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Abstract

In online computation, an algorithm has to solve some optimization problem
while receiving the input instance gradually, without any knowledge about the
future input. Such an online algorithm has to compute parts of the output for parts
of the input, based on what it knows about the input so far and without being able
to revoke its decisions later. Almost inevitably, the algorithm makes a bad choice
at some point that leads to a solution that is suboptimal with respect to the whole
input instance. Compared to an offline algorithm that is given the entire input
instance at once, the online algorithm thus has a substantial handicap. Developing
online algorithms that nonetheless compute solutions of some adequate quality is
a large and rich field of research within computer science.

The quality of online algorithms is traditionally measured in terms of the com-
petitive ratio, which compares the solutions computed by the online algorithm
to those of an optimal offline algorithm. Depending on the online problem at
hand, it can differ considerably how much an online algorithm’s competitiveness
suffers from the lack of knowledge about the input. For some problems such as
the ski rental problem, there are online algorithms that can guarantee to compute
2-competitive solutions on any input; on the other hand, there are online problems
for which no competitive algorithms exist at all (meaning there are no algorithms
achieving any constant competitive ratio).

In some sense, this way of measuring the hardness of online problems is rather
rough as a complete lack of knowledge is unrealistic for many real-world applica-
tions. With its additional knowledge about the input, the optimal offline algorithm
has a huge advantage compared to any online algorithm. Therefore, another way
of measuring the complexity of a given online problem has been introduced: the
advice complexity. Advice complexity theory deals with the question of how much
information an online algorithm lacks to be able to compute solutions with some
satisfactory competitive ratio. More precisely, assuming some all-knowing oracle
of unlimited computing power that knows the entire input, we are interested in
the number of bits that are necessary and/or sufficient for any online algorithm
to compute solutions of some specified competitive ratio; we call these bits advice
bits and the corresponding algorithm an online algorithm with advice. The mini-

i



mum number of advice bits necessary and sufficient to be optimal is called the
information content of the online problem at hand.

The advice complexity and the information content have already been analyzed
for many different online problems and are a topic of ongoing research. In this
thesis, we further investigate the following online problems with respect to their
advice complexity; the k-server problem, the disjoint path allocation problem,
online graph searching and graph exploration, and the string guessing problem.

For the k-server problem, we prove a lower bound on the advice complexity
of any online algorithm with advice with a competitive ratio of up to 3/2 that
already holds for paths of length 2. Our result improves upon the yet best known
trade-off, which only applies for competitive ratios of less than 5/4. For finite
paths of arbitrary length, we give another lower bound yielding better results for
near-optimal competitive ratios.

For the disjoint path allocation problem, we show a general lower bound on
the advice complexity for a wide range of competitive ratios, from constant up
to logarithmic in the path length. From this general lower bound, several lower
bounds for concrete ranges of the competitive ratio can be derived. One result we
present in this thesis is a lower bound of a linear number of advice bits necessary
to achieve any constant strict competitive ratio. This bound implies a surprising
threshold behavior of the advice complexity of the disjoint path allocation problem
on paths. Although a double logarithmic number of advice bits is sufficient to
obtain a competitive ratio that is logarithmic in the path length, any sublinear
number of additional advice bits is not enough to further decrease this competitive
ratio by another constant factor.

For the graph searching problem, we give asymptotically matching lower and
upper bounds of Θ(n/c) advice bits to achieve c-competitiveness, for any (not
necessarily constant) c. In the context of graph exploration, we present a lower-
bound result that makes use of a new reduction technique developed to prove
trade-offs between the number of advice bits necessary and the competitive ratio
of a certain class of online problems, which includes the graph exploration and
the graph searching problem.

We also investigate the advice complexity of the string guessing problem in a
new probabilistic model featuring a more powerful adversary. In this scenario,
we consider two different ways of modeling the oracle. As the setting contains a
probabilistic element, the quality of the solution computed by an algorithm is a
random variable, and an algorithm can only try to optimize the expected value
of this random variable in its favor. For both kinds of oracles considered, we
give asymptotically matching lower and upper bounds for the number of advice
bits necessary and sufficient to obtain solutions for which this expected value is
optimal.
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Zusammenfassung

Algorithmen für Online-Optimierungsprobleme erhalten die jeweilige Eingabe-
Instanz stückweise, ohne dabei zukünftige Teile der Eingabe zu kennen. Dies
bedeutet, dass ein solcher Online-Algorithmus Teile der Ausgabe berechnen muss,
die nur auf dem bereits bekannten Teil der Eingabe basieren. Ferner darf er seine
Entscheidungen hiernach nicht mehr revidieren. Es ist fast unvermeidbar, dass
er dabei früher oder später eine schlechte Entscheidung trifft, die zu einer sub-
optimalen Lösung bezüglich der gesamten Instanz führt. Wir sehen, dass Online-
Algorithmen einen offensichtlichen Nachteil gegenüber Offline-Algorithmen ha-
ben, die die gesamte Eingabe von Beginn an kennen. Die Entwicklung von Online-
Algorithmen, die dennoch eine gute Lösungsqualität erzielen, ist ein grosses und
interessantes Forschungsgebiet innerhalb der Informatik.

Die Qualität von Online-Algorithmen wird klassischerweise durch den kompe-
titiven Faktor beschrieben, der ihre Lösungen mit denen von optimalen Offline-
Algorithmen vergleicht. Je nach betrachtetem Problem ist der Qualitätsverlust
aufgrund der teils unbekannten Eingabe sehr unterschiedlich ausgeprägt. Es
existieren Online-Probleme, beispielsweise das Ski-Rental-Problem, für die Online-
Algorithmen bekannt sind, die eine 2-kompetitive Lösung auf jeder Eingabe garan-
tieren können. Andererseits gibt es Online-Probleme, für die keine kompetitiven
Algorithmen existieren (was bedeutet, dass es keine Algorithmen mit konstantem
kompetitiven Faktor für sie gibt).

Der kompetitive Faktor ist allerdings in einem gewissen Sinne recht grob, da es
in vielen praktischen Situationen unrealistisch ist anzunehmen, dass gar nichts
über die Eingabe bekannt ist. Durch sein zusätzliches Wissen über die Eingabe
hat ein optimaler Offline-Algorithmus einen enormen Vorteil gegenüber Online-
Algorithmen. Aus diesem Grund wurde ein weiteres Mass für die Komplexität
von Online-Problemen eingeführt: Advice-Komplexität. Das Modell der Advice-
Komplexität untersucht die Frage, was für Informationen ein Online-Algorithmus
benötigt, um Lösungen mit einem zufriedenstellenden kompetitiven Faktor zu
erreichen. Hierzu gehen wir von einem allwissenden Orakel aus, das über unbe-
schränkte Ressourcen verfügt und welches die gesamte Eingabe kennt. Dieses
Orakel kann dem Online-Algorithmus binäre Informationen über die Eingabe
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bereitstellen; diese werden als Advice-Bits bezeichnet und ein entsprechender Al-
gorithmus als Online-Algorithmus mit Advice. Wir interessieren uns für die Anzahl
dieser Advice-Bits, die nötig bzw. ausreichend sind, damit Lösungen mit einem
gegebenen kompetitiven Faktor berechnet werden können. Die minimale Anzahl,
die es ermöglicht eine optimale Lösung zu berechnen, wird als Informationsgehalt
des gegebenen Online-Problems bezeichnet.

Die Advice-Komplexität und der damit verbundene Informationsgehalt wurden
bereits für viele verschiedene Online-Probleme untersucht und sind Gegenstand
laufender Forschung. In dieser Arbeit untersuchen wir die folgenden Probleme
hinsichtlich ihrer Advice-Komplexität: Das k-Server-Problem, das Disjoint-Path-
Allocation-Problem, Online-Graph-Searching und Online-Graph-Exploration und
das String-Guessing-Problem.

Für das k-Server-Problem beweisen wir eine untere Schranke für die Advice-
Komplexität für einen beliebigen Online-Algorithmus mit Advice, der einen kom-
petitiven Faktor von bis zu 3/2 erzielt. Diese Schranke gilt bereits für Pfade der
Länge 2. Unser Ergebnis verbessert den bisher besten bekannten Trade-Off, der
nur eine Aussage über kompetitive Faktoren von bis zu 5/4macht. Für endliche
Pfade beliebiger Länge zeigen wir eine weitere untere Schranke, die verbesserte
Resultate für fast-optimale kompetitive Faktoren liefert.

Des Weiteren zeigen wir eine allgemeine untere Schranke für das Disjoint-Path-
Allocation-Problem, die für einen grossen Bereich von kompetitiven Faktoren gilt,
von konstanten Werten bis hin zu Werten, die logarithmisch in der Pfadlänge
sind. Dieses allgemeine Ergebnis impliziert diverse untere Schranken für konkrete
Bereiche des erreichbaren kompetitiven Faktors. Wir erhalten so unter anderem
eine untere Schranke, die aussagt, dass eine lineare Anzahl an Advice-Bits nötig
ist, um einen beliebigen konstanten strikten kompetitiven Faktor garantieren
zu können. Dies zeigt wiederum ein überraschendes Schwellwertverhalten der
Advice-Komplexität des Disjoint-Path-Allocation-Problems auf Pfaden. Obwohl
bereits doppelt logarithmisch viele Advice-Bits ausreichen, um einen kompetitiven
Faktor zu erhalten, der logarithmisch in der Pfadlänge ist, reicht keine sublineare
Anzahl an Advice-Bits, um diesen Faktor um eine weitere Konstante zu verbessern.

Für das Graph-Searching-Problem zeigen wir asymptotisch scharfe untere und
obere Schranken von Θ(n/c) Advice-Bits, um c-Kompetitivität zu erreichen, für
jedes beliebige (nicht notwendigerweise konstante) c. Für Graph-Exploration
beweisen wir eine untere Schranke mithilfe einer neuen Reduktionstechnik, die
es erlaubt, für eine gewisse Klasse von Online-Problemen Trade-Offs zwischen
der Anzahl der Advice-Bits und dem kompetitiven Faktor zu beweisen, zu der
sowohl Graph-Exploration als auch Graph-Searching gehört.

Wir untersuchen darüber hinaus das String-Guessing-Problem in einem neuen
probabilistischen Modell, das einen stärkeren Gegenspieler besitzt. In diesem Sze-
nario betrachten wir zwei verschiedene Arten, das Orakel zu modellieren. Da das
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gewählte Setting eine probabilistische Komponente enthält, ist die Ausgabequali-
tät der vom Online-Algorithmus berechneten Lösung eine Zufallsvariable, und der
Algorithmus kann lediglich versuchen, deren Erwartungswert zu seinen Gunsten
zu optimieren. Für beide untersuchten Orakel-Modelle beweisen wir asymptotisch
scharfe untere und obere Schranken bezüglich der Anzahl an Advice-Bits, die
nötig und ausreichend sind, um diesen Erwartungswert zu optimieren.
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Steffen for the good collaboration. Furthermore, the very first attempts concerning
a few topics were discussed on one of the mountain workshops regularly arranged
by Juraj; I would like to thank Hajo, Jérôme Dohrau, and Antonio Fernández Anta
for some helpful input. Moreover, I want to thank Dennis again for putting up
with me as his office mate for the last few years. Despite his busy schedule, he
always found the time to counsel, discuss, and help wherever possible, but most
of all, I appreciated his earthy sense of humor and that he was always up for going
to have a beer with me after a long day of work.

Additionally, I would like to thank my former working colleagues of the Dis-
tributed Computing Group. I would never have thought that a bunch of working
colleagues could become such a tight-knit clique, and it was a great experience
to be a part of it. I am very grateful especially for sharing an office with Barbara
Keller during my time there. Barbara was one of the reasons that I was very sad
when I left the group, leaving this awesome time behind. I have also had many

vii



brilliant moments with the rest of the group, whom I would also like to thank; in
particular Philipp Brandes, Christian Decker, Klaus-Tycho Förster, Tobias Langner,
Jochen Seidel, Jara Uitto, and Samuel Welten.

During my studies at the University of Dortmund, the first lectures about
theoretical computer science that I attended were held by Ingo Wegener and
Thomas Hofmeister. Both of them gave their lectures with such an enthusiasm
that it spread to the audience, and especially to me. To them I owe my interest in
theoretical computer science in the first place, for which I am extremely grateful.

Furthermore, I want to thank my friend Eva Gotthardt, who has accompanied
me for my entire stay in Zurich. I have been through a lot during my PhD studies
here, and Eva was always there for me, no matter whether I needed moral support
or if I was looking for company to celebrate. Finally, I would like to express my
deepest gratitude to my family, in particular my parents Marianne and Hans-
Jürgen and my sister Mareike Smula, for their unconditional and tireless support.
I know I can always count on you.

viii



Contents

1 Introduction 1
1.1 This Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Mathematical Foundations . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Alphabets and Strings . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Functions and Constants . . . . . . . . . . . . . . . . . . . . . 4
1.2.4 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.5 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.6 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Online Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Online Computation With Advice . . . . . . . . . . . . . . . . . . . 11
1.5 The String Guessing Problem . . . . . . . . . . . . . . . . . . . . . . 14

2 k-SERVER on a Path 17
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 2-PATHSERVER on a Path of Length 2 . . . . . . . . . . . . . . . . . . 23
2.3 2-PATHSERVER on Finite Paths . . . . . . . . . . . . . . . . . . . . . 28

3 Disjoint Path Allocation 37
3.1 Reduction from 2-GUESS . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 A Lower Bound Without Using a Reduction . . . . . . . . . . . . . . 43

4 Graph Searching and Exploration 57
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Graph Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.3 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Graph Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.1 Sun Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Reduction from String Guessing . . . . . . . . . . . . . . . . 76
4.3.3 Further Adjustments . . . . . . . . . . . . . . . . . . . . . . . 82

ix



5 Probabilistic Adversary 85
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Monolog Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.1.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . 90
5.2.1.2 Analysis of Total Hamming Weights . . . . . . . . 91
5.2.1.3 Analysis of the Algorithm . . . . . . . . . . . . . . 99
5.2.1.4 Optimality . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.3 Comparing Upper and Lower Bound . . . . . . . . . . . . . 125

5.3 Dialog Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3.1 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.2.1 Bound for Odd k . . . . . . . . . . . . . . . . . . . . 130
5.3.2.2 Generalization for General k . . . . . . . . . . . . . 137

5.3.3 Comparing Upper and Lower Bound . . . . . . . . . . . . . 142
5.4 Comparing Monolog and Dialog Model . . . . . . . . . . . . . . . . 143
5.5 Reductions in the Probabilistic Setting . . . . . . . . . . . . . . . . . 144

6 Conclusion 149

Bibliography 153

x



1
Introduction

In everyday life, we are often confronted with online problems. Informally, this
means that we have to make decisions—often banal ones, but sometimes also ones
with significant impact—without knowing the future. Imagine, for example, you
are in the car, on the way into your long-awaited vacations; taking the fastest route,
you know it would be possible to reach your vacation destination within 8 hours—
if it were not for traffic. An hour ago, you decided to leave your planned route due
to a congested road ahead, just to find yourself in a bumper-to-bumper traffic jam
right after that. In the end, you arrive at your destination, totally exhausted, after a
12-hour drive. It seems that every time you made the decision to alter your planned
route or to stick to your current one, you made a bad choice. Being confronted with
choices, not knowing what consequences each possible decision will eventually
have, is a frustrating daily routine. There are various other examples for situations
in real life in which we are forced to make decisions without knowing the future;
ranging from rather insignificant ones, such as choosing appropriate clothing for
a hike without knowing how the weather is going to develop, to choices with a
great impact on our financial situation, such as deciding in which stock to invest.

Online computation is the field of computer science that deals with the formaliza-
tion of such online problems and the development and analysis of algorithms to
solve them. An algorithm that is supposed to solve some online problem receives
its input piecewise and has to choose how to proceed with each piece of the input
immediately, without any information about the future input and without the
possibility to revise its decisions. Such an algorithm is called an online algorithm.
The quality of an online algorithm A is traditionally measured in terms of its
competitive ratio, which relates the quality of the solutions computed by A to the
quality of the solutions computed by an optimal offline algorithm that knows the
whole input in advance. Since we desire algorithms that also perform reasonably
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2 Chapter 1. Introduction

well when given a worst-case input, we usually assume that the input given to
the algorithm is chosen by a malicious adversary whose goal is to maximize the
algorithm’s competitive ratio, whereas the algorithm’s goal is to minimize it.

For many problems in real life, we sometimes wish we could get information
from some source of unlimited knowledge. We would like to know, for example,
which route will be least congested, or what stock is going to increase soon. And,
as a matter of fact, for all examples mentioned above, great efforts have been
made to be able to make predictions about the future; there are the weather
forecast, navigation systems with built-in algorithms for bypassing traffic jams,
and attempts to predict fluctuation in the stock market. In online computation, this
concept also exists, in the form of an omniscient oracle with unlimited computing
power and full knowledge about the input instance at hand. This oracle can
provide the online algorithm with advice bits to reveal crucial information about
the input instance and thus improve the quality of the solution computed by the
algorithm. The field of advice complexity theory deals with the question of how
many advice bits are necessary and sufficient to compute solutions of a certain
quality.

An especially interesting and challenging task is to prove lower bounds on
the number of advice bits. One tool has proven to be extremely helpful in this
regard, namely the string guessing problem. This problem is a very generic online
problem, maybe even the most generic online problem, and it can be discovered
in many other online problems. The input being an unknown string of length n,
an online algorithm for the string guessing problem is asked to guess this input
string, letter by letter. The task of the algorithm is to guess as many letters
correctly as possible. Although this problem is extremely elementary, even very
elaborate online problems can be interpreted in one way or the other as guessing
letters of an unknown input string. This circumstance can be exploited to specify
a reduction from the string guessing problem to a given online problem. The
concept of reductions is often applied in computer science to prove that some
given problem P is not easier to solve than another problemQ, transfering already
known hardness results for Q to hardness results for P. This thesis has a strong
focus on the string guessing problem, and on constructing reductions to obtain
lower bounds on the advice complexity of other online problems.

1.1 This Dissertation

The remainder of this chapter serves to introduce the mathematical foundations
that we will need throughout this thesis in a formal way. Apart from fixing some
mathematical concepts and notation in Section 1.2, we give formal descriptions of
the concepts of online computation (Section 1.3), online compuation with advice
(Section 1.4), and the string guessing problem (Section 1.5).
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Each of the following four chapters deals, in one way or the other, with the
string guessing problem and how it can be used to infer results concerning the
advice complexity of other online problems. Chapter 2 covers the k-server problem,
Chapter 3 the disjoint path allocation problem, and Chapter 4 addresses two related
problems, the graph exploration and the graph searching problem. In Chapter 5, we
introduce a more powerful adversary that is able to choose random bits, and
analyze the string guessing problem thoroughly in this new model. We show that,
also in this model, the string guessing problem can be used to transfer results for
this problem to other online problems.

Several problems analyzed in this dissertation have been proposed by or devel-
oped in collaboration with my colleagues. In particular, Juraj Hromkovič pointed
me to all problems that are investigated in this thesis. First ideas for the lower
bounds presented in Chapter 2 were developed during a workshop in Montserrat;
the technical details were developed autonomously afterwards. Most of the results
in Chapter 3 have been developed together with Heidi Gebauer, Dennis Komm,
Rastislav Královič, and Richard Královič, and those in Chapter 4 in collaboration
with Dennis Komm, Rastislav Královič, and Richard Královič. The model of the
probabilistic adversary from Chapter 5 has been proposed by Juraj Hromkovič; all
results and technical details therein were found and elaborated in independent
work by the current author.

1.2 Mathematical Foundations

In this section, we present a short overview of the most important mathematical
concepts and notation being used throughout this thesis. However, we broach
every subject only briefly, mainly to fix our notation. For a more general introduc-
tion to online algorithms, see the textbook of Borodin and El-Yaniv [BEY98]; the
concept of advice complexity is discussed in detail by Komm [Kom12].

1.2.1 Sets

A set is a collection of objects. These objects are called elements of the set and are
usually required to be pairwise distinct. We write, for example, {0, 1} for a set
containing the two elements 0 and 1. The cardinality or size of a set S is the number
of elements contained in S and denoted by |S|. The empty set is denoted by ∅. For
each set S, we denote by P(S) the power set of S, defined as

P(S) = {R | R ⊆ S}.

Whenever the order in which the elements of a set are listed matters, we talk
about ordered sets. For ordered sets, we drop the requirement of all elements
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being pairwise distinct and allow multiple occurrences of the same element. To
distinguish ordered sets from unordered ones, we use parentheses instead of
braces to denote the former; for example, we write (0, 1) instead of {0, 1}. An
ordered set is also called a sequence or a tuple. For sequences, often the term length
is used instead of size or cardinality. Tuples of size n are also called n-tuples;
furthermore, tuples of size 2 are called pairs.

Throughout this thesis, we use the standard notation for the ordered sets of
integers and real, rational, and natural numbers. For the set of real numbers, we
use the symbol R. We denote the set of rational numbers by Q and the set of integers
by Z. The set of natural numbers is denoted by N. We often need to constrain our
considerations to numbers that do not exceed or fall below a certain threshold.
In such cases, we sometimes add a superscript to the set symbol to indicate this
threshold. For example, in this notation, the set of negative real numbers can be
denoted by R<0, and we have N = Z≥0. Concerning the latter statement, though,
the literature is not completely consistent. Although in this thesis we usually
assume that 0 is included in the set of natural numbers, in some literature it is not
(hence, N = Z≥1). Therefore, whenever we are talking about N and want to make
completely clear whether 0 is to be included in our considerations or not, we also
make use of this superscript notation and write either N≥0 or N≥1.

1.2.2 Alphabets and Strings

An alphabet is a nonempty finite set of letters, and is usually denoted by Σ through-
out this thesis. Often we consider the binary alphabet Σ2 = {0, 1}. The letters 0 and 1
in Σ2 are called bits. A string over an alphabet Σ is a sequence r = (r1, . . . , rn) of let-
ters from Σ, for some natural numbern ∈ N≥0, and if the letter ri is contained in Σ2,
for each iwith 1 ≤ i ≤ n, we call r a binary string or bit string. If n = 0, we say that r
is the empty string, which we denote by ε. Instead of writing r = (r1, . . . , rn), we
also use r = r1 . . . rn as a shorthand notation. A string r ′ = r1 . . . rm withm ≤ n
is called a prefix of r. Comparably, a string r ′ = rm . . . rn with m ≥ 1 is called a
suffix of r.

1.2.3 Functions and Constants

For any subset S ′ of an ordered set S, we define the minimum of S ′, denoted
by min(S ′), to be an element x of S ′ such that x ≤ y for all elements y ∈ S ′;
analogously, we define the maximum of S ′, denoted by max(S ′), to be an element x
of S ′ such that x ≥ y for all elements y ∈ S ′.

For any real number x ∈ R, we use bxc to denote the largest integer ywith y ≤ x
and call it the floor of x. Accordingly, dxe denotes the smallest integer y such
that y ≥ x and is called the ceiling of x.
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Figure 1.1. The binary entropy function η(α) = −α log(α) − (1 − α) log(1 − α). For our
purposes, α is only considered in the range 1/2 ≤ α < 1. Therefore, the other part of the
graph is hatched.

For any two real numbers x ∈ R and y ∈ R>0 with y 6= 1, we denote the
logarithm to base y of x by logy (x). In this thesis, logarithms are usually to base 2
if not stated otherwise. Hence, usually we take a pass on mentioning the base
explicitly and just write log (x) instead of log2 (x). If it does not introduce any
ambiguity, we also often omit the parentheses and write log x instead of log(x).

Furthermore, we will often encounter the so-called entropy, which is, originally,
a measure of the information content of a given string and plays a great role in the
field of coding theory (see, for example, Roth [Rot06]). For any real number p ∈ R
with 0 ≤ p ≤ 1 and every natural number q ∈ N≥2, the q-ary entropy function of p
is defined as

ηq(p) = p logq(q− 1) − p logq(p) − (1− p) logq(1− p),

where 0 logq(0) is assumed to be 0. For the binary entropy function, which is the
version we are usually considering, this yields

η2(p) = p log2(p) − (1− p) log2(1− p).

A plot of the binary entropy function is shown in Figure 1.1. As for logarithms,
we allow us to drop the subscript in the binary case and often write η(p) instead
of η2(p).

We follow the convention to give complexity measures in terms of orders of
magnitude. To this end, we use the Landau symbols to group functions into classes
according to their asymptotical growth. For any two functions f : N≥0 → R≥0 and
g : N≥0 → R≥0, we say that f does not grow asymptotically faster than g, denoted
by f(n) ∈ O(g(n)), if

∃ n0, c > 0, such that ∀ n ≥ n0 : f(n) ≤ c · g(n),
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and we say that g grows asymptotically faster than f, denoted by f(n) ∈ o(g(n)),
if

lim
n→∞ f(n)

g(n)
= 0.

Moreover, we use the notations

f(n) ∈ Ω(g(n))⇐⇒ g(n) ∈ O(f(n)),
f(n) ∈ ω(g(n)) ⇐⇒ g(n) ∈ o(f(n)), and

f(n) ∈ Θ(g(n)) ⇐⇒ g(n) ∈ O(f(n)) ∩Ω(f(n)).

In some contexts, we will come across Euler’s number, a mathematical constant
that we denote by e and which can be approximated by e ≈ 2.718.

1.2.4 Combinatorics

The factorial of n, i. e., the product of all positive natural numbers from 1 to n,
is denoted by n!, for any natural number n ∈ N≥0, where 0! is assumed to be 1.
For natural numbers n, k ∈ N≥0, the binomial coefficient

(
n
k

)
indicates the number

of possibilities to choose k elements out of a set containing n elements; it can be
calculated as (

n

k

)
=

n!

k! · (n− k)!
.

1.2.5 Probability Theory

At some point in this thesis, we will add a certain random element to the game
between the online algorithm, the adversary, and the oracle. More precisely, we
will allow the adversary to “toss a coin” (if necessary several times) and choose
the instance given to the algorithm as its input depending on the outcome of
these coin tosses. Such random elements with an uncertain outcome are called
experiments, and each possible outcome is called an elementary event. The set S of
all elementary events of an experiment is the sample space, and an event is a subset
of the sample space and thus an element of the power set P(S) of S. In this thesis,
we only encounter discrete probabilistic models, in which the sample space is a
finite set. To assign a probability to each event, we use a function Pr : P(S)→ [0, 1].
This function is called a probability distribution over S and has to fulfill the following
constraints.

(a) Pr({s}) ≥ 0 for every elementary event {s} ⊆ S,

(b) Pr(S) = 1, and

(c) Pr(A ∪ B) = Pr(A) + Pr(B) for all events A,B ⊆ Swith A ∩ B = ∅.
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The pair (S,Pr) forms a so-called probability space. If the function Pr is such that
each elementary event {s} ⊆ S occurs with the same probability, i. e., if

Pr({s}) =
1

|S|
for all {s} ⊆ S,

then Pr is called the uniform distribution.
A random variable in the probability space (S,Pr) is a function X : S → R as-

signing a real number to every elementary event from the sample space. The
probability that the random variable X attains a certain exact value y is given by
the probability mass function fX : R→ [0, 1], defined by

fX(y) = Pr(X = y) = Pr
({

{s} ⊆ S | X(s) = y
})
.

The probability mass function characterizes the probability distribution of X, which
is formalized by a function dX : R→ [0, 1], defined as

dX(y) = Pr(X ≤ y) =
∑
z≤y
z∈DX

Pr(X = z),

where DX := {y ∈ R | ∃ s ∈ S such that X(s) = y} is the co-domain of X. For a
discrete probability space (S,Pr) and a random variable X in (S,Pr), the expected
value of X is defined as

E[X] =
∑
y∈DX

y · Pr(X = y).

A detailed introduction to randomized computation and probability theory is
given by, e. g., Hromkovič [Hro05].

1.2.6 Graphs

In every one of the subsequent chapters, we will deal with certain classes of graphs.
A graph is a pair G = (V, E), where V = {v0, . . . , vn−1} is a set of vertices, some
of which are connected by edges. The set of edges is given by E ⊆ {(vi, vj) | 0 ≤
i, j ≤ n− 1}. Throughout this thesis, we constrain ourselves to graphs that do not
contain any loops, i. e., edges of the form (vi, vi).

Graphs can either be weighted or unweighted. In an edge-weighted or just
weighted graph, each edge is assigned a cost or weight according to a weight function
ω : E→ R. In an unweighted graph, such a weight function does not exist, and we
usually assume every edge to have a weight of 1.

Both weighted and unweighted graphs can either be directed or undirected. In
a directed graph, each edge (vi, vj) has an orientation, with vi being the startpoint
and vj being the endpoint of (vi, vj). To vi, the edge (vi, vj) is an outgoing edge and
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to vj, it is an incoming edge. The outdegree of vi is the number of outgoing edges
of vi, and the indegree of vi is the number of incoming edges of vi. A sequence
of pairwise distinct vertices U := (u0, u1, . . . , u`) with ui ∈ V , for 0 ≤ i ≤ `, is
called a path from u0 to u` if, for every pair (ui, ui+1) with 0 ≤ i ≤ n− 1, there is
an edge (ui, ui+1) ∈ E. The length of the path is the sum of the edge weights of all
these edges (ui, ui+1). In the unweighted case, this coincides with the number
of edges on the path U, and hence, the length of this path is `. We say that U is a
shortest path from u0 to u` if, among all paths from u0 to u`, the pathU has minimal
length. If there exists a path from u0 to u`, we also say that u` is reachable from u0.

In an undirected graph, all edges are undirected, meaning that the edge (vi, vj)

is identical to the edge (vj, vi). Thus, edges are not pairs but unordered sets of
size 2, and any undirected edge (vi, vj) is usually written as {vi, vj}. We say that
both vi and vj are endpoints of the edge {vi, vj}. For each edge {vi, vj} ∈ E, the
vertex vj is said to be a neighbor of vi or adjacent to vi. For each vertex vi, all edges
containing vi are called incident to vi. The degree of vi is defined as the number
of its neighbors. In an undirected graph G = (V, E), a path between u0 and u`
is a sequence of pairwise distinct vertices (u0, u1, . . . , u`) such that, for each i
with 0 ≤ i ≤ `− 1, the two vertices ui and ui+1 are adjacent to one another. As in
the directed case, the length of a path is the sum of the weights and thus the number
of edges in the unweighted case. A sequence (u0, u1, . . . , u`, u0) is called a simple
cycle in G if (u0, u1, . . . , u`) is a path with ` ≥ 2 and if the edge {u0, u`} exists in E.
If there is a path from vi to vj, for any pair of vertices (vi, vj) ∈ V × V , the graph is
called connected.

For any directed or undirected, weighted or unweighted graph G = (V, E),
the graph G ′ = (V ′, E ′) is called a subgraph of G if V ′ ⊆ V and E ′ ⊆ E. The
subgraph G ′ is called induced by V ′ if E ′ contains all edges that are also contained
in E, constrained to the vertex set V ′. Hence, the subgraph of G induced by V ′ ⊆ V
is the graph G ′ = (V ′, E ′) with E ′ = {(vi, vj) | vi, vj ∈ V ′ ∧ (vi, vj) ∈ E}.

Throughout this thesis, we will sometimes consider particular classes of graphs,
namely paths, cycles, and trees. In the following, we will give brief descriptions
for these three classes. Since we consider each of these classes in its respective
undirected unweighted version, we constrain our descriptions to these restricted
versions, without mentioning this explicitly from now on.

A path graph, for short also named path (not to confuse with a path within
a graph as described above), is a graph G = (V, E) with V = {v0, . . . , v`} and
E = {{vi, vi+1} | 0 ≤ i ≤ ` − 1}. The length of the path is the number of edges
contained in E, which is `. A cycle graph or cycle is a path graph as described above
with an additional edge between v` and v0. Hence, G = (V, E) is a cycle graph if
V = {v0, . . . , v`} and E = {{vi, vi+1} | 0 ≤ i ≤ ` − 1} ∪ {{v`, v0}}. The length of the
cycle is the number of edges in E, which is `+ 1. A graph G = (V, E) is called a tree
if G is connected and does not contain any simple cycles. In every tree, vertices
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of degree at most 1 are called leaves; all other vertices, i. e., those with a degree of
at least 2, are called inner vertices. Sometimes, we choose one designated vertex
of a tree G = (V, E) to be the root of G. In this case, G is said to be rooted. For each
vertex vi ∈ V , there is exactly one shortest path U from the root to vi, and if this
path has length `, we say that vi is on level ` of the tree. For each vertex vi ∈ V on
level `, every neighbor vj of vi on level ` + 1 is called a child of vi. For each such
child vj, the vertex vi is the only adjacent vertex on level ` and is called the parent
of vj. All other children of vi that are not vj itself are called siblings of vj. If the
maximum level of any vertex in the tree is d, then d is called the depth of the tree.

Sometimes, we consider q-ary trees, for some q ∈ N≥2. In the literature, a q-ary
tree of depth d is often defined as a rooted tree in which all inner vertices have at
most q children and the maximum level among all vertices is d. For our purposes,
we choose a more restrictive definition and define a q-ary tree of depth d to be a
rooted tree in which all inner vertices have exactly q children and all leaves are on
the same level d. In our case, each q-ary tree has exactly qd leaves. For q = 2, we
call such a q-ary tree a binary tree. Hence, in a binary tree of depth d, each inner
vertex has 2 children, and the number of leaves is 2d.

1.3 Online Computation

The classical scenario of online computation can be viewed as a game between
an online algorithm and an adversary. The game played is determined by the
given online optimization problem. The goal of the adversary is to construct a problem
instance that is as hard as possible for the online algorithm. The aim of the online
algorithm, also called online strategy, is to compute a good solution on the input
instance generated by the adversary. The input instance (also input sequence or just
input) is given to the algorithm as a sequence I = (x1, . . . , xn) of requests, exactly
one request in each round. Hence, the number of rounds corresponds to the length
of the input sequence, which we usually denote by n. The online algorithm has
to respond immediately to each request given in round i, i. e., before the next
request arrives, with an irrevocable output yi. The output sequence of an online
algorithm A on an input I is then (y1, . . . , yn), and we denote it by A(I).

To be able to compare the quality of online algorithms and their computed
solutions, we assign a value to each solution according to its quality. Depending
on the nature of the optimization problem, the algorithm is to achieve values
either as small or as large as possible. In the former case, the optimization problem
is called an online minimization problem; in the latter case, an online maximization
problem. For minimization problems, the function that serves to assign a value to
each solution is usually called a cost function; for maximization problems, we call
this function a gain function accordingly. The value of a particular solution is then
called the cost or the gain of this solution, respectively. For any instance I, a solution
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A(I) computed by an algorithm A is optimal if it has minimum cost or maximum
gain, respectively, among all solutions computed on I by all possible algorithms.
Then we say that A is optimal on I. An algorithm that is optimal on every possible
input instance is called optimal and usually denoted by Opt throughout this thesis.
Obviously, without knowing the whole input instance in advance, it is not possible
for an online algorithm to be optimal in general; with this lack of knowledge,
the online algorithm Amight make a decision in some round i that turns out to
be suboptimal later, when a larger part of the input sequence is known. Thus,
receiving the input sequentially is a huge drawback compared to receiving it
completely before the start of the computation, as so-called offline algorithms do.
Hence, we are interested in the quality of the given online algorithm, which is
usually measured by means of the competitive ratio, a measure of “how close to
optimal” the algorithm is. This means that we compare the online algorithm to an
optimal offline algorithm with unbounded memory and computing power. For
any instance I and any online algorithm A, the solution A(I) computed by A on I
is c-competitive if there is a constant a independent of I such that

cost(A(I)) ≤ c · cost(Opt(I)) + a (1.1)

for a minimization problem, and

gain(Opt(I)) ≤ c · gain(A(I)) + a (1.2)

for a maximization problem. An online algorithm A is c-competitive if (1.1) or
(1.2), respectively, holds for any possible input instance; hence, if A computes a
c-competitive solution on any possible input instance I. Thus, A has a competitive
ratio of at most c if there is a constant a such that, for any instance I, the solution
computed by A on I is c-competitive. We say that an online algorithm as well as
a solution is strictly c-competitive if the corresponding inequality holds for a ≤ 0.
An optimal algorithm is strictly 1-competitive. (Diverging from some examples in
the literature, we use two different formulas for minimization and maximization
problems, making sure that the competitive ratio is always at least 1.)

In this way, we can analyze the competitive ratio of a given online algorithm or
investigate what is the best achievable competitive ratio of any online algorithm
for a given online optimization problem. Since it has been introduced in 1985 by
Sleator and Tarjan [ST85], the competitive ratio has developed to the most relevant
measure of the quality of online algorithms. Being a worst-case measurement, the
competitive ratio in the game between an online algorithm and an adversary has
proven to be very helpful in analyzing the hardness of online problems [BEY98].

In this game, the online algorithm can be strengthened by allowing it to use
random bits. In this case, we are talking about a randomized online algorithm. If
the adversary already knows these random bits before it has to construct its hard
input instance, the randomization is obviously utterly useless. Therefore, usually
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it is assumed that the adversary knows the randomized online algorithm, but not
the random bits generated during the computation, and it must hence construct
its hard input before the random bits are generated. (Note that also other models
exist; for an overview, we refer to Chapter 4.1.1 in the textbook by Borodin and
El-Yaniv [BEY98].) In our case, the competitive ratio is a random variable that
depends on the sequence of random bits. Therefore, when measuring the quality of
randomized online algorithms, we commonly analyze the expected competitive ratio,
i. e., the expected value of this random variable over all possible random sequences.
A randomized online algorithm can be interpreted as a set of deterministic online
strategies. For the input constructed by the adversary, one of these determinisic
strategies is chosen at random, and thus, the adversary has to play against a
collection of several deterministic online algorithms at once. For many online
problems, randomization can be very helpful; in some cases, the competitive
ratio can even be decreased exponentially or more, compared to the competitive
ratio of the provably best deterministic online algorithm. One example for an
exponential improvement is the paging problem (with cache size k), for which
a Θ(logk)-competitive randomized algorithm exists, whereas any deterministic
algorithm cannot be better than k-competitive [FKL+91].

1.4 Online Computation With Advice

Dobrev et al. [DKP08] introduced the idea of a third player in online computa-
tion. This third player is called an oracle or advisor and is omniscient, i. e., it has
knowledge of the whole input sequence chosen by the adversary, and it is compu-
tationally unbounded. This oracle is allowed to provide advice bits to the given
online algorithm in order to reveal some information about the yet unknown parts
of the input and thereby help the online algorithm to achieve a better competitive
ratio. For a given online problem, the research questions posed are quantative
ones, i. e., they are related to the number of advice bits necessary and sufficient
to improve the competitive ratio of a corresponding online algorithm essentially.
Properties that are typically investigated are the number of advice bits necessary
and sufficient to obtain optimal solutions or solutions with a specified upper or
lower bound on the competitive ratio.

Since the model of Dobrev et al. was too rough in measuring the amount of
advice bits, Hromkovič et al. [HKK10] proposed a general model which has already
been successfully explored in many papers [Bar14, BBF+14, BBH+13, BBH+14,
BBHK12,BHK+14,BKK+09,BKKK11,BKKR12,BKLL14a,BKLL14b,DHZ12,DKK12,
DKM12, Doh15, EFKR11, FKS12, GKK+15, GKLO13, KK11, KKM12, RR11, SSU13,
Weh15] and which we also consider in this thesis. In this model, given an online
algorithm A with advice for some online optimization problem P with the set Iall

of all possible inputs, the adversary first constructs a hard problem instance I ∈ Iall,
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knowing both the oracle and A. The oracle knows this instance I, which is given
to A as its input sequence, and also the online algorithm itself. It provides an
infinite sequence of advice bits depending on I and A, which it writes onto a
so-called advice tape before A starts its computation. This binary sequence is called
the advice string. The online algorithm has access to the advice tape and may read
some prefix of the advice string during its computation. The length of this prefix
of the advice string read by A is the number of advice bits used throughout A’s
computation on I. For each problem P, we fix a problem parameter in which the
number of advice bits used by A is measured; most often, this is the length n of
the input sequence, but it may also be, for example, the graph size for online graph
problems. We define I(m)

all to be the set of all possible inputs of P for which the
problem parameter is at mostm; moreover, we define the advice complexity of A as
the maximum number of advice bits read by A over all inputs I ∈ I(m)

all , denoted
by b(m). The online algorithm A augmented with an advice string τ is denoted
by Aτ, or, omitting the superscript, just by A, when the meaning is clear from the
context. It may seem peculiar at first sight that the advice string is of infinite size;
this property, however, ensures that Amay not gain any additional knowledge
from the length of the advice string.

The competitive ratio of A is defined according to the competitive ratio of online
algorithms without advice. Thus, A is c-competitive with advice complexity b(m) if
there is a constant a such that, for every m and every input sequence I ∈ I(m)

all ,
there is an advice string τ such that

cost(Aτ(I)) ≤ c · cost(Opt(I)) + a (1.3)

for minimization problems, and

gain(Opt(I)) ≤ c · gain(Aτ(I)) + a (1.4)

for maximization problems, and if at most the first b(m) bits of τ are accessed
during the computation ofAτ on I. As before, we say that an online algorithm with
advice is strictly c-competitive or has a strict competitive ratio of c if the corresponding
inequality holds for some a ≤ 0.

Since the oracle knows the online algorithmA, it also knows howAτ, the online
algorithm augmented with the advice string τ, operates on the input I, for each
particular advice string τ. Thus, it can already generate an advice string yielding
a particular desired competitive ratio before the computation starts, and it does
not gain anything by changing the advice string throughout the computation.
Therefore, we assume that the advice string is left unaltered once the computation
starts. This implies that, for any online algorithm Awith advice and any advice
string τ, the algorithm Aτ operates completely deterministic. In other words, for a
fixed advice string, the online algorithm with advice is a deterministic algorithm,
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and we can interpret an online algorithm with advice (just like a randomized online
algorithm) as a set of deterministic strategies. Hence, for any online algorithm A
with an advice complexity of b(m) (which thus reads at most b(m) advice bits on
any input from I(m)

all ), we can derive the following fact, which has been discussed
in detail by, for example, Komm [Kom12].

Fact 1.1. Let P be an online optimization problem and m be a problem parameter of P.
Furthermore, let A be an online algorithm for P reading b := b(m) advice bits on each
input from I(m)

all . Then, we can interpret A as a set A = {A1, . . . , A2b } of 2b different
deterministic online algorithms without advice. 2

We benefit from this in the following way. Sometimes, when attempting to prove
lower bounds on the advice complexity, we take the following approach. For each
possible value of m, we determine a set I := I(m) of hard input instances for
the problem considered and show that any deterministic algorithm A can only
achieve a competitive ratio larger than c on many instances from I. From this, we
can derive a lower bound on the number of advice bits necessary for each online
algorithm with advice to achieve c-competitiveness, as the following observation
shows.

Observation 1.2. Let I be a subset of all possible input instances for some online opti-
mization problem P. If any deterministic online algorithmA for P can achieve a competitive
ratio of c on at most f · |I | instances from I , then every online algorithm with advice needs
to read at least log(1/f) advice bits to be c-competitive.

Proof. We prove the claim by contradiction. Hence, let us assume that there is
a c-competitive online algorithm A with advice reading b := b(m) < log(1/f)
advice bits. According to Fact 1.1, this online algorithm can be interpreted as a
set A = {A1, . . . , A2b } of 2b < 1/f deterministic online algorithms. Let Ii be the
set of instances from I on which Ai achieves a competitive ratio of at most c,
and let us say that Ai covers the instances from Ii. Since A is c-competitive,
it computes a c-competitive solution on any instance, thus in particular on any
instance from I . Hence, for every instance I ∈ I , at least one of the 2b deterministic
algorithmsAi covers I. On average, each algorithmAi thus covers |I |/2b instances,
and by the pigeonhole principle, there must be at least one deterministic algorithm
in {A1, . . . , A2b } covering |I |/2b > f · |I | instances. This is a contradiction to our
assumption that each deterministic online algorithm can achieve a competitive
ratio of c on at most f · |I | instances. 2

We will make use of this observation several times throughout this thesis.
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1.5 The String Guessing Problem

In this section, we give a formal definition of the already mentioned string guessing
problem, which will play an important role throughout this thesis. The version we
use here was introduced by Böckenhauer et al. [BHK+13]. A very similar problem
with a different cost function has already been defined by Emek et al. [EFKR11],
where it was called the generalized matching pennies problem (GMP).

Definition 1.3 (String Guessing Problem (Known History)). The string guessing
problem with known history over an alphabet Σ of size z ≥ 2 (z-GUESS for short)
is the following online minimization problem. The input sequence Ir = (n, r1, . . . , rn)

consists of a natural number n and the letters r1, . . . , rn ∈ Σ that are revealed one by
one in the corresponding rounds. An online algorithm A for z-GUESS computes the
output sequence A(Ir) = (y1, . . . , yn), where yi = µ(n, r1, . . . , ri−1) ∈ Σ, for some
computable function µ. The algorithm is not required to respond with any output in the
last round. The cost cost(A(Ir)) of a solution A(Ir) is the number of incorrectly guessed
letters, i. e., the Hamming distance Ham(r, y) between r = r1 . . . rn and y = y1 . . . yn.

Böckenhauer et al. [BHK+14] also defined an alternative version of the problem,
called the string guessing problem with unknown history. In this variant, the algorithm
does not get any feedback about the validity of its guesses in former rounds,
whereas in the version considered in this thesis, the algorithm is always informed
whether its previous guess was correct. Surprisingly, an online algorithm with
advice might actually profit from this knowledge in later rounds [Kru15]. In this
thesis, however, we will only consider the version with known history as defined
in Definition 1.3. Thus, whenever mentioning the string guessing problem, we are
referring to the string guessing problem with known history, without explicitly
stating this.

In the subsequent chapters, we will often make use of the following two results
that were proven by Böckenhauer et al. [BHK+14].

Fact 1.4. Consider an input string of length n for z-GUESS, for some n ∈ N. Every
online algorithm that guesses more than αn letters correctly, for 1/z ≤ α < 1, needs to
read at least(

1+ (1− α) logz

(
1− α

z− 1

)
+ α logz α

)
n log2 z =

(
1− ηz(1− α)

)
n log2 z

advice bits. 2

Fact 1.5. Consider an input string of length n for 2-GUESS, for some n ∈ N. Every
online algorithm that guesses more than αn bits correctly, for 1/2 ≤ α < 1, needs to read
at least (

1+ (1− α) log2(1− α) + α log2α
)
n =

(
1− η2(1− α)

)
n

advice bits. 2



1.5. The String Guessing Problem 15

The second fact is a direct consequence of the first one, obtained by setting the
alphabet size to z := 2. Recall that ηz is the z-ary entropy function and that η2 is
the binary entropy function, which we already defined in Section 1.2.3 and which
is depicted in Figure 1.1.





2
k-SERVER on a Path

The first problem we deal with in this dissertation is the so-called k-server problem,
a very famous online problem that has been extensively studied since 1988, when
it was proposed by Manasse et al. [MMS88].

The k-server problem, also denoted by k-SERVER, is the following online mini-
mization problem. Given is a metric space and a sequence of requests, each of them
represented by a point in the metric space, and k servers. Often the metric space is
considered to be a weighted graph. In this case, the servers can be located at any
vertex of the graph and can be moved independently by the k-SERVER algorithm
along the edges of the graph. Each request has to be satisfied by moving at least
one server to the requested vertex. In the beginning, each server is located at some
specified position; these positions are given to the k-SERVER algorithm in form of
a k-tuple called the starting configuration. The algorithm’s response to each request
is a configuration of the servers such that the current request is always covered by
a server. The cost for satisfying a request is the number of edges traversed by all
the servers in total. The goal is to serve all requests with as little costs as possible
for the whole request sequence.

Many results concerning the classical k-server problem are summarized in
Chapters 10 and 11 of the textbook by Borodin and El-Yaniv [BEY98] (status
as of 1998). More recently, Koutsoupias recorded a detailed survey of the k-
server problem, covering the most important results that were published until
2009 [Kou09].

When the k-server problem was introduced by Manasse et al. [MMS88], the
authors also proposed the famous k-server conjecture, which states that the com-
petitive ratio of the k-server problem is exactly k, independently of the underlying
metric space. That no online algorithm can have a better competitive ratio than k
is a straight forward result, as long as the graph contains at least k + 1 vertices

17
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(also shown in the previously cited paper [MMS88]). The question whether or
not the other part of the conjecture holds, namely that each graph allows for a
deterministic algorithm with competitive ratio k, has been unsolved ever since.
So far, the conjecture has only been proven for some special cases, including,
for example, the case that the underlying metric space is the real line [CKPV91],
and the case that k = 2 [MMS88]. Chrobak and Larmore showed that there is
a k-competitive algorithm on trees [CL91]. Fiat et al. presented the first upper
bound on the competitive ratio for general metric spaces that depends only on k
and not on the underlying graph [FRR94]. The bound they give is a function that
is exponentially growing in k. Since then, there have been several publications,
gradually improving upon the yet best known result. One of these improvements
was presented by Koutsoupias and Papadimitriou [KP95], who showed that the
so-called work function algorithm has a competitive ratio of 2k − 1 on general
metric spaces. Up until now, this remains the best known deterministic algorithm
for general weighted graphs. Hence, despite a tremendous amount of research
that has been conducted in this area, all efforts to prove the k-server conjecture
for the general case have been unsuccessful so far. Nevertheless, the conjecture is
commonly believed to be true.

In the hope of achieving better competitive ratios, it is possible to augment
an online algorithm with random bits. Some results for this randomized setting
are summarized in Chapter 11 of the already cited textbook [BEY98]. Among
other things, they adapt a randomized k-SERVER algorithm presented by Blum
et al. [BRS97] that works on a path with n = k + 1 vertices. The upper bound
on the expected competitive ratio of the original algorithm grows exponentially
in
√

logn log logn; the competitive ratio of the adapted algorithm, working on
a circle with circumference n and k = n− 1 servers, is at most O

(√
n logn

)
. For

the randomized setting, there exists the so-called randomized k-server conjecture,
stating that for every weighted graph, there is a randomized online algorithm with
competitive ratio O(logk). Just like the conjecture in the deterministic scenario,
the randomized k-server conjecture has been an open question for many years.
It was only in 2011 that Bansal et al. [BBMN11] proposed the first randomized
algorithm for general graphs with a competitive ratio of O(log2 k log3 n log logn),
which is polylogarithmic in k if the number of vertices in the underlying graph is
polynomial in k. Very recently, an article was published on arXiv [Che14] in which
the author claims to improve this result to a competitive ratio of O(logk logn) for
general graphs and to give randomized algorithms with competitive ratios of at
most O(logk) for some metric spaces, including lines and circles.

The most interesting line of research to us is, of course, the research concerning
the advice complexity of the k-server problem. As with random bits, one can also
augment the algorithm with advice bits to obtain better competitive ratios. The first
result on the k-server problem with advice was presented by Emek et al. [EFKR11].
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However, they considered a different model, in which the algorithm reads the same
number of advice bits in every round. Concerning the advice model in this thesis,
Böckenhauer et al. [BKKK11] showed that a competitive ratio of 2ddlogke/(d− 1)e
can be achieved with dn advice bits, for d ≤ k. Renault and Rosén improved this
result [RR11] to a competitive ratio of ddlogke/(d− 2)e. Gupta et al. [GKLO13]
investigated the k-server problem with advice within the framework of sparse
metric spaces. They presented online algorithms with constant competitive ratios
for many kinds of sparse graphs; amongst others, a 3-competitive algorithm for
planar graphs reading O(n log logm) advice bits, with m being the number of
vertices in the graph. Furthermore, they proved a linear lower bound on the advice
bits necessary for competitive ratios in the range of 1 < c < 5/4, by a reduction
from the string guessing problem.

In this thesis, we focus on the k-server problem on unweighted undirected paths
(also denoted by k-PATHSERVER) for k = 2. We will use this rather simple setting
in this chapter to demonstrate an application of the string guessing problem 2-
GUESS presented in Chapter 1. The result we are aiming at is a statement of the
form that there is no online algorithm with advice for 2-PATHSERVER reading
only few advice bits that achieves a good competitive ratio. By giving a reduction
from 2-GUESS to 2-PATHSERVER, a result from Böckenhauer et al. (Fact 1.5) directly
translates to such a non-existence proof. A remarkable fact is that, although very
generic, the string guessing problem often proves to be very useful in obtaining
such lower bounds. We demonstrate this exemplarily for 2-PATHSERVER.

More precisely, the purpose of this chapter is the following. We want to ac-
quaint the reader with the string guessing problem, reductions from 2-GUESS to
other online problems, and the method of using these reductions to obtain lower
bounds on the number of advice bits any online algorithm needs to achieve certain
competitive ratios. We do so by giving two different reductions from 2-GUESS

to 2-PATHSERVER. These reductions yield a certain trade-off, respectively, between
the number of advice bits read by an online algorithm and the competitive ratio
it achieves. As a side effect, we also obtain results for the case that the online
algorithm does not read any advice bits at all, which is equivalent to the determin-
istic scenario. As mentioned before, in the paper by Chrobak et al. [CKPV91], the
k-server conjecture was already proven for the real line, and hence also for un-
weighted paths, in the deterministic setting. Hence, it is clear that the competitive
ratio in our scenario is exactly 2 in the deterministic case. The results we acquire
in this chapter for the deterministic case are not better than these already known
ones; our interest rather lies in the obtained trade-offs.

The remainder of this chapter is organized in three sections. In Section 2.1, we
present a few simple already known results that we will need in the following
sections, and we briefly describe the general procedure of reducing the string
guessing problem to another online problem. Then, in Section 2.2, we present a
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reduction from 2-GUESS to 2-PATHSERVER, which yields a trade-off for competi-
tive ratios between 1 and 3/2. More concretely, we will prove a lower bound of
roughly (1− η(α))n/5 advice bits necessary to obtain a strict competitive ratio of
less than 2−α on instances of length n, for any αwith 1/2 ≤ α < 1, where η is the
binary entropy function as defined in Section 1.2. This is an improvement over the
result mentioned above by Gupta et al. [GKLO13] as the trade-off obtained applies
to a much wider range of competitive ratios. Finally, Section 2.3 will deal with the
second such reduction, which gives a better trade-off for competitive ratios very
close to 1, namely a lower bound of roughly (1− η(α))n/2 advice bits for a strict
competitive ratio of roughly 1+ 1/2αn on instances of length n.

2.1 Preliminaries

Before we give a formal definition of the general k-server problem, let us formally
introduce the notion of a configuration of an algorithm. Let G = (V, E) be the
underlying graph with vertex set V and edge set E, and let each edge from E be
assigned a weight by a given weight functionω. For each pair of vertices (u, v) ∈
V2, let σ(u, v) denote the length of the shortest path from u to v in G. For each
algorithm A for k-SERVER and each round t, let κAt ∈ Vk be an ordered set, such
that each κAt (i) indicates the position of server si in the graph at the beginning
of round t during the execution of A on an instance I containing n requests.
Whenever the algorithm we refer to is clear from the context, we also write κt
instead of κAt and κt(i) instead of κAt (i).

Definition 2.1. The k-server problem on weighted graphs is the following online
minimization problem on a graph G = (V, E) with a metric weight functionω : E→ Q
of the edges. Given is an input sequence I = (q0, . . . , qn) that consists of n+ 1 queries,
presented one by one in consecutive rounds. The query q0 arriving in round 0 is a pair
consisting of the underlying graph and the starting configuration κ0 ∈ Wk, i. e., the
starting positions of the k servers s0, . . . , sk−1. The subsequent n queries q1, . . . , qn are
the positions at which the requests arrive.

An algorithm A for k-SERVER has to satisfy each request qi, for 1 ≤ i ≤ n, by
sending at least one of the servers to the vertex qi immediately, i. e., before the next
request arrives. Hence, A has to respond to each request qi with a configuration κi+1
of the servers, such that at least one server is located at position qi in κi+1. Hence, for
each i with 1 ≤ i ≤ n, it must hold that qi ∈ κAi+1. Formally, the output of A is a
sequence A(I) = (κ1, . . . , κn+1).

For each request qi and each server sj, the distance traveled by sj in round i dur-
ing the execution of A on an instance I is σ(κAi+1(j), κ

A
i (j)). The cost incurred in

round i is then
∑k−1
j=0 σ(κ

A
i+1(j), κ

A
i (j)), and the total cost of A on I is cost(A(I)) =∑n

i=1

∑k−1
j=0 σ(κ

A
i+1(j), κ

A
i (j)). The goal is to minimize cost(A(I)).
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We start with a few basic observations. First, let us remark that a k-SERVER

algorithm could position several servers at the same vertex at any time during its
computation. Sometimes it makes the argumentation easier to assume that this
does not happen. We observe that, for every algorithm placing more than one
server at the same vertex in some round t, there is an algorithm that always places
at most one server at the same vertex and that does not have a larger cost. Thus,
in the following, we will assume without loss of generality that, in all rounds, all
servers are positioned at pairwise different vertices.

Moreover, it has been shown that we can restrict our considerations to so-called
lazy algorithms [MMS90]. We call an algorithm for k-PATHSERVER lazy if it moves
at most one server per request qi, and only if the request is not already covered by
a server. Formally speaking, an algorithm is lazy if, for each i with 1 ≤ i ≤ n, the
following holds. If there is a server sh such that κAi (h) = qi, then κAi+1(j) = κ

A
i (j)

for all servers sj, and otherwise, there is at most one server sh such that κAi+1(h) 6=
κAi (h). Constraining ourselves to lazy algorithms is reasonable in so far as every
non-lazy algorithm can be simulated by a lazy one without increasing the cost of
the computed solution. Due to this restriction, we can assume that each response yi
of A, for 1 ≤ i ≤ n, consists only of the index of the server that is sent by A to
satisfy the corresponding request qi. (Or, if it is already covered, the server
that is currently located at qi.) Furthermore, because in round 0 no position
on the path is requested, we can assume that the output y0 of A is the empty
string ε. (On the other hand, remarkably, one of the most famous k-SERVER

algorithms does not operate in a lazy manner, namely the so-called Double Coverage
algorithm [CKPV91]).

Due to these considerations, we can make a few simplifications, leading to the
following definition of the version of the k-server problem that we consider in this
thesis, the special case in which the underlying graph is an unweighted path of
finite length.

Definition 2.2. The k-server problem on finite paths (k-PATHSERVER), is the fol-
lowing online minimization problem on a path P = (0, . . . , `). Given is an input se-
quence I = (q0, . . . , qn) that consists of n + 1 queries which are given one by one in
consecutive rounds. The query q0 arriving in round 0 is a pair consisting of the length ` of
the path and the starting configuration κ0 ∈Wk. The subsequent n queries q1, . . . , qn
are the positions at which the requests arrive. The online algorithm A has to respond
to each such request qi with the index of the server that it chooses to cover this re-
quest. Formally, the output of the algorithm A for k-PATHSERVER on an instance I
is A(I) = (ε, y1, . . . , yn) with yi ∈ {0, . . . , k− 1} for 1 ≤ i ≤ n.

For each request qi, the number of edges traversed by syi
in round i during the

execution of A on I is | κAi+1(yi) − κ
A
i (yi)|. The total cost of A on I is cost(A(I)) =∑n

i=1 | κ
A
i+1(yi) − κ

A
i (yi)|.
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Now, let us briefly consider why a simple greedy strategy cannot be competitive
for 2-PATHSERVER (and therefore not for k-SERVER, either). The most straight
forward greedy approach is to serve each request with the server that is closest to it.
Let the given path be (0, 1, 2, 3) of length 3, with server s0 starting at vertex 0 and
s1 at vertex 3. Consider the request sequence I = (1, 0, 1, 0, 1, 0, . . .) of length n.
The greedy algorithm A serves every request from I with server s0, since it is
always the closest one, resulting in the output sequence A(I) = (0, 0, 0, . . .), which
induces a cost of n. An optimal algorithm Opt, on the other hand, sends s1 to
the first request and then does not have to move any server during the remaining
computation. The resulting output sequence is Opt(I) = (1, 0, 1, 0, 1, 0, . . .) with a
cost of 2, which yields a competitive ratio of n/2.

Another observation that will come in handy later is that it is never useful for an
algorithm to swap the order of two servers. Hence, we show that, if κ0(i) < κ0(j)
holds in the initial configuration for any two servers si, sj, then κt(i) < κt(j) holds
for every round t ≥ 0.

Lemma 2.3. For any online algorithm A for 2-PATHSERVER, there exists an online
algorithm A ′ for 2-PATHSERVER with cost(A ′) ≤ cost(A) that never swaps the order
of any two servers during its execution.

Proof. If algorithm A never swaps the order of two servers, the claim is obviously
true. Hence, let us assume that there is at least one round in which A swaps the
order of two servers, and let the first such round be t. Furthermore, let si and sj
be these two servers, and without loss of generality, let us assume that during the
execution of A at the beginning of round t, the server si is to the left of server sj,
i. e., κAt (i) < κAt (j). Also without loss of generality, we assume that the server sent
to satisfy request qt in round t is si. As we only consider lazy algorithms, si is
the only server moved in round t. Since according to our assumption the order of
the servers is swapped in round t, the request qt must be located to the right of sj.
Analogous considerations can be made for the case that A sends sj to qt.

Let us compare the cost of algorithm A with an algorithm A ′ that operates
exactly as A up to round t − 1, but then sends server sj to qt instead of si. In
round t, the algorithm A incurs a cost of κAt+1(i) − κ

A
t (i), whereas A ′ would incur

a cost of κA
′

t+1(j)−κ
A ′
t (j) = κAt+1(i)−κ

A
t (j) < κ

A
t+1(i)−κ

A
t (i), since κAt (i) < κAt (j).

In the remaining execution, A ′ can now satisfy all requests that A satisfies
using si by sending server sj instead and vice versa. Clearly, sending sj instead
of si cannot increase the cost compared to A. The first round in which A ′ sends si
instead of sj (in case such a round exists) might actually have a larger cost com-
pared to A, but clearly, the extra cost cannot exceed κAt (j) − κAt (i). Also, other
servers are not affected, so the total cost of A ′ is at most cost(A). The situation is
depicted in Figure 2.1. 2
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. . . si sj qt . . .

. . . sj si . . .

κAt+1(i) − κ
A
t (i)

(a) Algorithm A sends si to satisfy the re-
quest qt appearing to the right of sj in
round t.

. . . si sj qt . . .

. . . si sj . . .

κA
′

t+1(j) − κ
A ′
t (j)

(b) Algorithm A ′ sends server sj instead
of si to qt.

Figure 2.1. An example for the situation before (top) and after (bottom) round t for the
algorithmsA (left) andA ′ (right) from Lemma 2.3. At the beginning of round t, the server si
is located to the left of sj.

In the next two sections, we give two lower bounds for the number of advice
bits an algorithm for 2-PATHSERVER needs to compute an optimal solution and to
achieve certain competitive ratios, respectively. Both lower bounds are obtained
by reducing 2-GUESS, the problem we defined in Chapter 1, to 2-PATHSERVER.
Let us briefly describe how we usually proceed in this thesis when giving such
a reduction from 2-GUESS to some other online problem P. The goal is to show
the following implication. If there exists an algorithm for P with a competitive
ratio of at most c = c(α), for 1/2 ≤ α < 1, reading less than b advice bits, then
there is an algorithm for 2-GUESS guessing more than αn bits correctly, while
reading less than b advice bits. We prove this implication in the following way.
Let A be an online algorithm for P with competitive ratio c, reading b advice bits.
From A, we construct an algorithm B for 2-GUESS guessing more than αn bits
correctly, reading less than b advice bits, by doing the following. The algorithm B
transforms its input IB into an input IA for A, simulates A on IA, and transforms
the output A(IA) into an output B(IB) for 2-GUESS. Every time that A needs a
certain number of advice bits, B reads this number of advice bits from the oracle’s
advice tape and writes them onto an own dummy advice tape that A can access
during its execution.

In the following two sections, we will demonstrate this procedure in greater
detail.

2.2 2-PATHSERVER on a Path of Length 2

In this section, we only consider 2-PATHSERVER for paths of length 2, i. e., con-
taining 3 vertices. Even for this very restricted case of 2-PATHSERVER, we prove
a lower bound on the number of advice bits necessary to achieve a competitive
ratio of c, for c in the range 1 ≤ c ≤ 1.5. We obtain a trade-off between the num-
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ber of advice bits and the competitive ratio by giving a reduction from 2-GUESS

to 2-PATHSERVER. Hence, let A be an algorithm for 2-PATHSERVER. From A, we
construct an algorithm B for 2-GUESS. To do so, we have to show how to generate
an input IA for A from an input IB for B, and how to transform the output of A
on IA into an output for IB.

Let IB := (n, r1, . . . , rn) be the input instance for the string guessing algorithm B
corresponding to the bit string r := r1 . . . rn. From this, we generate an input in-
stance IA for A according to Definition 2.2 as follows. The first query of IA is
the pair q0 := (2, (0, 2)), consisting of the length of the path and the starting
configuration κ0 = (0, 2). After this query is presented in round 0, in each subse-
quent round i, the algorithm is given the request qi, for 1 ≤ i ≤ 5n. For each ri
with 1 ≤ i ≤ n, we build a gadget consisting of five requests each. Let us define
this gadget to be

Qi :=

{
(1, 2, 1, 2, 0) if ri = 0,
(1, 0, 1, 0, 2) otherwise.

Let us call the sequence (1, 0, 1, 0, 2) a type-1-gadget and the sequence (1, 2, 1, 2, 0)
a type-0-gadget.

The complete request sequence IA is obtained by concatenating the first query
and then all gadgets Qi in ascending order of their indices. Denoting the concate-
nation operator by ◦, we obtain

IA :=
(
(`, κ0)

)
◦
n

©
i=1
Qi =

(
(2, (0, 2))

)
◦Q1 ◦ . . . ◦Qn.

Hence, IA has length 5n+ 1. Giving this sequence to A as its input, A generates
the output A(IA) := (ε, y1, . . . , y5n). From this output sequence, the output
sequence for B is constructed as follows. If, for 0 ≤ i ≤ n − 1, the first request
of gadget Qi+1 is satisfied by server s0, algorithm B guesses ri+1 to be 0; if this
request is satisfied by s1, the algorithm guesses ri+1 to be 1. Formally speaking,
gi+1 := y5i+1, for 0 ≤ i ≤ n− 1.

We now investigate how to serve the request sequence IA optimally. To this end,
let us from now on say that, for each first request of a type-i-gadget, the server si
is the appropriate server and s1−i is the inappropriate server, for i ∈ {0, 1}.

Lemma 2.4. Consider an input sequence IA for 2-PATHSERVER constructed from an
input instance IB for 2-GUESS corresponding to a string r, for some n ∈ N≥1 and
some r ∈ {0, 1}n. Then, if A serves the first request of exactly αn gadgets with its
appropriate server, the algorithm A has a cost of exactly cost(A(IA)) = 2n · (2− α).

Proof. First we observe that, due to Lemma 2.3, each request at position 0 always
has to be satisfied by s0, and each request at position 2 by s1. From this, it follows
that, directly before the first request of each gadgetQi, the server s0 is at position 0
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and server s1 is at position 2. This is true for the first request of Q1 due to the
starting configuration, and it holds for the other gadgets Qi since the last two
requests of each gadget Qi−1 are always 0 and 2.

Hence, we can investigate the performance of algorithm A on each gadget
separately. To this end, let us determine what would be the optimal way to satisfy
the requests of gadget Q1 = (q1, . . . , q5). Without loss of generality, let Q1 be
a type-1-gadget, i. e., Q1 = (1, 0, 1, 0, 2). Analogous considerations can be made
if Q1 is a gadget of type 0. The appropriate server for the first request of Q1 is s1.
The first request q1 of Q1 is the middle vertex 1. No server is located there, so
A must send one of the servers to this position in round 1. Let us first analyze
the situation if A sends the appropriate server s1 to satisfy q1. In this case, the
requests that arrive in rounds 2, 3, and 4 are all already covered by servers, and
hence, A does not move any servers in these rounds. To satisfy the last request q5
of this gadget, A has to send s1 back to position 2. The cost incurred by A onQ1 if
it sends s1 to request q1 is hence 2. See Figure 2.2a.

On the other hand, let us observe what happens if, instead of the appropriate
server, s0 is sent to q1. In round 2, the server s0 has to be sent back to position 0 to
satisfy q2, such that in the next round, the request q3 at position 1 is uncovered.
Now, A can either send s0 to satisfy q3, but then s0 has to be moved back to
position 0 in round 4 (depicted in Figure 2.2b), or A can send s1 to satisfy q3, but
then s1 has to be moved to position 2 in round 5 (see Figure 2.2c). In either case,
the cost induced by A on gadget Q1 is exactly 4.

As a result, satisfying the first request of a type-1-gadget by s1 incurs a cost
of 2, satisfying it with s0 incurs a cost of 4. For gadgets of type 0, the situation is
symmetric. To obtain the cost for the whole request sequence, we can add up the
costs of all the gadgets. Hence, if algorithm A serves the first request of exactly
αn gadgets with the appropriate server and thus exactly (1− α)n requests with
the inappropriate server, the algorithm has a total cost of exactly

2αn+ 4(1− α)n = 2nα+ 2n(2− 2α) = 2n(2− α). 2

Corollary 2.5. Consider an input sequence IA for 2-PATHSERVER constructed from
an input instance IB for 2-GUESS corresponding to a string r, for some n ∈ N≥1 and
some r ∈ {0, 1}n. Then, the optimal solution on IA has a cost of 2n.

Proof. According to Lemma 2.4, the cost of an algorithm on IA is minimized
for α = 1, i. e., if the first requests of all n gadgets are satisfied by their appropriate
servers. This yields a cost of 2n(2− α) = 2n. 2

To complete the reduction, we have to show a connection between the per-
formance of the algorithm A for 2-PATHSERVER and the 2-GUESS algorithm B
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q1

q2

q3

q4

q5

q6

(a) Request q1 is served by
server s1.

q1

q2

q3

q4

q5

q6

(b) Requests q1 and q3 are
both served by server s0.

q1

q2

q3

q4

q5

q6

(c) Request q1 served by s0
and q3 by s1.

Figure 2.2. The only three possibilities how to serve the requests of the gadget (1, 0, 1, 0, 2).
Depicted are the situations at the beginning of each round, when the request has arrived
already, but the servers have not been moved yet. Positions with requests are shown as
rectangles, those with servers are colored dark blue. The server s0 is always left of s1. The
highlighting indicates which gadget the single requests belong to; request q6 is already the
first request of the next gadget.

constructed from A. Therefore, we describe in greater detail how the string
guessing algorithm B can be obtained from A. The algorithm B gets the in-
stance IB = (n, r1, . . . , rn) as its input, one request per round in n+ 1 consecutive
rounds. To each request sent in round i with 0 ≤ i ≤ n − 1, it has to respond
with its guess gi+1 for bit ri+1. Now, in each round of its execution, B generates a
piece of the input IA according to the construction given above for 2-PATHSERVER,
then simulates the algorithm A on this part of IA, and bases its own output on
the output of A. Since B and A have a different number of rounds and several
rounds of A are simulated during one round of B, let us call the rounds of A time
steps for now. In round 0, the algorithm B simulates the first two time steps of A
on IA = (q0, q1, . . . , q5n). Recall that the query q0 sent to A in time step 0 is a
special one, to which A only responds with y0 = ε. Therefore, during the first
round of B, we simulate this time step and the first “real” one, in which the first
request of gadget Q1 is sent to A. In each following round i with 1 ≤ i ≤ n, the
algorithm B simulates the next five time steps of A on IA, with the exception of
round n, in which only the last four time steps ofA remain to be simulated. Hence,
in round iwith 1 ≤ i ≤ n−1, the algorithm B sends requests q5i−3, . . . , q5i+1 toA
in five consecutive time steps, with q5i+1 being the first request of gadget Qi+1,
and in round n, it sends requests q5n−3, . . . , q5n.

To deal with the advice bits that Amight try to read from the tape, B constructs
its own “dummy advice tape”. Every time Awants to access the oracle’s advice
tape in some time step j to read a certain number of advice bits, B reads the same
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number of advice bits from the oracle’s advice tape and writes them onto its own
one, unmodified. Then, A reads all its advice bits from the dummy advice tape, if
any. After that, it computes its output yj for time step j, potentially depending on
the advice bits it read so far.

Finally, B adopts A’s output y5i+1 as its guess gi+1 in each round i with 0 ≤
i ≤ n− 1, and ignores the output of A in all other time steps.

Lemma 2.6. Consider a type-i-gadget Qj+1 and its first request q5j+1, for any i, j
with i ∈ {0, 1} and 0 ≤ j ≤ n−1. If algorithmA sends the appropriate server si to satisfy
this request, the algorithm B guesses the bit rj+1 correctly.

Proof. Since Qj+1 is a type-i-gadget, due to our construction of the request se-
quence IA, it must hold that rj+1 = i.

On the other hand, the output of A in each time step consists of the index of the
server sent to satisfy the current request. If algorithm A sends si to request q5j+1,
the output of A in time step 5j+ 1 is hence y5j+1 = i. As we have defined above,
B’s guess for the bit rj+1 is defined as gj+1 := y5j+1, for 0 ≤ j ≤ n − 1, and
therefore, we have gj+1 = i. Thus, B’s guess is obviously correct. 2

Now we can derive a lower bound for the number of advice bits necessary to
achieve certain competitive ratios for 2-PATHSERVER by using the result by Böck-
enhauer et al. [BHK+14] that we already presented in Chapter 1 (Fact 1.5). Recall
that η is the binary entropy function, also defined in Chapter 1.

Theorem 2.7. For anyαwith 1/2 ≤ α < 1, any online algorithmA for 2-PATHSERVER

with a strict competitive ratio of c < 2− α has to read b ≥
(
1− η(α)

)
n advice bits on

instances of length 5n + 1, or, rewritten, b ≥
(
1 − η(α)

)
/5 · (n ′ − 1) advice bits on

instances of length n ′.

Proof. Towards contradiction, let us assume that there is an algorithm A that has a
strict competitive ratio of less than 2−α, reading less than

(
1−η(α)

)
n advice bits.

We show that, with the description given above, we can construct an algorithm
for 2-GUESS from A reading the same number of advice bits as A and guessing
more than αn bits correctly.

Since A has a strict competitive ratio of c < 2 − α, according to the definition
given in Section 1.3, for every instance IA of 2-PATHSERVER corresponding to an
input string r for 2-GUESS,

cost(A(IA)) < (2− α) cost(Opt(IA)).

Due to Corollary 2.5, the cost of an optimal solution on IA is cost(Opt(IA)) = 2n,
and thus, we have cost(A(IA)) < 2n(2−α). Then according to Lemma 2.4,Amust
serve the first request of more than αn gadgets with the appropriate server. Now,
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due to Lemma 2.6, the algorithm B for 2-GUESS that we constructed from A
guesses more than αn bits correctly on any input string of length n, while reading
less than

(
1 − η(α)

)
n advice bits. This is a contradiction to Fact 1.5; hence, the

claim follows. 2

As any deterministic online algorithm is an online algorithm with advice read-
ing 0 advice bits, we can also derive a result for deterministic algorithms from
Theorem 2.7. Let us keep in mind, though, that the k-server conjecture is already
settled for the case of two servers on a path, as already mentioned earlier. Hence,
the following result is not new, but only serves as a demonstration of the fact
that lower bounds on the competitive ratio of online algorithms with advice can
be transferred to lower bounds on the competitive ratio of deterministic online
algorithms.

Corollary 2.8. No deterministic online algorithm for 2-PATHSERVER can achieve a
better strict competitive ratio than 1.5.

Proof. Pluggingα = 1/2+δ into Theorem 2.7, for some arbitrary small δ > 0, yields
that every online algorithm with a strict competitive ratio of c < 2−α = 1.5−δ on
any input instance of length 5n+1 has to read b > 0 advice bits, since η(1/2+δ) < 1
for every δ > 0, and hence b ≥

(
1 − η(α)

)
n =

(
1 − η(1/2 + δ)

)
n > 0. Note that

this also holds if δ is a function of n converging to 0. Thus, any online algorithm
for 2-PATHSERVER with a strict competitive ratio of c < 1.5 needs to read at least
one advice bit, and the claim follows. 2

2.3 2-PATHSERVER on Finite Paths

For very small competitive ratios (in concrete terms, competitive ratios near 1),
the result of the previous section can even be improved. The reduction in the last
section was based on gadgets of size 5, each of which corresponded to one bit in
the bit string of the input for 2-GUESS. As a result, we cannot expect to prove a
better lower bound for the number of necessary advice bits than roughly n/5 for
instances of length n. But, of course, we restricted ourselves to paths of length 2 in
the last section. In this section, we want to make use of the fact that, actually, we
may have a path of length ` at hand.

Hence, let the path we consider be P = (0, . . . , `). Using the same reduction
technique as above, we want to generate an input for 2-PATHSERVER from a 2-
GUESS instance. Let the input instance for 2-GUESS be IB = (n, r1, . . . , rn) with the
corresponding bit string r = r1 . . . rn ∈ {0, 1}n. From the bit string r, we construct
an input instance Ir = (q0, q1, . . . , q2n) with 2n + 1 requests for 2-PATHSERVER

on a path of length ` = 2n. The first request of Ir is a pair consisting of the length `
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of the path and the starting configuration, which we determine to be κ0 := (0, `).
Thus, q0 :=

(
`, (0, `)

)
.

The remaining requests are chosen as follows. For each bit ri, we build a
gadget Qi of size 2. The request sequence Ir is obtained by concatenating q0 and
then all gadgets in ascending order of their indices, hence,

Ir := q0 ◦Q1 ◦ . . . ◦Qn.

This implies Qi := (q2i−1, q2i) for 1 ≤ i ≤ n. As in the last section, we will have
two different types of gadgets, and we will defineQi to be a type-0-gadget if ri = 0
and a type-1-gadget otherwise. In this section, we use the same notion as before,
with server sj being the appropriate and s1−j being the inappropriate server for
each type-j-gadget. Furthermore, similarly to the procedure in the last section, we
build the gadgets such that it is optimal to serve the first request of a type-j-gadget
with the appropriate server sj and suboptimal to serve it with the inappropriate
one, s1−j.

We now give a more detailed description of how to choose the qi. For conve-
nience, let us define Q0 := (0, `), such that min{Q0} = 0 and max{Q0} = `. Any
first request of a gadget Qi, i. e., any odd request q2i−1, arrives at position

q2i−1 :=
min{Qi−1}+ max{Qi−1}

2
.

Any even request q2i appears at position

q2i :=

{
min{Qi−1} if ri = 1,
max{Qi−1} if ri = 0.

(2.1)

If qi = min{Qi−1}, let us call Qi a type-1-gadget, and if qi = max{Qi−1}, let us
call it a type-0-gadget. This request sequence has the following useful property.

Observation 2.9. At the beginning of round 2i + 1, there have not been any requests
between q2i−1 and q2i so far.

Proof. We prove the claim by induction on the number of rounds. For i = 1, the
claim obviously holds, since, at the beginning of round 3, requests q1 and q2
were the only requests presented so far. Let us now assume that the claim holds
for i− 1. Then, at the beginning of round 2i− 1, there have not been any requests
between q2i−3 and q2i−2 yet. According to the construction of the request se-
quence, the next request appears in the middle between these two positions, hence,
q2i−1 is the first request between q2i−3 and q2i−2 so far. The next one, qi, appears
at either the same position as q2i−3 or q2i−2, depending on the string r. In any
case, at the beginning of round 2i+ 1, there have not been any requests between
q2i−1 and q2i so far, which proves the claim. 2
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Figure 2.3. Example of the construction of the request sequence (q1, . . . , q10) corresponding
to the bit string r = 10011 of length n = 5. Every gadget Qi = (q2i−1, q2i) corresponds
to one bit ri. The picture shows the positions of the requests qi on the path P = (0, . . . , `),
with ` = 2n = 32. For better readability, each request qi is only labeled with its index i.
Every pair of requests (q2i−1, q2i) is determined according to the bit ri, as indicated by the
highlighting.

An example is shown in Figure 2.3.
Having constructed the instance Ir = (q0, . . . , q2n) from the 2-GUESS-input IB,

we can now run a 2-PATHSERVER-algorithm A on Ir. This algorithm generates
the output A(Ir) = (y0, . . . , y2n), consisting of the indices of the servers sent to
satisfy qi for 1 ≤ i ≤ 2n. From this output, we construct an output for B by
adopting y2i+1 as B’s guess in round i+ 1; hence, gi+1 := y2i+1 for 0 ≤ i ≤ n− 1.

To give another lower bound for the number of advice bits for 2-PATHSERVER,
let us consider the following algorithm Ar for any bit string r. The algorithm Ar
satisfies every odd request q2i−1 of Ir, i. e., the first request of each gadget Qi, by
sending the appropriate server, for 1 ≤ i ≤ n. Then, given the instance Ir as its
input, Ar does not have to move any servers at all in even rounds, as we will see
shortly. We show that Ar is optimal on the instance Ir corresponding to r. To do
so, we first have to prove a few simple results. To follow the argumentation, it
might help to view the example in Figure 2.4, which depicts the execution of Ar
on the instance from Figure 2.3.

Observation 2.10. For the instance Ir,

ri = 0 ⇐⇒ Qi is a type-0-gadget ⇐⇒ q2i−1 < q2i.

Proof. This follows directly from the definitions of q2i−1 and q2i. 2
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Figure 2.4. This picture shows how the algorithm Ar operates on the request sequence
from Figure 2.3. In each even round, there is already one server positioned at the requested
vertex q2i, so no server has to be moved. The cost of Ar on this instance is ` − 1 = 31.

Lemma 2.11. During the execution of Ar on Ir, at the beginning of each even round 2i,
the appropriate server for q2i−1 is located at position κ2i(ri) = q2i−1, and the inappro-
priate one is at position κ2i(1− ri) = q2i.

Proof. We prove the claim by induction. If r1 = 1, the algorithmAr sends server s1
to satisfy request q1 according to the definition of Ar. Hence, the configuration at
the beginning of round 2 is κ2 = (0, `/2). Furthermore, according to the definitions
of q1 and q2, we have q1 = `/2 and q2 = 0, and thus, κ2(ri) = κ2(1) = `/2 = q1
and κ2(1− ri) = κ2(0) = 0 = q2. The case r1 = 0 is analogous, so the base case is
covered.

Due to the induction hypothesis, at the beginning of round 2i− 2, servers are
at positions κ2i−2(ri−1) = q2i−3 and κ2i−2(1 − ri−1) = q2i−2. Then no server
has to be moved for request q2i−2, and for q2i−1, the algorithm Ar moves the
appropriate server sri according to its definition. Hence, at the beginning of
round 2i, the servers are at positions κ2i(ri) = q2i−1 and κ2i(1 − ri) = q2i−2.
If q2i−2 < q2i−3 and therefore q2i−2 = min{Qi−1}, the server that Ar moves
to q2i−1 must be s1. Thus, qi = 1, and due to (2.1), q2i = min{Qi−1} = q2i−2.
Otherwise, if q2i−1 = max{Qi−1}, the server moved to q2i−1 must be s0. Hence,
qi = 0, and due to (2.1), q2i = max{Qi−1} = q2i−2. In both cases, we have q2i−2 =
q2i and thus κ2i(1− ri) = q2i. 2

Corollary 2.12. The algorithm Ar does not move any servers in even rounds.
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Proof. This follows directly from Lemma 2.11, because at the beginning of each
even round 2i, one of the servers is already located at the position at which
request q2i arrives. 2

Lemma 2.13. During the execution ofAr on Ir, at the beginning of each odd round 2i−1,
the servers are located at positions κ2i−1(0) = min{Qi−1} and κ2i−1(1) = max{Qi−1}.

Proof. From Lemma 2.11 and Corollary 2.12 we know that, at the beginning of any
odd round 2i− 1, the servers are at positions κ2i−1(ri−1) = q2i−3 and κ2i−1(1−
ri−1) = q2i−2. We have

κ2i−1(ri−1) =

{
min{Qi−1} if q2i−3 < q2i−2
max{Qi−1} if q2i−3 > q2i−2

(2.2)

=

{
min{Qi−1} if ri−1 = 0
max{Qi−1} if ri−1 = 1,

(2.3)

where (2.2) holds due to the definition of Qi−1 := (q2i−3, q2i−2) and (2.3) holds
due to Observation 2.10. Analogously, we obtain

κ2i−1(1− ri−1) =

{
min{Qi−1} if q2i−2 < q2i−3
max{Qi−1} if q2i−2 > q2i−3

=

{
min{Qi−1} if ri−1 = 1
max{Qi−1} if ri−1 = 0.

Thus, for the positions of the servers at the beginning of round 2i − 1, we ob-
tain κ2i−1(0) = min{Qi−1} and κ2i−1(1) = max{Qi−1}. 2

Lemma 2.14. For 1 ≤ i ≤ n, the distance between min{Qi−1} and max{Qi−1} is
exactly `/2i−1 = 2n−i+1.

Proof. Due to Lemma 2.13, at the beginning of round 2i − 1, the servers are
located at positions min{Qi−1} and max{Qi−1}. The request in this round arrives
at position q2i−1 = (min{Qi−1} + max{Qi−1})/2, i. e., in the middle between the
two servers. Hence, in this round, one of the two servers is moved there, and the
other one stays at its current position. Therefore, in every odd round, the distance
between the two servers is halved, and due to Corollary 2.12, the distance does
not change in even rounds in the solution computed by Ar.

Prior to the start of computation, the distance between s0 and s1 is max{Q0}−
min{Q0} = `−0 = `/20. Thus, at the beginning of every round 2i−1with 0 ≤ i ≤ n,
the distance between min{Qi−1} and max{Qi−1} (and, therefore, also between the
two servers as they are positioned in the solution of Ar) is `/2i−1 = 2n−i+1. 2
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Lemma 2.15. The cost of Ar on instance Ir is cost(Ar(Ir)) = `− 1 = 2n − 1.

Proof. Due to Corollary 2.12, adding up the costs of all odd rounds yields the total
cost of Ar on Ir. In round 2i − 1, the appropriate server sri is moved by Ar. At
the beginning of this round, sri is located at position

κ2i−1(ri) =

{
min{Qi−1} if ri = 0,
max{Qi−1} if ri = 1

due to Lemma 2.13. After this round, i. e., at the beginning of round 2i, server sri
is located at position

κ2i(ri) = q2i−1 =
min{Qi−1}+ max{Qi−1}

2

due to Lemma 2.11 and the definition of q2i−1. No matter whether ri = 0 or ri = 1,
in both cases sri has to travel distance 1/2 · 2n−i+1 = 2n−i in round 2i− 1 due to
Lemma 2.14, for 1 ≤ i ≤ n. The total cost of algorithm Ar is

cost(Ar(Ir)) =
n∑
i=1

`

2i
= `

(
1−

1

2n

)
= 2n − 1.

2

We now know what cost is incurred by Ar when it gets the request sequence Ir
as its input. Next we want to show that this algorithm is optimal on Ir. Therefore,
let us consider an arbitrary but fixed algorithm C that sends the inappropriate
server s1−ri instead of sri to satisfy request q2i−1 in some round 2i− 1. We prove
that each such algorithm C has a larger cost than Ar and therefore show that Ar is
indeed optimal and unique.

Lemma 2.16. Any algorithm C that sends the inappropriate server in round 2i − 1 to
satisfy the first request q2i−1 of gadget Qi causes a cost of at least 2n−i+1 on gadget Qi
in total.

Proof. For some arbitrary but fixed i with 1 ≤ i ≤ n, let Qi be a type-j-gadget,
and let C send server s1−j to the odd request q2i−1. Let us consider the situa-
tion at the beginning of round 2i − 1. According to Observation 2.9, there have
been no requests between the positions q2i−3 and q2i−2 so far. Therefore, due
to Lemma 2.3, no server can be placed anywhere strictly in between min{Qi−1}
and max{Qi−1}. Hence, s0 and s1 are currently at positions κ2i−1(0) ≤ min{Qi−1}
and κ2i−1(1) ≥ max{Qi−1}. The distance between those two positions is at
least 2n−i+1 due to Lemma 2.14.

Due to our assumption, C sends the inappropriate server, namely s1−j, to the
requested vertex q2i−1 = (min{Qi−1} + max{Qi−1})/2. Therefore, s1−j has to
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traverse a distance of at least 2n−i in this round. After that, the configuration of C
is

κ2i =


(

min{Qi−1}, min{Qi−1}+max{Qi−1}

2

)
if Qi is a type-0-gadget,(

min{Qi−1}+max{Qi−1}

2
,max{Qi−1}

)
if Qi is a type-1-gadget.

However, the request in round 2i arrives at position

q2i =

{
max{Qi−1} if Qi is a type-0-gadget,
min{Qi−1} if Qi is a type-1-gadget.

Due to Lemma 2.3, this request is served by the closest server, which is in both
cases s1−j. Hence, s1−j traverses 2n−i edges in round 2i, which corresponds to
the cost incurred by C in this round.

All in all, C incurs a cost of at least 2 · 2n−i = 2n−i+1 in rounds 2i − 1 and 2i
and therefore on gadget Qi in total. 2

Corollary 2.17. Sending the inappropriate server instead of the appropriate one to satisfy
the first request q2i−1 of some gadget Qi, for some i with 1 ≤ i ≤ n, increases the cost
for gadget Qi by 2n−i+1 − 2n−i = 2n−i compared to Ar.

Proof. This follows directly from Lemma 2.16. 2

Lemma 2.18. Any algorithm that sends the appropriate server to satisfy the first request
of at most αn gadgets Qi, has a cost of at least 2n + 2(1−α)n − 2.

Proof. Consider an algorithm A that sends the appropriate server to at most αn
first requests q2i−1 of gadgets Qi (and therefore the inappropriate server to at
least (1 − α)n such requests). The additional cost compared to Ar incurred by
sending the inappropriate server to q2i−1 decreases with increasing i due to
Corollary 2.17. Hence, we can assume in A’s favor that it satisfies the first requests
of the last (1− α)n gadgets with the wrong server. Still, the cost of A on Ir is

cost(A(Ir)) ≥ cost(Ar(Ir)) +
n∑

i=n−(1−α)n+1

2n−i (2.4)

= 2n − 1+

(1−α)n−1∑
i=0

2i (2.5)

= 2n − 1+ 2(1−α)n − 1

= 2n + 2(1−α)n − 2,

where (2.4) holds due to Corollary 2.17 and (2.5) due to Lemma 2.15. 2
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Finally, this leads to the conclusion that serving each type-i-request with its
appropriate server si is indeed optimal.

Corollary 2.19. Algorithm Ar is optimal on any instance Ir corresponding to a bit
string r.

Proof. This follows directly from Corollary 2.17. 2

Similarly as before, we now want to complete the reduction by showing that
an algorithm for 2-PATHSERVER can be used to construct an algorithm for the bit
string guessing problem. The procedure is very similar to the one presented in
Section 2.2.

The 2-GUESS-algorithm B gets the instance IB = (n, r1, . . . , rn) as its input, and
for each iwith 0 ≤ i ≤ n− 1, it has to respond to each request sent in round iwith
its guess gi+1 for bit ri+1. Now, during its execution, B generates the input IA
for 2-PATHSERVER in an online manner, simulates A on Ir = (q0, q1, . . . , q2n),
and bases its own output on the output of A. Again, q0 is the special query
only consisting of the path length and the starting configuration, to which A
must respond with y0 = ε. In contrast to the procedure from Section 2.2, the
algorithm B now simulates two time steps of A in each round, except for round n,
in which only the single remaining time step of A is simulated. Hence, in round i
with 0 ≤ i ≤ n − 1, the algorithm B sends requests q2i and q2i+1 to A and
adopts A’s output y2i+1 to the first request of gadget Qi+1 as its guess gi+1, and
ignores the output of A in all even rounds. As before, it also constructs a dummy
advice tape as a copy of the oracle’s advice tape, from which A reads all of its
advice bits, if any at all.

Lemma 2.20. If A sends the appropriate server to satisfy the first request q2i+1 of
gadget Qi+1, then B guesses the bit ri+1 correctly, for 0 ≤ i ≤ n− 1.

Proof. Let Qi+1 be a type-j-gadget. Then, due to the construction of the request
sequence Ir, it must hold that ri+1 = j.

On the other hand, the output of A in each round consists of the index of the
server sent to satisfy the current request. If A sends sj to request q2i+1, the output
ofA in round 2i+1 is therefore y2i+1 = j. As we have defined above, B’s guess for
the bit ri+1 is gi+1 := y2i+1, for 0 ≤ i ≤ n−1, and consequently, we have gi+1 = j.
Thus, gi+1 = ri+1, and thus B’s guess is obviously correct. 2

For the following theorem, recall once more that η is used to denote the binary
entropy function. The theorem gives us a lower bound on the number of advice
bits necessary for online algorithms that achieve near-optimal competitive ratios;
more precisely, competitive ratios of c < 1+ (2(1−α)n − 1)/(2n − 1), which tends
to 1+ 1/2αn for growing n.
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Theorem 2.21. For any α with 1/2 ≤ α < 1, any online algorithm A for 2-PATH-
SERVER with a strict competitive ratio of c < 1 + (2(1−α)n − 1)/(2n − 1) has to
read b ≥

(
1 − η(α)

)
n advice bits on instances of length 2n + 1, or, rewritten, b ≥(

1− η(α)
)
/2 · (n ′ − 1) advice bits on instances of length n ′.

Proof. For the sake of contradiction, assume that there exists an online algorithmA
with advice for 2-PATHSERVER that reads less than

(
1 − η(α)

)
n advice bits and

that has a strict competitive ratio of c < 1+ (2(1−α)n − 1)/(2n − 1). We show that,
by using the construction given above, we can use A to obtain an algorithm B
for 2-GUESS that reads the same number of advice bits as A and that guesses more
than αn bits correctly. As such an algorithm does not exist due to Böckenhauer
et al. [BHK+14], our assumption leads to a contradiction.

According to our initial assumption, A has a strict competitive ratio of c <
1 +

(
2(1−α)n − 1

)
/(2n − 1). Thus, for every instance Ir for 2-PATHSERVER corre-

sponding to an input string r for 2-GUESS, the definition of the strict competitive
ratio yields

cost(A(Ir)) < cost(Ar(Ir))
(
1+

2(1−α)n − 1

2n − 1

)

= (2n − 1)

(
1+

2(1−α)n − 1

2n − 1

)
(2.6)

= 2n + 2(1−α)n − 2,

where (2.6) holds due to Lemma 2.15.
According to Lemma 2.18, Amust hence send the appropriate server to satisfy

the first request of more than αn gadgets. Then, due to Lemma 2.20, the algo-
rithm B constructed from A guesses more than αn bits correctly, while reading as
many advice bits as A, namely b <

(
1− η(α)

)
n. This is a contradiction to Fact 1.5

on page 14, and thus, our initial assumption must have been false. 2



3
Disjoint Path Allocation

This chapter addresses the disjoint path allocation problem on a path, from now on
also called PATHDPA, which is the following online maximization problem. Given
is a path P and a sequence of requests, each of them being a subpath of P. Two
requests are said to be intersecting if they have a common edge. An algorithm for
the disjoint path allocation problem must decide for each request if it admits or
rejects it. The goal of such an algorithm is to admit as many requests as possible,
such that no two admitted requests intersect. The requests are presented to the
algorithm sequentially, and the decision whether to admit a given request or not
must be made instantaneously, before the next request arrives. Once a request is
admitted, it cannot be preempted later.

The disjoint path allocation problem is, in some sense, a simplified version
of the call admission problem. In this much more general scenario, the requests
do not necessarily appear on a path, but in a general weighted graph, where
the edge weights indicate the capacity of the edges, and the requests (in this
scenario called calls) can have different bandwidths, durations, and profits. For
further information on the call admission problem, we refer to Chapter 13 from
the textbook of Borodin and El-Yaniv [BEY98], and to Section 13.5 in the same
book for the disjoint path allocation problem. The latter is a special case of the
call admission problem in which all edges have capacity 1 and all calls have
bandwidth 1, a profit of 1, and unlimited duration. PATHDPA, in turn, is a special
case of the disjoint path allocation problem in which the underlying graph is a
path.

When analyzing the advice complexity of the disjoint path allocation problem,
it is possible to measure in terms of two different parameters, namely the length
of the path or the number of requests. Most classical results, analyzing online
algorithms for the disjoint path allocation problem without advice, measure in the

37
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path length. The first paper concerning algorithms with advice for the disjoint path
allocation problem deals with the special case PATHDPA and measures the quality
of an algorithm in the number of requests (Böckenhauer et al. [BKK+09]), whereas
in a later paper by Barhum et al., it is measured in the path length ` [BBF+14].
Among other things, the former paper establishes a lower bound of roughly
n/(2c) advice bits to obtain a strictly c-competitive solution. The latter paper
contains several upper and lower bounds for different ranges of the competitive
ratio or the number of advice bits used, including the following. Without advice,
there is an algorithm with a competitive ratio of 2

√
`, and there is an almost

matching lower bound on the competitive ratio of 2
√
` − 4. Moreover, Barhum

et al. show that linear advice is sufficient to achieve a constant competitive ratio
by giving several upper bounds. They also show that, to solve the disjoint path
allocation problem optimally, the number of necessary and sufficient advice bits
is ` − 1. Another result presented by Barhum et al. is that there is an algorithm
with a competitive ratio of (2b+1)(`1/(2

b+1)+2)−4when the number b of advice
bits read by the algorithm is in O(log log `). Plugging in b = log log (`/2), for
example, this proves the existence of an algorithm with a competitive ratio of
4 log ` − 4, reading only log log (`/2) advice bits. Again, they provide an almost
matching lower bound of (2b + 1)(`1/(2

b+1) − 2b−1) − 3 · 2b to the general upper
bound. However, this lower bound is only valid for very small values of b, as
this expression is already negative for b in the order of Θ(log log `) and therefore
does not yield any meaningful result in this case. The result by Böckenhauer et al.
mentioned above can be translated into a bound measured in `, yielding a lower
bound of roughly (log `)/c advice bits to achieve strict c-competitiveness. So far,
no lower bound on the competitive ratio is known if the number of advice bits
read is in the order of ω(log `), except for the result for optimality mentioned
above.

In this chapter, we provide a lower bound on the number of advice bits necessary
to achieve competitive ratios from constant up to approximately (log `)/2. We
follow the tradition of the classical results on the disjoint path allocation problem
and measure the competitive ratio of the presented algorithms in the length of the
given path.

In Section 3.1, we consider how to obtain the desired lower bound with the
help of a reduction from the bit string guessing problem. We actually prove
with a rather simple reduction that a linear number of advice bits is necessary to
achieve a certain constant competitive ratio. However, we will see that, in this
case, the straight forward application of the reduction method does not provide
any results for competitive ratios in the order of Θ(log `), but only for a rather
small range of constant competitive ratios. We will also see that our idea cannot
be adapted easily such that a reduction from 2-GUESS would yield the desired
result, pointing out the limitations of the reduction method. In Section 3.2, we
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then adapt our idea from Section 3.1, obtaining a lower bound for PATHDPA for
a wide range of competitive ratios without applying the reduction method. The
resulting bound is very general, giving a lower bound for competitive ratios from
constant up to approximately (log `)/2, and from this, we derive more concrete
results. For example, we extrapolate the fact that to achieve a competitive ratio
of c ≤ 1/2 · (log `)/(log log `)1/4, any online algorithm needs to read at least
Ω(`/(4cc4)) advice bits. Additionally, we can derive that to obtain a competitive
ratio of (δ/2) log `, any algorithm needs at leastω(`1−ε) advice bits, for any two
constants δ and εwith 0 < δ < ε < 1.

To give an overview on the significance of our results, we have a closer look at
the results by Barhum et al. [BBF+14] we mentioned above. As we have seen, by
augmenting an online algorithm for PATHDPA with very few advice bits, namely
at most log log(`/2), the competitive ratio can quickly be decreased from 2

√
`

to 4 log ` − 4. However, to decrease the competitive ratio by only another con-
stant factor to (δ/2) log `, at least ω(`1−ε) advice bits are necessary. Hence, a
huge range of advice bits, namely those from log log(`/2) + 1 to any number in
O(`1−ε), basically does not help at all, which is a very sharp threshold that is
worth remarking.

Before we start, we give the formal definition of the special case PATHDPA of
the disjoint path allocation problem that we consider in this chapter.

Definition 3.1. The disjoint path allocation problem on a path (PATHDPA) is the
following maximization problem on a path P = (0, . . . , `). In round 0, the number ` is
revealed. In every successive round i, for 1 ≤ i ≤ n, a request is given, represented by
a subpath of P. Any online algorithm for PATHDPA has to admit or reject each such
request immediately, before the next request arrives, without having the opportunity to
revoke its decision later. The goal is to admit as many pairwise edge-disjoint requests as
possible. The gain of an algorithm is the number of admitted requests.

3.1 Reduction from 2-GUESS

Let us consider the following simple idea for a reduction from the bit string
guessing problem to the disjoint path allocation problem. As we already did in
Sections 2.2 and 2.3, we present a method to transform any input IB,r for 2-GUESS

into an instance IA,r for PATHDPA on which the algorithm A is simulated and
describe how to generate the output of B from the output of A on IA,r. Let IB,r =
(n, r1, . . . , rn) for a given bit string r = r1 . . . rn, and let ζ(r) be the number of zeros
in r. We generate the following input IA,r = (q0, . . . , qn+2 ζ(r)) for PATHDPA
according to Definition 3.1 (similar to a construction by Komm [Kom12]). The first
query, q0 := 2n = `, is the length of the path, i. e., the number of edges of P. Then
the requests qi, for 1 ≤ i ≤ n+ 2 ζ(r), are presented in two subsequent phases. In
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0 4 8 12 16

Figure 3.1. Instance for PATHDPA constructed from the string r = 10011101 of length 8
containing 3 zeros.

the first one, exactly n edge-disjoint requests of length 2 are presented, with qi
starting at vertex 2i− 2 and ending at 2i, for 1 ≤ i ≤ n. In the second phase, the
remaining 2 ζ(r) requests are presented as follows. For every iwith 1 ≤ i ≤ n, if
and only if ri = 0, there appear two requests of length 1 each intersecting with qi,
one starting at position 2i− 2, the other one at position 2i− 1. A small example is
shown in Figure 3.1.

The 2-GUESS algorithm B generates this input IA,r for A on the fly and can
therefore simulate the PATHDPA algorithm A on IA,r. To do so, it sends the
requests to A as follows. In round 0, when B is asked to guess the bit r1, it
simulates two time steps of A, sending the requests q0 (the special one only
consisting of the length of the path) and q1 to it. In every subsequent round i− 1
with 2 ≤ i ≤ n, when B is asked to guess the bit ri, it simulates another time
step of A, feeding it the request qi. To every request qi with 1 ≤ i ≤ n, the
algorithm A responds with its output yi = 1 if it accepts qi and yi = 0 if it rejects
it. The algorithm B adopts A’s output yi as its guess for the bit ri, i. e., gi := yi.
In round n, the last one, B simulates all remaining time steps of A, sending all
requests of phase 2. Any feedback given to B by the adversary concerning the
correctness of the guessed bit is passed on by B to A. Furthermore, should A
at any point want to read some advice bits, B reads the according number of
bits instead and writes them onto a dummy advice tape that A can access, as we
already explained in Section 2.2.

Let I = {IA,r | r ∈ {0, 1}n} be the set containing every instance IA,r constructed
in the way described above from a bit string r, and let Opt be an algorithm that is
optimal on every such instance IA,r ∈ I . Obviously, Opt admits a request qi from
phase 1 if and only if no requests intersecting with qi appear in phase 2, i. e., if and
only if ri = 1. Thus, the optimal solution for IA,r has a gain of gain(Opt(IA,r)) =
n+ ζ(r), and therefore, for all IA,r,

n ≤ gain(Opt(IA,r)) ≤ 2n. (3.1)

From now on, we will say that the algorithm A makes the correct decision for qi if
eitherA admits qi and ri = 1 or if it rejects qi and ri = 0, for 1 ≤ i ≤ n. Otherwise,
we say that A makes the wrong decision for qi. Without loss of generality, we can
assume that any algorithm for PATHDPA, given such an PATHDPA instance IA,r
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constructed from a string r as its input, admits all requests from phase 2 that do
not intersect with any admitted requests from phase 1.

For any such instance IA,r ∈ I and any i with 1 ≤ i ≤ n, if Amakes the wrong
decision for qi, then A’s gain decreases by 1 compared to the gain of Opt on IA,r.
If Amakes the correct decision for at most αn requests qi from phase 1 and thus
the wrong decision for at least (1− α)n such requests, then A’s gain is

gain(A(IA,r)) ≤ gain(Opt(IA,r)) − (1− α)n, (3.2)

where n is, as we recall again, the length of the string r and not the length of the
PATHDPA instance.

Now let us show that the existence of an algorithmA for PATHDPA with a good
competitive ratio implies the existence of an algorithm for 2-GUESS that guesses
many bits correctly. Hence, let us assume that there is an algorithm A with a strict
competitive ratio of c < 1+ (1− α)/(1+ α). Then,

c < 1+
(1− α)n

(1+ α)n
= 1+

(1− α)n

2n− (1− α)n
≤ 1+ (1− α)n

gain(Opt(IA,r)) − (1− α)n
,

where the last inequality holds due to (3.1). This implies

c <
gain(Opt(IA,r)) − (1− α)n+ (1− α)n

gain(Opt(IA,r)) − (1− α)n
=

gain(Opt(IA,r))
gain(Opt(IA,r)) − (1− α)n

,

and thus

gain(Opt(IA,r))
gain(A(IA,r))

<
gain(Opt(IA,r))

gain(Opt(IA,r)) − (1− α)n
.

As a consequence, we conclude that the gain of A must be gain(A(IA,r)) >
gain(Opt(IA,r)) − (1 − α)n. Then, according to (3.2), A must make the correct
decision for more than αn requests qi from phase 1. This implies that there are
more than αn requests qi such that

(A admits qi and ri = 1) or (A rejects qi and ri = 0)⇐⇒ (yi = 1 and ri = 1) or (yi = 0 and ri = 0)⇐⇒ yi = ri⇐⇒ gi = ri.

Therefore, the 2-GUESS algorithm B constructed fromA guesses more than αn bits
correctly. Since B reads the same number of advice bits as A, the following
holds. If there is an algorithm for PATHDPA with a strict competitive ratio of c <
1 + (1 − α)/(1 + α), for 1/2 ≤ α < 1, reading less than (1 − η(α))n advice
bits on all instances from I, then there is an algorithm for 2-GUESS reading less
than (1− η(α))n advice bits, guessing more than αn bits correctly on any input
string of length n.
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Theorem 3.2. There is no online algorithm for PATHDPA with a strict competitive ratio
of c < 1+ (1−α)/(1+α), for 1/2 ≤ α < 1, reading less than (1− η(α))`/2 advice bits
on instances with path length `.

Proof. This follows directly from our considerations, the choice ` := 2n, and the
fact that any algorithm for 2-GUESS guessing more than αn bits correctly has to
read at least (1− η(α))n advice bits due to Fact 1.5. 2

Corollary 3.3. Any online algorithm for PATHDPA with a strict competitive ratio
of c < 1 + δ, for 0 < δ < 1/3, needs to read at least Θ(`) advice bits on instances with
path length `.

Proof. Plugging α := 1/2 + ε into Theorem 3.2 yields that any algorithm with a
strict competitive ratio of

c < 1+
1/2− ε

3/2+ ε

needs to read at least (1−η(1/2+ε))`/2 advice bits. Solving 1+(1/2−ε)/(3/2+ε) =

1+ δ for ε, we obtain

1/2− ε

3/2+ ε
= δ ⇐⇒ 1

2
− ε = δ

(
3
2
+ ε
) ⇐⇒ 1

2
− 3
2
· δ = δε+ ε ⇐⇒ ε =

1− 3δ

2(δ+ 1)
.

Thus, 0 < ε < 1/2, and (1− η(1/2+ ε))`/2 ∈ Θ(`). 2

By this simple reduction from 2-GUESS, we have shown that to achieve any
strict competitive ratio c with 1 < c < 4/3 for PATHDPA, a linear (in the length of
the path) number of advice bits is necessary. This complements the upper bounds
given by Barhum et al. [BBF+14].

However, one drawback of this reduction is the fact that the range of competitive
ratios for which we obtain a lower bound on the necessary advice bits is rather
small. More desirable would be a statement for a much wider range for c, maybe
even for ratios c ∈ ω(1). A straight forward idea how to achieve this could be
the following. In the reduction given above, the requests are presented in two
phases, and the algorithm for PATHDPA virtually has to guess for each request
given in phase 1 whether two requests will appear within that request in phase 2
or not. For every request in phase 1 for which the algorithm makes a wrong guess,
its gain decreases by 1. Now, we could extend this idea by presenting requests
with decreasing lengths in more than two, say h phases, such that each request in
phase 1 has length 2h−1, and within every request in phase i, there might either
appear two requests of halved length in phase i + 1 or none at all. This way, if
an algorithm admits a request in phase 1, and within this request, 2h−1 requests
appear in phase h, the gain of the algorithm will decrease by 2h−1 − 1. Although
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this idea looks promising, it presents us with several problems. If the algorithm
does not admit a request from phase 1 and no further requests appear within this
request in later phases, the gain only decreases by 1. Hence, making a wrong
decision in phase 1 leads to different penalties, depending on the decision the
algorithm made. Another problem is that, if the algorithm makes a wrong decision
in phase 2, for example, the gain cannot be decreased by 2h−1 − 1 any more by
presenting corresponding requests in phase h, but only by at most 2h−2 − 1. This
is where we are pushed to the envelope of string guessing reductions. To reflect
this behavior of the gain function of these PATHDPA instances, the cost function
of the string guessing problem would have to be asymmetric and somehow vary
over time. Hence, unfortunately, we cannot project such behavior to the string
guessing problem. Nevertheless, the idea described above can actually be used to
obtain a better lower bound for the PATHDPA problem. In what follows, we will
show how this is done, without using a string guessing reduction.

3.2 A Lower Bound Without Using a Reduction

In this section, we want to extend and adapt the idea from Section 3.1 to give a
lower bound on the number of advice bits necessary to achieve small competitive
ratios. For our calculations, we will need Bernoulli’s inequality, which states the
following (see, for example, Carothers [Car00]).

Fact 3.4. For every real number x ∈ R≥−1 and every natural number n ∈ N≥0,

(1+ x)n ≥ 1+ nx. 2

We will give a lower bound on the number of advice bits necessary to achieve a
competitive ratio of c := c(`) that is a slowly growing function in `. Therefore, we
construct a set I of instances such that any deterministic algorithm can achieve
the competitive ratio c only on a small fraction of the instances from I. Then,
following Observation 1.2 (page 13), any algorithm with advice needs to read
many advice bits to achieve a competitive ratio of at most c on all instances from I .

The following argumentation will involve a random variable with hypergeo-
metric distribution. Therefore, we will now establish a result that follows from
a well-known bound for the tail of the hypergeometric distribution. First, let us
recall that a random variable with hypergeometric distribution with parametersM,
N, and n counts the number of black balls drawn from an urn containing N balls,
out of which exactly M are black, when drawing n balls uniformly at random
without replacement (see, for example, Rice [Ric07]). The following bound was
established by Chvátal [Chv79].
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Fact 3.5. Consider a discrete random variable X with hypergeometric distribution with
parametersM, N, and n, i. e.,

Pr(X = i) =

(
M
i

)(
N−M
n−i

)(
N
n

) ,

for every i with 0 ≤ i ≤M. Then,

E(X) = n · M
N
,

and
P(X ≤ E(X) − tn) ≤ e−2t

2n,

for any t ≥ 0, where e is Euler’s number. 2

We have to adapt this result slightly for our purposes.

Corollary 3.6. Let X be a discrete random variable with hypergeometric distribution with
parametersM, N, and n, and let t ≥ 0. Then, for everyM ′ ≤M, we have

Pr
(
X ≤ n · M

′

N
− tn

)
≤ e−2t

2n.

Proof. SinceM ′ ≤M,

Pr
(
X ≤ n · M

′

N
− tn

)
≤ Pr

(
X ≤ n · M

N
− tn

)
.

Applying Fact 3.5, we obtain that the expected value of X is E(X) = n ·M/N, and
thus

Pr
(
X ≤ n · M

′

N
− tn

)
≤ Pr(X ≤ E(X) − tn) ≤ e−2t

2n.
2

Now let us describe how to construct the set I of instances for PATHDPA.
For the sake of simplicity, let ` be a power of 2. Furthermore, let h := h(`) be a
parameter that depends on the length ` of the path with

h ∈ N≥1 and h ≤ log(`) − 1. (3.3)

Then the requests are presented to the algorithm in h+ 1 phases. In each phase i
with 1 ≤ i ≤ h + 1, the algorithm is given exactly `/2h edge-disjoint requests of
length 2h−i+1. Hence, in the first phase, `/2h edge-disjoint subpaths of length 2h

are presented, whose concatenation forms the complete path P. Half of the requests
from phase i with 1 ≤ i ≤ h are so-called closed requests, for which no intersecting



3.2. A Lower Bound Without Using a Reduction 45

0 4 8 12 16 20 24 28 32

Figure 3.2. An example of an instance from the constructed instance set I for a path of
length ` = 32 and h = 3. There are four phases with `/2h = 4 requests each. Open requests
are depicted by dashed lines. All other requests are closed (and are therefore contained in
the optimal solution).

requests will be presented anymore, and which are hence contained in the optimal
solution. The other half of these requests are open, i. e., they are split into two
edge-disjoint requests of length 2h−i each, which are then presented in phase i+ 1.
Finally, in phase h+1, the algorithm is given `/2h subpaths of length 1 each, which
are all contained in the optimal solution. For an example, see Figure 3.2.

Observation 3.7. There are (
`/2h

`/2h+1

)h
instances in I.

Proof. For every iwith 1 ≤ i ≤ h and every possibility to divide the `/2h subpaths
from phase i into `/2h+1 open and `/2h+1 closed ones, we construct one instance I
and add it to I. Obviously, there are(

`/2h

`/2h+1

)
such possibilities for every phase i, which directly implies the statement. 2

Observation 3.8. The optimal solution on any instance I from I has a gain of

gain(Opt(I)) =
(h+ 2)`

2h+1
.

Proof. For every phase i with 1 ≤ i ≤ h, there are `/2h+1 requests that are
contained in the optimal solution; in phase h+ 1, there are an additional `/2h such
requests, which yields

h · `

2h+1
+
`

2h
=

h `

2h+1
+

2 `

2h+1
=

(h+ 2)`

2h+1
.

2
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0 4 8 12 16 20 24 28 32

Figure 3.3. When given the instance from Figure 3.2 as an input, a deterministic algorithm
might admit the requests as depicted in this picture. Admitted requests are marked by thick
lines. By admitting a request, all requests that intersect with this request become blocked,
which is depicted by areas shaded in gray.

Now consider a deterministic algorithm A. When admitting a request qj in
phase i, all subpaths intersecting with qj become blocked. In every phase i, the
algorithm can only admit requests that were not blocked in any phase preceding
phase i. Figure 3.3 shows how an examplary algorithm A operates on the instance
from Figure 3.2.

Let us introduce another parameter f := f(c), such that f > 0. Both parameters
f and h must be chosen according to the competitive ratio that an algorithm is
supposed to achieve. In the remainder of this chapter, we prove the following as a
main result. For any online algorithm for PATHDPA to achieve a competitive ratio
of

c =
h+ 2

2 ·
(
1+ h

f

) ,
it must read at least

b =
`

2h · f2
· log e − logh

advice bits. After we have proven this main result, we choose concrete values for f
and h to obtain more tangible lower bounds.

We start our argumentation by making the following observation. The set I
of instances can naturally be represented by a

(
`/2h

`/2h+1

)
-ary tree of depth h, as

depicted in Figure 3.4. The root is on level 0 and corresponds to all instances
from I. There are

(
`/2h

`/2h+1

)
instances on level 1, each of them representing all

instances with the same particular set of open requests from phase 1. In general,
any vertex on level i represents the set of all instances with the same particular
sets of open requests from phases 1, . . . , i. For each vertex v, let us call the set
of instances represented by v be called Iv. Then for each vertex v on level i, the
requests presented in the first i + 1 phases are exactly the same in all instances
from Iv. Every leaf is located on level h and thus corresponds to a unique instance
from I. Furthermore, for each vertex v on level i with 0 ≤ i ≤ h and each
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v

w. . . . . . . . .

. . . . . . . . . . . .

Figure 3.4. An example of an instance tree. Figures 3.2 and 3.3 are both placed in a scenario
with a path of length 32 and h + 1 = 4 phases (hence, with `/2h = 4 requests presented
per phase). In this scenario, there are

(
4
2

)
= 6 possibilities to choose `/2h+1 = 2 out of

the 4 requests to be open in every phase. Hence, every inner vertex of the corresponding
instance tree has exactly 6 children (most of which are only indicated by dots for the sake
of clear presentation). The root represents all instances, the vertex v represents all instances
in which the same set of requests from phase 1 are open, and each leaf on level h represents
all instances in which the same set of requests from phases 1, . . . , h are open, hence, each
leaf represents a single instance.

deterministic algorithm A, the following holds. Given any instance from Iv as its
input, A is always in the same state at the beginning of phase i+ 1, i. e., it has seen
and admitted the same requests so far; see Figure 3.5.

From now on, consider A to be an arbitrary but fixed deterministic algorithm
for PATHDPA. For a given vertex v on level i, let γ(i) be the gain of A on any
instance from Iv during phase i, i. e., the number of accepted requests during this
phase. Moreover, let γ̂(i) be the gain of A during all phases up to and including
phase i, hence, γ̂(i) :=

∑i
j=1 γ

(j). Then let us introduce the following notion of
bad phases and vertices. We call a phase i bad for A if, at the beginning of this
phase, at least

di−1 := γ̂
(i−1) − (i− 1) · `

2h · f
(3.4)

requests from phase i are already blocked. Furthermore, let us call a vertex v on
level i− 1 bad for A if, when A is given any instance from Iv as its input, phase i is
bad for A. Phases and vertices that are not bad for A are called good for A. When
A is clear from the context, we may also call a phase or a vertex just good or bad,
without mentioning A explicitly. Moreover, let us define the set of requests from
phase i that are blocked at the beginning of phase i+ 1 (including those that were
admitted in phase i, which are blocking themselves) to be Ri.

Lemma 3.9. If at least di/2 requests from Ri are open, then phase i+ 1 is bad for A.

Proof. Within each open request from phase i, two requests appear in phase i+1. If
di/2 requests from Ri are open, then at least di requests are presented in phase i+1
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Figure 3.5. In the instance tree from Figure 3.4, on every level there must be one vertex that
contains the instance from Figure 3.3. Without loss of generality, on level 1, let this vertex
be v. Then, v also contains the instance depicted in this figure. In both instances, the same
requests from phase 1 are open, and thus the requests presented in the first two phases are
the same for all instances represented by v. Hence, at the beginning of and also throughout
phase 2, each fixed deterministic algorithm Amust be in the same state given any instance
corresponding to v as its input, having seen and admitted the exact same requests so far.

that are already blocked at the beginning of phase i+1. This matches the definition
of a bad phase for A. 2

Lemma 3.10. For any deterministic online algorithm A, the fraction of vertices on level i
that are bad for A is at least (

1− e−`/(2
h·f2)

)i
.

Proof. We prove the claim by induction on i. On level 0, there is only one vertex,
namely the root representing all instances from I . Obviously, A did not admit any
requests before phase 1, and thus γ̂(0) = 0. According to its definition, the root
is bad if phase 1 is bad for A. This, in turn, is the case if at least 0 requests are
blocked at the beginning of phase 1when A is processing any instance; see (3.4).
This is obviously true; therefore, the base case is covered.

Let us now assume that the claim holds for some level i− 1. We will show that
the claim then also holds for level i. From now on, let v be some bad vertex on
level i−1. First, we prove that the fraction of bad vertices among the children of v is
at least 1−e−`/(2

h·f2). Since v is bad, phase imust be bad forA, given any instance
from Iv as its input. Therefore, for each such instance, at least di−1 requests from
phase i are already blocked at the beginning of phase i. As A admits γ(i) further
requests in this phase, at least di−1 + γ(i) requests from phase i are blocked at the
beginning of phase i+ 1, including the admitted requests from phase i. This set
of requests corresponds to the set Ri defined earlier. From Lemma 3.9, we know
that, if at least di/2 requests from Ri are open, then phase i+ 1 is bad for A, given
an arbitrary instance from Iv as its input. Since every instance from Iw is also
contained in Iv, the same is true if A is given any instance from Iw as its input.
Figure 3.6 gives an example.
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Figure 3.6. This instance, like those from Figures 3.3 and 3.5, corresponds to the vertex v
from Figure 3.4. The deterministic algorithm A admits γ̂(1) = 2 requests in phase 1. Hence,
d1 = γ̂(1) − 1 · `/(2h f) = 2 − 32/(23 f) = 2 − 4/f < 2. Since 2 requests from phase 2 are
already blocked at the beginning of this phase, v is a bad vertex. Without loss of generality,
let w from Figure 3.4 be the vertex on level 2 containing the instance from this picture.
The vertex w is bad if, out of all requests from phase 3, at least d2 = γ̂(2) − 2 · 32/(23 f) =
3 − 8/f < 3 are blocked at the beginning of phase 3. Hence, in this instance, out of the
3 requests from phase 2 that are blocked after phase 2, at least d2/2 < 1.5 must be open.
This is clearly the case, since 2 such requests are open; thus, w is bad.

Hence, a sufficient condition for w to be bad is that at least di/2 requests
from Ri are open when giving A an instance from Iw as its input. Thus, we
have the following scenario. There are N := `/2h requests in phase i, as in every
phase. Out of these, M ≥ M ′ := di−1 + γ

(i) are blocked at the beginning of
phase i+ 1. The set of these requests is Ri. Each child w of v corresponds to the
set of instances in which the same set of n := `/2h+1 requests from phase i are
open requests. We are interested in the fraction p of children of v that correspond
to instances in which at least di/2 requests from Ri are open. This is equivalent
to considering an urn containing N balls (= requests), out of whichM ≥M ′ are
black (= in Ri), drawing n balls (= opening n requests) without replacement, and
in this setting determining the probability that the number of black balls drawn
(= open requests from Ri) is at least di/2.

Let X be a random variable that counts the number of open requests from Ri
in this scenario. Then X has a hypergeometric distribution with parametersM ≥
di−1 + γ

(i), N = `/2h, and n = `/2h+1, and we are interested in Pr(X ≥ di/2).
With

di

2
=
1

2

(
γ̂(i) − i · `

2h · f

)
=
1

2

(
γ̂(i−1) + γ(i) − (i− 1) · `

2h · f
−

`

2h · f

)
=
di−1

2
+
γ(i)

2
−

`

2h+1 · f
,
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we obtain

Pr
(
X ≥ di

2

)
≥ Pr

(
X >

di

2

)
= 1− Pr

(
X ≤ di

2

)
= 1− Pr

(
X ≤ di−1

2
+
γ(i)

2
−

`

2h+1 · f

)
. (3.5)

Corollary 3.6 gives us a means to bound

Pr
(
X ≤ n · M

′

N
− t · n

)
= Pr

(
X ≤ `

2h+1
· di−1 + γ

(i)

`
2h

− t · `

2h+1

)

= Pr
(
X ≤ di−1 + γ

(i)

2
− t · `

2h+1

)
from above for any t ≥ 0. Hence, choosing t := 1/f yields

Pr
(
X ≤ di−1 + γ

(i)

2
− t · `

2h+1

)
= Pr

(
X ≤ di−1

2
+
γ(i)

2
−

`

2h+1 · f

)
.

Then, according to Corollary 3.6,

Pr
(
X ≤ di−1 + γ

(i)

2
−

`

2h+1f

)
≤ e−2t

2n = e−`/(2
hf2). (3.6)

Finally, combining (3.5) and (3.6), we obtain

Pr
(
X ≥ di

2

)
≥ 1− Pr

(
X ≤ di−1

2
+
γ(i)

2
−

`

2h+1 · f

)
≥ 1− e−`/(2

hf2).

Hence, we have now shown that, for each bad vertex v on level i− 1, the fraction
of bad vertices among its children is at least 1− e−`/(2

h f2).
Now we are almost done. The only thing that remains to do is to exhibit a

connection to the number of bad vertices on level i. All vertices on level i − 1
have the same number of children, and due to the induction hypothesis, for every
bad vertex on level i− 1, a fraction of at least 1− e−`/(2

h f2) of its children is bad.
Hence, the fraction of bad vertices on level i is at least(

1− e−`/(2
h f2)

)i−1
·
(
1− e−`/(2

h f2)
)
=
(
1− e−`/(2

h f2)
)i
. 2
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A direct consequence of this result that many vertices are bad is that many
instances are bad for A.

Corollary 3.11. For any deterministic online algorithm A, the fraction of instances in I
that are bad for A is at least (

1− e−`/(2
h f2)

)h
.

Proof. Every single instance corresponds to a leaf in the instance tree, and the
leaves of the tree are located at level h. Plugging in the result of Lemma 3.10
proves the statement. 2

We have now shown that there are many bad instances for a given deterministic
algorithm A for PATHDPA. What we will show next is that the choice of the term
“bad” was indeed justified for these instances, i. e., that A can indeed only admit
few requests on any bad instance.

Lemma 3.12. Let A be an arbitrary but fixed deterministic algorithm for PATHDPA,
and let I ∈ I be a bad instance for A. Then, the gain of A on I is at most

gain(A(I)) ≤ `

2h

(
1+

h

f

)
.

Proof. According to the definition of bad vertices, an instance (corresponding to a
vertex on level h of the instance tree) is bad if there are at least

dh = γ̂(h) − h · `

2h f

requests from phase h+ 1 that are already blocked at the beginning of phase h+ 1.
In this last phase, A is presented `/2h requests, and thus the number of requests A
can admit in this phase is

γ(h+1) ≤ `

2h
−

(
γ̂(h) − h · `

2h f

)
=
`

2h
+
h

f
· `
2h

− γ̂(h)

=
`

2h
·
(
1+

h

f

)
− γ̂(h).

For the number of admitted requests at the end of the computation, we obtain

γ̂(h+1) = γ̂(h) + γ(h+1) ≤ γ̂(h) + `

2h
·
(
1+

h

f

)
− γ̂(h) =

`

2h
·
(
1+

h

f

)
.

This corresponds to the total gain of the algorithm on any bad instance I, i. e.,
gain(A(I)). 2
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All in all, we have shown that, for any fixed deterministic algorithmA, there are
many instances on which A has only a small gain. We now combine these results
to obtain our main result.

Theorem 3.13. Any online algorithm for PATHDPA with a strict competitive ratio of

h+ 2

2 ·
(
1+ h

f

)
needs to read

b ≥ `

2h f2
· log e − logh

advice bits.

Proof. Consider an arbitrary but fixed deterministic algorithm A for PATHDPA.
According to Lemma 3.12 and Observation 3.8, the strict competitive ratio of A on
an arbitrary bad instance I is

c =
gain(Opt(I))

gain(A(I))
≥

(h+2)`
2h+1

`
2h
·
(
1+ h

f

) =
2h

2h+1
· h+ 2(
1+ h

f

) =
h+ 2

2
(
1+ h

f

) .
Now consider an arbitrary online algorithm A with advice for PATHDPA read-

ing b := b(`) advice bits. We can interpret A in the usual way as a set of 2b

deterministic algorithms, A = {A1, . . . , A2b }, as stated in Fact 1.1. From Corol-
lary 3.11, we know that, for every such deterministic algorithm Ai, the fraction
of good instances from I, and hence the fraction of instances on which Ai has a
competitive ratio of at most (h+ 2)/(2(1+ h/f)), is at most

1−

(
1−

1

e`/(2h f2)

)h
≤ h

e`/(2h f2)
,

where we used Bernoulli’s inequality (Fact 3.4), plugging in the values n := h and
x := −1/e`/(2

h f2). Note that this is legitimate as long as 2h > 0 and f > 0, since
then `/(2h f2) ≥ 0 and hence x ≥ −1.

Now we can apply the method we described in Observation 1.2. The number of
deterministic algorithms necessary to guarantee a competitive ratio of at most (h+
2)/(2(1+ h/f)) for every instance from I is at least

e`/(2
h f2)

h
.

To be able to distinguish this many different deterministic strategies, A has to
read at least

log

(
e`/(2

h f2)

h

)
=

`

2h f2
· log e − logh

advice bits. 2
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Now, by choosing concrete values for h and f, we infer two lower bounds for
different ranges of c.

Corollary 3.14. For any c = c(`) with 1 < c ≤ 1/2 · (log `)/(log log `)1/4, any online
algorithm for PATHDPA that achieves a strict competitive ratio of c needs to read at least
Ω
(
`/(4c c4)

)
advice bits.

Proof. Let h := d2ce and f := 2c2. As c ≤ 1/2 · (log `)/(log log `)1/4 ≤ (log `)/2− 1
for sufficiently large `, we have h ≤ 2c+ 1 ≤ log `− 1, as demanded in (3.3).

From Theorem 3.13, we know that any algorithm using `/(2h · f2) · log e − logh
advice bits has a competitive ratio of at least

h+ 2

2
(
1+ h

f

) =
h+ 2

2 · h+f
f

=
f

2
· h+ 2

h+ f
. (3.7)

Since c ≥ 1, we have f = 2c2 ≥ 2, and thus (h + 2)/(h + f) ≤ 1. For any fixed f,
this term (and therefore also the competitive ratio) grows with growing h. As
h ≥ 2c, (3.7) implies that the competitive ratio is at least

h+ 2

2
(
1+ h

f

) ≥ 2c+ 2

2
(
1+ 2c

2c2

) =
c+ 1

1+ 1
c

=
c+ 1
c+1
c

= c.

As h ≤ 2c+ 1 and h ≤ log `− 1 < log `, we obtain for the number b of advice bits
necessary

b ≥ `

2h f2
· log e − logh ≥ `

22c+1 4c4
· log e − logh >

`

4c c4
· log e
8

− log log `.

It remains to show that this term is in Ω
(
`/(4c c4)

)
. For sufficiently large `, we

have c ≤ 1/2 · (log `)/(log log `)1/4 ≤ 1/2 · (log `− 4 log log `), and therefore

4c ≤ 2log `−4 log log ` =
2log `

(2log log `)4
=

`

(log `)4
,

which implies

c4 · 4c ≤ 1

24
· (log `)4

log log `
· `

(log `)4
=

`

24 log log `
.

Hence, we have
`

c4 · 4c
≥ 24 log log `

and thus,

log log ` ≤ `

c4 · 4c
· 1
24
.
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Finally, we obtain

b >
`

4c c4
· log e
8

− log log `

≥ `

4c c4
·
(

log e
8

−
1

24

)
> 0.11 · `

4c c4

∈ Ω
(

`

4c c4

)
,

and thus the advice complexity to achieve a competitive ratio of c is indeed
inΩ

(
`/(4c c4)

)
. 2

From Theorem 3.13, we can also derive a more concrete result concerning the
number of advice bits necessary to achieve competitive ratios in the order of log `,
as we will see now.

Corollary 3.15. Let δ be an arbitrary constant with 0 < δ < 1. Any online algorithm
for PATHDPA that achieves a strict competitive ratio of δ/2 · log ` needs to read at least
ω(`1−ε) advice bits, for any constant ε with δ < ε < 1.

Proof. Let h := bδ log `c ≤ δ log ` and f := (log `)2. Then, due to Theorem 3.13, the
number of advice bits necessary to achieve competitive ratio c is

b ≥ `

2h f2
· log e − logh

≥ `

2δ log ` (log `)4
· log e − log(δ log `)

=
`

`δ (log `)4
· log e − log δ− log log `

=
`1−δ

(log `)4
· log e − log δ− log log `. (3.8)

For any constant ε > δ, we have ε− δ > 0 and thus

`1−δ

`1−ε
= `ε−δ ∈ ω

(
(log `)4

)
,

which is equivalent to
`1−δ

(log `)4
∈ ω(`1−ε).
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Therefore, the number of advice bits necessary to obtain the competitive ratio c
is inω(`1−ε), for any constant ε > δ. The value of c obtained by plugging in the
values for h and f as chosen above is

c =
h+ 2

2
(
1+ h

f

)
≥ δ log `+ 1

2
(
1+

δ log `
log2 `

)
=
δ log `+ 1

2
· (log `)2

(log `)2 + δ log `

=
δ

2

(
log `+

1

δ

)
· (log `)2

log ` · (log `+ δ)

=
δ

2
· log ` · log `+ 1/δ

log `+ δ

>
δ

2
· log `,

where the last inequality holds since δ < 1 and thus δ < 1/δ. 2





4
Graph Searching and
Exploration

In this chapter, we consider two different problems which, in some sense, differ
from classical online problems. More precisely, we study the so-called graph
searching problem, also denoted by SEARCH, and the graph exploration problem, for
short denoted by EXPLORE. In both scenarios, an algorithmA is given a graph and
a starting vertex in the graph, at which a so-called agent is located at the beginning
of the computation. The algorithm can explore the graph by moving the agent
along the edges of the graph. Each vertex has a unique identifier (ID), and as
soon as the agent visits a vertex v, the algorithm A learns all neighboring vertices
of v, including their IDs and the costs of the edge between v and this neighbor,
respectively. While moving through the graph, the agent gains information about
the graph topology. The agent has unlimited memory and can hence record all
information it gained about the graph. Thus, A always knows the ID of the vertex
the agent is currently located at and is able to recognize vertices the agent has
already visited or already seen from one of its neighbors, based on their IDs.

The goal of the algorithm in the graph searching problem is to guide the agent
to a distinguished target vertex, using a shortest possible path. As opposed to this,
in the graph exploration problem, the agent has to explore the graph completely;
each vertex has to be visited at least once, and in the end, the agent must be located
at the starting vertex again. In both scenarios, the performance of the algorithm is
measured in the number of vertices.

Problems concerned with navigation in unknown territories have been studied
for a long time, in a lot of different variants. Although all dealing with navigating
an agent through unknown terrain, many problems considered differ substantially,

57
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for example, in the exact goal that the algorithm is supposed to fulfill, the character
of the underlying environment, and the properties of the agent. Considered
scenarios range from reaching a specified position in a plane with obstacles, over
drawing a complete map of a graph, to chasing moving targets in a graph with
multiple agents. For an overview of many different versions of graph searching
and exploration problems, we point the reader to the surveys of Ghosh and
Klein [GK10] and Berman [Ber96].

The problem of exploring an unweighted graph by visiting all its edges was
introduced by Deng and Papadimitriou [DP90]. Kalyanasundaram and Pruhs
presented a slight adaptation of this scenario, in which all vertices of a weighted
graph have to be visited [KP94]. They also introduced the so-called fixed graph
scenario, which defines the amount and type of information an agent gets upon
visiting a new vertex, and which we also consider in this thesis. Papadimitriou and
Yannakakis introduced the problem of finding a shortest s-t-path from a source s
to a target t in the fixed graph scenario [PY91], which corresponds to the graph
searching problem studied in this thesis.

Kalyanasundaram and Pruhs also proposed a generalization of depth first
search that is applicable to general graphs and which is 16-competitive for EX-
PLORE on planar graphs [KP94]. For a long time, it was commonly assumed that
this algorithm had a constant competitive ratio even on general graphs, until
Megow et al. showed that, as a matter of fact, it does not [MMS11]. Among other
things, they presented an algorithm that achieves a competitive ratio of 2k on
general graphs with k distinct weights, implying a constant competitive ratio
when the number of different edge weights is bounded. Still, it remains unknown
whether there is an algorithm for EXPLORE achieving a constant competitive ratio
for general graphs. Miyazaki et al. presented an algorithm for EXPLORE that
achieves a competitive ratio on simple cycles of (1 +

√
3)/2 and showed that

there is no deterministic algorithm with a competitive ratio of (1 +
√
3)/2 − ε,

for any positive constant ε [MMO09]. Additionally, for undirected unweighted
graphs, they gave a 2-competitive algorithm, and proved a lower bound on the
competitive ratio of at least 2 − ε for any constant ε. This result was improved
by Dobrev et al. [DKM12], who showed that every deterministic algorithm for
EXPLORE has a competitive ratio of at least 5/2− ε on any undirected weighted
graph. Foerster and Wattenhofer studied both the graph exploration and the graph
searching problem in directed graphs [FW12]. For the exploration problem in
directed weighted graphs, they gave a lower bound of n− 1 on the competitive
ratio for any deterministic algorithm, which exactly matches the upper bound
of n− 1 for a greedy algorithm. For the graph searching problem in unweighted
directed graphs, they proved a lower bound of Ω(n2) on the competitive ratio
for any deterministic algorithm and a lower bound ofΩ(n) for any randomized
algorithm.
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Again, our interest focuses on the research that has been carried out in the field
of such graph searching or exploration algorithms with advice. Regarding this,
Nisse and Soguet studied a problem they also called “graph searching problem”,
but their setting involved several agents chasing a fugitive in a graph [NS07]. A
problem similar to the exploration problem studied in this thesis was considered
by Fraigniaud et al. [FIP08], who investigated the problem of visiting all vertices
of a tree, when the agent may end in an arbitrary vertex. For d being the diameter
of the tree, the authors presented an algorithm with a competitive ratio of less
than 2 that reads log logd − c bits of advice, for some constant c, whereas no
algorithm without advice can achieve a better competitive ratio than 2. The
same graph exploration problem as in this thesis was considered by Dobrev
et al. [DKM12], who proved a lower bound of Ω(n logn) necessary advice bits
to achieve optimality and presented an algorithm reading O(n) advice bits that
achieves a constant competitive ratio. A yet unpublished thesis [Ful14] shows
a lower bound of Ω(n) advice bits necessary for any EXPLORE algorithm to be
better than approximately 1.564-competitive. To the best of our knowledge, there
has not been any research on SEARCH with advice so far.

In this chapter, we further analyze the graph searching and the graph explo-
ration problems with respect to their advice complexity. Both of these problems
can naturally be interpreted as online problems. Whenever an algorithm for ei-
ther SEARCH or EXPLORE enters a new vertex, the information it receives about
its neighbors is interpreted as a request; the neighboring vertex to which the
algorithm moves subsequently forms the algorithm’s output. In this sense, both
of these problems are online problems, as they receive the request sequence in an
online fashion, and they have to compute their output without knowing future
requests. Thus, we measure their output quality in terms of the competitive ratio
as we are used to. Yet, these problems differ from usual online problems in the
sense that the request sequence is dependent on the given algorithm, which is
not the case for most common online problems. This actually makes a notable
difference, as we will see in this chapter. For such kinds of online problems, we
cannot apply the same reduction technique that we used in the two preceding
chapters to obtain a trade-off between the number of advice bits and the competi-
tive ratio of an online algorithm. Hence, in this chapter, we will first demonstrate
that algorithms for this kind of online problems can be supplied with advice to
improve their competitive ratio, just like common online algorithms. Moreover,
we will show that by adapting the familiar reduction technique it is also possible
to transfer lower bounds for the bit string guessing problem to algorithms for such
problems, using the example of EXPLORE to demonstrate this.

In Section 4.1, we briefly elaborate on a few details concerning the model and
our notation used throughout this chapter. Section 4.2 is dedicated to the graph
searching problem. In Section 4.2.1, we give an algorithm reading n bits of advice
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that solves the graph searching problem optimally on any directed weighted
graph containing n vertices, which complements the lower bound of Ω(n2) for
the competitive ratio in unweighted directed graphs mentioned above [FW12].
In the following two sections, we give asymptotically matching lower and upper
bounds for the competitive ratio of SEARCH; in Section 4.2.2, we give a lower
bound of Ω(n/c) advice bits necessary to achieve a competitive ratio of c, and
in Section 4.2.3, a c-competitive algorithm for SEARCH reading O(n/c) advice
bits is presented. Section 4.3 deals with EXPLORE. By giving a reduction from
the string guessing problem, we obtain a trade-off for the number of advice
bits necessary to achieve certain competitive ratios; we prove a lower bound of(
1− η(1− α)

)
n advice bits to achieve a competitive ratio of c ≤ (4− α)/3− ε for

any constant ε > 0.

4.1 Preliminaries

Throughout this chapter, the environment in which the agent moves is usually an
undirected unweighted graph. An exception is made for an upper bound given
in Section 4.2.1, for which we consider a directed weighted graph. Although we
will not always mention this explicitly, we assume for both SEARCH and EXPLORE

that the input graphs admit a feasible solution. For SEARCH, this means that the
designated destination vertex has to be reachable from the starting vertex; for
EXPLORE, this means that the graph has to be connected. Moreover, we assume for
both problems that the size of the graph (i. e., the number n of vertices) is given as
the first request in round 0.

Classically, the advice complexity of an online algorithm is measured as a func-
tion of the input length. For SEARCH and EXPLORE (and other online problems
for which the length of the instance depends on the algorithm’s actions), how-
ever, there are some formal problems with this. Even on a very small graph, an
algorithm for such an online problem could read an arbitrary number of advice
bits by simply moving between two vertices repeatedly. In this case, the number
of advice bits used may be, for example, linear in the input length, while being
exponential in n. Therefore, for this certain class of online problems, we measure
the advice complexity in the number of vertices of the underlying graph.

Let us now briefly describe what kind of information the agent gets when enter-
ing a vertex. Throughout this whole chapter, we consider the fixed graph scenario
mentioned above [KP94]. In this setting, each vertex has a unique identifier (ID),
and as soon as the agent visits a vertex v, it learns all edges incident to v, including
their costs (in the case of weighted graphs) and (the ID of) the endpoint of each
such edge. In the case of directed graphs (which we only consider for an upper
bound given in Section 4.2.1, as already mentioned) it is in our case sufficient if
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the agent only gets this information about all outgoing edges, and not about the
incoming ones.

In the remainder of this chapter, we will often refrain from distinguishing
between the algorithm and the agent, but instead refer to the agent A as well as
the algorithm A.

4.2 Graph Searching

We start our considerations with the graph searching problem. This problem has
been considered in many variants, but apparently there has not been any research
concerning the advice complexity of this problem so far. In the following sections,
we present the first results on graph searching with advice.

4.2.1 Optimality

First, we give an optimality result. As we already mentioned, it has been proven
that in unweighted directed graphs any deterministic algorithm for SEARCH has a
competitive ratio ofΩ(n2) and any randomized algorithm at leastΩ(n), no matter
how many random bits it uses [FW12]. These lower bounds naturally also apply
for weighted directed graphs. In the following, we show that it is possible to solve
the graph searching problem optimally in any weighted directed graph by using
only n advice bits. Compared to any deterministic algorithm, the competitive ratio
can thus be decreased by a factor ofΩ(n2) by using n advice bits, and compared
to a randomized one, it can be decreased by a factor of Ω(n). Hence, despite
providing an arbitrary amount of random bits, the competitive ratio cannot be
pushed belowΩ(n), whereas only n advice bits are already sufficient to achieve
competitive ratio 1. This shows that advice bits are a lot more powerful than
random bits for SEARCH.

Before we present an optimal algorithm for SEARCH with the above-mentioned
properties, we give a technical result we will need in the following proof.

Lemma 4.1. Let G = (V, E) be a directed weighted graph with a designated starting
vertex u0 ∈ V , a designated destination vertex u` ∈ V , and a weight function ω : E→
Q>0 assigning positive weights to the edges, and let U := U(u0, u`) = (u0, u1, . . . , u`)

be a shortest path from u0 to u` in G. Then for all vertices ui, the following holds. Among
all edges from ui to vertices uj ′ with j ′ > i, the edge (ui, ui+1) is the only one that has
minimum weight, i. e.,ω(ui, ui+1) < ω(ui, uj ′) for all j ′ > i+ 1.

Proof. For some fixed ui with 1 ≤ i ≤ ` − 1, consider an arbitrary vertex uj
with j > i+ 1 for that there is an edge (ui, uj) ∈ U. For the sake of contradiction,
let us assume that the weight of (ui, uj) is at mostω(ui, ui+1). SinceU is a shortest
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path from u0 to u`, a shortest path from ui to uj must be (ui, ui+1, . . . , uj) with a
total weight of

ω(ui, ui+1) +ω(ui+1, ui+2) + . . .+ω(uj−1, uj).

As ω(ui, uj) ≤ ω(ui, ui+1), the weight of the shortest path from ui to uj has a
weight of

ω(ui, uj) +ω(ui+1, ui+2) + . . .+ω(uj−1, uj) > ω(ui, uj),

which cannot be the case since then the direct edge between ui and uj would
be a shorter path (with weight ω(ui, uj)). Thus, for all j with j > i + 1, we
haveω(ui, uj) > ω(ui, ui+1). 2

Theorem 4.2. There is an online algorithm A with advice reading n advice bits that
solves the graph searching problem optimally on any graph with n vertices.

Proof. Let G = (V, E) be a directed weighted graph with a designated starting
vertex u0 ∈ V , a designated destination vertex u` ∈ V , and a weight func-
tion ω : E→ Q>0 assigning positive weights to the edges. Let the set of vertices
be V = {v1, . . . , vn}, and let U := U(u0, u`) = (u0, u1, . . . , u`) be some shortest
path from u0 to u` in G. We present an algorithm A that reads n advice bits and
computes an optimal solution on any such input.

Before the beginning of the computation, A reads an advice string τ1 . . . τn of
length n from the tape, where the oracle sets the advice bit τi = 1 to indicate that vi
belongs to U and τi = 0 otherwise, for 1 ≤ i ≤ n. Recall that A knows n as it is
given with the first request. At the beginning of the computation, i. e., at the begin-
ning of round 1, the agent is located at vertex u0. During the computation, it holds
as an invariant that, for every i with 0 ≤ i ≤ `− 1, at the beginning of round i+ 1,
the walk that the agent has taken through the graph so far is (u0, . . . , ui). At
the beginning of round i + 1, when located at vertex ui, the agent can see all
outgoing edges of ui, including their weights and the (IDs of) their corresponding
endpoints. From the advice string that A read before, it knows which of these
neighboring vertices belong to the shortest path U. The agent then moves along
an outgoing edge to some neighbor v of ui that has not been visited yet, lies on U,
and for which the edge weight ω(ui, v) is minimal. Due to Lemma 4.1, there is
exactly one such neighbor of ui, namely ui+1. Therefore, the agent travels from ui
to ui+1 in this round, making sure that the invariant remains true. Hence, A is an
algorithm with advice that needs only n advice bits to solve the graph searching
problem optimally on any input. 2
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u0 u1

u2

u3

u4

Figure 4.1. Example of the graph G for n = 21, p = 5, and q = 4. The starting vertex u0 is
the only vertex on level 0. There are q additional levels and p vertices per level. There are
no additional dummy vertices on level 1 sincem = n−pq− 1 = 0. There is one designated
vertex per level, colored in blue; ui is the designated vertex on level i. Each such vertex ui
for 0 ≤ i ≤ q − 1 is connected to all vertices on level i + 1. The vertex uq is the destination
vertex.

4.2.2 Lower Bound

We have just seen that n advice bits are sufficient to achieve optimality in any
directed weighted graph. Questions that naturally come to mind are: If we do not
want to achieve optimality, but only some competitive ratio c, how many advice
bits are sufficient? How many are necessary? In this section, we answer the latter
question by giving a lower bound of (n− 1)/(16(c+ 2)) ∈ Ω(n/c) advice bits to
achieve a competitive ratio of c, for any c ≥ 1, in any undirected unweighted
graph. This lower bound immediately translates to directed weighted graphs as
well, since any undirected unweighted graph can be modeled as a directed graph
with unit weights.

In the following proof, we will make use of a class I of instances for SEARCH

called pq-trees (see Figure 4.1), which are defined as follows. For given p, q, n such
that n > pq, each instance from I is an undirected unweighted graph G = (V, E)

with |V | := n vertices and q+1 designated vertices ui ∈ V , for 0 ≤ i ≤ q. Each such
tree has a root on level 0 that serves as the designated vertex u0, and pq additional
vertices on q different levels, each containing p vertices. On each level i, there
is exactly one designated vertex ui, and for every level i with 0 ≤ i ≤ q− 1, the
designated vertex ui is connected to all vertices on level i+ 1. Additionally, there
is a designated vertex uq on level q that serves as the destination vertex. The
root u0 serves as the starting vertex and is connected tom := n−pq−1 additional
vertices, so-called dummy vertices.

There are pq possible ways to choose the vertices u1, . . . , uq, and thus I con-
tains |I | = pq different instances. The shortest path between the starting and
the destination vertex on any instance is the path (u0, . . . , uq) containing all des-
ignated vertices. Hence, the optimal solution on any instance I ∈ I has a cost
of cost(Opt(I)) = q.
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Theorem 4.3. Let c be any function of n such that 1 ≤ c < n/18 for each n. Then any
online algorithm for the graph searching problem on graphs with n vertices needs to read
at leastΩ(n/c) advice bits to achieve a competitive ratio of c on graphs with n vertices.

Proof. Let us fix some large enough n. For the sake of contradiction, let us assume
that there is an algorithm A for SEARCH reading at most b := b(n) ∈ o(n/c)
advice bits with a competitive ratio of at most c on pq-trees with n vertices. As
cost(Opt(I)) = q, there must exist a constant a such that

cost(A(I)) ≤ c · cost(Opt(I)) + a = qc+ a,

for all instances I from the class I of pq-trees with n vertices. We construct
a particular pq-tree with n vertices on which the algorithm reads more than
β · n/c advice bits, for some constant β > 0 that depends on the algorithm and a
but neither on the function c nor on n, leading to a contradiction to the assumption
that A reads o(n/c) advice bits.

Set q := bn/(kc)c for a suitable constant k specified later, and choose p such
that n = pq +m for some m with 1 ≤ m ≤ q. Consider all pq instances I with
parameters p, q, n. The agent traverses the graph, starting at u0, until it finally
reaches the destination vertex uq. Until it does, it must visit at least one vertex
on each level. The order in which A traverses the vertices on each level i is
arbitrary and might even depend on the position of the designated vertices on
levels 1, . . . , i−1, but it is fixed for any fixed instance. On any level iwith 1 ≤ i ≤ q,
we define ei to be such that A first visits ei − 1 leaves on level i and, after visiting
each such leaf, has to return to ui−1, before finding the designated vertex ui on
level i. Let us assume thatA never visits a leaf twice and never returns to level i−1
once it has found ui. We can do so without loss of generality because, for every
algorithm A′ that makes such an unnecessary move, there is an algorithm A that
does not and that has a cost of cost(A(I)) < cost(A′(I)) on any instance I. Then
we can identify each instance I ∈ I with the characteristic vector (e1, e2, . . . , eq),
with ei ∈ {1, . . . , p} for 1 ≤ i ≤ q, and the property that the cost of A on instance I
is at least

∑q
i=1 (2ei − 1) (ignoring the potential dummy vertices).

Let us call an instance I good if A achieves a competitive ratio of at most c on
it, i. e., if the cost of A on I is at most cost(Opt(I)) · c+ a = qc+ a. Making some
simple transformations, we obtain

cost(A(I)) ≤ qc+ a

⇐⇒ q∑
i=1

(2ei − 1) ≤ qc+ a

⇐⇒ q∑
i=1

ei ≤
q(c+ 1+ a/q)

2
. (4.1)
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For convenience, let us denote d := (c+ 1+ a/q)/2. This implies that an instance
is good if, for its corresponding characteristic vector (e1, . . . , eq),

q∑
i=1

ei ≤ qd. (4.2)

According to Fact 1.1, we can interpret each graph searching algorithm that
uses b bits of advice as a set {A1, A2, . . . , A2b } of deterministic algorithms, as we
usually do with online algorithms with advice. Thus, as A reads at most b advice
bits and is c-competitive according to our initial assumption, there is at least
one such deterministic algorithm A that computes a solution with a competitive
ratio of at most c on at least pq/2b instances. From now on, let us consider this
particular deterministic algorithm A, and let us define the set of good instances
for A to be I+. Hence,

|I+| ≥ p
q

2b
. (4.3)

Now let us bound |I+|, the number of good instances forA, from above. For any
good instance, the corresponding characteristic vector must contain at least q/2
entries ei with value at most 2d, otherwise

∑q
i=1 ei > q/2 · 2d = qd, contradict-

ing (4.2). Hence, the number of good instances is upper-bounded by the number
of vectors (e1, . . . , eq), where ei ∈ {1, . . . , p}, with at least q/2 entries with value
at most 2d. To bound this term from above, we make the following considerations.
The number of vectors of length q/2 with values of at most 2d is (2d)q/2; the
number of vectors of length q/2with values between 1 and p is pq/2. The number
of possibilities to join two vectors of these two different kinds to construct a vector
of length q is

(
q
q/2

)
. The same vector of length q might be generated by joining

different pairs of vectors of length q/2. Nevertheless, these considerations yield
an upper bound. The number of characteristic vectors with at least q/2 entries
with value at most 2d, and thus also the number of good instances, is therefore

|I+| ≤ (2d)
q
2 · p

q
2 ·
(
q
q
2

)
. (4.4)

Putting (4.3) and (4.4) together yields

pq

2b
≤ |I+| ≤ (2d)

q
2 · p

q
2 ·
(
q
q
2

)
≤ (2dp)

q
2 · 2q ≤ (2dp)

q
2 · 4

q
2 = (8dp)

q
2 .
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We rearrange this inequality to solve it for b and obtain

pq

2b
≤ (8dp)

q
2

⇐⇒ 2b ≥ pq

(8dp)
q
2

⇐⇒ 2b ≥
(
p2

8dp

)q
2

⇐⇒ b ≥ q
2
· log

( p
8d

)
. (4.5)

Recall that p = (n−m)/q ≥ (n− q)/q asm ≤ q. Resubstituting d, we get

p

8d
=

p

8
(
c+1+a/q

2

) ≥ n− q

4q(c+ 1+ a/q)
.

If it holds that
q <

n− 8a

8c+ 9
, (4.6)

we obtain

q <
n− 8a

8c+ 9⇐⇒ q · (8(c+ 1) + 1) < n− 8a⇐⇒ q · 8(c+ 1) + 8a < n− q⇐⇒ 8q(c+ 1+ a/q) < n− q,

and thus
p

8d
>
8q(c+ 1+ a/q)

4q(c+ 1+ a/q)
= 2.

Combining this with (4.5) and q = bn/(kc)c ≥ n/(kc) − 1 as defined above, we
obtain

b ≥ q
2
· log

( p
8d

)
>
q

2
≥ 1
2

( n
kc

− 1
)
=
1

2k
· n
c
−
1

2
.

Since n/c > 18 according to our assumption, choosing β := 1/(2k) − 1/36 yields

b >
1

2k
· n
c
−
1

2
=

(
β+

1

36

)
· n
c
−
1

2
> β · n

c
+
18

36
−
1

2
= β · n

c
.

Hence, if we can show that there is a suitable choice for k such that β > 0 and
(4.5) is true, we have already proven the desired result. For β > 0 to be true, it
must hold that 1/(2k) > 1/36 and thus k < 18. Now we finally show that there



4.2. Graph Searching 67

is a suitable choice of k such that k < 18 and (4.6) is true. For (4.6) to hold, it is
sufficient to choose k such that

k >
n

n− 8a
· 8c+ 9

c
.

The first factor converges to 1 with increasing n. As c ≥ 1, the second factor is
always at most 17. Consequently, there is a large enough n (depending on a) such
that k := 17.5 is suitable. 2

4.2.3 Upper Bound

We have now shown a lower bound ofΩ(n/c) advice bits to achieve a competitive
ratio of c, and in what follows, we want to prove an upper bound ofO(n/c) advice
bits sufficient to achieve a competitive ratio of c on any undirected unweighted
graph. For our argumentation, we will need the following already known result
from the field of graph separators. Any tree with n vertices can be divided into
two parts, each with at least n/3 and at most 2n/3 vertices, by removing a single
vertex and then allocating the entire vertices of each subtree to one of the two
parts appropriately (see, for example, [LT79]). In our case, we need the following
own formulation of this result. We also give a proof for the sake of completeness.

Lemma 4.4. For any c ∈ R>6, let G = (V, E) be a connected graph with |V | = n ≥ c/3
vertices. Then there are two sets of vertices C,D ⊆ V such that C ∪D = V , |C ∩D| = 1,
both |C| ≥ c/9+ 1 and |D| ≥ c/9+ 1, and both subgraphs of G induced by C and D are
connected, respectively.

Proof. It is sufficient to prove the lemma for trees, since then it can be applied
to a spanning tree of an arbitrary connected graph. Hence, let G = (V, E) be an
arbitrary tree. For any vertex w, let G decompose into nw trees T (w)

1 , . . . , T
(w)
nw

when removing w from V . For every w ∈ V and every i with 1 ≤ i ≤ nw, let us
define V(w)

i to be the vertex set of T (w)
i .

First, we prove that there is a vertexw ∈ V such that, for each iwith 1 ≤ i ≤ nw,
we have |V

(w)
i | ≤ n/2. To this end, let us assume towards contradiction that for

each vertex w ∈ V there exists some index j such that |V(w)
j | > n/2. Since for

any vertex w there cannot be more than one such subtree containing more than
n/2 vertices, there must be exactly one such tree per vertex w, and without loss of
generality, let this be T (w)

1 . Now consider a vertex w such that |V(w)
1 | is minimal

among all vertex sets V(u)
1 for all u ∈ V , and let v be the (unambiguous) neighbor

of w in T (w)
1 .

From the point of view of v, the subtree T (v)i that is rooted in w has less than
n/2 vertices and thus cannot be the subtree T (v)1 with |V

(v)
1 | > n/2. Hence, the
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T
(v)
1

T
(w)
1

w v

Figure 4.2. Schematic drawing of the graph G in the situation described in Lemma 4.4.
When removing v from G, the graph decomposes into the light blue components. When
removing w, it decomposes into the darker ones. The tree T (w)

1 is the one of these subtrees
that remain after removing w containing more than n/2 vertices. Hence, the light blue
subtree rooted at wmust contain less than n/2 vertices. Thus, the subtree T (v)1 that contains
more than n/2 vertices must be one of the subtrees within T (w)

1 , and therefore it has less
vertices than T (w)

1 .

subtree of v with more than n/2 vertices must be one of the subtrees contained
in T (w)

1 , and therefore, T (v)1 has less vertices than T (w)
1 . This is a contradiction to

the minimality of T (w)
1 . A schematic picture is shown in Figure 4.2.

Consequently, we can now consider a vertex w ∈ V such that each |V
(w)
i | ≤ n/2

for all 1 ≤ i ≤ nw. If at least one of the trees T (w)
i has |V

(w)
i | ≥ c/9 vertices,

say T (w)
j , then we can define the vertex sets C and D to be C := T

(w)
j ∪ {w}

and D := (V \ C) ∪ {w}. It holds that

|D| = n− |T
(w)
j |+ 1 ≥ n−

n

2
+ 1 ≥ c

6
+ 1 ≥ c

9
+ 1

for every c ≥ 0. All other requirements of the statement are clearly also fulfilled.
On the other hand, if all the T (w)

i only have |V
(w)
i | < c/9 vertices, we define C

and D as follows. We assign the vertices of the subtrees T (w)
i one after another

greedily and subtree-wise to one of the vertex sets C and D, namely to the one
that currently contains fewer vertices. When all vertices of all these subtrees
are assigned, we additionally add w to both C and D. Hence, in the end, the
cardinalities of the two parts differ by at most c/9, which means that both sets
contain at least

n

2
−
c/9

2
+ 1 ≥

c
3
− c
9

2
+ 1 ≥ 3c− c

2 · 9
+ 1 =

c

9
+ 1

vertices, and the sets C and D clearly also fulfill all other requirements of the
statement. 2
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Now we use this result to prove an upper bound that asymptotically matches
the lower bound ofΩ(n/c) advice bits that are necessary to achieve competitive
ratio c. We give a c-competitive algorithm that reads only 9n/c advice bits for
any c ≥ 6.

Theorem 4.5. For any c ∈ R>6 and any n ∈ N≥1, there is a c-competitive online
algorithmA with advice for the graph searching problem in undirected unweighted graphs
with n vertices that uses only b9n/cc ∈ O(n/c) advice bits.

Proof. Consider any undirected unweighted graph G = (V, E) with |V | = n ver-
tices, with a starting vertex u0 and a destination vertex u`, that the algorithm A
gets as an input. To analyze A’s advice complexity and competitive ratio, we use
two types of accounting, a charge for each vertex and a credit for the algorithm A.
Initially, every vertex has charge 9/c, and the algorithm’s credit is 0. The algorithm
may harvest a vertex v, which adds the charge of v to A’s credit, increasing the
latter by 9/c credit units. At any time, Amay read an advice bit from the tape, but
we subtract one credit unit from A’s account every time it does. If we make sure
that no vertex is harvested twice, the overall number of advice bits that A uses is
at most 9n/c.

Let U := U(u0, u`) = (u0, u1, . . . , u`) be a shortest path from u0 to u` in G.
Although u0 and u` are known to the algorithm, U, of course, is not. For the
purpose of our analysis, we book each move of the agent to some edge {ui, ui+1}.
If we make sure that we do not book costs of more than c to any such edge, the
algorithm will be c-competitive.

The algorithm A works in rounds. During its computation, Amaintains two
disjoint sets of vertices that are updated in each round i. The first such set,
Hi, contains all vertices that have already been harvested in previous rounds.
The other one, Ti, contains all vertices that have already been traversed but not
harvested yet. Let each vertex that is a neighbor of a vertex in Ti but that is not
contained in Ti or Hi be called a boundary vertex, and let the set of all boundary
vertices be called the boundary set, denoted by Bi. In round i, all vertices of Ti have
already been traversed, so the agent knows the entire boundary set Bi at any time.
At the beginning ofA’s computation, we have T1 := {u0}, H1 := ∅, and accordingly
B1 :=

{
v ∈ V | {u0, v} ∈ E

}
.

There are two different kinds of rounds. In each round i, the agent either
traverses the set Ti ∪ Bi of vertices in order to find the destination vertex u`, or it
reads one advice bit from the tape to narrow down the set of vertices in which it
has to search for u`. The latter is done whenever Ti ∪ Bi is so large that traversing
it completely would incur too large costs, and can be repeated by A for several
rounds, until the size of Ti ∪ Bi falls below a certain threshold. We will call each
round in which A executes a traversal of some subgraph of G a traversal round and
each round in which it reads an advice bit instead an advice round.
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Let us group the rounds of A into phases such that each phase starts with a
number (possibly zero) of advice rounds, in which the search space is reduced
gradually until it is of reasonable size, and then ends with a traversal round, in
which the entire search space is scanned for u`. Let us consider some phase p
consisting ofm ≥ 1 rounds h+ 1, . . . , h+m. (Hence, the last round in phase p−1
was round h.) We make sure that the following invariants hold for each such
phase p and each round iwithin this phase, for h+ 1 ≤ i ≤ h+m.

(a) At the beginning of each round i of phase p, there is some boundary ver-
tex uj ∈ Bi belonging to the shortest path U, such that no vertices uk
with k ≥ j are contained inHi. If there are several such vertices, let u∗ := uj∗
be the last such vertex of U, and let ei := {uj∗ , uj∗+1}.

(b) At the beginning of each round of phase p, no costs have been booked to
any edge {uk, uk+1} yet, for j∗ ≤ k ≤ `− 1.

(c) At the beginning of each round of phase p, the agent is located at some
vertex v ∈ Th+1.

From now on, we will call uj∗ the distinguished vertex of round i, and the
edge ei = {uj∗ , uj∗+1} the distinguished edge. Let us keep in mind that the
shortest path U is not known to the algorithm. We introduce these distiguished
vertices and edges solely for the purpose of the analysis.

Now let us describe how A works in greater detail. Figure 4.3 depicts its
computation on an examplary graph, which might be helpful for the following
description. The computation starts with round 1 of phase 1. For the sake of
simplicity, we say that the preceding (dummy) round was round h = 0. At the
beginning of its computation, the agent is located at u0. The initial values for the
sets are, as we have already mentioned above, T1 := {u0}, H1 := ∅, and B1 :=

{
v ∈

V | {u0, v} ∈ E
}

. The distinguished vertex u∗ is the last vertex from U that is a
neighbor of u0. It is easy to verify that all invariants are fulfilled.

If, in round i, it holds that |Ti ∪ Bi| ≥ c/3, the agent executes an advice round,
as the search space is too large. Thus, A internally splits Ti ∪ Bi into two parts Ci
and Di using Lemma 4.4. Then it reads one bit of advice indicating which one of
the sets Ci andDi contains the distinguished vertex u∗. Without loss of generality,
let this be Ci. Note that u∗ might even be contained in both Ci andDi, since these
sets intersect in one vertex w. If this is the case, the oracle specifies the set Ci to
be the one containing u∗. Then the vertices from Di \ {w} are harvested by A to
pay for the advice bit that it just read. We have Di \ {w} ⊆ Ti ∪ Bi, so Di and Hi
are disjoint. Hence, the vertices in Di \ {w} have not been harvested yet and thus
still hold charge 9/c each, and Lemma 4.4 guarantees that both Ci and Di contain
at least c/9 + 1 vertices. Thus, the agent gains enough credit by harvesting the
vertices from Di \ {w} to pay for one advice bit. It sets Hi+1 := Hi ∪ Di \ {w},
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Cs

Ds

Ts Bs

v ′

w

u∗

(a) In the preceding round, s−1, the agent traversed the set Ts and ended in some vertex v ′ ∈
Ts. Now, in round s, Ts ∪ Bs is too large to be traversed, so A performs an advice round,
splitting Ts ∪ Bs into two parts Cs and Ds, which overlap in w.

Ts+1 Bs+1Ts

v ′

w

u∗

(b) After round s, A harvested all vertices from Ds \ {w} and updated the sets accordingly.
The set Ts+1 ∪ Bs+1 is small enough to be traversed, but A is located at the vertex v ′ ∈
Ts \ Ts+1. Thus, before starting its traversal, Amust move to some vertex in Ts+1.

Ts+1 Bs+1

v ′

v u∗

(c) When round s+1 begins, the agent has moved to v ∈ Ts+1 and can now start its traversal.

Ts+2 Bs+2

u∗

(d) After round s + 1, all vertices from Ts+1 ∪ Bs+1 = Ts+2 have been traversed. The agent
updates the sets Ts+2 and Bs+2 and the distinguished vertex u∗ accordingly.

Figure 4.3. An example of a sequence of rounds of the algorithm A. Vertices that have
already been harvested are colored gray, those that have been traversed but not harvested
are colored blue, those that have been seen as a neighbor but neither been traversed nor
harvested are colored light blue, and those that have not even been seen yet are left white.
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Ti+1 := Ti ∩ Ci ⊆ Ti, and Bi+1 := Ci \ Ti, such that Ti+1 ∪ Bi+1 = Ci. This implies
that u∗ ∈ Bi+1, and thus the new distinguished edge ei+1 stays the same edge
as before, ei+1 := ei = {uj∗ , uj∗+1}, such that invariant (a) is trivially fulfilled. As
no costs were booked to any edges in this round, also invariant (b) remains true.
Invariant (c) holds since the agent did not move at all in this round.

If, on the other hand, |Ti ∪ Bi| < c/3, the agent executes a traversal round.
Hence, this is the last round of phase p, i. e., round h+m. Right now, due to
invariant (c), A is positioned at some vertex v ∈ Th+1 since the last traversal
round was round h. Hence, before A starts to traverse Th+m ∪ Bh+m, it has to
make sure to be positioned somewhere in this set. We determine that the agent
moves to some vertex v ′ ∈ Th+m. Since all rounds h+ 1, . . . , h+m− 1 have been
advice rounds, we have Th+m ⊆ Th+m−1 ⊆ . . . ⊆ Th+2 ⊆ Th+1. As round h was a
traversal round, we know that |Th+1| = |Th ∪ Bh| < c/3, and thus traveling from v

to v ′ incurs costs of less than c/3. These costs are booked onto the distinguished
edge eh+m = {uj∗ , uj∗+1} (which exists due to invariant (a)).

Now, the agent uses a depth-first search to traverse Th+m ∪ Bh+m. As soon
as it comes across the destination vertex u`, the algorithm terminates. Let us
hence assume that A does not find u` in this round, i. e., u` 6∈ Th+m ∪ Bh+m. The
traversal incurs costs of less than 2c/3 that are also booked to eh+m. The agent
sets Th+m+1 := Th+m ∪ Bh+m, since all vertices contained in these sets have been
traversed now but have not been harvested yet, and Hh+m+1 := Hh+m, as no
vertices have been harvested in this round. The agent also computes Bh+m+1

according to Th+m+1 and Hh+m+1. From invariant (a) we can conclude that one
endpoint of the present distinguished edge eh+m must be uj∗ ∈ Bh+m and the
other one uj∗+1 6∈ (Hh+m+1 ∪ Th+m+1 ∪ Bh+m+1), since otherwise uj∗ would
not have been the distinguished vertex in round h+m. Thus, uj∗+1 ∈ Bh+m+1

is a vertex that guarantees that invariant (a) is fulfilled. However, uj∗+1 is not
necessarily the distinguished vertex of the next round; this is the last vertex uk ∈ U
that is inBh+m+1, for some k ≥ j∗+1. Then, the new distinguished edge eh+m+1 =

{uk, uk+1} is the edge where the path U leaves Bh+m+1 for the last time. Thus,
invariants (a) and (b) remain true. At the end of round h+m, and therefore
also at the beginning of phase p + 1, the agent is located at some vertex v ∈
Th+m ∪ Bh+m = Th+m+1, making sure that also invariant (c) holds.

At some point, there will be a round in which the agent sees the identifier of the
destination vertex u` for the first time, as a neighbor to a vertex v it just visited.
Then, A immediately interrupts its traversal and moves from v to u`. This might
incur additional costs of one in case the traversal was completed in the exact
moment that the agent reached v. In this case, there is one cost unit that we cannot
book to any edge and that we have to keep in mind.

For every iwith 0 ≤ i ≤ `− 1, every edge {ui, ui+1} is the distinguished edge
of at most one phase, and thus costs of at most c are booked to it; not more
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than c/3 for the adjustment move before the traversal of the current search space
and at most 2c/3 for the traversal itself. Hence, the total cost incurred during the
computation of A on G, adding the additional cost for the last move, is at most
cost(A(G)) ≤ c · `+ 1, whereas the cost of an optimal solution is cost(Opt(G)) = `.
Choosing a ≥ 1 as the constant in the definition of the competitive ratio (see
Section 1.4) yields

cost(A(G)) ≤ c · `+ 1 = c · cost(Opt(G)) + 1 ≤ c · cost(Opt(G)) + a,

and thus the algorithm A is c-competitive. Furthermore, each vertex is harvested
at most once, so the credit units that A invests during the entire computation to
read advice bits cannot exceed 9/c · n. This corresponds to the number of advice
bits read. As a result, A has an advice complexity of at most 9n/c. 2

4.3 Graph Exploration

Now we turn our attention to the graph exploration problem, which is, like the
graph searching problem SEARCH we considered in the previous section, not a
classic online problem since the request sequence depends on the given algorithm.
Let us briefly recall the graph exploration problem. Given a graph and a starting
vertex at which an agent is located at the beginning of the computation, the goal of
an algorithm for EXPLORE is to visit each vertex at least once and then return to the
starting vertex. We again constrain our considerations to undirected unweighted
graphs. In Section 4.3.1, we describe a class of undirected unweighted graphs that
has already been investigated in the literature. Brandstädt et al. [BLS99] call this
graph class sunlet graphs, whereas Anitha and Lekshmi [AL08] and Wallis [Wal01]
refer to them as sun graphs. We will stick to the naming of the latter two. Later, we
will use this class to prove a lower bound on the number of advice bits necessary to
achieve any competitive ratio c in the range 1 ≤ c ≤ 7/6−ε, for any constant ε > 0.
In Section 4.3.2, first the general reduction technique used to obtain this lower
bound is introduced. This method also makes use of a reduction from the string
guessing problem, as we have already seen in preceding chapters, but the familiar
technique has to be adapted slighty to be applicable to this non-standard online
problem. Then this reduction technique is applied to the graph exploration prob-
lem, yielding a lower bound of (1 − η(1 − α))n advice bits necessary to achieve
any competitive ratio c with c ≤ (4 − α)/3 − ε, for any constant ε > 0 and any
α with 1/2 ≤ α < 1. This implies that to obtain a competitive ratio of c in the
range 1 ≤ c ≤ 7/6−ε, for every constant ε > 0, a linear number of advice bits must
be read. Very recently, another lower bound has been independently obtained by
Fulla [Ful14], who showed thatΩ(n) advice bits are necessary to achieve a com-
petitive ratio better than 1.564. The results presented in this section are discussed
rather due to the novel reduction technique that is being used to obtain them.
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c1
c2

c3

c4

c5c6

c7

c8

c9

b1

b2

b3

b4

b5b6

b7

b8

b9

Figure 4.4. The sun graph G(n) for n = 9.

4.3.1 Sun Graphs

For every natural number n ∈ N≥5, let us consider the following unweighted
undirected graph G(n) = (V(n), E(n)) that consists of n so-called cycle vertices ci
arranged in a cycle, and n so-called beam vertices bi, each of which is connected
to one cycle vertex and no additional vertices. To avoid some dreadful notation
involving the modulo operator, let us define cn+i := ci and bn+i := bi for every i
with 1 ≤ i ≤ n. Hence, formally we have

V(n) = {c1, . . . , cn, b1, . . . , bn},

E(n) =
{
{ci, ci+1} | 1 ≤ i ≤ n

}
∪
{
{ci, bi} | 1 ≤ i ≤ n

}
.

An example of such a sun graph for n = 9 is depicted in Figure 4.4. To avoid
confusion, let us stress again that the naming is not completely consistent in the
literature; sometimes, the term sun graph is used to refer to another graph class,
for example by Brandstädt et al. [BLS99] as already mentioned above.

Observation 4.6. The optimal solution on a sun graph G(n) with starting vertex c1 has
a cost of cost

(
Opt

(
G(n)

))
= 3n.

Proof. Let us recall that the agent does not only have to visit all vertices, but has to
be positioned at the starting vertex again in the end. Thus, in any valid solution,
every edge between two cycle vertices must be traversed at least once (except for
one edge that might be omitted, but obviously, this would only increase the total
costs). Hence, the costs incurred by traversing these edges is at least n. Every edge
between one cycle vertex and one beam vertex must be traversed at least twice,
incurring costs of at least 2n. Hence, the cost of any optimal solution is at least 3n.

On the other hand, given c1 as the starting vertex, an optimal way to traverse
such a sun graph G(n) is clearly (c1, b1, c1, c2, b2, c2, . . . , cn, bn, cn, c1). This so-
lution has a cost of 3n, which is therefore optimal. 2
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When an agent traverses the graph, though, it does not necessarily take the
optimal route. Quite the contrary, it might visit each vertex arbitrarily often
and also change directions arbitrarily. However, intuitively, it is obvious that an
algorithm achieving a good competitive ratio should not revisit the same vertices
too often and, therefore, visit each beam vertex bi as soon as possible, preferably
when the corresponding cycle vertex ci is visited for the first time.

For the reduction in the following section, we exploit the fact that an agent that is
located in some cycle vertex ci cannot tell the corresponding beam vertex bi apart
from the yet unvisited neighboring cycle vertex, given no further information than
the IDs of these vertices. We will make sure that any algorithm, without getting
any advice bits at all, might make the wrong decision at every cycle vertex ci and
move to another cycle vertex from there instead of moving to bi. Note that if this
happens, the algorithm might still achieve a competitive ratio of 4/3, as we will
see now.

Observation 4.7. There is a deterministic online algorithmA for EXPLORE that achieves
a strict competitive ratio of 4/3 on any sun graph G(n).

Proof. The algorithm A operates in two phases. In the first one, as long as there
exists at least one neighbor of the current vertex which has not been visited yet,
let A do the following. When located at a cycle vertex, the next vertex that A
visits is the unique yet unvisited vertex with the lowest ID. When located at
a beam vertex (which A can recognize based on its degree), A moves back to
the corresponding cycle vertex. Obviously, A visits all cycle vertices either in
clockwise or in anti-clockwise order, but never changes the direction during this
phase. Without loss of generality, let A move in clockwise direction in the first
phase. Then, when this phase is over, A is located at cn, has visited each cycle
vertex exactly once, and has additionally visited m beam vertices, for some m
with 0, . . . , n. Anyway, A has visited or at least seen each vertex after phase 1,
such that it now knows the whole graph.

In the second phase, A visits every cycle vertex once more, this time in anti-
clockwise direction, ending at c1. On its way, it visits each yet unvisited beam
vertex bi of each cycle vertex ci that it passes. In the end, A is located at c1 again.

Now we analyze A’s cost on G(n)) separately for both phases. In the first phase,
A incurs a cost of n− 1+ 2m; in the second phase, 2(n−m) + n− 1. The overall
costs are therefore n−1+2m+2n−2m+n−1 = 4n−2. According to the definition
of the strict competitive ratio given in Section 1.3, A is strictly 4/3-competitive on
the class of sun graphs if

cost
(
A(G(n))

)
≤ 4
3
· cost

(
Opt(G(n))

)
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for any sun graph G(n). This is obviously the case, as

cost
(
A(G(n))

)
= 4n− 2 ≤ 4n =

4

3
· 3n =

4

3
· cost

(
Opt(G(n))

)
,

where the last equality holds due to Observation 4.6. 2

From now on, let us say that the agent enters a vertex v when it travels to v
from one of its neighbors. Hence, starting in c1 does not count as entering it, but
revisiting it later on does, of course. The following lemma gives some information
on the prize an agent has to pay for not traveling to a beam vertex bi right after
the corresponding cycle vertex ci has been entered for the first time.

Lemma 4.8. For any sun graph G(n) =
(
V(n), E(n)

)
and every cycle vertex ci ∈ V(n),

the following holds. When the agent enters ci for the first time and directly after that
travels to another cycle vertex without having visited the corresponding beam vertex bi,
the cost of the solution calculated by the corresponding algorithm increases by at least 1
compared to the optimal solution.

Proof. Every time the agent enters a vertex ci or bi, let us book a cost of 1 to
this vertex. Obviously, at the end of the computation, the total cost booked to
all vertices is the cost of the algorithm’s computed solution. Also, clearly, in
an optimal solution, every beam vertex is entered exactly once and every cycle
vertex exactly twice, once from a neighboring cycle vertex and once from its
corresponding beam vertex. Conversely, if a cycle vertex ci is entered and then
left without having visited the corresponding beam vertex bi yet, the cycle vertex
must still be entered at least two more times in any valid solution. Hence, in the
end, ci will have a cost of at least 3 booked to it, increasing the total cost of the
solution by at least 1. 2

4.3.2 Reduction from String Guessing

Before we get to the reduction from 2-GUESS to EXPLORE, we briefly describe
how to proceed in general when giving a reduction from 2-GUESS to an online
problem like EXPLORE, for which the request sequence depends on the output
of the algorithm. Let P be such an online problem, and let A be an algorithm
for P. To reduce the bit string guessing problem to P, we construct a 2-GUESS-
algorithm B by simulating the algorithm A. Let the input instance for 2-GUESS

be Ir = (n, r1, . . . , rn) for some binary string r. Hence, from Ir, we must now
construct an input instance for P to simulate A on it. This is where the reduction
technique has to differ from the one we are used to. Usually, we would now
construct an input for P that is independent of the algorithm A, but since P is
an online problem for which the input must depend on A, we have to proceed
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differently here. We construct an input IA,r for P, depending on r andA. Then, the
2-GUESS-algorithm B simulates A on IA,r in an online fashion, and A produces
some output A(IA,r), from which B derives its own output for every round. The
goal is to show a connection between the performances of A and B, such that a
statement like the following can be obtained. For any string r and any algorithmA
for P, if A achieves a competitive ratio of c on IA,r reading only b advice bits,
then there is an algorithm for 2-GUESS that guesses at least f1(c) bits correctly,
reading only f2(b) advice bits, for some functions f1, f2. If such a relation between
the algorithms can be shown, the lower bound for 2-GUESS (Fact 1.5) directly
translates to a lower bound for P.

Let us elaborate on the concrete reduction to EXPLORE now. Although we do
not know the exact walk that an agent takes through the graph G(n), we know
that any algorithm solving the graph exploration problem must have visited every
vertex at least once in the end. Hence, we know that, sooner or later, the following
situation occurs. At some point (while it has not visited all cycle vertices yet) the
agent travels to a so far unvisited cycle vertex, and it can see a neighboring vertex
from there that it has already seen before as a neighbor of a different cycle vertex
than the one it is currently located at. Let ci∗ be the first cycle vertex that the
agent sees as a neighbor of two different cycle vertices. Without loss of generality,
let us assume that this situation occurs while the agent is traveling in clockwise
direction. Hence, it must already have visited ci∗+1 and have seen ci∗ from there,
but then it never traveled to ci∗ before visiting ci∗−1 and seeing ci∗ for the second
time from there. This situation is depicted in Figure 4.5.

From now on, we will always make this assumption that the agent encoun-
ters ci∗ for the second time while traveling in clockwise direction. If this happens
while traveling in anti-clockwise direction, all following considerations can be
made analogously.

Now, to reduce 2-GUESS to EXPLORE, we proceed as follows. For one thing, we
transform an input instance Ir for 2-GUESS into an input for EXPLORE that depends
on r and on the walk that the graph exploration algorithm A takes through the
graph. For another thing, we present a way to transform the output of A into an
output for the string guessing problem. Thus consider, for some n ∈ N≥5 and
some string r ∈ {0, 1}n, an input instance Ir = (n, r1, . . . , rn) for 2-GUESS. We
generate a graph exploration instance G(n)

A,r with 2n vertices by assigning the IDs
that are presented to A to the vertices of the graph G(n) defined above, depending
on the string r = r1 . . . rn and on the way that A has traversed the graph so far.
This assignment of the IDs to the vertices is crucial since a deterministic algorithm
can only distinguish vertices on the basis of their IDs.

In the following paragraphs, our aim is to show a connection between the
agent’s walk through the graph and the performance of the algorithm B for 2-
GUESS constructed from A. More precisely, we want to show that, if A visits the
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ci∗

ci∗−1

ci∗+1

bi∗ ci∗−1

Figure 4.5. The agent just traveled from ci∗−2 to ci∗−1 (marked by a thick fringe). It sees the
vertex ci∗ , which it has already seen before when it was located at ci∗+1, but has not entered
it yet. The dark vertices have already been visited. The light blue vertices have at least been
seen as a neighbor of an already visited vertex. For the light blue beam vertices, we do not
know if they have already been visited or not, but for ci∗ we know that it definitely has not.
The white vertex, bi∗ , has not even been seen yet.

corresponding beam vertex bi directly after visiting ci for the first time for many
cycle vertices ci, then B guesses many bits correctly. To this end, we now describe
the assignment of IDs to the vertices of G(n) as well as the algorithm B.

As before, we fix the cycle vertex c1 as the starting vertex of the graph G(n)
A,r.

Hence, in the beginning of the computation, the agent is located at c1 and must be
given the IDs of c1 and its three neighbors cn, c2, and b1. We assign IDs to these
vertices as follows; ID 0 to c1, ID 1 to cn, ID 2 to b1, and ID 3 to c2, as depicted in
Figure 4.6.

Usually, while traversing the graph, at every newly visited cycle vertex, the
agent must be presented the IDs of the two yet unknown neighbors, one being
the corresponding beam vertex and the other one a neighboring cycle vertex. One
exception to this is, as we have just discussed, the starting vertex c1, at which
the agent is presented not only two, but four IDs. The second exception is ci∗−1,
where only one new ID must be presented, namely the one of the corresponding
beam vertex bi∗−1, because the ID of ci∗ has already been presented at ci∗+1 (see
Figure 4.7a). The last exception is the vertex ci∗ , where also only one ID must be
presented, namely the one of bi∗ , because both neighboring cycle vertices have
already been visited (see Figure 4.7b).
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c1

0

c2

3

cn

1

b1

2

b2bn

Figure 4.6. The IDs of the first four vertices that the agent sees from the starting vertex c1
in the graph G(n)

r .

Let us from now on consider any other cycle vertex ci with i ∈ {1, . . . , n} \

{1, i∗ − 1, i∗}. Assume that ci is the j-th newly visited cycle vertex, for some j
with 2 ≤ j ≤ n − 2. (Note that the first newly visited cycle vertex is c1 and the
last two newly visited cycle vertices are ci∗−1 and ci∗ , in this order.) Then, upon
visiting ci for the first time, the agent is presented the IDs 2j and 2j+ 1. At every
such vertex ci, we know that the agent sooner or later travels to a neighboring
vertex with one of these two IDs. When this happens for the first time, we say that
the agent chooses the vertex that it traveled to from ci as the successor of ci. Only
when the agent actually visits one of these two vertices, we have to determine
which ID belongs to the cycle and which to the beam vertex. We make this decision
depending on the string r. Let ci ∈ C := {c1, . . . , cn} \ {c1, ci∗−1, ci∗ , ci∗+1} be the
k-th cycle vertex for which the agent chooses a successor. Note that the order in
which the successors are chosen for the cycle vertices might deviate from the order
in which they are visited for the first time. This is because the agent might visit ci,
but then decide to travel back into the other direction until it reaches another cycle
vertex for which it has not chosen a successor yet and do so now, before it chooses
the successor for ci. As already mentioned, which of the IDs 2j and 2j+ 1 belongs
to the neighboring unvisited cycle vertex of ci and which one to the neighboring
unvisited beam vertex is dependent on the string r. If rk = 0, the beam vertex has
ID 2j and the cycle vertex has the ID 2j+ 1; if rk = 1, it is the other way around.

The string guessing algorithm B we build from the graph exploration algo-
rithm A then bases its guess gk for the bit rk on the ID of the vertex that the agent
chooses as a successor for ci. If A chooses the vertex with ID 2j, the algorithm B
outputs gk := 0; if, otherwise, A chooses the vertex with ID 2j + 1, the 2-GUESS

algorithm A outputs gk := 1. This leads to the following coherence.

Lemma 4.9. Consider an algorithm A for the graph exploration problem, and an input
instance Ir = (n, r1, . . . , rn) for the string guessing problem. Furthermore, consider an
algorithm B for the string guessing problem constructed from A as in the reduction we
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ci∗

ci∗+1

ci∗−1

bi∗−1

(a) The agent just traveled from ci∗−2
to ci∗−1 (marked by a thick fringe). The
vertex ci∗+1 has already been visited be-
fore, so the ID of their common neigh-
bor ci∗ has already been presented to A.
Hence, at the vertex ci∗−1, the algorithm
is only presented one new ID, the one
of bi∗−1.

ci∗

ci∗+1

ci∗−1
bi∗

(b) The agent is currently located at ci∗
(marked by a thick fringe). Both neigh-
boring cycle vertices ci∗−1 and ci∗+1
have already been visited before, so their
IDs have already been presented to A.
The only new ID that is presented to A
is the one of ci∗ ’s corresponding beam
vertex, bi∗ .

Figure 4.7. Two exceptions for the two-new-IDs-per-cycle-vertex-rule.

described above, and a cycle vertex ci ∈ C with two yet unvisited neighbors with IDs 2j
and 2j + 1, respectively, that is the k-th cycle vertex for which the agent A chooses a
successor, for 2 ≤ k ≤ n − 2. Then, if A chooses the beam vertex bi as ci’s successor,
B guesses the bit rk correctly.

Proof. To travel from ci to the beam vertex bi, the agent must choose the vertex
with ID 2j as ci’s successor if rk = 0 and, on the other hand, choose the vertex
with ID 2j + 1 as the successor if rk = 1. Hence, if A travels to the beam vertex,
B outputs gk := 0 if rk = 0 and gk := 1 if rk = 1. Therefore, in both cases, it
guesses the bit rk correctly. 2

Corollary 4.10. Assume there is an algorithm A for the graph exploration problem that,
given any sun graph with 2n vertices as its input, chooses the beam vertex bi as the
successor for ci for more than αn cycle vertices ci ∈ C, reading only b advice bits. Then,
there is also a string guessing algorithm B that guesses more than αn bits correctly on
any input instance Ir corresponding to some string r ∈ {0, 1}n, reading only b advice bits.

Proof. From Ir and A, we construct the graph G(n)
A,r as described in the reduction

given above. We then simulate the algorithm A on the instance G(n)
A,r with c1 as
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the starting vertex. We also construct the string guessing algorithm B as in the
reduction given above, basing its guesses on the way the agent A traverses the
graph. Additionally, as we have already seen a few times before, B keeps a dummy
advice tape that A can access during its computation. Every time A needs some
advice bits, B reads the corresponding number of advice bits from the oracle’s
advice tape and writes them onto its dummy tape, which are then read by A.

Due to Lemma 4.9, for every cycle vertex ci ∈ C, the algorithm B guesses the
bit rk correctly if A chooses the beam vertex bi as the successor for ci. Hence, if A
chooses the corresponding beam vertices as the successors for more than αn cycle
vertices, B guesses more than αn of n bits correctly.

Obviously, the numbers of advice bits that the algorithms A and B use are
exactly the same. 2

Lemma 4.11. For any α with 1/2 ≤ α < 1, any constant ε > 0, any string r ∈ {0, 1}n,
and any algorithm A for EXPLORE, the following holds. If A computes a solution with a
competitive ratio of c ≤ (4−α)/3−ε on the graphG(n)

A,r, it must choose the corresponding
beam vertex bi as the successor for ci for more than αn cycle vertices ci ∈ C.

Proof. Assume there is an algorithmA that achieves a competitive ratio of c on the
sun graph G(n)

A,r. Then, due to the definition of the competitive ratio, there must
exist some constant a such that

cost
(
A
(
G

(n)
A,r

))
≤ c · cost

(
Opt

(
G

(n)
A,r

))
+ a.

Plugging in c ≤ (4 − α)/3 − ε and using the fact that the cost of any optimal
algorithm Opt on any sun graph G(n) is 3n due to Observation 4.6, we make the
following transformation.

cost
(
A
(
G

(n)
A,r

))
≤
(
4− α

3
− ε

)
· 3n+ a

= (4− α)n− 3εn+ a

= cost
(
Opt

(
G

(n)
A,r

))
+ (1− α)n− (3εn− a)

< cost
(
Opt

(
G

(n)
A,r

))
+ (1− α)n− 4,

for sufficiently large n. Hence, the cost of the solution computed by A may
only differ from the optimal solution by less than (1 − α)n − 4 in order to be
((4− α)/3− ε)-competitive. Due to Lemma 4.8, the cost of the computed solution
increases by at least 1 compared to the optimum for every cycle vertex ci at which
the agent does not choose the beam vertex bi as the successor. Thus, there may
only be less than (1− α)n− 4 such cycle vertices at which it chooses another cycle
vertex as the successor. Therefore, the number of cycle vertices ci at which the
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agent chooses the corresponding beam vertex as ci’s successor must be more than
αn+4. More than αn of these cycle vertices must be from C (since there are exactly
four cycle vertices that are not contained in C), which completes the proof. 2

Theorem 4.12. For any α with 1/2 ≤ α < 1 and any constant ε > 0, there is no online
algorithm for EXPLORE with a competitive ratio of c ≤ (4− α)/3− ε reading less than
b =

(
1− η(1− α)

)
n advice bits.

Proof. For the sake of contradiction, assume there is such a graph exploration
algorithm A. Hence, for some constant ε > 0, this algorithm must compute a
solution with a competitive ratio of c ≤ (4 − α)/3 − ε on any input instance, in
particular also on each sun graph G(n). Thus, according to Lemma 4.11,A chooses
the corresponding beam vertex bi as the successor for ci for more than αn cycle
vertices c ∈ C. However, due to Corollary 4.10, if there is such a graph exploration
algorithm reading less than b =

(
1 − η(1 − α)

)
n advice bits and choosing the

corresponding beam vertex bi as the successor for ci for more than αn cycle
vertices ci ∈ C, then there also is a string guessing algorithm that guesses more
than αn bits correctly on any input string of length n, reading less than b advice
bits. Then again, as we know from Fact 1.5, such a string guessing algorithm does
not exist, and thus our initial assumption must have been false. 2

4.3.3 Further Adjustments

When thinking a bit further about the idea we used in the previous section, a
question that naturally comes to mind is whether adjusting the lengths of the
beams or the paths between each two beams in the examined sun graphs might
result in a graph class that yields results for wider ranges of competitive ratios.
Hence, let us investigate generalized sun graphs with kn cycle vertices, of which
every k-th one has a beam attached to it (hence, the number of beams is n), and
the length of each beam is `. For each pair (`, k) ∈ N2, let us call this class of
graphs (`, k)-sun graphs. The sun graphs examined in Section 4.3.2 are (1, 1)-
sun graphs, accordingly. In the following, let us briefly and informally reason
about generalized sun graphs and explain why we chose the simple class of sun
graphs for the reduction in Section 4.3.2. In the previous section, we knew from
the beginning that we could not hope to obtain a lower bound on the advice
complexity for competitive ratios larger than 4/3 since we showed that there is a
4/3-competitive deterministic algorithm on sun graphs with n cycle vertices and
n beam vertices. However, there might exist some class of (`, k)-sun graphs with
adjusted values of ` and k as described above, for which there are no deterministic
algorithms with that good competitive ratios, such that we might obtain lower
bounds on the advice complexity for larger competitive ratios than 4/3with the
same approach. Let us look at this more closely. On any (`, k)-sun graph, the
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optimal solution obviously has a cost of (2`+ k)n. Furthermore, in the following,
we describe a deterministic algorithm that has a cost of (2` + 2 + k)n on any
(`, k)-sun graph. Located at some cycle vertex cki with an adjacent beam vertex bi,
the algorithm visits some yet unvisited neighbor. In case it is the wrong one (i. e.,
another cycle vertex), it immediately notices its error based on the degree of the
current vertex and moves back to cki. From there, it moves to bi, traverses the
beam up to its extremal vertex, and then moves back to cki. Up to now, this
generated costs of 2` + 2. The agent can now move on a direct path to the next
cycle vertex with an appended beam, incurring a further cost of k. In total, the
cost of this deterministic algorithm is (2`+ 2+ k)n.

Thus, for any class of (`, k)-sun graphs, there is a deterministic algorithm with
a competitive ratio of at most (2`+ 2+ k)/(2`+ k) = 1+ 2/(2`+ k). This term is
maximized for (`, k) = (1, 1). However, for (1, 1)-sun graphs, the deterministic
algorithm given in the previous section has competitive ratio 4/3, which is even
better than (2+2+1)/(2+1) = 5/3. As both ` and k are natural numbers, the next
largest value is attained for (`, k) = (1, 2), and this value is (2+ 2+ 2)/(2+ 2) =
3/2; for all other pairs (`, k), there is a deterministic algorithm that achieves a
competitive ratio of less than 3/2 on any (`, k)-sun graph. Therefore, even for
generalized sun graphs, we cannot prove a lower bound on the advice complexity
for competitive ratios larger than 3/2. However, Fulla already presented a lower
bound on the advice complexity for competitive ratios of approximately 1.56 using
a more complicated class of graphs as inputs [Ful14]. By such simple adaptations
as we just described, we do not gain enough to beat this lower bound. However,
our main goal was not to achieve the best possible lower bound for EXPLORE

anyway, but to demonstrate the application of the adapted reduction technique.
Thus, for the sake of clarity of presentation, we used (1, 1)-sun graphs in the
reduction from the previous section, although we might have obtained a slightly
better lower bound by choosing, for example, (1, 2)-sun graphs.





5
Probabilistic Adversary

In previous chapters, we have always considered a setting in which the adversary
chooses a single instance that is given to the online algorithm as its input, and the
oracle knows the complete input. In this chapter, we analyze a novel probabilistic
model, in which the adversary specifies a set of possible inputs, from which the
actual input for the algorithm is chosen uniformly at random. The oracle knows
this set of possible inputs, but does not have access to the random bits used by the
adversary. In this setting, we consider the string guessing problem.

The reason why we study this new model is that the all-knowing oracle is,
intrinsically, only a theoretical concept and as such not implementable. Making
the oracle less powerful is an attempt to design a more realistic model. By strength-
ening the adversary as described above, we obtain an oracle that is not omniscient
anymore, but only knows a probability distribution according to which the input
for the algorithm is chosen by the adversary. Such an oracle could, for example,
represent knowledge that we have a priori about typical input instances for some
online problem.

A model involving a probabilistic adversary has already been considered by
Wehner [Weh14]. The author also adapts the game between the three parties
in such a way that the adversary does not only construct one input sequence
for the algorithm, but a set of input sequences, and a probability distribution
according to which the actual input instance is chosen. In this setting, the au-
thor analyzes a variant of the job shop scheduling problem (for example, see
Hromkovič et al. [HMSW07]) and shows that the problem is more difficult with
this strengthened adversary than in the classical adversary model.

Recall that we can model the classical scenario of online computation by a game
between two parties; the adversary and the online algorithm. In the scenario of
online computation with advice, the algorithm is supported by a third party, an

85
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all-knowing oracle. Before the computation of the algorithm starts, the adversary
constructs a hard input instance, knowing the oracle and the algorithm. Then, the
oracle inspects this input instance and writes some binary string onto its infinite
advice tape. Only after that, the algorithm starts its computation, and during
computation, it may access the advice tape whenever it desires and read as many
advice bits as it wants. This way, the algorithm computes an output for the input
instance using the advice string. This is the setting we have considered in previous
chapters.

In the classical online scenario without advice, providing random bits to the
adversary does not increase the power of the adversary in any way since, for
any given online algorithm, no set of problem instances can provide an expected
competitive ratio that is worse than the competitive ratio on a worst-case-instance.
Hence, when analyzing the competitive ratio in online computation without
advice, usually only deterministic adversaries are considered.

Naturally, the question arises whether the situation is the same in online com-
putation with advice, or if randomization might help the adversary in this case.
Actually, in the scenario with an oracle, the situation is completely different. In this
setting, if the adversary generates a set of hard input instances and then chooses
one of them at random, the oracle only knows the set of generated inputs and the
probability distribution according to which the actual input is chosen, but not the
actual input itself. In this case, the competitive ratio of the given online algorithm
is the expected competitive ratio with respect to the probability distribution over
the input set chosen by the adversary. This means that, for most online problems,
we cannot guarantee to reach optimal solutions, even when knowing the complete
set of hard instances.

Hence, in this chapter, we consider a generalization of the classical scenario of
online computation with advice in which we make the adversary more powerful
by allowing it to use a source of random bits. In this thesis, we restrict ourselves to
the case that the adversary chooses a set of input instances and then one of these
instances is chosen at random with respect to the uniform probability distribution.
This game with a randomized adversary can be played in two different ways. In
the first version, the oracle offers a sequence of advice bits to the online algorithm
only once before the online computation starts. We will call this model the monolog
model. The second version, which we will call the dialog model, allows the oracle
to provide advice bits after each request. This is the model that has already been
analyzed by Wehner [Weh14] for job shop scheduling. Although it might seem
astonishing at first, the choice of the model can actually make a huge difference.
This is due to the fact that, after each request, the oracle might have learned some
of the random bits used by the adversary to pick an instance at random from the set
of hard instances; hence, being able to provide advice after each request increases
the power of the oracle tremendously. We will witness this in this chapter.
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In the following sections, we consider the scenario of online computation with
advice with a probabilistic adversary in the two models described above. In this
setting, we analyze the bit string guessing problem. For strings of length n, the set
of possible input strings for an online algorithm for 2-GUESS contains 2n strings.
We consider the case that the adversary excludes k̃ of these strings and chooses
one of the remaining ones uniformly at random as the actual input string for the
algorithm. As we have already mentioned, in this case, no algorithm can compute
the optimal solution in general, even with the help of an oracle. However, we
determine the maximal number of bits an online algorithm with advice can guess
correctly in expectation when the adversary excludes k̃ strings, and give almost
matching lower and upper bounds for the number of advice bits necessary and
sufficient to achieve this optimal number of correctly guessed bits in both models.

The remainder of this chapter is structured as follows. In Section 5.1, we
present formal definitions of the two different advice models and make a few
arrangements concerning our notation. Section 5.2 deals with the first of the two
models, the monolog model. For this model, we present an algorithm with advice
achieving the optimal number of correctly guessed bits in expectation that reads at
most

⌈
k̃ · (n− log k̃+ log e)

⌉
advice bits. Moreover, we give an almost matching

lower bound of at least k̃·(n−log k̃) advice bits that are necessary for any algorithm
to guess this many bits correctly. Section 5.3 deals with the dialog model, and we
give an upper bound of n advice bits to achieve the optimal expected number of
correctly guessed bits. For the case that the set of possible input instances consists
of an odd number of strings, we also give a tight lower bound of n advice bits
necessary. The differences between the two models from Sections 5.2 and 5.3 are
briefly discussed in Section 5.4. In Section 5.5, we show that the lower bounds we
proved for the bit string guessing problem in the two probabilistic models can be
translated to lower bounds for other online problems by making reductions as we
are used to. We give an example by showing a reduction from bit string guessing
to set cover.

5.1 Preliminaries

Let us define the two models of the oracle and the model of the probabilistic
adversary that we consider in this chapter more formally. Compared to the deter-
ministic adversary, the probabilistic adversary is strengthened in the following
way. Given an online problem P and the set of all possible input instances Iall

for P, the adversary may determine an arbitrary probability distribution ψ over
the instances in Iall, such that the actual instance I that an algorithm A gets as an
input is drawn from the set Iall according to ψ.

In this setting, we consider two different models of the oracle. The first one we
consider is an adaptation of a model introduced by Hromkovič et al. [HKK10],
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which we call the monolog model. Earlier in this chapter, we briefly summarized
the procedure of choosing a hard input instance, writing the advice onto the tape,
and then computing an output for the input instance using the advice string
in the classical scenario. Now, to incorporate the probabilistic component, we
additionally demand that the advice is written onto the tape before the adversary
draws the instance I from Iall. This way, we make sure that the oracle is able to
encode information about the distribution ψ in the advice string, but not about the
actual input instance I. Formally, we can define an online algorithm with advice
in the monolog model playing against a probabilistic adversary as follows.

Definition 5.1 (Online Algorithm with Advice (Monolog Model)). Let P be an
online minimization problem and let the set of all possible input instances for P be Iall.
Furthermore, consider an input I = (x1, . . . , xn) of P that is drawn from Iall according to
some probability distribution ψ. An online algorithm A with advice in the monolog model
computes the output sequence Aτ(I) = (y1, . . . , yn) such that every yi is computed
from x1, . . . , xi, y1, . . . , yi−1 and τ, where τ is the content of the advice tape that can
be described as a function of P, ψ, and A. The algorithm A is said to have an advice
complexity of b(n) if, for every n and for any input sequence I of length at most n, at
most the first b(n) bits of τ are accessed during the computation of Aτ(I).

The second model of the oracle we want to consider is a slight adaptation of the
so-called answerer model introduced by Dobrev et al. [DKP08]. In contrast to the
first model that we called the monolog model, we denote the second one by the
dialog model. In this model, the algorithm can demand any amount of advice bits
from the oracle after each request, one after another. The oracle is only allowed to
send any advice bits when the algorithm demands them and is bound to send each
demanded advice bit immediately. Hence, upon receiving a request, the algorithm
decides if it wants to demand an advice bit from the oracle at all and if so, sends
the first demand. Upon receiving an advice bit, it decides if it wants to send a
demand for another advice bit. If it does not want to demand any additional
advice bits, it produces its output and, after that, receives the next request in the
next round.

We let the algorithm demand the exact number of required advice bits instead
of giving the oracle the power to send some advice string by its own accord, since
otherwise the oracle could encode some additional information into the length
of the advice string sent or even into the circumstance that it sends any advice
string at all. This is a problem leading to unnecessary complications in the model
of Dobrev et al. [DKP08] that we want to avoid here.

Let the number of advice bits the algorithm demands from the oracle in round i
be di ∈ N≥0 in total, and let the advice string the oracle sends to the algorithm in
round i be τ̂i ∈ {0, 1}di . Furthermore, let τ := τ̂1τ̂2 . . . τ̂n be the total advice string
the algorithm reads during its computation on an instance of size n. We define
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an online algorithm with advice playing against a probabilistic adversary in the
dialog model as follows.

Definition 5.2 (Online Algorithm with Advice (Dialog Model)). Let P be an on-
line minimization problem and let the set of all possible input instances for P be Iall.
Furthermore, consider an input I = (x1, . . . , xn) of P that is drawn from Iall according
to some probability distribution ψ. An online algorithm A with advice in the dialog
model computes the output sequence Aτ(I) = (y1, . . . , yn) as follows. Assume that A
has so far read the advice string τ1 . . . τj−1. Upon receiving a request xi or an advice
bit τj, the algorithm either demands another advice bit from the oracle, or it produces the
output yi. This decision is made based on x1, . . . , xi, y1, . . . , yi−1, τ1, . . . , τj. Assume
A produces its output yi in round i after having read the advice string τ̂i of length di.
Then, the output yi is computed as a function of x1, . . . , xi, y1, . . . , yi−1, τ̂1, . . . , τ̂i. The
algorithm A is said to have an advice complexity of b(n) if, for every n and for any input
sequence I of length at most n, the total advice string τ = τ̂1 . . . τ̂n that A reads during
the computation of Aτ(I) has length at most b(n).

In this setting, we consider the bit string guessing problem. Since each string r
unambiguously corresponds to an input sequence Ir and vice versa, we will also
often speak of the “input string r” instead of the “input sequence Ir”.

Hence, in this setting, the set of all possible input instances of length n is the set
of all 2n binary strings of length n, and the adversary chooses a probability distri-
bution over these strings. The goal of an algorithm for the string guessing problem
is to minimize its cost, hence the number of incorrectly guessed bits, or, phrasing it
as a maximization problem, to maximize the number of correctly guessed bits. Let
us additionally define the number of correctly guessed bits of a string guessing
algorithm A on the input Ir as gainA(Ir) = n− cost(A(Ir)) for any input Ir ∈ Iall.
Since Ir is drawn from Iall according to some probability distribution ψ, gainA is
a random variable, i. e., a function that maps any input Ir ∈ Iall to a number of
correctly guessed bits gainA(Ir) ∈ {0, . . . , n}. When talking about the quality of
an algorithm A, we are interested in the expected value Eψ[gainA] of gainA with
respect to ψ, i. e., the expected number of correctly guessed bits of A when the
input for A is chosen from Iall according to ψ.

In this thesis, we only consider a special class of probability distributions, which
we call Ψ. In each distribution from Ψ, the adversary excludes a set Ĩ containing
k̃ strings from Iall (i. e., it assigns a probability of 0 to them) and draws the actual
input string r uniformly at random from the set I := Iall \ Ĩ of remaining strings,
with |I | = 2n − k̃ =: k. The size k̃ of the excluded set Ĩ is known to A in advance,
together with the fact that r is chosen from I uniformly at random, but the concrete
distribution is not. In other words, A does not know the excluded set Ĩ.

Since we constrain ourselves to this special class Ψ of probability distributions,
we can identify each set Ĩ with one unambiguous distribution ψ. Therefore, we
will write EĨ [gainA] instead of Eψ[gainA], whenever it aids comprehension.
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Since we will often consider prefixes or suffixes of strings, let us introduce some
helpful notation. For each string s of length n and every pair of natural numbers
i, jwith 1 ≤ i ≤ j ≤ n, we write [s]ji for the substring of s that starts at position i
and ends at position j, with i and j included. Hence, the notation ri for the i-th
bit of r that we already used above is actually a shorthand notation for [r]ii. As
a shorthand notation for the prefix of length j of a string s, we write [s]j instead
of [s]j1. As a shorthand notation for the suffix of s that starts at position i, we
use [s]i instead of [s]ni . Additionally, for j < i we define [s]ji = ε, where ε is the
empty string.

5.2 Monolog Model

Having settled these technicalities, let us start with the analysis of the monolog
model. This section is structured as follows. In Section 5.2.1, we present an upper
bound on the expected number of advice bits for 2-GUESS sufficient to obtain
the optimal achievable number of correctly guessed bits in expectation in the
setting we described in detail in Section 5.1. After describing the corresponding
2-GUESS algorithm in Section 5.2.1.1, we have to gather a few technical results
in Section 5.2.1.2 that we will need later for the analysis of the algorithm in
Section 5.2.1.3. Since the probabilistic adversary model does not allow for optimal
solutions, as we have already mentioned, we give a reasonable definition for the
optimality of online algorithms in the probabilistic setting in Section 5.2.1.4 and
show that the algorithm from Section 5.2.1.1 is optimal according to this definition.
We proceed by giving an almost matching lower bound in Section 5.2.2 and
conclude our considerations concerning the monolog model with a comparison of
the upper and the lower bound in Section 5.2.3.

5.2.1 Upper Bound

In this section, we present and analyze an algorithm Awith advice for the string
guessing problem with a probabilistic adversary that can only choose probability
distributions from the class Ψ. Let ψ ∈ Ψ be the distribution chosen by the
adversary, and let the set of excluded strings corresponding to ψ be Ĩ, containing
k̃ strings. Intuitively, the performance of A suffers with growing size of I, hence
with decreasing k̃. Recall that k̃ is known to A in advance, but the set of excluded
strings is not.

5.2.1.1 The Algorithm

In the first round,A is given the first request, consisting of the length n of the input
sequence. Knowing n and k̃, the algorithm A reads dlog

(
2n

k̃

)
e advice bits from the
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tape. These bits serve to communicate the set Ĩ of excluded strings to A. Since
there are

(
2n

k̃

)
different possibilities to choose k̃ out of 2n strings, dlog

(
2n

k̃

)
e advice

bits are sufficient for A to know the set I = Iall \ Ĩ that the actual input string is
drawn from uniformly at random.

In each round i with 1 ≤ i ≤ n, the algorithm A is asked to guess the i-th bit ri
of the input string r. The algorithm’s guess gi is dependent on the set Ĩ and the
feedback thatA got in rounds 2, . . . , i so far, consisting of the bits r1, . . . , ri−1. (An
obvious exception is round 1, when A did not get any feedback yet.)

Based on the set Ĩ and the feedback of rounds 2, . . . , i, one can gather some
information about the form of r and conclude that some of the strings in I certainly
do not match the to-be-guessed string r, namely those that do not have the pre-
fix [r]i−1. Let us call a string s a candidate for r if smight still be the to-be-guessed
string r from all that can be told from the set Ĩ and the feedback provided so far.
Of course, in the beginning of the execution, the set of these candidates is I . Then,
during the execution of the algorithm, the feedback can be used to narrow down
the set of candidates gradually, round after round.

To decide which bit to guess in round i, the algorithmA keeps track of the set Ci
of strings that are still candidates for r in round i. Due to the advice, A knows the
set Ĩ of excluded strings before it has to make the first guess, and sets C1 := Iall \ Ĩ .
Then, A has to guess the bit r1. It determines the bit that appears most often at
position 1 among all strings in C1 and outputs it.

In round i ≥ 2, when A is given the bit ri−1 (the one that A should have
guessed in round i− 1), A computes Ci from Ci−1 and ri−1. It excludes all strings
from Ci−1 that do not have the bit ri−1 at position i− 1. The strings that remain
are exactly those strings from I with the prefix [r]i−1. Hence, in each round i, the
set of remaining candidates is Ci = {s ∈ I | [s]i−1 = [r]i−1}. After that, A guesses
the bit ri depending on the set Ci. It examines the i-th position of all strings in Ci.
If the number of ones is at least |Ci|/2, then A outputs gi = 1, otherwise gi = 0.

Hence, in round i, the algorithm A always guesses the bit that is most likely to
be the bit ri.

5.2.1.2 Analysis of Total Hamming Weights

Before we can start with the actual analysis of the algorithm, we need a few
technical results.

In the following, let ω(k̃) be the Hamming weight of k̃, i. e., the number of
ones in the (shortest) binary representation of k̃ for all k̃ ∈ N≥0. Furthermore,
let ω̂(k̃) be the sum of the Hamming weights of all numbers from 0 to k̃ − 1,
i. e., ω̂(k̃) :=

∑k̃−1
i=0 ω(i) for all k̃ ∈ N≥1. We call ω̂(k̃) the total Hamming weight

of k̃. Additionally, let us define ω̂(0) = 0. We make the following observations
concerning the values ofω(k̃) and ω̂(k̃).
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Observation 5.3. For every n ∈ N≥0 and all i ∈ N≥1 with i ≤ 2n − 1, we have

ω(2n − i) +ω(i− 1) = n.

Proof. Let us pad all shortest binary representations of the numbers from 0 to 2n−1
from the left with zeros such that each string has length n. This does not affect the
number of ones in those strings. The binary representation of the number 2n − i

is the exact inverse of the binary representation of the number i − 1, i. e., one
can be obtained from the other by flipping each of the n bits. Hence, adding the
Hamming weight of 2n − i and i− 1 yieldsω(2n − i) +ω(i− 1) = n. 2

Observation 5.4. For every n ∈ N≥0, the total Hamming weight of 2n is

ω̂(2n) = n · 2n−1.

Proof. Let us again pad all shortest binary representations of the numbers from 0

to 2n − 1 from the left with zeros such that each string has length n. For any n, the
value of ω̂(2n) equals the total number of ones in all 2n binary strings of length n.
Clearly, these are exactly half of all these n · 2n bits, thus n · 2n−1 bits. 2

Observation 5.5. For every n ∈ N≥0, the total Hamming weight of 2n − 1 is

ω̂(2n − 1) = n · 2n−1 − n.

Proof. The total Hamming weight of 2n =: k̃+ 1 can be computed as ω̂(k̃+ 1) =

n·2n−1 according to Observation 5.4. To derive the total Hamming weight of k̃, the
number of ones in the binary representation of k̃ has to be subtracted from ω̂(k̃+1),
hence ω̂(k̃) = ω̂(k̃+ 1) − n = n · 2n−1 − n. 2

Observation 5.6. For every n ∈ N≥0, the total Hamming weight of 2n + 1 is

ω̂(2n + 1) = n · 2n−1 + 1.

Proof. The total Hamming weight of 2n =: k̃− 1 can be computed as ω̂(k̃− 1) =

n · 2n−1 according to Observation 5.4. To derive the total Hamming weight of k̃,
the number of ones in the binary representation of k̃−1 has to be added to ω̂(k̃−1),
hence ω̂(k̃) = ω̂(k̃− 1) + 1 = n · 2n−1 + 1. 2

Observation 5.7. For all k̃ ∈ N≥2, let n :=
⌈
log k̃

⌉
− 1. In other words, n is the

unambiguous natural number such that 2n + 1 ≤ k̃ ≤ 2n+1, and n ∈ N≥0. Hence,
k̃ = 2n + x for some x ∈ N≥1 with 1 ≤ x ≤ 2n. Then we have

ω̂(k̃) = ω̂(2n + x) = n · 2n−1 + x+ ω̂(x).
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Proof. We can rewrite the total Hamming weight of k̃ as

ω̂(k̃) = ω̂(2n + x) =

k̃−1∑
i=0

ω(i) =

2n−1∑
i=0

ω(i) +

k̃−1∑
i=2n

ω(i) = ω̂(2n) +

k̃−1∑
i=2n

ω(i).

We now have to analyze the sum on the right-hand side. It consists of k̃ − 2n =

x summands. All the shortest binary representations of the numbers 2n to k̃− 1
have n+1 positions, and the leftmost bit is one. The binary representations of these
numbers 2n, . . . , k̃− 1without the leftmost bits equal the binary representations
of the numbers 0, . . . , x− 1. Hence,

∑k̃−1
i=2n ω(i) = x+

∑x−1
i=0 ω(i) = x+ ω̂(x), and

thus ω̂(k̃) = ω̂(2n) + x+ ω̂(x). With Observation 5.4, the claim follows. 2

Observation 5.8. For all n, x ∈ N≥1 with x ≤ 2n, we have

ω̂(2n − x) = ω̂(2n) − x · n+ ω̂(x).

Proof. We use Observation 5.3 to make the following calculation.

ω̂(2n − x) = ω̂(2n) −ω(2n − 1) −ω(2n − 2) − . . .−ω(2n − x)

= ω̂(2n) −

x∑
i=1

ω(2n − i)

= ω̂(2n) −

(
x∑
i=1

n−ω(i− 1)

)

= ω̂(2n) − n · x+
x−1∑
i=0

ω(i)

= ω̂(2n) − n · x+ ω̂(x). 2

Observation 5.9. For all n, k ∈ N≥1 with k ≤ 2n and k̃ = 2n − k, we have

n · 2n−1 − ω̂(k̃)

2n − k̃
= n−

ω̂(k)

k
.

Proof. We make the following calculation, using Observation 5.4 for (5.1) and Ob-
servation 5.8 for (5.2).

n · 2n−1 − ω̂(k̃)

2n − k̃
=
ω̂(2n) − ω̂(2n − k)

k
(5.1)

=
ω̂(2n) − (ω̂(2n) − kn+ ω̂(k))

k
(5.2)

=
kn− ω̂(k)

k

= n−
ω̂(k)

k
. 2
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Observation 5.10. For eachm, ` ∈ N≥1 with ` odd, we have

ω̂(2m · `)
2m

=
m

2
· `+ ω̂(`).

Proof. We consider the binary representations of the numbers 0, . . . , ω̂(2m · `).
Let us again pad all these binary representations with zeros such that they have
length n each, for some n ≥ m + log `. We put them into ascending order and
divide them into ` blocks, such that block i consists of the representations of the
numbers i · 2m, . . . , (i+ 1) · 2m − 1, for 0 ≤ i ≤ `− 1. Moreover, we consider the
suffixes of lengthm and the prefixes of length n−m separately. In each block i,
each such prefix equals the binary representation of length n−m of the number i.
Hence, the prefixes in block iwith 0 ≤ i ≤ `− 1 contain 2m ·ω(i) ones in total. All
prefixes together then contain 2m ·

∑`−1
i=0ω(i) = 2m · ω̂(`) ones.

Let us now consider the suffixes of length m of the binary representations of
the numbers in block i. Each such suffix that corresponds to a number i · 2m + j

with 0 ≤ j ≤ 2m − 1 equals the binary representation of lengthm of the number j.
Hence, the suffixes in block i contain ω(0) + . . . +ω(2m − 1) = ω̂(2m) ones in
total, and thus the suffixes altogether contain ` · ω̂(2m) ones. We obtain

ω̂(2m · `) = 2m · ω̂(`) + ` · ω̂(2m) (5.3)

and, therefore,

ω̂(2m · `)
2m

=
2m · ω̂(`) + ` · ω̂(2m)

2m
= ω̂(`) + ` · m · 2

m−1

2m
= ω̂(`) + ` · m

2
,

using (5.3) and Observation 5.4. 2

Observation 5.7 gives us the possibility to derive the following recursive formula
for ω̂(k̃).

Lemma 5.11. For all k̃ ∈ N≥0, we have

ω̂(0) = 0,

ω̂(1) = 0,

ω̂(2k̃) = 2 · ω̂(k̃) + k̃,

ω̂(2k̃+ 1) = ω̂(k̃) + ω̂(k̃+ 1) + k̃.

Proof. We prove the claim by induction on k̃. By the definition of ω̂, for k̃ = 0,
we have ω̂(0) = 0, which coincides with 2 · ω̂(0) + 0, and ω̂(1) = 0, which
coincides with ω̂(0) + ω̂(1) + 0. In addition, for k̃ = 1, we have ω̂(2) = 1, which
coincides with 2 · ω̂(1) + 1 = 2 · 0 + 1, and ω̂(3) = 2, which coincides with
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ω̂(1) + ω̂(2) + 1 = 0 + 1 + 1. For any given k̃ = 2x + y with 1 ≤ y ≤ 2x, assume
that the claim holds for y. We will show that it then also holds for 2k̃ and 2k̃+ 1.

First, we analyze the case for even values 2k̃. We can write 2k̃ as 2k̃ = 2x+1+ 2y.
As 1 ≤ y ≤ 2x, we have 2 ≤ 2y ≤ 2x+1 and 2x+1 + 2 ≤ 2k̃ ≤ 2x+2. Hence, we can
apply Observation 5.7 to ω̂(2k̃) and calculate it as

ω̂(2k̃) = ω̂(2x+1 + 2y)

= (x+ 1) · 2x + 2y+ ω̂(2y)

= 2 · x · 2x−1 + 2x + 2y+ 2 ω̂(y) + y (5.4)

= 2 · (x · 2x−1 + y+ ω̂(y)) + 2x + y

= 2 · ω̂(k̃) + k̃,

where we used the induction hypothesis ω̂(2y) = 2 · ω̂(y) + y for (5.4).
Now let us consider odd values 2k̃+1. We write 2k̃+1 as 2k̃+1 = 2x+1+2y+1.

Since 1 ≤ y ≤ 2x, we have 3 ≤ 2y+1 ≤ 2x+1+1 and 2x+1+3 ≤ 2k̃+1 ≤ 2x+2+1.
We distinguish two cases, depending on the value of k̃.

Case 1. k̃ ≤ 2x+1 − 1.
In this case, we can derive that y ≤ 2x − 1 and thus 2y+ 1 ≤ 2x+1 − 1; in addition,
we have k̃+ 1 ≤ 2x+2 − 1. Applying Observation 5.7 for ω̂(2k̃+ 1) yields

ω̂(2k̃+ 1) = ω̂(2x+1 + 2y+ 1)

= (x+ 1) · 2x + 2y+ 1+ ω̂(2y+ 1)

= 2 · x · 2x−1 + 2x + 2y+ 1+ ω̂(y) + ω̂(y+ 1) + y (5.5)

= (x · 2x−1 + y+ ω̂(y)) + (x · 2x−1 + y+ 1+ ω̂(y+ 1)) + 2x + y

= ω̂(k̃) + ω̂(k̃+ 1) + k̃,

where we used the induction hypothesis ω̂(2y+1) = ω̂(y)+ ω̂(y+1)+y for (5.5).

Case 2. k̃ = 2x+1.

In this case, we derive that y = 2x and 2k̃ + 1 = 2x+2 + 1. We cannot apply
Observation 5.7 for ω̂(2k̃ + 1) here, since the constraint 2k̃ + 1 ≤ 2x+2 does not
hold. Instead, we calculate ω̂(2k̃+ 1) as follows.

ω̂(2k̃+ 1) = ω̂(2x+2 + 1)

= (x+ 2) · 2x+1 + 1 (5.6)

= (x+ 1) · 2x+1 + 2x+1 + 1
= (x+ 1) · 2x + (x+ 1) · 2x + 1+ k̃
= ω̂(2x+1) + ω̂(2x+1 + 1) + k̃ (5.7)

= ω̂(k̃) + ω̂(k̃+ 1) + k̃,
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where we used Observation 5.6 for (5.6) and (5.7).

As all possible cases for k̃ are covered, this completes the proof for odd values 2k̃+1;
thus, we are done. 2

Corollary 5.12. For all k̃ ∈ N≥0, we have

ω̂(k̃) =
⌊
k̃
2

⌋
+ ω̂

(⌊
k̃
2

⌋)
+ ω̂

(⌈
k̃
2

⌉)
.

Proof. This follows directly from Lemma 5.11. 2

Lemma 5.13. For all k̃ ∈ N≥0, we have

ω̂(k̃) ≤ k̃
2
· log k̃.

Proof. We prove the claim by induction on k̃. It clearly holds for all k̃ ≤ 3. Now
let us assume that the claim holds for k̃ and k̃+ 1. We show that it then also holds
for 2k̃ and 2k̃+ 1. We have

ω̂(2k̃) = 2 ω̂(k̃) + k̃ (5.8)

≤ 2 · k̃
2
· log k̃+ k̃ (5.9)

= k̃ ·
(
log k̃+ 1

)
= k̃ · log(2k̃)

=
2k̃

2
· log(2k̃),

where (5.8) holds due to Lemma 5.11 and (5.9) is the induction hypothesis for k̃.
Furthermore,

ω̂(2k̃+ 1) = ω̂(k̃) + ω̂(k̃+ 1) + k̃ (5.10)

≤ k̃/2 · log k̃+ (k̃+ 1)/2 · log(k̃+ 1) + k̃ (5.11)

= 0.5 ·
(
k̃ · log k̃+ (k̃+ 1) · log(k̃+ 1) + 2k̃

)
= 0.5 ·

(
k̃ · log k̃+ k̃+ k̃ · log(k̃+ 1) + k̃+ log(k̃+ 1)

)
= 0.5 ·

(
k̃ · (log k̃+ 1) + k̃ · (log(k̃+ 1) + 1) + log(k̃+ 1)

)
= 0.5 ·

(
k̃ · log(2k̃) + k̃ · log(2k̃+ 2) + log(k̃+ 1)

)
= 0.5 ·

(
k̃ · (log(2k̃) + log(2k̃+ 2)) + log(k̃+ 1)

)
≤ 0.5 ·

(
k̃ · (2 · log(2k̃+ 1)) + log(k̃+ 1)

)
(5.12)

≤ 0.5 ·
(
2k̃ · log(2k̃+ 1) + log(2k̃+ 1)

)
= 0.5 ·

(
(2k̃+ 1) · log(2k̃+ 1)

)
,
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1, 0

2, 0 2, 1 3, 0 3, 1

4, 0 4, 1 5, 0 5, 1 4, 2 4, 3 5, 2 5, 3 6, 0 6, 1 7, 0 7, 1 6, 2 6, 3 7, 2 7, 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.1. Graphical illustration of the induction proof of Lemma 5.14. Each vertex of the
tree represents an appropriate pair (k̃, j). If the claim holds for such a pair (k̃, j) and this
induces by induction that the claim also holds for another appropriate pair (k̃ ′, j ′), this
is indicated by an edge from (k̃, j) to (k̃ ′, j ′). Hence, each vertex can have at most four
children, namely (2k̃, 2j), (2k̃, 2j + 1), (2k̃ + 1, 2j), and (2k̃ + 1, 2j + 1). Note that not every
vertex has exactly four children, because it might be that some of them are not appropriate,
which is indicated in the graph by the light blue colored vertices.

where (5.10) again holds due to Lemma 5.11 again, (5.11) is the induction hy-
pothesis for k̃ + 1 and k̃, and (5.12) holds due to the concavity of the logarithm
function. 2

Lemma 5.14. For all k̃, j ∈ N≥0 with j ≤
⌊
k̃/2
⌋
, we have

ω̂(j) + ω̂(k̃− j) ≤ ω̂(k̃) − j.

Proof. Let us call a pair (k̃, j) appropriate if it satisfies 0 ≤ j ≤
⌊
k̃/2
⌋
. We prove

the claim by induction on j and k̃. It can be easily verified that it holds for all
appropriate pairs (k̃, j) with k̃ ≤ 4 and j ≤ 2. Let us assume that the claim holds
for all appropriate pairs (k̃ ′, j ′) with k̃ ′ ≤ k̃ and j ′ ≤ j. We show that the claim
then also holds for all appropriate pairs (2k̃, 2j), (2k̃, 2j + 1), (2k̃ + 1, 2j), and
(2k̃ + 1, 2j + 1). Hence, in the following, we distinguish four cases. In each of
these cases, we use the induction hypothesis and Lemma 5.11 to obtain the desired
result. The structure of the induction is shown in Figure 5.1.

Case 1. (2k̃, 2j).

In this case, we use the fact that, due to the induction hypothesis, ω̂(j)+ω̂(k̃− j) ≤
ω̂(k̃) − j holds for all appropriate pairs (k̃, j), i. e., for all j and k̃ with j ≤

⌊
k̃/2
⌋
.

Thus,

ω̂(2j) + ω̂
(
2k̃− 2j

)
= j+ ω̂(j) + ω̂(j) + k̃− j+ ω̂(k̃− j) + ω̂(k̃− j)

= k̃+ ω̂(j) + ω̂(k̃− j) + ω̂(j) + ω̂(k̃− j)

≤ k̃+ 2 ω̂(k̃) − 2j

= ω̂(2k̃) − 2j.
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Case 2. (2k̃, 2j+ 1).

Here, we use the fact that, due to the induction hypothesis, ω̂(j) + ω̂(k̃ − j) ≤
ω̂(k̃) − j and ω̂(j + 1) + ω̂(k̃ − j − 1) ≤ ω̂(k̃) − (j + 1) hold for all j and k̃

satisfying j ≤
⌊
k̃/2
⌋

and j+ 1 ≤
⌊
k̃/2
⌋
, respectively, and hence j ≤

⌊
k̃/2
⌋
− 1. We

obtain

ω̂(2j+ 1) + ω̂
(
2k̃− 2j− 1

)
= ω̂(2j+ 1) + ω̂(2(k̃− j− 1) + 1)

= j+ ω̂(j) + ω̂(j+ 1)

+ k̃− j− 1+ ω̂(k̃− j− 1) + ω̂(k̃− j)

= k̃− 1+ ω̂(j) + ω̂(k̃− j) + ω̂(k̃− j− 1) + ω̂(j+ 1)

≤ k̃− 1+ ω̂(k̃) − j+ ω̂(k̃) − j− 1

= ω̂(2k̃) − 2j− 2

< ω̂(2k̃) − 2j− 1.

In this case, it remains to show that the claim also holds for j =
⌊
k̃/2
⌋

when k̃ is
odd, because this is the only case that is not covered yet. Hence, we know that
j = (k̃− 1)/2 and therefore k̃ = 2j + 1. Doing some simple transformations, we
obtain

ω̂(2j+ 1) + ω̂(2k̃− 2j− 1) = ω̂(k̃) + ω̂(2k̃− (k̃− 1) − 1)

= 2 ω̂(k̃)

= ω̂(2k̃) − k̃

= ω̂(2k̃) − 2j− 1.

Case 3. (2k̃+ 1, 2j).

Due to the induction hypothesis, we have ω̂(j) + ω̂(k̃ − j) ≤ ω̂(k̃) − j, for all
appropriate pairs (k̃, j), and ω̂(j) + ω̂(k̃− j+ 1) ≤ ω̂(k̃+ 1) − j, for all appropriate
pairs (k̃+ 1, j), hence for all j and k̃with j ≤

⌊
k̃/2
⌋

in particular. This leads to

ω̂(2j) + ω̂
(
2k̃− 2j+ 1

)
= j+ ω̂(j) + ω̂(j) + k̃− j+ ω̂(k̃− j) + ω̂(k̃− j+ 1)

= k̃+ ω̂(j) + ω̂(k̃− j) + ω̂(j) + ω̂(k̃− j+ 1)

≤ k̃+ ω̂(k̃) − j+ ω̂(k̃+ 1) − j

= ω̂(2k̃+ 1) − 2j.

Case 4. (2k̃+ 1, 2j+ 1).

For this last case, we use the fact that, due to the induction hypothesis, we have
ω̂(j)+ω̂(k̃− j) ≤ ω̂(k̃)− j, for all appropriate pairs (k̃, j), and ω̂(j+1)+ω̂(k̃− j) ≤
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ω̂(k̃+ 1) − (j+ 1), for all appropriate pairs (k̃+ 1, j+ 1). Thus, both inequalities
hold for all j and k̃with j ≤

⌊
(k̃− 1)/2

⌋
in particular. Hence,

ω̂(2j+ 1) + ω̂
(
2k̃− 2j

)
= j+ ω̂(j) + ω̂(j+ 1) + k̃− j+ ω̂(k̃− j) + ω̂(k̃− j)

= k̃+ ω̂(j) + ω̂(k̃− j) + ω̂(j+ 1) + ω̂(k̃− j)

≤ k̃+ ω̂(k̃) − j+ ω̂(k̃+ 1) − (j+ 1)

= ω̂(2k̃+ 1) − 2j− 1.

It remains to show that each appropriate pair is “reached” by the induction. To
do so, we prove that every appropriate pair (k̃, j) has an appropriate pair as its
parent in the tree of Figure 5.1. From the way we constructed the tree, it is obvious
that the parent of every pair (k̃, j) is

(⌊
k̃/2
⌋
, bj/2c

)
. Since (k̃, j) is appropriate, we

have j ≤
⌊
k̃/2
⌋
, and thus

bj/2c ≤

⌊⌊
k̃/2
⌋

2

⌋
.

This is exactly the definition of
(⌊
k̃/2
⌋
, bj/2c

)
being an appropriate pair. 2

Corollary 5.15. For all k̃, j ∈ N≥0 with j ≤
⌊
k̃/2
⌋
, the term j+ ω̂(j)+ ω̂(k̃− j) attains

its maximum for j =
⌊
k̃/2
⌋

and for j = 0. This maximum value is

max
0≤j≤b k̃

2 c
{j+ ω̂(j) + ω̂(k̃− j)} = ω̂(k̃).

Proof. Due to Lemma 5.14, the above term never exceeds the value ω̂(k̃), i. e., for
all j and k̃ with 0 ≤ j ≤

⌊
k̃/2
⌋
, we have ω̂(j) + ω̂(k̃ − j) + j ≤ ω̂(k̃). Then again,

due to Corollary 5.12, the value ω̂(k̃) is actually attained by setting j :=
⌊
k̃/2
⌋

since
ω̂
(⌊
k̃/2
⌋)

+ω̂
(⌈
k̃/2
⌉)

+
⌊
k̃/2
⌋
= ω̂(k̃). The fact that the value ω̂(k̃) is also attained

for j = 0 can easily be seen since 0+ ω̂(0) + ω̂(k̃− 0) = 0+ ω̂(k̃) = ω̂(k̃). 2

5.2.1.3 Analysis of the Algorithm

Having provided all the technical results we need, we finally want to analyze the
expected number of correctly guessed bits of the online algorithm Awith advice
from Section 5.2.1.1.

Recall that the input string r for A is drawn uniformly at random from a set of
instances I = Iall\Ĩ that contains all strings of length n except for k̃ strings that are
contained in Ĩ. The number gainA of bits that A guesses correctly on its input is a
discrete random variable that can attain any integer value between 0 and n. Also
recall that we can identify each set Ĩ of excluded strings with one unambiguous
distribution ψ from Ψ and that therefore the expected gain of A is EĨ [gainA] =
Eψ[gainA], when the set of excluded strings is Ĩ with the corresponding probability
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χ(n − 1, j) χ(n − 1, k̃ − j)

2n−1−j
2n−k̃

2n−1−(k̃−j)

2n−k̃

Figure 5.2. The expected number χ(n, k̃) of correctly guessed bits on a worst-case set of
instances consisting of strings of length n when k̃ strings are excluded. The root of the
tree represents the guess of the first bit. Taking the left branch corresponds to guessing the
bit r1 correctly, which happens with probability (2n−1 − j)/(2n − k̃) if j excluded strings
start with the bit that occurs less often at position 1 among the excluded strings. The
number of correctly guessed bits in this case is 1 plus the expected number χ(n − 1, j) of
correctly guessed bits on an instance consisting of all strings of length n − 1 except for
j excluded strings. Taking the right branch corresponds to making a wrong guess for r1,
which happens with probability (2n−1−(k̃− j))/(2n− k̃). The expected number of correctly
guessed bits in this case can be calculated recursively as the expected number χ(n−1, k̃− j)
of correctly guessed bits on an instance of length n − 1with k̃ − j excluded strings.

distribution ψ. We define the term χ(n, k̃) to be the expected number of bits that
A guesses correctly when r is drawn from a worst-case instance set I = Iall \ Ĩ
that contains k = 2n − k̃ strings of length n. Hence,

χ(n, k̃) := min
Ĩ⊆Iall,

|Ĩ|=k̃

EĨ [gainA].

In what follows, we analyze the term χ(n, k̃).
The value χ(n, k̃) can be calculated recursively according to the tree shown in

Figure 5.2. To see this, recall that r = r1 . . . rn is the binary string that is chosen
uniformly at random from I as the input for our algorithm A. Also recall that the
bit that A outputs in round i is denoted by gi. Hence, A’s guess for the whole bit
string is g1 . . . gn.

Let us define k̃1,0 to be the number of excluded strings that have a zero at
position 1 and k̃1,1 = k̃ − k̃1,0 to be the number of excluded strings that have
a one at position 1. We know that 0 ≤ k̃1,0, k̃1,1 ≤ k̃. Let j := min{k̃1,0, k̃1,1}.
According to its definition in Section 5.2.1.1, A chooses as its guess g1 the bit that
appears more often at position 1 among the strings in C1. Hence, we know that
j excluded strings have the bit g1 and k̃ − j excluded strings have the bit 1 − g1
at position 1. On the other hand, there are 2n−1 − j strings in C1 whose first bit
is g1 and 2n−1 − (k̃ − j) strings whose first bit is 1 − g1. The probability that
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g1 = r1 is hence (2n−1 − j)/(2n − k̃). If A guesses g1 correctly, A computes C2 by
removing the strings from C1 that start with 1 − r1 = 1 − g1. All binary strings
starting with 1 − g1 remain as candidates except for j strings from Ĩ. These are
2n−1 − j strings. In this case, the expected number of correctly guessed bits on the
remaining instance can be calculated as χ(n− 1, j).

If, on the other hand,Amakes the wrong guess in round 1, which happens with
probability (2n−1 − (k̃ − j))/(2n − k̃), the 2n−1 strings starting with 1 − r1 = g1
are excluded from C1. Then C2 contains all strings of length n that start with r1 =
1−g1 except for the k̃−j strings of Ĩ . Hence, all binary strings remain as candidates
for r that start with 1− g1, except for k̃− j excluded strings from Ĩ. In total, these
are 2n−1 − (k̃− j) strings. Hence, the expected number of correctly guessed bits
on this remaining instance can be calculated recursively as χ(n− 1, k̃− j).

Now, considering the one additional correctly guessed bit every time we take
a left branch in the tree (which complies with guessing the corresponding bit
correctly), we obtain the following recursive formula for χ(n, k̃):

χ(n, k̃) = min
0≤j≤b k̃

2 c

{
2n−1 − j

2n − k̃
(1+ χ(n− 1, j)) +

2n−1 − (k̃− j)

2n − k̃
χ(n− 1, k̃− j)

}
,

(5.13)
for all n ≥ 1 and all k̃ ≥ 0, and χ(0, k̃) = 0 for all k̃ ≥ 0.

Lemma 5.16. Let n ∈ N and let I = Iall \ Ĩ be a worst-case set of instances that
contains all strings of length n except for 0 ≤ k̃ ≤ 2n − 1 strings that are contained in Ĩ .
Furthermore, letA be an online algorithm with advice that chooses as its guess gi a bit that
appears in at least half of the strings in Ci at position i in every round i, where 1 ≤ i ≤ n.
Then the expected number of correctly guessed bits of A on I in the monolog model is
given by

χ(n, k̃) =
n · 2n−1 − ω̂(k̃)

2n − k̃
. (5.14)

Proof. We prove (5.14) by induction n and k̃. We validate that (5.14) holds for
n = 1 and all k̃with k̃ ≤ 2n − 1 = 1. If k̃ = 0, according to (5.13), we have

χ(1, 0) = min
0≤j≤0

{
20 − j

21 − 0
· (1+ χ(0, j)) + 20 − (0− j)

21 − 0
· χ(0, 0− j)

}
=
1− 0

2
· (1+ χ(0, 0)) + 1− 0

2
· χ(0, 0)

=
1

2
· 1+ 1

2
· 0

=
1

2
,
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and according to (5.14), this coincides with

n · 2n−1 − ω̂(k̃)

2n − k̃
=
1 · 20 − ω̂(0)

21 − 0
=
1− 0

2
=
1

2
.

If k̃ = 1, according to (5.13), we have

χ(1, 1) = min
0≤j≤0

{
20 − j

21 − 1
· (1+ χ(0, j)) + 20 − (1− j)

21 − 1
· χ(0, 1− j)

}
=
1− 0

1
· (1+ χ(0, 0)) + 1− 1

1
· χ(0, 1)

= 1 · 1+ 0
= 1,

and according to (5.14), this coincides with

n · 2n−1 − ω̂(k̃)

2n − k̃
=
1 · 20 − ω̂(1)

21 − 1
=
1− 0

1
= 1.

Now that we have proven the base case, let us assume as an induction hypothe-
sis that

χ(n− 1, j) =
(n− 1)2n−2 − ω̂(j)

2n−1 − j
, for all j ≤ 2n−1 − 1, and (5.15)

χ(n− 1, k̃− j) =
(n− 1)2n−2 − ω̂(k̃− j)

2n−1 − (k̃− j)
, for all k̃− j ≤ 2n−1 − 1. (5.16)

Next, we will show that (5.14) also holds for all k̃ ≤ 2n − 1. Before we do so, let us
calculate the two terms of the sum in (5.13). Due to the induction hypothesis (5.15),
we have

2n−1 − j

2n − k̃
· (1+ χ(n− 1, j)) =

2n−1 − j

2n − k̃
·
(
1+

(n− 1)2n−2 − ω̂(j)

2n−1 − j

)
=
2n−1 − j

2n − k̃
· 2
n−1 − j+ (n− 1)2n−2 − ω̂(j)

2n−1 − j
,

yielding

2n−1 − j

2n − k̃
· (1+ χ(n− 1, j)) =

2n−1 − j+ (n− 1)2n−2 − ω̂(j)

2n − k̃
. (5.17)

Similarly, using (5.16), we obtain

2n−1 − (k̃− j)

2n − k̃
· χ(n− 1, k̃− j) =

(n− 1)2n−2 − ω̂(k̃− j)

2n − k̃
. (5.18)
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Now we can analyze χ(n, k̃) for k̃ ≤ 2n − 2. We have

χ(n, k̃) = min
0≤j≤b k̃

2 c

{
2n−1 − j

2n − k̃
(1+ χ(n− 1, j)) +

2n−1 − (k̃− j)

2n − k̃
χ(n− 1, k̃− j)

}
= min
0≤j≤b k̃

2 c

{
2n−1 − j+ (n− 1)2n−2 − ω̂(j)

2n − k̃
+

(n− 1)2n−2 − ω̂(k̃− j)

2n − k̃

}
(5.19)

= min
0≤j≤b k̃

2 c

{
2n−1 ·

(
1+ n−1

2
+ n−1

2

)
− ω̂(k̃− j) − ω̂(j) − j

2n − k̃

}

= min
0≤j≤b k̃

2 c

{
n · 2n−1 −

(
ω̂(j) + ω̂(k̃− j) + j

)
2n − k̃

}

=
n · 2n−1 − max0≤j≤bk̃/2c

{
ω̂(j) + ω̂(k̃− j) + j

}
2n − k̃

=
n · 2n−1 − ω̂(k̃)

2n − k̃
, (5.20)

where we used (5.17) and (5.18) for (5.19), and Corollary 5.15 for (5.20).
This only proves (5.14) for k̃ = (k̃ − j) + j ≤ 2 · (2n−1 − 1) = 2n − 2 since

we used (5.15) and (5.16) in the proof, which require both j and k̃ − j to be at
most 2n−1 − 1. For k̃ = 2n − 1, we make the following considerations. All strings
are excluded except for one, r, and thusA knows r and can guess each bit correctly;
hence, χ(n, 2n − 1) = n. Applying Observation 5.5 yields

n · 2n−1 − ω̂(k̃)

2n − k̃
=
n · 2n−1 − ω̂(2n − 1)

2n − k̃
=
n · 2n−1 −

(
n · 2n−1 − n

)
2n − (2n − 1)

= n.

Therefore, the claim (5.14) holds for all k̃ and nwith k̃ ≤ 2n − 1. 2

Let us reason about the meaning of what we have just proven. We have seen
that we do not know exactly how the tree representing the expected number of
correctly guessed bits per round looks like. But we know that the number of
correctly guessed bits of A in round i is smallest when all strings from Ĩ that have
the prefix [r]i−1 have the same bit at position i, or the number of strings from Ĩ
with a one and the number of those with a zero at position i differ by at most 1.

To explain this more formally, recall the definition of the set of candidates Ci =
{s ∈ I | [s]i−1 = [r]i−1}, and let us define the set C̃i := {s ∈ Ĩ | [s]i−1 = [r]i−1}

with |C̃i| := k̃i. Let the number of strings from C̃i that have a zero at position i
be k̃i,0 and the number of those that have a one at position i be k̃i,1. Also, let
ji := min{k̃i,0, k̃i,1} for 1 ≤ i ≤ n.
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The astonishing result of this proof, combined with Corollary 5.15, is that the
worst-case expected number of correctly guessed bits of A occurs if the function
ω̂(ji) + ω̂(k̃i − ji) + ji attains is maximum in each round i. According to Corol-
lary 5.15, this is the case for ji =

⌊
k̃i/2

⌋
and ji = 0. Hence, the expected number

of correctly guessed bits of A is minimal if, for each iwith 1 ≤ i ≤ n,

(a)
⌊
k̃i/2

⌋
excluded strings have a one and

⌈
k̃i/2

⌉
strings have a zero at posi-

tion i (or vice versa) or

(b) all excluded strings have a one and none have a zero at position i (or vice
versa).

Theorem 5.17. In the monolog model, given a probabilistic adversary that excludes the
set Ĩ containing k̃ strings of length n from the set Iall of possible strings and chooses
one of the remaining strings from I = Iall \ Ĩ uniformly at random, there is an online
algorithm A with advice for the bit string guessing problem with a probabilistic adversary
that guesses

n · 2n−1 − ω̂(k̃)

2n − k̃

bits correctly and thus at most
ω̂(k)

k

bits incorrectly in expectation, using
⌈

log
(
2n

k̃

)⌉
advice bits.

Proof. The number of advice bits needed is indicated in Section 5.2.1.1 in the
description of algorithm A, i. e., A is told the set Ĩ. The number of correctly
guessed bits follows from Lemma 5.16. Using Observation 5.9, we can derive the
expected number of incorrectly guessed bits as

n−
n · 2n−1 − ω̂(k̃)

2n − k̃
= n−

(
n−

ω̂(k)

k

)
=
ω̂(k)

k
.

2

Corollary 5.18. For k̃ = 0 excluded strings, the expected number of correctly guessed
bits of A is n/2, while A uses no advice bits at all.

Proof. Plugging k̃ = 0 into Theorem 5.17, we obtain⌈
log
(
2n

0

)⌉
= log(1) = 0

as the number of advice bits and

χ(n, 0) =
n · 2n−1 − ω̂(0)

2n − 0
=
n · 2n−1

2n
=
n

2

as the expected number of correctly guessed bits. 2
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The previous corollary states that if each bit is 0 or 1 with probability exactly 1/2
and A does not get any advice, it guesses half of the bits correctly in expectation,
which is in accordance with our intuition.

Corollary 5.19. For one excluded string (k̃ = 1), the expected number of correctly
guessed bits of A is n/2 · (1+ 1/(2n − 1)), while A uses n advice bits.

Proof. Plugging k̃ = 1 into Theorem 5.17, we obtain⌈
log
(
2n

1

)⌉
= log(2n) = n

as the number of advice bits and

χ(n, 1) =
n · 2n−1 − ω̂(1)

2n − 1
=
n · 2n−1

2n − 1
=
n · 2n−1

2n
· 2n

2n − 1
=
n

2
·
(
1+

1

2n − 1

)
as the expected number of correctly guessed bits. 2

Corollary 5.20. For k̃ = 2n − 1 excluded strings, the expected number of correctly
guessed bits of A is n, while A uses n advice bits.

Proof. Plugging k̃ = 2n − 1 into Theorem 5.17, we obtain⌈
log
(

2n

2n − 1

)⌉
= log(2n) = n

as the number of advice bits and

χ(n, 2n − 1) =
n · 2n−1 − ω̂(2n − 1)

2n − 2n + 1
=
n · 2n−1 − n · 2n−1 + n

1
= n

as the expected number of correctly guessed bits. 2

In this last case of k̃ = 2n − 1 excluded strings in Corollary 5.20, the instance
set from which the input is chosen randomly has size 1. This corresponds to the
classical advice model, in which the adversary can only choose the input string
for the algorithm, without any randomness being involved. This case has already
been analyzed by Böckenhauer et al. [BHK+14], who showed that n advice bits
are necessary and sufficient to be optimal. As the oracle knows the input string r,
it can write r as the advice string onto the tape, and it is easy to see that there is
an optimal algorithm reading these n advice bits that is optimal. Conversely, any
algorithm reading b < n advice bits cannot be optimal on all input strings, because
there are 2n different inputs and 2b < 2n advice strings, and thus the oracle has to
give the same advice string to the algorithm for two different inputs. Since we can
view an algorithm with a fixed advice string as a deterministic algorithm and this
algorithm behaves exactly the same on two different input strings, it cannot be
optimal on both of them. Hence, any algorithm needs at least n advice bits to be
optimal.
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5.2.1.4 Optimality

In this section, we prove that the algorithm Awith advice that we introduced is
optimal. To this end, we have to define the term “optimality” in the setting of
a probabilistic adversary. Note that the question whether or not an algorithm is
optimal depends solely on the quality of the computed solution and not on any
quantitive aspects of A like the number of advice bits used, the running time, or
the space complexity.

Definition 5.21. Consider an online minimization problem P and an online algorithm A
with advice playing against a probabilistic adversary. Let Iall be the set of instances from
which the input for A is picked according to a certain probability distribution φ : Iall →
[0, 1]. Algorithm A is called φ-optimal for P if there is no algorithm B solving P with
a smaller expected cost with respect to φ than A, i. e., Eφ[gainA] ≤ Eφ[gainB] for all
algorithms B.

The algorithm A is calledΦ-optimal for P if it is φ-optimal for all probability distribu-
tions φ ∈ Φ, i. e., Eφ[gainA] ≤ Eφ[gainB] for all algorithms B and all φ ∈ Φ.

We defined Φ-optimality for general probability distributions, but from now on,
we will constrain ourselves to the class Ψ of probability distributions we defined
in the beginning of the chapter.

Recall the definition of the set Ci of candidates that we gave in Section 5.2.1.1;
we defined Ci to be the set of strings from I that might still be the to-be-guessed
string r in round i, according to the set I and the prefix [r]i−1 of r of length i− 1.
The following lemma states that an algorithm is Ψ-optimal if and only if, in each
round i, it chooses a bit that occurs in at least half of the strings in Ci at position i.

Lemma 5.22. In the monolog model, an online algorithm for the bit string guessing
problem with a probabilistic adversary that excludes k̃ strings from an instance consisting
of 2n strings of length n is Ψ-optimal if and only if it chooses its guess gi from the set

arg max
si

{
|{s ∈ Ci | si = 0}|, |{s ∈ Ci | si = 1}|

}
in each round i.

Proof. Let Ĩ be the set of excluded strings corresponding to the probability distribu-
tionψ ∈ Ψ chosen by the adversary. Let us consider a set of input strings I = Iall\Ĩ
that consists of all strings of length n except for the k̃ excluded strings from Ĩ.
Furthermore, consider an arbitrary but fixed algorithm A that chooses its guess gi
from arg maxsi

{
|{s ∈ Ci | si = 0}|, |{s ∈ Ci | si = 1}|

}
in each round i, and an

algorithm B whose output differs from A’s output in round i for some arbitrary
but fixed i. We show that the expected number of correctly guessed bits of B on I
cannot exceed the expected number of correctly guessed bits of A on I. It suffices
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to show that the expected number of correctly guessed bits by B in this round i
cannot be larger than those of A. This is because, independent of the algorithms’
guesses in round i, the same strings are removed from the set of remaining can-
didates, hence the initial situation in round i+ 1 is the same for both algorithms,
and all following decisions in subsequent rounds are independent of round i.

Since the outputs ofA and B differ in round i, we know that B’s guess in round i
is 1− gi, i. e., the bit that appears less often (or at most with the same abundance
as gi). Let us define oi ≥ |Ci|/2 to be the number of occurrences of the bit gi at
position i among the strings in Ci and õi ≤ |Ci|/2 the number of occurrences of
1−gi. If oi = õi = |Ci|/2, the expected number of correctly guessed bits in round i
is the same for both A and B. It gets more interesting when õi < oi and thus
õi < |Ci|/2. Then the expected number of correctly guessed bits of A in round i
can be calculated as

Pr(ri = gi) · 1+ Pr(ri = 1− gi) · 0 =
oi

|Ci|
>

|Ci|/2

|Ci|
=
1

2
,

and, analogously, the expected number of correctly guessed bits of B in round i is

Pr(ri = 1− gi) · 1+ Pr(ri = gi) · 0 =
õi

|Ci|
<

|Ci|/2

|Ci|
=
1

2
.

We have seen that, only if both bits occur equally often in round i, both possible
guesses lead to the same expected number of correctly guessed bits for round i. In
such rounds any algorithm makes an optimal guess. On the other hand, we know
that, in each round i in which one bit occurs more often than the other one among
the strings in Ci, any algorithm has to guess the bit with larger occurrence to be
Ψ-optimal. Hence, in such rounds, any algorithm that makes a different guess
than A cannot be optimal. We conclude that Amust be ψ-optimal with respect to
all probability distributions ψ ∈ Ψ, and thus A is Ψ-optimal. Since we defined A
to be an arbitrary algorithm that chooses its guess in round i from arg maxsi

{
|{s ∈

Ci | si = 0}|, |{s ∈ Ci | si = 1}|
}

, any algorithm with this property is Ψ-optimal. 2

Theorem 5.23. Algorithm A from Section 5.2.1.1 is Ψ-optimal for 2-GUESS in the
monolog model with a probabilistic adversary that excludes k̃ strings from an instance set
consisting of 2n strings of length n. Hence, the expected number of correctly guessed bits
of any Ψ-optimal algorithm playing against such an adversary is

n · 2n−1 − ω̂(k̃)

2n − k̃
,

and the number of incorrectly guessed bits is at most

ω̂(k)

k
.
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Proof. For each round i, let ki,1 be the number of occurrences of the bit 1 at
position i among the strings in Ci. In Section 5.2.1.1, we defined A’s guess in
round i, when the set of remaining candidates is Ci, to be

gi =

{
1 if ki,1 ≥ |Ci|/2,
0 otherwise.

Therefore, for each guess gi in round i of A, we have gi ∈ arg maxsi
{
|{s ∈ Ci |

si = 0}|, |{s ∈ Ci | si = 1}|
}

. Hence, due to Lemma 5.22, A is Ψ-optimal. As
a consequence, each Ψ-optimal algorithm must guess as many bits correctly in
expectation asA, and as we know from Theorem 5.17, this number of bits is exactly

n · 2n−1 − ω̂(k̃)

2n − k̃
.

2

5.2.2 Lower Bound

Recall the notation [t]i for the prefix of length i of a string t of length n, for every i
with 0 ≤ i ≤ n. Furthermore, let us denote the set of all 2n binary strings of
length n by T (n)ε = Iall. Whenever the length of the strings considered is clear
from the context, we leave out the superscript n and write Tε instead. The ε in
the index is used to indicate that all strings from Tε share the common prefix ε. In
general, for each set S ⊆ Tε, each i with 0 ≤ i ≤ n, and each prefix [t]i ∈ {0, 1}i, let
us denote the set of all binary strings from S with the same common prefix [t]i

by S[t]i .
Let us call a set S of strings balanced if, in each of the sets S[t]i−1 for each string t

and every i with 1 ≤ i ≤ n, the number of strings with a 0 at position i and the
number of strings with a 1 at position i differ by at most 1; otherwise, we call
such a set unbalanced. For an example of a balanced and an unbalanced set, see
Table 5.1.

Let us denote by β(k̃, n) the number of balanced sets that are subsets of T (n)ε for
n ≥ 1 and that have size k̃with 0 ≤ k̃ ≤ 2n − 1. We want to analyze the number
of those balanced sets contained in T (n)ε .

Lemma 5.24. The number of balanced sets of size k̃ that are subsets of T (n)ε is

β(k̃, n) = 2k̃·n−2·ω̂(k̃).

Proof. We show the claim by induction on k̃ and n. We have to consider three
different base cases. At first, let us consider the case k̃ = 0 and n ≥ 1. There is
only one balanced set of size 0, namely the empty set, so we have β(0, n) = 1. This
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[t]i−1 ε 0 1 00 01 10 11

S[t]i−1

001

110

111

001

110

111

001

110

111

001

110

111

001

110

111

001

110

111

001

110

111

S ′
[t]i−1

001

101

111

001

101

111

001

101

111

001

101

111

001

101

111

001

101

111

001

101

111

Table 5.1. Example of an unbalanced set S = {001, 110, 111} and a balanced set S ′ =

{001, 101, 111}. For every iwith 1 ≤ i ≤ n, and every prefix [t]i−1, the sets S[t]i−1 and S ′[t]i−1

are shown. The empty prefix is denoted by ε. In the sets S[t]i−1 and S ′[t]i−1 , the relevant
position of every string is colored in blue (this is position i). The cell for the set S1 is marked
with a blue background color. For this set, the relevant position is 2, and both strings 110
and 111 contained in S1 have a 1 at this position. Thus, the numbers of zeros and ones
differ by more than one, and thus the set S is unbalanced. The set S ′, on the other hand, is
balanced.

coincides with 20·n−2·ω̂(0) = 20 = 1.Now let us consider the case k̃ = 1 and n ≥ 1.
There are 2n strings in T (n)ε . No matter which string s we choose, the set {s} is
always balanced, and hence β(1, n) = 2n. This coincides with 21·n−2·ω̂(1) = 2n.

The last base case we have to consider is the case k̃ = 2n− 1 and n ≥ 1. Every way
of choosing 2n − 1 out of the 2n strings in T (n)ε obviously yields a balanced set.
There are β(2n − 1, n) =

(
2n

2n−1

)
= 2n ways to choose such a set, which coincides

with 2(2
n−1)·n−2·ω̂(2n−1) = 22

n·n−n−2·(n·2n−1−n) = 22
n·n−n−2n·n+2n = 2n.

Now let us discuss how a balanced set S of size 2k̃ containing strings of
length n+ 1 can be constructed. Each such set Smust have two properties.

(a) The set S0 ⊆ S of strings from S starting with a 0 and the set S1 ⊆ S of
strings from S starting with a 1 must contain k̃ strings each, and

(b) when removing the leading bits from all strings in S0 and S1, the resulting
sets Ŝ0 and Ŝ1 must be balanced.

If (a) or (b) do not hold, S cannot be balanced. Hence, to construct S, let us
start with an arbitrary balanced set containing k̃ strings of length n and add a
leading 0 to all strings in this set. Let the resulting set be denoted by S0. Now let us
repeat this with another balanced set (not necessarily a different one) containing
k̃ strings of length n, but add a leading 1 instead of a 0 to all strings in this set,
and call the resulting set S1. Now consider S := S0 ∪ S1. We argue that S must
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be balanced as follows. In the set of strings from S that share the same common
prefix ε, there are exactly as many strings with a 0 at position 1 as there are strings
with a 1 at position 1, namely k̃. Thus, the numbers of these strings differ by
at most 1, as demanded in the definition of a balanced set. Moreover, the set of
strings from S with the same common prefix 0 is exactly the set S0, and those with
the same prefix 1 are the strings from S1. Both these sets S0 and S1 are balanced,
and thus the condition also holds for all other sets S[t]i−1 of strings, for all common
prefixes [t]i−1. Therefore, the set Smust be balanced, too.

Hence, a balanced set S containing 2k̃ strings of length n+ 1 can be constructed
by taking two arbitrary balanced sets, each containing k̃ strings of length n, adding
a leading 0 to all strings from one of them and a leading 1 to all strings from the
other one. The sets constructed in this way are no more and no less than those
satisfying the two properties (a) and (b) given above. The number of balanced sets
of size k̃ containing strings of length n+ 1 can hence be computed recursively as
β(2k̃, n+ 1) = (β(k̃, n))2.

For odd sizes 2k̃+ 1, we can use a similar construction, but we have to be a bit
more careful, because k̃ strings from S start with a 0 and k̃ + 1 start with a 1, or
vice versa. Hence, setting S := S0 ∪ S1 again, we have to consider all possibilities
to choose S0 and S1 with either |S0| = k̃ and |S1| = k̃ + 1 or |S0| = k̃ + 1 and
|S1| = k̃. This yields that the number of balanced sets of size 2k̃+ 1 with strings of
length n+ 1 is β(2k̃+ 1, n+ 1) = β(k̃, n) · β(k̃+ 1, n) · 2.

Using the induction hypothesis for β(k̃, n) for (5.21) and Lemma 5.11 for (5.22),
we obtain

β(2k̃, n+ 1) = (β(k̃, n))2

= 22(k̃n−2·ω̂(k̃)) (5.21)

= 22k̃n−4·ω̂(k̃)

= 22k̃n+2k̃−2·ω̂(2k̃) (5.22)

= 22k̃·(n+1)−2·ω̂(2k̃).

Using both induction hypotheses for β(k̃, n) and β(k̃ + 1, n) in (5.23) and
Lemma 5.11 for (5.24), we obtain

β(2k̃+ 1, n+ 1) = β(k̃, n) · β(k̃+ 1, n) · 2

= 2k̃n−2·ω̂(k̃) · 2(k̃+1)n−2·ω̂(k̃+1) · 2 (5.23)

= 2k̃n+(k̃+1)n−2·ω̂(k̃)−2·ω̂(k̃+1)+1

= 2(2k̃+1)n−2·(ω̂(2k̃+1)−k̃)+1 (5.24)

= 2(2k̃+1)n−2·ω̂(2k̃+1)+(2k̃+1)

= 2(2k̃+1)(n+1)−2·ω̂(2k̃+1).
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Let us argue why all relevant β(k̃, n) can be generated with this construction
method. We have to construct β(k̃, n) for every n and k̃ with 0 ≤ k̃ ≤ 2n −

1 that is not already covered by one of the base cases. Hence, for even k̃, all
those satisfying 2 ≤ k̃ ≤ 2n − 2 have to be generated. For this construction, we
need β(k̃/2, n−1), which has to be given as a base case or must be generated itself.
However, this is possible since

2 ≤ k̃ ≤ 2n − 2

⇐⇒ 1 ≤ k̃
2
≤ 2n−1 − 1.

For odd k̃, we have to construct all β(k̃, n) satisfying 3 ≤ k̃ ≤ 2n − 3. To
construct β(k̃, n), we need β((k̃− 1)/2, n− 1) and β((k̃+ 1)/2, n− 1). These can
also either be generated or are already given as a base case since

3 ≤ k̃ ≤ 2n − 3⇐⇒ 2 ≤ k̃− 1 ≤ 2n − 4

⇐⇒ 1 ≤ k̃− 1
2
≤ 2n−1 − 2

and

3 ≤ k̃ ≤ 2n − 3⇐⇒ 4 ≤ k̃+ 1 ≤ 2n − 2

⇐⇒ 2 ≤ k̃+ 1
2
≤ 2n−1 − 1. 2

Hence, there are β(k̃, n) = 2k̃·n−2·ω̂(k̃) possibilities to choose a balanced set
of size k̃ containing binary strings of length n. In the following, we show that
each Ψ-optimal algorithm with advice playing against an adversary that chooses
only balanced sets as the set Ĩ needs one advice string for each possible choice
of Ĩ. Consequently, as β(k̃, n) different advice strings are already necessary to be
Ψ-optimal with such a weak adversary, β(k̃, n) advice strings are certainly also
necessary to be Ψ-optimal when the adversary can choose an arbitrary set as Ĩ.

Consider two different balanced sets U and V , each containing k̃ strings of
length n, and two corresponding deterministic algorithms AU and AV , which are
optimal on the input sets Iall \U and Iall \ V , respectively.

We now show that no deterministic algorithm can be optimal on both instance
sets Iall \U and Iall \ V . We do so by proving that AU (being optimal on Iall \U)
cannot be optimal on Iall \ V at the same time. Hence, a deterministic algorithm
behaving optimally on the one set of instances will certainly be suboptimal on the
other one.
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In the following, we prove two claims. One states that

EU[gainAU
] = EV [gainAV

] =
n · 2n−1 − ω̂(k̃)

2n − k̃
. (5.25)

The second one states that

EV [gainAU
] < EU[gainAU

]. (5.26)

In combination, they yield the result that EV [gainAU
] < EV [gainAV

] and hence
that AU is not optimal on Iall \ V . We start by proving (5.25).

Lemma 5.25. Let U and V be two different balanced sets and let AU and AV be two
corresponding optimal deterministic online algorithms for the input sets Iall\U and Iall\V ,
respectively. Then we have

EU[gainAU
] = EV [gainAV

] =
n · 2n−1 − ω̂(k̃)

2n − k̃
.

Proof. Let us consider the algorithm Awith advice we described before. Since A
is optimal on any set of instances, as we have seen in Theorem 5.23, A must be
optimal on Iall \ U and Iall \ V in particular. Furthermore, we know that A gets
the set Ĩ of excluded strings as advice and then behaves just like a deterministic
algorithm that is optimal on Iall \ Ĩ. Hence, without loss of generality, A = AU
if Ĩ = U, and A = AV if Ĩ = V .

Due to Lemma 5.16, A guesses (n · 2n−1 − ω̂(k̃))/(2n − k̃) bits correctly in
expectation on any worst-case instance set. Since U and V are balanced, Iall \U

and Iall \ V must be balanced, too. According to our considerations following
Lemma 5.16, if the instance set for A is balanced, this leads to the worst-case
expected number of correctly guessed bits, hence to (n · 2n−1 − ω̂(k̃))/(2n − k̃)

correctly guessed bits in expectation. 2

To prove (5.26), we have to make some more effort. We want to compare the
expected number of correctly guessed bits of AU on the two different instance sets
Iall \U and Iall \ V . To make our argumentation easier, let us introduce a different
view on balanced sets.

We can identify the set T (n)ε = Tε of all 2n different strings of length n with a
complete binary tree of depth n, where each leaf represents one string, ordered
from left to right in increasing lexicographic order. Naturally, each vertex then
represents a prefix of a string. The vertex on the path from the root to a string s in
the tree Tε that has distance i to the root can be identified with the prefix [s]i of
length i of the string s. Hence, in the following, we can use the terms “string s in
the set Tε” and “leaf s in the tree Tε” interchangeably, and we can say “prefix [s]i”
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just as we say “vertex [s]i”. In particular, the root of the tree can from now on be
referred to as ε, the empty string. Also, this indicates that the set of vertices of the
binary tree T (n)ε isW(n)

ε =Wε = {[s]i | s ∈ Tε, 0 ≤ i ≤ n}. A balanced set now is a
selection of leaves such that, for each inner vertex v, the number of selected leaves
in the left subtree of v differs by at most one from the number of selected leaves in
the right subtree of v. An example of such a binary tree with a selection of leaves
that form a balanced set is given in Figure 5.3.

We can identify the computation of any algorithm Awith a route through the
binary tree Tε from the root to the leaf r, i. e., the vertex that corresponds to the
to-be-guessed string. For each string s ∈ Tε, each vertex [s]i−1 with 1 ≤ i ≤ n on
the path from the root to the leaf s has two children. One of these, the one that
also lies on the path from ε to s, is [s]i, and the other one is called ([s]i)∗. Recall
that we call these two children of [s]i−1 siblings. If, in round iwith 1 ≤ i ≤ n, the
algorithm’s guessed bit is gi = 0, this corresponds to A taking the left branch at
the current vertex [r]i−1; if gi = 1, this corresponds to A taking the right branch.
If A guesses correctly in round i, it walks from [r]i−1 to its child [r]i. If it makes
a wrong guess, it walks to the wrong child ([r]i)∗ instead. In round i + 1, the
algorithm learns about its mistake (being sent the request ri) and reacts to this by
“jumping” from ([r]i)∗ to the correct child [r]i. Regardless of the path that A takes
through the tree, the algorithm always ends up at vertex [r]n = r at the end of
round n. The number of “jumps” of A from one vertex to another vertex on the
same level is the number of incorrectly guessed bits of A. Figure 5.3 also gives
an example of a route through Tε that represents the run of an algorithm on the
input r.

Now let us consider algorithm AU. For each inner vertex [r]i of the tree Tε,
let us mark one of its outgoing edges as follows. We know that AU passes each
inner vertex [r]i at some point during its computation. Since AU is deterministic,
it must choose the next vertex on the path based only on the strings contained in
U and the feedback that AU got up to now. We know that, at the point when AU
reaches [r]i, the feedback that it got until then consists of [r]i. Hence,AU’s decision
is unambiguously determined by the strings inU. Thus, there is one unambiguous
outgoing edge from [r]i that leads to the child of [r]i that AU chooses as the
successor of [r]i. Let this edge be the marked one, for every inner vertex [r]i. If the
number of strings from Iall \U in the two subtrees beneath [r]i differs, the marked
edge is the one pointing to the subtree with less strings from Iall \U since AU is
optimal on Iall \ U. If the number of strings from Iall \ U in the two subtrees is
the same but the number of strings from Iall \ V differs, we can assume that the
marked edge is the one pointing to the subtree with less strings from Iall \ V . If
this is also the same for both algorithms, the marked edge can be an arbitrary but
fixed one. For an example, see Figure 5.4.



114 Chapter 5. Probabilistic Adversary

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1

0 1

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

Figure 5.3. Representation of the set of possible input strings as a binary tree. Strings
from U are marked as blue rectangles. The set U = {0010, 1000, 1110} is obviously balanced.
The black leaf is the string r = 0101. The black lines illustrate a route through the tree from
the root to r, corresponding to a run of the algorithm. The algorithm’s guess is 1001. Hence,
its first two guesses are wrong and it has to “jump” from the chosen child to the other
one, denoted by zigzag lines. The number of zigzag lines of the route is equivalent to the
number of incorrectly guessed bits of the algorithm.

For each deterministic algorithm A, let us call the marked outgoing edge of a
vertex [r]i the favored edge of A at [r]i and the vertex that it leads to the favored child
of A at [r]i. Let gainAU

(r) denote the number of bits that AU guesses correctly on
the input string r. We make the following observation concerning gainAU

(r); for
an example, see Figure 5.4.

Observation 5.26. The number gainAU
(r) of correctly guessed bits of A on the input r

equals the number of favored edges on the path from the root to the leaf r in the binary tree.

Proof. This follows directly from the definition of the favored edges. 2

As one part of the proof of (5.26), we need to show that
∑
s∈V gainAU

(s) −∑
s∈U gainAU

(s) > 0. The way we chose the marked edges if the number of
strings from Iall \U is the same in the two subtrees of [s]i but the number of strings
from Iall \ V differs minimizes this difference; hence, we are considering the worst
case. If the algorithm AU should instead prefer the other outgoing edge of [s]i,
this difference can only increase. Hence, we will from now on assume that AU
favors the marked edges as described above.

Before we prove (5.26), we need two more rather technical results and the
following well-known property of the floor and ceiling functions that has been
proven for example by Graham et al. [GKP89].
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3 2 1 2 3 2 3 4 1 2 3 2 1 2 0 1

Figure 5.4. Representation of the set of possible input strings as a binary tree. Light blue
rectangular leaves denote strings from V , the darker blue rectangles denote strings from U.
The favored edges of AU are marked in black. The number beneath a leaf s indicates the
number gain

AU
(s) of correctly guessed bits of AU if r = s. This coincides with the number

of favored edges on the path from the root to s.

Fact 5.27. For x ∈ R and y, z ∈ Z with z ≥ 1,⌊
bxc+ y
z

⌋
=

⌊
x+ y

z

⌋
and

⌈
dxe+ y
z

⌉
=

⌈
x+ y

z

⌉
.

2

For each vertex [s]i ∈W(n)
ε , let the subtree rooted at [s]i be T (n)

[s]i
with the vertex

set

W
(n)

[s]i
= {[t]j | t ∈ T (n)

[s]i
, i ≤ j ≤ n} = {[t]j | t ∈ T (n)ε , [t]i = [s]i, i ≤ j ≤ n}.

Again, if n is clear from the context, we also write T[s]i andW[s]i instead, respec-
tively.

Lemma 5.28. Let [s]i ∈ Wε be a vertex on level i in Tε, and let the height of the sub-
tree T[s]i be h := n−i. Let the setU be balanced. Then, either

⌊
k̃ · 2−i

⌋
or
⌈
k̃ · 2−i

⌉
leaves

from T[s]i belong to U.

Proof. The claim obviously holds for the root of the binary tree, because it is on
level 0 and

⌊
k̃ · 20

⌋
=
⌈
k̃ · 20

⌉
= k̃. Now let us assume that the claim holds for a

vertex [s]i on level i. Thus, T[s]i contains either
⌊
k̃ · 2−i

⌋
or
⌈
k̃ · 2−i

⌉
strings fromU.

Let the children of [s]i be f and f∗. They both are on level i+ 1. If T[s]i contains `
strings from U, due to the balance properties of U, one of the subtrees Tf and Tf∗
must contain b`/2c strings from U and the other one d`/2e. If ` =

⌊
k̃ · 2−i

⌋
, we

have, due to Fact 5.27,⌊
`

2

⌋
=

⌊⌊
k̃ · 2−i

⌋
2

⌋
=

⌊
k̃ · 2−i

2

⌋
=

⌊
k̃

2i+1

⌋
,
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and

⌈
`

2

⌉
=

⌈⌊
k̃ · 2−i

⌋
2

⌉
=


⌈
k̃·2−i

2

⌉
=
⌈

k̃
2i+1

⌉
if k̃ · 2−i ∈ N,⌈

dk̃·2−ie−1
2

⌉
=
⌈
k̃·2−i−1

2

⌉
otherwise.

Thus, in the case that ` =
⌊
k̃ · 2−i

⌋
, if k̃ · 2−i ∈ N, we are done. If k̃ · 2−i /∈ N, it

suffices to show that⌊
k̃ · 2−(i+1)

⌋
≤
⌈
k̃ · 2−i − 1

2

⌉
≤
⌈
k̃ · 2−(i+1)

⌉
to prove the induction step. The right inequality obviously holds. Furthermore,
since k̃ · 2−i /∈ N, also k̃ · 2−(i+1) /∈ N, and thus⌊

k̃ · 2−(i+1)
⌋
=
⌈
k̃ · 2−(i+1)

⌉
− 1 =

⌈
k̃ · 2−i

2

⌉
− 1 ≤

⌈
k̃ · 2−i − 1

2

⌉
.

We make an analogous calculation for the case that ` =
⌈
k̃ · 2−i

⌉
. Again, due to

Fact 5.27, we have ⌈
`

2

⌉
=

⌈⌈
k̃ · 2−i

⌉
2

⌉
=

⌈
k̃ · 2−i

2

⌉
=

⌈
k̃

2i+1

⌉
,

and

⌊
`

2

⌋
=

⌊⌈
k̃ · 2−i

⌉
2

⌋
=


⌊
k̃·2−i

2

⌋
=
⌊

k̃
2i+1

⌋
if k̃ · 2−i ∈ N,⌊

bk̃·2−ic+1
2

⌋
=
⌊
k̃·2−i+1

2

⌋
otherwise.

If k̃ · 2−i /∈ N, it suffices to show that⌊
k̃ · 2−(i+1)

⌋
≤
⌊
k̃ · 2−i + 1

2

⌋
≤
⌈
k̃ · 2−(i+1)

⌉
to prove the induction step, and the left inequality obviously holds. Moreover,
with the same argument as above,⌊

k̃ · 2−i + 1
2

⌋
≤
⌊
k̃ · 2−i

2

⌋
+ 1 =

⌊
k̃ · 2−(i+1)

⌋
+ 1 =

⌈
k̃ · 2−(i+1)

⌉
,

completing the induction step in the second case. Hence, the claim holds for all
vertices on all levels iwith 0 ≤ i ≤ n. 2
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Lemma 5.29. For two different balanced sets U and V of size k̃ each,

∑
s∈V

gainAU
(s) −

∑
s∈U

gainAU
(s) = |U \ V |.

Proof. For a vertex v ∈Wε, let us define ev to be the number of marked edges on
the path from the root to v. Furthermore, for a set S ⊆ Tε of strings of length n and
a vertex v ∈ Wε, let ϑ(S, v) denote the number of strings from S in Tv. Then we
assign a score to each vertex v by

score(v) :=
∑

s∈V∩Wv

gainAU
(s) −

∑
s∈U∩Wv

gainAU
(s).

Now we prove the following for every vertex v.

score(v) =



ϑ(V \U, v) + ω̂(ϑ(V, v)) − ω̂(ϑ(U, v))

+ (ϑ(V, v) − ϑ(U, v)) ev if ϑ(V, v) ≤ ϑ(U, v)

ϑ(V \U, v) + ω̂(ϑ(V, v)) − ω̂(ϑ(U, v))

+ (ϑ(V, v) − ϑ(U, v)) ev − 1 if ϑ(V, v) > ϑ(U, v)
(5.27)

Note that, if ϑ(V, v) = ϑ(U, v), we have

score(v) = ϑ(V \U, v) + ω̂(ϑ(V, v)) − ω̂(ϑ(U, v)) + ev
(
ϑ(V, v) − ϑ(U, v)

)
= ϑ(V \U, v). (5.28)

Let us prove (5.27) by induction on the level of v in the tree, i. e., the number of
edges on the shortest path from the root to v. We start with a vertex v on level n
(the lowermost level in the tree). We distinguish several cases. The leaf v might
neither be an element of U nor V , or it might be an element of U but not of V , or
an element of V but not of U, or v might be an element of both. The subtree Tv
rooted at v consists of exactly one vertex, namely v, and contains exactly 0 or 1
strings from U and V , respectively, as specified by the four cases above.

Case 1. ϑ(V, v) = 0, ϑ(U, v) = 0.

According to its definition, the score of the leaf v is

score(v) =
∑

s∈V∩Wv

gainAU
(s) −

∑
s∈U∩Wv

gainAU
(s) = 0− 0 = 0.
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With ev being the number of marked edges from the root to v as defined before,
this coincides with

score(v) = 0

= 0+ ω̂(0) − ω̂(0) + 0 · ev
= ϑ(V \U, v) + ω̂(ϑ(V, v)) − ω̂(ϑ(U, v)) + (ϑ(V, v) − ϑ(U, v))ev.

Case 2. ϑ(V, v) = 1, ϑ(U, v) = 0.

Again, according to its definition, the score of v is

score(v) =
∑

s∈V∩Wv

gainAU
(s) −

∑
s∈U∩Wv

gainAU
(s) = gainAU

(v) − 0 = ev,

where the last equality holds due to Observation 5.26. This coincides with

score(v) = ev
= 1+ ω̂(1) − ω̂(0) + 1 · ev − 1
= ϑ(V \U, v) + ω̂(ϑ(V, v)) − ω̂(ϑ(U, v)) + (ϑ(V, v) − ϑ(U, v)) ev − 1.

Case 3. ϑ(V, v) = 0, ϑ(U, v) = 1.

Using Observation 5.26 again, the score of v can be calculated as

score(v) =
∑

s∈V∩Wv

gainAU
(s) −

∑
s∈U∩Wv

gainAU
(s) = 0− gainAU

(v) = −ev.

This coincides with

score(v) = −ev

= 0+ ω̂(0) − ω̂(1) + (−1) ev

= ϑ(V \U, v) + ω̂(ϑ(V, v)) − ω̂(ϑ(U, v)) + (ϑ(V, v) − ϑ(U, v)) ev.

Case 4. ϑ(V, v) = 1, ϑ(U, v) = 1.

In this case, v ∈ U and v ∈ V . Then, ϑ(V \U, v) = 0. The score of v is therefore

score(v) =
∑

s∈V∩Wv

gainAU
(s) −

∑
s∈U∩Wv

gainAU
(s) = ev − ev = 0.

This coincides with

score(v) = 0

= 0+ ω̂(1) − ω̂(1) + 0 · ev
= ϑ(V \U, v) + ω̂(ϑ(V, v)) − ω̂(ϑ(U, v)) + (ϑ(V, v) − ϑ(U, v)) ev.
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Hence, the statement is true for all vertices on level n, and thus the base case
is covered. Let us now turn to the induction step. To this end, assume that the
induction statement (5.27) holds for two vertices f and f∗ on level i, which are
children of a vertex v on level i − 1, where f is the favored child of v. We will
show that the statement then also holds for v. Obviously, the value score(v) can
be calculated as

score(v) = score(f) + score(f∗).

We make a case distinction depending on the number of strings from U and V
contained in Tf and Tf∗ , respectively. The first case deals with the scenario ϑ(V, f) ≤
ϑ(V, f∗), and the second one addresses the case ϑ(V, f) > ϑ(V, f∗). Before we
consider the first case, let us do some simple transformations under the assumption
that ϑ(V, f) ≤ ϑ(V, f∗).

Due to the balance properties of the subtree Tv and since f is the favored child at
the vertex v, we know that ϑ(U, f) ≤ ϑ(U, f∗) ≤ ϑ(U, f) + 1. Furthermore, we can
infer that ϑ(U, f) = bϑ(U, v)/2c and ϑ(V, f) = dϑ(U, v)/2e. Applying Corollary 5.12
yields

ω̂(ϑ(U, v)) = ω̂
(⌈
ϑ(U,v)
2

⌉)
+ ω̂

(⌊
ϑ(U,v)
2

⌋)
+
⌊
ϑ(U,v)
2

⌋
= ω̂(ϑ(U, f∗)) + ω̂(ϑ(U, f)) + ϑ(U, f), (5.29)

and since we are assuming ϑ(V, f) ≤ ϑ(V, f∗), we get an analogous result for V ,
namely

ω̂(ϑ(V, v)) = ω̂(ϑ(V, f)) + ω̂(ϑ(V, f∗)) + ϑ(V, f). (5.30)

We define h1 := ω̂(ϑ(V, f))−ω̂(ϑ(U, f))+ω̂(ϑ(V, f∗))−ω̂(ϑ(U, f∗)) and use (5.29)
and (5.30) to transform it to

h1 = ω̂(ϑ(V, f)) − ω̂(ϑ(U, f)) + ω̂(ϑ(V, f∗)) − ω̂(ϑ(U, f∗))

= (ω̂(ϑ(V, f)) + ω̂(ϑ(V, f∗))) − (ω̂(ϑ(U, f)) + ω̂(ϑ(U, f∗)))

= (ω̂(ϑ(V, v)) − ϑ(V, f)) − (ω̂(ϑ(U, v)) − ϑ(U, f))

= ω̂(ϑ(V, v)) − ω̂(ϑ(U, v)) − ϑ(V, f) + ϑ(U, f). (5.31)

As the number of marked edges from the root to f∗ is exactly ev and the number of
marked edges from the root to f is ev+1, for h2 := (ϑ(V, f)−ϑ(U, f)) ef+(ϑ(V, f∗)−

ϑ(U, f∗)) ef∗ , it holds that

h2 = (ϑ(V, f) − ϑ(U, f)) ef + (ϑ(V, f∗) − ϑ(U, f∗)) ef∗

= (ϑ(V, f) − ϑ(U, f))(ev + 1) + (ϑ(V, f∗) − ϑ(U, f∗)) ev

= (ϑ(V, f) − ϑ(U, f) + ϑ(V, f∗) − ϑ(U, f∗)) ev + (ϑ(V, f) − ϑ(U, f))

= (ϑ(V, v) − ϑ(U, v)) ev + ϑ(V, f) − ϑ(U, f). (5.32)
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Using (5.31) and (5.32) yields

h1 + h2 = ω̂(ϑ(V, v)) − ω̂(ϑ(U, v)) − ϑ(V, f) + ϑ(U, f)

+ (ϑ(V, v) − ϑ(U, v)) ev + ϑ(V, f) − ϑ(U, f)

= ω̂(ϑ(V, v)) − ω̂(ϑ(U, v)) + (ϑ(V, v) − ϑ(U, v)) ev. (5.33)

Now let us make the already mentioned case distinction to calculate score(v).

Case 1. ϑ(V, f) ≤ ϑ(V, f∗).
We divide this case into three subcases. First, we consider the case that in both
subtrees there are at least as many strings from U as from V ; then we deal with the
cases that exactly one of the subtrees, either Tf or Tf∗ , contains more strings from V

than from U. Note that we do not have to consider the case that both subtrees Tf
and Tf∗ contain more strings from V than from U since then the number of strings
from V and the number of strings from U in the subtree Tv would differ by at least
2, which is not possible due to Lemma 5.28.

Case 1.1. ϑ(V, f) ≤ ϑ(U, f) ∧ ϑ(V, f∗) ≤ ϑ(U, f∗).
Using the induction hypothesis (5.27), the score of v can be calculated from the
scores of f and f∗ as

score(v) = score(f∗) + score(f)

= ϑ(V \U, f∗) + ω̂(ϑ(V, f∗)) − ω̂(ϑ(U, f∗)) + ef∗ (ϑ(V, f
∗) − ϑ(U, f∗))

+ ϑ(V \U, f) + ω̂(ϑ(V, f)) − ω̂(ϑ(U, f)) + ef (ϑ(V, f) − ϑ(U, f)).

Furthermore, using the definitions of h1 and h2 and (5.33) yields

score(v) = ϑ(V \U, v) + h1 + h2

= ϑ(V \U, v) + ω̂(ϑ(V, v)) − ω̂(ϑ(U, v)) + ev (ϑ(V, v) − ϑ(U, v)).

This already proves the induction claim for this case.

Case 1.2. ϑ(V, f) > ϑ(U, f) ∧ ϑ(V, f∗) ≤ ϑ(U, f∗) .

If exactly one of the subtrees has more strings from V than from U, the calculation
is almost the same as in the first case; we only have to subtract 1, as can be seen
from the induction hypothesis. More concretely, we obtain

score(v) = score(f∗) + score(f)

= ϑ(V \U, f∗) + ω̂(ϑ(V, f∗)) − ω̂(ϑ(U, f∗)) + ef∗ (ϑ(V, f
∗) − ϑ(U, f∗)) − 1

+ ϑ(V \U, f) + ω̂(ϑ(V, f)) − ω̂(ϑ(U, f)) + ef (ϑ(V, f) − ϑ(U, f))
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using the induction hypothesis (5.27). Again, with the definitions of h1 and h2
and (5.33) we get

score(v) = ϑ(V \U, v) + h1 + h2 − 1

= ϑ(V \U, v) + ω̂(ϑ(V, v)) − ω̂(ϑ(U, v)) + ev (ϑ(V, v) − ϑ(U, v)) − 1.

This proves that the claim also holds in this case.

Case 1.3. ϑ(V, f∗) > ϑ(U, f∗) ∧ ϑ(V, f) ≤ ϑ(U, f).
This case is completely analogous to case 1.2.

Case 2. ϑ(V, f) > ϑ(V, f∗).

In this case, we cannot use equations (5.30) to (5.33) since the assumption ϑ(V, f) ≤
ϑ(V, f∗) that we needed for these equations does not hold.
The tree Tf rooted at the favored child f at vmay only contain more strings from V

than Tf∗ if Tf∗ contains more strings from U than Tf. Otherwise, f∗ would be the
favored child of v. Hence, ϑ(U, f∗) > ϑ(U, f).
As f and f∗ are vertices on level i, the subtrees Tf and Tf∗ have height n −

i. Hence, from Lemma 5.28, we know that both Tf and Tf∗ must contain ei-
ther

⌊
k̃ · 2−i

⌋
or
⌈
k̃ · 2−i

⌉
strings from U and, equally, either

⌊
k̃ · 2−i

⌋
or
⌈
k̃ · 2−i

⌉
strings from V . Since ϑ(V, f) > ϑ(V, f∗) and ϑ(U, f∗) > ϑ(U, f), we can conclude
ϑ(V, f) = ϑ(U, f∗) =

⌈
k̃ · 2−i

⌉
and ϑ(V, f∗) = ϑ(U, f) =

⌊
k̃ · 2−i

⌋
with

⌈
k̃ · 2−i

⌉
=⌊

k̃ · 2−i
⌋
+1. Moreover, as ϑ(V, v) = ϑ(V, f)+ϑ(V, f∗) = ϑ(U, f)+ϑ(U, f∗) = ϑ(U, v),

due to (5.28), the score of v should be score(v) = ϑ(V \U, v). Hence, we calculate
the score of v, taking into account that ϑ(V, f) > ϑ(U, f) and ϑ(V, f∗) ≤ ϑ(U, f∗),
and we obtain

score(v) = score(f) + score(f∗)

= ϑ(V \U, f) + ω̂(ϑ(V, f)) − ω̂(ϑ(U, f)) + ef (ϑ(V, f) − ϑ(U, f)) − 1

+ ϑ(V \U, f∗) + ω̂(ϑ(V, f∗)) − ω̂(ϑ(U, f∗)) + ef∗ (ϑ(V, f
∗) − ϑ(U, f∗))

using the induction hypothesis (5.27). Further calculations yield

score(v) = ϑ(V \U, v) + ef − 1− ef∗

= ϑ(V \U, v) + ev − ev

= ϑ(V \U, v),

proving the claim also in this case.

As a result, we have proven the claim for all vertices, and we can apply it to
the root ε of the binary tree. The complete binary tree Tε contains as many strings
from U as from V , thus we obtain

score(ε) = ϑ(V \U, ε) = |V \U| = |U \ V |. (5.34)
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Furthermore, according to its definition, the score of ε is

score(ε) =
∑

s∈V∩Wε

gainAU
(s) −

∑
s∈U∩Wε

gainAU
(s)

=
∑
s∈V

gainAU
(s) −

∑
s∈U

gainAU
(s),

and combining this with (5.34) yields the proposition of the lemma, namely

|U \ V | =
∑
s∈V

gainAU
(s) −

∑
s∈U

gainAU
(s). 2

Corollary 5.30. For two different balanced sets U and V of size k̃ ≥ 1 each, we have∑
s∈V

gainAU
(s) −

∑
s∈U

gainAU
(s) > 0.

Proof. SinceU and V are two different balanced sets that contain at least one string
each, U \ V must also contain at least one string, and thus Lemma 5.29 directly
implies ∑

s∈V

gainAU
(s) −

∑
s∈U

gainAU
(s) = |U \ V | > 0.

2

Lemma 5.31. Let U and V be two different balanced sets of size k̃ ≥ 1 each, and let AU
and AV be two corresponding optimal deterministic online algorithms for the input sets
Iall \U and Iall \ V , respectively. Then,

EV [gainAU
] < EU[gainAU

].

Proof. Let us first analyze EV [gainAU
] =
∑
s∈Iall\V

Pr
(
r = s | Ĩ = V

)
· gainAU

(s).
Since we know that all strings from Iall\V are equally likely to be the to-be-guessed
string rwhen Ĩ = V , and since |Iall \ V | = 2

n − k̃, we have

EV [gainAU
] =

∑
s∈Iall\V

Pr
(
r = s | Ĩ = V

)
· gainAU

(s)

=
∑

s∈Iall\V

1

2n − k̃
· gainAU

(s)

=
1

2n − k̃
·

 ∑
s∈Iall\(U∪V)

gainAU
(s) +

∑
s∈U\V

gainAU
(s)

.
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As U and V have the same size, also |Iall \ U| = 2n − k̃; hence, we can do an
analogous calculation for EU[gainAU

], which yields

EU[gainAU
] =

∑
s∈Iall\U

Pr
(
r = s | Ĩ = U

)
· gainAU

(s)

=
1

2n − k̃
·

 ∑
s∈Iall\(U∪V)

gainAU
(s) +

∑
s∈V\U

gainAU
(s)

.
We conclude that

EU[gainAU
] − EV [gainAU

] =
1

2n − k̃
·

 ∑
s∈V\U

gainAU
(s) −

∑
s∈U\V

gainAU
(s)


=

1

2n − k̃
·

(∑
s∈V

gainAU
(s) −

∑
s∈U

gainAU
(s)

)
> 0,

where the last inequality follows from Corollary 5.30. 2

We have now seen that, for an arbitrary balanced set U of size k̃ containing
binary strings of length n, the corresponding deterministic algorithm AU that is
optimal on Iall \U cannot be optimal on Iall \ V , for any balanced set V 6= U. Let
us consider an algorithm A with advice that gets the same advice string for an
arbitrary pair of two different input sets Iall \ U and Iall \ V . We want to show
that A cannot be optimal on both Iall \U and Iall \V . Given an appropriate advice
string,A can be optimal on one of these input sets. Without loss of generality, let us
assume thatA is optimal on Iall \U, henceA = AU for some optimal deterministic
algorithm AU for Iall \ U. As U 6= V , we conclude that A 6= AV for all optimal
deterministic algorithmsAV for Iall\V . As we can see from Lemmata 5.25 and 5.31,
EV [gainAV

] > EV [gainAU
] = EV [gainA], i. e., the expected number of correctly

guessed bits of AV on Iall \ V is larger than the number of correctly guessed bits
of A on this set of inputs. Therefore, AV is better than A on Iall \ V , and hence,
A cannot be optimal on this set of inputs.

Theorem 5.32. In the monolog model, any Ψ-optimal online algorithm A needs at least
k̃ · n− 2 ω̂(k̃) advice bits on any set of instances of size k = 2n − k̃ containing strings of
length n. Hence, A needs to read at least k̃ · n− 2 ω̂(k̃) advice bits to guess

n · 2n−1 − ω̂(k̃)

2n − k̃
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bits correctly and thus at most
ω̂(k)

k

bits incorrectly in expectation.

Proof. For k̃ = 0, the statement is obviously true. Thus, let k̃ ≥ 1. Assume that
an optimal algorithm A uses b < k̃ · n − 2 ω̂(k̃) advice bits. We can view A as a
set {A1, . . . , A2b } of 2b < 2k̃·n−2 ω̂(k̃) different deterministic algorithms according
to Fact 1.1. In Lemma 5.24, we have seen that, among all sets of size k̃ with strings
of length n that the adversary might choose as the set of excluded strings, there
are also 2k̃·n−2·ω̂(k̃) balanced ones. Hence, one of the deterministic algorithms Ai
has to be optimal on two different input sets Iall \U and Iall \ V , for two balanced
sets U and V .

However, as we know from Lemma 5.31 and the subsequent considerations,
a deterministic algorithm that is optimal on the set of inputs Iall \ U cannot be
optimal on Iall\V as well. Hence,A cannot be optimal on every set of inputs Iall\Ĩ
for all possible choices of Ĩ (of size k̃) if it uses less than k̃ ·n− 2 · ω̂(k̃) advice bits;
therefore, A cannot be Ψ-optimal. 2

Corollary 5.33. For one excluded string (k̃ = 1), any Ψ-optimal algorithm needs at least
n advice bits.

Proof. According to Theorem 5.32, the number of advice bits necessary in this case
is

k̃ · n− 2 ω̂(k̃) = 1 · n− 2 · 0 = n. 2

Corollary 5.34. For k̃ = 2n − 1 excluded strings, any Ψ-optimal algorithm needs at
least n advice bits.

Proof. The number of advice bits necessary in this case is

k̃ · n− 2 ω̂(k̃) = (2n − 1) · n− 2 · ω̂(2n − 1)

= (2n − 1) · n− 2 · (n · 2n−1 − n)
= (2n − 1) · n− n · 2n + 2n

= 2n · n− n · 2n + n

= n. 2

As we have already discussed at the end of Section 5.2.1.3 in the context of Corol-
lary 5.20, this last case with k̃ = 2n − 1 coincides with the classical advice model.
Note that both the upper and the lower bound of n advice bits necessary and
sufficient for optimality that have been proven by Böckenhauer et al. [BHK+14]
coincide with the upper and lower bounds given in this thesis for the special case
of 2n − 1 excluded strings and thus an instance set of size 1.



5.2. Monolog Model 125

5.2.3 Comparing Upper and Lower Bound

We will need the following well-known estimation for the binomial coefficient
(proven, for example, by Knuth [Knu97]). Recall that we use e to denote Euler’s
number.

Fact 5.35. For all n, k ∈ N≥0 with n ≥ k, we have(
n

k

)
≤
(en
k

)k
.

2

As a direct consequence of Theorem 5.32 and Lemma 5.13, we obtain the following.

Corollary 5.36. Any Ψ-optimal online algorithm with advice for 2-GUESS with a prob-
abilistic adversary needs at least k̃

(
n− log k̃

)
advice bits on a set of instances of size k̃

containing strings of length n.

Proof. As we have just proven in Theorem 5.32, the number of advice bits a Ψ-
optimal algorithm needs is at least

k̃ n− 2 ω̂(k̃) ≥ k̃ n− k̃ log k̃ (5.35)

= k̃
(
n− log k̃

)
,

where we used Lemma 5.13 for (5.35). 2

This statement is contrasted by the following result, which emerges from Theo-
rem 5.17.

Corollary 5.37. There is a Ψ-optimal online algorithm with advice for 2-GUESS with a
probabilistic adversary that reads k̃

(
n− log k̃+ log e

)
advice bits.

Proof. In Theorem 5.17, we have seen that there exists an online algorithm for
2-GUESS that reads

⌈
log
(
2n

k̃

)⌉
advice bits. Applying Fact 5.35 yields

⌈
log
(
2n

k̃

)⌉
≤

⌈
log

((
e · 2n

k̃

)k̃)⌉
≤
⌈
k̃ (log e + n− log k̃)

⌉
.

2

Note that these two bounds are almost matching. For some values of k̃, the
upper and lower bound match exactly. For example, for k̃ = 0, the upper bound
for the number of necessary advice bits is 0, as we see from Corollary 5.18, which
is obviously tight. For k̃ = 1, both bounds are n, due to Corollaries 5.19 and 5.33,
and for k̃ = 2n − 1, Corollaries 5.20 and 5.34 yield that the upper and the lower
bound is both n, respectively.
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5.3 Dialog Model

In this section, we consider a different model with an adaptive oracle, as we
already announced in the introduction of this chapter. Let us quickly recall the
details of the dialog model. In our previous discussions concerning the monolog
model, the algorithm could only receive advice from the oracle before the start
of the computation. Conversely, in the dialog model, we give the algorithm the
opportunity to ask for advice after every request. More precisely, after receiving
the i-th request xi, where 1 ≤ i ≤ n, and before answering this request, the
algorithm can demand an advice bit from the oracle, and upon receiving an advice
bit, it can either demand another bit or eventually produce the output yi. Upon
receiving such a demand, the oracle is obliged to send exactly one advice bit
immediately and is not allowed to send any advice bits other than as an answer
to a demand. We denote the number of advice bits demanded by the algorithm
in round i by di ∈ N≥0 and the advice string it received bit by bit in round i
by τ̂i ∈ {0, 1}di . We will see that, in this model, the upper and lower bounds for
the bit string guessing problem differ substantially from those in the monolog
model we considered in Section 5.2. This is due to the fact that the dialog model
allows for a more efficient use of advice bits.

In Section 5.3.1, we first give a 2-GUESS algorithm reading n advice bits that
is optimal according to the definition given in Section 5.2.1.4. The subsequent
Section 5.3.2 deals with a complementing lower bound. In Section 5.3.2.1, we
present a tight lower bound for the case that the number k of strings in the set of
hard input instances constructed by the adversary is odd. Then, in Section 5.3.2.2,
we generalize this idea for arbitrary values of k. We conclude the section with a
comparison of the upper and lower bounds in Section 5.3.3.

5.3.1 Upper Bound

In this section, we present an algorithm B with advice for the bit string guessing
problem with a probabilistic adversary in the dialog model. Assume that the
adversary chooses a probability distribution ψ from the class Ψ defined in Sec-
tion 5.1 and that the set of excluded strings corresponding to ψ is Ĩ, containing
k̃ strings of length n. Again, let I = Iall \ Ĩ contain k = 2n − k̃ strings. As
before, the oracle knows the set I, from which the input string r is drawn uni-
formly at random. The algorithm only knows the number k̃, and therefore the
number k of included strings, but not the actual set I. None of them, neither the
algorithm nor the oracle, know the string r in the beginning. In every round i
with 1 ≤ i ≤ n, though, when the algorithm has already guessed the first i − 1
bits r1, . . . , ri−1 of r, the request sent to the algorithm is ri−1. Recall that we use
the notation [r]i for the prefix of length i of a string r. Hence, in every round i,
the prefix [r]i−1 of r is known to both the algorithm and the oracle. Also recall
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the definition of Ci as the set of strings that are still candidates for r in round i,
according to the knowledge the oracle has about the set I and the string r so
far. Moreover, recall that, for each vertex [s]i ∈ Wε, the subtree rooted at [s]i

is denoted by T[s]i . In the beginning, C1 is equal to I, and in every subsequent
round i, after request ri−1 has been sent, the set Ci can be derived by removing
all strings from Ci−1 that do not have the bit ri−1 at position i− 1. Formally, we
have Ci = {s ∈ I | [s]i−1 = [r]i−1} = I ∩ T[r]i−1 .

The algorithm B now works as follows, depending on the number k. If k = 2n,
the algorithm’s guess in each round i, where 1 ≤ i ≤ n, is gi := 1. Otherwise, we
have 1 ≤ k ≤ 2n − 1. Then, in round i, after B has received the request to guess
the i-th bit ri of r but before making its decision, B asks the oracle for one bit of
advice. The oracle has to fulfill this demand by sending exactly one advice bit. If
the number of ones at position i in Ci is at least |Ci|/2, the oracle sends the bit 1,
and otherwise 0. The algorithm B does not demand any more advice bits from
the oracle, but adopts this bit as its guess for ri. Hence, the advice string τ̂i that B
reads in this round only consists of this bit, and we have gi := τ̂i.

Lemma 5.38. In each round i with 1 ≤ i ≤ n, the algorithm B chooses a bit that appears
in at least half of the strings in Ci at position i as its guess gi.

Proof. If k = 2n, the set I equals Tε. The algorithm B outputs the guess gi = 1

in each round i; hence, we have to show that at least half of the strings in Ci =
{s ∈ Tε | [s]i−1 = [r]i−1} have the bit 1 at position i, for 1 ≤ i ≤ n. This is clearly
the case, because half the strings from Tε with the same prefix [r]i−1 have a one at
position i, for 1 ≤ i ≤ n.

The claim is also true in the case 1 ≤ k ≤ 2n−1. In each round i, the algorithm B
chooses gi = τ̂i as its guess for ri, and τ̂i is always a bit that occurs in at least half
of the strings in Ci. 2

To further analyze B, recall Lemma 5.16, in which we showed that any algorithm
that chooses a bit that appears in at least half of the strings in Ci at position i in
every round i guesses at least

n · 2n−1 − ω̂(k̃)

2n − k̃

bits correctly in expectation. We observe that the proof of Lemma 5.16 does not
depend on the model used, so that we can make the same statement about the
number of correctly guessed bits of any such algorithm in the dialog model, using
the same proof as for Lemma 5.16.

Lemma 5.39. Let n ∈ N and let I = Iall \ Ĩ be a worst-case set of instances that
contains all strings of length n except for 0 ≤ k̃ ≤ 2n − 1 strings that are contained in Ĩ .
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Furthermore, letA be an online algorithm with advice that chooses as its guess gi a bit that
appears in at least half of the strings in Ci at position i in every round i, where 1 ≤ i ≤ n.
Then the expected number of correctly guessed bits of B on I in the dialog model is given
by

χ(n, k̃) =
n · 2n−1 − ω̂(k̃)

2n − k̃
.

Proof. See the proof of Lemma 5.16. 2

Thus, we can already make a statement about the number of advice bits that are
necessary to achieve the same expected number of correctly guessed bits as the
Ψ-optimal algorithm A from Section 5.2.1.1 in the monolog model.

Theorem 5.40. In the dialog model, given a probabilistic adversary that excludes the
set Ĩ containing k̃ strings of length n from the set Iall of possible strings and chooses
one of the remaining strings from I = Iall \ Ĩ uniformly at random, there is an online
algorithm B with advice for the bit string guessing problem with a probabilistic adversary
that guesses

n · 2n−1 − ω̂(k̃)

2n − k̃

bits correctly and thus at most
ω̂(k)

k

bits incorrectly in expectation, using 0 advice bits if k̃ = 0 and n advice bits if 1 ≤ k̃ ≤
2n − 1.

Proof. The number of advice bits needed is indicated in the description of al-
gorithm B in this section. The number of correctly guessed bits follows from
Lemmata 5.38 and 5.39. The expected number of incorrectly guessed bits then
follows from Observation 5.9 again. 2

Thus, we know how to achieve the same number of correctly guessed bits in
the dialog model as in the monolog model; but is the algorithm B also Ψ-optimal
in the dialog model, just like A is in the monolog model? As it turns out, we
can again reuse a result from before, where we have proven which properties
an algorithm must have to be Ψ-optimal in the monolog model. In Lemma 5.22,
we have proven that any algorithm for the bit string guessing problem with a
probabilistic adversary in the monolog model is Ψ-optimal if and only if in each
round i, it chooses a bit that occurs in at least half of the strings in Ci at position i
as its guess gi. The proof of Lemma 5.22 is totally independent of the model used.
Hence, the result carries over to the dialog model, yielding the statement that an
algorithm in the dialog model is Ψ-optimal if and only if in each round i, it chooses
a bit that occurs in at least half of the strings in Ci at position i.
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Lemma 5.41. In the dialog model, an online algorithm for the bit string guessing prob-
lem with a probabilistic adversary that excludes k̃ strings from an instance consisting
of 2n strings of length n is Ψ-optimal if and only if it chooses its guess gi from the
set arg maxsi

{
|{s ∈ Ci | si = 0}|, |{s ∈ Ci | si = 1}|

}
in each round i.

Proof. See the proof of Lemma 5.22. 2

This leads to the same number of correctly guessed bits that any Ψ-optimal
algorithm can achieve in the dialog model as in the monolog model.

Theorem 5.42. Algorithm B is Ψ-optimal for 2-GUESS in the dialog model with a prob-
abilistic adversary that excludes k̃ strings from an instance consisting of 2n strings of
length n. Hence, the expected number of correctly guessed bits of any Ψ-optimal online
algorithm playing against such an adversary is

n · 2n−1 − ω̂(k̃)

2n − k̃
,

and the expected number of incorrectly guessed bits is at most

ω̂(k)

k
.

Proof. According to Lemma 5.38, in each round i with 1 ≤ i ≤ n, the algorithm B
chooses a bit that occurs in at least half the strings from Ci at position i as its
guess gi. Hence, according to Lemma 5.41, B is Ψ-optimal.

Therefore, each Ψ-optimal algorithm must guess as many bits correctly in
expectation as B, and as we know from Theorem 5.40, this number of bits is
exactly

n · 2n−1 − ω̂(k̃)

2n − k̃
.

2

The Ψ-optimal algorithm A for the monolog model that we described in Sec-
tion 5.2.1.1 uses log

(
2n

k̃

)
advice bits. Moreover, we showed that at least k̃ (n−log k̃)

advice bits are necessary to achieve Ψ-optimality in the monolog model. Hence,
for k̃ = 0, the algorithm A does not read any advice bits, just like the algorithm B
in the dialog model. For all other values of k̃, however, we have proven that in the
dialog model, Ψ-optimality can be achieved with only n advice bits, whereas in
the monolog model, the number of advice bits necessary can be exponential in n.
For a more detailed discussion, see Section 5.4.

5.3.2 Lower Bound

Now that we have proven that n bits of advice are sufficient for any algorithm to
be Ψ-optimal in the dialog model, let us turn our attention to the lower bound for
the number of advice bits necessary to be Ψ-optimal.
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5.3.2.1 Bound for Odd k

We will give a tight lower bound of n advice bits in the case that k̃ is odd (and
thus k = 2n − k̃ is odd) soon. However, before we do so, we have to make a few
technical considerations.

Observation 5.43. For any odd natural number k ∈ N≥1, either bk/2c or dk/2e is an
odd number again.

Proof. Since k is odd, k/2 is not a natural number. Hence, the two values bk/2c
and dk/2e cannot be equal, and as the difference between them is at most 1, one of
them must be odd and the other one even. 2

Observation 5.44. For every odd natural number k =: k0 ∈ N≥1 and every natural
number n ∈ N≥0, there is a unique sequence K := (k0, k1, . . . , kn) of n+ 1 odd natural
numbers ki ∈ N≥1, such that for each i with 1 ≤ i ≤ n, we have

ki =

⌊
ki−1

2

⌋
or ki =

⌈
ki−1

2

⌉
.

Proof. For any iwith 1 ≤ i ≤ n, exactly one of the values bki−1/2c and dki−1/2e
is odd due to Observation 5.43; hence, the sequence is unique. The sequence starts
with a value k0 ≥ 1. If, for some j with 0 ≤ j ≤ n − 1, we have kj ≥ 1, the next
value will be kj+1 ≥ d1/2e = 1. Therefore, all values are at least 1. 2

We identify the set Tε of all 2n strings of length nwith a complete binary tree
of depth n, as we did before. Each leaf represents one string, and a computation
of an algorithm on the string r is represented by a route through the tree from
the root ε to the leaf r. Let us define the level of a vertex v as the length of the
shortest path from the root to v. Thus, the root is on level 0, and the leaves are on
level n. Again, we identify an inner vertex v on level i that lies on the shortest
path from the root to a string s with the prefix [s]i of s, for 0 ≤ i ≤ n. This is
exactly the part of the string s that an algorithm already knows when it reaches
the vertex v = [s]i on its route through the tree. Recall that we defined the subtree
rooted at a vertex v to be called Tv. The binary tree representing Tε has the vertex
set Wε = {[s]i | s ∈ Tε, 0 ≤ i ≤ n}. Each inner vertex [s]i−1 on the path from ε

to the string s has two children, namely [s]i, which also lies on the path to s,
and ([s]i)∗, which does not lie on the path to s. Recall that [s]i and ([s]i)∗ are called
siblings.

To give a lower bound on the number of advice bits necessary to be Ψ-optimal,
we consider only a restricted set of instance sets the adversary may choose I
from. Actually, we will again consider only balanced sets, as we already did for
the lower bound in the monolog model. This time, however, we will consider
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balanced sets as sets of included strings, whereas before we considered them as
sets of excluded strings. Anyway, as before, the lower bound for the number of
advice bits necessary if the adversary might choose any possible set as I cannot
be smaller than the one we obtain by restricting I to certain balanced sets. First,
recall the definition of balanced sets from Section 5.2.2, in particular the notion
of a balanced set as a selection of leaves in the binary tree Tε. A balanced set is a
selection of leaves such that, for each inner vertex [s]i−1, the number of selected
leaves in T[s]i differs by at most one from the number of selected leaves in T([s]i)∗ .
In addition, we will from now on say that a vertex [s]i−1 is balanced if the number
of selected leaves in T[s]i differs by at most one from the number of selected leaves
in T([s]i)∗ .

Now let us describe how to choose the class C of balanced sets of size k that the
adversary may choose I from. For each string r ∈ Tε, we add a corresponding
balanced set Ur to C. To define the set Ur, we first generate a labeling κr : Wε →
{0, . . . , k} of the vertices of Tε. The labeling κr assigns the number of strings
from the balanced set Ur in the subtree Tv to each vertex v. Thus, for each such
labeling κr that corresponds to a balanced set Ur and each inner vertex [s]i−1

with label κr([s]i−1), where 1 ≤ i ≤ n, the labels κr([s]i) and κr(([s]i)∗) of its two
children must add up to κr([s]i−1). To generate a labeling κr corresponding to a
balanced set of size k, the label of the root must be κr(ε) = k, and each leaf must
be labeled either with 0 or with 1.

Let K = (k0, k1, . . . , kn) be the unique sequence of n+ 1 odd numbers that cor-
responds to k = k0 satisfying the condition from Observation 5.44. Furthermore,
for any i with 1 ≤ i ≤ n, let k∗i := ki−1 − ki. For each string r ∈ Tε, we generate
the labeling κr corresponding to r as follows.

(a) For each iwith 0 ≤ i ≤ n, the vertex [r]i on the path from the root [r]0 = ε
to [r]n = r is labeled with κr([r]i) := ki.

(b) For each i with 1 ≤ i ≤ n, the sibling ([r]i)∗ of the vertex [r]i is labeled with
κr(([r]

i)∗) := k∗i = ki−1 − ki.

(c) The labels of the remaining vertices are generated top-down, level by level.
For each vertex vwith label κr(v) and two yet unlabeled children, the left
child is assigned the label dκr(v)/2e and the right one bκr(v)/2c.

An example can be found in Figure 5.5.
Recall that, for every set S of strings and each vertex v, we defined ϑ(S, v) to be

the number of leaves from S in Tv. Now we want to determine the balanced set Ur
that corresponds to r. To this end, for each corresponding labeling κr, we interpret
the label κr(v) of each vertex v as the number of strings from Ur in the subtree Tv,
i. e., ϑ(Ur, v) := κr(v). When we generated the labelings, we made sure that they
actually correspond to a balanced set each, as we will show now.



132 Chapter 5. Probabilistic Adversary

1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0

1 1 1 0 1 1 1 1

2 1 2 2

3 4

7

r

Figure 5.5. An example of the case n = 4 and k = 7. The unique sequence of n+ 1 = 5 odd
numbers corresponding to k is (7, 3, 1, 1, 1). The string r is marked in black, the balanced
set Ur corresponding to r consists of all rectangular leaves (black or blue). The vertices on
the path from the root to r are labeled according to (a) with the values 7, 3, 1, 1, 1, from top
to bottom; these vertices are drawn in black. Vertices that are labeled according to (b) are
colored blue; the remaining vertices, which are labeled according to (c), are colored gray.

Observation 5.45. For any n, k ∈ N≥1, where 1 ≤ k ≤ 2n − 1 and k odd, and each
string r ∈ Tε, the generated labeling κr corresponds to a balanced set Ur of size k.

Proof. As we have already mentioned, the label of a vertex v indicates the number
of strings from Ur in the subtree Tv. Properties (a) and (b) make sure that the
labels κr([r]i) = ki and κr(([r]i)∗) = ki−1 − ki of [r]i and ([r]i)∗, respectively, add
up to κr([r]i−1) = ki−1, i. e., the label of their parent [r]i−1. Together with Observa-
tion 5.44, we obtain taht bki−1/2c of the ki−1 strings from Ur in the subtree T[r]i−1

are located in T[r]i and dki−1/2e in T([r]i)∗ or vice versa, making sure that every
vertex on the path from ε to r is balanced. All remaining vertices are balanced due
to (c).

Due to Observation 5.44 and (a), we know that the root has label κr(ε) = k0 = k,
and since k ≤ 2n − 1, all leaves are either labeled with a 0 or with a 1. Hence, the
generated labeling corresponds to a balanced set Ur of size k. 2

Lemma 5.46. For any n, k ∈ N≥1, where 1 ≤ k ≤ 2n−1 and k odd, and any string r ∈
Tε, the balanced set Ur of size k corresponding to r contains the string r.

Proof. Consider the sequence K = (k0, . . . , kn) with ki ≥ 1 for 0 ≤ i ≤ n. As
k ≤ 2n − 1, the last value kn must be exactly 1, and according to our construction
of the labeling κr, this value kn is assigned to the leaf r. Due to the construction of
the balanced set Ur corresponding to κr, the set Ur must contain r. 2



5.3. Dialog Model 133

Lemma 5.47. For any n, k ∈ N≥1, where 1 ≤ k ≤ 2n − 1 and k odd, consider the
unique sequence (k0, . . . , kn) of length n+ 1 corresponding to k from Observation 5.44.
Then, k∗i 6= ki, for all i with 1 ≤ i ≤ n.

Proof. We have

k∗i = ki−1 − ki =


ki−1 −

⌊
ki−1

2

⌋
=
⌈
ki−1

2

⌉
if ki =

⌊
ki−1

2

⌋
,

ki−1 −
⌈
ki−1

2

⌉
=
⌊
ki−1

2

⌋
if ki =

⌈
ki−1

2

⌉
.

Due to Observation 5.44, each ki−1 is an odd number, and due to Observation 5.43,
either ki or k∗i is odd and the other one even. Thus, ki and k∗i differ by exactly 1. 2

Now let us consider all strings s ′ in the subtree T[s]i rooted at [s]i, for some
vertex [s]i. All these strings have the same common prefix [s]i. Let us define the
class C[s]i ⊆ C to contain every balanced set Us ′ corresponding to such a string s ′.

Observation 5.48. For any n, k ∈ N≥1, where 1 ≤ k ≤ 2n − 1 and k odd, consider
only balanced sets of size k. Then, C[s]i ∪ C([s]i)∗ = C[s]i−1 for each inner vertex [s]i−1.

Proof. This is a direct consequence of the definition of the classes C([s]i)∗ , C[s]i ,
and C[s]i−1 . 2

Lemma 5.49. For any n, k ∈ N≥1, where 1 ≤ k ≤ 2n − 1 and k odd, consider two
strings r, s ∈ Tε with the same prefix [r]i = [s]i, for some i with 0 ≤ i ≤ n. Furthermore,
consider the balanced set Ur of size k corresponding to r. Then, the number of strings
from Ur in T[s]i is ki, and the number of strings from Ur in T([s]i)∗ is k∗i .

Proof. As [r]i = [s]i, we know that Ur ∈ C[s]i , and that ([r]i)∗ = ([s]i)∗. Due
to properties (a) and (b), we have κr([r]i) = κs([s]

i) = ki and κr(([r]
i)∗) =

κs(([s]
i)∗) = k∗i . Hence, according to our construction of the labelings, the ver-

tex [r]i = [s]i has the same label ki in the labelings corresponding to r and s,
respectively, and the sibling ([r]i)∗ of [r]i has the same label k∗i in the labelings
corresponding to r and s, respectively.

The claim follows, since the labels of the vertices [r]i and ([r]i)∗ indicate the num-
ber of strings from the corresponding balanced set in the subtrees T[r]i and T([r]i)∗ ,
respectively. 2

An example is given in Figure 5.6.

Corollary 5.50. For any n, k ∈ N≥1, where 1 ≤ k ≤ 2n − 1 and k odd, consider only
balanced sets of size k. Then, for each inner vertex [s]i−1, the two classes of balanced
sets C[s]i and C([s]i)∗ are disjoint.
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r s

[s]0

[s]1 ([s]1)∗

([s]2)∗ [s]2

1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0

1 1 1 0 1 1 1 1

2 1 2 2

7

3 4

1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0

1 1 1 0 1 1 1 1

2 1 2 2

7

3 4

Figure 5.6. The example for n = 4 and k = 7 from Figure 5.5 for i = 2. The strings r = 0100
and s = 0101 have the same prefix [s]2 = 01 (even if this is not their longest common prefix);
hence, Ur ∈ C[s]2 . The labels of κr and κs are written next to each vertex; those of κr to the
left, those of κs to the right. The vertices [s]0, [s]1, and [s]2 have the same labels in κr and κs
due to (a). The siblings ([s]1)∗ and ([s]2)∗ have the same labelings in κr and κs due to (b).
Hence, the number of strings from Ur in T[s]2 is the same as the number of strings from Us
in T[s]2 , namely ki. Furthermore, the number of strings from Ur in T([s]2)∗ is the same as
the number of strings from Us in T([s]2)∗ , namely k∗i .

Proof. According to Lemma 5.49, for every balanced setUr ∈ C[s]i that corresponds
to a string r ∈ Tε, there are ki strings from Ur in T[r]i , and for every balanced
set Ur ′ ∈ C([s]i)∗ corresponding to a string r ′ ∈ Tε, there are ki strings from Ur ′

in T([r]i)∗ and k∗i strings from Ur ′ in T([r ′]i)∗ = T[r]i . Due to Lemma 5.47, ki 6= k∗i ,
and thus Ur and Ur ′ must be different. 2

Now, for each vertex [s]i, let us define the class D[s]i as the set of optimal
deterministic algorithms for the balanced sets from C[s]i . Note that there may be
several different optimal deterministic algorithms for the same balanced set.

Observation 5.51. For any n, k ∈ N≥1, where 1 ≤ k ≤ 2n − 1 and k odd, consider
the optimal deterministic algorithms for balanced sets of size k. Then, for each inner
vertex [s]i−1, we have D[s]i ∪ D([s]i)∗ = D[s]i−1 .

Proof. This is a direct consequence of the definition of the classes D([s]i)∗ , D[s]i ,
and D[s]i−1 . 2

For each labeling κs and each inner vertex [s]i−1, one of the two children [s]i

and ([s]i)∗ of [s]i−1 is labeled with ki and the other one with k∗i . Let us define
the one with the label max{ki, k∗i } to be the child fs,i and the one with the la-
bel min{ki, k∗i } the child f∗s,i.
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Recall that we can represent any deterministic algorithm by a marking of the
edges, as we described in Section 5.2.2 on page 113. This marking maps every
inner vertex in the tree to one of its two outgoing edges. For each vertex v, we call
the marked outgoing edge the favored edge of v.

Lemma 5.52. For any n, k ∈ N≥1, where 1 ≤ k ≤ 2n − 1 and k odd, consider some
vertex [s]i in the tree Tε. Then, for all algorithms from the class D[s]i of deterministic
algorithms that are optimal for some balanced set of size k from C[s]i , the favored edge at
vertex [s]i−1 is ([s]i−1, fs,i).

Proof. Consider some arbitrary but fixed balanced set Ur ∈ C[s]i of size k and an
arbitrary but fixed optimal deterministic algorithm Ar for Ur, for some string r ∈
Tε. Hence, Ar ∈ D[s]i .

Due to Lemma 5.49, the number of strings fromUr in T[s]i is ki, and the number
of strings from Ur in T([s]i)∗ is k∗i . These two values ki and k∗i are different
due to Lemma 5.47. The favored edge at [s]i−1 of any algorithm that is optimal
on Ur must point to the child with the larger label, i. e., to the child fs,i with the
label max{ki, k∗i }.

Since we chose Ar to be an arbitrary algorithm from D[s]i , each algorithm
from D[s]i has the favored edge ([s]i−1, fs,i) at vertex [s]i−1. 2

An example can be found in Figure 5.7.

Corollary 5.53. For any n, k ∈ N≥1, where 1 ≤ k ≤ 2n − 1 and k odd, consider
the optimal deterministic algorithms for balanced sets of size k. Then, for each inner
vertex [s]i−1, the two classes of algorithms D[s]i and D([s]i)∗ are disjoint.

Proof. Let s ′ ∈ Tε be the string with [s]i−1 = [s ′]i−1 and [s]i 6= [s ′]i. Hence, [s ′]i =
([s]i)∗. Then, the claim follows directly from Lemma 5.52, because any algorithm
from D[s]i has the favored edge ([s]i−1, fs,i), and any algorithm from D([s]i)∗ has
the favored edge ([s]i−1, fs ′,i) = ([s]i−1, f∗s,i) 6= ([s]i−1, fs,i). 2

Lemma 5.54. For any n, k ∈ N≥1, where 1 ≤ k ≤ 2n − 1 and k odd, consider two
different strings r, r ′ ∈ Tε with the same common prefix [r]i−1 = [r ′]i−1 that differ at
position i, for some i with 1 ≤ i ≤ n. Furthermore, consider the balanced sets Ur ∈ C[r]i
and Ur ′ ∈ C([r]i)∗ of size k corresponding to r and r ′, respectively. Assume that the
adversary chose one of these two balanced sets as the set I. Then, any online algorithm B
with advice has to read a different advice string on Ur than on Ur ′ to be optimal on both.

Proof. We prove the claim by contradiction. Assume that B reads the same advice
string, regardless of whether the adversary has chosen Ur or Ur ′ as I. Both
balanced sets Ur and Ur ′ are contained in C[r]i−1 due to Observation 5.48, so
without loss of generality we can assume that the deterministic algorithm used
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r s

[s]0

[s]1 ([s]1)∗

([s]2)∗ [s]2

[s]3

Figure 5.7. The example for n = 4 and k = 7 from Figure 5.5 for i = 2. The strings r = 0100
and s = 0101 have the same prefix [s]i = 01. The strings from the balanced sets Ur and Us
are marked by blue rectangles; those of Us in a light blue, and those from Ur in a darker
one. The favored edges of As at vertices [s]0, . . . , [s]3 are marked in a light blue and those
of Ar in a darker blue. The vertices [s]1, [s]2, and their siblings have the same labels in κr
and κs, respectively. Hence, the favored edges of Ar and As at the vertices [s]0 and [s]1 are
the same.

is from D[r]i−1 , the class of optimal deterministic algorithms for balanced sets
from C[r]i−1 . We consider two cases depending on which set the adversary chose.

For the first case, we assume that the adversary chose Ur ∈ C[r]i as I . Then, due
to Lemma 5.46, it is possible that the string that was drawn uniformly at random
from Ur was r. Due to Observation 5.51, the algorithm used from the class D[r]i−1

must be fromD[r]i orD([r]i)∗ . AsUr ∈ C[r]i and sinceD[r]i andD([r]i)∗ are disjoint
as a consequence of Corollary 5.53, no algorithm fromD([r]i)∗ can be optimal onUr.
Hence, in the case that the adversary chose Ur as I, a deterministic algorithm
from D[r]i has to be used to be optimal.

For the second case, let us assume that the adversary chose Ur ′ ∈ C([r]i)∗ as I,
and that the string that was drawn uniformly at random from Ur ′ was r ′, which is
again possible due to Lemma 5.46. In this case, with a similar argument as before,
a deterministic algorithm from D([r]i)∗ has to be used to be optimal on Ur ′ .

As we have seen, two different deterministic algorithms have to be chosen by B
in these two cases. However, in both cases, B has read the same prefix [r]i−1 =

[r ′]i−1 so far in round i, and due to our assumption, it has also read the same
advice string. Hence, it has to make the same deterministic choice in both cases,
and is therefore not optimal on either Ur or Ur ′ . 2

Lemma 5.55. Assume that for some n, k ∈ N, where 1 ≤ k ≤ 2n and k odd, and some
string r ∈ Tε, the adversary chooses the balanced set Ur of size k from C as the set I
containing strings of length n, and that the string r is drawn from I as the actual input
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string. Then, there is no online algorithm B that reads less than n advice bits and that is
optimal for all strings r ∈ Tε.

Proof. Consider two arbitrary but fixed balanced sets Ur, Ur ′ ∈ C corresponding
to the strings r, r ′ ∈ Tε. Let i be the position at which r and r ′ differ for the first
time, where 1 ≤ i ≤ n; hence, [r]i−1 = [r ′]i−1 and [r]i 6= [r ′]i. Thus, Ur ∈ C[r]i and
Ur ′ ∈ C([r]i)∗ . Due to Lemma 5.54, to be optimal on both balanced sets, B has to
read a different advice string in the case that the adversary chose Ur as I and r is
drawn as the actual input string than in the case that the adversary chose Ur ′ as I
and then r ′ is drawn as the actual input string. There are 2n strings r in Tε, and
therefore 2n corresponding balanced sets Ur. Due to Corollary 5.50, all classes
of balanced sets C[s]i and C([s]i)∗ are pairwise disjoint, for all inner vertices [s]i−1,
which directly implies that all balanced setsUr are pairwise different, for all r ∈ Tε.
Hence, C contains 2n balanced sets.

To be optimal on each balanced set from C, any algorithm B needs to read a
different advice string for each balanced set from C, as we have just seen. 2

We are now ready to prove a matching lower bound to the upper bound of n
advice bits that are sufficient for an algorithm to be Ψ-optimal in the dialog model.
Recall that ω̂(k̃) is the total Hamming weight of the binary representations of all
natural numbers from 0 to k̃− 1.

Theorem 5.56. In the dialog model, any Ψ-optimal online algorithm needs at least n ad-
vice bits on a set of instances of size k = 2n − k̃ containing strings of length n, where k
is odd and 1 ≤ k ≤ 2n − 1. Hence, any algorithm needs to read at least n advice bits to
guess

n · 2n−1 − ω̂(k̃)

2n − k̃

bits correctly and thus at most
ω̂(k)

k

bits incorrectly in expectation.

Proof. This follows directly from Lemma 5.55 and Theorem 5.42. 2

5.3.2.2 Generalization for General k

Now we want to use the results from Section 5.3.2.1 to give a lower bound for all
(reasonable) values of k, i. e., for all values in the range 1 ≤ k ≤ 2n. To this end,
we use the fact that we can write each natural number k as k = 2m · ` for natural
numbersm, `withm ∈ N≥0 and ` ∈ N≥1 and ` being odd.
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Again, for each string r ∈ Tε, we add a balanced set Ur to a class C of balanced
sets of size k that the adversary may choose I from. To define the set Ur, we
first generate a corresponding labeling λr : Wε → {0, . . . , k} of the vertices, as we
already did in Section 5.3.2.1.

As k = 2m · ` ≤ 2n, we have m+ log ` ≤ n, and thus n−m ≥ 0. Then, due to
Observation 5.44, there is a unique sequence L = (`0, `1, . . . , `n−m) of n−m+ 1

odd numbers corresponding to ` =: `0 with `i ≥ 1, for 0 ≤ i ≤ n−m.

Observation 5.57. For every natural number k =: k0 ∈ N≥1 and every natural num-
ber n ∈ N≥0, there is a unique sequence K = (k0, k1, . . . , kn) of n + 1 natural num-
bers ki ∈ N≥1, such that for each i with 1 ≤ i ≤ n, we have

ki =

⌊
ki−1

2

⌋
or ki =

⌈
ki−1

2

⌉
,

and, furthermore, for each i with 1 ≤ i ≤ m, we have

ki =
ki−1

2
.

Proof. We define the sequence K = (k0, k1, . . . , kn) of length n+ 1 as follows. Let

ki :=

{
k/2i for 0 ≤ i ≤ m,
`i−m form+ 1 ≤ i ≤ n.

For 1 ≤ i ≤ m, we have ki = k/2i = ki−1/2, so for these values, the claim
follows directly. Furthermore, km = k/2m = ` = `0 is the first number of the
unique sequence (`0, `1, . . . , `n−m). Thus, for all values ki with m + 1 ≤ i ≤ n,
we have ki = bki−1/2c or ki = dki−1/2e due to Observation 5.44. Since `i ≥ 1 for
all `i ∈ L, also ki ≥ 1 for all ki ∈ K. 2

Additionally, for any i with 1 ≤ i ≤ n, let k∗i := ki−1 − ki. We generate
a corresponding labeling λr for each string r ∈ Tε in the same manner as in
Section 5.3.2.1.

(a) For each iwith 0 ≤ i ≤ n, the vertex [r]i on the path from the root [r]0 = ε
to [r]n = r is labeled with λr([r]i) := ki.

(b) For each i with 1 ≤ i ≤ n, the sibling ([r]i)∗ of the vertex [r]i is labeled with
λr(([r]

i)∗) := k∗i = ki−1 − ki.

(c) The labels of the remaining vertices are generated top-down, level by level.
For each vertex vwith label λr(v) and two yet unlabeled children, the left
child is assigned the label dλr(v)/2e and the right one bλr(v)/2c.
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1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0

1 1 1 0 1 1 1 0

2 1 2 1

3 3

6

r

Figure 5.8. An example for the case n = 4 and k = 6 = 21 · 3, implying that m = 1

and ` = 3. Hence, the unique sequence of n −m + 1 = 4 odd numbers corresponding
to ` is L = (3, 1, 1, 1). The unique sequence of n + 1 = 5 numbers corresponding to k is
K = (6, 3, 1, 1, 1). The string r is marked as a black square; the balanced setUr corresponding
to r consists of all rectangular leaves (black or blue). The vertices on the path from the
root to r are labeled according to (a) with the values 6, 3, 1, 1, 1 from top to bottom and are
colored black. All vertices that are labeled according to (b) are colored blue; all remaining
vertices are labeled according to (c).

An example can be found in Figure 5.8.
Just as before, we can show that each generated labeling corresponds to a

balanced set.

Observation 5.58. For any n, k ∈ N≥1, where 1 ≤ k ≤ 2n, and each string r ∈ Tε, the
generated labeling λr corresponds to a balanced set Ur of size k.

Proof. Again, the label of a vertex v indicates the number of strings from the setUr
in the subtree Tv. Properties (a) and (b) make sure that the labels λr([r]i) = ki
and λr(([r]i)∗) = ki−1 − ki of [r]i and ([r]i)∗, respectively, add up to λr([r]i−1) =
ki−1, i. e., the label of their parent [r]i−1. Together with Observation 5.57, we
obtain that bki−1/2c of the ki−1 strings from Ur in the subtree T[r]i−1 are located
in T[r]i and dki−1/2e in T([r]i)∗ or vice versa, making sure that every vertex on the
path from ε to r is balanced. All remaining vertices are balanced due to (c).

Since the first value of the sequence, which is k0 = k, is assigned to the root
due to (a), we know that the root has label λr(ε) = k, and as k ≤ 2n, all leaves are
either labeled with a 0 or with a 1. Hence, the generated labeling corresponds to a
balanced set Ur of size k. 2

Lemma 5.59. For any n, k ∈ N≥1, where 1 ≤ k ≤ 2n, and any string r ∈ Tε, the
balanced set Ur of size k corresponding to r contains the string r.
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Proof. Consider the unique sequenceK of lengthn+1 corresponding to kwith ki ≥
1, for 0 ≤ i ≤ n. As k ≤ 2n, the last value kn must be exactly 1, and according
to our construction of the labeling λr, this value kn is assigned to the leaf r. Due
to the construction of the balanced set Ur corresponding to λr, the set Ur must
contain r. 2

As before, let C[s]i be the class of balanced sets Us ′ corresponding to a string s ′

from the subtree T[s]i , and let C := Cε.
Now let us assume towards contradiction that, for some arbitrary but fixed k =

2m · ` with ` being odd, there is an algorithm A that is optimal if the adversary
chooses an instance set of size k containing strings of length n, and that reads less
than n −m advice bits. We will show that then there also exists an algorithm B
that is optimal if the adversary chooses an instance set of size ` containing strings
of length n − m, while reading less than n − m advice bits, which is clearly a
contradiction to Theorem 5.56. We conclude that there is no k with 1 ≤ k ≤ 2n for
that such an algorithm A as described above exists.

In what follows, it will often be important to tell instance sets, advice strings etc.
of A and B apart from one another. To this end, whenever we have to do so, we
will add a superscript (n) or (n−m) to the corresponding variables, the former
for the algorithm A, the latter for B.

Let us assume that the adversary chooses the set U(n−m)
r corresponding to the

string r = r1 . . . rn−m as the set I(n−m) of possible input strings for B. Moreover,
let r̂ be the string that we get from r by padding rwithm zeros in the front, i. e.,
r̂ := 0 . . . 0︸ ︷︷ ︸

m

r1 . . . rn−m.

AsA is optimal, it is optimal in particular if the adversary chooses the setU(n)
r̂ ∈

C(n) corresponding to the string r̂ as the set I(n) of possible input instances and
the string r̂ is then drawn from I(n) as the actual input string for A. Note that it is
indeed possible to draw r̂ from I(n) since r̂ ∈ U(n)

r̂ due to Lemma 5.59.
Hence, let us assume that IB = (n−m, r1, . . . , rn−m) is the input sequence for B.

During its computation on IB, algorithm B simulates the computation of A on the
input IA = (n, r̂1, . . . , r̂n) = (n, 0, . . . , 0, r1, . . . , rn−m). Note that B generates this
input sequence for A during its computation from the requests from IB.

Since B and A have a different number of rounds and several rounds of A are
simulated during one round of B, let us call the rounds of A time steps for now.
In the first round, when B gets a request to guess the first bit of r, it simulates
the first m + 1 time steps of A. Hence, in its first round, it sends m + 1 requests
n, 0, . . . , 0 inm+ 1 subsequent time steps to A, one after another. During its first
m+ 1 time steps, A demands d(n)1 , . . . , d

(n)
m+1 advice bits in total. When B receives

these demands, it passes them on to the oracle, and the bits that B receives from
the oracle in return are passed on to A again. Hence, in its first round, B demands
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d
(n−m)
1 = d

(n)
1 + . . .+ d

(n)
m+1 advice bits from the oracle in total. Whatever output

A produces in the first m − 1 time steps is completely ignored by B, but the
output g(n)m+1 that A generates in time stepm+ 1 is adopted by B as its output for
round 1; hence, g(n−m)

1 := g
(n)
m+1.

In each following round, B simulates exactly one further time step ofA. In every
round i with 2 ≤ i ≤ n −m, the adversary sends a request x(n−m)

i = ri−1 to B.
Then B passes this request on to A as its request x(n)m+i, whereupon A demands
d
(n)
m+i advice bits in time stepm+ i in total, bit by bit. Again, whenever B receives

such a demand, it passes it on to the oracle, and all advice bits the oracle sends to
B as a response are passed on by B to A, such that τ̂(n)m+i := τ̂

(n−m)
i .

The output that A generates in time step m+ i is adapted by B as its own for
round i; hence, g(n−m)

i := g
(n)
m+i.

Observation 5.60. Suppose the adversary chooses a set U(n)
r̂ for some string r̂ ∈ T (n)

as I(n) and then r̂ is drawn as input string for A. Then, A is always optimal in the first
m time steps, no matter which bits it guesses.

Proof. Due to Observation 5.57, each value ki with 1 ≤ i ≤ m in the sequence K =

(k0, k1, . . . , kn) is ki−1/2. Hence, in each labeling corresponding to a string r̂,
each vertex on level i is labeled with ki−1/2. This directly implies that, for 1 ≤
i ≤ m, both the left and the right subtree of each vertex v on level i − 1 contain
ki−1/2 vertices from the corresponding set U(n)

r̂ .
Therefore, in the firstm time steps, the guesses of A do not matter at all; each

decision is optimal. 2

From the reduction given above, we gain the following statement about the
number of advice bits necessary to be optimal in the general case of input instances
of arbitrary size k.

Theorem 5.61. In the dialog model, any Ψ-optimal online algorithm needs at least n−

m advice bits on a set of instances of size k = 2n − k̃ = 2m · ` containing strings of
length n, where ` is odd and 1 ≤ k ≤ 2n − 1. Hence, any algorithm needs to read at least
n−m advice bits to guess

n · 2n−1 − ω̂(k̃)

2n − k̃

bits correctly in expectation.

Proof. For the sake of contradiction, assume there is an algorithm A that reads
less than n −m advice bits and that is optimal if the adversary chooses a set of
k = 2m · ` strings of length n, for some k, `,m,n ∈ N≥1 with k ≤ 2n and ` being
odd. Hence, for each string r̂ ∈ T (n) with r̂i = 0 for every i with 1 ≤ i ≤ m, the
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algorithm Amust be optimal in particular if the adversary chooses the set U(n)
r̂

as I(n) and r̂ is drawn from U
(n)
r̂ as the actual input string.

Now consider a setting with strings of length n − m and an adversary that
chooses an instance set of size ` as the set of possible input strings. We construct an
algorithm B for this setting, usingA as described in the reduction given above. No
matter which bits A guesses in the firstm time steps, these guesses are optimal ac-
cording to Observation 5.60. Since every such guess is correct with probability 1/2,
A guessesm/2 bits correctly in expectation in the firstm time steps.

As A is optimal, due to Theorem 5.42, its expected number of correctly guessed
bits in all n time steps in total is n − ω̂(k)/k. Thus, the number of bits guessed
correctly by A in time stepsm+ 1, . . . , n in total is

n−
ω̂(k)

k
−
m

2
= n−

ω̂(2m · `)
2m · `

−
m

2

= n−
ω̂(2m·`)
2m

`
−
m

2

= n−
m
2
· `+ ω̂(`)

`
−
m

2
(5.36)

= n−
m

2
−
ω̂(`)

`
−
m

2

= (n−m) −
ω̂(`)

`
,

where (5.36) follows from Observation 5.10.
This is obviously also the number of correctly guessed bits of the algorithm B

in rounds 1, . . . , n in total. Therefore, for every r ∈ T (n−m)
ε , the constructed

algorithm B guesses (n−m) − ω̂(`)/` bits correctly if the adversary chooses the
instance set U(n−m)

r of size ` as I(n−m) and r is drawn from I(n−m) as the actual
input string for B. Moreover, B reads at most as many advice bits as A, which is
less than n−m according to our initial assumption. However, due to Lemma 5.55,
such an algorithm B does not exist. Hence, our initial assumption must have been
false and A cannot exist. 2

5.3.3 Comparing Upper and Lower Bound

We have now proven an upper and a lower bound for the bit string guessing
problem in the dialog model and a probabilistic setting in which the adversary
chooses a set of k strings, from which one is chosen as the actual input string
uniformly at random. We have seen that there is a Ψ-optimal algorithm for 2-
GUESS reading n advice bits if 1 ≤ k ≤ 2n − 1 and no advice bits at all if k = 2n.
As a lower bound, for 0 ≤ k ≤ 2n, we have proven that at least n−m advice bits
are necessary to be Ψ-optimal if the number of included strings is k = 2m · `. Note
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that for k = 2n = 2m · `, we have ` = 1 and n = m, implying n−m = 0, so we also
obtain a reasonable lower bound of 0 for k = 2n. Hence, for k = 2n and odd k, the
upper and lower bound are tight. For even k = 2m · ` ≥ 1, the upper and lower
bound differ by an additive term ofm.

5.4 Comparing Monolog and Dialog Model

Let us briefly emphasize the differences and similarities between the two models
we analyzed in the previous sections.

In the dialog model, the number of advice bits necessary and sufficient to
be Ψ-optimal are both independent of the cardinality of the set I of possible
input instances, at least for odd values of k = |I |. In constrast to this, in the
monolog model, the number of necessary and sufficient advice bits are both
in Θ

(
k̃ (n− log k̃)

)
; hence, both depend on k̃ = 2n − k and thus on k.

For k = 2n (and thus k̃ = 0), in both models, both the upper and lower bound
yield 0; in this case, the bounds are therefore tight. For k = 2n− 1 (and thus k̃ = 1),
the upper and lower bound in the monolog model are k̃ · (n − log k̃) = n and
log
(
2n

k̃

)
= log 2n = n, respectively. In the dialog model, they are both nwhen k

is odd. Therefore, in both models, n advice bits are necessary and sufficent to be
Ψ-optimal for k = 1.

In the dialog model, there is a Ψ-optimal algorithm that uses only n advice bits
for every k with 1 ≤ k ≤ 2n − 1. In the monolog model, on the other hand, we
proved a lower bound of k̃ · (n− log k̃) advice bits necessary to be Ψ-optimal. For
any k̃with 1 ≤ k̃ ≤ 2n − 1, we have k̃ · (n− log k̃) ≥ n. Hence, for all these values
of k̃, the number of advice bits necessary in the monolog model is at least n, which
equals the number of advice bits sufficient to be Ψ-optimal in the dialog model.
This impressively demonstrates the power of basing the advice on the random
decisions the adversary has made so far.

Furthermore, for some values of k, there is a huge gap between the bounds in
the two models; for example, if k̃ = 2n−1, then k̃·(n−log k̃) = 2n−1 ·(n−(n−1)) =

2n−1 advice bits are necessary to be Ψ-optimal in the monolog model. This shows
an exponential gap to the upper bound of n advice bits that are sufficient to be
Ψ-optimal in the dialog model. This proves again that the dialog model is, in fact,
much more powerful in terms of how many advice bits the algorithm has to be
supplied with to achieve Ψ-optimality.



144 Chapter 5. Probabilistic Adversary

5.5 Reductions in the Probabilistic Setting

In this section, we want to show how the string guessing problem can be used to
prove lower bounds for other online problems in the model with a probabilistic
setting. We illustrate this using the example of the set cover problem.

Definition 5.62 (Online Set Cover Problem). The online set cover problem, de-
noted by SETCOVER, is the following online minimization problem. Let Q be a ground
set, and let F be a family of sets with F ⊆ Q, for all F ∈ F . Without loss of generality,
let no set F be the subset of another set F ′ 6= F, for F, F ′ ∈ F , and for every q ∈ Q, let
there be some set in F that contains q. The set Q and the family F are given as the first
request in round 0. The algorithm does not have to respond to this request in any way.
After that, n requests arrive consecutively in n subsequent rounds, such that in each
round i with 1 ≤ i ≤ n, a request qi ∈ Q is presented. The total request sequence is
thus I = ((F , Q), q1, . . . , qn).

An online algorithmA solves SETCOVER if, immediately after each request qi with 1 ≤
i ≤ n, it specifies a set Fi ∈ F such that {q1, . . . , qi} ⊆

⋃i
j=1 Fj. We can assume that

its response to the first request is ε. Hence, the output of A on the input sequence I is a
sequence A(I) = (ε, F1, . . . , Fn) with Fi ∈ F such that after each round j, each of the
requests q1, . . . , qj is contained in at least one of the sets F1, . . . , Fj. The cost cost(A(I))
of a solution A(I) is the number of different sets contained in it, i. e., cost(A(I)) = |{F |

F ∈ A(I)}|.

We say that a request qi is covered by some set Fj ∈ A(I) if qi ∈ Fj. Furthermore,
we define the family of sets chosen by A up to round i to be Ci := {Fj | 1 ≤ j ≤ i}.
Then the family of sets that are contained in A(I) is C := Cn = {Fj | 1 ≤ j ≤ n} =
{F | F ∈ A(I)}. The sets contained in C are called covering sets. The aim of any
algorithm for SETCOVER is to cover all the elements from I while using as few
different covering sets as possible. Note that, whenever a request qi arrives that
is not covered yet by any of the sets F1, . . . , Fi−1, any algorithm for SETCOVER

has to pick a new covering set Fi, and whenever the current request qi is already
covered, the algorithm can pick an arbitrary set Fj ∈ Ci−1 without increasing the
size of C.

Whenever we have to distinguish the outputs of different algorithms, let us use
the notation FAi for the set that a SETCOVER algorithm A chooses in round i, and
the notation CAi for the family of covering sets that have been chosen by A after
round i. Thus we have CAi := {FAj | 1 ≤ j ≤ i}, for 0 ≤ i ≤ n, and CAn =: CA.

Before we give a reduction from the bit string guessing problem to the online
set cover problem, let us first make the following observation.

Lemma 5.63. Consider an online algorithm B for SETCOVER that adds a new set to C
in some round, although the element requested in this round is already covered. Then there
is an online algorithm A for SETCOVER that does not have a larger cost than B that only
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adds a set to C in round i, for all i with 1 ≤ i ≤ n, if the current request qi is not covered
yet, and chooses Fi := Fi−1 otherwise.

Proof. We determine the output of A in each round i depending on B’s output in
rounds 1, . . . , i, starting with round 1 and then traversing all subsequent rounds
in ascending order. In the first round, A outputs the same set as B, i. e., FA1 := FB1 .
For the output FAi of A in a round i, where 1 ≤ i ≤ n, we distinguish two cases.
If the current request qi in round i is already contained in a covering set chosen
by A in a preceding round, there is no need to pick a new covering set, so A
chooses FAi := FAi−1. If, on the other hand, the request qi is not covered yet by any
set chosen by A in any of the preceding rounds, then A has to add a new covering
set to CAi−1. We know that, according to Definition 5.62, at least one set from CBi
contains the request qi. Hence, A chooses FAi := FBj for some arbitrary set FBj ∈ CBi
containing qi.

Obviously, in each round i, the set picked by A is contained in CBi ⊆ CB, and
therefore, CA ⊆ CB. Thus, the cost of A cannot be larger than the one of B. 2

We have now shown that, given an algorithm B for SETCOVER, we can construct
an algorithm A for SETCOVER whose cost is not larger than the one of B and
that only adds new sets to the family of covering sets if the current request is
not covered yet. Note that this property corresponds to the definition of a lazy
algorithm as defined in Section 2.1). Hence, from now on we can constrain our
considerations to lazy SETCOVER algorithms, that only add new sets to C if they
have to.

Recall the notation [s]i for the prefix of length i of the string s = s1 . . . sn, for
0 ≤ i ≤ n. To give a reduction from 2-GUESS to SETCOVER, we show that we can
use an algorithmA for SETCOVER to construct an algorithm B that solves 2-GUESS.
To this end, at first we have to transform a given instance IB = (n, r1, . . . , rn) for
2-GUESS, consisting of the length n of the to-be-guessed string r = r1 . . . rn and
n bits ri revealed in subsequent rounds, into an instance IA for SETCOVER. Then,
we run the algorithmA for SETCOVER on the instance IA and transform the output
A(IA) back into an output for 2-GUESS. Note that this transformation is done by
the 2-GUESS-algorithm B in an online fashion.

The transformation we use is the one from Böckenhauer et al. [BHK+14] applied
to an alphabet of size 2. As the ground set Q, we choose all possible strings of
length at most n, including the empty string ε. For each bit string s of length
exactly n, let us define the set Fs, which contains all prefixes of s, including ε and
the string s itself. Hence, Fs := {[s]i | 0 ≤ i ≤ n}. The set family F consists of all
sets Fs, i. e., F := {Fs | s is a bit string of length n}. Hence, F consists of 2n sets,
and the ground set Q has a cardinality of

∑n
j=0 2

j = 2n+1 − 1. The pair (F , Q) is
given to A in round 0 as the first request, followed by n + 1 further requests as
follows. In each round i with 1 ≤ i ≤ n + 1, the request sent to A is qi := [r]i−1.
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The resulting total request sequence is thus IA :=
(
(F , Q), [r]0, [r]1, [r]2, . . . , [r]n

)
=

((F , Q), ε, r1, r1r2, . . . , r1 . . . rn).
The algorithm B simulatesA on this instance IA. In each round iwith 1 ≤ i ≤ n,

when B is asked to guess the bit ri, one round of A is simulated, in which it is
asked to cover the string [r]i−1. In the last round, which is round n + 1, when
B does not have to guess another bit but only gets the feedback whether its
guess in the previous round was correct, A is asked to cover the string [r]n = r.
During B’s execution, it reads advice bits whenever A reads advice bits, writing
them onto a dummy advice tape as before. Let the generated output of A be
A(IA) := (ε, F1, . . . , Fn+1) with Fn+1 = Fr. In particular, let the output of A in
round i, for 1 ≤ i ≤ n, be Fi = Fs for some Fs ∈ F with s = s1 . . . sn. Then we
define the output of B in round i to be si. In round n + 1, the algorithm B does
not have to output anything.

We now show that the output of any SETCOVER algorithm on the input IA as
constructed above has the following useful property.

Lemma 5.64. Consider an online algorithm A for SETCOVER and an input sequence
IA =

(
(F , Q), [r]0, [r]1, [r]2, . . . , [r]n

)
for A as constructed above. Let the output of A

on IA be A(IA) = (ε, F1, . . . , Fn+1). Then the following holds. If, in some round i, the
string [r]i 6∈ Fi, then [r]i 6∈ Fj either, for all rounds j < i.

Proof. Towards contradiction, assume that there is a j < i with [r]i ∈ Fj, although
[r]i 6∈ Fi. The set Fj is the one chosen byA in round j, in which the request [r]j−1 is
sent toA. The requests sent toA in rounds j+1, . . . , i are [r]j, . . . , [r]i−1. Since [r]i ∈
Fj, from the way we constructed the sets F ∈ F , we know that also [r]j, . . . , [r]i−1 ∈
Fj. Hence, Fj already contains all requests sent to A in rounds j, . . . , i, and A does
not have to choose any new sets to cover these requests. Due to Lemma 5.63, we
can assume that A is lazy and only chooses new sets if the current request is not
covered. We conclude that A does not pick any new sets in rounds j+ 1, . . . , i, but
instead chooses Fi := Fi−1 := . . . := Fj+1 := Fj. Hence, we have

∃ j < i : [r]i ∈ Fj =⇒ [r]i ∈ Fi,

which concludes the proof. 2

Lemma 5.65. Consider an input sequence IB = (n, r1, . . . , rn) for 2-GUESS and the
input sequence IA = ((F , Q), ε, r1, r1r2, . . . , r1 . . . rn) for SETCOVER constructed
from IB as described above. Furthermore, consider an algorithm A on the instance IA and
an algorithm B that we constructed using A as described above and that we run on IB.
Then the following holds. If B makes an error in round i, for 1 ≤ i ≤ n, then A must add
a new set to C in round i+ 1.
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Proof. Consider a round i in which B makes an error. Let the output of A in
round i be the set Fi = Fs for some string s = s1 . . . sn. Then, B’s output in round i
is si, and, as this guess is incorrect, si 6= ri. Since the set Fi = Fs consists of all
prefixes of s and the only string of length i that it contains is [s]i, the set Fi does not
contain [r]i 6= [s]i. Due to Lemma 5.64, we conclude from [r]i 6∈ Fi that [r]i 6∈ Fj,
for all j ≤ i. However, the string [r]i is the request sent to A in round i + 1, and
since it is not contained in any of the sets F1, . . . , Fi, it is not covered yet. Hence,
Amust choose a set Fj 6∈ Ci with [r]i ∈ Fj in round i+ 1 to cover [r]i. 2

Corollary 5.66. Consider an instance IB for 2-GUESS and an instance IA for SETCOVER

constructed from IB as described above. Given an algorithm A for SETCOVER that com-
putes a solution with a cost of cost(A(IA)) = c on IA, we can construct an algorithm B
for 2-GUESS that makes only c− 1 errors on the instance IB.

Proof. In the first round, A has to pick a new covering set anyway. If A only picks
c covering sets in total, it adds exactly c−1 sets in the following rounds 2, . . . , n+1,
and hence, there are n− c+ 1 rounds i ≥ 2 in which it does not add any new set
to C. Due to Lemma 5.65, if A does not add a new set in round i, then B does not
make an error in round i− 1. Thus, B does not make any errors in n− c+ 1 of the
first n rounds (and does not have to make a guess in the last one). Consequently,
the total number of errors of B is c− 1. 2

From this, we can derive the following. Consider a setting with a probabilistic
adversary. The adversary specifies a set I of size k = 2n − k̃ ≤ 2n, with k = 2m · `
for some odd number `, of possible input instances for SETCOVER from a set Iall of
all input instances of size |Iall| = (2n+1 − 1)n. Then it chooses one instance from I
uniformly at random as the input. In this setting, we can deduce a lower bound
on the number of advice bits any SETCOVER algorithm needs to read to achieve a
certain expected competitive ratio for both the monolog and the dialog model.

Theorem 5.67. There is no online algorithm for SETCOVER that reads less than k̃n−

2 ω̂(k̃) advice bits in the monolog model and achieves a strict competitive ratio of 1 +
ω̂(2n − k̃)/(2n − k̃) in expectation.

Proof. Towards contradiction, assume there is an algorithm A for SETCOVER that
has an expected strict competitive ratio of at most 1+ ω̂(2n − k̃)/(2n − k̃), while
reading less than k̃n − 2 ω̂(k̃) advice bits. Then we can use this algorithm A
to construct an algorithm B for 2-GUESS as described in the reduction given
above. The resulting algorithm B reads as many advice bits as A, such that the
number of advice bits used by B is also less than k̃n − 2 ω̂(k̃). Exactly one set is
necessary to cover all requests from IA, namely Fr. Hence, for A to be able to
achieve a strict competitive ratio of c := 1+ ω̂(2n − k̃)/(2n − k̃) as assumed, the
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family C of covering sets computed by A can only have a cardinality of at most c.
Therefore, due to Corollary 5.66, the constructed algorithm B guesses at most
c− 1 = ω̂(2n − k̃)/(2n − k̃) bits incorrectly in expectation. The expected number
of correctly guessed bits by B is thus

E[gainB] ≥ n−
ω̂(2n − k̃)

2n − k̃

=
n · (2n − k̃)

2n − k̃
−
ω̂(2n) − k̃ · n+ ω̂(k̃)

2n − k̃
(5.37)

=
n · 2n − n · k̃− n · 2n−1 + k̃ · n− ω̂(k̃)

2n − k̃
(5.38)

=
n · 2n−1 − ω̂(k̃)

2n − k̃
,

where (5.37) follows from Observation 5.8 and (5.38) from Observation 5.4.
This is exactly the expected number of correctly guessed bits of any Ψ-optimal

algorithm. However, from Theorem 5.32, we know that any Ψ-optimal algorithm
(and therefore also B) needs at least k̃ ·n−2 ω̂(k̃) advice bits in the monolog model,
which leads to a contradiction. Hence, there cannot be an algorithm for SETCOVER

that reads less than k̃n− 2 ω̂(k̃) advice bits and achieves a strict competitive ratio
of at most 1+ ω̂(2n − k̃)/(2n − k̃) in expectation. 2

For the same setting of k = 2m · ` possible input instances for SETCOVER that
are chosen by the adversary, from which one is chosen uniformly at random as the
actual input instance, we can derive the following result for the dialog model.

Theorem 5.68. There is no algorithm for SETCOVER that reads less than n−m advice
bits in the dialog model and achieves a strict competitive ratio of 1+ ω̂(2n − k̃)/(2n − k̃)

in expectation.

Proof. This proof is completely analogous to the one of Theorem 5.67. Here, we
assume towards contradiction that there is a Ψ-optimal algorithm for SETCOVER

reading less than n−m advice bits. With the same argumentations and calculations
as in the proof of Theorem 5.67, we obtain a contradiction to Theorem 5.61, which
states that each optimal algorithm for 2-GUESS needs at least n−m advice bits in
the dialog model. 2

The above two theorems demonstrate how lower bounds for 2-GUESS in a
probabilistic setting carry over to lower bounds for SETCOVER. It seems promising
to explore this technique for other online problems as well, allowing to reason
about to which extent information on the future may help an online algorithm in
such probabilistic settings.



6
Conclusion

In this dissertation, we investigated the information content and the advice com-
plexity of some selected online problems. To this end, we excessively made use
of the very generic bit string guessing problem and the fact that all the examined
online problems can somehow be interpreted as the problem of guessing a binary
string bit by bit.

For the bit string guessing problem, there already exist lower and upper bounds
for the number of advice bits necessary and sufficient to obtain solutions with a
specified number of correctly guessed bits. Due to its generic nature, many online
problems—also such that have not been considered in this thesis—can easily be
re-interpreted as some kind of string guessing. Consequently, it is possible to
devise reductions from the bit string guessing problem to a given online problem,
and thus to directly infer lower bounds on the advice complexity for the problem
at hand from the already known lower bounds for string guessing. This method
has already been used before as a helpful tool for lower-bound proofs. There are
also recent approaches in which variants of the bit string guessing problem are
analyzed and the obtained bounds are transfered to other online problems by
giving reductions from these altered problems; this way, bounds for the online bin
packing problem [BKLL14b] and a certain class of online graph problems like, for
example, independent set and vertex cover [BFKM15] are obtained.

In this thesis, we applied the reduction technique to the 2-server problem on
a finite path. Furthermore, we demonstrated that this method can also easily be
applied to the disjoint path allocation problem on a path, and we obtained a linear
lower bound on the necessary advice bits to achieve competitive ratios c < 4/3. On
the other hand, we observed that this reduction technique does have its limitations,
since it is often possible to obtain better bounds using an approach customized
for the problem at hand. We witnessed this in the context of the disjoint path
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allocation problem, for which we took a different approach not involving a string
guessing reduction that yielded a lower bound on the advice complexity covering
a much wider range of competitive ratios than only up to c < 4/3; namely, not
only constant ones, but up to logarithmic in the path length. Furthermore, we
investigated two related online problems, the graph searching and the graph
exploration problem, which are both online problems with the unusual property
that the input sequence given to the algorithm depends on the previous actions
of the online algorithm. Since the usual reduction technique is not applicable for
this kind of online problems, we demonstrated how this method can be adapted,
and applied it to the graph exploration problem. Finally, we introduced a new
probabilistic model in which the oracle is less powerful, making it reflect real-
world environments more accurately. In this model, we analyzed the bit string
guessing problem thoroughly. We investigated two different ways to model the
oracle and gave lower and upper bounds on the advice complexity of any online
algorithm that achieves the best possible expected number of correctly guessed
bits.

Let us give a short overview of possible future research in the areas investigated
in this thesis. We only analyzed the k-server problem in a very restricted setting;
with only two servers and only on paths. Expanding the ideas presented here
to other topologies and to k ≥ 3 servers could be a next step to obtaining more
insight into the advice complexity of the k-server problem. Concerning the graph
searching and exploration problem, we already mentioned in the introduction of
Chapter 4 that many different versions of searching and exploration problems
have been considered in the literature. For sure, the topic has been exhaustively
investigated in the classical online setting without advice, but it would certainly
be interesting to obtain more results in this area concerning the advice complexity
of those problems. Furthermore, in the context of the disjoint path allocation
problem, we have seen that the attempted reduction from the string guessing
problem suffers from the symmetric cost function of the problem. Devising lower
bounds for the string guessing problem with more flexible cost functions might
help to overcome such problems and thus make the reduction technique even
more universally applicable. A first step into this direction has already been taken
by Boyar et al. [BFKM15]. We also mentioned in the beginning of Chapter 3 that
the disjoint path allocation is a special case of the call admission problem. It
might be interesting to examine a more general setting, in which the calls can
have different durations, bandwidths, and profits. Moreover, the model of the
probabilistic adversary leaves a lot of room for generalizations. In this thesis,
we only studied the number of advice bits necessary and sufficient to achieve
optimality for the string guessing problem on binary alphabets, when the actual
input string is chosen according to a restricted class of probability distributions.
As the string guessing problem can also be used in the probabilistic model to
prove lower bounds for other online problems, as shown in Section 5.5 for the
online set cover problem, it would be desirable to provide lower bounds in this
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model for the most general version of the string guessing problem. An interesting
continuation of the work that was started in this model would thus be to expand
it to larger alphabets, a wider class of probability distributions, and to a trade-off
between the number of advice bits and the quality of the given online algorithm.
In the end, of course, all the results concerning the string guessing problem in the
probabilistic model (as well as in the original deterministic one) are designed to be
transfered to other online problems by developing reductions.
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