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Abstract— Digital coherent transceivers have revolutionized 

optical fiber communications due to their superior performance 

offered compared to intensity modulation and direct detection 

based alternatives. As systems employing digital coherent 

transceivers seek to approach their information theoretic 

capacity, the use of multilevel modulation formats combined with 

appropriate forward error correction becomes essential. Given 

this context, in this tutorial paper, we therefore explore the 

digital signal processing (DSP) utilized in a coherent transceiver 

with a focus on multilevel modulation formats. By way of an 

introduction, we open by discussing the photonic technology 

required to realize a coherent transceiver. After discussing this 

interface between the analog optical channel and the digital 

domain, the rest of the paper is focused on DSP. We begin by 

discussing algorithms that correct for imperfections in the optical 

to digital conversion, including IQ imbalance and timing skew. 

Next, we discuss channel equalization including means for their 

realization for both quasi-static and dynamic channel 

impairments. Synchronization algorithms that correct for the 

difference between the transmitter and receiver oscillators both 

optical and electrical are then discussed and issues associated 

with symbol decoding highlighted. For most of the cases, we start 

with polarization division multiplexed quadrature phase-shift 

keying (PDM-QPSK) format as a basis and then discuss the 

extension to allow for high order multilevel formats. Finally, we 

conclude by discussing some of the open research challenges in 

the field. 

 
Index Terms—Coherent detection, digital signal processing, 

optical fiber communication. 

 

I. INTRODUCTION 

IGITAL coherent transceivers have emerged as the de 

facto solution for long-haul optical fiber communication 

systems due to their superior performance offered compared to 

intensity modulation and direct detection based alternatives.  

While historically systems operated at the limits of the 

electronic technology, data converters commensurate with the 

optical line rate emerged over the last decade, permitting the 

use of digital signal processing (DSP) for high speed optical 

fiber communication systems. The symbiotic combination of 
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DSP, spectrally efficient modulation formats and coherent 

detection led to the advent of the digital coherent transceiver 

which now underpins 100 GbE systems.   

 The first application of DSP at rates commensurate with 

the current optical line rates was mitigating the impact of 

chromatic dispersion (CD) in direct detection systems [1, 2]. 

While this technique was well suited to a binary modulation 

format, as systems sought to employ spectral efficient 

modulation formats to increase their capacity, the complexity 

became prohibitive. Consequentially, research shifted to 

alternative approaches such as coherent detection since the 

associated linear receiver did not suffer the complexity scaling 

issues for multilevel formats associated with a direct detection 

receiver. The first demonstration of demodulation of 20-

Gbits/s quadrature phase-shift keying (QPSK) signal using a 

phase diversity coherent detection followed by digital carrier-

phase estimation was reported in [3]. The key advantage of a 

phase diverse intradyne receiver is in avoiding the need for an 

optical phase lock loop (OPLL) [4], which can be challenging 

to realize due to the finite loop delay. While intradyne 

detection allowed chromatic dispersion to be compensated 

digitally [5], the more critical impairment for the then 40 

Gbit/s systems was polarization mode dispersion (PMD) 

which required dynamic receiver based compensation [6]. The 

realization that PMD could be mitigated digital provided a 

phase and polarization diverse coherent receiver was used [7] 

stimulated further research into digital coherent [8]. Once the 

DSP functions of equalization and synchronization where 

established, advanced functionalities such as spectral shaping 

and nonlinearity compensation were introduced into the DSP 

chain. Due to the time and cost associated with an application-

specific integrated circuit (ASIC) for real time operation, 

much of the early research was based on offline processing. 

This facilitated ASIC designers to determine the feasibility of 

realizing key algorithms in a highly parallel CMOS ASIC with 

limited analog-to-digital (ADC) resolution. Having established 

the design space, this then allowed the first ASIC which 

incorporated DSP and ADC to be developed by Nortel which 

was commercially deployed in 2008 [9,10]. 

Most of the DSP algorithms for polarization division 

multiplexed QPSK (PDM-QPSK) are derived from the 

wireless communication counterparts. However, necessary 

modifications are required to cope with special nature of fiber 

optic channel. The DSP design become more challenging as 
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the modulation format evolves from PDM-QPSK to multilevel 

quadrature amplitude modulation (QAM) formats. With an 

extension of [11], in this paper, we review the principle of 

fundamental DSP techniques used in coherent transceivers. 

We also explore the recent advancements of DSP algorithms 

especially for multilevel formats.  

Rest of the paper is organized as follows: Sec. II gives an 

overview of DSP-based coherent transceivers. Compensation 

of different IQ imbalances arising from transmitter and 

receiver imperfections are discussed in Sec III. Section IV and 

V are concerned with equalization of different linear and 

nonlinear transmission impairments where both time and 

frequency domain approaches are considered. Synchronization 

algorithms are discussed in Sec. VI-VIII, after which symbol 

estimation and decoding are explained in Sec. IX. Finally, 

current research challenges are highlighted in Sec. X and the 

paper is concluded in Sec. XI.     

II. DSP-BASED COHERENT TRANSCEIVERS 

The usual configuration of coherent transceiver for PDM 

transmission system utilizing advanced vector modulation 

formats and DSP techniques is shown in Fig.1. At the 

transmitter, first two independent data sequences for x- and y-

polarizations are processed in the DSP which may include 

encoding, modulation, precompensation of linear and 

nonlinear transmission impairments and pulse shaping 

filtering. Such digitally processed signals are converted to 

analog signals using four digital-to-analog converters (DACs)1 

corresponding to the in-phase (I) and quadrature (Q) 

components of signals for x- and y- polarizations which are 

then used to drive two IQ modulators (IQMs). A single laser 

output split by polarization beam splitter (PBS) is used for two 

IQMs. Outputs of IQMs are then combined by polarization 

beam combiner (PBC) and transmitted through fiber. 

At the receiver, the phase and polarization diversity 

architecture shown in Fig. 1(b) is often employed to linearly 

map incoming optical signal into four electrical signals, 

corresponding to the in-phase and quadrature field 

components for the two polarizations. The optical front-end is 

employed with two PBSs and a pair of 90° hybrids, one for 

each component of polarization [12]. The outputs of the 

optical hybrid are then detected with four balanced 

photodiodes whose outputs are given as [13]: 
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where Re {·} and Im {·} represent real and imaginary 

components, Ex and Ey denote electric fields of the dual 

polarization incoming optical signal with x- and y-polarization 

components, respectively, and Elo is that from the local 

 
1 For QPSK format, I and Q data can directly be used to drive IQM without 

DACs if no pulse shaping or precompensation is used. Such a technique was 

used in the first generation of coherent transceivers [9] as well as in early 
coherent transmission experiments. 

oscillator (LO). Afterwards, signals are amplified with trans-

impedance amplifiers (TIAs) before digitizing by the ADCs. 

 

 

(a) 

 

(b) 

Fig. 1. Configuration of DSP-based (a): transmitter and (b): receiver. (DAC: 

digital-to-analog converter, IQM: IQ modulator, PBS: polarization beam 

splitter, PBC: polarization beam combiner, LO: local oscillator, TIA: trans-

impedance amplifier, ADC: analog-to-digital converter, DSP: digital signal 

processing). 

 

Fig. 2. Typical sequence of DSP operation in a coherent receiver to 

demodulate the data. 

The received signal is contaminated by channel 

impairments and noise. The channel impairments may stem 

from linear effects such as CD, PMD etc. or fiber nonlinear 

effects such as self-phase modulation (SPM), cross phase 

modulation (XPM) etc. On the other hand, the sources of noise 
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are shot noise, thermal noise, amplified spontaneous emission 

(ASE) noise, residual beating of the LO with relative intensity 

noise (LO-RIN), quantization noise from ADC etc. [14, 15]. 

The dominant noise source for short reached unamplified 

systems is shot noise while that for long haul systems with 

inline amplifiers is ASE noise.   

The digitized signal is passed through a chain of DSP 

operations to demodulate the data. While for a particular 

realization of a digital coherent receiver, the DSP operations 

may vary, the generic DSP procedures are shown in Fig. 2 and 

their functionalities can be summarized as below: 

IQ Imbalances compensation: The mismatch of amplitude, 

phase and timing between I and Q component are 

compensated. 

Digital equalization: The linear and nonlinear impairments of 

the channel is equalized. 

Timing recovery: The timing errors are estimated and 

corrected from them. 

Frequency and phase recovery: The frequency mismatch 

between transmitting laser and LO and the laser phase noise 

are estimated and compensated.   

Symbols estimation and decoding: Error correction codes are 

employed and transmitted symbols are estimated.  

III. IQ IMBALANCE COMPENSATION 

The phase/gain mismatch between I- and Q- port of the 

received signal may arise at transmitter, for example from the 

improper biasing of IQ modulator or at receiver such as the 

imperfection in any of components of optical 90° hybrids, 

balanced photodiodes, or TIAs. In addition, timing mismatch 

between the I and Q ports may also induced by the difference 

in the physical path length of the circuit trace, which is known 

as the IQ delay skew.  

There are different ways of modeling the IQ imbalances 

effect. One formalism is to relate a complex signal having 

imbalances { ( ) ( )}I t jQ t   with its ideal signal 

{ ( ) ( )}I t jQ t in the form of [16] 
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where, gI and gQ are the I/Q gains, τIQ is the timing skew and 

ϕIQ is the quadrature phase error. The IQ gain mismatch in dB 

is then defined by 
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TABLE-I 

THE IQ IMBALANCES TOLERANCE FOR 1dB SNR PENALTY AT 

BER OF 10-2 WITHOUT ANY COMPENSATOR IN RECEIVER    

Modulation 

format 
αIQ [dB] ϕIQ[deg.] 

τIQ [% of 

symbol-period] 

4-QAM 3.8 28 26 

16-QAM 1.6 10.5 11 

64-QAM 0.6 4 4.2 

256-QAM 0.2 1.4 1.5 

The impact of receiver side IQ imbalance for different 

modulation formats are summarized in Table-I as a function of 

1-dB sensitivity penalty at a bit-error rate (BER) of 10-2. As 

can be seen in the results of Table-I, as the order of the 

modulation increases the requirements for the IQ imbalance 

become increasing more stringent. Thus, system performance 

can degrade significantly if for higher level modulation 

formats IQ imbalance is not compensated by the receiver DSP. 

The well-known techniques for orthogonalization of two 

non-orthogonal vectors are the Gram-Schmidt 

orthogonalization procedure (GSOP) [17] and the Löwdin 

orthogonalization [18, 19]. The Gram-Schmidt 

orthogonalization is based on defining a new vector that is 

orthogonal to the initially selected vector. This makes two 

vectors orthogonal as shown in Fig. 3(a). This procedure can 

be shown mathematically as: 
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where a is the inner product given as a I Q  . 

On the other hand, Löwdin orthogonalization is a symmetric 

orthogonalization where both the vectors are rotated by the 

same angle to make them orthogonal as shown in Fig. 3(b). 

The transformation can be written as:  
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While the GSOP is widely used for receiver-side IQ 

phase/gain imbalance compensation in the literature, Löwdin 

orthogonalization offers a symmetric alternative.  

 

Fig. 3. Visual representation of the (a): Gram-Schmidt and (b): Löwdin 

orthogonalization algorithms.  

The IQ delay skew can be compensated by interpolation 

which serves as a time shifting. The interpolator can be 

implemented using a finite-impulse response (FIR) filter. 

When the time window of interpolation is small enough, 

several polynomials of a lower degree can be used. For 

example, using interpolating function as a quadratic term, the 

skew compensator can be realized using a 3-tap FIR filter 

[20]. Alternatively, the skew can be estimated in frequency 

domain based on the principle of Godard phase detection and 

then estimated value can be used for compensation using time 

domain interpolator [21].  

Recently it has been shown that with a modified 

configuration in the adaptive equalizer (generally used for 

polarization tracking) all the receiver-side IQ imbalances can 
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be compensated effectively [22, 23] which we discuss further 

in Sec. V.  

   While the DSP at receivers can fully compensate receiver-

side imbalances for a sufficiently high ADC bit resolution, the 

transmitter-side imbalances only can be mitigated due to the 

noise which occurs between the transmitter and the receiver 

[16]. As an example, the performance of GSOP to compensate 

transmitter- and receiver-side phase imbalance compensation 

is shown in Fig. 4 considering 6-bits ADC resolution. The 

SNR penalty at BER 10-2 is measure when the 16-QAM signal 

is transmitted over additive white Gaussian noise (AWGN) 

channel. Clearly, the receiver-side imbalance is effectively 

compensated over a wide range while we must consider 

penalty for transmitter-side imbalance, albeit a considerable 

performance improvement can be achieved. 

 

Fig. 4. Sensitivity penalty when GSOP is used to compensate for transmitter-

/receiver-side IQ phase imbalance. 

IV. STATIC EQUALIZATION 

While in principle, equalization of all linear impairments 

could be realized with one digital filter, it is generally 

beneficial to partition the problem into static and dynamic 

equalizer. The rational for this partitioning is that static 

equalization typically requires large static filters, while 

dynamic equalization requires a set of relatively short adaptive 

filters to compensate for time-varying phenomena. The 

tracking speed of the adaptive filters depends on a number of 

factors including the number of filter taps, adaptation 

algorithm, the value of step size parameter, degree of 

parallelization etc. For example, tracking of maximum 

polarization rate of change of 50 kHz was demonstrated in 

[24] by five taps T/2-spaced filters adapted by least-mean-

square (LMS) algorithm with an update in every 12 symbols. 

The fastest change of polarization states in an optical channel 

is generally in order of ms [25, 26] and thus can be tracked by 

the adaptive filters.   

A. Chromatic Dispersion Compensation 

The transfer function of the CD is given by [27]: 
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where ω is the angular frequency, β2 is the group delay 

dispersion parameter of the fiber and z is the transmission 

length. The dispersion compensating filter is therefore given 

by the all-pass filter with transfer function 

( ) 1/ ( , ) ( , )cH G z G z     , which can be approximated 

either in time-domain by using a FIR filter or in the frequency 

domain method. 

1) Time Domain Equalizer: 

The time domain equalizer (TDE) is preferably 

implemented by a FIR-filter whose direct realization can be 

viewed as in Fig. 5. 

 

Fig. 5. Configuration of the FIR filters. 

The input signal x(n) is delayed by integer multiples of τ, 

where τ is a sample delay defined by the sampling rate. We 

define a vector using these delayed elements of the input as 

 ( ) [ ( ), ( 1), ( 1)]T

i i i in x n x n x n N    x  (7) 

where the superscript (·)T denotes the transpose operation and 

N is the number of tap weights of the FIR filter. The tap 

weights also constitute a vector as 
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Then, the output of the FIR filter is given by 
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To calculate the tap-weights vector for CD compensation, 

herein we consider two methods, namely, truncated impulse 

response and least-square method. The impulse function of the 

chromatic dispersion compensating filter hc(z,t) can be 

obtained by inverse Fourier transform of G(-z,ω) given as 
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The impulse response given by Eq. (10) presents a number 

of issues for digital implementation, not only it is infinite in 

duration but since it passes all frequencies for a finite 

sampling frequency, aliasing will occur. These problems can 

be solved by truncating the impulse response to a finite 

duration which can be express for sampling time Ts as [7, 28]: 
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complex FIR filter, giving optimal tap weights in a least 

squares sense as in Eq. (12) [29], where erfi( )x  is the 

imaginary error function given by erfi( ) erf ( )x j jx   given 

that  
2

0

2
erf ( )

z
tz e dt



  . 

For shorter link or higher order modulation format, the 

truncated impulse response method has significant 

performance limitation. Substantial performance improvement 

can be achieved by using the least square method. 

Nevertheless, the performance degradation can be mitigated 

by choosing number of filter taps beyond    .   

The CD filter can alternatively be implemented using digital 

infinite-impulse response (IIR) filter with significantly 

reduced number of taps [30]. However, it requires large 

number of buffers for time reversal operations. More 

importantly, unlike FIR filter, it is a big challenge to realize 

the parallel structure of IIR filter which is one of the key 

requirement for real time implementation [31]. 

2) Frequency Domain Equalizer: 

For long-haul dispersion uncompensated link, we need a large 

number of taps to compensate CD. As the number of taps, Nc, 

is increased, the complexity of filtering increases rapidly for 

time-domain implementations ( ( )cN ). In such a case, the 

filtering can be done more efficiently in frequency domain      

( (log )cN ) [32]. To implement frequency domain equalizer 

(FDE) either overlap-save method [33, 34] or overlap-add 

method [35] has been investigated for CD compensation with 

former one having less complexity.  

 

Fig. 6. Illustration of overlap-save implementation of CD-equalizer.  

The CD compensating FDE based on overlap-save method 

is illustrated in Fig. 6. The incoming signal is first transformed 

into frequency domain with fast Fourier transform (FFT) with 

a block length NFFT = No+Nc, where No samples are part of last 

data block and Nc samples are from current data blocks. The 

frequency domain signal is then multiplied with Hc(ω) and 

then transformed into time domain using inverse FFT (IFFT). 

The first No samples are discarded for avoiding cyclic 

properties of FFT and Nc equalized samples are retained. With 

an optimized FFT algorithms, using such implementing FDE 

can be beneficial over TDE even for Nc>4 [33]. 

3) Subband Equalizer: 

The total number of taps required for CD compensation can 

be greatly reduced with a subband equalizer [36, 37]. Fig. 7 

shows the configuration of an oversampled subband equalizer 

with Nsb subbands, downsampled by a factor M (M < Nsb). The 

analysis filter bank is a uniformly modulated filter bank based 

on a prototype filter of H(z). Then each subband is equalized 

with a CD equalizer ( )
kcH z  together with a delay δk (k = 0, 1, 

···, Nsb-1). The synthesis filter bank is based on a prototype 

filter of G(z) with an upsampling factor of K whose outputs 

are combined to produce the equalized output. Assuming the 

original signal of is oversampling by a factor of M/K, the total 

number of taps of all subbands is approximately 1/K of that for 

the full-band equalizer. 

 

Fig. 7. Configuration of sub-band implementation of CD equalizer. 

B. Matched Filtering 

To enable future systems to minimize their spectral 

utilization for a given higher-order modulation format, 

Nyquist pulse shaping is required [38]. In the limit, Nyquist 

pulse shaping can generate near-rectangular spectra, lowing 

the wavelength division multiplexing (WDM) channel spacing 

to be reduced close to the symbol rate of each channel. Often 

raised-cosine (RC) spectral shaping is used to satisfy the 

Nyquist criterion and thus inter-symbol interference (ISI) free 

operation [39]. The RC response is given by: 
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where, β is the roll-off factor. It is well known that to 

maximize the signal-to-noise ratio, RC filter can be split to 

both transmitter and receiver side [40]. Therefore, a root-

raised-cosine (RRC) spectral shaping at the transmitter side 

and a second RRC filter as a matched filter (MF) at the 

receiver side is used while RRC filter response is given as
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 A RRC filter with β close to zero may require a few 

hundreds of taps to implement; thus, MF and CD equalizer can 

be combined to reduce the computational burden [41]. The 

static filter implemented at receiver will then have a response: 

 ( ) ( ) ( , ).static RRC cH H H z    (14) 

It is important to note that, implementing the MF in the CD 

filter is sensitive to frequency offset and system performance 

can severely be degraded since at this point of DSP chain 

frequency offset compensation is difficult [41]. This problem 

however can be solved by allowing MF in the blind adaptive 

filtering with larger number of taps which can be efficiently 

implemented in frequency domain [42].  

  At the transmitter, the RRC filter can be combined with 

CD precompensation without any additional computational 

cost, allowing the CD compensation to be realized in the 

transmitter, receiver or a combination of the two. 

C. Fiber Nonlinearity Compensation 

The Kerr effect in optical fibers induces nonlinear 

waveform distortion and it is the major impairment of the 

coherent optical system that limits the maximum achievable 

transmission distance [43]. For long distances, the nonlinear 

transmission can be modeled by Manakov equation [44], 

which is of the form as: 

  
2

2 2/ /

/ 2 /2

8

2 2 9

x y x y

x y x x x y

E Ej j
E E E E

z t


 

 
    

 
 (15) 

where α is the loss coefficient and γ represents the nonlinear 

coefficient. To mitigate the Kerr effect in the presence of loss 

and dispersion, one of the most investigated techniques is 

digital backpropagation (DBP) where the received signal is 

transmitted through virtual fibers and amplifiers to emulate the 

inverse characteristics of the actual transmission link [45, 46]. 

By reversing the signs of α, β2, and γ of Eq. (15), the 

mathematical expression for this virtual propagation can be 

found as: 

  
2

2 2/ /

/ 2 /2
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.
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x y x y

x y x x x y

E Ej j
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z t


 

 
   

 
 (16) 

The nonlinear partial differential equation given by Eq. (16) 

is solved numerically, generally using split step Fourier 

method (SSFM) where the fiber is divided into small sections. 

Fiber dispersion and nonlinearity is calculated independently; 

in one step only dispersion is considered ignoring nonlinearity 

and in the next step nonlinear term is calculated excluding 

dispersion. Alternatives to receiver based DBP is digital 

precompensation (DPC) [47] at the transmitter or a symmetric 

split of the nonlinearity compensation between transmitter and 

receiver [48]. 

The receiver based DPB, requires multiple computational 

steps per span and as such suffers from high computational 

complexity. To reduce the complexity, the perturbation-based 

nonlinear pre-compensation technique can be used with only 

one computation step with a symbol-rate sampling sequence 

[49]. The complexity can be further reduced by incorporating 

symmetric electronic dispersion compensation and RRC pulse 

shaping in perturbation based nonlinearity pre-compensation 

[50]. 

While single-channel DBP is effective to mitigate SPM, to 

combat with XPM for a WDM system, multi-channel DBP 

(MC-DBP) is required, realized by either high bandwidth 

receivers [51] or spectrally sliced receivers [52]. Recently, it 

has been demonstrated that for a fully loaded WDM system, 

the peak SNR gain2 for a single-channel DBP is 0.5 dB while 

for joint 3- and 5-channel DBP the improvement is upper 

bounded to about 1 dB and 1.2 dB, respectively [53]. Each 

additional channel in the joint DBP process increases the 

peak-SNR by no more than 0.1 dB. 

Other than the backpropagation based method, several other 

nonlinearity mitigation schemes have been proposed and 

demonstrated so far such as nonlinear Volterra equalizer [54], 

inverse scattering transform [55], machine learning method 

[56], maximum a priori (MAP) detection [57] etc. 

V. ADAPTIVE EQUALIZATION 

The adaptive equalizer is used to compensate for the 

dynamic impairments of channels. Generally, a two-by-two 

multiple-input multiple-output (MIMO) structured FIR filters 

as shown in Fig. 8 is used to estimate the inverse Jones matrix 

of the dynamic channel [8]. 

For simplicity of explanation, we consider that input 

sequence of the filter is symbol-spaced sampled with a 

sampling index n. Extension for two-fold oversampled input 

sequence is straightforward-tap weights are just updated for 

every two samples. Consider that for an N tap FIR filter, hxx, 

hxy, hyx, and hyy are the column vector of length N representing 

the tap weights, with xi and yi representing a sliding block of 

N samples to which the filter is applied such that 

 ( ) [ ( ), ( 1) ( )]i i i in x n x n x n N   x  

 ( ) [ ( ), ( 1) ( )].i i i in y n y n y n N   y  (17) 

 

Fig. 8. Configuration of 2×2 MIMO structured adaptive FIR filters. 

For simplification of mathematical expressions, consider that 

( ) [ ( ); ( )]i i in n nu x y , ( ) [ ( ); ( )]x xx xyn n nh h h and 

( ) [ ( ); ( )]y yx yyn n nh h h  which yields the filter outputs in the 

form of 

 ( ) ( ) ( )H

o x ix n n n h u   

 ( ) ( ) ( )H

o y iy n n n h u  (18) 

 
2 Peak SNR gain is defined as the difference in peak SNR of SNR versus 

average signal power curve with and without DBP. 

xo

yoyi

hxx

hxy

hyx

hyy

xi



 

where superscript (·)H denotes the conjugate transpose. 

A. Adaptation Algorithms 

In an adaptive equalizer, we frequently have a cost function 

whose gradient is stochastically estimated and used to update 

the tap weights. For details of underlying mathematics for 

such estimation, readers are refer to [28]. While enormous 

algorithms for filter tap adaption is available in signal 

processing literatures, herein we discuss the commonly used 

algorithms used in coherent optical systems.  

1) Constant-Modulus Algorithm and Its Variants: 

The constant modulus-algorithm (CMA) [58] attempts to 

minimize, in a mean square sense, the error 
x and 

y given by 

 
2

2( ) ( )x on R x n    

 
2

2( ) ( )y on R y n    (19) 

where, R2 is the real-valued constant depends on the ideal 

symbols xsym. and given by 
4 2

2 . .sym symR E x E x . 

Correspondingly, the update equations for the filters are given 

as follows: 

 
*( 1) ( ) ( ) ( ) ( )x x x o in n n x n n  h h u  

 
*( 1) ( ) ( ) ( ) ( )y y y o in n n y n n  h h u  (20) 

where µ is the step size parameter and the superscript (·)* 

denotes the complex conjugate operation. For initialization, all 

tap weights are set to zero with the exception of the central tap 

of hxx and hyy, which are set to unity.  

The CMA can be implemented reliably in a full-blind mode; 

however, since the equalizer is unconstrained with respect to 

its outputs, it is possible for the equalizer to converge on the 

same output, corresponding to the Jones matrix becoming 

singular. Nevertheless, there are many well-established 

methods to overcome such singularity problem [59–62]. 

The CMA equalizer tap weight updates can be simplified by 

discarding the information about the magnitude of the gradient 

term, keeping only the sign of the gradient [63, 64]. By taking 

the sign of both the error term and the output data symbols, 

such that only the sign of the gradient is used to update the 

filter taps, the update equations in Eq. (20) can be rewritten as: 

 
*( 1) ( ) sgn{ ( )}csgn{ ( )} ( )x x x o in n n x n n   h h u  

 
*( 1) ( ) sgn{ ( )}csgn{ ( )} ( )y y y o in n n y n n   h h u  (21) 

where we define the signum function of the real number x and 

complex number z as: 

1 if 0
sgn( )

1 otherwise

x
x

 
 


 

   csgn( ) sgn Re( ) sgn Im( )z z j z  . 

Such adaptation is often known as sign-sign CMA. As shown 

in Eq. (21), when coupled with a power-of-two step-size, a 

multiply-free tap update can be realized. This reduces the total 

number of multiplications for adaptive filtering by a factor of 

two. 

  While the CMA is well suited to constant modulus formats 

such at M-ary PSK, many of the formats considered for future 

optical networks are not constant modulus (e.g. PDM-

16QAM) and as such the CMA error term can never converge 

to zero [65]. Nevertheless, the CMA can be adapted to a 

radially directed equalizer (RDE). In this case, the error 

signals are given as: 

  2 2
( ) ( ) ( )x r o on Q x n x n    

   2 2
( ) ( ) ( )y r o on Q y n y n    (22) 

where Qr (r2) is a function that quantizes the radius according 

to the number of possible rings.  

Note that for higher-order QAM, the relative probability of 

the radii, based on the number of constellation points in each 

radius can be included in the error functions of RDE [66] such 

that 

   2 2
( ) ( ) ( )x r r o on P Q x n x n    

   2 2
( ) ( ) ( )y r r o on P Q y n y n    (23) 

where Pr is the relative probability of receiving a radius r. The 

probabilistic RDE significantly improves performance in 

tracking fast changes in dynamic channels over conventional 

RDE for a higher QAM format beyond 16-QAM; however, 

the performance gain is negligible for a static channel.  

2) Decision-Directed Least-Mean-Square Algorithm: 

The error signal minimized for decision-directed LMS (DD-

LMS) algorithm is given by [67]: 

 ( ) { ( )} ( )x o on D x n x n    

 ( ) { ( )} ( )y o on D y n y n    (24) 

where, D{x} is the symbol closest to x. Correspondingly the 

update equations are given as: 

 
*( 1) ( ) ( ) ( )x x x in n n n  h h u  

 
*( 1) ( ) ( ) ( ).y y y in n n n  h h u  (25) 

It is important to note that, blind startup of DD-LMS is not 

reliable since most of the decision at the startup may be 

wrong. Therefore, for reliable convergence, either training 

symbols based LMS algorithm or the CMA is used at the 

startup and then switch to blind DD mode. 

Although CMA and DD-LMS algorithms require almost 

identical mathematical processing, one of the key difference 

between them is feedback latency. For a correct symbol 

decision to calculate the error signals for DD-LMS, the 

filtered outputs should pass through intermediate frequency 

offset compensation, carrier recovery and decoder blocks. 



 

Thus, the feedback latency for DD-LMS includes all the 

latency from these blocks unlike the CMA where the error 

signals can be computed directly from filter outputs as shown 

in Fig. 9. Therefore, the LMS equalizer update has a much 

higher loop latency than the CMA update which is a key 

concern in hardware implementation [31]. 

 

Fig. 9. DSP blocks for CMA and DD-LMS updates. 

3) Recursive Least-Squares Algorithm 

It is well established that the recursive least-squares (RLS) 

algorithm provides much faster convergence than the LMS 

algorithm with an expense of higher computational cost [68].  

TABLE-II 

SUMMARY OF STANDAR RLS ALGORITHM 

Initialization 

hx/y(0)-all zeros except a center spike at hxx and hyy 

/ 2(0)x y NP I ; is small positive number, I identity 

matrix 

Gain vector 

computation 

1

1

( 1) ( )
( )

1 ( ) ( 1) ( )

x i
x H

i x i

n n
n

n n n












 

P u
k

u P u
 

1

1

( 1) ( )
( )

1 ( ) ( 1) ( )

y i

y H

i y i

n n
n

n n n












 

P u
k

u P u
 

Output 

calculation 

10 ( ) ( 1) ( )
n

H

x ix n n n


 h u  

10 ( ) ( 1) ( )
n

H

y iy n n n


 h u  

Error 

estimation 

1 10 0( ) { ( )} ( )
n nx n D x n x n
 

   

1 10 0( ) { ( )} ( )
n ny n D y n y n
 

   

Tap-weights 

adaptation 

*( ) ( 1) ( ) ( )x x x xn n n n  h h k  

*( ) ( 1) ( ) ( )y y y yn n n n  h h k  

Correlation 

matrix update 

1 1( ) ( 1) ( ) ( ) ( 1)H

x x x i xn n n n n     P P k u P  

1 1( ) ( 1) ( ) ( ) ( 1)H

y y y i yn n n n n     P P k u P  

In a standard RLS algorithm, we minimize the cost function 

 
2

, /

1

( ) ( )
n

n i

x y x y

i

J n e i 



   (26) 

where, λ is the forgetting factor (λ<1) and ex,y is same as that 

of LMS algorithm. The important feature of RLS algorithm is 

that it uses the information of input signal. Inverse auto 

correlation matrix Px/y is used for such purpose which is 

recursively estimated using Woodbury’s identity instead of 

direct calculation from input signal to reduce computational 

cost and then the standard RLS algorithm can be summarized 

as in Table-II [68, 69].  

Modification of the standard RLS into RLS CMA is not 

straightforward. If we put standard definition of the CMA 

error function, the RLS cost function in Eq. (26) takes the 

form of, say for x-polarization as: 

 
2

2

2

1

( ) ( ) ( ) .
n

n i H

x x i

i

J n R n i 



  h u  (27) 

Due to the presence of the modulus nonlinearity in Eq. (27), 

the cost function of interest here is nonquadratic in the array 

weight vector hx(n), which prevents the application of the 

standard RLS optimization techniques. To overcome this 

limitation, we can consider an intermediate data vector 
/x yz

and then apply the standard RLS like update [65, 70] as: 

 ( ) ( ) ( ) ( 1)H

x i in n n n 
x

z u u h  

 ( ) ( ) ( ) ( 1)H

y i i yn n n n z u u h  (28) 
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1 ( ) ( 1) ( )

x x

x H

x x x
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n n n


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




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1

1

( 1) ( )
( )

1 ( ) ( 1) ( )

y y

y H

y y y

n n
n

n n n












 

P z
k

z P z
 (29) 

 
2( ) ( 1) ( )H

x x xn R n n   h z  

 2( ) ( 1) ( )H

y y yn R n n   h z   (30) 

 *( ) ( 1) ( ) ( )x x x xn n n n  h h k  

 
*( ) ( 1) ( ) ( )y y y yn n n n  h h k  (31) 

 1 1( ) ( 1) ( 1)H

x x x x xn n n     P P k z P  

 
1 1( ) ( 1) ( 1).H

y y y y yn n n     P P k z P  (32) 

B. 4×4 MIMO Configuration Enabling IQ Imbalance 

Compensation 

Because the 2×2 equalizer structure as shown in Fig. 8 

enforces joint filtering of the in- phase and quadrature signal 

components, four complex-valued independent filters are 

unable to compensate for any imbalance between the in-phase 

and quadrature components. This constraint associated with 

the complex 2×2 MIMO, can be removed by employing 

sixteen real-valued independent filters connected as shown in 

Fig. 10 to enable tracking and compensation of any receiver-

side IQ imbalances. 

Considering the subscript r and i of a variable as the real 

and imaginary part of that variable the outputs of the filters are 

given as: 

 ( )
r r r r r i i r r r r i i

T T T T

o x x i x x i x y i x x ix n    h x h x h y h y  

 ( )
i i r r i i i i r r r i i

T T T T

o x x i x x i x y i x y ix n    h x h x h y h y  

 ( )
r r r r r i i r r r r i i

T T T T

o y x i y x i y y i y y iy n    h x h x h y h y  

 ( ) .
i i r r i i i i r r r i i

T T T T

o y x i y x i y y i y y iy n    h x h x h y h y  (33)   

Adaptive 
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Decoder

DD-LMS
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Fig. 10. Configuration of 4×4 MIMO real-valued FIR filters. 

 

 

Fig. 11. Configuration of (a): conventional CD equalizer implementation 

causing IQ mixing, (b): IQ independent CD equalizer implementation.   

Any standard adaption algorithm can be applied for updating 

sixteen filters. For example, in the case of CMA/RDE 

algorithm, which operates frequency offset and phase noise 

insensitively, the update equations can be written as: 

( 1) ( ) ( ) ( ) ( )
r r rx k x k x on n n x n k n  h h  

( 1) ( ) ( ) ( ) ( )
i i ix k x k x on n n x n k n  h h  

( 1) ( ) ( ) ( ) ( )
r r ry k y k y on n n y n k n  h h  

( 1) ( ) ( ) ( ) ( )
i i iy k y k y on n n y n k n  h h  (34) 

where { , , , }r i r ik x x y y and 
x and 

y are given as in Eq. 

(19)/ Eq. (22) for the CMA/RDE. 

While this 4×4 MIMO works well for short reach link or 

dispersion compensated link, for long-haul dispersion 

uncompensated link, we need to use a long CD filter prior to 

the adaptive filters which causes further IQ mixing which 

cannot be compensated with relatively shorter length adaptive 

filters. If we consider the classical CD compensation as 

convoluting the complex impulse response of CD filter hc with 

its complex input ix  as shown in Fig. 11 (a), in the complex 

output ix , further IQ mixing due to CD filter arises. However, 

such drawback can be avoided if the CD compensation is done 

independently on the real and imaginary part of the incoming 

signal as shown in Fig. 11 (b) [71]. 

C. Block Adaptive Filtering 

For high-speed coherent communication systems, a high 

degree of parallelism is required to implement the DSP in the 

field-programmable gate array (FPGA) or CMOS ASIC. 

Therefore, it is desirable to implement the adaptive filters in 

block-by-block basis, rather than a sample-by-sample process, 

since this lends itself towards implementation in CMOS. Such 

block processing is applicable for optical communication since 

the block period is of the order of ns whereas the fastest 

change in optical channel is in ms. 

In the subsequent subsection, to simplify the exposition, the 

adaptive filter for a single polarization case is described; 

however, it can easily be extended for dual polarization 

scenario considering the 2×2 MIMO structure as shown in Fig. 

8. 

1) Time Domain Implementation: 

In the case of block adaptive filtering, the input sequence 

xi(n) is partitioned into L-point of blocks using a serial-to-

parallel converter. The resulting block of input data is applied 

to an FIR filter h whose tap weights are kept constant over 

each block of data which produce a block of outputs. Output 

data samples xo(n) are then retained after parallel to serial 

conversion as shown in Fig. 12. 

 

Fig. 12. Principle of block adaptive filtering. 

If we consider the block index k, which relates to the sample 

index n as n kL i  , where i=1,2···N-1, the output is given 

as: 

 ( ) ( ) ( ).H

o ix kL i k kL i  h x  (35) 

The gradient to update the filter tap weights is an average of 

instantaneous gradients that are calculated over a block, and 

thus for the CMA the block update takes the form of 

 
1

*

0

( 1) ( ) ( ) ( ) ( )
L

B

o i

i

k k e kL i x kL i kL i
L

 



     h h x  (36) 

where µ is the convergence parameter and the error signal is 

calculated as 

 
2

2( ) ( ) .oe kL i R x kL i     (37) 

2) Frequency Domain Implementation: 

In some specific applications, such as to incorporate the MF 

for Nyquist pulse shaping in adaptive equalizer [42, 64] or to 

mitigate the differential mode group delay (DMGD) in mode-

division multiplexed (MDM) systems [72-74], we require 

adaptive filters with large numbers of taps, causing a huge 
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computational burden. The key computational costs in time 

domain block adaptive filtering are the linear convolution of 

tap input and tap weights and the linear correlation between 

tap inputs and error signals. Both can be implemented in 

computationally efficient manner in frequency domain.  

The most commonly used adaptive FDE is based on 

overlap-save method [32] as shown in Fig. 13. Considering 

50% overlapping factor which is simple to implement, two 

input blocks of length N (N is number of tap weights) are 

concatenated and 2N point FFT operation is done for filter 

inputs Xi(k). Filters taps vector are padded by N zeros and 

transformed to frequency domain and multiplied with Xi(k) in 

element-by-element manner to get frequency domain output. 

The filtered output is then converted back to time domain 

using IFFT and as per overlap-save algorithm last half of the 

signal is saved as equalized output. Such a filtering operation 

can be summarized as below: 

 ( ) FFT{[ ( ) ( 1)]}i i ik x kN N x kN N    X  

 ( ) FFT{[ ( ); ]}Nk kH h O  

 ( ) ( ) ( )o ik k kX X H  

 ( ) last  elements of IFFT{ ( )}o ok N kx X  (38) 

where ON is a column vector of length N with all elements 

zero and  denotes the element-by-element multiplication. 

The error signals for filter updates is then calculated in the 

time domain, N zeros are then appended after which it is 

transformed into the frequency domain. Considering the 

CMA, the error vector is computed as:    

 *( ) { ( ) ( )} ( )}N o o ok k k k e I x x x  

 ( ) FFT{[ ; ( )]}Nk kE O e  (39) 

where IN is a column vector with all ones. The gradient vector 

is then calculated as:  

 *( ) First  elements of IFFT{ ( ) ( )}.ik N k ks X E  (40) 

Finally, s(k) is appended with N zeros and filter is updated in 

frequency domain as 

  ( 1) ( )  FFT{[ ( ); ]}.Nk k k  H H s O  (41) 

Equations (40) and (41) place constraint on gradient vector 

which is required for a reliable linear convolution, albeit an 

additional FFT and IFFT are required.  

 

Fig. 13. Configuration of frequency-domain adaptive filtering with symbol-
spaced sampled input sequences.  

While the adaptive FDE of Fig. 13 works well for symbol-

space input sequences a modification is required for a two-fold 

oversampled input sequence. For a two-fold oversampled 

input sequence, the samples are separated into two sequences 

corresponding to the even and odd samples (each sequence 

now can be considered symbol-spaced sampled) and splitting 

the filter into even and odd sub-filter with a length N/2 [75] as 

shown in Fig. 14. The filtering process can then be written as: 

 ( ) ( ) ( ) ( ) ( )
e oo i e i ok k k k k X X H X H  

 ( ) last block of IFFT{ ( )}.o ok kx X  (42) 

The error vector is calculated in similar manner as in Eq. (39) 

and the updates for even and odd filters are done as: 

 
/

*

/ ( ) First  elements of IFFT{ ( ) ( )}
e oe o ik N k ks X E  

 
/ / /( 1) ( )  FFT{[ ( ); ]}.e o e o e o Nk k k  H H s O  (43) 

    

Fig. 14. Configuration of frequency-domain adaptive equalizer with even/odd 

sub-equalizer implementation concept enabling using two-fold oversampled 

input sequences.  

Recently, frequency-domain RLS algorithm has been 

demonstrated for MDM systems [76-78] with much higher 

convergence rate than LMS algorithm; nevertheless, this 

requires additional complexity for calculating the Kalman gain 

vector and updating the correlation matrix. 

It has been demonstrated that adaptive FDE can also be 

realized for rationally oversampled input sequence based on 

the sampling rate changing algorithm [79-81]. 

 

3) Hybrid Time-Frequency Domain Implementation: 

While the adaptive FDE can significantly reduce the 

complexity, we cannot use the multiplier-free tap updates of 

the sign-sign CMA in frequency domain. This is because 

converting the time-domain error vector in frequency domain 

destroys the multiplier-free nature. However, a hybrid 

approach can be used combining an efficient frequency 

domain filtering and multiplier-free time domain filter tap 

weight updates using sign-sign CMA [82] as shown in Fig. 15. 

For a large number of taps, such hybrid approach reduces the 

complexity significantly even compare to FDE approach; 

because, we not only have multiplier-free updates but also 

FFT and IFFT used for implementing gradient constraint are 

no more required. 
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Fig. 15. Configuration of hybrid time/frequency domain implementation of 

adaptive filters. 

While the frequency domain filtering process is same as in 

Eq. (42), the filter update is done in time domain as: 

    /2( ) sgn ( ) ( ) csgn ( )Nk k k k  *

o o o
s I x x x

 
/

/2 1
*

/ /

0

( 1) ( ) ( / 2 ) ( / 2 ).
e o

N

e o e o i

i

k k kN i s kN i




    h h x  (44) 

The updated tap weights are then N/2 zeros padded and 

converted back to frequency domain for the filtering process. 

Apart from low complexity implementations, the hybrid 

approach can also be effective for adaptive step-size 

implementation to improve the convergence rate as shown in 

[83]. 

VI. TIMING RECOVERY 

Timing recovery circuits correct for the timing phase and 

frequency offset between the transmitter and receiver clocks. 

It can be done in feedback manner where the timing phase 

error signal is detected from sampled signals, which are then 

used to control voltage-controlled oscillator or to drive a 

digital interpolator or in a feedforward approach where the 

timing offset is estimated from blocks of samples, and then 

corrected by using digital interpolation. 

The Gardner’s method [84] is widely used due to its 

simplicity and independence of carrier phase. When the input 

complex signal xi(n) is two-fold oversampled, the classic 

Gardner’s algorithm estimates the timing phase error which is 

given as: 
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where N is the number of samples used for estimation. 

Gardner’s method can also be implemented in frequency-

domain where Eq. (45) can be written as [85]: 
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where, Xi(k) is DFT of xi(n). When frequency domain CD 

equalizer is used, this detector works directly on the frequency 

domain equalized signal. However, in the presence of PMD, 

data from both polarizations needs to be considered with 

further modifications in the timing error detection algorithm 

[86]. 

While Gardner’s algorithm works satisfactory with classical 

NRZ/RZ signals, it fails for a Nyquist pulse shaped signal as 

𝛽 → 0. To overcome this shortcoming, the Gardner’s phase 

detector can be modified where power of the incoming signal 

Pi(n) is used instead of xi(n) as the input of the detector [87]. 

Since the input is a power signal, this phase detector is often 

referred as the fourth-power time-domain phase detector and 

the timing error is given as: 
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Frequency-domain implementation of fourth power phase 

detector is desirable, since the earliest point of DSP where 

timing can be estimated is the CD equalized signal which is in 

generally in frequency domain. The frequency domain 

implementation was developed in [88] which can be express 

mathematically as: 
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where NFFT is the block length and N   is a power-of-two 

integer such that N N  . 

Regarding the jitter tolerance performance, the conventional 

Gardner’s algorithm has too much jitter induced penalty for 

pulse shaping with β < 0.1 while 4th power time domain 

method works better in the range 0 < β < 0.6. The 4th power 

frequency domain method shows superior performance and its 

performance is insensitive for any β. 

   The other classes of timing algorithm are square law 

algorithm [89] which operate on four-fold oversample 

sequence and Mueller-Müller algorithm [90] operating on 

symbol-spaced sampled signal. Mueller-Müller algorithm has 

an excellent jitter tolerance capability for all β, however since 

it needs to be implemented after carrier phase estimation in 

DSP chain, the significant latency imposed lower operating 

loop bandwidth. 

VII. FREQUENCY OFFSET ESTIMATION 

In an intradyne coherent receiver, the free running local 

oscillator and the transmitter lasers are not frequency locked. 

This results in some residual frequency offset in the received 

signal which should be estimated and compensated at DSP. 

When the input signal is in the form of 

 ( ) ( )exp ( ) 2i sym symx n x n j n n fT     
, the task of the 

system is to estimate f . The frequency estimation methods 

can be widely classified as blind and training-aided method.  

A. Blind Estimation 

1) Time-Domain Differential Phase Based Method: 

The differential phase based method is illustrated in Fig. 16 

where QPSK modulation format is considered as an example. 

Frequency offset is extracted from the average phase 

increment of two consecutives symbols and data modulation 

phase is removed with 4th power operation [91].  
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Fig. 16. Illustration of time-domain differential phase based frequency 

offset estimation scheme. 

The estimated frequency offset can be expressed as: 
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where L is the averaging span. Though such time domain 

method can be easily used for M-ary PSK signals, the 

performance becomes poor for high-order QAM because only 

a small portion of the constellation points having equal phase 

spacing to extract frequency offset. 

For accurate frequency offset estimation using Eq. (49), we 

need a large value averaging span (in some cases even several 

thousands). As an alternative, another estimator may be 

obtained by reversing the order of the operations, and 

iteratively, estimating the frequency offset with a convergence 

parameter µ as [92]: 
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2) Frequency Domain Methods: 

Since the spectrum of 
4
ix  exhibits a peak at the frequency 

of four times the frequency offset, f  can be estimated from 

the spectrum. The spectrum based method provides a better 

performance than time domain approach (for same block 

length); however, implementation complexity increases for 

high-order modulation formats. Moreover, a single discrete 

Fourier transform only gives only magnitude of f  and an 

additional FFT is required to get the sign of f . Note that the 

complexity can be reduce for high order square QAM 

considering only outmost four constellation points combined 

with the use of linear interpolation and down sampling-based 

methods [93]. Alternatively, an iterative method can be 

employed to estimate f [94].  

3) Blind Frequency Search Methods: 

In this method, the frequency is scanned over a range and for 

each trial frequency, the carrier phase is first recovered and 

decisions of symbol is made and then the minimum mean 

square error is calculated and used as the frequency-selection 

criteria [95]. To reduce the implementation effort, the 

frequency offset is swept first in a coarse step with large 

deviation and then with a fine step with smaller step size as 

shown in Fig. 17. 

While the methods discussed so far are essentially 

feedforward techniques, feedback techniques employing a 

frequency-controlled loop may also be used, having the 

advantage that they are agnostic to the modulation format [96-

98].   

 

 

Fig. 17. Concept of two-stage blind frequency search method for frequency 
offset estimation. 

B. Training-Aided Estimation 

The 4th power operation can be avoided and frequency 

estimation can be done over a wide range (half of the symbol 

rate) for any modulation formats at an expense of training 

overhead [99]. The training symbols are periodically inserted 

with the payload. In the DSP, first the training symbols xt(n) is 

identified with a suitable method such as Schmidl-Cox 

algorithm [100] and then frequency offset is estimated as 

shown in Fig. 18. The modulation phase is removed using 

training symbols  
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After that the frequency offset can be estimated in a similar 

manner as in Eq. (49) as: 
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Digital pilot symbols can be also used to estimate frequency 

offset by observing the location of pilot in the spectrum [101]. 

Such a method is modulation format independent and can 

accurately estimate f  in presence of CD and PMD. 

 

Fig.18. Block diagram of training symbol aided frequency offset 

estimation technique 

VIII. CARRIER PHASE RECOVERY 

Similar to frequency-offset estimation algorithms, carrier 

recovery algorithms can be classified as either blind or data- 

aided estimation techniques. Moreover, the algorithms can be 

implemented in feedforward manner or in feedback structure 

albeit feedforward is generally preferable for hardware 

implementation. When the input signal is in the form of 

 ( ) ( )exp ( ) ( )i symx n x n j n w n  , the task of the system is to 

estimate  . 

A. Blind Estimation 

For QPSK the carrier phase may be estimated using a 

fourth-order nonlinearity in order to remove the phase 

modulation, giving the estimate of the phase as follows 

 
4

.

1 1
( ) arg ( ) ( )

4 2 1

L

est i

l L

n f l x l n
L




  
  

  
  (53) 

z-1 (·)*

(·)4 ∑ arg(·) .4 2 est sysf T 
( )ix n MSE1

Test Δf1

Test Δf1

Test ΔfN

MSE2

MSEN

Min(·)

MSE1

MSE2

MSEN

Min(·)

Test min 1
cf f  

Test min 2
cf f  

Test min
c

Nf f  

min
cf .estf

ix

·
·
·

·
·
·

( )ix n z-1 (·)*

∑ arg(·) .2 est sysf T( )tx n (·)*
( )ix n



 

where f(l) is a weighting function, which depends on the ratio 

of the additive white Gaussian noise to the laser phase noise 

[102]. With f(l)=1, and the estimator becomes that given by 

Viterbi and Viterbi [103]. The result of the weighting function 

is to apply a Wiener filter to estimate the phase noise [102, 

104], which can approach the performance of an ideal MAP 

estimator of the phase. 

One particularly hardware-efficient phase estimator is the 

Barycenter algorithm in which the order of the operations in 

Eq. (53) are reversed to give [105]: 
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However, once the modulation format moves to high order 

QAM, we need to modify the algorithm for its applicability. 

One of the straightforward technique is to use the only 

constellation points that belongs to QPSK like shape [106], for 

example constellation points of QPSK like class-I category of 

16-QAM format as in Fig. 19. However, due to discarding a 

significant number of symbols, this method has less linewidth 

tolerance. The performance can be improved by QPSK 

portioning technique [107] where the symbols of the class-II is 

also used with some rotation operations. However, this 

technique gets complicated when modulation order is beyond 

16-QAM. 

  

Fig. 19. Symbol classification for the 16-QAM signal.  

Nevertheless, using conventional wireless approaches such 

as decision-directed phase locked loops (DD-PLL) can be 

applied for any QAM signals [65, 108], however the feedback 

presents challenges for CMOS-based parallel implementation 

[109]. 

As an alternative, binary phase search (BPS) algorithm can 

be used in a feedforward manner and realizable in parallel 

[109]. In this case, the carrier phase is scanned over a range (0 

to π/2 for square QAM) and for each trial phase, mean square 

error is calculated using Euclidian distance between phase-

rotated symbol and its decided symbol. Then the trial phase 

that gives minimum MSE is considered as the estimated 

phase. To overcome the ASE noise effect, distances of 2L 

symbols rotated by same angle are summed up to calculate 

MSE. Since the decoding is already done in test phase stage, 

decoded symbol can be selected using a switch selected by the 

index of minimum MSE. Though BPS shows a good tolerance 

to laser phase noise, with an increasing modulation order a 

large number of test phases are required which implied the 

computational burden. 

 

 

Fig. 20. SNR penalty at 10-2 BER due to different coding for different 

modulation formats. M is the modulation order. 

Due to fourfold ambiguities of square QAM, the blind 

algorithms discussed so far may cause incorrect phase 

estimation by a multiple of π/2 causing cycle slip. However, 

this problem can be solved using differential 

encoding/decoding at an expense of a modest sensitivity 

penalty. However, since we apply the differential coding on 

quadrant basis instead of all the symbols of constellation 

points, the coding penalty reduces with increasing modulation 

order as shown in Fig. 20. 

B. Pilot-Symbol Aided Estimation 

Unlike the blind estimation techniques, pilot-symbol based 

methods exhibit more immunity to cycle slips, albeit at the 

expense of transmission overhead. In this technique, the pilot 

symbols are time multiplexed with data payload. Considering 

a pilot rate of 1/P (one pilot symbol is inserted periodically 

after P-1 payload symbols), we define the pilot sequence p(n) 

which is a zero-padded sequence such that 
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where i =1, 2, 3··· and xsym.(n) is considered as the unitary 

average power symbol sequence, including payload and pilot 

symbols.  

First time synchronization of pilot symbol is obtained by 

correlating the received sequence with the pilot sequence. 

Then carrier recovery is done as shown in Fig. 21. The 

incoming sequence is multiplied with the complex conjugate 

of p(n) and the resulting sequence is filtered by an 

interpolation filter hf (n) to estimate the phase noise [110, 

111]. 

 

Fig. 21. Concept of training symbol aided carrier phase estimation. 

Note that significant performance improvement can be 

achieved by using multi-pilot-symbols aided technique where 

for each phase estimation few preceding and following pilot 

symbols are used [112, 113].  
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C. Multi-Stage Estimation 

Recently, significant research efforts have been made in the 

area of multi-stage carrier recovery algorithms suitable for 

high-order modulation formats to reduce the implementation 

complexity and/or improve the linewidth tolerance. The key 

idea behind these algorithms is to use a coarse-phase estimate 

at the first stage with a hardware-efficient but less-accurate 

phase estimator and a fine-phase estimator in the second or 

subsequent stages. The first stage algorithm can be data-aided 

[110] or non-data aided like BPS with coarse phase step [114-

116], Viterbi-Viterbi algorithm with QPSK partitioning [117-

119] or DD-PLL [120,121]. Once the first stage has provided 

a coarse estimate the fine-stage estimation can be realized 

using BPS with finer step size [115, 120, 121], maximum 

likelihood (ML) estimator [114, 118, 120] or QPSK 

constellation transformed based algorithm [117]. The choice 

of the combination is to be made based on complexity and 

performance requirements. 

IX. SYMBOLS ESTIMATION AND DECODING 

Following carrier recovery, the signal may be decoded by 

the outer receiver. This could be done using a soft-decision 

forward error correction (FEC) with a Galois field 

corresponding to the symbol alphabet, or symbol estimation 

followed by hard-decision FEC. For hard decision decoding of 

binary data, symbol estimation and bit decoding is required. 

For rectangular constellations, such as QAM, this may be 

achieved by applying a series of decision thresholds to the in-

phase and quadrature components separately and it can be 

done in a hardware efficient manner using logic circuits. 

While this technique works optimally for a system limited by 

AWGN, in presence of nonlinear phase noise non-rectangular 

decision boundaries can improve the performance [122] with 

an expense of hardware complexity. To address this issue, 

several techniques has been investigated such as ML based 

decision boundaries [123] or machine learning detector based 

on support vector machine (SVM) [124] or k-nearest 

neighbors [56].  

X. CURRENT RESEARCH CHALLENGES 

Herein we highlight some of the current research challenges 

relating to DSP for multilevel formats. The first area is 

associated with the modification of DSP algorithm from 

PDM-QPSK to PDM-QAM format. While many algorithms 

operated well for constant modulus format, new design 

methodologies are required for multi-level formats. For 

example, adaptive blind equalization while the CMA has been 

extensively used for PDM-QPSK an equivalent to CMA that is 

robust for high levels of QAM has yet to be determined. 

Likewise, Viterbi-Viterbi based carrier recovery algorithms 

works well with PDM-QPSK while its evolution for high 

order QAM is still challenging. The situation is further 

complicated by introducing stronger FEC with a higher net 

coding gain since this results in a reduced signal to noise ratio. 

This results in needing to design robust algorithms for 

equalization and synchronization that can recover the data 

from noisy, dispersed and nonlinearly distorted signals.  

A second area of research is to develop DSP algorithms that 

can be realized in hardware efficiently. One of the key 

concerns in hardware realization is the reduction of 

computational complexity in order to reduce power 

consumption. Of the algorithms discussed in the paper, the key 

area of particular concern is the DSP algorithms associated 

with nonlinear compensation, since the computational 

complexity of many of the techniques explored thus far are 

prohibitive for implementation in a CMOS ASIC. More 

generally, since the CMOS DSP cannot operate at the 

sampling clock frequency of the ADC, the algorithms need to 

be developed that allow parallel processing and minimize the 

feedback latency in order to make real-time implementation 

practical.   

A third area of future research arises with the development 

of dynamic elastic optical networking in which transceivers 

not only vary their rate but may be dynamically dropped and 

added, for example, to cope to the so called “elephant flows” 

between data centers. This requires developing both rate 

adaptive DSP and fast acquisition algorithms to minimize the 

time taken to establish a wavelength on demand service. 

Modulation format transparent DSP development is one of the 

key concerns for such networks. The area of intelligent 

transceivers for dynamic elastic optical networking also 

presents numerous challenges as DSP allows the transceivers 

to become intelligent agents that can dynamically utilize the 

available network resources, varying rate and bandwidth 

utilization in response to dynamical network demands. 

A final area is that of co-designing the DSP and photonics 

in optical transceivers to trade performance against 

complexity, cost, and power consumption. For example, in 

cost sensitive applications, such as access networks, the 

challenge becomes to design DSP that can relax the 

requirements on the photonic components to reduce the 

overall cost. On the other hand, for performance critical 

applications, such as submarine systems, the requirement for 

DSP is to maximize point-to-point capacity. 

XI. CONCLUDING REMARKS 

DSP based coherent technology has caused a revolution in 

the design of optical core networks. Nevertheless, direct 

detection is often used in shorter-reach systems, such as 

metropolitan networks, due to power consumption and cost 

constraints associated digital coherent receivers. With an 

expectation that advancement of DSP algorithms will relax the 

photonics requirement significantly and the DSP itself will 

require less power, it is anticipated that digital coherent 

transceivers will become ubiquitous from core through to 

access networks. The key benefit of DSP over analog 

alternatives may be to improve the overall cost of optical 

transmission with the co-design of the DSP and photonics 

technology being particularly fruitful. Thus, it can be expected 

that within the next decade DSP with spectrally efficient 

modulation formats, will become standard for access and 

perhaps even data center networks, just as it has done for long-

haul systems over the last decade. 
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