
D I S S . E T H N O . 2 9 7 7 1

A FA R E W E L L T O S U P E RV I S I O N
Towards Self-supervised Autonomous Systems

A thesis submitted to attain the degree of

D O C T O R O F S C I E N C E S O F E T H Z U R I C H
(Dr. sc. ETH Zurich)

presented by

K E N N E T H T O R B L O M Q V I S T

MSc Aalto University CS

born on 20.09.1993

citizen of Finland

accepted on the recommendation of

Prof. Dr. Roland Siegwart, examiner
Prof. Dr. Andrew Davison, co-examiner

Prof. Dr. Jen Jen Chung, co-examiner

2023

Autonomous Systems Lab
Department of Mechanical and Process Engineering
ETH Zurich
Switzerland

© 2023 Kenneth Tor Blomqvist. All rights reserved.

A B S T R A C T

In the past decade, computer vision has progressed by leaps and bounds.
Deep learning based methods have crushed benchmark after benchmark
in a paradigm shift that has converted precision engineered, hand-crafted
approaches into neural networks that simply learn from millions and millions
of input-output examples. As each neural network is task and application
specific, this means that to tackle a new task, the main problem has become
how to create the datasets that will be able to teach a neural network to solve
the task. Often, these datasets are built up by hand by annotating examples
one by one through computer user interfaces, often outsourcing the work
to low income countries. This creates additional challenges as the workers
might not be domain experts on the data being annotated and they, in turn,
have to be taught.

This severely limits the tasks and domains where we can deploy robots
with advanced perception skills, as creating these datasets is expensive. The
costs are only bearable for applications which are very general and have
massive markets. Creating robots for niche industrial use cases or simply
adapting existing robots to new domains, is infeasible. The costs of retraining
and annotating data also often have to be borne when significant changes are
made to the hardware of the robot, as the data distribution has changed.

In this thesis, we develop techniques to tackle this data problem for robot
perception tasks. We approach it from multiple different directions, both by
making better use of unlabeled data and by constructing ways in which we
can better make use of the human teacher’s time.

In the first part of this thesis, we develop a method by which we can
quickly build up 3D object keypoint datasets to teach robots about semantic
points on objects that are relevant for custom tasks. We design a pipeline to
make use of proprioceptive sensing built into the robot and 3D geometry to
propagate examples from one annotated frame to the next. We then use these
examples to bootstrap a keypoint detection system, which can be deployed
in minutes instead of days.

In the second part, we leverage neural implicit representations to extract
dense segmentation masks from sparse user input, and use the representation

1

2 abstract

to synthesize novel examples of the scene, to better teach a downstream object
detection system.

In the third part of this thesis, we design an interactive 3D volumetric scene
annotation system, which is better able to make use of the expert user’s time.
We do this by leveraging self-supervised learning, techniques designed to
learn from unlabeled data, to augment the data collected by the robot, and
thus raising the level of abstraction and ending up with a smarter system.

In the last part of the thesis, we attempt to use information learned from
large-scale internet image-caption datasets, and grounding them in real world
3D scenes, as a way to learn without any direct human supervision at all.

Finally, we sketch out a path forward for developing robust, continuously
improving perception systems for robotic applications.

R É S U M É

Au cours de la dernière décennie, la vision par ordinateur a progressé à
pas de géant. Les méthodes basées sur l’apprentissage profond ont écrasé
référence après référence dans un changement de paradigme qui a converti
des approches artisanales en réseaux neuronaux qui apprennent simplement
à partir de millions et de millions d’exemples. Comme chaque réseau neu-
ronal est spécifique à une tâche et à une application, cela signifie que pour
s’attaquer à une nouvelle tâche, le principal problème est de savoir comment
créer les ensembles de données qui peuvent apprendre un réseau neuronal
à résoudre la tâche. Souvent, ces ensembles de données sont constitués à
la main en annotant des exemples un par un via des interfaces utilisateur
graphique, en externalisant souvent le travail vers des pays à faible revenu.
Cela crée des défis supplémentaires dans la mesure où les travailleurs ne sont
peut-être pas des experts dans le domaine des données annotées et doivent,
à leur tour, être formés.

Cela limite considérablement les tâches et les domaines dans lesquels nous
pouvons déployer des robots dotés de compétences de perception avancées,
car la création de ces ensembles de données coûte cher. Les coûts ne sont
supportables que pour les applications très générales et ayant des marchés
massifs. Créer des robots pour des cas d’utilisation industrielle de niche
ou simplement adapter des robots existants à de nouveaux domaines est
irréalisable. Les coûts de recyclage et d’annotation des données doivent
également souvent être supportés lorsque des modifications importantes sont
apportées au matériel du robot, car la répartition des données a changé.

Dans cette thèse, nous développons des techniques pour résoudre ce
problème de données dans le cadre de tâches de perception robotique. Nous
l’abordons sous plusieurs angles différents, à la fois en faisant un meilleur
usage des données non étiquetées et en construisant des moyens permettant
de mieux utiliser le temps de l’enseignant humain.

Dans la première partie de cette thèse, nous développons une méthode par
laquelle nous pouvons rapidement construire des ensembles de données de
points clés d’objets 3D pour enseigner aux robots les points sémantiques sur
les objets qui sont pertinents pour des tâches personnalisées. Nous créons

3

4 résumé

un pipeline pour utiliser la détection proprioceptive intégrée au robot et la
géométrie 3D pour propager des exemples d’une image annotée à la suivante.
Nous utilisons ensuite ces exemples pour amorcer un système de détection
de points clés, qui peut être déployé en quelques minutes au lieu de plusieurs
jours.

Dans la deuxième partie, nous exploitons des représentations neuronales
implicites pour extraire des masques de segmentation denses à partir
d’entrées utilisateur clairsemées, et utilisons la représentation pour syn-
thétiser de nouveaux exemples de la scène, afin de mieux enseigner un
système de détection d’objets en aval.

Dans la troisième partie de cette thèse, nous concevons un système interactif
d’annotation de scènes volumétriques 3D, mieux à même de valoriser le temps
de la personne utilisant le système. Nous y parvenons en tirant parti de
l’apprentissage auto-supervisé, des techniques conçues pour apprendre à
partir de données non étiquetées, pour augmenter les données collectées par
le robot, élevant ainsi le niveau d’abstraction et aboutissant à un système
plus intelligent.

Dans la dernière partie de la thèse, nous tentons d’utiliser les informa-
tions tirées d’ensembles de données de légendes d’images Internet à grande
échelle et de les ancrer dans des scènes 3D du monde réel, comme moyen
d’apprendre sans aucune supervision humaine directe.

A C K N O W L E D G E M E N T S

Firstly, I would like to thank the Max Planck ETH Center for Learning
Systems for funding me and for running a fair admissions process, without
which I would have never been able to attend ETH.

Thank you Roland, for putting up with me and for the unwavering trust
in us staff members. Thank you Lionel and Jen Jen for supervising me and
at least sometimes, taking some of my ideas seriously. A special thanks to
Andrew Davison for joining the examination committee, whose work over
the years has served as and endless source of inspiration.

Thank you to all my lab mates. Especially Francesco Milano for working
with me and tag teaming on all those projects. Julian Foerster for making
life outside of work more fun. Michel who is always good to cheer you up.
Margarita for the inspiring conversations and for reminding us not to work
too hard. Daniel, a true mad scientist and always an inspiration. Andrei for
helping out with all things localization and mapping. Florian for teaching us
the art of calibration. Fadri and Tonci for paving the way.

Thank you to my close friends and family and Charlotta for the support
and my life outside of work.

Financial Support

The research conducted in this thesis has received funding from the Max
Planck ETH Center for Learning Systems and the European Union’s Horizon
2020 research and innovation programme under project PILOTING No H2020-
ICT-2019-2 871542.

5

C O N T E N T S

introduction 11

1 Objective . 14

2 Approach . 15

2.1 Leveraging multi-view geometry and 3D representations 15

2.2 Learning from offline data 15

2.3 Making use of offline optimization and user-interfaces 16

contributions 19

1 Part A: Keypoints . 19

2 Part B: Segmentation and synthesizing data 21

3 Part C: Interactive autolabeling 23

4 Part D: Weakly supervised semantic learning 25

5 List of Publications . 28

5.1 Publications included in this thesis 28

5.2 Other publications . 29

6 Conference and workshop attendance 29

7 Student supervision . 30

7.1 Master’s thesis . 30

7.2 Semester thesis . 30

7.3 Bachelor’s thesis . 31

7.4 Perception and Learning for Robotics course 31

8 List of open-source software 32

conclusion and outlook 33

1 Discussion . 33

2 Outlook . 34

2.1 Large scale offline optimization 35

2.2 Interactive tools . 36

2.3 Using multiple modalities and sensors 37

2.4 Multiple view geometry and 3D representations . . . 39

2.5 Synthesizing data . 40

2.6 Weak forms of supervision 41

7

8 contents

2.7 Dataset curation . 43

3 General outlook . 44

A keypoints 47

paper i: semi-automatic 3d object keypoint annota-
tion and detection for the masses 49

1 Introduction . 50

2 Related Work . 52

3 Method . 54

4 Experiments . 60

5 Results . 62

6 Discussion and conclusions . 64

7 Acknowledgements . 65

B segmentation and synthesizing data 67

paper ii: nerfing it: offline object segmentation

through implicit modeling 69

1 Introduction . 70

2 Related Work . 71

3 Method . 73

4 Experiments . 76

5 Discussion and Conclusions . 80

C interactive autolabeling 85

paper iii: baking in the feature: volumetric segmen-
tation by rendering feature maps 87

1 Introduction . 88

2 Related work . 90

3 Method . 92

4 Experimental Results . 98

5 Conclusions . 101

contents 9

D weakly supervised semantic learning from the

internet 103

paper iv: neural implicit vision-language feature

fields 105

1 Introduction . 106

2 Related work . 108

3 Method . 110

4 Experiment results . 113

5 Discussion and conclusions . 116

bibliography 136

I N T R O D U C T I O N

The most important thing in
communication is hearing what
isn’t said.

Peter Drucker

Humans have always dreamed of artificial or magic servants that can
perform all their manual labour for them. As far back as ancient Greece [30]
people have dreamed of "automata" - machines which can act on their own
will. They imagined such machines replacing slaves and even going to war
with them.

Since then, especially over the past century, mankind has made great
progress on this front, building industrial robots that operate in factories,
vacuum cleaning robots, self-driving cars, quadruped robotic dogs and even
humanoid robots that can run over obstacles and carry objects.

State-of-the-art legged robots such the quadruped Anybotics Anymal and
Boston Dynamics Spot robots and humanoids such as the Boston Dynam-
ics Atlas, have a high level of athletic intelligence, being able to balance,
clear rough terrain and even perform backflips [34, 57]. Such robots still
mostly follow a script provided by their programmer, or they are teleoperated.
They have some geometric perception capabilities, such as localization, map-
ping and obstacle avoidance, but lack rich semantic perception, high-level
reasoning and planning capabilities.

Autonomous vehicles are likely the most advanced robots in use today.
Since last year (2022), such robots have been approved for commercial use and
transport passengers in good weather conditions in the cities of San Francisco,
California; Phoenix, Arizona and Austin, Texas in the United States [14]. Such
robots have advanced perception capabilities combining cameras, radar and
LiDAR sensor measurements to track other cars, pedestrians and road users,
detect traffic signs, segment parts of the road and environment. These robots
collaboratively build detailed and accurate maps of the environment and are
able to navigate their way through them while following the rules of the road
and being safe.

11

12 introduction

(a) (b) (c)

Figure 1: (a) Cruise autonomous vehicle in San Francisco, (b) industrial robot in
Amazon warehouse, (c) Anybotics Anymal quadruped robot

In the case of industrial robots, in addition to entirely repeatable tasks
that can be performed without any environment feedback, we have seen
autonomous mobile robots moving pallets and shelves around in factories
and warehouses. Industrial robots with perception capabilities are currently
being used to pick and pack orders in e-commerce fulfillment centers, recycle
waste and to tend machines in industrial facilities. Such systems are starting
to be very effective, but especially robots making use of visual feedback still
struggle with the "Ironies of Automation" [8] where they either perform worse
than the manual process, or require some human supervision, reversing some
of the gains of automation. Slowly though, these systems are getting there
and are starting to replace manual human labor in more complicated tasks.

It is fair to say, that of the currently useful robots, almost all of them are
purpose built, in hardware and software, for one specific task. Even in the
case of general purpose hardware such as industrial robot arms or humanoid
robots which are theoretically and physically able to perform multiple tasks,
applying them to a new task or even the same task in a different environment
requires reprogramming the robot, re-learning perception algorithms and
in some cases, changing the representations used. While the hardware of
current robots can always improve in flexibility, dexterity, durability and cost,
what constrains current robots from truly being general purpose machines, is
their high-level intelligence, planning and perception capabilities.

The high-level perception capabilities of current state-of-the-art robots are
mostly built using deep learning techniques. The deep learning models used

introduction 13

are extremely data hungry and require millions of examples to reach good
performance. Studies on deep learning models used in vision [119] and
natural language processing [49] have shown that the models still improve
even after having seen billions of examples. The bottle neck to teaching
these systems is very much how quickly the data can be collected and
annotated with the required labels. For language modeling, the data can be
automatically collected from the internet. For spatial perception tasks such as
those of interest in autonomous driving, companies have to employ humans
to annotate the data collected by robots operating in the real world.

Currently, teaching robots to perceive things feels like pushing data to the
robot through a Soviet era serial communication bus when it should feel
more like uploading data over Terabit Ethernet. The bit rate is extremely low.

There are many reasons why communication with robots is slow and
painful. Communication all starts with a shared language. In many cases
today for perception, that shared language is annotations on individual
images, such as individual class labels for pixels in images, vertex coordinates
of polygons or bounding boxes. Producing these manually, even with smart
software tools is slow. We are communicating very little data, and we are
producing it very slowly. Not only do our current methods need very low-
level annotations, they also don’t make terribly good use of them, so we
have to provide millions and millions of them to learn good models. As
the supervision targets are quite low-level, such as individual pixels, the
models have a tendency to overfit and find shortcuts to produce the correct
prediction given the input, instead of building a representation of the scene
and understanding the true underlying idea the expert is trying to convey.

We humans communicate with each other using high-level natural lan-
guage. Often a couple words is enough to tell someone what needs to be
done. Language provides shared context. Currently, there is very little shared
context between the software run by our robots and us, their operators. Not
only do we have shared context in language, but us animals also share the
3-dimensional spaces we occupy in addition to a broad set of societal and
cultural norms.

While the robots have sensors, we are still mostly not able to make use of
all the information in the data captured by the sensors. Algorithms today
typically estimate predefined sparse quantities from sensor data and a lot
of subtle information is thrown away. The little information we extract is

14 introduction

mostly not connected to a spatial representation or related concepts nor the
prevailing cultural context.

One last point, is that we humans share an embodiment, which can be
helpful when learning from each other. Our robots have a different geometry,
have less degrees of freedom, use different sensors and operate in a different
configuration and state space than we do, making learning from us harder.
Any inference originating from the behaviour of another creature with a
different embodiment, would have to go through additional reasoning steps
to map it to its own embodiment and infer the relevant parts.

Therefore, if we want to have autonomous systems that are as versatile
and easy to teach as us humans, we should start by defining a language and
building common context between robots and their operators. In this thesis,
we explore ways of teaching robots general perception capabilities without
relying on large task-specific datasets, by leveraging shared context and prior
information.

1 objective

Motivated by the spirit and state-of-the-art of robotic perception presented
above, we define the objective of this thesis as bootstrapping robotic perception.
Bootstrapping, meaning using readily available sources of data, assumptions,
constraints and clever programming to equip the robot with an initial level
of intelligence such that the robot’s operator can more easily and effectively
teach the robot the perception skill it needs to perform the tasks that they
want the robot to execute. This teaching can be done either online while the
robot is running, or offline, after the robot has collected some data and we
can teach it something about that data. We seek to do this by minimizing the
assumptions made in the design phase on the specific tasks the robot will be
expected to perform. The goal is to provide the operator with a specific set of
tools that enables them to get the robot to perform a task of their choice, not
one of the robot’s programmer’s choosing. One way to think of this objective,
is to provide the robot with useful bias that will accelerate its learning and
raise the abstraction level in the teaching phase.

Science fiction tends to depict robots of the future as generally intelligent
beings that can do and understand everything. That might be the case some
day, but we very much hold the view that in the meantime, robots will be

2 approach 15

such that they are easy to adapt and teach new tasks through clever tools
and user interfaces, instead of simply knowing how to do each task out of
the box. For most commercial applications, being able to teach a robot in a
couple of days how to perform a new task reliably is more than enough. This
vision has served as our guiding light.

2 approach

To tackle this problem, we investigate different approaches, the parts of which
can be roughly split into the following three categories.

2.1 Leveraging multi-view geometry and 3D representations

The vast majority of computer vision methods in use today, are inherently
2-dimensional. They only operate on individual images. Robots on the other
hand operate in 3D environments, requiring us to somehow solve for the
third dimension. One way of doing that, is to use multiple views of the scene
to build a 3D representation. As data is noisy and algorithms are bound
to make mistakes, one way to fix some of those mistakes is to use a 3D
representation and disambiguate the predictions from individual views by
comparing information across views and solving for the most likely state of
things.

In all parts of this thesis, we make use of multiple view geometry and
build 3D representations. Not only does 3D consistency help us, we live
in a 3-dimensional world and therefore also need to teach the robot about
distances and the scale of things.

2.2 Learning from offline data

When us humans learn a new task, we don’t start from scratch. We have all
been shaped by a lifetime of experience that we can lean on. Many skills tend
to transfer from one task to another.

Most robot perception systems in use today, are mostly designed and
trained from scratch to do a specific task. To build computer vision systems
which can be taught with ease by their operators, we somehow need to raise
the abstraction level such that the system can learn from few examples. One

16 introduction

approach to this, is self-supervised learning [53]. Self-supervised learning is
making use of unlabeled data to learn representations which can be used
in other, downstream tasks. The learning happens by either leveraging
some known structure in the data or otherwise using labels which can be
automatically computed from the raw data itself. In the second half of
this thesis, we investigate the use of self-supervised learning techniques
by leveraging models that have been learned offline without making use
of any manual expert annotations. By observing large quantities of real
images these self-supervised learning techniques learn representations which
describe data that actually occurs in the wild. This can be seen as biasing
the system towards real data ignoring implausible configurations that don’t
occur in the data. We use models learned with self-supervision to build 3D
representations that can be used as a starting point for teaching the robot
what it needs to learn.

A related technique is the use of weakly supervised learning. Weakly super-
vised learning is often taken to mean using either a large amount of raw data
with small amount of labels or abundant labels which are noisy and from
an unreliable source. In the first part of this thesis, we make use of semi-
supervised learning by taking a few annotations and propagating them to
unlabeled data. In the last part of this thesis we make use of vision-language
models, which are weakly supervised. They are learned on a large dataset of
image-caption pairs that are automatically collected from the internet. These
pairs are used by correlating the information in the image with that in the
caption through a common representation for both the image and the text
caption. This is a form of weak supervision, as there is no way of knowing
to which degree the automatically collected caption is actually related to
the content in the image, but on average, they tend to have something in
common.

2.3 Making use of offline optimization and user-interfaces

One strategy we make use of is to take data that is collected online from
our robots to process and learn from offline, with the help of the end-user
of the robot system. The benefit of processing data offline are many-fold.
Firstly, you can spend as much compute as you want and aren’t restricted to
the computational resources onboard the robot. Secondly, when processing

2 approach 17

data offline, you have the benefit of knowing what happens in the future
and use that information to inform the representation in the first timesteps
of the recording and ultimately end up with a more accurate representation.
Thirdly, we can make use of the user of the system who can look at the
data and enhance it with whatever information we want to augment our
representations with. Some of this information might be application specific,
allowing the user to shape the system to their needs.

The resulting representations which are computed offline, can then be used
to improve the models running onboard the robot, or distilled into models
which are real-time capable and operate on data that is available at run-time.

In all parts of this thesis, we make use of data collection and offline
optimization.

C O N T R I B U T I O N S

In science if you know what you
are doing you should not be doing
it. In engineering if you do not
know what you are doing you
should not be doing it.

Richard Hamming

This chapter summarizes the main scientific contributions of the publi-
cations included in this thesis. It also lists other contributions in the form
of other co-authored papers, workshop participation, supervised student
projects and open software developed over the course of the doctoral studies.

1 part a: keypoints

paper i

Kenneth Blomqvist, Jen Jen Chung, Lionel Ott and Roland Siegwart, 2022,
August. Semi-automatic 3d object keypoint annotation and detection for the
masses. In 2022 26th International Conference on Pattern Recognition (ICPR)
(pp. 3908-3914). IEEE.

Context

3D semantic keypoints have become a popular representation to use within
object manipulation. The main reason being that they are easy to interpret.
Many objects can easily be described as a set of the most meaningful points
relevant for a specific task and most tasks are such that the goal can be
defined in terms of the position of the chosen semantic keypoints, relative
to each other and the enviroment. Previous works [37, 71, 76] have relied
on object instance segmentation masks, making it expensive to apply to new
tasks and objects, as thousands of such masks need to be annotated to train

19

20 contributions

an object instance segmentation system such as Mask-RCNN [47] to reliably
segment the objects of interest. These are very expensive to produce, easily
a minute of annotation time per frame [75]. Another limitation of previous
methods, is that to build a dataset of 3D semantic keypoints, they either
rely on 3D reconstructions [37], ruling out transparent or otherwise hard
to reconstruct objects, or they require instrumenting the environment with
markers [71].

Contribution

In this project, we sought to investigate whether we could create an easy
to use object keypoint detection pipeline that would neither require lots of
manual data annotation, nor modifying the environment in any way. We
wanted to build something where all we had to do, was drive up our mobile
manipulation system to the objects we wanted to manipulate, scan them and
then provide a couple of clicks to teach the robot about semantic points of
interest.

This paper introduces a full 3D semantic keypoint detection pipeline, which
can be taught entirely through the camera footage and propriopceptive infor-
mation collected by the robot itself. It introduces a stereoscopic user interface
through which scans of the objects taken by robot can be annotated and then
propagated throughout the scan to obtain annotated 3D keypoint and image
pairs. To avoid the need for an external object instance segmentation system
and ground truth segmentation labels, we propose the concept of a center
map, which associates each detected keypoint with its center. This center map
is predicted and learned jointly from the little information provided by the
user. It can then be used at runtime to associate keypoints with their respec-
tive object, enabling the detection and tracking of multiple objects in a frame
simultaneously, which is a common requirement for many applications.

The paper shows that the pipeline is able to learn how to predict the 3D
semantic keypoint location within roughly centimeter accuracy on held out
test data, using only a couple dozen object scans as training input. These
couple dozen scans can be annotated using the presented tool in about
15 minutes of expert annotation time, bringing it within reach of one-off
industrial applications where a robot needs to be taught to perceive a class of
objects.

2 part b: segmentation and synthesizing data 21

Interrelations

This paper shows that proprioceptive information and multiple-view geom-
etry can be leveraged within the annotation process, maximizing the value
of human annotation time and bootstrapping a custom perception system
from scratch. This project led to the idea in Paper II. While in this project,
we specifically shied away from segmenting the scene, it did make us think
about whether it would be possible to similarly bootstrap a richer represen-
tation of the scene than just a set of sparse keypoints on objects. For many
manipulation tasks, simply knowing the position of specific points on objects
is not enough. Having a dense representation which could tell us more about
the geometry and semantics of different parts of the scene, is required for
many applications.

The keypoint detection task of this paper is still relevant though. The
segmentation, while richer, is not sufficient for all tasks, some tasks being
such that the orientation or position of specific points in the scene is important.
The user interface from this paper, could be integrated into the interface from
Paper III, allowing the estimation of both sparse and dense information.
Additionally, combining both keypoints with a surface reconstruction of the
scene would allow for estimating the pose and shape of objects, potentially
opening up the way for building object databases, an idea we describe in
more detail in the conclusions chapter.

2 part b : segmentation and synthesizing data

paper ii

Kenneth Blomqvist, Jen Jen Chung, Lionel Ott and Roland Siegwart, 2023,
May. Nerfing It: Offline Object Segmentation Through Implicit Modeling. In
2023 proceedings of the International Conference on Robotics and Automa-
tion. IEEE.

Context

In the previous project, we had shied away from segmenting objects, as it is
expensive to do. Neural Radiance Fields [79] had recently become popular

22 contributions

as a scene representation promising both impressive surface reconstruction
performance and the ability to synthesize novel viewpoints given a scan of
the scene. The view synthesis properties had been explored extensively from
a photorealism perspective, but no-one had investigated whether the radi-
ance field could be used to generate training data for downstream machine
learning algorithms, such as object detection [47], segmentation [73] or pose
estimation [141]. Such machine learning algorithms are very data hungry and
have a tendency to overfit and learn shortcuts to produce an answer which is
correct for the training data, but does not generalize well to unseen examples.
If the knowledge baked into the 3D radiance field representation could be
used to diversify the training data, it could result in better performing models
which are more robust to changes in viewpoints and which could be learned
from much fewer input examples.

Contribution

What we wanted to find out, was (1) whether we could use the radiance field
representation to produce object segmentation maps of objects and (2) use the
radiance field to generate training data for a downstream learning algorithm.
In this paper, we propose a way in which the object segmentation can be
extracted given a single 3D bounding box for each object in the scene. The
paper also proposes an algorithm to generate novel but plausible viewpoints
of the objects in the scene. The segmentation masks are built by extracting
the density field within the 3D bounding box and rendering the mask for
input viewpoints. Novel viewpoints are synthesized by first constructing
a bounding box from the input camera poses and subsequently sampling
camera poses within the constructed bounding box, such that the objects of
interest in the scene are still visible.

The results show that computing segmentation masks using a radiance
field representation yields much higher quality segmentation masks than
baseline methods. The paper shows that the synthesized examples are of
good quality, both in color and segmentation mask and that complementing
real data with synthesized data improves results when learning a downstream
object detector.

3 part c: interactive autolabeling 23

Interrelations

In Paper I, we explicitly didn’t want to segment objects, as producing seg-
mentation masks takes a lot of time from an expert. Here, we wanted to
tackle that problem head on by fitting a neural radiance field to the scene and
using the inferred geometry to create object instance segmentations. In the
previous project, the bottleneck for dataset creation was no longer annotating
the data itself, but rather collecting a diverse and representative set of data.
As neural radiance fields are able to synthesize novel viewpoints of the scene,
we can use the representation to generate color and depth image pairs and
their corresponding object segmentation mask, further alleviating the data
generation problem for downstream tasks.

The results in this paper did convince us of the promise of radiance
fields and convinced us to keep working on neural fields, which led to the
ideas of both Paper III and IV. The method for generating synthetic training
examples could be applied in the pipeline of Paper III. Future work might also
investigate additional randomization of the scene, for example randomizing
textures or the object positions.

3 part c: interactive autolabeling

paper iii

Kenneth Blomqvist, Lionel Ott, Jen Jen Chung and Roland Siegwart, 2023,
October. Baking in the Feature: Accelerating Volumetric Segmentation by
Rendering Feature Maps. In 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)

context

Recently, systems such as SemanticNeRF [161] and iLabel [162] had been
proposed that are able to take sparse semantic labels and propagate them
through a scene. We were inspired by these methods’ impressive ability to
propagate sparse 2D information through a 3D representation and generalize
across a scene. However, after trying this type of labeling paradigm, we
realized that they still require a fair amount of annotation time per object to

24 contributions

arrive at a high quality segmentation of an object. Our initial tests showed up
to a minute of annotation time across many viewpoints to perfectly segment
a single object. The thing about SemanticNeRF [161] and iLabel [162], is
that they blindly map points in the volume of the scene to radiance, density
and sparse semantic labels. They can therefore only reason about spatial
information and color information, through the latent representation that the
radiance field learns. They make no use of outside data or information from
other scenes.

In this project, we set out to investigate whether we could leverage infor-
mation learned from other scenes and instill useful bias into such interactive
labeling systems. Reasoning directly on color information has shown itself to
be a tricky in computer vision. Using higher-level representations, such as
learned features, has shown itself to be a much more effective approach. A
dense feature representation of an image is more informative, as it takes into
account the local neighborhood of individual pixels and semantic meaning
of each individual pixel through the learned representation. We figured, we
might as well not only regress the color information, but also the extracted
features, which would instill a lot of semantic information into the implicit
representation, essentially for free.

contribution

This paper proposes a 3D feature field representation and a user interface
through which this representation can be annotated. The feature field is
a vector field, mapping 3D points in the volume of the scene to image
features. The features correspond to features extracted using conventional
feature extractors, in this case DINO [18] features, which are learned in a
self-supervised way on very large datasets. The feature field is learned jointly
with a radiance field by volumetrically rendering feature maps for each
observed viewpoint of the scene and supervising on feature maps extracted
from each image. The paper also shows that volumetrically parametrized
neural radiance field representations suffer from an overfitting problem
when used to infer semantic labels of the scene from sparse annotations, for
example as provided through brush strokes drawn through a user interface.
To alleviate this problem, the paper introduces a hybrid positional encoding

4 part d : weakly supervised semantic learning 25

which allows the neural field to better reason about spatial location within
the volume, improving results significantly.

The experiments show that by leveraging the self-supervised features and
the hybrid positional encoding, the labeling time is greatly reduced and much
higher quality segmentation maps can be achieved with the same level of
expert supervision than with previous methods.

interrelations

Similarly to Paper II, this method tackles segmenting objects and 3D scenes
and generating high quality data for downstream learning algorithms and ad-
dresses the problem we were avoiding in Paper I. The goal of this thesis is to
bootstrap visual perception algorithms, this work tackles that by combining
self-supervised pretraining and 3D consistency through a scene representa-
tion. It provides a user interface through which the user can specify their
intent, and annotate data for use in downstream learning tasks, ultimately
increasing the bitrate at which data is generated for downstream machine
learning systems. In this paper, we introduce the feature field representation,
which served as the basis for the Vision-Language Feature Fields which we
propose in Paper IV. The user interface of this paper could be extended to
include keypoint annotation, as proposed in Paper I.

4 part d: weakly supervised semantic learning

paper iv

Kenneth Blomqvist, Francesco Milano, Jen Jen Chung, Lionel Ott and Roland
Siegwart, 2023, October. Neural Implicit Vision-Language Feature Fields. In
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE.

context

The goal of this thesis is to bootstrap robotic perception. Vision-Language
Models (VLM) [90] were recently proposed as a way to learn transferable
visual representations by correlating image captions to images. They do so by

26 contributions

mapping both images and their captions into a common vector space. This
type of weakly supervised learning is very enticing from a perceptual boot-
strapping perspective, as it opens up the door to learning visual and semantic
representations from the internet. For such representations to be useful in
robotics, we need to be able to connect and ground these representation to
the 3D world the robots operate in.

Given that these vision-language representations are just features extracted
from images, and that they can be connected directly as such to vector valued
language representations, we came to wonder if we could embed them into
a feature field, and use the resulting representation to reason about the 3D
scene. Some early work on using CLIP features [90] within 3D representations
had been very recently unveiled [87, 105], but none of these jointly learned
both the geometry with the semantic representation. We figured we could do
both of these jointly, and that neural fields would prove to be the right way
to approach the problem.

contribution

This paper proposes a neural implicit vision-language feature field scene
representation which is learned jointly with a radiance field of the scene.
The neural representation has a compact memory footprint, can represent
the geometry of the scene with a high level of detail, is differentiable and
can be built up incrementally in real-time as the robot explores a new scene.
The representation allows for open-vocabulary semantic queries of the scene,
allowing the localization of objects within the scene or segmenting different
classes from each other. These queries can be run at very high rates of several
million queries per second using commodity hardware.

The experiments in the paper show how this method enables zero-shot
semantic segmentation of scenes, where labels can be provided at run-time
and the scene can instantly be re-segmented into the given labels. To the
best of our knowledge at the time, this paper introduced the first real-time
vison-language neural field running onboard a robot. The paper includes a
series of real-time experiments.

4 part d : weakly supervised semantic learning 27

interrelations

This paper builds on top of the contributions of Paper III. Papers II through
IV all deal with segmenting 3D scenes, although in very different ways. While
the method presented in this paper ultimately will not produce as good of
a segmentation as the method from Paper III, it is entirely unsupervised.
Therefore, this method could be used as a starting point for the interactive
segmentation method in Paper III. That is, first fit a feature field using the
best vision-language model available to us, then take the list of objects that
we are currently trying to teach our robot and infer an initial segmentation
of the scene. The robot’s teacher can then use the user interface from Paper
III to correct any mistakes made by the zero-shot system. Once this has been
done for a sufficient amount of scenes, the corrected semantic fields could be
distilled into an online 2D vision model that estimates the segmentation at
run-time at high rates in real-time.

A limitation of our method, is that while the method is able to semantically
segment scenes, it is not able to distinguish instances of objects from each
other. This is something we explored in a subsequent master’s thesis project,
developing a panoptic version of this vision-language feature field algorithm.
The method we developed in that project makes use of 2D instance segmenta-
tion proposals and uses them to learn an additional instance descriptor field
through a contrastive loss function. These instance descriptors can be used at
run-time to segment object instances from each other through clustering. We
wrote up this work into a paper which is currently under review.

This paper also presents a solid step forward towards the goal of bootstrap-
ping robot perception by learning from one of the largest and richest sources
of data known to man, images on the internet. While the method presented
does effectively solve the problem of grounding dense vision features in 3D
spatial representations, the features used as input to the method are crucial to
the performance of the method. The initial results presented here do suggest
that this is a very fruitful avenue for future work towards the goal of this
thesis.

Vision-language models still stand to improve a lot, especially ones which
produce dense features and enable segmenting the resulting feature maps
with natural language prompts. Since this work, a number of works have
tried to improve on 2D open-vocabulary segmentation [19, 70, 88, 95, 149, 159]
by learning on automatically collected datasets, but having tried some of

28 contributions

these, we can say that there is still a lot of room for improvement. Looking
forward, given some of the impressive results on foundation models, we
expect the day will come when these weakly supervised vision language
models will surpass fully supervised segmentation models simply through
the fact that they are able to make use of much more data and therefore will
be more robust and generalize better.

5 list of publications

The research conducted during the execution of this doctoral thesis led and
contributed to the following publications.

5.1 Publications included in this thesis

[P1] Kenneth Blomqvist, Jen Jen Chung, Lionel Ott and Roland Siegwart,
Semi-automatic 3d object keypoint annotation and detection for the
masses. In 2022 26th International Conference on Pattern Recognition
(ICPR) (pp. 3908-3914). IEEE.

[P2] Kenneth Blomqvist, Jen Jen Chung, Lionel Ott and Roland Siegwart,
Nerfing It: Offline Object Segmentation Through Implicit Modeling.
In 2023 proceedings of the International Conference on Robotics and
Automation. IEEE.

[P3] Kenneth Blomqvist, Lionel Ott, Jen Jen Chung and Roland Siegwart,
Baking in the Feature: Accelerating Volumetric Segmentation by Ren-
dering Feature Maps. In 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE.

[P4] Kenneth Blomqvist, Francesco Milano, Jen Jen Chung, Lionel Ott and
Roland Siegwart, Neural Implicit Vision-Language Feature Fields. In
2023 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE.

6 conference and workshop attendance 29

5.2 Other publications

[P1] K. Blomqvist*, M. Breyer*, A. Cramariuc*, J. Förster*, M. Grinvald*, F.
Tschopp*, J. J. Chung, L. Ott, J. Nieto, and R. Siegwart. Go Fetch: Mobile
manipulation in unstructured environments. Workshop on Perception, Ac-
tion, Learning, International Conference on Robotics and Automation (ICRA),
2020.

[P2] Kenneth Blomqvist, Francesco Milano, Jen Jen Chung, Lionel Ott and
Roland Siegwart. 2023, Grounding Pretrained Features in 3D Represen-
tations ICRA2023 Workshop on Pretraining for Robotics (PT4R), 2023.

[P3] Nicolas Gorlo, Kenneth Blomqvist, Francesco Milano and Roland Sieg-
wart 2023, ISAR: A Benchmark for Single- and Few-Shot Object Instance
Segmentation And Re-Identification In 2023 IEEE winter conference on
applications of computer vision (WACV).

[P4] Maurits Reitsma, Kenneth Blomqvist, Francesco Milano and Roland
Siegwart Under pressure: learning based analog gauge reading in the
wild International Conference on Robotics and Automation (ICRA) 2024
Under Review.

[P5] Haoran Chen, Kenneth Blomqvist, Francesco Milano and Roland Sieg-
wart, Panoptic Vision-Language Feature Fields In IEEE Robotics and
Automation Letters

6 conference and workshop attendance

The research conducted was presented at multiple international conferences,
workshops and seminars.

1. Go fetch: Mobile manipulation in unstructured environments Workshop
on Perception, Action, Learning, International Conference on Robotics and
Automation (ICRA), June 2020, virtual.

2. Semi-automatic 3d object keypoint annotation and detection for the masses
2022 26th International Conference on Pattern Recognition (ICPR), August 2022,
Montreal, Canada

30 contributions

3. Nerfing It: Offline Object Segmentation Through Implicit Modeling Inter-
national Conference on Robotics and Automation (ICRA, June 2023, London,
United Kingdom

4. Grounding Pretrained Features in 3D Representations ICRA2023 Workshop
on Pretraining for Robotics (PT4R), June 2023, London, United Kingdom

5. Baking in the Feature: Accelerating Volumetric Segmentation by Rendering
Feature Maps IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), October 2023, Detroit, Michigan, United States

6. Neural Implicit Vision-Language Feature Fields IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), October 2023, Detroit,
Michigan, United States

7 student supervision

This section lists all the student projects that have been supervised over the
course of the doctoral studies.

7.1 Master’s thesis

The Master’s thesis is a six-month long, full-time project.

1. Joel Bachmann, "Unsupervised Learning of 3D Object Representations,
2020

2. Boyang Sun, "Integrated Perception and Control for Robotic Manipulation",
2022

3. Michael Schmid, "Model Adaption for Predictive Control in Aerial Manip-
ulation", 2022

4. Haoran Chen, "Panoptic Vision-language Feature Fields", 2023

7.2 Semester thesis

The semester thesis is a semester-long, part-time project.

7 student supervision 31

1. Pelzmann Nicolas, "Fast Adaptation of Dynamics Models", 2020

2. Jonas Frey, "6D Object Pose Estimation", 2020

3. Cyrill Hedinger, "Mesh Hole Detection and Filling Using Shape Comple-
tion", 2020

4. Caroline Sauget, "Typing Support for People with Autism", 2021

5. Paul Fitz, "Teleoperation for Teaching Robots", 2021

6. Matias Turkulainen "Object Pose and Shape Estmation", 2022

7. Silvio Mazzuco, "3-D Aware Superpixel Segmentation", 2022

8. Xiang Liu, "Generalization of Rendering-based Semantic Segmentation,
2022

9. Maurits Reitsma, "Analog Gauge Reading", 2023

10. Nicolas Gorlo, "Single-Shot Object Instance Segmentation and Re-
identification", 2023

7.3 Bachelor’s thesis

The Bachelor’s thesis at ETH is a semester-long, part-time project.

1. Tim Reinhard and Nicolas Gorlo, "Object Recognition and Visual Servoing
for the VTOL UAV Geranos", 2022

7.4 Perception and Learning for Robotics course

The Perception and Learning for Robotics course is a semester long project-
based course where students work on a project part-time in pairs.

1. Jonas Frey and Yash Vyash, "6D Object Pose Estimation", 2020

2. Bin Yang and Zongrui Yu, "Scene Understanding and Generalization
Through NeRF", 2023

32 contributions

8 list of open-source software

This section lists the open-source software that has been implemented and
released over the course of the doctoral studies.

1. mpm: A CUDA accelerated implementation of the material point method
https://github.com/kekeblom/mpm

2. HUD: A package to build OpenGL based user interfaces rapidly https:
//github.com/ethz-asl/hud

3. object_keypoints: A package for quickly learning to detect semantic
keypoints on objects in 3D [11] https://github.com/ethz-asl/object_
keypoints

4. moma: A software stack for mobile manipulation research https://github.
com/ethz-asl/moma

5. autolabel: A package to semi-automatically annotate 3D scenes [12, 13]
https://github.com/ethz-asl/autolabel

6. analog_gauge_reader: A package for reading analog gauges from images
https://github.com/ethz-asl/analog_gauge_reader/

https://github.com/kekeblom/mpm
https://github.com/ethz-asl/hud
https://github.com/ethz-asl/hud
https://github.com/ethz-asl/object_keypoints
https://github.com/ethz-asl/object_keypoints
https://github.com/ethz-asl/moma
https://github.com/ethz-asl/moma
https://github.com/ethz-asl/autolabel
https://github.com/ethz-asl/analog_gauge_reader/

C O N C L U S I O N A N D O U T L O O K

Sometimes science is more art
than science. A lot of people don’t
get that.

Rick Sanchez

In this chapter, we discuss the key takeaways that resulted from the research
carried out, we propose promising future research directions and give a
subjective outlook about the field.

1 discussion

In this thesis, we have presented multiple ways of creating machine learning
based perception systems, that do not require thousands of hours of annota-
tion time to build a dataset of input and output examples. We have presented
different ways of bypassing this process be that by leveraging automation,
constraints, generating additional data, using weak forms of supervision or
making use of self-supervised learning. In Paper I, we used robots to collect
data and leveraged calibration and multiple view geometry to automate the
dataset creation process. In Paper II, we leveraged radiance fields to create
object segmentation maps and to augment a dataset of object scans. In Paper
III, we showed how we can use self-supervised feature models to accelerate
interactive 3D segmentation. In Paper IV, we leveraged weakly supervised
semantic feature models and ground these features in 3D maps for scene
understanding.

The title of this thesis might be a little bit hyperbolic. Supervised machine-
learning is definitely here to stay. Systems such as neural radiance fields and
self-supervised learning systems do make use of supervision, they just do
this by directly regressing on signal which is already in the data, or they
regress quantities which can be automatically computed. This appears to
be a very powerful approach. From our results and experience building
these projects, it seems quite clear that the days of annotating large datasets

33

34 conclusion and outlook

for strongly supervised machine learning are numbered. In none of these
works did we have to annotate so much data that it is impossible for a single
engineer to annotate. It very much appears that the path forward is to learn
rich representations using this type of self-supervision, and then just define
the objects, classes, goals or concepts using a few examples and constraints
which we can define on the learned representations.

2 outlook

The goal of this thesis was to investigate how will we be teaching the robots
of the future new perception skills. Here, we provide our views on how we
believe robots of the future will be taught.

We believe that systems for teaching robots perception skills in the future,
will make use of the following ideas:

• Large scale offline optimization

• Interactive tools

• Multiple view geometry and 3D representations

• Using multiple modalities and sensors

• Synthesizing data

• Weak forms of supervision

• Dataset curation

Here, we dig into each of these ideas, provide our perspective on how they
tie into teaching robots perception skills and highlight some open problems.

Figure 1 shows how these components might fit together. Our view is that
the way forward is to build a positive feedback loop closing state estimation
through offline state optimization, a scene database, dataset curation and
a machine learning pipeline back into better online state estimators. In the
case of actually autonomous systems such as industrial robots, drones or
autonomous vehicles, expert users and engineers primarily interact with
and improve the system by monitoring and teaching the system through an
interactive UI. Large scale foundation models, such as ones learned from
videos or pictures on the internet, might be used in the offline state estimation

2 outlook 35

State estimation Offline
optimization

Dataset curation

Interactive
UI

Machine
learning

Scene databaseUser

Better
estimation
models

Interactions
Constraints +
sparse labels

Datasets

Scenes

Optimized
scene

representations

Foundation
models

Sensor
data +
state

estimates

Sensor data

Internet

Figure 1: Architectural diagram of envisioned production pipeline.

step to enrich and bring context to the data collected from the robot. Datasets
are curated per task for specific onboard machine algorithms by specialized
algorithms and finally learned by running the curated datasets through a
machine learning pipeline.

Next, we dive into each of these components and wonder what they might
look like.

2.1 Large scale offline optimization

Mostly, our approach in this thesis has been to collect data offline, process
it and then use that data to learn online models. We still very much believe
in this approach. Processing data offline has many benefits. First of all,
you have access to future information, which gives access to additional
constraints. The data can be processed both forwards and backwards, giving
an additional source that can be used to disambiguate any errors. Secondly,
offline means that we are not constrained to process the data using the limited
computational resources found onboard our robot, but we can use however
big computers we want and we can run them for as long as we want. This
opens up a lot of possibilities. We firmly believe that future systems will
keep making use of this.

36 conclusion and outlook

We posit that in the future, spatial AI systems will evolve in two directions.
There will be an offline version of the system that will make use of every
trick in the book and large scale compute. This will be complemented with
a lightweight online version, which is able to make do with information
available online and using compute available onboard the system. The offline
systems will be used to curate and generate datasets to be distilled into
components of the online system.

This might lead to a reinforcing feedback loop where data is used to
improve components onboard the robot, the output of which are used to
improve onboard state estimation which are logged and used as starting
points for the offline state estimation system which looks at the data from a
mission and tries to figure out the most likely true state of the scene at each
point in time. This will lead to higher quality data which will lead to even
more accurate onboard systems and so forth.

A skeptic might claim that any bias within such a system that feeds back
on itself will get amplified to a point where that system is unusable. In this
case, we believe this will be mitigated by strong optimization constraints and
geometric assumptions, which make sure false information and noise can
be optimized out. The remaining errors might be corrected by expert users
equipped with interactive tools which we talk about in the next section.

2.2 Interactive tools

To check the operation and output of such a system, interactive tools will be
needed to go through log recordings, visualize the output of optimization
steps and the inferred state of the scene across time. Should there be any
errors, smart tools built into the user interface will be used to correct any
mistakes and provide further information.

The interactive labeling tool presented in Paper III shows an example
of this. Another example of this is the Maplab [23] console, which allows
users to configure settings and launch processing steps to optimize maps
offline, visualize the results and launch further optimization procedures. The
optimized maps can then be exported to be used by an online system. This is
an early example of learning offline to improve online performance, but we
believe future systems will also learn parametric models which will be used
online, not just map representations and sensor parameters.

2 outlook 37

Our interactive labeling tool from Paper III, could be extended to deal
with dynamic scenes and more complex scenarios by adding tools and
capabilities to it such as the Segment Anything Model (SAM) [59], Video
Object Segmentation (VOS) [146], feature and object tracking. To deal with
non-static scenes, a user could initially segment the dynamic objects in the
scene using SAM and the segmentation mask produced by SAM could be
propagated to future frames using VOS. Once an object has been segmented
in all frames, features within the mask could be used to track and reconstruct
the object. Observations belonging to the dynamic objects would be ignored
by the static scene reconstruction, and possibly all combined and jointly
optimized similarly as in [63]. These object reconstructions could be used to
build a database of objects relevant to the system, to be identified in future
logs collected by the robot and further refined by more optimization across
scenes. The constructed object models could be used by the online system to
assist with object detection, pose estimation and other state estimation tasks,
if relevant to the application.

Also, with the advent of SAM-like [59, 160] segmentation models, objects
can be discovered autonomously, enabling completely unsupervised 3D
object instance segmentation. Detected object instances can be compared
and identified against each other across scenes to ultimately build an object
database.

2.3 Using multiple modalities and sensors

Each sensor technology and modality has their strengths and weaknesses.
Some things are very easy to perceive using one sensor, while they can
be very hard to perceive with another. A textureless wall can easily be
perceived with a LiDAR sensor but presents a challenge to RGB cameras.
Budgets permitting, it makes sense to use all the sensors at your disposal,
and combine measurements from all of them to build the most accurate
3D representation possible. Such sensors and modalities include, but are
not restricted to, inertial measurement units, LiDAR, radar, sonar, event
cameras, tactile and force-torque sensors. Each of these modalities should
be connected to the scene representation. Constraints can be defined on
and across each of the modalities to disambiguate information and improve
the state representation. Should there be a large error in the optimization

38 conclusion and outlook

problem for certain modalities and time steps that cannot be corrected using
the interactive tooling, these sections of logs could be ignored in the dataset
curation and generation phase, as there is likely to have been an error at
some point. In our systems from Paper III and IV, such errors would occur
if a frame is misregistered by the SLAM or structure-from-motion system,
in which case it would both deteriorate the quality of the 3D representation
and produce garbage output when rendering segmentation masks for those
frames.

While in Paper I, we did make use of the positional encoders in the joints of
our robot, we mostly dealt with RGB-D camera footage in this thesis. In our
NeRF systems from Paper II, III and IV, we made use of depth measurements
computed by the camera, learning the representation with an additional
metric loss. In the case of neural implicit representations, the system is easy
to extend with further optimization loss terms. In the case of a multi-camera
rig, frames from all cameras can easily be added to the optimization problem
by sampling pixels from those cameras. LiDAR supervision has already been
explored by [94, 125].

Works have also explored learning neural implicit representations that
are built on top of a signed distance function representation of the scene
[67, 137, 138]. Using a signed distance function has many benefits, specifically
for robotic applications. As the representation used by these systems is
fully differentiable, the surface normal of the surface can be computed
by computing the gradient of the distance function with respect to the
input coordinates. Incorporating feedback from other modalities such as
force torque sensors and position encoders also becomes easier, as you can
constrain the zero level-set of the distance function at locations sensed to
be a hard surface. The downside of such representations, is that they are
slightly more computationally expensive to compute than simply inferring
the radiance field of the scene. Especially for a real-time system, this is a bit
of a challenge, but one that will likely be solved with smarter algorithms and
processors better suited for computing neural fields.

Cross modality optimization has been explored in the context of structure-
from-motion and SLAM through bundle adjustment [1], which solves a
non-linear optimization problem, optimizing camera poses, camera parame-
ters and landmark locations by minimizing reprojection error of landmarks
matched in images. In many cases, IMU measurements are also used jointly
as optimization constraints [23]. Systems such as Maplab [23] already make

2 outlook 39

use of multiple modalities and are able to refine maps and sensor rig tra-
jectories, combining visual, LiDAR, IMU and GPS measurements. Future
work might focus on even larger optimization problems, which make use
of dense representations. A challenge with cross modality is the weighing
of the different modalities and optimization constraints. In most cases, it is
impossible to prove an optimal weighting for each measurement and error.
Optimization weights might be set by the user through the interactive user
interface to optimize qualitative state estimation accuracy. Once good settings
have been identified for a specific robot sensor rig, they might not need
further adjustments. An art, but with clever tooling and a fast feedback loop,
this might not be a big problem.

Multi-modality is one source that can be used to disambiguate information.
Another, is using multiple views and constructing a common 3D representa-
tion of the scene to correct errors and disambiguate between noisy sources,
which we talk about in the next section.

2.4 Multiple view geometry and 3D representations

Some people have the perspective that using 2D camera information alone
is enough to solve all or most computer vision tasks. They might think that
all you need as a powerful model and an active learning loop to iteratively
refine that model until the task is solved. We very much believe the opposite.

One issue with any individual predictions, is that they are almost certainly
sometimes wrong. When only using a single view, you kind of have to blindly
trust whatever inference is done on that one view. One might have several
ways or models to estimate the same information, and these predictions might
be combined, but any bias in the input view will be reflected in all results
computed from that data. Using multiple views allows disambiguating errors
made in any individual view.

Even if it was possible to perfectly solve 2D perception on RGB images,
robots still operate in 3D environments. Therefore, one would still have to
infer the third dimensions and the geometry of the scene. For this reason
alone, we believe building persistent 3D representations is crucial for robotics.

One problem with using multiple views, is that often these different views
are collected over time. Most 3D reconstruction methods assume that the
environment remains static over those observations. This is definitely not

40 conclusion and outlook

always the case. While it has been shown to be possible to use informa-
tion learned on static scenes to for example track or estimate the pose of
dynamic objects [77], solving the full problem of dealing with movement will
eventually be necessary as we move towards more complicated tasks. The
assumption of a static scene is a strong one, and one which is hard to let go
of. In dynamic scenes, some details might only be visible in a single view,
which makes triangulation impossible and some form of prediction or prior
might be required to make the problem feasible to solve. In the case of neural
radiance fields, some progress has already been made by leveraging object
segmentations, tracking and alpha blending [63] to deal with moving objects
and reconstructing them over time.

When using offline optimization and interactive user interfaces, one might
solve the problem in stages by first building an initial model of the scene, then
detecting the moving objects before asking the user to correct any mistakes
and finally running further optimization to build a final refined dynamic
model of the scene and the objects within.

Once the scene state has been reconstructed in a good model, one can imag-
ine using this model to synthesize further data and simulate new plausible
configurations of the scene.

2.5 Synthesizing data

In Paper II, we presented a system capable of synthesizing RGB frames and
segmentation masks for unseen views of the scene. These examples can be
fed into 2D perception algorithms to improve their robustness to changes
in viewpoints. Similar results have been observed by [80, 127, 148, 148]. We
believe that when used in moderation, such synthetic training data can be a
big help. One issue is that the data generated is not quite of the same quality
as the real data. There will be some differences in sharpness, unobserved
parts of the scene will not be of good quality and there will always be some
artifacts, however small. The synthetic data reflects the conditions present
when collecting the data it was derived from, meaning many things such
as object positions, lighting conditions and so forth cannot be randomized,
further biasing the datasets towards the training conditions. Therefore,
further randomization of the scene configurations might be required to really
make synthetic data work. If the scanned scenes could be automatically

2 outlook 41

edited into new plausible configurations from which realistic samples can be
drawn from, it would make bootstrapping perception systems much easier
for new applications.

In the case of NeRFs and other implicit scene representations, one chal-
lenge is that they are hard to edit. Therefore generating randomized scene
configurations with objects rearranged, randomized textures and lighting or
other environmental conditions changed remains challenging. The computer
graphics community has studied scene relighting [24, 98, 150, 158], which
might be applicable or yield some insights into how this could be achieved.
Other work has focused on editing neural radiance fields [22, 46, 54, 62, 151].
Such techniques could be applied to automatically edit and randomize scenes
scanned by our robots to diversify the datasets derived from them.

Another benefit of building high fidelity reconstructions of the environ-
ment, is that it makes it easier to construct realistic simulations of scenes
relevant to the robot. This seems to be used to some extent in the autonomous
driving industry, where components are tested in simulations against rare
synthetic scenarios that are simulated within detailed maps built from real
roads. We expect this to find its way into other robotics applications, as the
tools and methods to build such simulations develop.

2.6 Weak forms of supervision

In Paper IV, we made use of weak supervision in the form of Vision-Language
models trained on image caption datasets. We believe this to be a very rich
form of supervision and a promising path forward. Further, connecting
the 3D representations with language semantics is powerful and enables a
number of applications in planning through such representations.

The image-caption datasets on which vision-language models used today
are trained on, are simple still images scraped from the internet. By corre-
lating the captions with the images, one can learn powerful representations,
but learning about the dynamics of scenes, causal relationships or about
time dependent effects is hard. In the future, we envision that more complex
representations and reasoning will be learned from video datasets. Early
examples of such datasets include the Ego4D dataset [39].

The largest limitation holding our system back is the features used to
construct the vision-language feature field. The LSeg model is not very good

42 conclusion and outlook

on many classes and it has been shown that the fine-tuning [32, 55] done on
the CLIP model leads to catastrophic forgetting and reverses much of the
learning done on the massive weakly supervised dataset. Methods such as
CLIP [90] predict single vector valued embeddings for entire images, but
do not learn dense visual features which could be directly segmented or
grounded in a feature field. Some methods have tried to learn such fea-
tures purely from weak supervision via multi-scale fusion and evaluating the
learned CLIP visual encoder over the image at multiple scales [58]. This has
proven to work reasonably well, but does come with a high upfront prepro-
cessing cost and doesn’t currently lend itself to real-time methods. Others
have studied how to learn more fine-grained outputs using a CLIP style
contrastive objective [92, 145], by leveraging both self-supervised pretraining
and showing that using max-pooling to aggregate dense features in the loss
function learns better features that can more easily be segmented. [149] quite
similarly made use of sorting the feature maps to learn a better representation.
Such methods have yet to be demonstrated for higher output resolutions, but
with some further improvements, they might lead to scalable self-supervised
methods which yield pixel-aligned features that are robust in the long tail of
classes that are not present in curated, closed-set datasets. Combining these
methods with information inferred by other foundational models, such as
segmentation models [59] could be another interesting direction to explore.
So far, vision-language models have made mostly use of image-caption pairs,
learning from video and motion, could also be useful specifically for robotics
applications.

Another challenge with grounding these types of pretrained features into
3D representations, is that the features chosen have to be viewpoint con-
sistent. This means that if you observe the same 3D surface point from
two different directions, the feature corresponding to that point should be
the same regardless of the viewing direction. If the features are learned
purely from image-caption datasets, this property is hard to enforce. Some
early work has explored enforcing motion consistency within self-supervised
DINO features [157], with promising results. Such methods would likely also
help in learning dense vision-language features and feature fields. Another
avenue to make progress on this front, is to design a curriculum which maxi-
mizes learning, can make use of several modalities and datasets and avoids
catastrophic forgetting, which is what we talk about in the next section.

2 outlook 43

2.7 Dataset curation

With few exceptions, up until this point, machine learning within robotics has
been constrained by the amount of data available from real robots performing
in real environments. Using the techniques presented in this thesis and
leveraging ideas presented in this chapter, the day is likely to come when
we will have more data than we might be able to productively process. The
question then becomes "which of this data do we use and how?".

Vision-Language models and Large Language Models are already facing
this problem. Data is uploaded to the internet at rates far outpacing what
can be processed by current computers. A lot of this data is very repetitive
and certain issues and themes get a lot more air time than others. Another
example is autonomous driving, where there is no shortage of highway
driving data, but complicated rare situations are hard to come by. This biases
any models learned on this data towards the trivial information, instead of
focusing capacity on the subtle, interesting and hard cases, which are often
the important ones for systems deployed in the real-world.

Recent work in large language models and vision-language models has
shown that big gains can be made by finding hard examples [44, 89, 143]
within these image-caption datasets. [89] showed that trivial examples in
these datasets, such as product shots are not very helpful in training these
models. Such examples are usually simple pictures with a very clear connec-
tion between the caption and the image. They also find that CLIP is biased
towards text, and filter out examples containing text, as they don’t want
the model to learn to read, but rather the semantic and spatial context in
the images. Therefore, designing effective curricula might be a good path
forward to building more capable weakly supervised models. In the case of
robots, once we do have a database of scenes which far outpaces what we can
use and train our models on, it becomes important to not only filter out cases
where not much is happening in the scene, but also mine effective training
examples from the remaining data, such that we maximize learning. The field
of continual learning might also yield some insights into how to construct an
effective curriculum without forgetting previously learned information.

44 conclusion and outlook

3 general outlook

This thesis has been uniquely concerned with building perception compo-
nents as part of a modular manipulation system with other components
dealing with motion planning, control and high-level planning. Recently, im-
pressive results have been published on end-to-end learned systems [16, 108],
which tackle and learn all of these components jointly within one machine
learned architecture. These systems typically include very minimal assump-
tions on the intermediate representations used and simply see all of these
steps as a single end-to-end function approximation problem.

The rise of these fully machine learned methods has stirred a lot of contro-
versy within the robotics research community. In one camp are the tradition-
alists which think robotics only works if you build in many assumptions, run
simple control loops at very high rates and carefully engineer every single
part of your system. On the other side are the learning maximalists who
believe that end-to-end learning is the only way to go and thinking about the
specifics of individual tasks and problems is futile. All you need is data. As
of now, convincing evidence exists on both sides.

The learning maximalists are quick to point out The Bitter Lesson [122],
which states that in AI, only methods which leverage computation has
prevailed and that when given a choice between two methods, you should
pick the one which performs better under the assumption of infinite compute
and data. The transformer type architectures indeed do benefit from more
data and compute.

On the traditionalist side, the evidence lies in the fact that most impressive
results in robotics, such as from legged locomotion [57], mostly use simple
models with explicit physics and minimal learning. End-to-end learning has
made limited progress in localization and mapping, where the state-of-the-art
systems still make lots of assumptions, are carefully tuned and engineered.
While the demos are cool on the transformer side of things, the systems have
yet to demonstrate that they are capable of performing tasks day in, day out
with a very high level of reliability, which the explicitly modeled systems
have. A challenge with the end-to-end learned systems, is that they tend to
operate at much lower rates than traditional control systems, as they require
many more floating point operations to compute a single action. This could
change with more powerful hardware and more clever engineering.

3 general outlook 45

We for one, currently stand in the middle. We find it hard to believe that
robots of the future will simply have one big machine learning model as a
brain. We believe that any practical system will consist of many components
which you can inspect and ensure the correct operation of. These individual
components will increasingly be, and already are, learned from data. The
point about computation from the Bitter Lesson is a good one, and we believe
that one of the biggest things holding robotics back at the moment is the
lack of structured data to learn from. Every robot is different, datasets are
inconsistent, hard to combine and a lot hardware-specific issues need to be
considered even when learning from data. Even if individual components
would start merging together or some transformer-like learning machine were
to take over the scene, it would likely benefit from obtaining state estimates
or other information obtained from computer vision systems. We believe
the most promising path forward is to design methods which solve this
dataset creation problem and benefits all learned systems, whether modular
or monolithic.

Part A

K E Y P O I N T S

PA P E RI
S E M I - A U T O M AT I C 3 D O B J E C T K E Y P O I N T

A N N O TAT I O N A N D D E T E C T I O N F O R T H E M A S S E S

Kenneth Blomqvist, Jen Jen Chung, Lionel Ott, Roland Siegwart

abstract

Creating computer vision datasets requires careful planning and
lots of time and effort. In robotics research, we often have to use
standardized objects, such as the YCB object set, for tasks such as
object tracking, pose estimation, grasping and manipulation, as there
are datasets and pre-learned methods available for these objects.
This limits the impact of our research since learning-based computer
vision methods can only be used in scenarios that are supported
by existing datasets. In this work, we present a full object keypoint
tracking toolkit, encompassing the entire process from data collection,
labeling, model learning and evaluation. We present a semi-automatic
way of collecting and labeling datasets using a wrist mounted camera
on a standard robotic arm. Using our toolkit and method, we are able
to obtain a working 3D object keypoint detector and go through the
whole process of data collection, annotation and learning in just a
couple hours of active time.

Published in:
IEEE International Conference on Pattern Recognition (ICPR), 2022

© 2022 IEEE. Reprinted, with permission.

50 paper i: keypoints

1 introduction

Most modern computer vision methods use large datasets to learn to predict
features at run time. These have been demonstrated to enable many new
capabilities in robotic object manipulation. While the methods are impressive,
they are data hungry and require sizeable datasets of ground truth anno-
tations to train. If we could quickly and cheaply create datasets, we could
expand to more environments and enable many downstream tasks.

The data requirements force researchers of downstream robotics tasks to
either use standard objects, for which trained models and computer vision
pipelines have been made available, or a large investment has to be made
upfront to collect and label a dataset. Creating a dataset requires either hand-
labeling thousands of frames one-by-one, having a data collection setup with
environment markers, as done in [71], or a tool such as LabelFusion [77] can
be used to partially automate the annotation process. However, LabelFusion
requires mesh models of the objects. Creating a known model for objects in
turn requires a high-fidelity object scanning setup, which is often unavailable.
It also requires the objects to be rigid, or additional parameters need to be
estimated to model deformation. Additionally, the objects and environment
have to be such that depth sensors are able to accurately measure depth,
excluding reflective or transparent objects.

In this paper, our goal is to track category-level semantic points in an
object’s coordinate frame relative to the camera frame for downstream robotic
manipulation tasks. “Category-level" meaning that objects vary, but the intra-
category semantic meaning of keypoints are the same. Specifically, we want
a system with the following properties:

1. Can estimate 3D object keypoints on arbitrary objects

2. Requires little effort to handle novel objects

3. Can be used in the wild without having to use markers, motion tracking
systems or otherwise modify the environment

4. Does not rely on accurate depth sensing

5. Can track multiple objects simultaneously in the image frame

1 introduction 51

Figure 1: StereoLabel, our keypoint labeling tool. The user is presented with two
images of the scene to label. The images are selected to maximize the orthogonality of
the views.

Existing methods, such as PVN3D [48] and kPAM [37] require semantic
segmentation maps to train or they rely on external object instance segmenta-
tion. Semantic segmentation maps are time consuming to annotate, making
the systems more expensive to deploy in new scenarios and for new objects.

In contrast, we present a complete 3D object keypoint tracking system,
including both a learning-based object keypoint algorithm and a method to
very quickly obtain the training labels needed by the algorithm. Our method
builds on the insight that we can forgo using semantic segmentation maps to
distinguish between objects, if we instead introduce a center keypoint and
predict a center map that associates each keypoint with a center keypoint. The
amount of objects in the scene is inferred from the amount of detected center
keypoints. This makes the labeling task a lot faster, as we can simply label
2D keypoints instead of having to also create dense instance segmentation
masks.

We present a way to speed up data collection by capturing many views
of the scene and propagating labels from two labeled viewpoints to all the
others. We show that by calibrating our robot and making use of calibration
and the kinematics of a robot arm, we can forgo using a motion tracking
system or environment markers, as done by previous works. Using our
system, data can be collected in the wild wherever our robot goes. This
means that our tools can be deployed directly on the hardware intended for
the downstream robotic task, streamlining the full problem definition and
solution by avoiding additional steps. Calibrated robots are now commonly

52 paper i: keypoints

available and by using one, the data collection can be further automated and
enables collecting data autonomously.

We show two different versions of our learning-based algorithm that
leverages our data collection pipeline to track keypoints of multiple objects
in a scene. The first one uses both views of a stereo camera. The other one is
a variation of the algorithm that can work with a monocular RGB camera.

We validate our method and tracking pipeline in experiments on two
different object keypoint tracking scenarios. The first one is a single object
valve tracking scenario. The second is a multiple object cup tracking task,
showcasing that we can handle multiple objects simultaneously in a frame.
We show that using only 22.5 minutes of recorded data across 45 sequences,
and using less than 15 minutes of labeling time, we can learn a model that
can track keypoints on objects of interest. We demonstrate that the resulting
tracker is accurate enough to enable manipulation tasks, such as rotating a
valve.

Code for our project is made available at
github.com/ethz-asl/object_keypoints.

2 related work

2.1 Datasets and Labeling Tools

Several object pose datasets have emerged which use ground truth meshes.
The most commonly used meshes are of the YCB object set [17]. The YCB-
video dataset from [141] provides labeled 6D poses for objects in RGB images.
The authors demonstrated that the dataset was capable of training their
PoseCNN 6D object pose estimator. An initial estimate of the object poses
from PoseCNN were used to generate the YCB-M dataset [40]. This dataset
was collected with seven depth cameras and they used fiducial markers and
depth refinement to obtain the common frame of reference between cameras.
While a robot arm was used to facilitate data collection, the authors did not
use the kinematics of the robot nor did they use hand-eye calibration in the
labeling process. Moreover, both of these datasets are limited to the YCB
object set. [129] uses object models, simulation and rendering to obtain a
dataset of ground truth object poses.

https://github.com/ethz-asl/object_keypoints

2 related work 53

While other labeling tools exist to create datasets of a priori unknown
objects, these often have other limitations. [116] provides a semi-automated
tool for creating 2D and 3D bounding box labels for multi-object scenes
in RGB-D video. Their algorithm uses a GrabCut-based approach [97] to
interpolate annotations over timesteps. However, the user still needs to adjust
the propagated bounding boxes in each of the following frames. LabelFu-
sion [77] can handle cluttered scenes, however, object meshes are required
and must either be given or created manually using a scanning routine (e.g.
with a handheld scanner or turntable). Our proposed method avoids this
requirement altogether.

Finally, several methods train keypoint detectors using only a small set
of labeled data. Simon et al. [111] bootstrap a keypoint detection dataset
for hand pose estimation using multiple views of the scene. The authors
ensure that each iteration introduces new information via multiview geometry.
However, because of this, performance is tied to the number of cameras in
the setup. Multiview geometry is used by [147] for human and animal pose
estimation by deriving a differentiable semi-supervised loss function which
is equivalent to minimizing epipolar divergence. They show that they can
train a keypoint detection network using a large set of unlabeled images and
comparatively few labeled images.

2.2 Object Keypoints and 6D Pose Estimation

Methods exist which predict keypoints, in 2D or 3D, to calculate the 6D
object pose. Some estimate 2D points on an RGB image and solve for the
pose using a PnP algorithm [50, 85, 86, 126, 152]. Others predict keypoints
directly in 3D space [48, 123]. 6-PACK [135] presents a way to track single
objects in real-time using keypoints which emerge in an unsupervised way.
As the keypoints are learned end-to-end, additional components such as an
attention mechanism are required in their keypoint tracking pipeline. S3K
[133] is a self-supervised approach to learn semantic 3D keypoints. Similar
to our approach, the authors use multiple camera views to propagate labels
across images. However, in their case, they require a four-camera setup while
our method is designed to work with a single camera. NOCS [136] uses a
representation shared within an object category. The authors learn a model
to regress to this representation from RGB and depth maps. PVN3D [48]

54 paper i: keypoints

learns a model which produces semantic segmentation maps as well as per
pixel keypoint and center votes from RGB-D frames. Similarly to PVN3D, we
use a center prediction map to track multiple objects. However, PVN3D uses
ground truth semantic instance segmentation maps to distinguish objects
from each other, which are hard and expensive to label. We avoid this by
associating keypoints directly with their corresponding object’s center. This
also circumvents the need for the expensive clustering step to aggregate
pixel-wise predictions.

KPAM [37, 76] presented a way to track category-level object keypoints.
However, their system can only track single objects due to the integral pose
regression step it relies on [120]. Furthermore, for the same reason, it can’t
deal with many keypoints of the same type. KeyPose [71] is an object key-
point detection method and dataset, which also uses stereo views of a scene.
This method is only applicable in single object scenes; detected keypoints
are not associated to objects, which makes tracking multiple objects infeasi-
ble. Further, KeyPose only works with objects that have unique keypoints.
Modeling objects such as the valve in our experiments is not possible, as
it has several ambiguous keypoints. This limitation is due to the spatial
softmax operation that is used in the output heatmaps. The dataset collection
method proposed by KeyPose relies on fiduciary tags that are placed in the
scan environment. We propose and demonstrate the feasibility of a method
that does not require modifying the environment and that relies solely on a
calibrated robot with a camera.

3 method

Here we describe the components of our framework: the hardware setup,
the procedure to collect video sequences with camera poses, our algorithm
to compute ground truth labels, a stereo multiple object keypoint detection
pipeline and a variation that uses only a monocular RGB camera.

3.1 Hardware Setup

Our method requires a calibrated image sensor along with a way to control
it into different known viewpoints. For this, we use a StereoLabs ZED Mini
stereo RGB camera, mounted on the wrist of a Franka Emika Panda robot

3 method 55

Prediction
Step

Keypoint
Extraction Object

Association

Left-to-right
Keypoint

Association

2D-to-3D Lift

Triangulation

RGB frame(s)

Heatmap(s) 2D keypoints 2D object keypoints Associated 2D keypoints

3D keypoints

3D keypointsCenter map(s)

Keypoint depth

Triangulation-based
(stereo)

Depth-based
(monocular)
Both

Figure 2: The components for both of the proposed keypoint tracking pipelines.

arm. The robot arm has accurate encoders at each joint which give readings
on the position of each joint. Using a model of the robot and the position
readings, we can accurately compute the position of the wrist, relative to the
base frame of our robot.

We compute the intrinsic parameters and left-to-right-camera transfor-
mation of the stereo camera using Kalibr [84]. The wrist-to-camera frame
transformation we calibrate using the ethz-asl/hand_eye_calibration package
[36].

3.2 Data Collection

For training a neural network to detect keypoints, we need a dataset of image
frames and a set of keypoint locations for each image. To obtain these, we
collect 30s long sequences while our robot scans the target objects, observing
the objects from multiple viewpoints. We save the pose of both camera
frames, relative to the base frame of the robot and the RGB frames from the
left and right camera sensors. In the next section, we describe how we obtain
the keypoints in image coordinates for each image.

3.3 StereoLabel: Labeling and Generating a Dataset

For each object category of interest, we define a set of keypoints that is most
convenient for manipulating objects from the category. For example, in the
case of coffee cups, we can define the keypoints to be the bottom center,
center top and the outermost point on the handle of the cup (see Fig. 1). This

56 paper i: keypoints

allows us, if desired, to solve for the orientation of the cup. Or, we can grasp
the cup by approaching the cup from the top center and grasping the side
wall of the cup with a parallel jaw gripper. If there are several ambiguous
keypoints, as is the case for the valve in our experiments (see Fig. 3(a)), then
all occurrences of the keypoints are labeled and considered to be of the same
type.

We developed a tool, StereoLabel, to label 3D keypoints from a sequence
of images taken from different viewpoints. Fig. 1, shows the tool in use. The
user is shown image frames from two viewpoints. The viewpoints are picked
such that the z-axes of the image frames are as close to perpendicular as
possible. The image frame is defined to be z-axis forward, y down and x
to the right of the image. The user labels 2D keypoints on both frames by
clicking on the keypoint location in the image. In case a specific keypoint is
occluded or otherwise hard to pinpoint, the user can swap out either frame
with a new one.

Once corresponding keypoints are labeled, we triangulate their 3D posi-
tions in the base frame of our robot using the homogeneous direct linear
transformation method [4]. We backproject the triangulated points to both
frames using each frame’s projection matrix, so that the user can validate
that the point was appropriately placed. The user can further validate correct
placement by cycling through images in the sequence by pressing a button
and checking the backprojected points. In addition to the labeled keypoints,
we augment the set with one additional 3D keypoint; this is the average of
all the other 3D keypoints which we call the center keypoint.

Once we have all the image sequences labeled and triangulated, we can
generate a dataset for training a computer vision model. Fig. 2 shows the
proposed triangulation-based (stereo) and depth-based (monocular) keypoint
tracking pipelines. For each frame in a sequence, we create a set of ground
truth heatmaps, one heatmap for each type of keypoint. Should there be
several keypoints of the same type, we pack them onto the same heatmap.
We compute the 2D image coordinate for each 3D keypoint by backprojection.
We place a Gaussian distribution over the 2D keypoint location computed
using an RBF kernel (output of the prediction step in Fig. 2). Finally, we
normalize each heatmap to have values in the range [0, 1].

As there might be multiple objects in a frame, we compute 2D vector fields
with vectors pointing from non-center 2D keypoints to the center keypoint.
We compute one vector for output pixel having a non-zero heatmap value.

3 method 57

With the center maps, we can associate keypoints to objects and detect
multiple objects in a frame.

For the monocular version of our pipeline, we additionally compute a
keypoint depth map containing the z-value of each 3D keypoint for each
pixel within a fixed radius from each keypoint.

3.4 Learning the Keypoint Network

We use a convolutional neural network (CNN) to predict the heatmaps,
along with center maps. We use CornerNet-Lite [64] as a backbone network.
CornerNet-Lite is a stacked hourglass-style CNN architecture. The input
is first downsampled through a series of convolutional layers and then
upsampled through transposed convolutional layers in an hourglass module.
Two hourglass modules are composed together.

We predict target maps with two prediction modules which take as input
the output of each respective hourglass module. The prediction modules
consist of three convolutional layers with batch normalization, 1×1 kernels
with stride 1 and relu activation functions, except for the last layer. We use
sigmoid activation functions at the heatmap heads and no activation function
for the center map and relu for the depth map.

The input to our network has size 511×511 pixels and the output map res-
olution is 64×64. We initialize the backbone network weights by pretraining
on COCO [68].

We use three types of losses to train our network: a heatmap loss, a center
loss and a depth loss. For the heatmap loss we use binary cross entropy:

Lh = −

C∑
c=1

H∑
i=1

W∑
j=1

ycij logpcij + (1− ycij) log (1− pcij). (1)

pcij is the predicted heatmap value for a keypoint of type c at output index
i, j. ycij is the ground truth heatmap value for keypoint map c at index i, j.
C, H and W denote the amount of keypoint types, and the height and width
of the output maps.

58 paper i: keypoints

For the center loss, we simply use a smooth L1 loss:

Lc =

C∑
c=1

H∑
i=1

W∑
j=1

smooth_L1(ĉcij − ccij)y̌cij, (2)

where ĉcij is the center vector prediction for keypoint type c at index i, j.
ccij is the corresponding ground truth center vector. y̌cij is a binary value
denoting whether the heatmap value for keypoint type c at index i, j is
nonzero. The smooth L1 loss is squared below a value of 1 and linear
otherwise and is applied elementwise.

To enable using a monocular camera, we additionally need an estimate of
how far along the z-axis each keypoint is. To do this, we predict a pixelwise
depth estimate for each keypoint type. We learn this using an L1 loss function:

Ld =

C∑
c=1

H∑
i=1

W∑
j=1

∥∥zcij − ẑcij∥∥1 y̌cij, (3)

where zcij is the ground truth depth value for keypoint c at location i, j,
while ẑcij is the corresponding estimate.

All losses are applied at both stages of the hourglass network and are
combined by weighting parameters λ·:

L = λh(Lh1 + Lh2) + λc(Lc1 + Lc2) + λd(Ld1 + Ld2). (4)

Lh1 denotes the heatmap loss at the first hourglass, Lh2 for the second
hourglass, Lc1 the center loss for the first hourglass and so forth. When
training the triangulation-based pipeline, we set the depth loss weight λd to
0 to disregard it entirely. We train our network using the dataset generated
in Section 3.3.

3.5 Keypoint Extraction

At runtime, we extract keypoint locations from the heatmaps by first applying
a version of non-maxima supression, where we zero the non-maximum values
in 5×5 regions surrounding each location. We then zero out all values below
a threshold of 0.25. From each of the remaining heatmap values, we compute
keypoint locations by weighing image indices by the predicted heatmap

3 method 59

density in a 5×5 region on the unprocessed heatmap predictions centered at
the maxima location.

For each non-center keypoint, we compute the object center estimate by
summing the center vector with the corresponding image index. We associate
each keypoint with the center keypoint closest to the keypoint’s predicted
center position in pixel coordinates.

3.6 Keypoint Association and Triangulation

After predicting and extracting keypoints in left and right image frames, we
need to associate each keypoint in the left frame, to its counterpart in the
right frame. To do this, we select the keypoint in the right image where x′Fx
is below a cutoff value of 32.0. F is the fundamental matrix derived from the
camera calibration, x is the homogeneous pixel coordinates of the keypoint in
the left image and x ′ is the homogeneous pixel coordinates of the keypoint
in the right image.

If several keypoints match, which happens when two keypoints are on the
epipolar line, we shift the point by a fixed amount and pick the closest match.
The fixed shift is equivalent to the difference in pixel coordinates between
a point, projected onto both the left and right image frames, that is 60cm in
front of the center of the left camera frame.

Finally, we triangulate the 3D location of the keypoints using the same
direct linear transformation method used when creating the dataset.

3.7 2D-to-3D

In the monocular version of our pipeline, we use the depth prediction,
combined with the camera matrix K to compute the 3D point X corresponding
to the 2D detection x:

X = K−1xẑ, (5)

where ẑ is the depth estimate for keypoint x.

60 paper i: keypoints

4 experiments

We are interested in the following questions:

• Can we use our method to quickly build up object keypoint tracking
datasets?

• Can we train our keypoint tracking method on an amount of data that
can be easily collected by one user?

• Is the object tracking performance good enough to enable robotic
manipulation?

4.1 Valve: Single Object Tracking

In this experiment, we track a valve with three spokes. We define four
keypoints: one at the center hub of the valve, and three at the front center
points where the spokes meet the rim of the valve, shown in Fig. 3(a). The
three keypoints at the rim are indistinguishable from each other, and are thus
considered to be of the same type and packed onto the same heatmap.

We collect 50 sequences of 30s using our data collection method, which we
label using StereoLabel. The sequences differ in object arrangement, clutter,
occlusion, background and lighting conditions. We split the resulting dataset
into 45 sequences for training and 5 sequences for testing.

4.2 Label Accuracy

Our semi-automatic labeling approach has a few sources of error: syn-
chronization between camera frames and joint encoder readings, intrinsics
calibration error and hand-eye calibration error. These all result in some
error in the triangulation and reprojection steps of our pipeline. Without the
ground truth 3D keypoint locations, we instead manually label 2D keypoints
frame-by-frame on 100 randomly sampled frames in our valve dataset and
compare the human labels to ones produced by our system. This allows
us to quantify how much the 2D keypoint labels drift as we observe the
target object from different viewpoints. As the user does not always place the
keypoints perfectly, even the human labels will have some error. We therefore

4 experiments 61

(a) (b)

Figure 3: (a) Valve setup showing keypoints for the value. (b) An image from the cup
tracking scene.

establish a baseline by doing two manual frame-by-frame labeling passes to
measure the variance.

4.3 Comparison with KeyPose

We compare our method against KeyPose [71]. KeyPose doesn’t support
multiple objects nor is it possible to detect keypoints on objects with multiple
keypoints of the same type. We therefore can’t run KeyPose on our datasets,
but instead opt to evaluate our method on the KeyPose mugs dataset.

4.4 Cups: Multi-object Tracking

In this experiment, we seek to track up to four cups simultaneously in a
scene. We collect a dataset with 100 sequences observing the cups from
various viewpoints, varying the number of cups between 1 and 4 in the scene,
changing the clutter, lighting conditions and background of the scene across
sequences. For each scene, we randomly select between 1 and 4 cups from a
set of 25 different cups. We split this dataset into 87 sequences for training
and the rest for testing. We split the sequences such that 2 cups only ever
occur in the test set.

62 paper i: keypoints

5 results

5.1 Valve: Single Object Tracking

We timed how long it takes to label a sequence of images. Labeling a pair of
valve images took us just under 15 seconds. With 50 sequences, this makes
for a total of ∼12 minutes and 30 seconds to label all 19’507 frames in our
dataset.

Table 1 shows the keypoint tracking performance on a held out test set.
Mean refers to the mean error of the 3D keypoints in centimeters. xy is the
mean error, disregarding the depth axis in the left camera frame of reference.
< 3 cm is the percentage of measurements that were within 3 centimeters
of the labeled ground truth location. 25th and 75th respectively denote the
25th and 75th percentiles of the combined keypoint errors. GT refers to the
tracking performance using ground truth heatmaps and center maps as input
with the stereo pipeline, Stereo is the stereo pipeline with a learned model,
Mono is using only the left view of our stereo camera and our monocular
pipeline.

Both the stereo- and depth-based pipelines perform reasonably well. For
both pipelines, errors are within the range of the width of a parallel jaw
gripper, and much smaller in scale than the size of the object.

Valve Manipulation

We deployed our keypoint tracking system on a mobile manipulation system.
The goal of the experiment was to use the system to rotate the valve in
Fig. 3(a) using the manipulator. In this case, we know the type of the valve
and have a CAD model of it. We first detect the valve using keypoint tracking,
and when we have detected all four keypoints (center and three spokes),
we further refine the pose using ICP to match the depth readings from our
camera to the object model. After refining the object pose, we command the
arm to track a trajectory that rotates the valve. See the supplementary video
for a successful completion of the task.

5 results 63

5.2 Label Accuracy

Comparing our generated keypoints to a manually labeled dataset, we found
that the mean label difference is 6.3 pixels on average with a standard
deviation of 3.4 on images with a size of 1280x720. Comparing two manually
and separately labeled instances of the same datasets yield a mean difference
of 2.9 pixels with a standard deviation of 1.7 pixels. While the manually
labeled examples have slightly less variance, they are of the same order of
magnitude for both methods.

5.3 Comparison with KeyPose

Table 2 shows results on the KeyPose mugs dataset evaluating on the unseen
mugs_0 instance. Keypose performs slightly better. We attribute this to its
more restricted problem formulation and the learned stereo image fusion
employed in its network architecture.

5.4 Cups: Multi-object Tracking

It took us an average of 19 seconds to label a scene with 2 cups. Which makes
for a total of roughly 32 minutes to label the 66’419 frames in our dataset.

Table 1 shows the accuracy when tracking multiple cups on a held out test
set. Similarly to the valve tracking experiment, the error is larger in the depth
direction. Performance of both the stereo and depth pipelines is acceptable,
i.e. errors are within the width of a parallel jaw gripper. Performance is
slightly worse than on the valve tracking experiment. However, we note
that this is a harder task with several different objects and significantly more
keypoint occlusion.

Failure modes for both pipelines include misdetecting a keypoint or as-
sociating a keypoint with the wrong object. Failure modes of the stereo
pipeline also include misassociating keypoints from left-to-right and a bad
triangulation due to slightly misdetected 2D keypoints. Additionally, both
approaches fail when two keypoints of the same type align, either from the
same or different objects, and occlude each other. In such cases, the keypoints
will get detected as one and the center prediction might point toward either
object in the case of multiple objects.

64 paper i: keypoints

Table 3 shows how long each step of our stereo pipeline takes on average
for our implementation. The measurements were made on a computer with
an Nvidia RTX 2080 GPU and AMD EPYC 7742 CPU.

6 discussion and conclusions

In this paper, we presented a method to quickly collect and label object
keypoint tracking datasets and a system that learns to recover the labels at
runtime on unseen examples. We showed that we fully rely on calibration
to avoid having to place markers in the environment. In experiments, we
showed that we can generate accurate object keypoint labels much quicker
than using a 2D labeling approach, while also annotating the z-dimension and
without having to create segmentation maps. We showed that our presented
system is able to detect keypoints on multiple objects simultaneously at real-
time rates, using the produced datasets. We showed that it can be successfully
used as part of a system to solve real world manipulation tasks.

While we presented two different keypoint tracking algorithms, the actual
keypoint and object detection algorithm can be replaced with any other
pipeline, as long as the labels can be derived from our data collection method.
Additional information about the objects could also be used to further im-
prove the estimated keypoints. The Perspective-n-Point algorithm could be
used for known objects or a category-level object model could be fitted to the
keypoint detections to further improve them, similar to what is used in [144].
Additional computation could be traded for accuracy by predicting keypoint
heatmaps at a higher resolution. The 64x64 pixel output resolution we used
is quite limiting.

One weakness of our data collection method, is that it relies on measure-
ment timestamps from different sensors. On our platform, these are not
hardware synchronized. Some cameras can be tightly synchronized, while
triggering boards such as the VersaVIS board exist [132] which are able to
synchronize several cameras and IMUs. Extending these to cover other types
of sensors, such as joint encoders, would improve the usability and accuracy
of our proposed method.

Finally, when collecting our data, we manually guide the robot into dif-
ferent viewpoints. This could be automated. Furthermore, the robot could
semi-autonomously improve upon an initial learned model using an active

7 acknowledgements 65

learning type approach. Different models and viewpoints could be used to
bootstrap a dataset, similar to what is done in [111].

7 acknowledgements

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under project PILOTING No H2020-ICT-
2019-2 871542 and under grant agreement No 101017008 (HARMONY).

66 paper i: keypoints

Table 1: Results from the valve and cup tracking experiments.

Valve
Method Mean (cm) xy (cm) < 3 cm 25th (cm) 75th (cm)

GT 0.39 0.18 99.3% 0.17 0.30

Stereo 3.63 1.43 59.5% 1.29 4.26

Mono 2.99 1.06 65.0% 1.61 3.55

Cups
Method Mean (cm) xy (cm) < 3 cm 25th (cm) 75th (cm)

GT 1.14 0.39 97.7% 0.09 0.22

Stereo 6.71 2.24 68.5% 1.29 3.53

Mono 3.1 1.56 62.2% 1.43 4.02

Table 2: Our monocular pipeline on the KeyPose mugs dataset.

Method MAE (cm) < 2 cm

KeyPose 1.6 78.6%
Ours monocular 2.0 66.4%
Ours Stereo 1.9 69.7%

Table 3: Time spent on each step of the stereo pipeline.

Stage Mean time (ms)

Prediction 32.9
Keypoint extraction 6.8
Object association 0.62

Left-to-right association 0.1
Triangulation 0.2

Part B

S E G M E N TAT I O N A N D S Y N T H E S I Z I N G D ATA

PA P E RII
N E R F I N G I T: O F F L I N E O B J E C T S E G M E N TAT I O N

T H R O U G H I M P L I C I T M O D E L I N G

Kenneth Blomqvist, Jen Jen Chung, Lionel Ott, Roland Siegwart

abstract

Most recently proposed methods for robotic perception are based
on deep learning, which require very large datasets to perform well.
The accuracy of a learned model is mainly dependent on the data
distribution it was trained on. Thus for deploying such models, it
is crucial to use training data belonging to the robot’s environment.
However, collecting and labeling data is a significant bottleneck,
necessitating efficient data collection and labeling pipelines. This
paper presents a method to compute high-quality object segmentation
maps for RGB-D video sequences using minimal human labeling
effort. We leverage the density learned by a Neural Radiance Field
(NeRF) to infer the geometry of the scene, which we use to compute
dense segmentation maps using a single 3D bounding box provided
by a user. We study the accuracy of the computed segmentation maps
and present a way to generate additional synthetic training examples
observing the scene from novel viewpoints using the learned radiance
fields.
Our results show that our method is able to compute accurate seg-
mentation maps, outperforming baseline and state-of-the-art methods.
We also show that using the synthetic training examples improves
performance on a downstream object detection task.

Published in:
IEEE International Conference on Robotics and Automation 2023, 2023

© 2023 IEEE. Reprinted, with permission.

70 paper ii : segmentation and synthesizing data

1 introduction

Robotic manipulation tasks require robots to detect and compute the pose
of objects. The majority of perception methods used in robotics today are
based on supervised learning [48, 69, 76, 141] and require large amounts of
labeled training examples to fit parameters [121]. Many approaches have been
devised to learn in an unsupervised or self-supervised fashion to circumvent
the need for human annotated data. However, these tend to not work as well
as supervised alternatives and can usually benefit from annotated data [56].

For semantic segmentation, images are usually labeled by drawing poly-
gons on individual image examples, which can be extremely time-consuming.
The cost of producing labeled datasets quickly exceeds levels that can be
sustained by most robotics applications. LabelFusion [77] presented a system
to rapidly annotate RGB-D data by building dense reconstructions of the
environment. It can be used to compute 6D pose labels for objects with a
known model. While this approach works very well when object meshes
are given, in most cases, such models are not available. Additionally, intra-
category variation or the fact that objects deform, can make relying on object
models impractical. Having a tool that can very quickly provide ground-truth
labels in the case of unknown object models, would allow us to deploy more
powerful supervised learning algorithms where it previously has not been
possible.

To overcome the need for ground truth mesh models of objects, we intro-
duce a pipeline to generate semantic segmentation maps, 6D poses and 3D
bounding boxes of objects for handheld RGB-D video sequences. Our method
leverages neural radiance fields (NeRFs) [79] to recover the 3D structure of
the scene and uses the learned NeRF model to compute object segmentation
maps and bounding boxes of objects in each RGB-D frame.

NeRFs learn an implicit representation of a scene using only RGB images
and known camera poses. As active depth sensors are increasingly common
on robotic platforms, we propose to use depth measurements as an additional
supervision signal to the NeRF model. We show that depth supervision
reduces the amount of shape artifacts present in the recovered 3D shape
which is crucial for generating accurate segmentation maps. Using NeRFs
to represent the scene has the additional benefit that we can synthesize new
viewpoints of the scene. We leverage this to generate additional synthetic
training data examples for the task. We study the quality of the synthesized

2 related work 71

training examples and show that these do in fact improve the performance of
a learned model on a downstream object segmentation task.

To summarize, our contributions are as follows:

• A pipeline that computes scene reconstructions and high quality se-
mantic segmentation maps for RGB-D image sequences using a depth-
supervised formulation of NeRF.

• A method to generate additional training examples by synthesizing
novel viewpoints and computing the target labels.

We evaluate our proposed pipeline on a large variety of different objects.
We compare the quality of the produced labels against frame-by-frame an-
notated semantic segmentation maps and two different baseline methods.
The first one using a ground truth mesh model of objects and the second
using TSDF integration that does not require object models. Additionally,
we compare against a state-of-the-art object annotation pipeline, Rapid Pose
Labels [112]. We evaluate the effectiveness of our data augmentation scheme
on a downstream object detection task.

2 related work

2d annotation and active learning Annotated images are
needed for learning tasks such as object detection, keypoint detection or
semantic segmentation. Human labeling can be expedited by tools that allow
directly drawing on the image [99] or by reducing the problem of creating
semantic masks to a keypoint annotation task [75]. Active learning [104] has
also been incorporated to speed up the creation of ground truth datasets
by applying pixelwise or viewpoint entropy [107, 109] to achieve equivalent
performance using only a fraction of the training data. Such methods could
very well be used in conjunction with our approach to make use of the
different viewpoints we recover in the preprocessing step to further reduce
the labeling burden.

3d data annotation While several 3D scene datasets exist [2, 9, 26,
27, 128] the goal of this work is to enable users to easily generate their
own annotated datasets specific to their task. Existing tools can triangulate
2D annotations into 3D from multiple known viewpoints [11, 71]. Other

72 paper ii : segmentation and synthesizing data

methods directly label objects in 3D using known object models [77] or
through explicit scene differencing as objects are incrementally introduced
[118]. RGB-D annotation can also be sped up by leveraging structure in
point cloud data, either by propagating labels over successive frames [5] or
via GrabCut [97] based approaches [116]. Each of these methods present
restrictions either in terms of how the data is collected (manual modification
of the scene, reliance on accurate depth) or they do not provide the full
spectrum of 3D annotations (no segmentation masks, depth map or scene
mesh).

Rapid Pose Labels [112] is the current state-of-the-art system for labeling
object poses, segmentation masks, and bounding boxes for raw RGB-D video
where CAD models of the objects are not available. Nevertheless, it requires
multiple scans of the same object and cannot be applied to articulated or
deformable objects. It assumes that depth measurements are available for all
labeled 2D keypoints, hindering its application on reflective or transparent
objects. Additionally, the method requires post-processing the generated
object point clouds, which requires extra work per object type. Our method
is able to address each of these limitations and we compare against Rapid
Pose Labels in our experiments.

neural radiance fields NeRF [79] introduced neural radiance fields
as a way to encode the appearance of a scene into a neural network and
realistically synthesize novel views of the scene. Since its inception, many
variations have been introduced to improve object and scene recontruction
using RGB only [148] or in combination with depth supervision [7, 29]. NeRFs
have also been extended to infer semantic information [161, 162] and can also
use this channel to improve geometry reconstruction [35]. Similar to [162]
we make use of depth maps to supervise the NeRF model and produce high
quality semantic segmentation maps with little human effort. However, our
method does all learning and heavy processing in an offline step and does
not require large amounts of computation while using the system making it
suitable to run online onboard a robot.

3 method 73

3 method

Our goal is to obtain high quality semantic segmentation maps, 3D bounding
boxes and 6D poses of objects for each frame in a handheld RGB-D image
sequence. Specifically, in the case where the objects vary from sequence to
sequence and we do not have access to CAD models of the objects.

We propose a pipeline which consists of the following steps:

1. Compute camera poses for each frame.

2. Compute a 3D point cloud of the scene.

3. Learn a depth-supervised NeRF model of the scene.

4. Annotate objects with bounding boxes using a 3D graphical user inter-
face.

5. Compute dense semantic segmentation maps using the learned NeRF
model and the 3D bounding box labels.

3.1 Obtaining Camera Poses

As a prerequisite step, we have to compute camera poses for each RGB-D
frame to propagate bounding box labels between frames and to train the
NeRF model. In our experiments, we do this using hloc [100, 101], which
we run on all the frames in our video sequence. We then scale the resulting
trajectory by finding the scale factor that minimizes discrepancy between
measured depth and points triangulated by hloc while filtering outliers in
a RANSAC loop. However, we note that any other method can be used to
compute metrically scaled camera poses. Given the camera poses and RGB-D
frames, we can reconstruct a point cloud of the scene.

3.2 Learning a NeRF Model of the Scene

We use a NeRF [79], basing our implementation on JaxNeRF [28], to infer the
geometry and appearance of a scene. The idea behind the NeRF algorithm,
is to trace rays from known camera positions into the scene, and learn a
radiance field that maps 3D points and viewing direction to color and density

74 paper ii : segmentation and synthesizing data

values. The radiance field is modeled as a multi-layer perceptron (MLP).
Image pixel values are obtained using differentiable volumetric rendering.

Neural radiance fields have many advantages. They learn a continuous
representation of the scene that does not require setting any parameters,
such as resolution, per-scene or task. The level of detail captured is mainly
constrained by the capacity of the model learning the radiance field and the
captured images. The only parameters that need to be set are the near and
far bounds used for sampling. As we are dealing with RGB-D sequences,
these can be set automatically to match the minimum and maximum depth
readings in the clips. The MLP we use for predicting the density has 8 layers
with 256 neurons and the view direction conditioned RGB network has a
single layer with 256 neurons.

Following [79], we define a photometric loss:

Lphoto =
∥∥∥Ĉ(r) − C(r)

∥∥∥2
2

, (1)

where C(r) is the ground truth and Ĉ(r) the predicted color.

In our initial tests, we observed that due to the shape-radiance ambiguity
[156], reconstructing the scene using only the RGB images and known camera
poses does not yield very good results for many types of scenes. Planar
surfaces would get reconstructed as uneven or density would get assigned to
free space. We therefore add a depth loss to help the model disambiguate
and learn from the captured depth maps where available:

Ldepth = δ(r)
∥∥D̂(r) −D(r)

∥∥
1

, (2)

where δ(r) is 0 where we don’t have a depth measurement and 1 otherwise,
D(r) is the ground truth and D̂(r) the predicted depth. We optimize the
model using gradient descent, by minimizing the combined loss:

L(r) = Lphoto(r) + λdLdepth(r), (3)

where λd is a weighting parameter to balance the photometric and depth
loss. In our experiments, we study the impact of this parameter.

3 method 75

Figure 1: Example of sampled viewpoints. The original trajectory is shown in black,
the red (x-axis), green (y-axis) and blue (z-axis) axes are the sampled poses.

3.3 Computing Object Labels

We use a graphical user interface to place 3D bounding boxes around objects
of interest in the reconstructed point cloud of the scene. An example of this
process is shown in the supplementary video. To compute segmentation
masks, we render completed dense depth frames for each frame in our
scan using the learned NeRF. We then convert each depth frame to a point
cloud using the camera intrinsic parameters. Using the camera pose and
object bounding boxes, we classify each point in the point cloud according
to the object class and throw away points not belonging to any object. By
re-projecting the object points back to the image frame, we obtain a dense
segmentation mask of each object. We compute 2D bounding boxes for
detection by computing the tightest bounding box containing the segmented
object. Object poses can be computed by transforming the 3D bounding box
pose into the camera coordinate frame.

3.4 Generating Synthetic Training Examples

NeRFs are able to synthesize high fidelity images from novel viewpoints,
provided that the surfaces in the scene have been observed from a similar

76 paper ii : segmentation and synthesizing data

viewpoint and the free space between the novel viewpoint and the scene
surface has been observed. We design an algorithm to automatically sample
suitable poses and compute color, depth and segmentation mask triplets for
these novel viewpoints. In our experiments, we investigate whether such
synthetically generated training examples actually improve performance of a
learned model on a semantic object segmentation task.

To automatically sample viewpoints from a scene, we first compute a
bounding box of camera poses in an object’s coordinate frame and then
sample camera positions uniformly inside this bounding box. We filter out
positions which are too close to a structure as measured by distance to the
closest point in the point cloud. Next we compute a viewpoint orientation
that points the camera at an object in the scene. We then shift the orientation
by a random rotation uniformly sampled from [−π/4,π/4] rad for the x and
y axis and [−π,π] rad for the z-axis, where the z-axis points forward, x to
the right and y downwards in the image. Sampled frames are visualized in
Figure 1.

4 experiments

We capture a number of indoor and outdoor scenes with a variety of objects
to evaluate our method. Data was collected using Apple iPhone 12 Pro
smartphones, which are equipped with a time-of-flight depth sensor. We
train on images that have a resolution of 960× 720 pixels and depth frames
have a lower resolution of 256× 192 pixels, which we upsample to match the
color images.

4.1 Label Accuracy

To validate the quality of the labels produced by our proposed method, we
evaluate the semantic segmentation maps of our approach with two baseline
methods and compare them to manually annotated semantic segmentation
maps that are obtained by drawing polygon shapes over the objects on
individual images. The first baseline method involves segmenting the scene
directly from the captured depth maps using the user provided bounding
box. To produce the segmentation map, we first convert the depth map to a
point cloud using camera intrinsic parameters. We then classify each point as

4 experiments 77

being inside a bounding box or not and reproject them to the image frame to
obtain the segmentation mask. The second baseline uses the mesh obtained
through TSDF integration [25, 83] with a voxel size of 0.5cm and running
marching cubes. We cut out the object from the mesh using the provided
bounding box and render the cut out objects as a segmentation map.

Table 1 shows the mean intersection-over-union (mIoU) agreement across
different scenes for the different methods against the manually annotated
semantic segmentation masks; qualitative results can be seen in Figure 2.
The NeRF-based method performs consistently better. As the depth maps
captured by RGB-D sensors are noisy and have many pixels with no mea-
surement, they produce significantly worse segmentation masks, especially
for transparent and reflective objects. In some cases, the TSDF-based pipeline
performs similarly to NeRF, especially for simple shapes where depth maps
are of good quality, namely the fire hydrant and the park bench. Similarly,
the TSDF baseline also struggles on transparent (wine glass, teapot) and
reflective objects (cars, wine bottles). The NeRF approach does much better,
though the masks are not quite as good in the case of the transparent objects.
Figure 3 shows some of the failure cases of the NeRF-based approach, where
object segmentation masks are not correctly inferred.

We compare our method to the state-of-the-art automated 3D object anno-
tation method, Rapid Pose Labels [112]. Similarly, Rapid Pose Labels is able
to produce dense segmentation maps and poses for objects. We compare the
methods on an oolong ice-tea bottle dataset containing 5 different scenes1.
Using Rapid Pose Labels we were able to achieve a mIoU agreement of 0.801
against hand-labeled examples. Our method in turn achieves an mIoU score
of 0.902 across the same scenes, a considerable improvement.

4.2 Depth Supervision

As depth sensors can have a large amount of noise and missing values, we
study the effect of using depth maps to supervise the NeRF model. We fit the
NeRF using different weights λd on the depth loss and qualitatively analyze
how well the resulting depth maps approximate the geometry of the scene. In
Figure 4 we visualize produced segmentation maps obtained with different

1Available here at the time of writing: https://github.com/rohanpsingh/RapidPoseLabels

https://github.com/rohanpsingh/RapidPoseLabels/blob/master/tutorial/how-to-use-no-model.md

78 paper ii : segmentation and synthesizing data

Figure 2: Segmentation masks obtained using our method on different scenes. Segmen-
tations are in yellow. Scenes are in the same order from top-left to bottom-right as in
Table 1.

levels of depth supervision. Table 2 shows the quantitative accuracy in terms
of mIoU agreement across all the manually labeled examples.

4.3 Novel View Synthesis

As the learned NeRF is able to synthesise new viewpoints of the scene, we
study the quality of the synthesized examples. To be of use in a downstream
object segmentation, detection or pose estimation task, the produced color
and depth would have to be qualitatively good and plausible. The segmen-
tation masks would also have to stick to the object boundaries so as not to
induce bias into the learned model.

We collect a dataset containing 19 scans of fire hydrants, which we split
into 10 training scans and 9 test scans. We then annotate the scans using
our method and create an additional synthetic dataset. We quantitatively
verify the quality of the synthesized examples by labeling them by hand and
comparing them against the produced masks.

4 experiments 79

Figure 3: In some cases, geometry might not get recovered properly, as shown with the
hole in the laptop. The hole in the handle of the teapot is not correctly inferred as free
space. In the other two cases, some density is assigned outside of the object.

Figure 4: The produced depth and segmentation masks on the cups scene with different
levels of depth supervision given during NeRF training. The leftmost image shows the
original depth maps. We see that the NeRF model trained without depth supervision
produces artifacts in the geometry which end up affecting the segmentation masks.

Column 5 of Table 1 shows the accuracy of the computed segmentation
masks for images synthesized from novel viewpoints by the NeRF model.
Figure 5 shows examples of synthesized color images and segmentation
masks. The generated images are generally of good quality, but some suffer
from visual artifacts, mostly on unseen parts of the scene or when observing
a surface from an out-of-sample viewing direction or far away surfaces that
have not been properly observed or are beyond the sampling range.

To study downstream task performance using the synthetic examples,
we train two semantic segmentation models: one using only the original
scans and another also using the synthetic examples. We then compare the

80 paper ii : segmentation and synthesizing data

Figure 5: Synthetic training examples and their associated segmentation masks, gener-
ated using the proposed approach.

performance against manually labeled unseen examples to see if using the
synthetic examples improve performance on this downstream task.

Figure 6 compares the accuracy of two different object detection models,
Mask-RCNN [47] and Yolo-v3 [93], that were trained on the fire hydrant
dataset with different ratios of synthetic to real data. For the Mask-RCNN
model which does both segmentation and detection, performance on both
detection and segmentation is shown. Yolo only does object detection, so
we only report detection performance. Detection accuracy for both models
increases up until 60% synthetic data, before decreasing. Object segmentation
performance peaks a little bit earlier, likely due to the less realistic sharpness
and texture of the synthetic examples, which are much more important for
segmentation than bounding box detection.

5 discussion and conclusions

We introduced a pipeline that uses NeRFs to create dense pixelwise labels for
semantic segmentation of objects. We showed that the geometry recovered

5 discussion and conclusions 81

Scene Method mIoU Real Data Synthetic
Depth TSDF NeRF Mask mIoU

bench1 0.4054 0.8650 0.8581 0.9140

bench2 0.3664 0.4712 0.9280 0.9130

car1 0.2139 0.6960 0.9323 0.9307

car2 0.2761 0.7207 0.9471 0.9481

cup 0.9220 0.7153 0.9498 0.9385

hat 0.9392 0.9209 0.9524 0.8956

hydrant_1 0.7468 0.8967 0.8861 0.8710

hydrant_2 0.8502 0.9354 0.9551 0.9093

hydrant_3 0.8207 0.7373 0.9033 0.9066

hydrant_4 0.8078 0.7835 0.9246 0.8827

keyboard 0.9241 0.9352 0.9397 0.9087

laptop 0.8160 0.8686 0.8743 0.8783

shoe_1 0.9312 0.8666 0.9373 0.9452

shoe_2 0.9299 0.9184 0.9755 0.9568

shoe_3 0.9614 0.9491 0.9719 0.9047

teapot 0.5799 0.5257 0.8458 0.8664

wine_glass 0.0381 0.0000 0.7565 0.7272

wine_bottle_red_1 0.6877 0.7960 0.8739 0.8456

wine_bottle_red_2 0.6916 0.7046 0.8879 0.8862

wine_bottle_white 0.6670 0.8456 0.9006 0.8894

Table 1: Columns 2-4: mean intersection-over-union (mIOU) accuracy of segmentation
masks for real examples, computed using the different methods. Column 5: mIOU
accuracy of masks for synthetic examples.

by a NeRF can be used to generate high quality segmentation masks which
outperformed baseline methods. We showed that the learned NeRF can be
used to generate additional data in the form of unseen viewpoints of the
scanned scenes which can be used to train an object detector, further reducing
the data collection burden. A promising direction for future work would be
to investigate methods that could further diversify the generated examples,
for example by relighting the scenes.

scene \λd 0.0 0.001 0.01 0.05 0.1 0.25

cup 0.691 0.755 0.920 0.9498 0.946 0.948

Table 2: Segmentation mIoU on the cup scene for different depth supervision weights
λd.

82 paper ii : segmentation and synthesizing data

Figure 6: Average precision on the held out test set for models trained with different
ratios of synthetic to real data.

Further research might focus on extending the method to scenes with
moving objects or automating the placement of the bounding boxes, for
example through active learning.

Our proposed method relies on accurate camera poses. Should the camera
pose recovery step fail or produce bad results, the learned NeRF model will
be severely impacted which leads to low-quality geometry reconstruction
and thus poor segmentation masks. Estimating camera poses is an entire
field of study in itself. However, this could be solved by mounting the camera
on a manipulator and calibrating the system to obtain camera poses using
proprioceptive sensor data, as done in [11].

As shown in the experiments, our method performs significantly better than
the baseline methods on most objects, including transparent and reflective
ones, but there are limits. As previously discussed, inferring the geometry
of clear and fully transparent objects is still a challenge. Visual features in
the images could be used to help the model cleanly segment and infer the
density.

Our test scenes currently contain a single foreground object, often with
other objects or clutter in the background. Since we use bounding boxes as

5 discussion and conclusions 83

a source of supervision, in more cluttered scenes, other objects might enter
an object’s bounding box, producing noisy labels. Further work could go
towards filtering label noise in such scenarios. Another source of error in
the segmentation masks comes from the scene geometry not being perfectly
inferred and label edges not matching the object’s boundary. This could be
addressed by further refining the scene geometry and labels by allowing a
user to refine the labels online, providing fixes to the generated 2D segmen-
tation maps and using the additional supervision to improve on both the
representation and the generated semantics.

Part C

I N T E R A C T I V E A U T O L A B E L I N G

PA P E RIII
B A K I N G I N T H E F E AT U R E : V O L U M E T R I C

S E G M E N TAT I O N B Y R E N D E R I N G F E AT U R E M A P S

Kenneth Blomqvist, Lionel Ott, Jen Jen Chung, Roland Siegwart

abstract

Methods have recently been proposed that densely segment 3D vol-
umes into classes using only color images and expert supervision in
the form of sparse semantically annotated pixels. While impressive,
these methods still require a relatively large amount of supervision
and segmenting an object can take several minutes in practice. Such
systems typically only optimize the representation on the scene they
are fitting, without leveraging prior information from previously seen
images.
In this paper, we propose to use features extracted with models
pre-trained on large existing datasets to improve segmentation per-
formance on novel scenes. We bake this feature representation into
a Neural Radiance Field (NeRF) by volumetrically rendering feature
maps and supervising on features extracted from each input image.
We show that by baking this representation into the NeRF, we make
the subsequent classification task much easier. Our experiments show
that our method achieves higher segmentation accuracy with fewer
semantic annotations than existing methods over a wide range of
scenes.

Published in:
IEEE International Conference on Intelligent Robots and Systems, 2023

© 2023 IEEE. Reprinted, with permission.

88 paper iii : interactive autolabeling

1 introduction

Neural Radiance Fields (NeRFs) [79] and other neural implicit representations
have recently emerged as a popular representation for 3D scenes due to their
many favourable properties. They can accurately infer the geometry of a
scene by making use of strong geometric structure and rich supervision from
captured calibrated images. They have few hyperparameters to tune and are
able to handle a wide range of scales, geometries and materials.

As NeRFs use an MLP to map spatial coordinates to color values, they
can easily be modified to predict other observable spatial properties. This
led to NeRFs quickly being applied to semantic volumetric segmentation
through SemanticNeRF [161], which is able to propagate semantic pixel
labels from one frame of a scene to another and across image pixels through
generalization. This was subsequently demonstrated within an interactive
semantic segmentation system, iLabel [162], motivating the use of such a
system to generate ground-truth data for downstream embedded, real-time
computer vision algorithms.

While such systems achieve increasingly high accuracy as the amount of
annotated pixels grows, they still require a lot of human supervision. Seman-
ticNeRF used one labeled randomly selected pixel per class, per image. With
over 900 training images in a scene, this is a lot of annotated pixels from a di-
verse set of viewpoints. If used to annotate data, providing such supervision
can take an infeasibly long amount of time. An inherent limitation of current
semantic NeRF approaches is that they blindly map 3D scene coordinates to
radiance, density, and semantic class by optimizing a randomly initialized
neural network per scene. Structure priors or previously learned information
is not leveraged.

On the other hand, deep learning has fueled a whole body of work on
representation learning, the goal often being to learn a feature representa-
tion that can be transferred to another task. Using pre-learned features in
the context of NeRFs is not straightforward, as a NeRF maps scene-specific
point coordinates to output values, which makes inducing desirable bias or
structure into the model challenging. An example of this is object bias. For
example, if a user of a semantic annotation system clicks on a cookie in a
kitchen scene, the user might ideally want the system to, by default, auto-
matically segment the entire cookie from other cookies and the background,
without having to select each pixel.

1 introduction 89

Figure 1: The left side shows an example image from our dataset, overlayed with a
segmentation mask produced by our system. The right side shows DINO features,
which we reconstruct in our algorithm, mapped to RGB values using PCA.

The goal of our work is to infer a dense 3D semantic segmentation of the
scene, and infer dense 2D semantic segmentation maps for each input image,
while spending as little expert annotation time as possible. To this end, we
develop a user interface which allows a user to quickly segment RGB-D video
sequences, by drawing sparse annotations on the images. While the user is
using the system, the program infers a segmentation given the current user
inputs and shows it to the user. The user can refine the segmentation, until
they are happy with the result.

To infer the best possible segmentation using a sparse set of labels, we
propose a novel algorithm that models the scene using an implicit NeRF
representation and leverages semantic image features obtained using a neural
network feature extractor. We supervise our implicit scene model on these
features, effectively baking a feature representation into the learned MLP.
We volumetrically render feature maps from the hidden layer activations
of the semantic branch of the MLP, and minimize discrepancy between the
rendered feature maps and extracted image feature vectors during training.
This forces the MLP to encode additional structure, inducing desirable object,
shape, and appearance bias into the learned representation, making the

90 paper iii : interactive autolabeling

subsequent semantic classification much easier from sparse supervision. Our
hypothesis is that such features encapsulate relevant spatial, object and
semantic properties which are hard to learn by purely regressing color and
radiance from position. Figure 1 illustrates how extracted features can encode
information that can help distinguish between objects in a scene.

To summarize, our contributions are:

• A semantic NeRF algorithm that uses extracted image features to
improve segmentation performance

• A hybrid feature encoding that is better suited for the semantic seg-
mentation task

• A volumetric segmentation system, including a graphical user interface,
that can be used to quickly generate dense segmentation masks from
sparse pixel annotations

In experiments we validate our pipeline on a diverse set of real-world
scenes. We perform a larger scale evaluation on scenes from the Replica
[114] dataset, which contain many more objects and semantic classes. On
these datasets, we compare the performance against baseline methods, as
well as using different feature extractors, namely Fully Convolutional Neural
Networks [73] and DINO [33]. Our results show that our DINO supervised se-
mantic NeRF formulation outperforms previously proposed semantic NeRFs
on both accuracy and learning speed across all scenes, and can do with much
less human supervision.

We make visual results, data and code available through the accompanying
web page1.

2 related work

2.1 Automated Labeling

Our goal is to infer a 3D segmentation of a scene and 2D semantic segmen-
tation maps as quickly as possible. Several works have tackled a similar
problem of inferring scene properties in an automated manner.

1keke.dev/baking-in-the-feature

https://keke.dev/baking-in-the-feature/

2 related work 91

Object-based methods use knowledge of object geometry or category to
speed up the workflow of annotating scenes. LabelFusion [77] introduced
a tool to align an object model with a 3D scene with ICP refinement. While
differentiable rendering was used to register the shape and pose of objects
using shape priors in [153] and [10]. EasyLabel [118] introduced a semi-
automatic method for obtaining instance segmentations of 3D scenes by
incrementally building up the scene. RapidPoseLabels [112] presented a way
to compute object pose and segmentation masks from sparse 2D keypoints,
combining several pointclouds of an object.

Other approaches have explored speeding up RGB-D data annotation by
leveraging structure in the data. SALT [116] introduced a GrabCut [97]
based approach to speed up labeling of RGB-D data. DeepExtremeCut [75]
computes dense object segmentation masks from extreme points of an object
in an image.

2.2 Neural Radiance Fields

Mildenhall et al. [79] introduced NeRFs for novel view synthesis using
volumetric rendering and have been extended in various ways. DS-NeRF
[29] used depth measurements to speed up training, which we also levarage.
SemanticNeRF [161] extended NeRF to also infer a semantic field from
sparse pixel annotations and was extended with iLabel [162], a system for
densely annotating scenes. We extend [161] to leverage representations which
capture structure present in the input images to learn a better segmentation
from fewer labels. While NeRF methods operate on single scenes, [65]
introduced a representation that learns across multiple scenes. They disregard
semantic labels, but their approach could be extended to segmentation. NeRF-
Supervision [148] learns view-invariant dense object descriptors, generating
image correspondences from a radiance field.

Other semantic fields include PanopticNeRF [35] which learns from noisy
2D predictions and 3D bounding box annotations. Panoptic Neural Field [63]
learns several 4D neural fields that can reconstruct and track moving objects.
NeSF [134] similarly uses known calibrated images and NeRF to learn a
semantic field of a scene. Instead of adding a semantic output to the field,
they learn a 3D UNet mapping density to semantics. They learn the semantic
field across many scenes, not targeting single scene label propagation.

92 paper iii : interactive autolabeling

(x, y, z)

(φ, θ) E
n
c
o
d
i
n
g M

L
P

M
L
P

M
L
P

M
L
P

c

z
s

z

σ

Viewing direction

Color

Featuremaps

Segmentation

Depth

Position

Figure 2: Architectural diagram of our model. Scene coordinates and viewing direction
are mapped to RGB, density, depth, feature maps and segmentation maps.

Concurrent work, D3F [60] and N3F, [131] use neural rendering via [130]
and feature maps to supervise a NeRF model. N3F tackle one-shot object
recognition, also showing some results for object segmentation using a thresh-
olding algorithm, as opposed to propagating sparse labels. In contrast to
[60, 130], our method runs at interactive rates, thanks to hybrid feature
encoding and lower dimensional, autoencoded, feature rendering.

3 method

We design a NeRF-style algorithm, that maps each point in the scene to
color, density, depth, semantic class, and semantic feature vector. Figure
2 shows a high-level diagram of our model, which consists of five main
components: a feature encoder, a geometry MLP, a color MLP, a feature MLP,
and a semantic classifier MLP. In this section, we first describe how we encode
scene positions into feature vectors that are fed to the neural network. We
then describe how to use volumetric rendering to compute 2D image maps
from the 3D representation and describe how we learn the parameters of the
scene representation from provided data. Finally, we describe our graphical
user interface, which allows a user to interact with the system.

3 method 93

SNerf (hg) Ours (hg+freq, fcn) Ours (hg,dino) Ours (hg+freq,dino)SNerf (hg+freq)SNerf (freq)

Figure 3: Segmentation masks produced on the box scene using the different methods
with the same set of annotations. The frequency encoding (freq) allows for spatial
context while the hash grid encoding (hg) allows for a high level of detail locally. The
feature supervision again helps in reasoning about object boundaries.

3.1 Positional Encoding

NeRF [79] uses a frequency encoding based on sine and cosine functions:

γ(y) = [sin 20πy, cos 20πy, . . . , sin 2L−1πy, cos 2L−1πy], (1)

where y corresponds to any of the 3D scene coordinates, or a viewing
direction, normalized to the range [−1, 1]. L defines the number of frequencies
used. We use L = 10 for 3D coordinates and L = 4 for the viewing directions.

An alternative hash grid encoding was introduced in [81], which greatly
speeds up the learning of NeRFs. They define a hierarchical voxel grid over
the scene coordinates, with parameters at cell vertices for every level. To
encode a point, parameters are looked up at each level of the grid, trilinearly
interpolated and concatenated to produce an encoding. Parameters are
learned jointly with the MLPs.

While the hash grid encoding produces great visual results for view syn-
thesis and greatly speeds up training and rendering, it is not optimal for
our application, as simply using the hash grid encoding causes the model

94 paper iii : interactive autolabeling

to overfit to the sparse user annotations. The resulting segmentation maps
fail to infer the spatial relation between annotated points, and large areas not
belonging to objects are assigned the wrong semantic class. See Figure 3 for
an illustration.

To solve this problem, we propose a hybrid approach combining both
the hash grid encoding with low frequency positional encoding with L = 2,
which we concatenate together. The low frequency encodings allow the
model to reason about coarse spatial location in the volume, while the grid
parameters allow encoding finer details in the scene. As we are targeting an
interactive system, using only frequency encoding would not be an option,
as it requires many more iterations to learn high frequency details.

3.2 Neural Radiance Fields

To integrate the scalar and vector outputs of our spatial field, we define a
function R to volumetrically render vector or scalar values from a function h
along a given ray r:

R(r,h) =
N∑
i=1

Ti(1− exp(−σiδi))h(xi), (2)

Ti = exp(−
i−1∑
j=1

σjδj), (3)

where Ti is the transmittance function measuring the amount light transmit-
ted through the ray r to sample i, δj is the distance between samples and σi
is the predicted density for encoded point samples xi along the ray r. We use
this rendering function to render pixel color values, depth, semantic outputs
and image features for a given ray r:

ĉ(r) = R(r, c), (4)

d̂(r) = R(r,d), (5)

ŝ(r) = R(r, s), (6)

f̂(r) = R(r, f), (7)

3 method 95

using the following functions: c for color, d for depth, s for the semantic
vector, and f for the intermediate feature vector of our model for encoded
point samples along a ray r.

We define the same photometric loss Lrgb as in NeRF [79] and a depth
loss Ld similar to the one used by [29]:

Lrgb(r) = ‖ĉ(r) − c̄(r)‖22 , (8)

Ld(r) =

{∥∥d̂(r) − d̄(r)∥∥
1

, if d̄ is defined for r
0, otherwise

(9)

where c̄(r) is the ground truth and ĉ(r) the predicted color for ray r, d̄(r) is the
ground truth depth (if available) and d̂(r) the integrated depth predictions
along ray r.

To learn the semantic class, we define a cross entropy loss:

Ls(r) =

− log exp(ŝ(r)s̄(r))∑Cn
c=1 exp(ŝ(r))c)

, if s̄ is defined for r

0, otherwise
(10)

where s̄(r) is the ground truth class for ray r, ŝ(r) is the integrated semantic
MLP outputs and ŝ(r)c the output corresponding to class c.

3.3 Learning Feature Maps

We assume that we have a feature extractor, which maps images IHi×Wi×3

to feature maps F̄Hf×Wf×M containing feature vectors f̄. I is an input image
with height Hi and width Wi, F̄ has height Hf and width Wf and M is the
dimensionality of the feature vectors. The purpose of the feature extractor is
to encode semantic and spatial information about a particular view, providing
contextual information that cannot be inferred from a single scene, but can be
learned by observing other data. Such functions include Vision Transformers
[33] or Fully Convolutional Neural Networks [73] that come pre-trained a
priori on large datasets.

To distill information in the feature maps into our 3D scene representation
and to inform a downstream classifier, we propose to volumetrically render
feature outputs f along a ray using (2) to produce rendered feature maps f̂
and supervise on corresponding image features f̄.

96 paper iii : interactive autolabeling

The dimensionality of the image features f̄ will vary depending on the
chosen pre-trained feature extractor and may be too large to render with
reasonable batch sizes on regular GPUs. Therefore, to reduce memory use
and the amount of floating point operations when using our system, we use a
simple MLP autoencoder to reduce the dimensionality of the image features
f̄. This step is completely optional and could be skipped. The autoencoder
has an encoder enc and decoder dec. The encoder maps feature vectors
with M dimensions to D dimensions and the decoder maps them back to
M dimensions. We set D to 64 throughout our experiments. We fit the
autoencoder by minimizing a standard reconstruction loss:

Lae(F̄) =
∥∥dec(enc(F̄(p))) − F̄(p)∥∥

2
+ λae

∥∥enc(F̄(p)∥∥
1

,

where F̄(p) is the feature corresponding to sampled pixel p, and λae is a
weight for the sparsity term. We use an L2 loss to minimize information loss.
The sparsity term is to encourage a sparse feature representation that can
easily be classified into different classes.

As image features only depend on raw input images and a given pre-
trained feature extractor, we pre-compute the corresponding autoencoder
offline before the user interacts with the system and keep it fixed while the
scene representation is learned.

When fitting a scene in our volumetric segmentation pipeline, to bake the
feature representation f̂ into the scene representation, we define an additional
feature loss:

Lf(r) =
∥∥∥enc(f̄(r)) − f̂(r)

∥∥∥
1

, (11)

where r is an image ray, f̄(r) is the image feature corresponding to ray r, f̂(r)
is the rendered feature for ray r. Should Hi and Hf differ, during training,
we use nearest neighbor interpolation to lookup the corresponding image
feature.

3.4 Optimization and Sampling

We optimize the combined loss using stochastic gradient descent using Adam
over rays r sampled from the images:

L(r) = Lrgb(r) + λdLd(r) + λsLs(r) + λfLf(r), (12)

3 method 97

Figure 4: The graphical user interface. The user provides sparse annotations by drawing
on images with the appropriate class. The system infers a volumetric segmentation
given the current sparse annotations from all views and renders a dense segmentation
map which can be corrected with further annotations.

to jointly fit the positional encoding and MLP parameters.
As most pixels do not have a semantic class associated with them, we use

a sampling scheme to balance the task of predicting a semantic class with
the other objectives. When sampling examples for optimization, we select
half the samples uniformly from all pixels. For the remaining half, to not
bias the resulting function towards any class, we first select a class uniformly
from the available classes. A pixel is then sampled from all pixels which are
annotated with the sampled class.

3.5 Graphical User Interface

Figure 4 shows the user interface of our system. The user can move through
frames in a captured RGB-D video sequence and draw annotations, shown
as opaque lines, while the system fits a model to the scene and annotations.

98 paper iii : interactive autolabeling

Scene SNeRF
(freq)

SNeRF (hg) SNerf
(hg+freq)

Ours
(hg+freq,
fcn)

Ours (hg,
dino)

Ours
(hg+freq,
dino)

apple 2 0.744 0.565 0.853 0.903 0.878 0.942
bench 0.803 0.817 0.816 0.818 0.873 0.912
box 0.901 0.686 0.868 0.951 0.922 0.962
chairs 0.531 0.635 0.705 0.686 0.696 0.761
cup 0.837 0.514 0.586 0.565 0.854 0.934
doughnut 0.653 0.576 0.502 0.673 0.879 0.910
fire hydrant 1 0.838 0.561 0.792 0.805 0.751 0.887
fire hydrant 2 0.757 0.216 0.853 0.598 0.848 0.890
hat 0.911 0.937 0.960 0.950 0.919 0.959

keyboard 0.895 0.699 0.900 0.926 0.943 0.947
shoe 0.791 0.814 0.833 0.894 0.970 0.979
valve 0.588 0.250 0.691 0.721 0.692 0.730
wine bottle red 0.523 0.362 0.521 0.794 0.690 0.856
wine bottle white 0.569 0.233 0.323 0.573 0.830 0.884
Average 0.739 0.560 0.732 0.778 0.703 0.897

Table 1: Intersection-over-Union agreement of produced segmentation maps on our
captured scenes against manually annotated frames.

The translucent mask shows the current segmentation, which the user can
correct. The right side shows rendered color, depth and features mapped to
RGB using PCA.

4 experimental results

In our experiments we investigate whether our method improves segmenta-
tion accuracy when given the same amount of supervision and whether we
improve labeling efficiency as part of an interactive labeling system.

4.1 Baselines

We compare our algorithm with SemanticNeRF[161]. We also compare the
effect of using different positional encodings with both our algorithm and the
baseline. For the positional encoding, freq refers to the frequency positional
encoding in which case we use L = 10 frequencies for the position, hg refers
to the hash grid encoding and hg+freq denotes hybrid encoding.

As our algorithm can make use of any features, we experiment with
features from a Fully Convolutional Network [73] trained on COCO [68]
on the semantic segmentation task, denoted fcn and DINO ViT-S/8 vision
transformer features [18] trained on ImageNet, denoted dino.

4 experimental results 99

To make the comparison fair, all baselines and our method use the same
sampling and training pipelines. They simply differ in the scene model and
loss functions used.

4.2 Label Propagation Quality

To investigate the first question, we scan a number of scenes using an RGB-D
camera and run them through [103] to obtain camera poses. We annotate
the scenes using the GUI by drawing squiggles on pixels belonging to each
desired semantic class on 2 to 10 individual images, depending on the scene.
What the annotations look like from a single view can be seen in Figure
4. From these annotations, the algorithms are tasked to segment the scene
and infer what the user considers as belonging to each class. All algorithms
receive the exact same set of annotations. We run each algorithm on each
scene and produce semantic segmentation maps for all images. We compare
the produced segmentation maps against ground truth masks, obtained by
labeling a reference subset of the images with a polygon mask for each object.
We then compute the Intersection-over-Union agreement between the inferred
and reference masks.

It should be noted that results on this experiment are not indicative of
the performance at the limit on dense segmentation maps, rather they mea-
sure the ability of the algorithms to generalize and figure out where object
boundaries lie from a specific set of reasonable, sparse annotations.

Table 1 shows IoU agreement between manually labeled individual frames
and the segmentations produced by the different methods. The best accuracy
is achieved using hybrid encoding, supervised by DINO features on virtually
all scenes.

As illustrated in Figure 3 and quantified in Table 1, using only hash grid
encoding causes the model to overfit to the sparse annotations. Large areas
outside of objects are assigned to the object class. This is especially apparent
on the white wine scene (Figure 3, image row 3, column 2). Using hash grid
encoding with DINO supervision removes some errors, as the model can
reason about visual and contextual properties in the scene. However, object
boundaries are not captured as sharply when not using feature supervision.
The DINO features perform better than FCN features, indicating that the
choice of feature extractor is an important consideration.

100 paper iii : interactive autolabeling

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

room_0

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

room_1

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

room_2

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

office_0

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

office_1

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

office_2

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

office_3

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

office_4

SNeRF (freq)
Ours (hg+freq, fcn)
Ours (hg+freq, dino)

Figure 5: Performance on different scenes of the Replica dataset. We outperform
baseline methods on all scenes for both learning speed and final accuracy.

4.3 Human-in-the-loop Simulation

As our system is designed to quickly create annotated data for downstream
learning algorithms with little human input, we design a simulated human-in-
the-loop experiment to test the algorithms in a fair, scalable, and reproducible
way. As a dataset, we use the openly available Replica dataset [114] and
more specifically, the rendered sequences published by [161], which include
dense ground truth semantic annotations. This dataset contains room-scale
scenes with multiple objects of multiple classes, presenting a challenging and
realistic test environment.

We initialize each algorithm by training only on RGB, depth and features
for 15k iterations. We then run an iterative process predicting semantic labels
using the current model parameters and select five pixels for which semantic
classes are falsely inferred and add their ground truth labels to the training
set. We then run 250 optimization steps with all labels accumulated thus far,
as would be possible between user actions, and repeat the process.

We record the intersection-over-union agreement with the ground truth
segmentation masks at each iteration step to observe how quickly the label
propagation algorithm is able to produce high quality semantic labels. The
ideal algorithm would converge to perfect labels after one click per object
class by the user.

Figure 5 shows results on different scenes of the Replica dataset for the
human-in-the-loop simulation. Our method performs better at the limit than
the baseline methods on all of the scenes. The results show that the biggest

5 conclusions 101

benefit of feature supervision is that the model learns from much fewer labels,
yet still achieves higher accuracy as more pixels are annotated.

The baseline SNeRF (freq) method takes on average over 5x longer to reach
80% IoU accuracy compared to our method with DINO features and hybrid
positional encoding. This means a user would spend less than a fifth of the
time using the system to achieve the same accuracy.

5 conclusions

We presented an algorithm for volumetric segmentation, which we showcased
in a human-in-the-loop data annotation and label propagation application.
Our algorithm significantly speeds up learning and improves performance
over baseline methods across our experiments. We performed an ablation
study showing how different parts of our algorithm contribute to the overall
performance. We demonstrated how using only hash grid encoding can cause
a segmentation model to overfit to sparse user annotations and showed how
this problem can be overcome by combining frequency encoding with hash
grid encoding.

As shown by our experiments, the choice of feature is important. Learning
a better feature representation that is viewpoint invariant, yet allows for
efficient segmentation of objects presents a promising research direction.
Furthermore, our system assumes a static scene, we intend to extend the
work in the future to deal with dynamic scenes.

Our system produces high quality segmentation maps, but in many robotic
applications computing other properties, such as object pose [77], shape
[37] or keypoints [11] might be required. A framework which could with
little input produce high quality segmentations in combination with object
information, would be a breakthrough to fuel the learning-based perception
algorithms proposed in recent years.

Part D

W E A K LY S U P E RV I S E D S E M A N T I C L E A R N I N G
F R O M T H E I N T E R N E T

PA P E RIV
N E U R A L I M P L I C I T V I S I O N - L A N G U A G E F E AT U R E

F I E L D S

Kenneth Blomqvist, Francesco Milano, Jen Jen Chung, Lionel Ott, Roland
Siegwart

abstract

Recently, groundbreaking results have been presented on open-
vocabulary semantic image segmentation. Such methods segment
each pixel in an image into arbitrary categories provided at run-time
in the form of text prompts, as opposed to a fixed set of classes
defined at training time. In this work, we present a zero-shot volu-
metric open-vocabulary semantic scene segmentation method. Our
method builds on the insight that we can fuse image features from a
vision-language model into a neural implicit representation. We show
that the resulting feature field can be segmented into different classes
by assigning points to natural language text prompts. The implicit
volumetric representation enables us to segment the scene both in 3D
and 2D by rendering feature maps from any given viewpoint of the
scene. We show that our method works on noisy real-world data and
can run in real-time on live sensor data dynamically adjusting to text
prompts. We also present quantitative comparisons on the ScanNet
dataset.

Published in:
IEEE International Conference on Intelligent Robots and Systems,

© 2023 IEEE. Reprinted, with permission.

106 paper iv: learning from language

1 introduction

A key component of building intelligent robots capable of operating in
unstructured and cluttered human environments is the representation used
to model the robot’s surroundings. Often times representations have to
trade-off properties which depend on the usage scenario. These properties
include the quality of the reconstruction, the ability to integrate sensor data
continuously, and the computational complexity to query the representation.
The importance of these aspects differs based on what components of a
robotic system needs to use the representation, dictating the requirements for
available capabilities, sensor data throughput, or query latency. For instance,
an obstacle avoidance system needs to query for occupancy at high frequency,
while a high-level planning system needs access to semantic knowledge,
and finally a grasp planning system requires fine-grained segmentation
information.

While in the past occupancy was the main information of interest, robotics
has moved towards richer representations using semantics in recent years.
A challenge is that most semantic approaches use a fixed, closed set, of
pre-determined semantic labels. However, real environments contain more
than a few dozen classes, and thus methods capable of handling arbitrary
semantic classes, i.e. open set, are desirable. Additionally, objects in an
environment do not necessarily belong to distinct, mutually exclusive classes.
Certain objects might belong to several classes. A bookshelf is also a piece
of furniture, for example. For high-level planning purposes, being able to
reason about relations between their semantics might also be useful.

An environment representation that has wide applicability has several
desirable properties, including: (1) can be built incrementally as the robot
explores the environment, (2) enables real-time integration of new mea-
surements, (3) has a compact memory footprint, (4) represents geometry at
a high-level of detail, (5) is differentiable, (6) supports open set semantic
queries, and (7) allows fast querying by downstream modules. Previously
introduced 3D semantic scene representations are either built from global
scene information [87], use closed set semantics [41, 78, 96, 162], operate on a
fixed level of detail [41, 96], or are not differentiable [41, 96]. In this paper,
we take a step towards a representation which has the above-mentioned
properties.

1 introduction 107

Figure 1: Our method enables real-time segmentation of scenes into arbitrary text
classes provided at run-time.

Vision-language models (VLM) have shown remarkable performance on
open vocabulary object detection [43, 154]. Recently, these results have been
extended to dense semantic segmentation [38, 66, 155, 165]. Some of these
methods [38, 66] associate each pixel with a semantically meaningful vector,
which is embedded in the same high-dimensional vector space as natural
language prompts through a text encoder. This allows direct computation of
the similarity between text prompts and image features at run-time.

As vision-language models can be trained on massive web-scale datasets
that can be collected automatically without human supervision, they often
show better generalization capabilities than models trained on smaller closed-
set manually curated datasets. Additionally, VLMs can capture the long tail
of scenarios and classes that are so rare that they are unlikely to be included
in curated datasets. These properties offer great promise for applications in
robotics, where we might want our robots to be able to perform new tasks in
never-before-seen environments.

108 paper iv: learning from language

In this paper, we present a method for grounding dense vision-language
features into a 3D implicit neural representation that can be built up in-
crementally, in real-time, as new observations come in. We jointly model
radiance, vision-language model features, and density in the scene using an
implicit neural representation. Our representation can be incrementally built
up given posed images of the scene and a pre-trained language model. We
can directly compute the similarity between natural language text prompts
and either 3D points or 2D image coordinates for any given viewpoint of the
scene through volumetric rendering. This enables semantically segmenting a
scene zero-shot into text categories provided at run-time, without having to
fine-tune the system on any domain specific semantics.

In experiments, we showcase results in real-world experiments where
we build up our scene representation in real-time on a real system, and
demonstrate the ability to segment the scene into different classes provided as
natural language prompts at run-time. We additionally present quantitative
segmentation results on the large and diverse ScanNet dataset. To the best of
our knowledge, our method is the first real-time capable 3D vision-language
neural implicit representation. Our implementation will be made available
through the Autolabel project 1.

2 related work

Open Vocabulary Semantic Segmentation and Vision-Language Models

CLIP [90] introduced a visual-language model capable of mapping images
into the same vector space as natural language queries by correlating images
to their text descriptions mined from the open web. Open vocabulary seg-
mentation methods typically learn dense features which are compared to text
queries given at run-time [38, 66]. Others take a multi-task learning approach,
fusing a task prompt with the architecture [155, 165]. Other methods such
as Clippy [92] explored learning pixel-aligned visual-language models from
large scale web datasets without requiring segmentation labels, potentially
enabling large-scale open set training, if the results can be extended to full
semantic segmentation.

1https://github.com/ethz-asl/autolabel

2 related work 109

Language Models in Robotics

Large language models have been explored as an approach to high-level
planning [3, 20, 51, 91, 113] and scene understanding [21, 45]. Vision-language
models embedding image features into the same space as text have been
applied to open vocabulary object detection [20, 113], natural language maps
[15, 20, 51, 105, 124], and for language-informed navigation [74, 106, 139].

Recent methods have explored fusing global CLIP features [105], image
caption embeddings [31], or dense pixel-aligned [87] visual-language model
features into a point cloud representation for scene understanding. Con-
current work ConceptFusion [55] explores building multi-modal semantic
maps by fusing features from vision-language models as well as audio into a
reconstructed 3D point cloud. Similar to these, we also fuse VLM features
into a 3D representation. Unlike [55, 87, 105], we use a continuous neural
representation of geometry and semantics which we learn jointly through
volumetric rendering. [31, 87] fuse image features from a pre-built point
cloud using a multi-view fusion method and learn a 3D convolutional net-
work to map scene points to dense features. Our representation can be built
incrementally as measurements are collected and does not require global
scene geometry upfront.

Semantic Scene Representations

Voxel-based map representations have been proposed to store semantic infor-
mation about a scene [41, 82, 96, 102, 115]. These methods assign a semantic
class to each individual voxel in the scene. Voxel-based dense semantic
representations typically operate on static scenes, but some have explored
modeling dynamic objects [42, 142].

Scene graphs [6, 52, 140] have also been proposed as a candidate for a
semantic scene representation that can be built-up online. Such methods
decompose the scene into a graph where edges model relations between parts
of the scene. The geometry of the parts are typically represented as a signed
distance functions stored in a voxel grid [51].

Neural implicit representations infer scene semantics [13, 35, 63, 72, 78,
110, 161, 162] jointly with geometry using a multi-layer perceptron or similar
parametric model. These have been extended to dynamic scenes [61]. Neu-

110 paper iv: learning from language

ral feature fields [13, 60, 78, 131] are neural implicit representations which
map continuous 3D coordinates to vector-valued features. Such represen-
tations have shown remarkable ability at scene segmentation and editing.
[60] also presented some initial results on combining feature fields with
vision-language features, motivating their use for language driven semantic
segmentation and scene composition.

3 method

Our method consists of two components: i) a NeRF-like feature field mapping
points in a volume to color, density, and feature vector and ii) a vision-
language model which both extracts features from image frames and can
embed text prompts into the same vector space.

3.1 Volumetric Scene Representation

We want to associate 3D points in the volume of our scene to density, color,
and a feature vector. From this, we can render corresponding maps of color,
depth, and feature vectors through a NeRF-like [79] volumetric rendering
function, visualized in Figure 2. We model these maps using a positional
encoding function and three multilayer perceptrons (MLP). The first MLP,
indicated as (1), outputs density and a geometric code. The second MLP,
labeled (2), outputs color from the geometric code and an encoded viewing
direction. The third MLP, denoted by (3), takes the geometric code and
outputs the feature vector.

To encode the x,y, and z position in the volume, we use the hybrid posi-
tional encoding introduced by [13]. We concatenate the vector valued hash-
grid encoding introduced in [81] with the low-frequency values of traditional
NeRF [79] frequency encoding with L = 2. The low-frequency components
allows us to model the coarse spatial location in the scene, whereas the
parameters in the hashgrid grid allow us to quickly learn high-frequency
details.

The resulting encoding is fed into an MLP, (1) in Figure 2, which outputs a
15-dimensional geometric code vector and scalar density σ. The geometric
code is fed into two different MLPs. The first one outputs a feature vector f.
The other one takes as additional input the encoded viewing direction and

3 method 111

(x, y, z)

(φ, θ)
E
n
c
o
d
i
n
g M

L
P

M
L
P

M
L
P

c

z

σ

Viewing direction
Color

Feature vector

Density

Position

(1)

(2)

(3)

Figure 2: A diagram of the model used for our feature field.

outputs a color vector c. To encode the viewing direction, we use the same
spherical harmonic encoding as [79].

We use these outputs to volumetrically render color images and feature
outputs using the rendering function:

R(r,h) =
N∑
i=1

Ti(1− exp(−σiδi))h(xi), (1)

Ti = exp

−

i−1∑
j=1

σjδj

 , (2)

where h is a function outputting a vector or scalar quantity for points xi
within the volume, Ti is the transmittance function, δj is the distance between
samples and σi is the predicted density for encoded point samples xi along
a ray r. We use R to produce rendered quantities:

ĉ(r) = R(r, c),

d̂(r) = R(r, z),

f̂(r) = R(r, f),

(3)

using z for the depth component of samples, c for the color MLP output and
f for the feature vector output of our MLP.

112 paper iv: learning from language

These quantities are learned by optimizing photometric, depth, and feature
rendering error terms:

Lrgb(r) = ‖ĉ(r) − c̄(r)‖22 , (4)

Ld(r) =

{∥∥d̂(r) − d̄(r)∥∥
1

, if d̄ is defined for r
0, otherwise

(5)

Lf(r) =
∥∥∥f̂(r) − f̄(r)

∥∥∥2
2
/D (6)

where c̄(r) is the ground truth and ĉ(r) the predicted color for ray r, d̄(r) is
the ground truth depth (if available), d̂(r) the predicted depth predictions
along ray r, f̂ rendered feature outputs, f̄ extracted image features for ray r,
and D the dimensionality of the image features.

The parameters in the hashgrid encoding volume and in the MLPs are
jointly learned by optimizing the objective:

L(r) = Lrgb(r) + λdLd(r) + λfLf(r) (7)

using stochastic gradient descent on a set of rays sampled uniformly from
input images I along with corresponding feature vectors f̄. The parameters
λd and λf are weighting parameters to weight the different components
of the loss function. To learn the representation online, while our robot is
exploring the environment, keyframes with image features can be added to
the image set as they are captured.

3.2 Vision-language Features and Zero-shot Segmentation

Our framework presented above is capable of making use of arbitrary feature
maps. Thus, we can use features from any feature extractor that produces
dense pixel-aligned feature maps from images. To enable open set semantic
queries in both 2D and 3D at run-time, we choose to use learned features for
which the similarity with text prompts can be computed through a simple
dot product. LSeg [66] and OpenSeg [38] are both suitable candidates for
this purpose. In our experiments, we use LSeg features, as pretrained models
are readily available. The model comes both with an image feature extractor
F̄ and text encoder E.

4 experiment results 113

Figure 3: Randomly sampled 2D segmentation examples from the ScanNet validation
set. Top row shows the original RGB images, second row shows our segmentation and
the bottom row shows the ground truth segmentation from the ScanNet dataset. Black
pixels in the ground truth segmentation correspond to classes not included in the 20

ScanNet evaluation classes.

Given a pose in the world frame of the volume, we can render color, depth,
and feature maps using volumetric rendering, using equations 1 and 3. We
compute the semantic class by assigning the feature f̂ to the most similar
class given a set of user defined natural language class descriptions ti ∈ T

into which we want to segment our scene:

ŝ(r) = argmaxiE(ti) · f̂(r). (8)

For 3D queries at point x, we can simply evaluate the feature MLP at x, i.e.:

s(x) = argmaxiE(ti) · f(x). (9)

4 experiment results

In the following experiments we provide quantitative results on the ScanNet
dataset. We compare our method to the OpenScene [87] work in terms of
mean intersection over union (mIoU) and mean accuracy (mAcc). Then, to
highlight the utility of our approach in robotics application we integrate our
approach with a SLAM framework. Finally, we report run-time information

114 paper iv: learning from language

to demonstrate the feasibility of running our algorithm on a real robotic
system.

In all our experiments, we use LSeg features [66] trained on the ADE20k
dataset [163]. For the loss function, we use λd = 0.1 and λf = 0.5 throughout
all experiments. Having tried a range of different values, we found that they
perform similarly and settled on these values in the middle of the range. In
case less noisy and more accurate depth measurements are available, a higher
λd value might yield better results.

4.1 ScanNet

On the ScanNet dataset we perform evaluation both in 3D, by segmenting
the provided ground truth point cloud, as well as in 2D by comparing our
rendered segmentation maps to the ones provided in the dataset. We use the
20 classes from the ScanNet benchmark. Points or pixels that do not belong
to these classes are ignored.

We first fit our representation using the given RGB, depth frames and
camera poses using 20 000 optimization iterations. For 3D point cloud seg-
mentation, we look up the feature vector for each point in the point cloud
and assign it to the nearest text class using the ScanNet class label names as
the text prompts. For 2D segmentation, we segment feature maps from each
viewpoint in each scan and compare against the reference segmentation map.

ScanNet mIoU ScanNet mAcc

OpenScene - LSeg (3D) 54.2 66.6
OpenScene - OpenSeg (3D) 47.5 70.7
Ours - LSeg (3D) 47.4 55.8
Ours - LSeg (2D) 62.5 80.2

Table 1: Mean intersection-over-union agreement with the ScanNet validation set.

Table 1 shows mean intersection-over-union (mIoU) results on the ScanNet
validation set, averaging over scenes and classes. LSeg[66]/OpenSeg [38]
denotes the 2D image features used. 3D denotes segmentation agreement on
the given ground truth point cloud whereas 2D shows agreement against the
semantic segmentation maps.

4 experiment results 115

Figure 4: Snapshots from real-time zero shot volumetric segmentations from a fixed
viewpoint at given intervals. Our representation is able to learn in real-time and is
already useful after a dozen seconds. Each image shows RGB rendering output for
the viewpoint, overlayed with the semantic segmentation given the 6 class prompts
shown.

OpenScene [87] performs better overall, but it should be noted that it makes
use of the ground truth scene point cloud, whereas we only use the color and
depth frames and implicitly reconstruct the geometry. We only use the scene
point cloud for evaluation. We additionally show 2D segmentation results
compared with the ground truth segmentation frames in the dataset. As
OpenScene only segments the point cloud, only 3D segmentation accuracy is
shown.

Figure 3 shows qualitative 2D segmentation masks. Our method mostly
performs well, but often struggles to distinguish between semantically similar
classes such as “desk" and “table" or “curtain" and “shower curtain" in the
ScanNet evaluation, as we do not make use of any tuning to align the
semantics of the dataset with the semantics of the vision-language vector
space. The ScanNet label quality is also not perfect and our method often
gets details correct which are missed by the ScanNet ground-truth labels,
such as legs of tables and chairs or other thin structures.

4.2 Real-time SLAM Experiment

To test our scene representation in a real-world robotics scenario, we integrate
our system with a SLAM pipeline 2 using a Luxonis OAK-D Pro stereo camera.
While the system is running, we integrate color, depth, and features extracted
using LSeg from keyframes at 5Hz with poses obtained from the SLAM
system. In experiments, we use either the left (grayscale) camera image or

2Specifically the SpectacularAI SDK available here: https://github.com/SpectacularAI/sdk

116 paper iv: learning from language

RGB camera. Depth is computed using stereo matching and aligned to the
keyframe camera’s frame.

To test our system we give it classes in the form of text prompts while it
is running and inspect the quality of the segmentation. Using the odometry
poses provided by the SLAM system, we render color, depth maps and seg-
mentation maps from the current camera viewpoint in real-time, segmenting
the camera image into the given classes.

Figure 5 shows snapshots of a real-time experiment performed with a
handheld camera in a regular office environment. The prompts used to pro-
duce the segmentation map are shown, but note that these can be changed at
run-time to re-segment the scene. Figure 4 shows how quickly our represen-
tation is able to fit to a new scene when learned from scratch and integrating
frames in real-time. After a dozen seconds, our method is able to produce
good segmentation maps and scene reconstructions.

4.3 Query Performance

We time the latency and throughput of queries performed with our imple-
mentation on an Nvidia RTX 3070 GPU. 3D semantic and density point
queries can be performed at over 7 million lookups per second with a latency
of less than 10 milliseconds. 2D ray queries can be rendered and segmented
at roughly 30 000 pixels per second using 256 samples per ray, but this can
be adjusted to to suit the desired fidelity.

5 discussion and conclusions

While the results obtained are an encouraging first step towards open-set 3D
semantic segmentation there are still many open questions to improve such
approaches, some of which we discuss in the following.

Currently, the largest factor limiting segmentation performance is the qual-
ity of the vision-language features. While LSeg uses natural language features
from CLIP trained on a very large dataset, the visual encoder is trained on
the small closed-set ADE20K dataset. If we were able to compute dense pixel-
aligned visual-language features from open-set web scraped data without
requiring any human annotations, we believe that results could eventually
surpass supervised learning methods. [92] presented some promising initial

5 discussion and conclusions 117

Figure 5: RGB renderings and semantic segmentation maps of our representation from
our real-time experiment in an office environment given the prompts shown below the
images.

118 paper iv: learning from language

results on learning pixel aligned features without using segmentation masks
or other expert annotations.

In real-time experiments, our system relied on poses coming from a SLAM
system. If many bad poses are computed by the SLAM system, the 3D
representation could become corrupted by bad updates. Possible solutions
include treating the sparse SLAM poses as initial guesses and optimizing
the poses jointly with scene geometry, as in [117, 164], or bad poses could be
filtered out by analyzing the photometric or geometric error across frames.

In robotics, downstream modules, such as motion planners and high-level
planning systems, might benefit from a more explicit and principled repre-
sentation of geometry than what we presented in this paper. For example,
signed distance function based approaches [137] might provide better surface
and occupancy reconstruction and have other favorable properties, such as
the ability to compute the normal of a surface by differentiating through
the distance function. For the time being, our method is limited to static
scenes. Dealing with moving objects within scenes remains an open problem,
but promising recent research [61] suggests that extending neural implicit
representations to dynamic scenes might be feasible.

To conclude, we proposed a volumetric neural representation which is able
to jointly learn geometry, radiance, and semantic feature information of a
scene. We have shown that by using dense pixel-aligned vision-language
features, our resulting learned representation can be used to volumetrically
segment scenes into, at run-time, user defined categories. We have also
shown how the representation can be used to produce dense 2D segmentation
maps for queried viewpoints. Experiments on the ScanNet dataset showed
competitive performance and our real-world experiments demonstrate that
the method could be run onboard a robotic system.

B I B L I O G R A P H Y

[1] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle adjustment
in the large. In Computer Vision–ECCV 2010: 11th European Conference on
Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings,
Part II 11, pages 29–42. Springer, 2010.

[2] A. Ahmadyan, L. Zhang, A. Ablavatski, J. Wei, and M. Grundmann.
Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild
with Pose Annotations. In the IEEE/CVF CVPR, 2021.

[3] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, et al. Do As I Can, Not
As I Say: Grounding Language in Robotic Affordances. arXiv preprint
arXiv:2204.01691, 2022.

[4] A. M. Andrew. Multiple view geometry in computer vision. Kybernetes,
2001.

[5] H. A. Arief, M. Arief, G. Zhang, Z. Liu, M. Bhat, U. G. Indahl, H. Tveite,
and D. Zhao. SAnE: Smart Annotation and Evaluation Tools for Point
Cloud Data. IEEE Access, 8:131848–131858, 2020.

[6] I. Armeni, Z.-Y. He, J. Gwak, A. R. Zamir, M. Fischer, J. Malik, and
S. Savarese. 3D Scene Graph: A Structure for Unified Semantics, 3D
Space, and Camera. In IEEE/CVF ICCV, 2019.

[7] D. Azinović, R. Martin-Brualla, D. B. Goldman, M. Nießner, and J. Thies.
Neural rgb-d surface reconstruction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2022.

[8] L. Bainbridge. Ironies of automation. In Analysis, design and evaluation
of man–machine systems, pages 129–135. Elsevier, 1983.

[9] G. Baruch, Z. Chen, A. Dehghan, Y. Feigin, P. Fu, T. Gebauer, D. Kurz,
T. Dimry, B. Joffe, A. Schwartz, et al. ARKitScenes: A diverse real-world
dataset for 3D indoor scene understanding using mobile rgb-d data. In

119

120 bibliography

Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 1), 2021.

[10] D. Beker, H. Kato, M. A. Morariu, T. Ando, T. Matsuoka, W. Kehl, and
A. Gaidon. Monocular differentiable rendering for self-supervised 3d
object detection. In ECCV, pages 514–529. Springer, 2020.

[11] K. Blomqvist, J. J. Chung, L. Ott, and R. Siegwart. Semi-automatic 3D
object keypoint annotation and detection for the masses. In International
Conference on Pattern Recognition, 2022.

[12] K. Blomqvist, F. Milano, J. J. Chung, L. Ott, and R. Siegwart. Neural
implicit vision-language feature fields. In IEEE IROS, 2023.

[13] K. Blomqvist, L. Ott, J. J. Chung, and R. Siegwart. Baking in the
Feature: Accelerating Volumetric Segmentation by Rendering Feature
Maps. IEEE IROS, 2023.

[14] Bloomberg. Gm’s cruise expands robotaxi service to
phoenix and austin even with safety probe, 2023. URL:
https://www.bloomberg.com/news/articles/2022-12-20/gm-s-
cruise-expands-robotaxi-service-amid-federal-safety-probe Accessed:
2023-07-26.

[15] V. Blukis, R. Knepper, and Y. Artzi. Few-shot Object Grounding and
Mapping for Natural Language Robot Instruction Following. In Confer-
ence on Robot Learning, 2021.

[16] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski,
T. Ding, D. Driess, A. Dubey, C. Finn, et al. Rt-2: Vision-language-
action models transfer web knowledge to robotic control. arXiv preprint
arXiv:2307.15818, 2023.

[17] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar. The ycb object and model set: Towards common benchmarks
for manipulation research. In 2015 international conference on advanced
robotics (ICAR), pages 510–517. IEEE, 2015.

[18] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and
A. Joulin. Emerging properties in self-supervised vision transformers.

bibliography 121

In Proceedings of the International Conference on Computer Vision (ICCV),
2021.

[19] J. Cha, J. Mun, and B. Roh. Learning to generate text-grounded mask
for open-world semantic segmentation from only image-text pairs. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11165–11174, 2023.

[20] B. Chen, F. Xia, B. Ichter, K. Rao, K. Gopalakrishnan, M. Ryoo, A. Stone,
and D. Kappler. Open-vocabulary Queryable Scene Representations
for Real World Planning. arxiv preprint arXiv:2209.09874, 2022.

[21] W. Chen, S. Hu, R. Talak, and L. Carlone. Leveraging Large Lan-
guage Models for Robot 3D Scene Understanding. arXiv preprint
arXiv:2209.05629, 2022.

[22] Y. Chen, Q. Yuan, Z. Li, Y. L. W. W. C. Xie, X. Wen, and Q. Yu. Upst-nerf:
Universal photorealistic style transfer of neural radiance fields for 3d
scene. arXiv preprint arXiv:2208.07059, 2022.

[23] A. Cramariuc, L. Bernreiter, F. Tschopp, M. Fehr, V. Reijgwart, J. Nieto,
R. Siegwart, and C. Cadena. maplab 2.0–a modular and multi-modal
mapping framework. IEEE Robotics and Automation Letters, 8(2):520–527,
2022.

[24] A. Cui, A. Jahanian, A. Lapedriza, A. Torralba, S. Mahdizadehaghdam,
R. Kumar, and D. Bau. Local relighting of real scenes. arXiv preprint
arXiv:2207.02774, 2022.

[25] B. Curless and M. Levoy. A Volumetric Method for building Com-
plex Models from Range Images. In Computer Graphics and Interactive
Techniques, 1996.

[26] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner. ScanNet: Richly-annotated 3D Reconstructions of Indoor
Scenes. In IEEE/CVF CVPR, 2017.

[27] M. Danielczuk, M. Matl, S. Gupta, A. Li, A. Lee, J. Mahler, and K. Gold-
berg. Segmenting unknown 3D objects from real depth images using
mask r-cnn trained on synthetic point clouds. In IEEE ICRA, 2019.

122 bibliography

[28] B. Deng, J. T. Barron, and P. P. Srinivasan. JaxNeRF: an efficient
JAX implementation of NeRF, 2020. URL https://github.com/
google-research/google-research/tree/master/jaxnerf.

[29] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan. Depth-supervised nerf:
Fewer views and faster training for free. In IEEE/CVF CVPR, pages
12882–12891, 2022.

[30] M. Devecka. Did the greeks believe in their robots? The Cambridge
Classical Journal, 59:52–69, 2013.

[31] R. Ding, J. Yang, C. Xue, W. Zhang, S. Bai, and X. Qi. Language-
driven Open-Vocabulary 3D Scene Understanding. arXiv preprint
arXiv:2211.16312, 2022.

[32] Y. Ding, L. Liu, C. Tian, J. Yang, and H. Ding. Don’t stop learn-
ing: Towards continual learning for the clip model. arXiv preprint
arXiv:2207.09248, 2022.

[33] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

[34] B. Dynamics. Leaps, Bounds and Backflips, 2022.
https://bostondynamics.com/blog/leaps-bounds-and-backflips/
accessed 2023-07-26.

[35] X. Fu, S. Zhang, T. Chen, Y. Lu, L. Zhu, X. Zhou, A. Geiger, and
Y. Liao. Panoptic NeRF: 3D-to-2D label transfer for panoptic urban
scene segmentation. arXiv preprint arXiv:2203.15224, 2022.

[36] F. Furrer, M. Fehr, T. Novkovic, H. Sommer, I. Gilitschenski, and
R. Siegwart. Evaluation of combined time-offset estimation and hand-
eye calibration on robotic datasets. In Field and Service Robotics: Results
of the 11th International Conference, pages 145–159. Springer, 2018.

[37] W. Gao and R. Tedrake. kpam-sc: Generalizable manipulation planning
using keypoint affordance and shape completion. In 2021 IEEE ICRA,
pages 6527–6533. IEEE, 2021.

https://github.com/google-research/google-research/tree/master/jaxnerf
https://github.com/google-research/google-research/tree/master/jaxnerf

bibliography 123

[38] G. Ghiasi, X. Gu, Y. Cui, and T.-Y. Lin. Scaling Open-Vocabulary Image
Segmentation with Image-Level Labels. In ECCV, 2022.

[39] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar,
J. Hamburger, H. Jiang, M. Liu, X. Liu, et al. Ego4d: Around the
world in 3,000 hours of egocentric video. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 18995–19012,
2022.

[40] T. Grenzdörffer, M. Günther, and J. Hertzberg. Ycb-m: A multi-camera
rgb-d dataset for object recognition and 6dof pose estimation. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages
3650–3656. IEEE, 2020.

[41] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Siegwart,
and J. Nieto. Volumetric Instance-Aware Semantic Mapping and 3D
Object Discovery. IEEE Robotics and Automation Letters, 2019.

[42] M. Grinvald, F. Tombari, R. Siegwart, and J. Nieto. TSDF++: A Multi-
Object Formulation for Dynamic Object Tracking and Reconstruction.
In IEEE ICRA, 2021.

[43] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui. Open-vocabulary Object Detec-
tion via Vision and Language Knowledge Distillation. arXiv preprint
arXiv:2104.13921, 2021.

[44] S. Gunasekar, Y. Zhang, J. Aneja, C. C. T. Mendes, A. Del Giorno,
S. Gopi, M. Javaheripi, P. Kauffmann, G. de Rosa, O. Saarikivi, et al.
Textbooks are all you need. arXiv preprint arXiv:2306.11644, 2023.

[45] H. Ha and S. Song. Semantic Abstraction: Open-World 3D Scene
Understanding from 2D Vision-Language Models. In Conference on
Robot Learning, 2022.

[46] A. Haque, M. Tancik, A. A. Efros, A. Holynski, and A. Kanazawa.
Instruct-nerf2nerf: Editing 3d scenes with instructions. arXiv preprint
arXiv:2303.12789, 2023.

[47] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings
of the IEEE international conference on computer vision, pages 2961–2969,
2017.

124 bibliography

[48] Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun. Pvn3d: A deep
point-wise 3d keypoints voting network for 6dof pose estimation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11632–11641, 2020.

[49] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Ruther-
ford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark, et al.
Training compute-optimal large language models. arXiv preprint
arXiv:2203.15556, 2022.

[50] Y. Hu, J. Hugonot, P. Fua, and M. Salzmann. Segmentation-driven 6D
object pose estimation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3385–3394, 2019.

[51] C. Huang, O. Mees, A. Zeng, and W. Burgard. Visual Language Maps
for Robot Navigation. arXiv preprint arXiv:2210.05714, 2022.

[52] N. Hughes, Y. Chang, and L. Carlone. Hydra: A Real-time Spatial
Perception System for 3D Scene Graph Construction and Optimization.
In Robotics: Science and Systems, 2022.

[53] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon.
A survey on contrastive self-supervised learning. Technologies, 9(1):2,
2020.

[54] C. Jambon, B. Kerbl, G. Kopanas, S. Diolatzis, G. Drettakis, and
T. Leimkühler. Nerfshop: Interactive editing of neural radiance fields.
Proceedings of the ACM on Computer Graphics and Interactive Techniques, 6

(1), 2023.

[55] K. M. Jatavallabhula, A. Kuwajerwala, Q. Gu, M. Omama, T. Chen,
S. Li, G. Iyer, S. Saryazdi, N. Keetha, A. Tewari, et al. ConceptFusion:
Open-set Multimodal 3D Mapping. arXiv preprint arXiv:2302.07241,
2023.

[56] L. Jing and Y. Tian. Self-supervised visual feature learning with deep
neural networks: A survey. IEEE transactions on pattern analysis and
machine intelligence, 43(11):4037–4058, 2020.

bibliography 125

[57] B. Katz, J. Di Carlo, and S. Kim. Mini cheetah: A platform for pushing
the limits of dynamic quadruped control. In 2019 international conference
on robotics and automation (ICRA), pages 6295–6301. IEEE, 2019.

[58] J. Kerr, C. M. Kim, K. Goldberg, A. Kanazawa, and M. Tancik. Lerf:
Language embedded radiance fields. arXiv preprint arXiv:2303.09553,
2023.

[59] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al. Segment anything.
arXiv preprint arXiv:2304.02643, 2023.

[60] S. Kobayashi, E. Matsumoto, and V. Sitzmann. Decomposing NeRF for
Editing via Feature Field Distillation. In NeurIPS, 2022.

[61] X. Kong, S. Liu, M. Taher, and A. Davison. vMAP: Vectorised Object
Mapping for Neural Field SLAM. arxiv preprint arXiv:2302.01838, 2023.

[62] Z. Kuang, F. Luan, S. Bi, Z. Shu, G. Wetzstein, and K. Sunkavalli.
Palettenerf: Palette-based appearance editing of neural radiance fields.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20691–20700, 2023.

[63] A. Kundu, K. Genova, X. Yin, A. Fathi, C. Pantofaru, L. J. Guibas,
A. Tagliasacchi, F. Dellaert, and T. Funkhouser. Panoptic Neural Fields:
A Semantic Object-Aware Neural Scene Representation. In IEEE/CVF
CVPR, 2022.

[64] H. Law, Y. Teng, O. Russakovsky, and J. Deng. CornerNet-Lite: Efficient
keypoint based object detection. arXiv preprint arXiv:1904.08900, 2019.

[65] V. Lazova, V. Guzov, K. Olszewski, S. Tulyakov, and G. Pons-Moll.
Control-nerf: Editable feature volumes for scene rendering and manip-
ulation. arXiv preprint arXiv:2204.10850, 2022.

[66] B. Li, K. Q. Weinberger, S. Belongie, V. Koltun, and R. Ranftl. Language-
driven Semantic Segmentation. arXiv preprint arXiv:2201.03546, 2022.

[67] Z. Li, T. Müller, A. Evans, R. H. Taylor, M. Unberath, M.-Y. Liu, and
C.-H. Lin. Neuralangelo: High-fidelity neural surface reconstruction.

126 bibliography

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8456–8465, 2023.

[68] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dol-
lár, and C. L. Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755. Springer, 2014.

[69] Y. Lin, J. Tremblay, S. Tyree, P. A. Vela, and S. Birchfield. Single-stage
keypoint-based category-level object pose estimation from an rgb image.
In IEEE ICRA, 2022.

[70] Y. Lin, M. Chen, W. Wang, B. Wu, K. Li, B. Lin, H. Liu, and X. He.
Clip is also an efficient segmenter: A text-driven approach for weakly
supervised semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 15305–
15314, 2023.

[71] X. Liu, R. Jonschkowski, A. Angelova, and K. Konolige. Keypose:
Multi-view 3D labeling and keypoint estimation for transparent objects.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11602–11610, 2020.

[72] Z. Liu, F. Milano, J. Frey, M. Hutter, R. Siegwart, H. Blum, and C. Ca-
dena. Unsupervised Continual Semantic Adaptation through Neural
Rendering. arXiv preprint arXiv:2211.13969, 2022.

[73] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3431–3440, 2015.

[74] A. Majumdar, G. Aggarwal, B. Devnani, J. Hoffman, and D. Batra.
ZSON: Zero-Shot Object-Goal Navigation using Multimodal Goal Em-
beddings. arXiv preprint arXiv:2206.12403, 2022.

[75] K.-K. Maninis, S. Caelles, J. Pont-Tuset, and L. Van Gool. Deep Extreme
Cut: From Extreme Points to Object Segmentation. In IEEE/CVF CVPR,
pages 616–625, 2018.

[76] L. Manuelli, W. Gao, P. Florence, and R. Tedrake. kpam: Keypoint
affordances for category-level robotic manipulation. In The International
Symposium of Robotics Research, pages 132–157. Springer, 2019.

bibliography 127

[77] P. Marion, P. R. Florence, L. Manuelli, and R. Tedrake. Label Fusion: A
Pipeline for Generating Ground Truth Labels for Real RGBD Data of
Cluttered Scenes. In IEEE ICRA, 2018.

[78] K. Mazur, E. Sucar, and A. J. Davison. Feature-Realistic Neural Fusion
for Real-Time, Open Set Scene Understanding. IEEE ICRA, 2023.

[79] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng. NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis. In ECCV, 2020.

[80] A. Moreau, N. Piasco, D. Tsishkou, B. Stanciulescu, and
A. de La Fortelle. Lens: Localization enhanced by nerf synthesis.
In Conference on Robot Learning, pages 1347–1356. PMLR, 2022.

[81] T. Müller, A. Evans, C. Schied, and A. Keller. Instant Neural Graph-
ics Primitives with a Multiresolution Hash Encoding. arXiv preprint
arXiv:2201.05989, 2022.

[82] G. Narita, T. Seno, T. Ishikawa, and Y. Kaji. PanopticFusion: Online
Volumetric Semantic Mapping at the Level of Stuff and Things. In
IROS, 2019.

[83] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinect-
Fusion: Real-Time Dense Surface Mapping and Tracking. In IEEE
International Symposium on Mixed and Augmented Reality, 2011.

[84] L. Oth, P. Furgale, L. Kneip, and R. Siegwart. Rolling shutter camera
calibration. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1360–1367, 2013.

[85] K. Park, T. Patten, and M. Vincze. Pix2Pose: Pixel-wise coordinate
regression of objects for 6D pose estimation. In Proceedings of the IEEE
International Conference on Computer Vision, pages 7668–7677, 2019.

[86] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao. PVNet: Pixel-wise
voting network for 6DoF pose estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4561–4570,
2019.

128 bibliography

[87] S. Peng, K. Genova, C. Jiang, A. Tagliasacchi, M. Pollefeys,
T. Funkhouser, et al. OpenScene: 3D Scene Understanding with Open
Vocabularies. arXiv preprint arXiv:2211.15654, 2022.

[88] J. Qin, J. Wu, P. Yan, M. Li, R. Yuxi, X. Xiao, Y. Wang, R. Wang, S. Wen,
X. Pan, et al. Freeseg: Unified, universal and open-vocabulary image
segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 19446–19455, 2023.

[89] F. Radenovic, A. Dubey, A. Kadian, T. Mihaylov, S. Vandenhende,
Y. Patel, Y. Wen, V. Ramanathan, and D. Mahajan. Filtering, distillation,
and hard negatives for vision-language pre-training. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 6967–6977, 2023.

[90] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning Transferable
Visual Models From Natural Language Supervision. In International
Conference on Machine Learning, 2021.

[91] S. S. Raman, V. Cohen, E. Rosen, I. Idrees, D. Paulius, and S. Tellex.
Planning with Large Language Models via Corrective Re-prompting.
arXiv preprint arXiv:2211.09935, 2022.

[92] K. Ranasinghe, B. McKinzie, S. Ravi, Y. Yang, A. Toshev, and J. Shlens.
Perceptual Grouping in Vision-Language Models. arXiv preprint
arXiv:2210.09996, 2022.

[93] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[94] K. Rematas, A. Liu, P. P. Srinivasan, J. T. Barron, A. Tagliasacchi,
T. Funkhouser, and V. Ferrari. Urban radiance fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12932–12942, 2022.

[95] P. Ren, C. Li, H. Xu, Y. Zhu, G. Wang, J. Liu, X. Chang, and X. Liang.
Viewco: Discovering text-supervised segmentation masks via multi-
view semantic consistency. arXiv preprint arXiv:2302.10307, 2023.

bibliography 129

[96] A. Rosinol, M. Abate, Y. Chang, and L. Carlone. Kimera: an Open-
Source Library for Real-Time Metric-Semantic Localization and Map-
ping. In IEEE ICRA, 2020.

[97] C. Rother, V. Kolmogorov, and A. Blake. “GrabCut" Interactive Fore-
ground Extraction using Iterated Graph Cuts. ACM Transactions on
Graphics, 2004.

[98] V. Rudnev, M. Elgharib, W. Smith, L. Liu, V. Golyanik, and C. Theobalt.
Nerf for outdoor scene relighting. In European Conference on Computer
Vision, pages 615–631. Springer, 2022.

[99] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. LabelMe: a
database and web-based tool for image annotation. International Journal
of Computer Vision, 2008.

[100] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk. From coarse to
fine: Robust hierarchical localization at large scale. In CVPR, 2019.

[101] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich. SuperGlue:
Learning feature matching with graph neural networks. In CVPR, 2020.

[102] L. Schmid, J. Delmerico, J. L. Schönberger, J. Nieto, M. Pollefeys, R. Sieg-
wart, and C. Cadena. Panoptic Multi-TSDFs: a Flexible Representation
for Online Multi-resolution Volumetric Mapping and Long-term Dy-
namic Scene Consistency. In IEEE ICRA, 2022.

[103] J. L. Schonberger and J.-M. Frahm. Structure-From-Motion Revisited. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4104–4113, 2016.

[104] B. Settles. From Theories to Queries: Active Learning in Practice. In
Active Learning and Experimental Design workshop In conjunction with AIS-
TATS 2010, pages 1–18. JMLR Workshop and Conference Proceedings,
2011.

[105] N. M. M. Shafiullah, C. Paxton, L. Pinto, S. Chintala, and A. Szlam.
CLIP-Fields: Weakly Supervised Semantic Fields for Robotic Memory.
arXiv preprint arXiv:2210.05663, 2022.

130 bibliography

[106] D. Shah, B. Osinski, B. Ichter, and S. Levine. LM-Nav: Robotic Naviga-
tion with Large Pre-Trained Models of Language, Vision, and Action.
arXiv preprint arXiv:2207.04429, 2022.

[107] G. Shin, W. Xie, and S. Albanie. All you need are a few pixels: semantic
segmentation with pixelpick. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1687–1697, 2021.

[108] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task
transformer for robotic manipulation. In Conference on Robot Learning,
pages 785–799. PMLR, 2023.

[109] Y. Siddiqui, J. Valentin, and M. Nießner. ViewAL: Active Learning with
Viewpoint Entropy for Semantic Segmentation. In IEEE/CVF CVPR,
pages 9433–9443, 2020.

[110] Y. Siddiqui, L. Porzi, S. R. Buló, N. Müller, M. Nießner, A. Dai, and
P. Kontschieder. Panoptic Lifting for 3D Scene Understanding with
Neural Fields. arXiv preprint arXiv:2212.09802, 2022.

[111] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint detection
in single images using multiview bootstrapping. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, pages
1145–1153, 2017.

[112] R. P. Singh, M. Benallegue, Y. Yoshiyasu, and F. Kanehiro. Rapid pose
label generation through sparse representation of unknown objects. In
2021 IEEE ICRA, pages 10287–10293. IEEE, 2021.

[113] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, and Y. Su.
LLM-Planner: Few-Shot Grounded Planning for Embodied Agents
with Large Language Models. arXiv preprint arXiv:2212.04088, 2022.

[114] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J. Engel,
R. Mur-Artal, C. Ren, S. Verma, et al. The replica dataset: A digital
replica of indoor spaces. arXiv preprint arXiv:1906.05797, 2019.

[115] M. Strecke and J. Stuckler. EM-Fusion: Dynamic Object-Level SLAM
With Probabilistic Data Association. In IEEE/CVF ICCV, 2019.

bibliography 131

[116] D. Stumpf, S. Krauß, G. Reis, O. Wasenmüller, and D. Stricker. SALT:
A Semi-automatic Labeling Tool for RGB-D Video Sequences. arXiv
preprint arXiv:2102.10820, 2021.

[117] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison. iMAP: Implicit Mapping
and Positioning in Real-Time. In IEEE/CVF ICCV, 2021.

[118] M. Suchi, T. Patten, D. Fischinger, and M. Vincze. EasyLabel: A Semi-
Automatic Pixel-wise Object Annotation Tool for Creating Robotic
RGB-D Datasets. In ICRA, 2019.

[119] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE
international conference on computer vision, pages 843–852, 2017.

[120] X. Sun, B. Xiao, F. Wei, S. Liang, and Y. Wei. Integral human pose
regression. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 529–545, 2018.

[121] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner,
B. Upcroft, P. Abbeel, W. Burgard, M. Milford, et al. The Limits and
Potentials of Deep Learning for Robotics. The International Journal of
Robotics Research, 2018.

[122] R. Sutton. The bitter lesson, 2019. URL:
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
Accessed: 2023-08-16.

[123] S. Suwajanakorn, N. Snavely, J. J. Tompson, and M. Norouzi. Discovery
of latent 3D keypoints via end-to-end geometric reasoning. In Advances
in Neural Information Processing Systems, pages 2059–2070, 2018.

[124] S. Tan, M. Ge, D. Guo, H. Liu, and F. Sun. Self-supervised 3D Semantic
Representation Learning for Vision-and-Language Navigation. arXiv
preprint arXiv:2201.10788, 2022.

[125] M. Tancik, V. Casser, X. Yan, S. Pradhan, B. Mildenhall, P. P. Srinivasan,
J. T. Barron, and H. Kretzschmar. Block-nerf: Scalable large scene
neural view synthesis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8248–8258, 2022.

132 bibliography

[126] B. Tekin, S. N. Sinha, and P. Fua. Real-time seamless single shot 6d
object pose prediction. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 292–301, 2018.

[127] F. Tosi, A. Tonioni, D. De Gregorio, and M. Poggi. Nerf-supervised
deep stereo. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

[128] J. Tremblay, T. To, and S. Birchfield. Falling things: A synthetic dataset
for 3D object detection and pose estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages
2038–2041, 2018.

[129] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield.
Deep object pose estimation for semantic robotic grasping of household
objects. arXiv preprint arXiv:1809.10790, 2018.

[130] V. Tschernezki, D. Larlus, and A. Vedaldi. Neuraldiff: Segmenting 3d
objects that move in egocentric videos. In 2021 International Conference
on 3D Vision (3DV), pages 910–919. IEEE, 2021.

[131] V. Tschernezki, I. L. D. Larlus, and A. Vedaldi. Neural Feature Fusion
Fields: 3D Distillation of Self-Supervised 2D Image Representations.
In Conference on 3D Vision, 2022.

[132] F. Tschopp, M. Riner, M. Fehr, L. Bernreiter, F. Furrer, T. Novkovic,
A. Pfrunder, C. Cadena, R. Siegwart, and J. Nieto. VersaVIS—an open
versatile multi-camera visual-inertial sensor suite. Sensors, 20(5):1439,
2020.

[133] M. Vecerik, J.-B. Regli, O. Sushkov, D. Barker, R. Pevceviciute, T. Rothörl,
R. Hadsell, L. Agapito, and J. Scholz. S3k: Self-supervised semantic
keypoints for robotic manipulation via multi-view consistency. In
Conference on Robot Learning, pages 449–460. PMLR, 2021.

[134] S. Vora, N. Radwan, K. Greff, H. Meyer, K. Genova, M. S. M. Sajjadi,
E. Pot, A. Tagliasacchi, and D. Duckworth. NeSF: Neural semantic
fields for generalizable semantic segmentation of 3d scenes. Transactions
on Machine Learning Research, 2022. URL https://openreview.net/
forum?id=ggPhsYCsm9.

https://openreview.net/forum?id=ggPhsYCsm9
https://openreview.net/forum?id=ggPhsYCsm9

bibliography 133

[135] C. Wang, R. Martín-Martín, D. Xu, J. Lv, C. Lu, L. Fei-Fei, S. Savarese,
and Y. Zhu. 6-PACK: Category-level 6D pose tracker with anchor-
based keypoints. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 10059–10066. IEEE, 2020.

[136] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas.
Normalized object coordinate space for category-level 6D object pose
and size estimation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2642–2651, 2019.

[137] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang. NeuS:
Learning Neural Implicit Surfaces by Volume Rendering for Multi-view
Reconstruction. arXiv preprint arXiv:2106.10689, 2021.

[138] Y. Wang, Q. Han, M. Habermann, K. Daniilidis, C. Theobalt, and
L. Liu. Neus2: Fast learning of neural implicit surfaces for multi-view
reconstruction. arXiv preprint arXiv:2212.05231, 2022.

[139] Z. Wang, M. Li, M. Wu, M.-F. Moens, and T. Tuytelaars. Find a Way
Forward: a Language-Guided Semantic Map Navigator. arXiv preprint
arXiv:2203.03183, 2022.

[140] S.-C. Wu, J. Wald, K. Tateno, N. Navab, and F. Tombari. SceneGraphFu-
sion: Incremental 3D Scene Graph Prediction from RGB-D Sequences.
In IEEE/CVF CVPR, 2021.

[141] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolu-
tional neural network for 6d object pose estimation in cluttered scenes.
arXiv preprint arXiv:1711.00199, 2017.

[142] B. Xu, W. Li, D. Tzoumanikas, M. Bloesch, A. Davison, and S. Leuteneg-
ger. MID-Fusion: Octree-based Object-Level Multi-Instance Dynamic
SLAM. In IEEE ICRA, 2019.

[143] H. Xu, S. Xie, P.-Y. Huang, L. Yu, R. Howes, G. Ghosh, L. Zettlemoyer,
and C. Feichtenhofer. Cit: Curation in training for effective vision-
language data. arXiv preprint arXiv:2301.02241, 2023.

[144] H. Yang, C. Doran, and J.-J. Slotine. Dynamical pose estimation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 5926–5935, 2021.

134 bibliography

[145] L. Yao, R. Huang, L. Hou, G. Lu, M. Niu, H. Xu, X. Liang, Z. Li, X. Jiang,
and C. Xu. Filip: fine-grained interactive language-image pre-training.
arXiv preprint arXiv:2111.07783, 2021.

[146] R. Yao, G. Lin, S. Xia, J. Zhao, and Y. Zhou. Video object segmentation
and tracking: A survey. ACM Transactions on Intelligent Systems and
Technology (TIST), 11(4):1–47, 2020.

[147] Y. Yao, Y. Jafarian, and H. S. Park. Monet: Multiview semi-supervised
keypoint detection via epipolar divergence. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 753–762,
2019.

[148] L. Yen-Chen, P. Florence, J. T. Barron, T.-Y. Lin, A. Rodriguez, and
P. Isola. NeRF-Supervision: Learning Dense Object Descriptors from
Neural Radiance Fields. arXiv preprint arXiv:2203.01913, 2022.

[149] M. Yi, Q. Cui, H. Wu, C. Yang, O. Yoshie, and H. Lu. A simple
framework for text-supervised semantic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7071–7080, 2023.

[150] Y. Yu, A. Meka, M. Elgharib, H.-P. Seidel, C. Theobalt, and W. A.
Smith. Self-supervised outdoor scene relighting. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXII 16, pages 84–101. Springer, 2020.

[151] Y.-J. Yuan, Y.-T. Sun, Y.-K. Lai, Y. Ma, R. Jia, and L. Gao. Nerf-editing: ge-
ometry editing of neural radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 18353–18364,
2022.

[152] S. Zakharov, I. Shugurov, and S. Ilic. DPOD: 6D pose object detector and
refiner. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1941–1950, 2019.

[153] S. Zakharov, W. Kehl, A. Bhargava, and A. Gaidon. Autolabeling 3d
objects with differentiable rendering of sdf shape priors. In IEEE/CVF
CVPR, pages 12224–12233, 2020.

bibliography 135

[154] A. Zareian, K. D. Rosa, D. H. Hu, and S.-F. Chang. Open-Vocabulary
Object Detection Using Captions. In IEEE/CVF CVPR, 2021.

[155] H. Zhang, P. Zhang, X. Hu, Y. Chen, L. Li, X. Dai, L. Wang, L. Yuan,
J. Hwang, and J. Gao. GLIPv2: Unifying Localization and Vision-
Language Understanding. In NeurIPS, 2022.

[156] K. Zhang, G. Riegler, N. Snavely, and V. Koltun. Nerf++: Analyzing
and improving neural radiance fields. arXiv preprint arXiv:2010.07492,
2020.

[157] X. Zhang and A. Boularias. Optical flow boosts unsupervised localiza-
tion and segmentation. 2023.

[158] X. Zhang, N. Tseng, A. Syed, R. Bhasin, and N. Jaipuria. Simbar:
Single image-based scene relighting for effective data augmentation
for automated driving vision tasks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3718–3728,
2022.

[159] Y. Zhang, Z. Wang, J. H. Liew, J. Huang, M. Zhu, J. Feng, and W. Zuo.
Associating spatially-consistent grouping with text-supervised seman-
tic segmentation. arXiv preprint arXiv:2304.01114, 2023.

[160] X. Zhao, W. Ding, Y. An, Y. Du, T. Yu, M. Li, M. Tang, and J. Wang.
Fast segment anything. arXiv preprint arXiv:2306.12156, 2023.

[161] S. Zhi, T. Laidlow, S. Leutenegger, and A. J. Davison. In-Place Scene
Labelling and Understanding with Implicit Scene Representation. In
IEEE/CVF International Conference on Computer Vision, 2021.

[162] S. Zhi, E. Sucar, A. Mouton, I. Haughton, T. Laidlow, and A. J. Davison.
iLabel: Revealing Objects in Neural Fields. IEEE Robotics and Automation
Letters, 2022.

[163] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene
Parsing through ADE20K Dataset. In IEEE CVPR, 2017.

[164] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald,
and M. Pollefeys. NICE-SLAM: Neural Implicit Scalable Encoding for
SLAM. In IEEE/CVF CVPR, 2022.

136 bibliography

[165] X. Zou, Z.-Y. Dou, J. Yang, Z. Gan, L. Li, C. Li, X. Dai, H. Behl, J. Wang,
L. Yuan, et al. Generalized Decoding for Pixel, Image, and Language.
arXiv preprint arXiv:2212.11270, 2022.

	Introduction
	1 Objective
	2 Approach

	Contributions
	1 Part A: Keypoints
	2 Part B: Segmentation and synthesizing data
	3 Part C: Interactive autolabeling
	4 Part D: Weakly supervised semantic learning
	5 List of Publications
	6 Conference and workshop attendance
	7 Student supervision
	8 List of open-source software

	Conclusion and Outlook
	1 Discussion
	2 Outlook
	3 General outlook

	Keypoints
	Paper I: Semi-automatic 3D Object Keypoint Annotation and Detection for the Masses
	1 Introduction
	2 Related Work
	3 Method
	4 Experiments
	5 Results
	6 Discussion and conclusions
	7 Acknowledgements

	Segmentation and Synthesizing Data
	Paper II: NeRFing it: Offline Object Segmentation Through Implicit Modeling
	1 Introduction
	2 Related Work
	3 Method
	4 Experiments
	5 Discussion and Conclusions

	Interactive Autolabeling
	Paper III: Baking in the Feature: Volumetric Segmentation by Rendering Feature Maps
	1 Introduction
	2 Related work
	3 Method
	4 Experimental Results
	5 Conclusions

	Weakly Supervised Semantic Learning from the Internet
	Paper IV: Neural Implicit Vision-Language Feature Fields
	1 Introduction
	2 Related work
	3 Method
	4 Experiment results
	5 Discussion and conclusions

	Bibliography

