lookup error and the object
name for which the lookup was executed. You can try to solve the error in the
following ways.

Click the Pick New Object button to select an object from the AUT and compare
its properties against those used for the name. This lets you investigate how the
properties have changed and whether they caused the lookup error.

The Qt Group High Impact, Low Maintenance: Test Automation Strategies 7

Click the Throw Error button to let the test execution continue and generate the
appropriate error. Letting the execution continue at this point may end the test
unless the test script catches the lookup error to recover from this itself.

Click the Debug button to close the dialog and open the corresponding name in the
object map editor. The Squish IDE is now in the Test Debugging Perspective, so you
can use all the usual debugging tools to examine the problem further.

Click the Retry button to re-execute the object lookup. It will use the old name if
you did not pick a new object, which can be useful to determine whether the lookup
error is triggered because the object takes longer to become ready than the default
timeout. If you pick a new object, the new object name will be stored under the
symbolic name in the object map, and the lookup will be performed with that new
name.

3.	 Squish doesn’t record absolute coordinates in the test script
This makes the recording independent of the absolute positions of the widgets on
the screen. The recorded coordinates are not absolute and only specify where a click
should occur relative to the top left corner of the widget.

4.	 Using Smart Wait Mechanisms:
Synchronization waitFor() waitForObject() waitForItem()
Squish has smart waiting mechanisms to handle asynchronous behavior. Instead of
using hard-coded sleep statements, Squish provides a plethora of waitFor* API to
synchronize the availability of objects to interact with.

The waitForObject(), waitForObjectExists(), and waitForObjectItem() functions
default to waiting 20000 milliseconds (20 seconds) for the object they are given to
be visible and ready to use. If they time out, they raise a catch-able exception.

Practical example #5 - Data-driven testing

In software testing, it can be beneficial to segregate test data from test logic.
This separation can improve scalability and maintainability. It can lower the risk of
programming errors, as the test logic remains untouched through changes to the
test dataset. This segregation can be accomplished using external data sources like
spreadsheets or databases.

The advantage of this approach is that when the test data changes, the external
source can be updated without the need to modify the test script.
In Squish, importing a dataset into the system and utilizing it as the source of values
inserted into tests is feasible. Squish supports importing data in formats such as
.tsv, .csv, .xls, and .xlsx.

The import process can be executed using the Squish IDE or manually via a file
manager or console commands. Both methods will be detailed, starting with
utilizing the Squish IDE.

The Qt Group High Impact, Low Maintenance: Test Automation Strategies 8

Best Practices for Automated Test
Maintenance
To keep automated tests running smoothly, following some best practices for
upkeep is important. These practices help ensure that the tests stay up to date,
reduce the need for manual work, and maintain high-quality testing.

Here are some important practices to keep in mind:

1.	 Implement version control for your test scripts

Version control systems are like a safety net for managing changes to test scripts.
They help teams track modifications, work together effectively, and revert to
previous versions if needed.

Essentially, version control ensures that any changes made to test scripts are
recorded and can be checked or undone, making it easier to manage and coordinate
everything.

By keeping track of changes and saving different versions of your test scripts, you
can easily return to a stable version if problems arise. This means that every test
script is managed in an organized way and can be updated with confidence.

2.	 Use codeless tools for test automation

Codeless test automation tools make it easier to create and maintain test scripts.
These tools often have visual interfaces and record-and-playback features that
reduce the need for deep programming knowledge.

The less technical the test, the easier it is for more team members to help with test
creation and maintenance, which improves overall productivity and test coverage.
This allows testers, business analysts, and subject-matter experts to create and
manage automated tests without relying on specialized automation engineers.

In addition, different QA Engineers have different coding cultures and naming
conventions. Visual tools can help avoid confusion and maintain test quality.

3.	 Continuous Integration/Continuous Delivery (CI/CD) integration

It’s important to ensure tests are done automatically whenever the code is changed.
It helps developers get quick feedback and reduces the chances of problems
happening again. Automating tests in the development process makes sure that the
tests always match the changes made to the code.

CI/CD tools are like helpful assistants that run tests whenever code is updated.
Having a C//CD integration in place is instrumental in detecting issues early in the
development process, thereby simplifying the resolution of defects before they
escalate into significant problems.

These practices help ensure that the tests
stay up to date, reduce the need for manual
work, and maintain high-quality testing.

The Qt Group High Impact, Low Maintenance: Test Automation Strategies 9

4.	 Develop test data management strategies

Ensuring reliable and repeatable automated tests requires good strategies for
handling test information.
This involves creating sets of high-quality test information that can be used
repeatedly. Various methods can be employed to achieve this such as generating
new test information, masking real information, or using dummy data to fulfill
testing requirements without exposing private details, and maintaining consistency
across different test environments.

Proper test data management eliminates inconsistencies, reduces the chances of
test failures due to data issues, and provides predictable test conditions.

5.	 Set up automated monitoring and alerts

Monitoring test runs using tools can quickly identify and catch problems, making
it easier to fix them immediately. Automatic alerts can help address issues before
they escalate into major problems.

Setting up automated monitoring tools to track test results and performance
numbers allows you to be notified if anything deviates from normal parameters—
it’s one way to stay ahead.

6.	 Collaborate with others

Teamwork is key to keeping your tests running smoothly. Encouraging
communication and knowledge sharing among team members enables them to
discuss issues, share solutions, and document best practices.

Regularly scheduled meetings or retrospectives focused on test maintenance
between development and testing teams help identify improvement areas and
foster a continuous improvement culture.

The Qt Group High Impact, Low Maintenance: Test Automation Strategies 10

Enhancing the durability of tests
Squish creates robust, long-lasting tests that reduce the efforts required for
maintenance. With strategic practices, you can increase the durability of your tests
even further. The two main takeaways from this paper are:

1.	 You can increase abstraction levels by:

•	 Minimizing object properties - Use the minimal number of object properties
necessary to identify GUI elements is crucial. This reduces the likelihood
of tests breaking when changes occur in the application under test (AUT).
Focusing on the essential properties that uniquely identify each object creates
more resilient tests.

•	 Using Wildcards - Implement wildcards for object properties and values
enhances the adaptability of tests. Wildcards allow for minor variations in
property values, accommodating changes in the AUT without causing test
failures. This flexibility is vital for maintaining robust test suites.

•	 Leveraging domain knowledge - You know the AUT better than any tools do.
Utilize your in-depth understanding of the AUT to refine the object properties
stored in the real name. Identify or remove irrelevant properties or modify
them to more stable ones that uniquely identify elements. By doing so,
you ensure that the tests are both precise and resilient to changes in the
application’s interface.

•	 Utilizing intelligent Wait functions - Replace hardcoded wait intervals with
intelligent wait functions like waitForObject() to avoid unnecessary delays and
reduces the potential for test failures due to timing issues. This function waits
for an object to become available before proceeding, ensuring that the test only
advances when the AUT is ready.

2.	 You can ease the work of fixing a broken test by:

•	 Using symbolic names to reference your real names - Use symbolic names
to reference real names in your test scripts is essential for maintainability.
Symbolic names act as aliases for the actual object properties, allowing you to
update the real name in one place. The update is automatically reflected across
all references in your test scripts, significantly reducing the effort required to fix
tests when changes occur in the application.

•	 Extract repeated script code into a separate function - By modularizing your
test scripts, you minimize redundancy and centralize common actions. When
a change is necessary, updating the function in one place ensures consistency
across all tests that utilize that function, making maintenance easier and less
error-prone.

•	 Use the data driven approach - Separate test data from the test logic. Store
test data in external files and use these files to drive test parameters. This
approach minimizes changes to the test scripts themselves and reduces the
likelihood of introducing errors during script updates. It also allows for easier
scaling and updating of test data without modifying the underlying test logic.

These practices will significantly enhance the durability and maintainability of your
automated tests. After all, isn’t the goal of automating GUI testing to allow our
human testers to focus on more complex and critical tasks?

The two main takeaways from this paper

www.qt.io/squish ©
 Q

t G
ro

up
 | 2

02
40

6

