
ETH Library

Fast Algorithms for Octagon
Abstract Domain

Master Thesis

Author(s):
Singh, Gagandeep

Publication date:
2014

Permanent link:
https://doi.org/10.3929/ethz-a-010154448

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010154448
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Fast Algorithms for Octagon Abstract
Domain

Gagandeep Singh

Master Thesis
April 2014

Supervisors:
Prof. Dr. Martin Vechev, Prof. Dr. Markus Püschel

Abstract

Numerical abstract domains are used to discover useful numerical properties about program
code such as invariants and absence of runtime errors. There are a number of numerical domains
with varying degrees of precision and cost. The Octagon domain is one of the most popular
numerical domains which aims to strike a balance between precision and cost. However, the
cost of the Octagon domain can still be an issue in practice, especially if the program uses many
variables. This thesis develops new, optimized algorithms for some of the most expensive and
frequently used operations of the Octagon domain leading to significant speed-ups over existing
implementations.

i

ii

Acknowledgment

I would like to thank Prof. Dr. Martin Vechev and Prof. Dr. Markus Püschel for supervising
this project. Thanks to Prof. Dr. Vechev I have learned a lot about static analysis that was not
very familiar to me before joining ETH Zurich. I have learned a lot of optimization techniques
from Prof. Dr. Püschel that helped me throughout this project. Furthermore, I would like to
thank members of the computer science department who directly or indirectly helped me in this
project. In the end, I would like to thank my parents, sister and my late grandmother for all the
sacrifices they have made over the years.

iii

iv

Contents

List of Figures vii

List of Tables ix

1. Introduction 1
1.1. Key Challenges . 2
1.2. Contributions . 3
1.3. Structure of this Document . 3
1.4. Conventions . 3

2. Background 5
2.1. Abstract Interpretation . 5
2.2. Numerical Domains . 6
2.3. Octagon Abstract Domain . 7
2.4. Related Work . 8

3. Closure Algorithms 9
3.1. Miné’s Algorithm . 9

3.1.1. Scalar Optimizations . 10
3.1.2. Vectorization . 14

3.2. Sparse Closure . 15
3.3. Half Closure . 16
3.4. Half Sparse Closure . 24
3.5. Incremental Closure . 27

3.5.1. Dense Incremental Closure . 28
3.5.2. Sparse Incremental Closure . 30

v

Contents

4. Octagon Operators 33
4.1. Join . 33
4.2. Meet . 34
4.3. Inclusion Testing . 35
4.4. Equality Testing . 35
4.5. Top . 36
4.6. Is Top . 37
4.7. Forget . 37

5. Evaluation 39
5.1. Library Implementation . 39

5.1.1. Octagons . 39
5.1.2. Constraints . 40
5.1.3. Operators . 40

5.2. Experimental setup . 40
5.3. Closure Evaluation . 41
5.4. Incremental Closure Evaluation . 42
5.5. Benchmarks . 44
5.6. Results . 44

5.6.1. DPS . 44
5.6.2. DIZY . 49

6. Conclusion and Future Work 53

Bibliography 55

A. Appendix 59
A.1. Closure Algorithms . 59

A.1.1. Floyd Warshall . 59
A.1.2. Johnson’s Closure . 60

A.2. Operators . 60
A.2.1. Meet with Linear Constraint . 60
A.2.2. Meet with Non Linear Constraint . 63
A.2.3. Widening . 64
A.2.4. Bottom . 65
A.2.5. Is Bottom . 65
A.2.6. Saturate Linear Constraint . 65
A.2.7. Saturate Non Linear Constraint . 66
A.2.8. Octagon to Box . 66
A.2.9. Octagon to Array of Linear Constraints 67
A.2.10. Add Dimensions . 68
A.2.11. Remove Dimensions . 68
A.2.12. Permute Dimensions . 69
A.2.13. Assignment with Non Linear Expression 69

vi

List of Figures

1.1. (a) A set of points (b) its abstraction in Interval (c) its abstraction in Polyhedra
(d) its abstraction in Octagon . 2

2.1. Galois connection between abstract and concrete domains 6
2.2. Assertion with Octagons . 7
2.3. Assertion with Polyhedra . 7
2.4. Work flow between different components of a static analyzer 8

3.1. Block view of closure computation . 10
3.2. Half representation of octagon matrix . 17

5.1. Comparison of Closure algorithms on random input 41
5.2. Comparison of Closure algorithms on real input 42
5.3. Comparison of Incremental Closure algorithms on random input 43
5.4. Comparison of Incremental Closure algorithms on real input 43
5.5. Octagon operators on CRYPT benchmark with widening threshold = 9 45
5.6. Octagon operators on SOR benchmark with widening threshold = 9 46
5.7. Speedup for dense and sparse libraries over APRON on DPS Benchmarks with

widening threshold = 9 . 46
5.8. Octagon operators on CRYPT benchmark with widening threshold = 101 . . . 47
5.9. Octagon operators on SOR benchmark with widening threshold = 101 48
5.10. Speedup for dense and sparse libraries over APRON on DPS Benchmarks with

widening threshold = 101 . 48
5.11. Octagon operators on LINUX_FULL benchmark with no partitioning 50
5.12. Speedup for dense and sparse libraries over APRON on DIZY Benchmarks with

no partitioning . 50

vii

List of Figures

5.13. Octagon operators on LINUX_FULL benchmark with partitioning 51
5.14. Speedup for dense and sparse libraries over APRON on DIZY Benchmarks with

partitioning . 52

viii

List of Tables

5.1. Description of Benchmarks in DPS Analysis 44
5.2. Description of Benchmarks in DIZY Analysis 49

ix

List of Tables

x

1
Introduction

The goal of static program analysis is to automatically discover useful properties about pro-
grams. These properties can then be used to prove the presence or absence of runtime errors
such as null pointer errors, buffer overflows and concurrency errors. There are a number of
abstract domains that are commonly employed for such analysis.

When designing abstract domains, there is always a tradeoff between precision of the domain
and its cost. Consider the set of points shown in Figure 1.1(a). These points represent the set of
concrete values that two variables x and y can take at any given point in some program.

Interval Domain The Interval domain is a non-relational numerical abstract domain. It
stores the lower and upper bounds for variables in the program. It is very cheap and has linear
asymptotic space and time complexity with respect to the number of program variables. The
abstraction for the set of points in Figure 1.1(a) under the Interval domain is shown in Figure
1.1(b). This abstraction is quite imprecise as it cannot capture relationships between variables.
For instance, this domain cannot capture the fact that x < y.

Polyhedra Domain The Polyhedra[13, 8] domain is a relational abstract numerical domain.
It maintains linear relationship between program variables of the form

∑
i aivi ≤ c. It is very

expensive and has exponential asymptotic space and time complexity with respect to the number
of program variables. The abstraction for the set of points in Figure 1.1(a) under the Polyhedra
domain is shown in figure 1.1(c).

Octagon Domain The Octagon abstract domain[26] is a weakly relational numerical do-
main sitting between the non-relational interval abstract domain and the relational Polyhedral

1

1. Introduction

domain (in terms of the cost vs precision tradeoffs). It has quadratic asymptotic space and cubic
asymptotic time complexity with respect to the number of program variables. The abstraction
for the set of points in Figure 1.1(a) under the Octagon domain is shown in Figure 1.1(d).

x
x

x

x

x

x

(c) (d)

x
x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

(a) (b)

Figure 1.1.: (a) A set of points (b) its abstraction in Interval (c) its abstraction in Polyhedra (d) its ab-
straction in Octagon

1.1. Key Challenges

Although the Octagon abstract domain is faster than Polyhedra, it still has cubic asymptotic
time complexity which can be prohibitively slow when analyzing real-world programs. Fur-
ther, current implementations of the Octagon domain do not heavily focus on optimizing its
performance. Most of the work for improving the runtime of the Octagon analysis is focused
on approximating expensive operators thus resulting in precision loss.

The cubic time complexity occurs due to the closure operation, a particular core operation
used by many Octagon operators. In this thesis, we focus on improving the performance of
the closure operation by using memory optimizations, vector hardware instructions [3] and
exploiting sparsity and structure of octagons. A key objective of our work is to devise a faster
Octagon analysis without losing any precision. To achieve that, we add a linear amount of
space.

2

1.2. Contributions

1.2. Contributions

Our work makes the following contributions:

• A novel algorithm for computing closure. Our algorithm brings down the number of
operations to half as compared to existing algorithms. We also provide a vector imple-
mentation of this algorithm using Intel’s AVX intrinsics.

• A novel sparse algorithm for closure which exploits sparsity in matrices.

• A novel algorithm for computing incremental closure which brings down the number of
operations to half compared to existing algorithms. We also provide a vector implemen-
tation of this algorithm using Intel’s AVX intrinsics.

• A novel sparse algorithm for incremental closure which exploits sparsity in matrices.

• A vector implementation of common Octagon operators using Intel’s AVX intrinsics.

• A sparse and dense library implementation of the Octagon domain which provides mas-
sive speedup over popular Octagon implementations.

1.3. Structure of this Document

This thesis is structured as follows. Chapter 2 describes background on static analysis and
the Octagon domain as well as existing implementations of the Octagon domain. Chapter 3
describes the closure operator which is a frequently used but expensive operator of the Oc-
tagon domain and presents our novel algorithms which speed-up the closure operation. Chapter
4 describes the remaining operators of the Octagon domain and our proposed optimizations.
Chapter 5 discusses the design and implementation of our sparse and dense libraries for the
Octagon analysis. We also compare the performance of our libraries against a popular static
analysis library on a number of benchmarks. Finally, Chapter 6 discusses future work.

1.4. Conventions

Throughout this document, we use the following conventions:

• Strong closure is referred to as closure.

• Some Octagon domain operators behave differently for integers and reals. In this thesis,
we deal only with reals.

• Whenever we mention complexity, we refer to asymptotic complexity that is calculated
with respect to number of program variables.

• There is some distinction between transformers and operators. For the sake of simplicity,
we refer to both transformers and operators as operators.

3

1. Introduction

4

2
Background

This chapter provides the necessary background on static analysis: we briefly describe the basics
of abstract interpretation, numerical domains and the Octagon abstract domain.

2.1. Abstract Interpretation

Abstract interpretation[12] computes an over approximation of the program behaviors. It works
via two domains: the concrete domain C and the abstract domain A. An element in C cap-
tures the program behaviors whereas elements of the abstract domain A define potential over
approximations of the concrete program behaviors in C. Thus, some behaviors in the abstract
may never occur in the concrete, but all concrete behaviors will naturally be captured by an
over-approximation in A. The concrete and abstract domains are related via two functions:

• An abstraction function α that maps an element x in C to an element α(x) in A. The
element α(x) is called an abstraction of x.

• A concretization function γ that maps an element y in A to an element γ(y) in C. The
element γ(y) is called a concretization of y.

These functions usually define a Galois connection as shown in Figure 2.1, meaning that:

• α : C → A is monotone

• γ : A→ C is monotone

• ∀x ∈ C, x v γ(α(x))

• ∀y ∈ A, y w α(γ(y))

5

2. Background

Concrete domain Abstract domain

γ(A) A

C α(C)

γ

α
Figure 2.1.: Galois connection between abstract and concrete domains

Abstract and concrete domains typically support the following operators:

• The join t operator.

• The meet u operator.

• The ordering v operator.

• The widening5 operator.

• The transformer function which iterates over the domain and models the effect of program
statements.

To ensure soundness, operators in the abstract domain over-approximate the effect of apply-
ing the concrete operators. These operators define monotone functions over the domain. The
concrete semantics of a program are defined by a program invariant X such that after apply-
ing a concrete semantic function f , we have that X = f(X). The value of X is usually not
computable, and therefore we use the abstract semantics and compute an (abstract) invariant
Y = α(X) such that after applying the abstract semantic function g we have that Y = g(Y).
Since g is monotone and α and γ form a Galois connection, we have X v γ(g(α(X))) and the
abstraction is sound.

2.2. Numerical Domains

In this thesis, we focus squarely on numerical abstract domains. A numerical domain abstracts
sets of numerical values (of program variables). These domains are concerned with finding
useful numerical properties relating numerical program variables. These properties can then
be used to prove presence or absence of common numerical runtime errors such as division by
zero, buffer overflow and overflow of machine integers.

The numerical domain can be relational or non-relational. A relational abstract domain maintain

6

2.3. Octagon Abstract Domain

relationship between program variables whereas a non-relational domain does not. An example
of a relational abstract domain is Polyhedra whereas the Interval abstract domain is an example
of a non-relational domain.

x← 5
y ← 0
while x > 0 do

invariant: x+ y ≤ 5
x← x− 1
y ← y + 1

assert: y ≤ 5

Figure 2.2.: Assertion with Octagons

x← 5
y ← 0
z ← 0
while x > 0 do

invariant: x+ y + z ≤ 10
x← x− 1
y ← y + 1
z ← z + 1

assert: y + z ≤ 10

Figure 2.3.: Assertion with Polyhedra

Consider the code fragment shown in Figure 2.2. In order to prove the non relational invariant
y ≤ 5 at the end of the loop, we need to first prove the relational loop invariant x + y ≤ 5 and
then combine that with the loop exit condition x = 0. This invariant can be established with the
relational polyhedron domain but not with the non-relational interval domain.

2.3. Octagon Abstract Domain

The Octagon abstract domain is a weakly relational domain that supports a more limited num-
ber of relations between program variables than a polyhedron. It encodes binary constraints
between program variables of the form cixi + cjxj ≤ c where xi and xj are program variables,
ci, cj ∈ [−1, 0, 1] and c ∈ R ∪ {∞}. Since coefficients can be either −1, 0 or 1 the number of
inequalities between any two variables is bounded. The data structure used to encode relations
between program variables are difference bound matrices (DBMs)[25]. Let {v1, v2 . . . vn} be
the set of n variables for a program. Then, the Octagon domain introduces two variables v+

i and
v−i for each program variable vi. Thus, a DBM would be of size 2n× 2n. An element mi,j = c
in DBM encodes the relationship of the form vj − vi ≤ c. DBM’s satisfy a coherence property
i.e., that the elements mi,j and mj⊕1,i⊕1 encode the same constraint.

The invariant y ≤ 5 for the code fragment in Figure 2.2 can be proved using the Octagon domain
as the loop invariant x+ y ≤ 5 can be encoded as an octagonal constraint.

Consider the code fragment shown in Figure 2.3. In order to prove the relational invariant
y + z ≤ 10 at the end of the loop, we need to first prove the non octagonal loop invariant
x+ y+ z ≤ 10 and then combine that with the loop exit condition x = 0. This invariant can be
established with a more precise polyhedron domain but not with the Octagon domain.

The main advantage of Octagon domain over a polyhedron is that it requires lower time com-
plexity. That is, it provides reasonable precision with polynomial complexity: it has quadratic
space and cubic time complexity compared with exponential for polyhedron.

7

2. Background

2.4. Related Work

Figure 2.4 shows the work flow between different components of a typical static analyzer. The
input program is first parsed by the front end to build semantic equations which model the
effect of program statements like assignment, guards etc. The equations are then passed to an
abstract domain that provides the representation for abstract element and operators to operate on
it. The equations are then solved by a solver which uses the abstract domain towards a fixpoint
computation.

Program

Front End

Semantic Equations

Abstract DomainSolver

Figure 2.4.: Work flow between different components of a static analyzer

APRON[19] is a popular static analysis library that provides common interface for various
numerical abstract domains such as Interval, Octagon, Convex Polyhedra, Linear equalities and
Linear Congruences. The library is written in C but can also be accessed from C++, Java and
OCaml. It provides a manager class which can be instantiated to use any of the numerical
domains. All of the domains support the same operations such as join, meet, widening etc. The
abstract domain can be accessed using either double precision, rational numbers or integers.

The Parma Polyhedra Library(PPL)[4] also provides support for the Octagon domain. The
library is written in C++ but can also be accessed from C, Java, OCaml and Prolog.

Astrée[23] is a static analyzer which uses Octagons for proving absence of runtime properties.
It is widely employed in industry and was used by Airbus to prove absence of runtime errors
for the Airbus A380. The work of [6] provides an implementation of the Octagon domain on
Graphical Processing Units (GPUs). Since the data structure commonly used for representing
octagons is a matrix, it can be easily implemented in a GPU. They implement joins, meets,
assignments, guard checks, closure, widening, and the fixpoint checking on the GPU.

An alternative, bucketing approach to speeding up the Octagon analysis has been proposed
independently in [7] and [32] (the idea is to handle large octagons). They divide a large octagon
of n variables into a set of k smaller octagons called buckets with each set having at most n/k
variables. The buckets may share some variables that are called pivots. The analysis is run on
each set which introduces some precision loss. This approach also needs to address the problem
of partitioning the program variables into buckets. Existing heuristics usually use the structure
of the source program to perform this partitioning.

8

3
Closure Algorithms

The closure operator is the one of the most frequently used operators in the Octagon domain.
It is used to make implicit constraints between program variables explicit. It is used as a pre-
processing step to increase precision of various operators such as join, equality and inclusion
testing. Its cubic time complexity makes it the most expensive operator of the Octagon domain.
For some domains [22], attempts have been made to avoid computing closure to avoid cubic
complexity. In this work, we try to optimize closure for runtime performance by taking ad-
vantage of memory optimizations, vector hardware instructions, and structure and sparsity of
DBMs which are often encountered in analysis of real world programs.

As defined originally by Miné [26], the DBM matrix m obtained after applying closure should
satisfy the following properties:

• m should be coherent i.e., ∀i, j,mi,j ← mj̄ ,̄i

• m is closed i.e., ∀i, mi,i ← 0 and ∀i, j, k, mi,j ≤ mi,k +mk,j

• ∀i, j, mi,j ≤ (mi,̄i +mj̄,j)/2

We next discuss the algorithms for computing closure, both existing as well as our novel algo-
rithms.

3.1. Miné’s Algorithm

Algorithm 1 shows the pseudo code for computing closure as originally proposed by Miné [26].
The algorithm consists of two parts: The first part is a modified version of the classic Floyd-
Warshall all pairs shortest path algorithm [15] [17] [33] and ensures that properties 1 and 2 are

9

3. Closure Algorithms

satisfied. The second part is a strengthening step and ensures that property 3 is satisfied. Notice
that the strengthening is applied linear number of times. The algorithm returns the Bottom
element (see appendix A) in the presence of negative cycle. Next, we discuss the optimizations
for this algorithm.

Algorithm 1 Miné’s Closure
1. function MINÉ’S_CLOSURE(m,dim)
2. Parameters:
3. m← input matrix
4. dim← number of variables in program
5. n← 2 ∗ dim
6. for k ← 0 to dim do
7. p← 2k, q ← 2k + 1
8. for i← 0 to n do
9. for j ← 0 to n do

10. mi,j ← min(mi,j ,mi,p +mp,j ,mi,q +mq,j ,mi,p +mp,q +mq,j ,mi,q +mq,p +mp,j)

11. strengthening(m, dim)

12. return consistent(m, dim)

Algorithm 2 Strengthening
1. function STRENGTHENING(m,dim)
2. Parameters:
3. m← input matrix
4. dim← number of variables in program
5. n← 2 ∗ dim
6. for i← 0 to n do
7. for j ← 0 to n do
8. mi,j ← min(mi,j , (mi,i⊕1 +mj⊕1,j)/2)

Algorithm 3 Consistent
1. function CONSISTENT(m,dim)
2. Parameters:
3. m← input matrix
4. dim← number of variables in program
5. n← 2 ∗ dim
6. for i← 0 to n do
7. if mi,i < 0 then
8. return Bottom
9. return m

3.1.1. Scalar Optimizations

A naive implementation of Algorithm 1 will have the four comparisons at lines 10 nested so that
the outer min operations have to wait for the result from the inner ones. However, the compar-
isons are independent of each other and can be implemented in parallel to increase instruction
level parallelism.

1

4
7

10

2 3

5 6
8 9

11 12

i

j

2k
2k+1

2k 2k+1

Figure 3.1.: Block view of closure computation

10

3.1. Miné’s Algorithm

Algorithm 4 Miné’s Closure Scalar Optimized
1. function MINÉ’S_CLOSURE_SCALAR(m,a,b,c,d,e,f,dim)
2. Parameters:
3. m← input matrix
4. a← array to store old 2k-th column values
5. b← array to store old (2k+1)-th column values
6. c← array to store updated 2k-th column values
7. d← array to store updated (2k+1)-th column values
8. e← array to store old 2k-th row values
9. f ← array to store old (2k+1)-th row values

10. dim← number of variables in program
11. n← 2 ∗ dim
12. for k ← 0 to dim do
13. p← 2k, q ← 2k + 1
14. t1 ← mp,q

15. t2 ← mq,p

16. mp,q ← min(mp,q,min(mp,q +mq,p +mp,q))
17. mq,p ← min(mq,p,min(mq,p +mp,q +mq,p))
18. for i← 0 to p do
19. ai ← mi,p, bi ← mi,q

20. mi,p ← min(mi,p,min(mi,q + t2,mi,p + t1 + t2))
21. mi,q ← min(mi,q,min(mi,p + t1,mi,q + t2 + t1))
22. ci ← mi,p, di ← mi,q

23. for i← q + 1 to n do
24. ai ← mi,p, bi ← mi,q

25. mi,p ← min(mi,p,min(mi,q +mq,p,mi,p +mp,q +mq,p))
26. mi,q ← min(mi,q,min(mi,p +mp,q,mi,q +mq,p +mp,q))
27. ci ← mi,p, di ← mi,q

28. for j ← 0 to p do
29. ej ← mp,j

30. mp,j ← min(mp,j ,min(t1 +mq,j , t1 + t2 +mp,j))

31. for j ← q + 1 to n do
32. ej ← mp,j

33. mp,j ← min(mp,j ,min(mp,q +mq,j ,mp,q + t2 +mp,j))

34. for j ← 0 to p do
35. fj ← mq,j

36. mq,j ← min(mq,j ,min(t2 +mp,j , t2 +mp,q +mq,j))

37. for j ← q + 1 to n do
38. fj ← mq,j

39. mq,j ← min(mq,j ,min(mq,p +mp,j ,mq,p +mp,q +mq,j))

40. for i← 0 to p do
41. ik ← ai, ikk ← bi
42. for j ← 0 to p do
43. kj ← ej , kkj ← fj
44. op1 ← min(ik + kj, ikk + kkj), op2 ← min(ik + t1 + kkj, ikk + t2 + kj)
45. mi,j ← min(mi,j ,min(op1, op2))

46. ik ← ci, ikk ← di
47. for j ← q + 1 to n do
48. kj ← ej , kkj ← fj
49. op1 ← min(ik + kj, ikk + kkj), op2 ← min(ik + t1 + kkj, ikk + t2 + kj)
50. mi,j ← min(mi,j ,min(op1, op2))

51. for i← q + 1 to n do
52. ik ← ai, ikk ← bi
53. for j ← 0 to p do
54. kj ← mp,j , kkj ← mq,j

55. op1 ← min(ik + kj, ikk + kkj), op2 ← min(ik +mp,q + kkj, ikk +mq,p + kj)
56. mi,j ← min(mi,j ,min(op1, op2))

57. ik ← ci, ikk ← di
58. for j ← q + 1 to n do
59. kj ← mp,j , kkj ← mq,j

60. op1 ← min(ik + kj, ikk + kkj), op2 ← min(ik +mp,q + kkj, ikk +mq,p + kj)
61. mi,j ← min(mi,j ,min(op1, op2))

62. return strengthening_scalar(m,a, dim)

11

3. Closure Algorithms

Because for a given iteration k of the outermost loop, only the elements in the 2k-th and the
(2k + 1)-th rows and columns are accessed as operands, the memory access performance can
be increased by storing the two columns in an array to avoid page faults and TLB misses.
However, care must be taken as the values in the two rows and columns change during the
iteration and thus some elements require older values whereas others require updated ones.
We divide the matrix as shown in Figure 3.1 into blocks with each block requiring different
versions of operands. The numbering shows the order in which blocks are computed by the
original computation. For example, elements in block 1 require 2k and (2k + 1)-th row and
column computed in (k − 1)-th iteration whereas in contrast elements in block 12 require an
updated 2k and (2k + 1)-th row and column computed in k-th iteration.

Algorithm 4 shows the pseudo code for the optimized Miné’s algorithm. We first compute the
elements m2k,2k+1 and m2k+1,2k corresponding to blocks 5 and 8 respectively. Some elements
will require old values of these elements so we store the old values at lines 14 and 15 . We
then perform k-th iteration on elements in 2k and (2k + 1)-th rows and columns. We store old
values for both row and column in an array. The updated column values are also stored in an
array. Storing column values in an array improves memory access performance. We also reduce
opcount for the computation of elements in 2k and (2k + 1)-th row and column by removing
redundant terms. We then compute elements in blocks 1,3,10 and 12 using the old and updated
values of operands.

The strengthening as shown in Algorithm 2 creates many TLB misses for large matrices as
operands for the min operation at line 8 are diagonal elements. It can be easily shown that the
diagonal elements do not change during strengthening and can therefore be stored in an array
which improves memory performance. The pseudo code for the optimized strengthening is
shown in Algorithm 5.

Algorithm 5 Strengthening Scalar Optimized
1. function STRENGTHENING_SCALAR(m,t, dim)
2. Parameters:
3. m← input matrix
4. t← array to store diagonal elements
5. dim← number of variables in program
6. n← 2 ∗ dim
7. for i← 0 to n do
8. ti ← mi⊕1,i

9. for i← 0 to n do
10. ii← ti⊕1

11. for j ← 0 to n do
12. jj ← tj
13. mi,j ← min(mi,j , (ii+ jj)/2)

14. for i← 0 to n do
15. if mi,i < 0 then
16. return Bottom
17. return m

12

3.1. Miné’s Algorithm

Algorithm 6 Miné’s Closure AVX
1. function MINÉ’S_CLOSURE_AVX(m,a,b,c,d,e,f,dim)
2. Parameters:
3. m← input matrix
4. a← array to store old 2k-th column values
5. b← array to store old (2k+1)-th column values
6. c← array to store updated 2k-th column values
7. d← array to store updated (2k+1)-th column values
8. e← array to store old 2k-th row values
9. f ← array to store old (2k+1)-th row values

10. dim← number of variables in program
11. n← 2 ∗ dim
12. for k ← 0 to dim do
13. p← 2k, q ← 2k + 1, l← pad(q + 1)
14. t1 ← mp,q, t2 ← mq,p

15. vt1 ← avx_set_double(t1), vt2 ← avx_set_double(t2)
16. mp,q ← min(mp,q,min(mp,q +mq,p +mp,q)),mq,p ← min(mq,p,min(mq,p +mp,q +mq,p))
17. vt3 ← avx_set_double(mp,q), vt4 ← avx_set_double(mq,p)
18. for i← 0 to p do
19. ai ← mi,p, bi ← mi,q

20. mi,p ← min(mi,p,min(mi,q + t2,mi,p + t1 + t2))
21. mi,q ← min(mi,q,min(mi,p + t1,mi,q + t2 + t1))
22. ci ← mi,p, di ← mi,q

23. for i← q + 1 to n do
24. ai ← mi,p, bi ← mi,q

25. mi,p ← min(mi,p,min(mi,q +mq,p,mi,p +mp,q +mq,p))
26. mi,q ← min(mi,q,min(mi,p +mp,q,mi,q +mq,p +mp,q))
27. ci ← mi,p, di ← mi,q

28. for j ← 0 to p do
29. ej ← mp,j

30. mp,j ← min(mp,j ,min(t1 +mq,j , t1 + t2 +mp,j))

31. for j ← q + 1 to n do
32. ej ← mp,j

33. mp,j ← min(mp,j ,min(mp,q +mq,j ,mp,q + t2 +mp,j))

34. for j ← 0 to p do
35. fj ← mq,j

36. mq,j ← min(mq,j ,min(t2 +mp,j , t2 +mp,q +mq,j))

37. for j ← q + 1 to n do
38. fj ← mq,j

39. mq,j ← min(mq,j ,min(mq,p +mp,j ,mq,p +mp,q +mq,j))

40. for i← 0 to p/4 do
41. ik ← avx_set_double(ai), ikk ← avx_set_double(bi)
42. for j ← 0 to p/4 do
43. ij ← avx_load_double(mi,j∗4), kj ← avx_load_double(ej∗4), kkj ← avx_load_double(fj∗4)
44. op← compute_elem_avx(ij, ik, ikk, kj, kkj, vt1, vt2)
45. avx_store_double(mi,j∗4, op)

46. ik ← avx_set_double(ci), ikk ← avx_set_double(di)
47. for j ← l to n/4 do
48. ij ← avx_load_double(mi,j∗4), kj ← avx_load_double(ej∗4), kkj ← avx_load_double(fj∗4)
49. op← compute_elem_avx(ij, ik, ikk, kj, kkj, vt1, vt2)
50. avx_store_double(mi,j∗4, op)

51. for i← l to n/4 do
52. ik ← avx_set_double(ai), ikk ← avx_set_double(bi)
53. for j ← 0 to p/4 do
54. ij ← avx_load_double(mi,j∗4), kj ← avx_load_double(mp,j∗4), kkj ← avx_load_double(mq,j∗4)
55. op← compute_elem_avx(ij, ik, ikk, kj, kkj, vt3, vt4)
56. avx_store_double(mi,j∗4, op)

57. ik ← avx_set_double(ci), ikk ← avx_set_double(di)
58. for j ← l to n/4 do
59. ij ← avx_load_double(mi,j∗4), kj ← avx_load_double(mp,j∗4), kkj ← avx_load_double(mq,j∗4)
60. op← compute_elem_avx(ij, ik, ikk, kj, kkj, vt3, vt4)
61. avx_store_double(mi,j∗4, op)

62. return strengthening_avx(m,a, dim)

13

3. Closure Algorithms

3.1.2. Vectorization

Miné’s algorithm can also be vectorized using Intel’s AVX [3] intrinsics. The pseudo code for
Miné’s algorithm with AVX is shown in Algorithm 6. We vectorize the computations in blocks
1,3, 10 and 12. The function pad at line 13 returns the smallest integer l ≥ 2k + 2. If p is not
divisible by 4 then we perform scalar computation of remainingmi,j while j < p after the loops
at lines 42 and 53. Similarly, we perform scalar computation from j = 2k + 2 to j = l − 1
before entering the loops at lines 47 and 58. In the case where n is not divisible by 4, we again
perform scalar computation of mi,j after loops at lines 47 and 58 while j < n. For simplicity,
such border cases are omitted from the pseudo code.

Algorithm 7 Compute Element AVX
1. function COMPUTE_ELEM_AVX(ij, ik, ikk, kj, kkj, vt1, vt2)
2. op1 ← avx_add_double(ik, kj)
3. op2 ← avx_add_double(ikk, kkj)
4. op3 ← avx_min_double(op1, op2)
5. op4 ← avx_add_double(ik, vt1)
6. op4 ← avx_add_double(op4, kkj)
7. op5 ← avx_add_double(ikk, vt2)
8. op5 ← avx_add_double(op5, kj)
9. op6 ← avx_min_double(op4, op5)

10. op7 ← avx_min_double(op3, op6)
11. op8 ← avx_min_double(ij, op7)
12. return op8

Algorithm 8 Strengthening AVX
1. function STRENGTHENING_AVX(m,t,dim)
2. Parameters:
3. m← input matrix
4. t← array to store diagonal elements
5. dim← number of variables in program
6. n← 2 ∗ dim
7. for i← 0 to n do
8. ti ← mi⊕1,i

9. for i← 0 to n do
10. ii← avx_set1_double(ti⊕1)
11. for j ← 0 to n/4 do
12. jj ← avx_load_double(tj∗4)
13. op1 ← avx_load_double(mi,j∗4)
14. op2 ← avx_add_double(ii, jj)
15. op2 ← avx_mul_double(op2, 0.5)
16. op3 ← avx_min_double(op1, op2)
17. avx_store_double(mi,j∗4, op3)

18. for i← 0 to n do
19. if mi,i < 0 then
20. return Bottom
21. return m

The strengthening can also be vectorized using AVX. Algorithm 8 shows the pseudo code for
the vectorized strengthening. Notice that storing diagonal elements in an array allows us to
perform vectorization. Again, we omit border cases when n is not divisible by 4 for the loop at
line 11.

14

3.2. Sparse Closure

3.2. Sparse Closure

The matrices arising from analyzing real world programs often contain a large number of ∞
values. The reason is that for real programs not all variables are related to each other and
unrelated variables have no constraint between them. Thus, usually a given variable is related
to only a small number of other variables. From property 2 of the Octagon closure operator,
it is clear that if either mi,k or mk,j is∞ then mi,j does not change and thus addition and min
operations can be avoided. Thus, it makes sense to consider a sparse representation of the matrix
which only stores finite values.

Bagnara et al. [5] show that it is possible to compute Octagon closure by applying Floyd-
Warshall followed by a single strengthening step (see appendix A). We now present a sparse
closure algorithm based on Floyd-Warshall. There are various sparse representations available
in literature, for example compressed sparse row (CSR) [16]. However, using such a repre-
sentation would incur an extra overhead in the case when the matrix does not remain “sparse
enough” as the analysis proceeds and then we would like to switch to a dense representation
which would have a faster dense closure algorithm. We thus sacrifice some space in order to
improve the speed and create an index array storing locations of finite values.

To reduce the memory overhead caused due to keeping an extra index, we do not create the index
for the whole matrix. Instead, we keep the index for elements only in the k-th row and column
during the k-th iteration. This reduces extra space overhead to linear instead of quadratic. We
thus use 2 ∗ (2 ∗ dim + 1) extra linear space. The pseudo-code for sparse closure is shown
in Algorithm 9. The index is computed at the start of every iteration by calling the function
compute_index at line 10. The pseudo code for compute_index is shown in Algorithm 10.
The first element of row index r and column index c contains the size s of the index i.e., the
number of finite entries for k-th row(column), the next s entries are the indices. mi,j is computed
in Algorithm 9 only when the location of both mi,k and mk,j are present in the column and the
row index respectively.

Algorithm 9 Sparse Closure
1. function SPARSE_CLOSURE(m, r, c, t, dim)
2. Parameters:
3. m← input matrix
4. r ← locations of finite values in k-th row
5. c← locations of finite values in k-th column
6. t← array to store diagonal elements
7. dim← number of variables in program
8. n← 2 ∗ dim
9. for k ← 0 to n do

10. compute_index(result, k, r, c, dim)
11. for i← 0 to c0 do
12. i1 ← ci+1, ik ← mi1,k

13. for j ← 0 to r0 do
14. j1 ← rj+1, kj ← mk,j1

15. mi1,j1 ← min(mi1,j1 , ik + kj)

16. return sparse_strengthening(m, r, t, dim)

Algorithm 10 Compute Index
1. function COMPUTE_INDEX(m, k, r, c, dim)
2. Parameters:
3. m← input matrix
4. k ← iteration number
5. r ← locations of finite values in k-th row
6. c← locations of finite values in k-th column
7. dim← number of variables in program
8. n← 2 ∗ dim, s← 0
9. for i← 0 to n do

10. if is_finite(mi,k) then
11. cs+1 ← i
12. s← s+ 1
13. c0 ← s
14. s← 0
15. for j ← 0 to n do
16. if is_finite(mk,j) then
17. rs+1 ← j
18. s← s+ 1
19. r0 ← s

15

3. Closure Algorithms

We also present a sparse algorithm for the strengthening step. Algorithm 11 shows the pseudo
code of sparse strengthening. We store the indices of only the finite diagonal entries. The
diagonal entries are again stored in an array to reduce TLB misses. Inside the double loop at
line 14, mi,j is updated only when both mi,̄i and mj̄,j are present in the diagonal index.

Algorithm 11 Sparse Strengthening
1. function SPARSE_STRENGTHENING(m, d, t, dim)
2. Parameters:
3. m← input matrix
4. d← index for diagonal elements
5. t← array to store diagonal elements
6. dim← number of variables in program
7. n← 2 ∗ dim, s← 0
8. for i← 0 to n do
9. ti ← mi⊕1,i

10. if is_finite(ti) then
11. ds+1 ← i
12. s← s+ 1
13. d0 ← s
14. for i← 0 to d0 do
15. i1 ← di+1, ii← ti1
16. for j ← 0 to d0 do
17. j1 ← dj+1, jj ← tj1
18. mi1⊕1,j1 ← min(mi1⊕1,j1 , (ii+ jj)/2)

19. for i← 0 to n do
20. if mi,i < 0 then
21. return Bottom
22. return m

3.3. Half Closure

APRON [19] is a popular numerical static analysis library supporting the Octagon domain. It
uses Floyd-Warshall to compute the triple loop of the Octagon closure. However, it stores only
the lower triangular part of the matrix to save space as the remaining part can be recovered by
coherence. The half representation is shown in Figure 3.2. An element with index {i, j} is the
j + ((i + 1) ∗ (i + 1))/2-th element in the matrix . For all the half algorithms presented from
now on, its assumed that mi,j returns the element mj+((i+1)∗(i+1))/2. The function get_element
in Algorithm 12 returns an element from half matrix given the index. The pseudo code of
APRON’s Octagon closure algorithm is shown in Algorithm 13.

16

3.3. Half Closure

1 2
43

5 6
109

7 8
1211

... ...
......

... ...
......

... ...
......

... ...
......

... ...
......

... ...
2n(n+1)...

1
2

1

3
4
.

2 3 4 .

.

. . 2n-1 2n

.

2n-1
2n

j

i

Figure 3.2.: Half representation of octagon matrix

Algorithm 12 Get Element in Half Representation
1. function GET_ELEMENT(m, i, j)
2. if i < j then
3. return mj⊕1,i⊕1

4. else
5. return mi,j

Although APRON only stores the lower triangular part of the matrix, it still performs the same
number of operations for the triple loop as Floyd-Warshall on the full matrix. We now present
an algorithm for the Octagon closure which also works with a half-representation but performs
half the operations for the triple loop.

Algorithm 13 Closure APRON
1. function APRON_CLOSURE(m,dim)
2. Parameters:
3. m← input matrix
4. dim← number of variables in program
5. n← 2 ∗ dim
6. for k ← 0 to n do
7. for i← 0 to n do
8. i2 ← i ∨ 1
9. ik ← get_element(m, i, k)

10. ikk ← get_element(m, i, k ⊕ 1)
11. for j ← 0 to i2 do
12. kj ← get_element(m, k, j)
13. kkj ← get_element(m, k ⊕ 1, j)
14. op← min(ik + kj, ikk + kkj)
15. mi,j ← min(mi,j , op)

16. return strengthening_apron(m, dim)

Algorithm 14 Strengthening APRON
1. function STRENGTHENING_APRON(m,dim)
2. Parameters:
3. m← input matrix
4. dim← number of variables in program
5. n← 2 ∗ dim
6. for i← 0 to n do
7. i2 ← (i ∨ 1) + 1
8. ii← (mi,i⊕1)/2
9. for j ← 0 to i2 do

10. jj ← (mj⊕1,j)/2
11. mi,j ← min(mi,j , ii+ jj)

12. for i← 0 to n do
13. if mi,i < 0 then
14. return Bottom
15. return m

17

3. Closure Algorithms

Algorithm 15 Compute Column Half Scalar
1. function COMPUTE_COL_HALF_SCALAR(m,c,d,t,dim)
2. Parameters:
3. m← input matrix
4. c← column to be modified
5. d← column used for modifying
6. t← array to store updated column values
7. dim← number of variables in program
8. n← 2 ∗ dim
9. if c is odd then

10. s← c+ 1
11. else
12. s← c+ 2
13. kj ← md,c

14. for i← s to n do
15. ik ← mi,d

16. mi,c ← min(mi,c, ik + kj)
17. ti⊕1 ← mi,c

Algorithm 16 Compute Row Half Scalar
1. function COMPUTE_ROW_HALF_SCALAR(m,r,s,dim)
2. Parameters:
3. m← input matrix
4. r ← row to be modified
5. s← row used for modifying
6. dim← number of variables in program
7. if r is odd then
8. e← r − 1
9. else

10. e← r
11. ik ← mr,s

12. for j ← 0 to e do
13. kj ← ms,j

14. mr,j ← min(mr,j , ik + kj)

The APRON closure as shown in Algorithm 13 performs two min operations at lines 14 and
15 per iteration of the outermost loop. During the 2k-th and (2k + 1)-th iterations, for a given
element mi,j , the algorithm performs updates using the same pair of elements mi,2k, m2k,j , and
mi,2k+1, m2k+1,j twice. To reduce the opcount to half, it is desirable to use these pairs only
once. We can accomplish this by first computing the updated values for the elements in the
2k and (2k + 1)-th row and column that APRON will compute after (2k + 1)-th iteration. The
updated elements in these rows and columns can then be used to compute updated values after
the (2k + 1)-th iteration for the remaining elements in the matrix.

Algorithm 17 Compute Iteration Half Scalar
1. function COMPUTE_ITERATION_HALF_SCALAR(m,k,a,b,dim)
2. Parameters:
3. m← input matrix
4. k ← iteration number
5. a← column values for 2k-th column
6. b← column values for (2k+1)-th column
7. dim← number of variables in program
8. n← 2 ∗ dim
9. for i← 0 to 2k do

10. i2 ← (i ∨ 1) + 1
11. br ← i2 < 2k ? i2 : 2k
12. ik ← get_element(m, i, 2k), ikk ← get_element(m, i, 2k + 1)
13. for j ← 0 to br do
14. kj ← m2k,j , kkj ← m2k+1,j

15. mi,j ← min(mi,j ,min(ik + kj, ikk + kkj))

16. for j ← 2k + 2 to i2 do
17. kj ← aj , kkj ← bj
18. mi,j ← min(mi,j ,min(ik + kj, ikk + kkj))

19. for i← 2k + 2 to n do
20. i2 ← (i ∨ 1) + 1
21. br ← i2 < 2k ? i2 : 2k
22. ik ← mi,2k, ikk ← mi,2k+1

23. for j ← 0 to br do
24. kj ← m2k,j , kkj ← m2k+1,j

25. mi,j ← min(mi,j ,min(ik + kj, ikk + kkj))

26. for j ← 2k + 2 to i2 do
27. kj ← aj , kkj ← bj
28. mi,j ← min(mi,j ,min(ik + kj, ikk + kkj))

18

3.3. Half Closure

Algorithm 18 Closure Half Scalar
1. function CLOSURE_HALF_SCALAR(m,a,b,dim)
2. Parameters:
3. m← input matrix
4. a← array to store updated 2k-th column values
5. b← array to store updated (2k+1)-th column values
6. dim← number of variables in program
7. for k ← 0 to dim do
8. compute_col_half_scalar(m, 2k, 2k + 1, a, dim)
9. compute_col_half_scalar(m, 2k + 1, 2k, b, dim)

10. compute_row_half_scalar(m, 2k, 2k + 1, dim)
11. compute_row_half_scalar(m, 2k + 1, 2k, dim)
12. compute_iteration_half_scalar(m, k, a, b, dim)

13. return strengthening_half_scalar(m,a, dim)

Algorithm 19 Strengthening Half Scalar
1. function STRENGTHENING_HALF_SCALAR(m,t,dim)
2. Parameters:
3. m← input matrix
4. t← array to store diagonal elements
5. dim← number of variables in program
6. n← 2 ∗ dim
7. for i← 0 to n do
8. ti ← mi⊕1,i

9. for i← 0 to n do
10. i2 ← (i ∨ 1) + 1
11. ii← ti⊕1

12. for j ← 0 to i2 do
13. jj ← tj
14. mi,j ← min(mi,j , (ii+ jj)/2)

15. for i← 0 to n do
16. if mi,i < 0 then
17. return Bottom
18. return m

The pseudo code for the half closure is shown in Algorithm 18. During the k-th iteration, we
first update 2k and (2k + 1)-th row and column using Algorithms 15 and 16 respectively. The
code at line 9 in Algorithm 15 sets s to 2k+2. Similarly, the code at line 7 in Algorithm 16 sets e
to 2k. We skip computing elements m2k,2k,m2k,2k+1,m2k+1,2k and m2k+1,2k+1 which is correct
and is explained later. For Floyd-Warshall, the elements in k-th row and column do not change
during k-th iteration. Thus, we update 2k-th row (column) using (2k + 1)-th row(column) and
vice-versa.

The updated values are then used to compute the remaining elements using Algorithm 17. The
coherence property insures that we can get missing values corresponding to the upper triangular
part from the lower triangular part. At lines 17 and 27 in Algorithm 17, for j ≥ 2k + 2, the
elements are in the upper triangular part and are accessed row-wise for an algorithm working
with the full matrix. The corresponding elements in the lower triangular part for the half matrix
are accessed column-wise due to coherence. To improve memory performance, we put the
updated column values in an array as shown in Algorithm 15 at line 17 and access the updated
values from the array during compute_iteration_half_scalar at lines 17 and 27.

The strengthening phase is the same as before except that we work with only the lower triangular
part of the matrix. The strengthening phase is optimized to reduce TLB misses by storing
diagonal elements in an array. The pseudo code for strengthening the half closure is shown in
Algorithm 19.

Algorithm 20 Compute Element in Half Representation with AVX
1. function COMPUTE_ELEM_HALF_AVX(ij, ik, ikk, kj, kkj)
2. op1 ← avx_add_double(ik, kj)
3. op2 ← avx_add_double(ikk, kkj)
4. op3 ← avx_min_double(op1, op2)
5. op4 ← avx_min_double(ij, op3)
6. return op4

19

3. Closure Algorithms

Algorithm 21 Closure in Half Representation with AVX
1. function HALF_CLOSURE_AVX(m,a,b,dim)
2. Parameters:
3. m← input matrix
4. a← array to store updated 2k-th column
5. b← array to store updated (2k+1)-th column
6. dim← number of variables in program
7. for k ← 0 to dim do
8. compute_col_half_scalar(m, 2k, 2k + 1, a, dim)
9. compute_col_half_scalar(m, 2k + 1, 2k, b, dim)

10. compute_row_half_scalar(m, 2k, 2k + 1, dim)
11. compute_row_half_scalar(m, 2k + 1, 2k, dim)
12. compute_iteration_half_avx(m, k, a, b, dim)

13. return strengthening_half_avx(m,a, dim)

Algorithm 22 Compute Iteration in Half Representation with AVX
1. function COMPUTE_ITERATION_HALF_AVX(m,k,a,b,dim)
2. Parameters:
3. m← input matrix
4. k ← iteration number
5. a← column values for 2k-th column values
6. b← column values for (2k+1)-th column values
7. dim← number of variables in program
8. n← 2 ∗ dim
9. for i← 0 to 2k do

10. l← pad(2k + 2)
11. i2 ← (i ∨ 1) + 1
12. br ← i2 < 2k ? i2 : 2k
13. ik ← avx_set_double(get_element(m, i, 2k))
14. ikk ← avx_set_double(get_element(m, i, 2k + 1))
15. for j ← 0 to br/4 do
16. ij ← avx_load_double(mi,j∗4)
17. kj ← avx_load_double(m2k,j∗4)
18. kkj ← avx_load_double(m2k+1,j∗4)
19. op← compute_elem_half_avx(ij, ik, ikk, kj, kkj)
20. avx_store_double(mi,j∗4, op)

21. for j ← l to i2/4 do
22. ij ← avx_load_double(mi,j∗4)
23. kj ← avx_load_double(aj∗4)
24. kkj ← avx_load_double(bj∗4)
25. op← compute_elem_half_avx(ij, ik, ikk, kj, kkj)
26. avx_store_double(mi,j∗4, op)

27. for i← 2k + 2 to n do
28. i2 ← (i ∨ 1) + 1
29. br ← i2 < 2k ? i2 : 2k
30. ik ← avx_set_double(mi,2k)
31. ikk ← avx_set_double(mi,2k+1)
32. for j ← 0 to br/4 do
33. ij ← avx_load_double(mi,j∗4)
34. kj ← avx_load_double(m2k,j∗4)
35. kkj ← avx_load_double(m2k+1,j∗4)
36. op← compute_elem_half_avx(ij, ik, ikk, kj, kkj)
37. avx_store_double(mi,j∗4, op)

38. for j ← l to i2/4 do
39. ij ← avx_load_double(mi,j∗4)
40. kj ← avx_load_double(aj∗4)
41. kkj ← avx_load_double(bj∗4)
42. op← compute_elem_half_avx(ij, ik, ikk, kj, kkj)
43. avx_store_double(mi,j∗4, op)

The half closure algorithm can also be vectorized using Intel’s AVX intrinsics. The pseudo code

20

3.3. Half Closure

for half closure with AVX is shown in Algorithm 21. It is not possible to vectorize the compu-
tation of 2k and (2k + 1)-th column as elements are accessed column-wise. The computation
of rows can be vectorized but does not yield much speedup as the computation is small. Major
speedup is achieved by vectorizing computation of remaining elements using updated operands.
The pseudo code for this computation using AVX is shown in Algorithm 22.

If br is not a multiple of 4 then after the end of loop at lines 15 and 32, we perform scalar
computation of mi,j while j ≤ br. The function pad at line 6 returns the nearest integer l ≥
2k + 2 divisible by 4. If 2k + 2 is not divisible by 4 then again we perform scalar computation
of mi,j from j = 2k + 2 to j = l− 1 before entering the loops at lines 21 and 38. After that we
resume vector computation from j ← l. Similarly, if ii is not divisible by 4, we perform scalar
computation of mi,j after the loops at lines 21 and 38. For simplicity, the scalar computations
are not shown in Algorithm 22. Notice that storing the updated column values in an array
enables vectorization of the loop at line 21 and 38 which would not have been possible with
columns of the half matrix.

The strengthening can also be vectorized for half representation. The pseudo code for it is
shown in Algorithm 23. Again, storing the diagonal values in arrays enables the vectorization
of the double loop which otherwise would not have been possible.

Algorithm 23 Strengthening in Half Representation with AVX
1. function STRENGTHENING_HALF_AVX(m,t,dim)
2. Parameters:
3. m← input matrix
4. t← array to store diagonal elements
5. dim← number of variables in program
6. n← 2 ∗ dim
7. for i← 0 to n do
8. ti ← mi⊕1,i

9. for i← 0 to n do
10. i2 ← (i ∨ 1) + 1
11. ii← avx_set_double(ti⊕1)
12. for j ← 0 to i2/4 do
13. jj ← avx_load_double(tj∗4)
14. op1 ← avx_load_double(mi,j∗4)
15. op2 ← avx_add_double(ii, jj)
16. op2 ← avx_mul_double(op2, 0.5)
17. op3 ← avx_min_double(op1, op2)
18. avx_store_double(mi,j∗4, op3)

19. for i← 0 to n do
20. if mi,i < 0 then
21. return Bottom
22. return m

Theorem 3.3.1. Let h and m be the half matrix obtained after applying Half closure and
APRON closure respectively. Then, we have the ∀i, j, mi,j = hi,j .

Proof. We show by induction on k that after applying half closure, h contains the same values
for all elements as m after applying APRON closure. The argument holds for k = 0. Suppose
the argument holds for k = r − 1 i.e.,

∀i, j, hr−1
i,j = m

(2r−1)
i,j (3.1)

(Notice half closure runs twice as fast as APRON closure). We now prove that the argument
holds for k = r. Let us first assume absence of negative cycle.

21

3. Closure Algorithms

First consider elements hr2r,2r+1 and hr2r+1,2r. For the r-th iteration both elements do not change
for half closure. For APRON closure we have for 2r-th iteration,

m2r
2r,2r+1 = min(m2r−1

2r,2r+1,

m2r
2r,2r +m2r−1

2r,2r+1,

m2r−1
2r,2r+1 +m2r−1

2r+1,2r+1)

(3.2)

Since there is no negative cycle at 2r and 2r + 1, we have,

m2r
2r,2r = m2r−1

2r+1,2r+1 = 0 (3.3)

Thus m2r,2r+1 does not change during 2r-th iteration. Now for (2r + 1)-th iteration we have,

m2r+1
2r,2r+1 = min(m2r−1

2r,2r+1,

m2r
2r,2r+1 +m2r−1

2r+1,2r+1,

m2r+1
2r,2r +m2r−1

2r,2r+1)

(3.4)

Again we know that in absence of negative cycle, the elements m2r,2r and m2r+1,2r+1 remain
zero.

Hence m2r+1
2r,2r+1 = m2r−1

2r,2r+1, it can be similarly shown that m2r+1
2r+1,2r = m2r−1

2r+1,2r. Now consider
the elements in 2r-th column. Half closure computes elements in 2r-th column during r-th
iteration as,

hri,2r = min(hri,2r,

hr−1
i,2r+1 + hr−1

2r+1,2r)
(3.5)

For APRON closure we have for 2r-th iteration,

m2r
i,2r = min(m2r−1

i,2r ,

m2r−1
i,2r +m2r−1

2r,2r ,

m2r−1
i,2r+1 +m2r−1

2r+1,2r)

(3.6)

On simplifying,

m2r
i,2r = min(m2r−1

i,2r ,

m2r−1
i,2r+1 +m2r−1

2r+1,2r)
(3.7)

Similarly for elements in (2r + 1)-th column during 2r-th iteration we have,

m2r
i,2r+1 = min(m2r−1

i,2r+1,

m2r
i,2r +m2r−1

2r,2r+1)
(3.8)

22

3.3. Half Closure

Now for elements in column 2r we have during (2r + 1)-th iteration,

m2r+1
i,2r = min(m2r

i,2r,

m2r
i,2r+1 +m2r−1

2r+1,2r)
(3.9)

Combining equation 3.7 and 3.8 we have,

m2r+1
i,2r = min(m2r−1

i,2r ,

m2r−1
i,2r+1 +m2r−1

2r+1,2r,

m2r
i,2r +m2r−1

2r,2r+1 +m2r−1
2r+1,2r)

(3.10)

Since there is no negative cycle at 2r we have,

m2r
i,2r +m2r−1

2r,2r+1 +m2r−1
2r+1,2r ≥ m2r

i,2r (3.11)

.

Thus equation 3.10 becomes,

m2r+1
i,2r = min(m2r

i,2r,

m2r−1
i,2r+1 +m2r−1

2r+1,2r)
(3.12)

this expression is equivalent to expression for half closure in equation 3.5 due to equation 3.1,
thus, m2r+1

i,2r = h2r+1
i,2r . Similarly it can be shown that elements in column (2r + 1) as well as in

row 2r and (2r+1) contain the same value after(2r+1)-th iteration as elements in half closure
after r-th iteration. Thus, we have,

hr∗,2r =m2r+1
(∗,2r)

hr∗,2r+1 =m2r+1
(∗,2r+1)

hr2r,∗ =m2r+1
(2r,∗)

hr2r+1,∗ =m2r+1
(2r+1,∗)

(3.13)

Half closure updates remaining elements hi,j using updated row and column values which are
the same as APRON closure after (2r+1)-th iteration. Thus, if for any element hi,j the shortest
path goes through 2r or 2r + 1 it gets updated to the correct value. This shows that in absence
of negative cycle,

∀i, j, hri,j = m
(2r+1)
i,j (3.14)

In presence of negative cycle, APRON closure returns Bottom element by detecting if mi,i < 0.
We also update all the diagonal elements except m2r,2r and m2r+1,2r+1 during r-th iteration.
Thus, any negative cycle for 2r that does not pass through (2r + 1) gets detected and Bottom
element is returned. If there is negative cycles for 2r that goes through (2r + 1) it gets detected
during strengthening step as we have for strengthening,

23

3. Closure Algorithms

h2r,2r = min(h2r,2r, (h2r,2r+1 + h2r+1,2r)/2) (3.15)

.

Thus, ∀i, j, hri,j = m
(2r+1)
i,j in presence of negative cycle also.

3.4. Half Sparse Closure

Algorithm 24 Half Sparse Closure
1. function CLOSURE_HALF_SPARSE(m,r,r’,c,c’,a,b, dim)
2. Parameters:
3. m← input matrix
4. r ← locations of finite values in 2k-th row
5. r′ ← locations of finite values in (2k+1)-th row
6. c← locations of finite values in 2k-th column
7. c′ ← locations of finite values in (2k+1)-th column
8. a← array to store updated 2k-th column values
9. b← array to store updated (2k+1)-th column values

10. dim← number of variables in program
11. for k ← 0 to dim do
12. compute_index_half_sparse(m, k, r, r′, c, c′, dim)
13. compute_col_half_sparse(m, 2k, 2k + 1, c, c′, a, dim)
14. compute_col_half_sparse(m, 2k + 1, 2k, c′, c, b, dim)
15. compute_row_half_sparse(m, 2k, 2k + 1, r, r′, dim)
16. compute_row_half_sparse(m, 2k + 1, 2k, r′, r, dim)
17. compute_iteration_half_sparse(m, k, r, r′, c, c′, a, b, dim)

18. return strengthening_half_sparse(m, r, a, dim)

Algorithm 25 Compute Index Half Sparse
1. function COMPUTE_INDEX_HALF_SPARSE(m,k,r,r’,c,c’,dim)
2. Parameters:
3. m← input matrix
4. k ← iteration number
5. r ← locations of finite values in 2k-th row
6. r′ ← locations of finite values in (2k+1)-th row
7. c← locations of finite values in 2k-th column
8. c′ ← locations of finite values in (2k+1)-th column
9. dim← number of variables in program

10. n← 2 ∗ dim, s1 ← 0, s2 ← 0
11. for i← 2k + 2 to n do
12. if is_finite(mi,2k) then
13. cs1+1 ← i, s1 ← s1 + 1

14. if is_finite(mi,2k+1) then
15. c′s2+1 ← i, s2 ← s2 + 1

16. c0 ← s1, c
′
0 ← s2

17. s1 ← 0, s2 ← 0
18. for j ← 0 to 2k do
19. if is_finite(m2k,j) then
20. rs1+1 ← j, s1 ← s1 + 1

21. if is_finite(m2k+1,j) then
22. r′s2+1 ← j, s2 ← s2 + 1

23. r0 ← s1, r
′
0 ← s2

24

3.4. Half Sparse Closure

Half Sparse Closure combines the benefits of a reduced opcount as in half closure and the
benefits of the sparse structure of a matrix as in sparse closure. We use the same sparse index
arrays for storing locations of finite values in half sparse closure as for sparse closure. Algorithm
24 shows the pseudo code for half sparse closure.

At the start of the k-th iteration of the outermost loop, we compute the locations of finite values
for 2k and (2k+1)-th row and column using the function compute_index_half_sparse shown
in Algorithm 25. The indices are then used to update the elements in 2k and (2k+1)-th row and
column using functions compute_row_half_sparse and compute_col_half_sparse shown in
Algorithms 27 and 26 respectively. If during the update, a non finite constraint becomes finite,
its location is added to the corresponding index. The indices obtained after 2k and (2k + 1)-
th row and column are used for the computation of the remaining elements using the function
compute_iteration_half_sparse shown in Algorithm 28.

Algorithm 26 Compute Column Half Sparse
1. function COMPUTE_COL_HALF_SPARSE(m,k,kk,c,c’,t,dim)
2. Parameters:
3. m← input matrix
4. k ← column to be modified
5. kk ← column used for modifying
6. c← index of column to be modified
7. c′ ← index of column used for modifying
8. t← array to store updated column values
9. dim← number of variables in program

10. n← 2 ∗ dim
11. if is_finite(mkk,k) then
12. s1 ← c0, s2 ← c′0
13. for i← 0 to s2 do
14. i1 ← c′i+1

15. if is_finite(mi1,k) then
16. mi1,k ← min(mi1,k,mi1,kk +mkk,k)
17. else
18. mi1,k ← mi1,kk +mkk,k

19. cs1+1 ← i1, s1 ← s1 + 1

20. c0 ← s1
21. for i← 2k + 2 to n do
22. ti ← mi,k

Algorithm 27 Compute Row Half Sparse
1. function COMPUTE_ROW_HALF_SPARSE(m,k,kk,r,r’,dim)
2. Parameters:
3. m← input matrix
4. k ← row to be modified
5. kk ← row used for modifying
6. r ← index of row to be modified
7. r′ ← index of row used for modifying
8. dim← number of variables in program
9. if is_finite(mk,kk) then

10. s1 ← r0, s2 ← r′0
11. for j ← 0 to s2 do
12. j1 ← r′j+1

13. if is_finite(mk,j1) then
14. mk,j1 ← min(mk,j1 ,mk,kk +mkk,j1)
15. else
16. mk,j1 ← mk,kk +mkk,j1

17. rs1+1 ← j1, s1 ← s1 + 1

18. r0 ← s1

25

3. Closure Algorithms

Notice that now we need four arrays for storing indices instead of two for sparse closure. The
first element of each array stores the size, and maximum size of each array can be 2∗dim. Thus,
we need 4 ∗ (2 ∗ dim+ 1) extra space which is linear with respect to the number of variables.

Algorithm 28 Compute Iteration Half Sparse
1. function COMPUTE_ITERATION_HALF_SPARSE(m,k,r,r’,c,c’,a,b,dim)
2. Parameters:
3. m← input matrix
4. k ← Iteration number of outer loop for Floyd-Warshall
5. r ← locations of finite values in 2k-th row
6. r′ ← locations of finite values in (2k+1)-th row
7. c← locations of finite values in 2k-th column
8. c′ ← locations of finite values in (2k+1)-th column
9. a← column values for 2k-th column

10. b← column values for (2k+1)-th column
11. dim← number of variables in program
12. for i← 0 to r0 do
13. i1 ← ri+1, ik ← m2k,i1

14. for j ← 0 to r′0 do
15. j1 ← r′j+1, kj ← m2k+1,j1

16. mi1⊕1,j1 ← min(mi1⊕1,j1 , ik + kj)

17. for j ← 0 to c0 do
18. j1 ← cj+1, kj ← bj1
19. mi1⊕1,j1⊕1 ← min(mi1⊕1,j1⊕1, ik + kj)

20. for i← 0 to r′0 do
21. i1 ← r′i+1, ikk ← m2k+1,i1

22. for j ← 0 to r0 do
23. j1 ← rj+1, kkj ← m2k,j1

24. mi1⊕1,j1 ← min(mi1⊕1,j1 , ikk + kkj)

25. for j ← 0 to c′0 do
26. j1 ← c′j+1, kkj ← aj1

27. mi1⊕1,j1⊕1 ← min(mi1⊕1,j1⊕1, ikk + kkj)

28. for i← 0 to c′0 do
29. i1 ← c′i+1, ik ← mi1,2k+1

30. for j ← 0 to r′0 do
31. j1 ← r′j+1, kj ← m2k+1,j1

32. mi1,j1 ← min(mi1,j1 , ik + kj)

33. for j ← 0 to c0 do
34. j1 ← cj+1, kj ← bj1
35. mi1,j1⊕1 ← min(mi1,j1⊕1, ik + kj)

36. for i← 0 to c0 do
37. i1 ← ci+1, ikk ← mi1,2k

38. for j ← 0 to r0 do
39. j1 ← rj+1, kkj ← m2k,j1

40. mi1,j1 ← min(mi1,j1 , ikk + kkj)

41. for j ← 0 to c′0 do
42. j1 ← cj+1, kkj ← aj1

43. mi1,j1⊕1 ← min(mi1,j1⊕1, ikk + kkj)

The indices are updated at lines 19 and 17 in Algorithm 26 and 27 respectively. An alternative
strategy could be to first update the columns (rows) without any index information and then
compute the index. In this way, there is no need to update the index in case a non finite constraint
becomes finite. However, computing the index first is advantageous because we only compute
those row (column) elements that have finite operands which are usually low. As in the case of
half closure, we keep the updated column values in an array to enhance memory performance.

Once the row and column elements are updated, the indices do not change. We compute an
element mi,j only if both operands are present in the index. For the loops at lines 12 and 20 in
Algorithm 28 we have i < 2k, thus operand ik and ikk correspond to the upper triangular part

26

3.5. Incremental Closure

of a full matrix. By coherence, for half matrix, these elements can be accessed row-wise from
the lower triangular part. Therefore, we use row indices r and r′. If we get i1 from row index, it
means row index of element to be computed should be i1 ⊕ 1 from coherence. Similarly, loops
at lines 17, 25, 33 and 41 have j ≥ 2k+2 hence these are accessed column-wise in half matrix.
Therefore, we use column indices c and c′. If we get j1 from the column index, it means the
column index of the element to be computed should be j1 ⊕ 1 (by coherence).

For simplicity, some border cases are omitted in Algorithm 28. Specifically, we compute i2 ←
(i1 ∨ 1) + 1 and br ← i2 < 2k ? i2 : 2k at the start of each i-loop. The loops at lines 14, 22,
30 and 38 in Algorithm 28 terminate if j1 > br. Similarly, loops at lines 17, 25, 33 and 41
terminate if j1 > i2.

Algorithm 29 shows the sparse strengthening for the half matrix. The algorithm is similar to the
sparse strengthening except that now we work with only the lower triangular part.

Algorithm 29 Strengthening Half Sparse
1. function STRENGTHENING_HALF_SPARSE(m,d,t,dim)
2. Parameters:
3. m← input matrix
4. d← index for diagonal elements
5. t← array to store diagonal elements
6. dim← number of variables in program
7. n← 2 ∗ dim, s← 0
8. for i← 0 to n do
9. ti ← mi⊕1,i

10. if is_finite(ti) then
11. ds+1 ← i
12. s← s+ 1
13. d0 ← s
14. for i← 0 to d0 do
15. i1 ← di+1

16. ii← ti1
17. for j ← 0 to d0 do
18. j1 ← dj+1

19. jj ← tj1
20. mi1⊕1,j1 ← min(mi1⊕1,j1 , (ii+ jj)/2)

21. for i← 0 to n do
22. if mi,i < 0 then
23. return Bottom
24. return m

3.5. Incremental Closure

Let n be the number of rows or columns in an Octagon matrix and S = {n1, n2, . . . nk} be the
set of non-negative integers such that ∀i, ni < n and ∀i, j, /∈ S we have, mi,j = mclosed

i,j . A
matrix satisfying the above condition is defined as "almost closed" as it is closed except for few
rows and columns. If V = {Vn1 , Vn2 , . . . Vnk

} is the set of variables corresponding to S then it
means that only the constraints involving at least one of the variables in V have changed. This
is very useful in modeling assignment statements occurring in programs. Incremental closure
can be used to compute Octagon closure of "almost closed" matrices quickly.

27

3. Closure Algorithms

Algorithm 30 APRON Incremental Closure
1. function APRON_INCREMENTAL_CLOSURE(m,v,dim)
2. Parameters:
3. m← input matrix
4. v ← index of modified variable
5. dim← number of variables in program
6. n← 2 ∗ dim
7. for k ← 0 to n do
8. for i← 2v to 2v + 2 do . Row containing variable is updated
9. i2 ← (i ∨ 1) + 1

10. ik ← get_element(m, i, k), ikk ← get_element(m, i, k ⊕ 1)
11. for j ← 0 to i2 do
12. kj ← get_element(m, k, j), kkj ← get_element(m, k ⊕ 1, j)
13. mi,j ← min(mi,j ,min(ik + kj, ikk + kkj))

14. for j ← 2v to 2v + 2 do . Column containing variable is updated
15. kj ← get_element(m, k, j), kkj ← get_element(m, k ⊕ 1, j)
16. for i← j to n do
17. ik ← get_element(m, i, k), ikk ← get_element(m, i, k ⊕ 1)
18. mi,j ← min(mi,j ,min(ik + kj, ikk + kkj))

19. for k ← 2v to 2v + 2 do . Rest of the inequalities are updated
20. for i← 0 to n do
21. i2 ← (i ∨ 1) + 1
22. ik ← get_element(m, i, k), ikk ← get_element(m, i, k ⊕ 1)
23. for j ← 0 to i2 do
24. kj ← get_element(m, k, j), kkj ← get_element(m, k ⊕ 1, j)
25. mi,j ← min(mi,j ,min(ik + kj, ikk + kkj))

26. return strengthening_apron(m, dim)

3.5.1. Dense Incremental Closure

APRON applies the incremental closure on the half representation of the Octagon matrix. Al-
gorithm 30 shows the pseudo code for incremental closure in APRON for the case when con-
straints involving only one variable have changed. The complexity of incremental closure for
one variable is quadratic.

In the algorithm, v is the index of the variable for which the constraints are not closed. The first
n iterations of Floyd-Warshall are performed to update the elements in 2v and (2v + 1)-th row
and column. The updated values are used to update the rest of the elements in the matrix by
performing 2v and (2v + 1)-th iteration of Floyd-Warshall.

As with full closure, we found that the opcount of the incremental closure algorithm in APRON
can be reduced in half. The first triple loop at line 7 in Algorithm 30 updates the elements in
2v and (2v + 1)-th row and column. It can be seen that for a given element mi,j , during 2k
and (2k + 1)-th iteration, the same elements mi,2k, mi,2k+1, m2k,j , m2k+1,j are used for updates
twice. Except for k = 2v and k = 2v+1-th iteration the operands are not modified. Thus, value
of operands for the min operation for 2k and (2k + 1)-th iteration is the same when k 6= v. We
know from the Half closure that for 2v and (2v+ 1)-th iteration, elements in 2v and (2v+ 1)-th
row and column can be computed using half the operations. We thus reduce the number of
iterations of the outermost loop at line 7 to half by having the outermost loop run twice as fast
as APRON.

28

3.5. Incremental Closure

Algorithm 31 Dense Incremental Closure Scalar
1. function INCREMENTAL_HALF_DENSE_SCALAR(m,v,a,b,dim)
2. Parameters:
3. m← input matrix
4. v ← index of modified variable
5. a← array to store updated 2v-th column values
6. b← array to store updated (2v+1)-th column values
7. dim← number of variables in program
8. n← 2 ∗ dim, br ← 2k < 2v?2k : 2v
9. for k ← 0 to dim do

10. for i← 2v to 2v + 2 do
11. ik ← get_element(m, i, 2k)
12. ikk ← get_element(m, i, 2k + 1)
13. for j ← 0 to br do
14. kj ← m2k,j

15. kkj ← m2k+1,j

16. mi,j ← min(mi,j ,min(ik + kj, ikk + kkj))

17. for j ← br to 2v do
18. kj ← get_element(m, 2k, j)
19. kkj ← get_element(m, 2k + 1, j)
20. mi,j ← min(mi,j ,min(ik + kj, ikk + kkj))

21. for j ← 2v to 2v + 2 do
22. kj ← get_element(m, 2k, j)
23. kkj ← get_element(m, 2k + 1, j)
24. for i← 2v to n do
25. ik ← get_element(m, i, 2k)
26. ikk ← get_element(m, i, 2k + 1)
27. mi,j ← min(mi,j ,min(ik + kj, ikk + kkj))

28. compute_col_half_scalar(m, 2v, 2v + 1, a, dim)
29. compute_col_half_scalar(m, 2v + 1, 2v, b, dim)
30. compute_row_half_scalar(m, 2v, 2v + 1, dim)
31. compute_row_half_scalar(m, 2v + 1, 2v, dim)
32. compute_iteration_half_scalar(m, v, a, b, dim)
33. return strengthening_half_scalar(m,a, dim)

The second triple loop at line 19 modifies the entire matrix using updated values of elements in
2v and (2v + 1)-th row and column. This is equivalent to performing two iterations of Floyd-
Warshall and its opcount can be reduced in half by first computing 2v and (2v + 1)-th row and
column as in Half closure.

Algorithm 31 shows the pseudo code for the dense incremental closure. We compute the triple
loop at line 9 using half the operations. The rest of the algorithm is similar to the v-th iteration of
half closure and can be computed using compute_col_half_scalar, compute_row_half_scalar
and compute_iteration_half_scalar.

The dense incremental closure can also be vectorized using AVX. The pseudo code is shown
in Algorithm 32. The loop at line 13 is vectorized while loop at line 23 is not as some of the
elements (kj and kkj) correspond to the upper triangular part and are accessed column-wise
in half matrix. Storing columns containing operands in an array incurs overhead as only two
columns are updated instead of the complete matrix. The columns need to be stored again
for the next iteration. Therefore, our trick of storing column values in an array which enables
vectorization does not work. For the loop at line 27, elements are not accessed in the order
suitable for vectorization and hence the loop is not vectorized. The rest of the computation is
same as one iteration of a vectorized half closure and is vectorized the same way.

29

3. Closure Algorithms

Algorithm 32 Dense Incremental Closure with AVX
1. function INCREMENTAL_HALF_DENSE_AVX(m,v,a,b,dim)
2. Parameters:
3. m← input matrix
4. v ← index of modified variable
5. a← array to store updated 2v-th column values
6. b← array to store updated (2v+1)-th column values
7. dim← number of variables in program
8. n← 2 ∗ dim, br ← 2k < 2v?2k : 2v
9. for k ← 0 to dim do

10. for i← 2v to 2v + 2 do
11. ik ← avx_set_double(get_element(m, i, 2k))
12. ikk ← avx_set_double(get_element(m, i, 2k))
13. for j ← 0 to br/4 do
14. kj ← avx_load_double(m2k,j∗4)
15. kkj ← avx_load_double(m2k+1,j∗4)
16. ij ← avx_load_double(mi,j∗4)
17. op1 ← avx_add_double(ik, kj)
18. op2 ← avx_add_double(ikk, kkj)
19. op3 ← avx_min_double(op1, op2)
20. op4 ← avx_min_double(ij, op3)
21. avx_store_double(mi,j∗4, op4)

22. ik ← get_element(m, i, 2k), ikk ← get_element(m, i, 2k + 1)
23. for j ← br to 2v do
24. kj ← get_element(m, 2k, j)
25. kkj ← get_element(m, 2k + 1, j)
26. mi,j ← min(mi,j ,min(ik + kj, ikk + kkj))

27. for j ← 2v to 2v + 2 do
28. kj ← get_element(m, 2k, j), kkj ← get_element(m, 2k + 1, j)
29. for i← 2v to n do
30. ik ← get_element(m, i, 2k)
31. ikk ← get_element(m, i, 2k + 1)
32. mi,j ← min(mi,j ,min(ik + kj, ikk + kkj))

33. compute_col_half_scalar(m, 2v, 2v + 1, a, dim)
34. compute_col_half_scalar(m, 2v + 1, 2v, b, dim)
35. compute_row_half_scalar(m, 2v, 2v + 1, dim)
36. compute_row_half_scalar(m, 2v + 1, 2v, dim)
37. compute_iteration_half_avx(m, v, a, b, dim)
38. return strengthening_half_avx(m,a, dim)

3.5.2. Sparse Incremental Closure

The sparse incremental closure takes advantage of the sparse structure of the input matrix for
incremental closure. It uses the same sparse indices as for Half closure. Thus, the extra memory
overhead is the same. Algorithm 33 shows the pseudo code for the sparse incremental closure.

There is no need to compute an index for first triple loop. The reason is the same for not storing
column values in an array. As the operands change in every iteration of the outermost loop,
we would have to compute an index for each k in order to have only linear space overhead.
But computing indices for each k would incur quadratic time overhead. An alternative strategy
could be to compute an index for the whole matrix but that would increase space overhead to
quadratic. The index is constructed only for the second triple loop. The computation in this
loop is equivalent to a single iteration of Half Sparse Closure.

30

3.5. Incremental Closure

Algorithm 33 Sparse Incremental Closure
1. function INCREMENTAL_HALF_SPARSE(m,v,r,r’,c,c’,a,b,dim)
2. Parameters:
3. m← input matrix
4. v ← index of modified variable
5. r ← locations of finite values in 2k-th row
6. r′ ← locations of finite values in (2k+1)-th row
7. c← locations of finite values in 2k-th column
8. c′ ← locations of finite values in (2k+1)-th column
9. a← array to store updated 2v-th column values

10. b← array to store updated (2v+1)-th column values
11. dim← number of variables in program
12. n← 2 ∗ dim
13. for k ← 0 to dim do
14. for i← 2v to 2v + 2 do
15. if is_finite(get_element(m, i, 2k)) then
16. ik ← get_element(m, i, 2k)
17. for j ← 0 to 2v do
18. kj ← get_element(m, 2k, j)
19. mi,j ← min(mi,j , ik + kj)

20. if is_finite(get_element(m, i, 2k + 1)) then
21. ikk ← get_element(m, i, 2k + 1)
22. for j ← 0 to 2v do
23. kkj ← get_element(m, 2k + 1, j)
24. mi,j ← min(mi,j , ikk + kkj)

25. for j ← 2v to 2v + 2 do
26. if is_finite(get_element(m, 2k, j)) then
27. kj ← get_element(m, 2k, j)
28. for i← 2v to n do
29. ik ← get_element(m, i, 2k)
30. mi,j ← min(mi,j , ik + kj)

31. if is_finite(get_element(m, 2k + 1, j)) then
32. kkj ← get_element(m, 2k + 1, j)
33. for i← j to n do
34. ikk ← get_element(m, i, 2k + 1)
35. mi,j ← min(mi,j , ikk + kkj)

36. compute_index_half_sparse(m, r, r′, c, c′, v, dim)
37. compute_col_half_sparse(m, 2v, 2v + 1, c, c′, a, dim)
38. compute_col_half_sparse(m, 2v + 1, 2v, c′, c, b, dim)
39. compute_row_half_sparse(m, 2v, 2v + 1, r, r′, dim)
40. compute_row_half_sparse(m, 2v + 1, 2v, r′, r, dim)
41. compute_iteration_half_sparse(m, v, r, r′, c, c′, a, b, dim)
42. return strengthening_half_sparse(m, r, a, dim)

31

3. Closure Algorithms

32

4
Octagon Operators

Besides closure, the Octagon domain defines various other operators and transfer functions to
handle various statements occurring commonly in programs such as assignment, loops, guard
statements, etc. In this section, we present these operators and discuss how they can be made
faster. It should be noted that unlike the closure, we do not implement sparse algorithms for
these operators. Maintaining sparse index throughout the analysis will require us to store addi-
tional data structure which may take quadratic space in the worst case. As the runtime of the
analysis is mainly dominated by the closure and the memory allocation, we do not maintain
sparse index for other operators. In the rest of this chapter, we assume a half matrix and a func-
tion oct_closure to close the matrix (this can be any of the closure algorithms we described in
the last chapter).

4.1. Join

The Join is a key operator for any abstract domain. Semantically, it involves combining infor-
mation at locations in the control flow graph of the program where different branches merge.
For octagons, the computation of join involves taking the element wise maximum of closed
matrices. The matrix obtained by the join of two closed matrices is also closed. Algorithm 34
shows the pseudo code for the join operator.

33

4. Octagon Operators

Algorithm 34 Join Operator
1. function JOIN(l,m,o, dim)
2. Parameters:
3. l,m← input matrix
4. o← output matrix
5. dim← number of variables in program
6. s← 2 ∗ dim ∗ (dim+ 1)
7. oct_closure(l, dim)
8. oct_closure(m, dim)
9. for i← 0 to s do

10. oi ← max(li,mi)

Algorithm 35 Join Operator with AVX
1. function JOIN_AVX(l,m,o, dim)
2. Parameters:
3. l,m← input matrix
4. o← output matrix
5. dim← number of variables in program
6. s← 2 ∗ dim ∗ (dim+ 1)
7. oct_closure(l, dim)
8. oct_closure(m, dim)
9. for i← 0 to s/4 do

10. op1 ← avx_load_double(li∗4)
11. op2 ← avx_load_double(mi∗4)
12. op3 ← avx_max_double(op1, op2)
13. avx_store_double(oi∗4, op3)

We vectorize the loop at line 9 in Algorithm 34 using AVX intrinsics. The vectorized join
operator is shown in Algorithm 35. If s is not a multiple of 4, we have to compute the remaining
elements using scalar computations. For simplicity, it has been omitted from Algorithm 34.

4.2. Meet

Meet is usually applied at guard statements of the program. It is used to keep the common
information between the elements. There are three kind of meet operation defined for octagons.
We describe meet with octagon next while the other two meet are defined later (see appendix
A).

Algorithm 36 Meet Octagon
1. function MEET_OCTAGONS(l,m,o, dim)
2. Parameters:
3. l,m← input matrix
4. o← output matrix
5. dim← number of variables in program
6. s← 2 ∗ dim ∗ (dim+ 1)
7. for i← 0 to s do
8. oi ← min(li,mi)

Algorithm 37 Meet Octagon with AVX
1. function MEET_OCTAGONS_AVX(l,m,o, dim)
2. Parameters:
3. l,m← input matrix
4. o← output matrix
5. dim← number of variables in program
6. s← 2 ∗ dim ∗ (dim+ 1)
7. for i← 0 to s/4 do
8. op1 ← avx_load_double(li∗4)
9. op2 ← avx_load_double(mi∗4)

10. op3 ← avx_min_double(op1, op2)
11. avx_store_double(oi∗4, op3)

The meet operation between two octagons involves taking the element wise minimum of ma-
trices. It does not require the matrices to be closed. However, the matrix obtained by the meet
of two octagon matrices is not necessarily closed. Algorithm 36 shows the pseudo code for the
meet operation between two octagons.

We vectorize the loop at line 7 in Algorithm 36 using AVX intrinsics. The vectorized pseudo
code is shown in Algorithm 37. As for the join, for presentation purposes, we omit the cases
when s is not a multiple of 4.

34

4.3. Inclusion Testing

4.3. Inclusion Testing

The inclusion operator is used to test if the set of concrete objects represented by an octagon is
already contained inside a set of concrete objects represented by another octagon. It is used to
form an ordering between different elements in the Octagonal lattice. The octagons with more
information are higher in the lattice. It involves closing the first matrix and then an element wise
comparison with the second matrix. If one of the element in the first matrix is greater than the
corresponding element in the second matrix then the test fails. Algorithm 38 shows the pseudo
code for the inclusion testing operator.

Algorithm 38 Inclusion Testing
1. function IS_INCLUDED(l,m, dim)
2. Parameters:
3. l,m← input matrix
4. dim← number of variables in program
5. s← 2 ∗ dim ∗ (dim+ 1)
6. n← 2 ∗ dim
7. oct_closure(l, dim)
8. for i← 0 to s do
9. if li > mi then

10. return false
11. return true

Algorithm 39 Inclusion Testing with AVX
1. function IS_INCLUDED_AVX(l,m, dim)
2. Parameters:
3. l,m← input matrix
4. dim← number of variables in program
5. s← 2 ∗ dim ∗ (dim+ 1)
6. n← 2 ∗ dim
7. oct_closure(l, dim)
8. one← avx_set_int(1)
9. for i← 0 to s/4 do

10. op1 ← avx_load_double(li∗4)
11. op2 ← avx_load_double(mi∗4)
12. op3 ← avx_cmp_leq_double(op1, op2)
13. ip← avx_double_to_int(op3)
14. if (!avx_nand_int(ip, one)) then
15. return false
16. return true

We vectorize the loop at line 8 using AVX intrinsics. The vectorized pseudo code is shown in
Algorithm 39. Here, op3 contains the result of the ≤ comparison between the corresponding
elements in l and m. The op3 is then converted to a 64-bit int and then tested if all of the bits are
1’s. The number of times the loop executes depends on the input and so the performance gain
from vectorization varies according to the input.

4.4. Equality Testing

Equality operator is used to test if two octagons represent the same set of concrete objects. It
involves element wise test for equality between closed matrices. If one of the elements is not
equal then the test fails. Algorithm 40 shows the pseudo code for the equality testing operator.

35

4. Octagon Operators

Algorithm 40 Equality Testing
1. function IS_EQUAL(l,m, dim)
2. Parameters:
3. l,m← input matrix
4. dim← number of variables in program
5. s← 2 ∗ dim ∗ (dim+ 1)
6. n← 2 ∗ dim
7. oct_closure(l, dim)
8. oct_closure(m, dim)
9. for i← 0 to s do

10. if li! = mi then
11. return false
12. return true

Algorithm 41 Equality Testing with AVX
1. function IS_EQUAL_AVX(l,m, dim)
2. Parameters:
3. l,m← input matrix
4. dim← number of variables in program
5. s← 2 ∗ dim ∗ (dim+ 1)
6. n← 2 ∗ dim
7. oct_closure(l, dim)
8. oct_closure(m, dim)
9. one← avx_set_int(1)

10. for i← 0 to s/4 do
11. op1 ← avx_load_double(li∗4)
12. op2 ← avx_load_double(mi∗4)
13. op3 ← avx_cmp_eq_double(op1, op2)
14. ip← avx_double_to_int(op3)
15. if (!avx_nand_int(ip, one)) then
16. return false
17. return true

We vectorize the loop at line 9 using AVX intrinsics. The vectorized pseudo code is shown in
Algorithm 41. The vectorization is the same as for inclusion except the comparison for equality.
Again, the number of times the loop executes depends on the input, so the performance gain
from vectorization varies according to the input.

4.5. Top

The top operator allocates the highest ordered element in the lattice representing octagons. The
top element is represented by a matrix containing only∞ values and is closed. Algorithm 42
shows the pseudo code for the top operator. The vectorized top operator is shown in Algorithm
43.

Algorithm 42 Top Operator
1. function TOP(m,dim)
2. Parameters:
3. m← input matrix
4. dim← number of variables
5. n← 2 ∗ dim
6. for i← 0 to n do
7. i2 ← (i ∨ 1) + 1
8. for j ← 0 to i2 do
9. if i == j then

10. mi,j ← 0
11. else
12. mi,j ←∞

Algorithm 43 Top Operator with AVX
1. function TOP_AVX(m,dim)
2. Parameters:
3. m← input matrix
4. dim← number of variables
5. s← 2 ∗ dim ∗ (dim+ 1)
6. n← 2 ∗ dim
7. inf ← avx_set_double(∞)
8. for i← 0 to s/4 do
9. avx_store_double(mi∗4, inf)

10. for i← 0 to n do
11. mi,i ← 0

The elements on the main diagonal mi,i should be zero which makes vectorization difficult. To
make vectorization convenient, we first set all of the elements in the matrix to ∞. We have
another loop at line 10 in Algorithm 43 that sets the diagonal elements to 0.

36

4.6. Is Top

4.6. Is Top

This operator tests if an octagon is the top element. If one of the non diagonal elements in the
matrix is not∞ then it returns false. Algorithm 44 shows the pseudo code for this operator.

Algorithm 44 Is Top
1. function IS_TOP(m, dim)
2. Parameters:
3. m← input matrix
4. dim← number of variables in program
5. n← 2 ∗ dim
6. for i← 0 to n do
7. i2 ← (i ∨ 1) + 1
8. for j ← 0 to i2 do
9. if i == j then

10. continue
11. else if mi,j ==∞ then
12. continue
13. else
14. return false
15. return true

Algorithm 45 Is Top with AVX
1. function IS_TOP_AVX(m, dim)
2. Parameters:
3. m← input matrix
4. dim← number of variables in program
5. s← 2 ∗ dim ∗ (dim+ 1)
6. n← 2 ∗ dim
7. for i← 0 to n do
8. mi,i ←∞
9. flag ← true

10. inf ← avx_set_double(∞)
11. one← avx_set_int(1)
12. for i← 0 to s/4 do
13. op1 ← avx_load_double(mi∗4)
14. op2 ← avx_cmp_eq_double(op1, inf)
15. ip← avx_double_to_int(op2)
16. if (!avx_nand_int(ip, one)) then
17. flag ← false
18. break
19. for i← 0 to n do
20. mi,i ←∞
21. return flag

The diagonal elements mi,i are set to 0 for all octagons which makes vectorization of equality
comparison with∞ in loop at line 6 difficult. Thus we first set all diagonal elements to∞which
are afterwards set back to 0. The pseudo code for vectorized operator is shown in Algorithm
45. Like inclusion and equality testing, the number of times the loop executes depends on the
input, so the performance gain from vectorization varies according to the input.

4.7. Forget

The forget operator is used to eliminate variables from the octagons. For instance, it is used
to model non-deterministic assignments to variables. It sets all the constraints related to the
eliminated variable to ∞. The matrix obtained after applying the forget operator is closed.
Algorithm 46 shows the pseudo code of the forget operator.

37

4. Octagon Operators

Algorithm 46 Forget Operator
1. function FORGET(m,v,dim)
2. Parameters:
3. m← input matrix
4. v ← the index of variable to be forgotten
5. dim← number of variables in program
6. n← 2 ∗ dim
7. oct_closure(m, dim)
8. for i← 2v + 2 to n do
9. mi,2v ←∞

10. mi,2v+1 ←∞
11. inf ←∞
12. for j ← 0 to 2v do
13. m2v,j ←∞
14. m2v+1,j ←∞
15. m2v,2v ← 0
16. m2v+1,2v+1 ← 0

Algorithm 47 Forget Operator with AVX
1. function FORGET_AVX(m,v,dim)
2. Parameters:
3. m← input matrix
4. v ← the index of variable to be forgotten
5. dim← number of variables in program
6. n← 2 ∗ dim
7. inf ← avx_set_double(∞)
8. oct_closure(m, dim)
9. for i← 2v + 2 to n do

10. mi,2v ←∞
11. mi,2v+1 ←∞
12. inf ←∞
13. for j ← 0 to 2v/4 do
14. avx_store_double(m2v,j∗4, inf)
15. avx_store_double(m2v+1,j∗4, inf)

16. m2v,2v ← 0
17. m2v+1,2v+1 ← 0

The loop at line 8 can be easily vectorized as elements are accessed row-wise. The elements for
the loop at line 12 are accessed column-wise. Thus, this loop cannot be vectorized. There is no
gain in memory performance by storing columns in array as the operation is linear. The pseudo
code for the vectorized forget operator is shown in Algorithm 47.

38

5
Evaluation

We next present an implementation of dense and sparse libraries for static analysis with the
Octagon abstract domain. We evaluate the performance of various closure and incremental
closure algorithms on real-world and synthetic benchmarks. We then compare the performance
of our dense and sparse libraries against APRON. To compare, we measure the time that the
analysis spends in the Octagon domain. We also measure the individual runtime of Octagon
operators. Some operators are part of others, for example join includes closure. When we
measure the runtime of such operators, we only measure the runtime for the portion which
does not belong to the included operator. Hence, for Join, we only consider the time spent in
computing the maximum of matrix elements in a quadratic loop. The time for closure in join is
included in the total closure time.

5.1. Library Implementation

In this section we describe the implementation of our sparse and dense libraries for static anal-
ysis using the Octagon domain.

5.1.1. Octagons

The octagons are represented in the same way as in APRON. We store two matrices, closed and
mat. Closed stores the closed version of matrix mat. This allows us to skip performing closure,
if the closed version is already available. If an operation destroys closeness of the matrix, then
closed is set to NULL. Similarly, if an operation makes matrix closed then mat is set to NULL.

39

5. Evaluation

When the closure is explicitly called, we compute the closed matrix and also keep the original
mat matrix.

s t r u c t o p t _ o c t _ t {
double ∗mat ;
double ∗ c l o s e d ;
i n t dim ;

}

An alternative design for octagons could be to store a boolean indicating if the matrix is closed.
However, the operator widening requires non closed matrix for convergence. Thus, we store
two matrices for an octagon.

5.1.2. Constraints

We use the APRON data structures for representing linear and non-linear constraints. We use
the generic linearization algorithms provided by APRON for converting non linear constraints
to linear constraints.

5.1.3. Operators

There are separate sparse and dense implementations for closure and incremental closure. We
keep a flag for compiling the library to either use sparse or dense implementation. It is trivial to
add a field sparsity to the Octagon representation that keeps track of the sparsity of matrices and
switches between dense and sparse algorithms depending on the sparsity of matrices. For all our
benchmarks, we found that the sparse library is always faster than the dense and computation
of sparsity carries an overhead, so we do not support it currently. All the other operators are
optimized for memory performance and most of them use explicit vectorization using AVX
intrinsics.

We do not have a sparse implementation for other operators because it will require having either
an explicit sparse data structure for octagons or maintaining additional data structure inside
octagons to store the locations of finite values. Choosing the first option will slow down the
closure like in the case for the Johnson implementation and will incur extra overhead in case
we have to switch between dense and sparse (see section 5.3) while with the second option,
the copy operation will become more expensive as there will be more bytes to copy. For our
benchmarks, copy is one of the most expensive operators for the sparse library so we discarded
the second option (see section 5.6).

5.2. Experimental setup

All the experiments were carried out on 3.5 GHz Intel Quad Core i7-4771 Haswell CPU. The
sizes of the L1, L2 and L3 caches were 256 KB, 1024 KB and 8192 KB respectively. The size of
the main memory was 16GB. Turbo boost was disabled for consistency of measurements. The

40

5.3. Closure Evaluation

compiler used was gcc 4.8 with flags O3, -m64 and -march=native. Compiler auto vectorization
was enabled for APRON and disabled for our libraries.

5.3. Closure Evaluation

We evaluate the performance of implementations of various closure algorithms on synthetic
and real inputs. For synthetic (random) inputs, we generate a non sparse random matrix of size
1024 × 1024 without any ∞ values. The real input is the trace of closure operation extracted
by running DPS analysis on the CRYPT benchmark (see section 6.6.1). The generated matrices
are very sparse and the maximum size is 474 × 474. The experiments are carried out using 8
byte double precision.

Figure 5.1.: Comparison of Closure algorithms on random input

Figure 5.1 shows the speedup over Apron for the closure algorithms on random input. Memory
optimizations and halving the number of operations for algorithms working with half matrix
results in large speedups. The half scalar is 7.9 and half AVX is 23.4 times faster than APRON.
The sparse implementations are also faster than APRON even for random inputs. The sparse
is 2 and half sparse is 2.8 times faster than APRON. Thus, in case the matrices in the analysis
become dense from sparse, we still remain faster than APRON. Johnson’s [11] algorithm is
considerably slower than APRON. This is due to the complex data structures like priority queue
used by the Dijkstra algorithm [9] . This highlights the need of choosing the “correct” data
structure for performance.

41

5. Evaluation

Figure 5.2.: Comparison of Closure algorithms on real input

Figure 5.2 shows the speedups over Apron for closure algorithms on real input. Johnson’s
algorithm exploits the sparsity of matrices and is 49 times faster than APRON. However, it is
outperformed by our sparse algorithms. The sparse is 477 times and half sparse is 559 times
faster than APRON. The non sparse algorithms provide similar speed up for real input as for
random input.

5.4. Incremental Closure Evaluation

We evaluate the performance of incremental closure algorithms on random and real bench-
marks. The random input is a random matrix of size 1024× 1024. The index v is set to 0 that is
the hardest for half matrix algorithms as elements are accessed column-wise. The real input is
the trace of incremental closure operation extracted by running DPS analysis on CRYPT bench-
mark. The generated matrices are very sparse and maximum size is 474×474. The experiments
are carried out using 8 byte double precision.

Figure 5.3 shows the speedup over APRON for incremental closure algorithms on random input.
The half dense AVX is 5.5, half dense scalar is 4.2 and half sparse is 3 times faster than APRON.
As the incremental closure is quadratic, the speedups achieved are smaller than for closure. Our
sparse implementation is again faster than APRON even for random input. Thus, we remain
faster than APRON even if matrices become dense as the analysis proceeds.

42

5.4. Incremental Closure Evaluation

Figure 5.3.: Comparison of Incremental Closure algorithms on random input

Figure 5.4 shows the speedup over APRON for incremental closure algorithms on real input.
The sparse implementation exploits sparsity well and achieves a speedup of 60 over APRON.
The dense implementations achieve similar speedups for both real and random inputs.

Figure 5.4.: Comparison of Incremental Closure algorithms on real input

43

5. Evaluation

5.5. Benchmarks

We used two real world program analysis engines for comparing the performance of our sparse
and dense library against APRON. The first analysis is called DPS [28] and is developed at the
Software Reliability Lab in ETH Zurich. The analysis statically introduces synchronization for
a potentially non-deterministic parallel program. This removes the non-determinism and makes
the program deterministic. The analysis is implemented in Java and uses the Soot [31] frame-
work. There are six input benchmarks [2] on which the analysis runs. The second analysis is
DIZY [27] developed at Technion, Israel. It computes semantic differences between a program
and a patched version of the same program. The analysis is written in C++ and uses LLVM [20]
and CLANG [1]. We chose 6 benchmarks which are reasonably large for DIZY.

5.6. Results

In this section we compare the performance of our libraries against APRON on benchmarks in
the two analyses.

5.6.1. DPS

The six input benchmarks used by the DPS analysis are described in Table 5.1. The maximum
number of variables that are present during analysis are also shown for each benchmark. DPS
analysis transforms the input program into Static Single Assignment(SSA) intermediate repre-
sentation. The largest benchmark is CRYPT and contains a maximum of 237 variables in SSA
form. We run the DPS analysis for two different values of the widening threshold. The widen-
ing threshold controls when widening is applied and thus affects the runtime of the analysis.
The analysis is carried out in double precision.

Program Description Max Number of Variables

CRYPT IDEA Encryption 237

MOLDYN Molecular Dynamics Simulation 67

LUFACT LU Factorization 31

SOR Successive Over-Relaxation 54

MATMULT Sparse Matrix Multiplication 24

SERIES Fourier Coefficient Analysis 21

Table 5.1.: Description of Benchmarks in DPS Analysis

Figure 5.5 compares the runtime in CPU cycles of various Octagon operators on CRYPT bench-
mark for widening threshold=9. Closure accounts for more than 95% of the analysis time for

44

5.6. Results

APRON. The SSA representation creates new variable for every assignment. Thus, variables
are not very interrelated which results in matrices being very sparse. Thus, exploiting sparsity
yields huge speedup for closure. The dense closure is also very fast compared to APRON clo-
sure. The second most time consuming operator for APRON is meet with linear constraint (see
appendix A). The bottleneck for this operator is computation of incremental closure. Again,
exploiting sparsity in computation of incremental closure yields significant speedup.

Figure 5.5.: Octagon operators on CRYPT benchmark with widening threshold = 9

Figure 5.6 compares the runtime in cycles of various Octagon operators on the SOR benchmark
for widening threshold=9. SOR contains fewer number of variables than CRYPT. Meet with
Linear Constraint is the most expensive operation for APRON. This shows that different bench-
marks can have different runtime profile depending on the structure of the program. Due to the
sparse nature of matrices, the sparse library yields speedup on meet with linear constraint. The
closure is the next expensive operator. As the matrices are smaller, the speedup for closure here
is smaller compared to CRYPT. Copy and Linearization account for significant portion of total
runtime for APRON. These operators are memory bound and are not optimized in our libraries.
For Sparse library, Copy and Linearization are the most expensive operators. Thus, our overall
speedup is reduced.

45

5. Evaluation

Figure 5.6.: Octagon operators on SOR benchmark with widening threshold = 9

Figure 5.7.: Speedup for dense and sparse libraries over APRON on DPS Benchmarks with widening
threshold = 9

46

5.6. Results

Figure 5.7 shows the speedup of overall Octagon analysis over APRON for our dense and sparse
libraries on benchmarks in DPS Analysis with widening threshold=9. For CRYPT, the sparse
library is 73 and dense library is 14 times faster than APRON. Significant speedup is also
achieved for MOLDYN, LUFACT and SOR benchmarks. The performance gain decreases as
the number of variables in the program decreases and the analysis time decreases for MAT-
MULT and SERIES. For all 0f the benchmarks, the sparse library is faster than dense.

Figure 5.8.: Octagon operators on CRYPT benchmark with widening threshold = 101

Figure 5.8 compares the runtimes in CPU cycles of various Octagon operators on the CRYPT
benchmark for widening threshold=101. Closure and meet with linear constraints are again the
most expensive operators for APRON. Sparse and dense libraries are both optimized on these
operators and provide significant speedups. However, as the analysis time increases due to a
larger widening threshold, there are more copy operations. In fact, copy is the most expensive
operator for the sparse library. This reduces our overall speedup for both sparse and dense
libraries.

Figure 5.9 compares the runtime in cycles of various Octagon operators on SOR for widening
threshold=101. Meet with linear constraints and closure are the two most expensive operators
for APRON. Sparse and Dense libraries both provide significant speedup on these operators.
However like in the case for CRYPT, the contribution of copy operator to the total runtime
increases which reduces overall speedup.

47

5. Evaluation

Figure 5.9.: Octagon operators on SOR benchmark with widening threshold = 101

Figure 5.10.: Speedup for dense and sparse libraries over APRON on DPS Benchmarks with widening
threshold = 101

48

5.6. Results

Figure 5.10 shows the speedup of overall analysis over APRON for our dense and sparse li-
braries on benchmarks in DPS analysis. Highest speedup is achieved for CRYPT. However,
compared with widening threshold=9, the speedup is reduced because of more copy operations.
The decrease in speedup is also observed for all other programs. The sparse library is faster
than dense on all benchmarks .

5.6.2. DIZY

Most of the benchmarks provided with the DIZY analysis have a very small number of variables
and runtime. We picked the six most time consuming benchmarks from the analysis in order
to achieve meaningful speedups. The benchmarks are shown in table 5.2. The table also shows
the maximum number of variables that occur during the analysis.

Program Description Max Number of Variables

LINUX_FULL Linux Kernel Function 78

SEQ Print Arithmetic Sequence 35

FIREFOX Mozilla Firefox Function 24

AEG Array Assignment 10

MD5SUM MD5 Hash 18

MD5SUM_LOOP Modified MD5 Hash 10

Table 5.2.: Description of Benchmarks in DIZY Analysis

The benchmarks of the DIZY analysis contain a smaller number of variables compared to the
DPS benchmarks. This is due to the fact that DIZY runs directly on the original program with-
out transforming it into SSA-like intermediate representation. This also reduces the sparsity
of the matrices as variables in program are much more interrelated than variables in SSA rep-
resentation. The analysis uses partitioning technique to reduce the runtime of analysis. We
run the analysis in two configurations: with partitioning and without partitioning. The analysis
originally used 32 byte MPQ numbers whereas our library uses 8 byte doubles. In order to
have a fair comparison we changed the analysis so that it also uses 8 byte doubles. The largest
benchmark is LINUX_FULL and contains a maximum of 74 variables.

Figure 5.11 compares the runtime in CPU cycles of various Octagon operators on the LINUX_FULL
benchmark without partitioning. Closure and copy are the two most expensive operators for
APRON. Sparse and dense libraries provide huge speedup for closure. However, copies are
expensive for these libraries and reduce the overall speedup.

49

5. Evaluation

Figure 5.11.: Octagon operators on LINUX_FULL benchmark with no partitioning

Figure 5.12.: Speedup for dense and sparse libraries over APRON on DIZY Benchmarks with no parti-
tioning

50

5.6. Results

Figure 5.12 shows the speedup of overall analysis over APRON for the different benchmarks in
the DIZY analysis without partitioning. The highest speedup is achieved for the LINUX_FULL
benchmark. Sparse and dense libraries are respectively 5.8 and 4.6 times faster than APRON.
There is a significant speedup for the SEQ and FIREFOX benchmarks, while for the rest of
the benchmarks, the speedups are smaller. The sparse library is faster than dense for all bench-
marks.

Figure 5.13.: Octagon operators on LINUX_FULL benchmark with partitioning

Figure 5.13 compares the runtime in CPU cycles of Octagon operators on the LINUX_FULL
benchmark with partitioning. There is very different distribution of runtime among Octagon
operators with partitioning. This shows that the runtime profile also depends on how the analysis
is carried out. Meet with linear constraint is the most expensive operator for APRON. Both
libraries provide huge speedup for this operator. Closure is the next expensive operator and
is optimized for performance in our libraries. Copy and Linearization are also expensive and
reduce the overall speedup.

51

5. Evaluation

Figure 5.14.: Speedup for dense and sparse libraries over APRON on DIZY Benchmarks with partition-
ing

Figure 5.14 shows the speedup of overall analysis over APRON for different benchmarks in
DIZY analysis with partitioning. Again, highest speedup is achieved for LINUX_FULL bench-
mark. Sparse is 6.9 and dense is 3.2 times faster than APRON. The speedup is reduced for dense
library because most of the time is spent in computing meet with linear constraint compared
with closure earlier. The dense library provides larger speedup for closure than for incremen-
tal closure. Significant speedup is achieved for SEQ and FIREFOX benchmarks. The sparse
library is again faster for all benchmarks.

52

6
Conclusion and Future Work

In this thesis, we introduced new algorithms which significantly speed up the operators of the
Octagon abstract domain. Our new algorithms take advantage of memory optimizations, vector
hardware instructions, and sparsity and structure of matrices. We achieved our speedups mainly
by optimizing the (key) closure operator, which is the most expensive operator in the Octagon
domain.

There are other related domains that are more expensive than Octagon. We would like to opti-
mize these in future work as well.

The Two Variables Per Inequality (TVPI)[30] domain encodes linear relationships of the form
a1xi + a2xj ≤ c. Even though like the Octagon, each constraint for TVPI involves at most
two variables, the number of inequalities between two variables can be arbitrarily large. It
also defines a closure operation[18] which is more expensive than Octagon closure. The join
is computed by computing the convex hull of input inequalities and is very expensive. The
forget operator involves variable elimination by Fourier-Motzkin [14] which can generate an
exponential number of inequalities.

The Octahedron domain[10] encodes relationships of the form±xi ≤ c and is more precise than
Octagon. The domain is implemented using Octahedra Decision Diagrams (ODD). It defines
saturation operation which is similar to computing closure. The saturation operator produces 3n

number of inequalities. Other operators like join use saturation as suboperation thus their cost
is also exponential.

The Polyhedra domain [13][8] has exponential time and space complexity. There are two repre-
sentations for polyhedron. It can either be represented as the conjunction of a finite set of linear
constraints or as a finite collection of vertices or rays. The former representation is called con-
straint while the latter is called frame representation. Some operators (e.g., meet and test) can
be implemented more efficiently on the constraint representation, while others (e.g., forget and

53

6. Conclusion and Future Work

join) can be performed more efficiently on the frame representation. Thus, it is often necessary
to convert from one representation to the other. The dual conversions are performed using the
Chernikova algorithm [21] which can produce an output that is exponential in the size of the
input.

Besides numerical domains, there are domains (e.g. Three Valued Logic Analysis (TVLA) [29])
for verifying properties related to heap like memory leaks, null pointer errors, dangling pointers
etc. Optimizing such non numerical domains is challenging and is part of our future work.

It must be noted that although we improved the performance of numerical domains, the overall
static analysis may still have other bottlenecks due to other components such as for instance the
front end. In the future, we would also like to optimizing these components.

Our long term goal is to develop a code generator that produces optimized code for static an-
alyzers targeting particular architectures by exploiting memory optimization, hardware vector
instructions and sparsity. Towards this, we plan to develop a Domain Specific Language (DSL)
[24] for static analysis. The user will write his analysis in our DSL and will specify the numer-
ical domain as a parameter. Our synthesizer will then generate code optimized for a particular
hardware and abstract domain.

54

Bibliography

Bibliography

[1] Clang: A C Language family Frontend for LLVM http://clang.llvm.org/.

[2] Habanero Multicore Software Research Project. http://habanero.rice.edu/hj.

[3] http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-manual-325462.pdf.

[4] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a Com-
plete Set of Numerical Abstractions for the Analysis and Verification of Hardware and
Software Systems. Science of Computer Programming, 72(1–2):3–21, 2008.

[5] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Weakly-relational Shapes for
Numeric Abstractions: Improved Algorithms and Proofs of Correctness. Form. Methods
Syst. Des., 35(3):279–323, December 2009.

[6] F. Banterle and R. Giacobazzi. A Fast Implementation of the Octagon Abstract Domain on
Graphics Hardware. In G. Filé and H.R. Nielson, editors, Proc. of The 14th International
Static Analysis Symposium, SAS’07, volume 4634 of Lecture Notes in Computer Science,
pages 315–335. Springer-Verlag, 2007.

[7] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, An-
toine Miné, David Monniaux, and Xavier Rival. A Static Analyzer for Large Safety-
critical Software. In Proceedings of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation, PLDI ’03, pages 196–207, New York, NY,
USA, 2003. ACM.

[8] Liqian Chen, Antoine Miné, and Patrick Cousot. A Sound Floating-Point Polyhedra Ab-
stract Domain. In Programming Languages and Systems, volume 5356 of Lecture Notes
in Computer Science, pages 3–18. Springer Berlin Heidelberg, 2008.

55

Bibliography

[9] Mo Chen, Rezaul Alam Chowdhury, Vijaya Ramachandran, David Lan Roche, and Lin-
gling Tong. Priority Queues and Dijkstra’s Algorithm, 2007.

[10] Robert Clariso and Jordi Cortadella. The Octahedron Abstract Domain. In In Static Anal-
ysis Symposium (2004, pages 312–327. Springer-Verlag, 2004.

[11] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduc-
tion to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[12] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints. In Pro-
ceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM.

[13] Patrick Cousot and Nicolas Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’78, pages 84–96, New York, NY, USA,
1978. ACM.

[14] George B Dantzig and B Curtis Eaves. Fourier-Motzkin Elimination and its Dual. Journal
of Combinatorial Theory, Series A, 14(3):288 – 297, 1973.

[15] Robert W. Floyd. Algorithm 97: Shortest Path. Commun. ACM, 5(6):345–, June 1962.

[16] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

[17] Sung-Chul Han, Franz Franchetti, and Markus Püschel. Program Generation for the All-
pairs Shortest Path Problem. In Proceedings of the 15th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’06, pages 222–232, New York,
NY, USA, 2006. ACM.

[18] Jacob M. Howe and Andy King. Closure Algorithms for Domains with Two Variables
Per Inequality. Technical report, 2009.

[19] Bertrand Jeannet and Antoine Miné. Apron: A Library of Numerical Abstract Domains
for Static Analysis. In Computer Aided Verification, volume 5643 of Lecture Notes in
Computer Science, pages 661–667. Springer Berlin Heidelberg, 2009.

[20] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis,
Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, Dec
2002.

[21] Hervé Le Verge. A Note on Chernikova’s algorithm. Rapport de recherche RR-1662,
INRIA, 1992.

[22] Francesco Logozzo and Manuel Fahndrich. Pentagons: A Weakly Relational Abstract Do-
main for the Efficient Validation of Array Accesses. Science of Computer Programming,
75(9):796 – 807, 2010.

[23] Laurent Mauborgne. ASTRÉE: Verification of Absence of Run-Time Error. In Build-
ing the information Society (18th IFIP World Computer Congress), pages 384–392. The
International Federation for Information Processing, Aug 2004.

56

Bibliography

[24] M. Mernik, J. Heering, A.M. Sloane, Marjan Mernik, and Anthony M. Sloane. When and
How to Develop Domain-Specific Languages, 2003.

[25] Antoine Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices.
In Proceedings of the Second Symposium on Programs As Data Objects, PADO ’01, pages
155–172, London, UK, UK, 2001. Springer-Verlag.

[26] Antoine Miné. The Octagon Abstract Domain. Higher Order Symbol. Comput., 19(1):31–
100, March 2006.

[27] Nimrod Partush and Eran Yahav. Abstract Semantic Differencing for Numerical Programs.
In Static Analysis, volume 7935 of Lecture Notes in Computer Science, pages 238–258.
Springer Berlin Heidelberg, 2013.

[28] Veselin Raychev, Martin Vechev, and Eran Yahav. Automatic Synthesis of Deterministic
Concurrency. In Static Analysis, volume 7935 of Lecture Notes in Computer Science,
pages 283–303. Springer Berlin Heidelberg, 2013.

[29] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric Shape Analysis via 3-
Valued Logic. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’99, pages 105–118, New York, NY, USA, 1999.
ACM.

[30] Axel Simon, Andy King, and Jacob M. Howe. Two Variables Per Linear Inequality as an
Abstract Domain. In Logic-based Program Synthesis and Transformation, volume 2664
of LNCS, pages 71–89. Springer, 2003.

[31] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot - A Java Bytecode Optimization Framework. In Proceedings of the 1999
Conference of the Centre for Advanced Studies on Collaborative Research, CASCON ’99,
pages 13–. IBM Press, 1999.

[32] Arnaud Venet and Guillaume Brat. Precise and Efficient Static Array Bound Checking
for Large Embedded C Programs. In Proceedings of the ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation, PLDI ’04, pages 231–242, New
York, NY, USA, 2004. ACM.

[33] Gayathri Venkataraman, Sartaj Sahni, and Srabani Mukhopadhyaya. A Blocked All-pairs
Shortest-paths Algorithm. J. Exp. Algorithmics, 8, December 2003.

57

Bibliography

58

A
Appendix

A.1. Closure Algorithms

A.1.1. Floyd Warshall

Bagnara et al. [5] showed that applying Floyd Warshall[15][17][33] all pairs shortest path
directly also ensures property 1 and 2 of octagon closure. Thus, Floyd-Warshall can be applied
directly. The pseudo-code for computing octagon closure using Floyd-Warshall is shown in
Algorithm 48. Han et al. [17] show how to optimize Floyd-Warshall for performance using
memory optimizations and vectorization. They take advantage of the fact that the values in k-th
row and column do not change during k-th iteration of outermost loop. This allows them to
efficiently perform tiling which improves memory and vectorization performance.

Algorithm 48 Closure With Floyd Warshall
1. function CLOSURE(m,dim)
2. m← input matrix
3. dim← number of variables in program
4. for k ← 0 to 2 ∗ dim do
5. for i← 0 to 2 ∗ dim do
6. for j ← 0 to 2 ∗ dim do
7. mi,j ← min(mi,j ,mi,k +mk,j)

8. return Strengthening(m, dim)

59

A. Appendix

A.1.2. Johnson’s Closure

Johnson’s algorithm[11] can also be used to compute all pairs shorts path. It works on a graph
representation and has lower complexity than Floyd-Warshall for sparse graphs. If V be the
number of nodes in graph and E be the number of edges then the complexity of Johnson’s
algorithm is O

(
V E+V 2logV

)
. If E is of order of V then complexity becomes O

(
V 2logV

)
. The

pseudo code for computing octagon closure using Johnson’s algorithm is shown in Algorithm
49.

Algorithm 49 Closure with Johnson’s algorithm
1. function CLOSURE(m,g,dim)
2. n←2*dim
3. Add a vertex q to the graph and connect it to all n nodes using zero weight edges.
4. Use Bellman-Ford to compute shortest path d(v) from q to each vertex v, terminate if negative cycle is detected
5. Reweigh the edges in original graph, ∀i, j, mi,j ← mi,j + d(i)− d(j)
6. Remove node q and use Dijkstra’s algorithm to compute shortest path mi,j from each source i to every other node j
7. Invert the reweigh transform ∀i, j, mi,j ← mi,j + d(j)− d(i)
8. return Strengthening(m, dim)

A.2. Operators

A.2.1. Meet with Linear Constraint

In this subsection, we describe meet of an octagon with a linear constraint. Algorithm 51 shows
the pseudo code for meet with linear constraint. We only show "≥" type of constraints for
simplicity. The constraints that can be modeled as octagonal are handled exactly. For other
types of constraints, an approximation is required.

Lines 6 and 8 shows the case of octagonal constraints of the form ±xi + [−a, b] ≥ 0 and
±xi ± xj + [−a, b] ≥ 0. These are handles by function meet_oct_lincons in Algorithm 50.

Suppose we have,

xi + xj + [−a, b] ≥ 0 (A.1)

This is equivalent to,

−xi − xj ≤ b (A.2)

Therefore, new bound for m2i+1,2j should be min(m2i+1,2j, b). The other types of octagonal
constraints can be handled similarly. Incremental closure is applied on the resulting octagon
with respect to one of the variable vi or vj . The runtime is thus domainted by incremental
closure.

For non octagonal constraints, we compute the maximum of expression on left hand side of
constraint using interval arithmetics at lines 12-17. Let [ri, si] be the bound for varibale vi.
Then the bound [r, s] for expression

60

A.2. Operators

Algorithm 50 Meet With Octagonal Linear Constraint
1. function MEET_OCT_LINCONS(m,cons,d)
2. m← input matrix
3. cons← Octagonal Linear Constraint
4. d← number of variables in program
5. switch cons do
6. case xi + [−a, b] ≥ 0
7. m2i,2i+1 ← min(m2i,2i+1, 2b)
8. incr_closure(m, i, d)

9. case −xi + [−a, b] ≥ 0
10. m2i+1,2i ← min(m2i+1,2i, 2b)
11. incr_closure(m, i, d)

12. case xi + xj + [−a, b] ≥ 0
13. m2i,2j+1 ← min(m2i,2j+1, b)
14. incr_closure(m, j, d)

15. case −xi + xj + [−a, b] ≥ 0
16. m2i+1,2j+1 ← min(m2i+1,2j+1, b)
17. incr_closure(m, j, d)

18. case xi − xj + [−a, b] ≥ 0
19. m2i,2j ← min(m2i,2j , b)
20. incr_closure(m, j, d)

21. case −xi − xj + [−a, b] ≥ 0
22. m2i+1,2j ← min(m2i+1,2j , b)
23. incr_closure(m, j, d)

[−a1, b1]x1 + [−a2, b2]x2 + . . .+ [−ad, bd]xd + [−a, b] (A.3)

can be computed as

[r, s]← [−a1, b1]⊗ [r1, s1]⊕ [−a2, b2]⊗ [r2, s2]⊕ . . .⊕ [−ad, bd]⊗ [rd, sd]⊕ [−a, b] (A.4)

where ⊕ and ⊗ denote addition and multiplication in interval domain respectively. While com-
puting upper bound s for the expression we do not consider the variables for which the upper
bound of,

[−ai, bi]⊗ [ri, si] (A.5)

is not finite. We also keep track of number cinf and location c1, c2 of such variables. If the value
of s is finite then we consider three cases for approximation, the rest are left unhandled.

Line 20 handles the case in which cinf is zero. We derive quadratic number of bounds in this
case. Let us consider the case for,

[−aj, bj]xj + [−ak, bk]xk + exp ≥ 0

aj, ak ≤ −1
sj, sk! = inf

(A.6)

where exp denotes the rest of the expression. We derive bound as follows. We know that,

s ≥ 0 (A.7)

61

A. Appendix

Algorithm 51 Meet with Linear Constraint
1. function MEET_LINCONS(m,cons,d)
2. m← input matrix
3. cons← Linear Constraint
4. d← number of variables in program
5. switch cons do
6. case cixi + [−a, b] ≥ 0 . ci ∈ [−1, 1]
7. meet_oct_lin_cons(m, cons, d)

8. case cixi + cjxj + [−a, b] ≥ 0 . ci, cj ∈ [−1, 1]
9. meet_oct_lin_cons(m, cons, d)

10. case [−a1, b1]x1 + [−a2, b2]x2 + . . .+ [−ad, bd]xd + [−a, b] ≥ 0
11. s← 2b, cinf ← 0, c1 ← 0, c2 ← 0
12. for j ← 0 to dim do
13. [pj , qj]← int_mul([aj , bj], [m2j,2j+1,m2j+1,2j])
14. if (is_finite(qj)) then
15. s← s+ qj
16. else
17. cinf ← cinf + 1, c2 ← c1, c1 ← j

18. if (is_finite(s)) then
19. switch cinf do
20. case 0
21. for j ← 0 to dim do
22. if (aj ≤ −1) & (is_finite(m2j+1,2j)) then
23. t← s−m2j+1,2j

24. uj ← 2j + 1
25. else if (bj ≤ −1) & (is_finite(m2j,2j+1)) then
26. t← s−m2j,2j+1

27. uj ← 2j
28. else
29. continue
30. for k ← 0 to dim do
31. if (ak ≤ −1) & (is_finite(m2k+1,2k)) then
32. t← (t−m2k+1,2k)/2
33. m2k,uj ← min(m2k,uj , t)
34. else if (bk ≤ −1) & (is_finite(m2k,2k+1)) then
35. t← (t−m2k,2k+1)/2
36. m2k+1,uj ← min(m2k+1,uj , t)

37. case 1
38. if (ac1 ← 1) & (bc1 ← −1) then
39. uj ← 2c1
40. else if (ac1 ← −1) & (bc1 ← 1) then
41. uj ← 2c1 + 1
42. else
43. break
44. for k ← 0 to dim do
45. if (ak ≤ −1) & (is_finite(m2k+1,2k)) then
46. t← (s−m2k+1,2k)/2
47. m2k,uj ← min(m2k,uj , t)
48. else if (bk ≤ −1) & (is_finite(m2k,2k+1)) then
49. t← (s−m2k,2k+1)/2
50. m2k+1,uj ← min(m2k+1,uj , t)

51. case 2
52. if (ac1 ← 1) & (bc1 ← −1) then
53. ui← 2c1
54. else if (ac1 ← −1) & (bc1 ← 1) then
55. ui← 2c1 + 1
56. else
57. break
58. if (ac2 ← 1) & (bc2 ← −1) then
59. uj ← 2c2
60. else if (ac2 ← −1) & (bc2 ← 1) then
61. uj ← 2c2 + 1
62. else
63. break
64. mui⊕1,uj ← min(mui⊕1,uj , s/2)

62

A.2. Operators

Since aj, ak ≤ −1, therefore in computation of s, the upper bounds of [−aj, bj] ⊗ [rj, sj] and
[−ak, bk]⊗ [rk, sk] were added to s. We have,

s+ xj + xk − xj − xk ≥ 0

− xj − xk ≤ s− xj − xk
− xj − xk ≤ s−max(xj)−max(xk)

(A.8)

Line 37 handles the case for cinf = 1. In this case we derive linear number of bounds for all
constraints involving variable vc1 provided ac1 , bc1 ∈ [−1, 1]. Let us consider the case for,

xc1 + [−ak, bk]xk+exp ≥ 0

ak ≤ −1
sk! = inf

(A.9)

Since upper bound of [−ac1 , bc1]⊗ [rc1 , sc1] was not involved in computation of s, we have,

xc1 + s ≥ 0

xc1 + s+ xk − xk ≥ 0

− xc1 − xk ≤ s− xk
− xc1 − xk ≤ s−max(xk)

(A.10)

Line 51 handles the case when cinf = 2. In this case we derive only one bound for inequality
involving variable vc1 and vc2 provided ac1 , ac2 , bc1 , bc2 ∈ [−1, 1]. Let us consider the constraint,

xc1 + xc2 + exp ≥ 0 (A.11)

Since upper bounds of both [−ac1 , bc1]⊗ [rc1 , sc1] and [−ac2 , bc2]⊗ [rc2 , sc2] were not involved
in computation of s, we have,

xc1 + xc2 + s ≥ 0

− xc1 − xc2 ≤ s
(A.12)

A.2.2. Meet with Non Linear Constraint

The meet with non linear constraint first checks if the octagon is empty. It then converts non
linaer constraint to linear using a linearization algorithm. Meet_Lincons is then applied on
the linear constraint. For simplicity, we assume that the linearization algorithm returns only
one linear constraint per non linear constraint. Algorithm 52 shows the pseudo code for this
operator. The runtime is dominated by is_bottom which computes the closure.

63

A. Appendix

Algorithm 52 Meet with Non Linear Constraint
1. function MEET_NON_LINCONS(m,cons,d)
2. m← input matrix
3. cons← Non Linear Constraint
4. d← number of variables in program
5. if is_bottom(m, d) then
6. return m
7. lcons← linearize(cons)
8. return meet_lincons(m, lcons, d)

A.2.3. Widening

A binary operator 5 is widening for an abstract domain ordered by ⊆ if the following two
conditions hold:

1. ∀X, Y, (X 5 Y) ⊇ X, Y , and

2. for every chain (Xi)i∈N , the increasing chain (Yi)i∈N defined by,{
Y0

def
= X0.

Yi+1
def
= Yi5Xi+1.

(A.13)

is stable after a finite number of iterations, i.e., ∃n, Yn+1 ← Yn, here Xi+1 ← F (Xi) where F
is the abstract transfer function for the domain. It is usually formed by combination of different
domain operators depending on statements in the analyzed program.

Widening operator is used to accelerate convergence towards fixpoint at control flow join points.
At such points, the octagon computed in previous iteration is combined with the octagon com-
puted after applying transfer function in the current iteration. It compares the corresponding
values in the two input matrices, if the value in second matrix is greater than first then it sets the
corresponding element in output to infinity.

Algorithm 53 Widening Operator
1. function WIDENING(m,n,o,dim)
2. m,n← input matrix
3. o← output matrix
4. dim← number of variables in program
5. oct_closure(n, dim)
6. for i← 0 to 2 ∗ dim do
7. for j ← 0 to 2 ∗ dim do
8. if mi,j < ni,j then
9. oi,j ← inf

10. else
11. oi,j ← mi,j

For the convergence of the increasing chain, it requires the first argument to not be closed. Thus,
it is not possible to close the matrix obtained after widening. The reason for this is that closure
and widening are conflicting operations. Closure usually increases finite values in the matrix
whereas widening decreases finite values. It is however possible to close the second argument.
Algorithm 53 shows the pseudo code for widening operator. The runtime is dominated by the
closure operation on second matrix.

64

A.2. Operators

A.2.4. Bottom

The bottom operator allocates the lowest ordered element in the lattice representing octagons
ordered by inclusion operator. Implementation wise, a bottom octagon is represented as NULL.

A.2.5. Is Bottom

This operator tests if an octagon represents bottom element. Besides being NULL, an octagon
can also be bottom if the system of constraints represented by it is inconsistent. Therefore, the
octagon is first closed to see if a negative cycle is detected. Algorithm 54 shows the pseudo
code for this operator. The closure makes it an expensive operator in the octagon domain.

Algorithm 54 Is Bottom Operator
1. function IS_BOTTOM(m,dim)
2. m← input matrix
3. dim← number of variables in program
4. if m← NULL then return true
5. o← oct_closure(m, dim)
6. if o == Bottom then return true

return false

A.2.6. Saturate Linear Constraint

This operator checks if an octagon saturates a linear constraint. The operator only handles
constraints having expressions of the form [−a, b],±xi+[−a, b] and±xi±xj+[−a, b]. For other
expressions false is returned by default. For the sake of simplicity, we assume ≥ constraints.
The other type of constraints can be handled similarly.

Suppose we have
xi + xj + [−a, b] ≥ 0 (A.14)

.

This can be written as,
−xi − xj ≤ [−a, b] (A.15)

.

Now, if from the octagon we have the constraint,

−xi − xj ≤ c (A.16)

.

The octagon saturates the given constraint if,

c ≤ −a
c+ a ≤ 0

(A.17)

Algorithm 55 shows the pseudo code for this operator. Again, the runtime of this operator is
dominated by the time to compute closure.

65

A. Appendix

Algorithm 55 Saturate Linear Constraint
1. function SAT_LINCONS(m,cons,dim)
2. m← input matrix
3. cons← Linear Constraint
4. dim← number of variables in program
5. oct_closure(m, dim)
6. if cons← ([−a, b] ≥ 0) then
7. return a ≤ 0
8. else if cons← (xi + [−a, b] ≥ 0) then
9. return m2i,2i+1 + 2a ≤ 0

10. else if cons← (−xi + [−a, b] ≥ 0) then
11. return m2i+1,2i + 2a ≤ 0
12. else if cons← (xi + xj + [−a, b] ≥ 0) then
13. return m2i,2j+1 + a ≤ 0
14. else if cons← (−xi + xj + [−a, b] ≥ 0) then
15. return m2i+1,2j+1 + a ≤ 0
16. else if cons← (xi − xj + [−a, b] ≥ 0) then
17. return m2i,2j + a ≤ 0
18. else if cons← (−xi − xj + [−a, b] ≥ 0) then
19. return m2i+1,2j + a ≤ 0
20. else if cons has more than two variables then
21. return false

A.2.7. Saturate Non Linear Constraint

This operator checks if an octagon saturates a non-linear constraint. It first linearizes the non
linear constraint using a linearization algorithm. For simplicity, we assume that the linearization
algorithm returns only one linear constraint per non linear constraint. It then applies sat_lincons
function defined in previous section on the linearized constraint. Algorithm 56 shows the pseudo
code for this operator. The runtime is dominated by call to is_bottom function.

Algorithm 56 Saturate Non Linear Constraint
1. function SAT_NON_LINCONS(m,cons,dim)
2. m← input matrix
3. cons← Non Linear Constraint
4. dim← number of variables in program
5. if is_bottom(m, dim) then
6. return true
7. lcons← linearize(cons)
8. return sat_lincons(m, lcons, dim)

A.2.8. Octagon to Box

The octagon to box operator converts an octagon to box (array of intervals) representation.
It is used for handling statements that cannot be modeled as octagonal contraints but can be
handled using interval domain. An example of such a statement is the assignment statement
x← 2y+3z. For this statement, the constraints for variable x can be obtained by extracting the
intervals for variables y and z and then using interval arithmetics on the obtained intervals. The
Conversion to intervals does incur precision lost as the relational information between variables
is lost. Algorithm 57 shows the pseudo code for octagon to box conversion operator.

Again, the running time of the operator is dominated by time taken for computing closure. The
remaining linear part accesses the elements of the matrix diagonally and may cause TLB misses

66

A.2. Operators

Algorithm 57 Octagon to Box
1. function OCT TO BOX(m,in,dim)
2. m← input matrix
3. in← output interval array
4. dim← number of variables in program
5. oct_closure(m, dim)
6. for i← 0 to dim do
7. in[i]← [−(m2i,2i+1)/2, (m2i+1,2i)/2]

for very large matrices.

A.2.9. Octagon to Array of Linear Constraints

This operator is used to extract linear constraints from an octagon. It is mainly used for printing
invariants in the form of constraints between variables at different program points. Algorithm
59 shows the pseudo code for this operator.

Algorithm 58 Create Linear Constraint
1. function CREATE_LINCONS(i,j,c)
2. i, j ← index of variables involved in constraint
3. c← value of constant
4. if i← (j ⊕ 1) then
5. if i is odd then
6. return −xi + (c/2) ≥ 0
7. else
8. return xi + (c/2) ≥ 0

9. else
10. if i is odd then
11. if j is odd then
12. return −xi + xj + c ≥ 0
13. else
14. return −xi − xj + c ≥ 0

15. else
16. if j is odd then
17. return xi + xj + c ≥ 0
18. else
19. return xi − xj + c ≥ 0

Algorithm 59 Octagon to Array of Linear Constraints
1. function OCT TO LINCONS ARRAY(m,cons,dim)
2. m← input matrix
3. cons← output array of linear constraints
4. dim← number of variables in program
5. n← 0
6. for i← 0 to 2 ∗ dim do
7. for j ← 0 to 2 ∗ dim do
8. if ((i! = j) & (mi,j ! = inf)) then
9. cons[n]← create_lincons(i/2, j/2,mi,j)

10. n← n+ 1

The running time of this operator can be reduced significantly if the the matrix is sparse and
a sparse data structure like the index we used for closure is available. Since this operator is
mainly used for printing purposes we do not optimize it.

67

A. Appendix

A.2.10. Add Dimensions

This operator is used to add variables to an octagon. Algorithm 60 shows the pseudo code for
this operator. The array arr contains the indices of new variables in increasing order. New
rows and columns are inserted at positions specified in the index. If the index is v then new
2vand 2v+1-th row and column are inserted. The rows below the added ones are shifted down.
Similarly columns to the right of newly added columns in the original matrix are shifted to the
right in the new matrix. The added rows and columns contain infinity values except at the main
diagonal where 0 is inserted.

Algorithm 60 Add Dimensions
1. function ADD_DIMENSIONS(m,o,arr,nb,dim)
2. m← input matrix
3. o← output matrix
4. arr ←indices of variables
5. nb← number of variables to add
6. dim← number of variables in program
7. oct_closure(m, dim)
8. Top(o, dim+ nb)
9. k ← 0

10. ni← 0
11. for i← 0 to 2 ∗ dim do
12. if ((i ≥ 2 ∗ arr[k]) & (k < nb)) then
13. while (arr[k + 1] = arr[k]) & (k < nb− 1) do
14. ni← ni+ 2
15. k ← k + 1
16. ni← ni+ 2
17. k ← k + 1
18. kk ← 0
19. nj ← 0
20. for j ← 0 to 2 ∗ dim do
21. if ((j ≥ 2 ∗ arr[kk]) & (kk < nb)) then
22. while (arr[kk + 1] = arr[kk]) & (kk < nb− 1) do
23. nj ← nj + 2
24. kk ← kk + 1
25. nj ← nj + 2
26. kk ← kk + 1
27. o(i+ni,j+nj) ← mi,j

The runtime is dominated by the closure operation.

A.2.11. Remove Dimensions

This operator is used to remove variables from an octagon. Algorithm 61 shows the pseudo
code for this operator. The array arr contains the indices of variables to be removed in strictly
increasing order. Variables are removed from rows and columns specified by the index. If the
index is v then 2v-th row and column are removed. The rows below the removed ones are shifted
up. Similarly, the columns to the right of removed columns are shifted to the left.

The runtime is dominated by the closure operation.

68

A.2. Operators

Algorithm 61 Remove Dimensions
1. function REMOVE_DIMENSIONS(m,o,arr,nb,dim)
2. m← input matrix
3. o← output matrix
4. arr ←indices of variables
5. nb← number of variables to remove
6. dim← number of variables in program
7. oct_closure(m, dim)
8. k ← 0
9. i← 0

10. for ni← 0 to 2 ∗ (dim− nb) do
11. while ((i ≥ 2 ∗ arr[k]) & (k < nb)) do
12. i← i+ 2
13. k ← k + 1
14. kk ← 0
15. j ← 0
16. for nj ← 0 to 2 ∗ (dim− nb) do
17. while ((j ≥ 2 ∗ arr[kk]) & (kk < nb)) do
18. j ← j + 2
19. kk ← kk + 1
20. oni,nj ← mi,j

21. j ← j + 1

22. i← i+ 1

A.2.12. Permute Dimensions

This operator is used to permute the positions of variables in octagon. Algorithm 62 shows the
pseudo code for this operator. The array arr stores the mapping from current position to new
position for each variable. The element arr[i] in the array contains the new position of variable
vi. As a result of this operation, a constraint xi − xj ≤ c is transformed to xarr[i] − xarr[j] ≤ c.

Algorithm 62 Permute Dimensions
1. function PERMUTE_DIMENSIONS(m,o,arr,dim)
2. m← input matrix
3. o← output matrix
4. arr ←map from current index to new permuted index
5. dim← number of variables in program
6. for i← 0 to dim do
7. ni← 2 ∗ arr[i]
8. for j ← 0 to dim do
9. nj ← 2 ∗ arr[j]

10. oni,nj ← m2i,2j

11. oni,nj+1 ← m2i,2j+1

12. oni+1,nj ← m2i+1,2j

13. oni+1,nj+1 ← m2i+1,2j+1

A.2.13. Assignment with Non Linear Expression

The operator is used to model assignment x := expr to a variable x from an expression expr
where expr can be non linear. Algorithm 63 shows the pseudo code for this operator. Since
expr can also contain variable x, an extra variable x′ is added to the octagon using function
add_dimensions which represents instance of x on the left hand side. The assignment state-
ment is converted into a non linear inequality. Meet with resulting non linear constraint is
applied on the octagon using function meet_non_lincons. The positions of x and x′ are then

69

A. Appendix

swapped using function permute_dimensions. Since x′ contains the new value of original
variable x, x is removed from the octagon.

Algorithm 63 Assignment with Non Linear Expression
1. function ASSIGN_NON_LINEAR_EXPR(m,o,expr,v,dim)
2. m← input matrix
3. o← output matrix
4. expr ← right hand side of assignment statement
5. v ← index of variable on left hand side of assignment statement
6. dim← number of variables in program
7. if is_bottom(m, dim) then
8. return m
9. d0 ← v

10. for i← 0 to dim do
11. pi ← i

12. pv ← d
13. pd ← v
14. add_dimensions(m, o, d, 1, dim)
15. cons← (expr − xpv = 0)
16. meet_non_lincons(o, cons, dim+ 1)
17. permute_dimensions(o, o, p, dim+ 1)
18. remove_dimensions(o, o, d, 1, dim+ 1)
19. return o

This operator involves a seuence of different octagon operators which in turn use octagon clo-
sure. Thus optimizing closure for performance optimizes assignment as well.

70

