
Exploring Emergent Microservice Evolution in Elastic Deployment
Environments
Roberto Rodrigues-Filhoa, Iwens Sene-Júniorb, Barry Porterc, Luiz F. Bittencourtd, Fabio Kone and
Fábio M. Costab

aFederal University of Santa Catarina, Araranguá, SC, Brazil
bFederal University of Goiás, Goiânia, GO, Brazil
cLancaster University, Lancaster, United Kingdom
dUniversity of Campinas, Campinas, SP, Brazil
eUniversity of São Paulo, São Paulo, SP, Brazil

A R T I C L E I N F O

Keywords:
microservices, emergent software sys-
tems, self-adaptive systems, smart cities

A B S T R A C T

Microservices have become an important technology to enable the dynamic composition of large-scale
self-adaptive systems. Although modern microservice ecosystems provide a variety of autonomous
adaptation mechanisms, when focusing on the microservice itself, they can only account for changes
in the sheer increase in workload volume. On the other hand, when workload patterns change, efficient
treatment requires the intervention of DevOps experts to manually evolve the internal architecture of
services. Given the need to quickly adapt systems to respond to changes, solely relying on DevOps
to react to workload pattern changes becomes a bottleneck for future systems. To address this issue,
we advance the concept of emergent microservices, that autonomously adapt and evolve their internal
architectural composition to better handle changes in the pattern of incoming requests without human
intervention. We demonstrate the effectiveness of our approach by exploring this novel concept in the
context of a microservice-based Smart City platform.

1. Introduction
The ability to cope with constantly changing operating

environments is one of the key challenges in creating modern
distributed systems. Popular domains such as general IoT
applications, smart cities, data centre-based applications and
web-based services are relevant examples of systems that
are characterised by constant changes in their environments.
All these changes create uncertain operating conditions that
affect systems performance in unexpected ways [14].

To address the volatility issue ever more present in
contemporary systems, the use of self-adaptive techniques
has gained popularity. Self-adaptive systems are software
systems that actuate on themselves via parameter tuning or
architectural adaptation to accommodate changes to main-
tain the system at a desired level of performance [9]. Thus,
self-adaptation is increasingly becoming an indispensable
property to improve the dependability of contemporary sys-
tems.

Microservices [15, 18] represent a key technology to
support the creation of self-adaptive systems. Besides their
advantages in creating highly reusable and maintainable
software, their inherently modular architecture also enables
systems to be highly adaptable. In the industry, microservice-
based systems can be adapted in a number of ways. Regard-
ing the adaptation of functional properties, microservices are
often used as building blocks to dynamically compose and
recompose systems through central orchestration or through
the enactment of predefined choreographies [11, 19].

Regarding performance, microservices are adapted when
changes occur in two main ways: (i) workload volume; and

ORCID(s): 0000-0002-3323-0246 (R. Rodrigues-Filho)

(ii) workload pattern. Concerning the former, tools such as
horizontal and vertical autoscalers are frequently used to
autonomously create replicas or to increase the amount of
resources available to each microservice instance in response
to increases in request rate [28, 3]. This is currently the
principal way to autonomously react to changes and quickly
respond when new conditions arise. On the other hand, for
changes in workload patterns, which are characterised by
different mixtures and frequency of request types, the domi-
nant approach to optimise the performance of microservices
is to rely on experts (i.e., DevOps) to identify new ways
to improve a service’s implementation, and then manually
rewrite, test and redeploy the service through continuous
delivery [6]. This strategy is time-consuming and inefficient.

Thus, resource management through horizontal and ver-
tical autoscaling is currently the only widely used approach
to autonomously compensate workload changes. Although
these mechanisms work well when changes involve only
workload volume, they are less efficient (in terms of resource
consumption) to cope with changes in workload patterns.
These changes often affect the performance of microser-
vices, making them slower to process the incoming requests.
This performance degradation leads to a decrease in the
volume of requests that each service instance is capable
of processing, thus requiring more replicas than the sys-
tem would otherwise need if the services were optimised
according to the pattern. Therefore, for pattern changes, it
is necessary to optimise the microservice implementation
considering the pattern characteristics. Otherwise, scenarios
where workload patterns frequently change may, e.g., result
in equally frequent resizing of the number of microservices

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 1 of 14



Emergent Microservices in Elastic Environments

replicas, resulting in an (avoidable) negative impact on the
overall system’s performance.

In this paper, we explore a finer-grained level of adapta-
tion, based on a novel approach to microservice engineering,
called Emergent Microservices (EM) [26]. The EM concept
enables microservices to autonomously adapt to workload
pattern changes, automating, to a certain degree, the role
of DevOps in microservice evolution. For that, we use the
Emergent Software Systems (ESS) approach [23], originally
proposed for the creation of self-adaptive systems, as part of
the design of microservices.

This novel engineering approach entails the development
of a collection of very small components that are used
to compose a microservice. At runtime, replacing any of
the constituent components enables adaptation of the mi-
croservice’s internal architecture, with a possible boost in
its performance. To illustrate, if a sudden workload change
requires a microservice to repeatedly retrieve large amounts
of historical data, adding a component that performs caching
may significantly increase performance. On the other hand,
if the workload changes again to require the retrieval of
recently produced data with a low tolerance for staleness,
that component may rather be replaced by one that does not
cache data. The online learning of which component to use
lies at the core of our proposed approach.

The paper presents the following contributions:
1. A demonstration of the impact that workload patterns

have on microservice performance even when the request
volume remains unchanged. In this regard, we also show
that different microservice implementations exhibit distinct
levels of performance when subjected to the same workload
patterns, and that it is not obvious which implementation is
the most suitable in each case;

2. A demonstration of emergent microservices being
able to identify workload patterns and learn, at runtime, the
most suitable implementation in a case-by-case fashion.

3. A demonstration of the potential of combining EM
and horizontal autoscaling to handle changes in both the
volume and the pattern of workloads. We show that, for a
given workload, optimising the microservice composition
saves resources.

The remainder of this paper is organised as follows. We
consider related work in Section 2. Section 3 describes our
methodology to build emergent microservices. Section 4
describes a microservice-based smart city platform that will
serve as a single-case mechanism experiment for the use and
evaluation of EM. The evaluation, in turn, is presented in
Section 5, demonstrating the feasibility and effectiveness of
the approach. Section 6 discusses our findings, and Section 7
concludes the paper.

2. Related Work
Traditionally, microservices are opaque. This means that

their implementation details, including business logic de-
tails, employed frameworks, and programming languages

are often not relevant as long as they implement their ex-
pected functionality. Our approach, on the other hand, takes
an unexplored route to investigate the details of microser-
vices implementations. We add a specific framework capable
of autonomously changing the implementation of a single
microservice while maintaining its external microservice
appearance. For that reason, we employ specific terminology
to refer to important parts of the system to avoid confusion
with other widely used terms in software architecture and
microservices communities.

Particularly, in this paper, we use the terms microser-
vice’s internal architecture or micro-architecture and macro-
architecture. The microservice’s internal architecture refers
to the implementation details of a single microservice,
whereas the term macro-architecture refers to the system’s
architecture as a whole, which is often referenced as mi-
croservice architecture in the literature (see [20, 29, 11]).
The remainder of this paper employs this terminology to
avoid confusion with previously established terminology.

We identified two categories of research that depict run-
time self-adaptive behaviour in microservice-based systems.
Such research efforts (i) discuss tools that are part of mi-
croservice platforms and aim at providing elasticity support
for microservice instances; and (ii) focus on adaptation at
a macro-level, using microservices as building blocks of a
macro-architecture where adaptation is realised. We also sur-
vey DevOps practices as a way to quickly and continuously
respond to new user demands, providing a different per-
spective for design-time adaptation in microservice-based
systems. In this section, we review relevant related work in
these two categories and compare them with our approach.

Microservices are often deployed in environments that
provide supporting software to ensure quality of service
(QoS) and service-level agreements (SLAs) in a variety of
domains [12]. An important aspect to maintaining and/or
increasing the performance of microservice-based systems
is elasticity. Besides the use of popular tools, such as Kuber-
netes1, which provides horizontal and vertical autoscaling,
many papers explore different approaches to extend and im-
prove those tools. Coulson et al. [7] explore how to identify
which microservice should scale out in order to increase
overall system performance. Rossi et al. [27] explore a
hierarchical approach to ensure that elasticity performed on
specific microservices has a positive impact on the global
systems performance. As an alternative to horizontal scal-
ing, Al-Dhuraibi et al. [1] also look into vertical scaling,
combined with container migration when the host machine
cannot vertically scale as required. Brondolin et al. [5] use
these supporting tools not only to increase performance but
to also limit power consumption.

Microservices are also often used as building blocks
to create self-adaptive systems. These adaptive systems are
the result of the composition and recomposition of mul-
tiple microservices through the enactment of choreogra-
phies that detail the contract defining the interactions among

1Kubernetes is an open-source container-orchestration system (https:
//kubernetes.io/).

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 2 of 14

https://kubernetes.io/
https://kubernetes.io/


Emergent Microservices in Elastic Environments

different microservices to accomplish tasks [8]. Similarly,
microservice-based systems can be composed through the
actions of an orchestrator, which actively coordinates the
participating microservices of a macro-architecture that de-
fines the system’s functionality [21]. Sampaio et al. [29] also
consider the placement of microservices across the infras-
tructure as a way to improve overall system performance and
resource utilisation.

These two groups of works aim at exploiting mecha-
nisms to adapt microservice-based systems either by chang-
ing their macro-architecture or by externally acting on indi-
vidual instances of microservices. Either way, the microser-
vice internal composition remains the same. Our approach
differs as we propose to create microservices that are able
to evolve their micro-architecture (i.e., their internal imple-
mentation). Enabling a microservice’s internal architecture
to autonomously evolve allows it to cope not only with
changes in the workload volume, but also, and more signif-
icantly, with changes in the workload pattern. For instance,
the pattern of requests to a given microservice may change
to retrieve one kind of information instead of another (e.g., a
large list instead of a single element), or to trigger a certain
kind of data-processing more often than another (e.g., CPU-
bound instead of I/O-bound).

Current approaches to adapt the internal implementation
of microservices rely on the role of DevOps [13], which
has gained popularity due to the importance of continuous
delivery. Particularly, in [31, 16, 6], the authors advocate
that microservice-based architectures assist DevOps prac-
tices and enable engineers to respond to changes. However,
this process remains highly human-dependent and slow,
especially considering the development part. In practice, de-
velopers handle changes by manually (and offline) creating
new microservices and adjusting/maintaining existing ones,
while operators automate the deployment process through
the use of containers, container-orchestrators and scripts.
Our approach goes beyond the current trend of automat-
ing DevOps practices [34, 33]. Instead of focusing on the
infrastructure, we act at the application level, focusing on
automating the evolution of the microservice’s own internal
architecture as they execute. Thus, EM promotes the evolu-
tion and change of microservice implementations at runtime,
giving more flexibility to the system and freeing engineers
from the need to handle low-level evolution.

Finally, we compare our work to other concepts: classic
Autonomic Computing [17], Emergent Middleware [4], and
Emergent Software Systems [25]. Although our work can
be considered part of the autonomic computing research
agenda, the EM approach to evolve a microservice’s internal
architecture is not based on predefined, manually-crafted
rules and models that guide software adaptation. Rather, an
emergent microservice learns at runtime, by applying rein-
forcement learning algorithms, which composition is more
suitable for the current workload pattern, without relying
on predefined domain-specific information. Similarly, EM
radically differs from the Emergent Middleware concept
as its goal is not to synthesise connectors to overcome

interoperability problems on-the-fly. Instead, EM tackles the
online performance optimisation problem by learning, from
an existing set of components, which composition yields
optimal performance. To conclude, the concept of Emergent
Software System (ESS) has been used to enable autonomous
evolution and adaptation of web server architectures serving
static HTML-based files, a different application domain with
different requirements. In this work, on the other hand, we
apply ESS as the main method for autonomous software
adaptation and evolution within the internal architecture of
microservices, resulting in a novel concept named Emergent
Microservice (EM). We also concentrate our efforts on in-
vestigating EM performance in elastic environments.

3. Emergent Microservices
This section describes the architecture, development and

operation of emergent microservices, along with their online
learning process, which are key aspects in realising the
approach. Specifically, it describes the basic internal archi-
tecture of an emergent microservice, with components for
business logic and general-purpose non-functional proper-
ties, which in turn create a search space over which the online
learning process executes. We also present the development
and operation tasks that are required to build and deploy
emergent microservices on elastic operating environments.
Finally, we conclude the section by providing details on
the online learning process that guides the search for the
most suitable microservice internal composition for each
identified workload pattern.

3.1. Internal Architecture
The internal architecture of emergent microservices is

depicted in Fig. 1 (a). It is divided into three main parts.
The first part is the Web server, which is represented by
components 𝑤𝑠.𝑐𝑜𝑟𝑒 and 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑟. These components
are required as part of any Web-based application. They
implement the HTTP protocol and are able to handle incom-
ing HTTP requests, forwarding them to be processed by the
appropriate functions of the microservice.

The second part represents the microservice core, which
comprises business logic components and utility compo-
nents. The former implement the microservice functionality.
Each incoming request handled by the Web server is for-
warded to a function defined in one of these components.
The latter, in turn, represent a library of generic utilities
(such as parsers, sorting algorithms, data structures and
database connectors) that assist in the creation of a microser-
vice’s business logic. Note that, while utility components
are highly reusable, business logic components, are reused
less often as they capture aspects that are specific of each
microservice.

The above two parts are present in any microservice
internal architecture. The third part, however, is specific
to emergent microservices. It consists of performance tun-
ing interceptors, which are designed to intercept function
calls stemming from the Web server to the business logic
components, adapting the non-functional concerns of the

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 3 of 14



Emergent Microservices in Elastic Environments

Figure 1: (a) Internal architecture of an emergent microservice, showing the main components and how they connect. (b) Generic
example of an emergent microservice, with its functional components and examples of variability options.

microservice. An example of interceptor is Cache, which
can be inserted between two components to cache content
exchanged in function calls. This can enable multiple ex-
ecutions of time-consuming functions to be avoided once
a return value is already cached, thus decreasing the sys-
tem’s overall response time. Interceptors are application-
independent and are autonomously added/removed/replaced
by the system to dynamically experiment with the non-
functional concerns. Thus, they serve as the primary vari-
ability options to compose emergent microservices.

In addition to interceptors, our microservice framework
admits two secondary sources of variation to form the search
space for emergent microservice composition: alternative
implementations of utility components, such as search or
sorting algorithms that exhibit different performance for
different inputs; and alternative implementations of business
logic components that can, e.g., use different query strategies
to interact with external data sources. In this paper, however,
we only explore the primary kind of variability option (i.e.,
interceptors) as they are more directly related to handling the
kind of workload changes that we target.

3.2. Development and Operation
The development and operation of emergent microser-

vices involve actions from both DevOps (engineers) and the
emergent systems framework (machine). Although there are
minor differences, the overall process is largely similar to
developing and operating regular microservices.

DevOps are responsible for: i) implementing the com-
ponents that form the business logic of the microservice,
as well as the utility components and the interceptors; ii)
selecting and placing, in a specific folder, all components
that might be used to compose the microservice (consider-
ing all available variations); iii) packaging that folder in a
container; and iv) strategically annotating the components
where performance tuning interceptors are to be inserted.

Developing the business logic components themselves is
no different from the usual development task, including the

reuse of utility components. The key is to connect the busi-
ness logic components to the framework. The connection
is done by implementing the component that provides the
ws.Web interface, illustrated as the Dispatcher component
in Fig.1. The ws.Web interface is used by the ws.core com-
ponent to forward requests to the application running on the
Web platform. By implementing the ws.Web interface, the
Dispatcher forwards specific requests, based on their URI,
to the appropriate components.

The required utility components are typically picked
from an existing library. Interceptors, on the other hand, are
often written specifically to operate with particular inter-
faces, such as ws.Web, as they take into account the seman-
tics of those interfaces. Nevertheless, once implemented,
interceptors are generic to all uses of the interface; for
instance, interceptors for the ws.Web are reusable across
different microservices.

Once the microservice’s key components have been de-
veloped, the role of the operator is to select the compo-
nents that will be used by the emergent systems framework
(machine) to autonomously compose the microservice at
runtime. This involves the use of widely adopted container
technologies to package the selected components, as well
as the use of container orchestration systems to automate
microservice deployment. Note that a key part of an emer-
gent microservice is the ESS framework itself, which is also
packaged in the container, as shown in Fig. 2. The resulting
microservice composition, such as depicted in Fig. 1 (b), is
thus autonomously assembled and used as a basis for online
experimentation to locate optimal compositions at runtime,
as described next.

3.3. Internal Architecture Evolution
Evolution of the internal architecture of emergent mi-

croservices is led by an online learning process that takes
place once the container with the microservice starts ex-
ecuting. This enables emergent microservices to learn, at
runtime, the most suitable internal architectural composition
for the current workload. The learning process is performed

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 4 of 14



Emergent Microservices in Elastic Environments

Figure 2: Container with an emergent microservice.

by an intelligent agent that is implemented at the top layer of
the ESS framework, which is called Perception, Assembly
and Learning (PAL) [23], as shown in Fig. 2.

PAL is a general-purpose framework to create emergent
software systems that has been implemented in the Dana
programming language2 [24]. PAL is a feedback control loop
different from the well-known MAPE-K [2]. PAL does not
have a planning phase nor start with predefined knowledge
of the systems application domain. Instead, PAL continually
samples information from all available system compositions
as it builds its understanding of the system and its underlying
operating environment before converging to the composi-
tion that better satisfies its goals (e.g., improve or maintain
system’s performance). Its Assembly module is responsible
for loading components from a file system into memory
and connecting them to form functioning systems. This
module, using features of the Dana runtime, is also able to
perform runtime adaptation for both stateful and stateless
components, covering all possibilities and ensuring seamless
runtime adaptation and service continuity [24]. The Percep-
tion module is responsible for collecting information from
the running system. Such information is used to characterise
both the system’s performance (e.g., response time) and the
incoming workload (e.g., requests per second). Finally, the
Learning module interacts with the Assembly and Perception
modules, respectively, to change the microservice compo-
sition and to collect information about the execution of a
particular microservice instance. It works as an agent and
leads the composition and evolution of the microservice.

For that, a reinforcement learning algorithm [30] is used.
The Learner starts its execution with no predefined domain-
specific knowledge, and balances between exploration and

2Dana is a multi-purpose programming language that implements a
state-of-the-art component model and supports seamless runtime software
adaptation as required for emergent software systems (https://projectdana.
com).

exploitation phases to locate the optimal microservice com-
position for any identified workload pattern. In detail, the
Learner starts by composing and executing an initial mi-
croservice internal composition. This process is performed
by interacting with the Assembly module, which loads the
Web server components, the business logic components and
the utility components, and connects them together. After-
wards, a collection of possible microservice compositions is
discovered (also by the Assembly module) by locating the
interceptors. At this point, the Learner has a list of possible
microservice compositions, each of which containing an
interceptor inserted between the Dispatcher and Business
Logic components. Once the microservice is executing and
handling incoming requests the learning process begins. The
learning process has two main goals: 𝑖) to classify workload
patterns, and 𝑖𝑖) to locate the best performing microservice
composition for the identified workload. Note that changes
to the microservice composition are driven by the Learner,
which interacts with the Assembly module to remove or
add interceptors. This adaptation of the internal composition
happens at runtime with no downtime for the service.

There are many learning algorithms for realising emer-
gent software systems. In this paper, however, we apply a
baseline algorithm that was investigated in [25]. The algo-
rithm consists of exploring all available compositions at least
once while classifying the environment and determining
which composition best suits the observed environment. In
detail, the algorithm has only one fixed exploration phase,
where the agent tests all available compositions. The agent
tests the available compositions by changing the microser-
vice internal architecture from one composition to another.
After changing the microservice to a specific composition,
the agent waits for it to run for a specific amount of time
(the observation window), collecting performance metrics
and measurements to characterise the current workload.
Based on the collected information from all microservice
compositions, the agent is then able to classify the workload
patterns and locate the optimal microservice composition
for each one. After this exploration phase, the agent selects
the composition that yields the best performance metric.
As the algorithm has a fixed exploration phase, it helps the
integration with other autonomic systems without the need
to apply a specialised coordinator to integrate them.

4. Single-case Mechanism Experiment
Our single-case mechanism experiment is based on a

microservice-based platform to support smart city applica-
tions, called InterSCity [10]. The platform aims at providing
a highly scalable service layer that abstracts the interac-
tion with city infrastructure devices, helping applications
to collect data from sensor devices, and send commands to
actuators. It is an open source project and is accessible via
the project website3.

InterSCity has a total of six types of microservices
with specific roles. Resource Adaptor is the microservice

3InterSCity Project website: http://interscity.org

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 5 of 14

https://projectdana.com
https://projectdana.com
http://interscity.org


Emergent Microservices in Elastic Environments

responsible for receiving all incoming requests from devices,
redirecting those requests to the appropriate microservice.
Resource Catalog is responsible for storing information
about all devices available in the city. Resource Discovery
provides information about specific devices. Data Collector
is responsible for providing applications with access to all
data collected from the city devices, as well as to provide the
devices with a gateway to push their collected data. Actuator
Controller is the microservice that provides access to the city
actuator devices. Finally, Resource Viewer is responsible to
show visual representations of available city resources.

For this paper, we focus on a specific InterSCity mi-
croservice, namely Data Collector (DC), which is key to
the platform’s scalability and provides a suitable example
of how autonomous microservice evolution can improve
performance in the face of workload changes. Specifically,
we wrote a new version of the DC microservice using the
Dana programming language and applying the concept of
EM.

This emergent version of the DC microservice offers the
same functionalities of the original one, which entails:

1. Providing access to all historical data stored in the
database;

2. Providing access to historical data of a specific re-
source;

3. Providing access to the latest data collected from all
existing resources;

4. Providing access to the latest data collected from a
specific resource; and

5. Receiving data from resources and storing them into
a database.

In addition, the Emergent DC has the ability to change
its internal composition to provide its functionalities using
three different performance tuning interceptors.

As previously described, performance tuning intercep-
tors are transparently inserted into an emergent microser-
vice’s original internal architecture to autonomously gener-
ate composition variants. For the DC single-case mechanism
experiment, the interceptors are: Cache, Compression and
Cache- Compression. Based on these components, the mi-
croservice internal architecture can be assembled into four
architectural compositions: Default, Cache, Compression,
and Cache-Compression.

The Default composition is the vanilla microservice,
with no interceptors, so that the microservice runs as it
was originally intended (with only its business logic and
utility components). The Cache composition differs from
the Default one by adding a cache interceptor module to the
microservice internal architecture, so that, for each incoming
request that is cacheable (i.e., whose HTTP header sets the
permission to be cached), the microservice checks whether
the request’s response is already cached; if it is, then the
microservice returns the response from the cache; otherwise,
it processes the request as it normally would, sending the
response to the client and then caching it for future requests.

The Compression composition adds a compression inter-
ceptor to the microservice, compressing responses before
sending them to the client. Particularly, this interceptor
works according to the compression information detailed
in the HTTP header. In the request header, the client can
choose whether or not to accept compressed data from the
service, and also can define which compression algorithm
the service should use. Thus, the compression interceptor
does not compress the response in case the client does
not accept compression, or when the required compression
algorithm is not the one it provides. Finally, the Cache-
Compression composition adds both the cache and com-
pression interceptors to the microservice internal architec-
ture, so that responses are both cached and compressed.
This composition compresses the response and then stores
the compressed response in a cache. Subsequent requests
to the same resource will thus result in cache hits, and the
system will transmit the compressed response directly from
the cache to the client.

5. Evaluation
In this section, we show that Emergent Microservices

optimise their internal composition to better perform when
subjected to a wide range of different workload patterns.
First, we characterise the workload patterns that we use in the
experiments, showing that for different workload patterns
different internal compositions have better performance. We
also show that emergent microservices operate well within
the kind of deployment environment in which classic mi-
croservices are typically deployed, and that they coexist
with commonly used tools of the microservice software
ecosystem without negative side effects. In particular, we
demonstrate that emergent microservices can synergistically
operate with autoscalers, often even reducing the amount of
resources necessary to handle sudden increases in workload
volume.

Our goal is to discuss and provide first answers to the
following evaluation questions, used to design the set of
experiments we present later on in this section:

EQ-1 Is there a clear benefit in adapting a microservice’s
internal architecture?

EQ-2 Can the baseline learning algorithm used in the cur-
rent implementation of the EM approach learn the best
composition for different workload patterns?

EQ-3 Can an off-the-shelf implementation of EM coexist
with supporting tools of the microservice ecosystem?

All experiments were executed at least 5 rounds. The
depicted results on all graphs is an average of all rounds.
Moreover, all experiments were conducted on Google Cloud.
We created a cluster located in the us-central region, with
8 nodes managed by Google Kubernetes Engine (GKE).
Each node was running the GKE standard Ubuntu image,
with 2vCPUs, 4GB of memory and 100GB of storage. The
Ubuntu image comes with NFS, GlusterFS, XFS, Sysdig,

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 6 of 14



Emergent Microservices in Elastic Environments

Debian packages, and Docker installed. The source code
that we used to generate the results is publicly available
as open-source in the paper’s companion repository4, along
with a guide to reproduce the experiments and the results
obtained from running the emergent version of the Data
Collector microservice. Finally, due to the use of a public
cloud platform for conducting experiments, we have noticed
small fluctuations in the measured response time when exe-
cuting experiments on different days and at different times.
However, these changes were not significant, and they do
not compromise the results depicted in this paper in any
way. This is because although the measured response time
collected fluctuates slightly, the graph trends and final results
remain unchanged.

5.1. Workload Patterns and Ground Truth
As described in Sec. 4, we are using the Data Collector

microservice to experiment with the proposed concept of
Emergent Microservices. In this section, we look into the
different characteristics of typical Data Collector workloads.
We then describe the workloads that we used in the experi-
ments.

Data Collector is the microservice responsible for pro-
viding access to data collected from city devices to Inter-
SCity applications. All request patterns that make up any
workload for this microservice have four common dimen-
sions: content type, cache-control, response size, and request
entropy. Three of these dimensions may have their values
changed in the requests by clients, forming a different work-
load pattern. Next, we describe each of these dimensions and
the values we used to create 18 unique workload patterns for
the experiments.

Content type: The content type dimension of the workload
defines the type of data that the microservice returns to
clients. In the case of DC, the content type is text formatted
in JSON. This means that, for every request it handles, DC
returns an HTTP response with all its contents in JSON-
formatted text. This dimension is the only one that remains
unchanged in all incoming requests. It was predefined by the
InterSCity project when defining the API of the microser-
vice.

Cache control: refers to the cache-control parameter set
by the client in the HTTP request to define whether or not
the response should be cached and, if cacheable, how long it
should be kept until the item becomes stale. All requests to
DC considers the cache-control value set by the client. For
the workloads that we created to test the emergent DC, the
values for cache control were set to range from ‘no-cache’
(when items are not cacheable) to ‘max-age=1’ (items are
cached for 1s) and ‘max-age=5’ (items are cached for 5s).

Response size: refers to the size of the returned data upon
a request to DC. Depending on whether or not the request is
for historical data and the length of the period requested, the

4The companion is available at: https://github.com/robertovrf/em

size of the returned data can be considerable. For the purpose
of our experiments, this dimension assumes the following
values to form different patterns:≈168 bytes (small),≈14KB
(medium) and ≈116KB (large).

Request entropy: refers to the degree of variability in a
sequence of requests sent to the microservice, and assumes
one of two values: high and low. Low request entropy means
that the sequence of requests is for the same small set of data,
whereas high request entropy means that distinct requests
are for distinct data. Therefore, this dimension directly af-
fects the data locality principle, with a significant effect on
caching.

All synthetic workloads were created to have unique
combinations of the values for these dimensions. Thus, from
the possible values of the three dimensions that vary, a
total of 18 distinct workload patterns were created (3𝑥3𝑥2).
Although these patterns are synthetically made with pre-
defined client programs that implement specific user be-
haviour, some of these patterns match scenarios that we ex-
pect to find in real-world workloads for DC in the InterSCity
platform.

For instance, if we consider, as a case example, an
application that allows users to track a specific bus in real-
time, the generated workload will have a well-defined pat-
tern, characterised by having: content type as text (i.e.,
bus location coordinates are returned to the client in JSON
format); cache control set to either ‘no-cache’ or ‘1s’ (since
the user wants the latest collected data, with little tolerance
to staleness); small response size (i.e., only the latest bus
location); and high request entropy (i.e., every request is for
newly collected data).

Another example of a real-world workload pattern is for
applications that aim at analysing historical data from a set
of bus lines. In this “bus management” scenario, although
content type remains text-based (as bus line information
is sent as text, e.g., bus locations during a period, or the
number of buses running the line), the values for the other
dimensions are remarkably different: cache control is set to
‘5s’ (since the desired data is historical and, thus, less likely
to be changed); response size is either medium or large,
depending on the length of the period the client is interested
in (e.g., a month of data, or only last week); and request
entropy is low, considering the focus on a specific small set
of bus lines.

Fig. 3 depicts 12 out of the 18 workloads we experi-
mented with, showing how the four DC compositions per-
form when subjected to these distinct workload patterns. The
figure is divided into four parts: the graphs depicted in the
upper part of the figure (3.a and 3.b) were produced with the
response size set to medium (≈14KB), whereas in the graphs
at the bottom (3.c and 3.d) the response size was set to large
(≈116KB). In turn, the graphs on the left hand side (3.a and
3.c) depict workloads with low request entropy, whereas the
graphs on the right (3.b and 3.d) depict workloads with high
entropy. The cache-control dimension of the workloads is
depicted on the 𝑥-axis on each graph, showing the different

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 7 of 14

https://github.com/robertovrf/em


Emergent Microservices in Elastic Environments

(a) low entropy, medium response size

R
es

po
ns

e 
Ti

m
e 

(m
s)

0.00

25.00

50.00

75.00

100.00

Non-cacheable Cache time: 1s Cache time: 5s

default compression cache cache compression

(b) high entropy, medium response size

R
es

po
ns

e 
Ti

m
e 

(m
s)

0.00

25.00

50.00

75.00

100.00

Non-cacheable Cache time: 1s Cache time: 5s

default compression cache cache compression

(c) low entropy, large response size

R
es

po
ns

ee
 T

im
e 

(m
s)

0.00

500.00

1000.00

1500.00

2000.00

Non-cacheable Cache time: 1s Cache time: 5s

default compression cache cache compression

(d) high entropy, large response size

R
es

po
ns

e 
Ti

m
e 

(m
s)

0.00

500.00

1000.00

1500.00

2000.00

Non-cacheable Cache time: 1s Cache time: 5s

default compression cache cache compression

Figure 3: Average response time for each available variant of the microservice when exposed to different request patterns. Request
patterns are characterized in terms of entropy level, response size, and response cacheability.

DC compositions exposed to cache-control set to no-cache,
1s, and 5s. Note that the six remaining workloads, which are
characterised by a small response size (≈160 bytes), were
not included here as they introduce no significant differences
compared to the workloads with medium response size. For
the sake of completeness, they have been included in the
companion.

To generate the graphs depicted in Fig.3, we exposed
the four static compositions of the DC microservice (de-
fault, compression, cache, and cache-compression) to all the
12 selected workload patterns. The results show that for
different workload patterns different microservice internal
compositions yield different performance. More specifically,
for the medium response size and no caching (first set of
bars in Fig. 3.a and 3.b), all DC compositions have similar
performance with variances 1.6 for default, 0.9 compres-
sion, 0.7 cache and 3.0 cache-compression. For low request
entropy and cache-control set to either 1s or 5s, the cache
compression composition has the best overall performance
(Fig. 3.a and 3.c), and the default composition often has the
worst performance. In turn, for medium response size, high
request entropy and cache-control set to 1s and 5s, the default
composition yielded the best overall performance (Fig. 3.b),
whilst cache-compression had the worst. Finally, for high
entropy and large response size (Fig. 3.d), compression is
slightly better, though not really standing out from the others.
This result shows that, although cache-compression has the

best performance on the majority of workload patterns,
there are some workload patterns where other compositions
have better performance. Therefore, we conclude there is no
overall best composition for all workload patterns. We revisit
similar workload patterns in the experiments conducted in
Sec. 5.3.

The charts in Fig.3 will serve as ground truth to verify
whether or not our emergent DC implementation can de-
termine, at runtime, the best performing internal compo-
sition with no human interference nor predefined domain-
specific knowledge. In our experiments we found that cache-
compression is the composition with wider applicability
with respect to better performance under different work-
load patterns. However, we also demonstrate that, for some
workload patterns, the DC microservice demands a differ-
ent composition (other than cache-compression) to perform
better. It is essential to note, though, that the EM approach
does not use any such previous information on how the DC
microservice performs under distinct workload patterns.

The results presented in this subsection provide an an-
swer to EQ-1. Fig.3 clearly demonstrates that, for different
workload patterns, there is a different best-performing inter-
nal architectural composition for the microservice. Some of
these compositions are not obvious choices to perform well
when subjected to a given workload pattern. For example,
we do not expect cache to perform well under workload
patterns with high entropy. However, in scenarios where the

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 8 of 14



Emergent Microservices in Elastic Environments

Time (s)

R
es

po
ns

e 
Ti

m
e 

(m
s)

0

25

50

75

100

10 20 30 40 50 60 70

Default Cache-Compression EM

Time (s)

R
es

po
ns

e 
Ti

m
e 

(m
s)

0

20

40

60

80

10 20 30 40 50 60 70

Default Cache-Compression EM

Time (s)

R
es

po
ns

e 
Ti

m
e 

(m
s)

0

20

40

60

80

10 20 30 40 50 60 70

Default Cache-Compression EM

Figure 4: EM convergence towards the best composition (in terms of response time) under three distinct workloads. (a) EM
(yellow line) converging towards cache-compression (red line). (b) EM converging towards the the default composition (blue line).
(c) All available compositions have the same performance and the EM may converge towards any of them.

response size is very large, the negative effect of caching
is overcome by the positive effect of compression, making
cache-compression (or rather just compression) a viable
composition for handling workloads with large response
sizes (Fig. 3 (d)). Therefore, considering the upfront effort
of carefully analysing every workload pattern for every
microservice created, the proposed EM solution, capable of
finding the best composition at runtime, is justified. Note
that, as self-evidenced by the graphs in Fig. 3, the DC allows
us to observe the effectiveness of changing the internal
composition with workload patterns that demand only two
distinct best-performing microservice compositions (default
and cache-compression). In future work, we aim to further
characterise the ground truth and further elaborate on the
answer to EQ-1 by using microservices that feature a larger
number of variations (e.g., by using CPU-bound, as opposed
to I/O-bound, microservices).

5.2. EM Learning
This section describes two important results: 𝑖) a demon-

stration that an emergent microservice converges towards
the optimal microservice composition without using any
predefined knowledge; and 𝑖𝑖) a demonstration that emergent
microservices learn the internal architectural compositions
that are optimal for the distinct workload patterns, without
the need to explore the available compositions again.

The first set of experiments aims at (𝑖) and evaluates
the ability of an emergent microservice to experiment with
different compositions at runtime and compare them to find
the best performing one. The second set of experiments aims
at (𝑖𝑖), showing the ability of emergent microservices to
recognise workload patterns and immediately adjust their
internal composition to a known architectural option. Both
results provide an answer to EQ-2.

Based on the 18 unique workload patterns that we have
explored, the experiments in Sec. 5.1 enabled the identi-
fication of three subsets of workload patterns that exhibit
similar behaviour: a subset for which the cache-compression
composition stands out; a subset for which the default com-
position is better; and one workload pattern for which all
compositions show similar performance, meaning that any
of them can be chosen. Thus, we use the two best-performing
compositions as a reference to evaluate the convergence of
the emergent microservice. Fig. 4 shows the results of three
experiments to compare the response time of the emergent
DC microservice (yellow line), with that of two static ver-
sions of DC (cache-compression, shown in red, and default,
in blue). Each graph shows the average response times, after
running the experiment 5 times for each microservice across
a period of 75s. In each of the three experiments we use a
workload pattern that is representative of one of the above-
mentioned subsets. The experiment aims at showing that the

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 9 of 14



Emergent Microservices in Elastic Environments

Observation Cycles (every 5s)

R
es

po
ns

e 
Ti

m
e 

(m
s)

0.00

25.00

50.00

75.00

100.0
0

10 20 30 40

Default Cache-Compression EM

Figure 5: Average response time for three versions of the same microservice when subjected to two distinct workloads (A and
B). EM learns and converges to the best performing composition for both Workload A (cache-compression) and Workload B
(default). At the 6th cycle, EM identifies a previously seen workload pattern and is able to immediately adapt its composition.

emergent microservice is able to adapt its internal archi-
tectural composition to learn, at runtime, the most suitable
composition for the current operating environment.

For all workload patterns used in the experiment, the EM
managed to converge to the best performing composition.
The learning algorithm exposes all available compositions
during execution to learn which composition yields the best
performance (i.e., the lowest response time). This is the
exploration phase of the learning algorithm. The exploration
phase has a fixed time span determined by the number of
available compositions (in this case four) multiplied by the
size of the observation window (5s) resulting in 20 seconds
total. In workload patterns for which there is a large dif-
ference in response times among the different architectural
compositions, the result of the exploration phase is clear,
as noted by the sudden spike in the yellow line, followed
by a drop, during the first observation cycles, shown in
Fig. 4(a). This means that, after exploring the two com-
positions, the emergent microservice converges to cache-
compression. Although the experiments shown in Fig. 4(b)
and (c) also go through the exploration phase, in Fig. 4(c) the
difference in response times is insignificant, meaning that the
emergent microservice may rightfully converge to any of the
compositions. In Fig. 4(b), in turn, although the spikes have
been smoothed down by averaging over multiple executions,
the emergent microservice can still converge to the slightly
better composition (the default one in this case).

The result of the second experiment is shown in Fig. 5.
As in the previous set of experiments, the graph shows the
response time of three microservices: fixed with the default
composition (blue); fixed with the cache-compression com-
position (red); and the emergent version (yellow).

The graph shows two distinct workloads (Workload A
and Workload B). Each microservice instance was first
exposed to Workload A for 15 observation cycles (≈ 75
seconds), then there was a complete change in the workload
pattern as the microservices were exposed to Workload

B for another 15 cycles. Finally, all microservices were
suddenly exposed again to Workload A for 10 cycles. Fig. 5
shows the emergent microservice converging to cache-
compression when exposed to Workload A. Then, as the
workload changes to Workload B, the emergent microservice
detects it and starts learning the new workload pattern. After
four cycles (i.e. 20 seconds), it learns the best composition
for the new workload pattern. At the end, when the workload
pattern changes to the previously seen Workload A, the
emergent microservice immediately (i.e., without having
to go through the exploration phase again) reassembles
its composition to match the most suitable one for the
previously seen pattern.

Two distinct spikes on the yellow line, which repre-
sents the emergent microservice response time, are visible.
The spikes happen at the beginning of Workload A and at
the beginning of Workload B. These spikes show the EM
learning algorithm executing. During this time, the learning
algorithm tests each of the available compositions under
the current workload to discover which composition has
the best performance. After exploring the compositions, the
learning algorithm converges towards the best performing
composition for the identified workload pattern, storing this
information in a table in case it needs to remember it in the
future.

The results depicted in Fig. 4 and Fig. 5 provide an
answer to EQ-2. In both figures, we show that for different
workload patterns EM is able to locate which architectural
composition is the most suitable. We also show that it
learns and remembers which composition works best for an
identified workload pattern. Despite having limitations [25],
the baseline learning algorithm, with its static exploration
and exploitation phases, works well for the DC microservice
compositions and for the considered workload patterns. It
also works well whilst classifying workload patterns.

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 10 of 14



Emergent Microservices in Elastic Environments

Figure 6: Microservices executing in an elastic deployment environment. Default microservice (blue line) starts with poor
performance (above the threshold) and keeps triggering replication as the workload volume increases (red circle on the x-axis).
EM converges towards the best performing composition (cache – yellow line) maintaining its response time below the threshold
and creating fewer replicas.

5.3. EM Interaction with Horizontal Autoscaler
This section describes an experiment that shows the

potential benefit of deploying emergent microservices in an
elastic infrastructure. The goal is to compare the behaviour
of static against emergent microservices when deployed
in an elastic operating environment, and to demonstrate
that emergent microservices can coexist with horizontal
autoscalers that are part of the microservice ecosystem, with
no explicit coordination between the emergent microservice
and the autoscaler tools.

To realise this experiment, we set up a horizontal au-
toscaler to act upon individual instances of microservices.
The autoscaler was also configured to replicate the microser-
vice when its response time surpasses a certain threshold.
We subjected the microservice to two different previously
described workloads: Workload A (which benefits configu-
rations with cache) and Workload B (which benefits config-
uration with no cache). We start the client scripts to generate
a workload with pattern A (shown in Fig. 6) and another one
with pattern B (shown in Fig. 7) at a low volume. As the time
passes, we continually increase the volume.

In the experiments we report in this section, all compo-
sitions were executed in a container with the same available
resources. All containers, regardless of the microservice’s
internal architectural composition, were created using the
same configuration file, assigning 900 millicores of CPU to
each container. Also, we used an emulator of the Horizontal
Pod Autoscaler (HPA) tool that implements HPA’s exact
same replication algorithm5 to trigger container replication
in this experiment. The emulator tool was used to facilitate
the integration of custom metrics other than CPU and mem-
ory usage, commonly used by HPA, and to facilitate the

5HPA’s replication algorithm: https://kubernetes.io/docs/tasks/

run-application/horizontal-pod-autoscale/

exploration of alternative policies for container replication
in future work.

The first experiment was conducted by executing each
microservice in the elastic environment and subjecting it
to workload A. The result is depicted in Fig. 6. The graph
shows the response time (y-axis), the observation cycles (x-
axis), which represent the exact time when the microservices
response time was collected, and three lines (blue, yellow,
and red) that represent the microservice’s response time. The
blue line represents the execution of a static microservice
in the default composition. The yellow line represents the
execution of a static microservice in the cache composition.
Finally, the red line represents the execution of the emergent
DC. The graph also indicates a horizontal dotted black line
at 350 ms response time, which represents the autoscaler
threshold. It also shows, red circles indicating when the
workload volume increases. Finally, the graph shows three-
bar charts that represent the number of instances of each
executing microservice throughout the experiment.

The default microservice composition (represented by
the blue line) is the microservice that has the highest re-
sponse time when subjected to the workload. Its response
time gets above the threshold multiple times throughout the
experiment (every time we increase the workload volume –
red circles on the x-axis), which triggers the autoscaler to
create more replicas of the service each time. The number of
replicas is indicated on the bar charts on the right hand side
y-axis, and they ultimately show that, every time we increase
the workload volume, we create an extra replica that allows
the microservice in the default configuration to work below
the predefined response time threshold (380ms). The cache-
compression composition has the overall best performance
and executes below the threshold from the start until we
last increase the volume (up to 25 reqs/s on the 13 min. –
x-axis). Finally, as we can see following the red line, the

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 11 of 14

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/


Emergent Microservices in Elastic Environments

Figure 7: Microservices executing in an elastic deployment environment. Cache microservice (yellow line) starts with poor
performance and as the workload increases (red circle in the x-axis) it triggers replication. EM converges towards the best
performing composition (default – blue line) maintaining its response time below the threshold and creating fewer replicas.

emergent DC converges towards the best executing composi-
tion, which in this case is cache-compression (yellow line),
and keeps its response time below the threshold, also only
triggering replication when we increase the volume to 25
reqs/s at minute 13 on the x-axis.

The second experiment with the autoscaler is illustrated
in Fig. 7. Again, the graphs show three versions of the
microservice: the microservice with the default configu-
ration, the cache configuration and the emergent DC. We
also start the client scripts to generate a different workload
pattern, pattern B, which now benefits default configuration,
as opposed to the workload pattern in Fig. 6.

Fig. 7 shows the emergent DC now converging towards
a different new best composition and, as a result, creating
fewer instances of the microservice to maintain the response
time below the predefined threshold. In this case, the best
composition is the default one. As we increase the workload
volume, new instances of the microservice are created from
minute 9 onwards, and the number of instances to main-
tain the cache composition below the threshold increases,
reaching the final number of 5 instances at the peak of the
workload volume. Meanwhile, for the optimal configuration
(default – blue line), at the peak of the workload volume
(after minute 13 on the x-axis) the default configuration
needed only three instances to handle the workload. As the
emergent DC converges towards the optimal configuration,
the resulting number of instances is the same to cope with
the highest volume the microservice is subjected to. This
demonstrates that no matter the workload pattern, the emer-
gent microservice always converges towards the optimal
composition.

This experiment addresses EQ-3. We demonstrate that
EM successfully addresses workload pattern changes, while
autoscalers only address workload volume. We also show
that whenever a gap exists between the best performing
composition and the others, even if this only happens when

the system is subjected to specific workload patterns, the
use of EM in tandem with autoscalers can certainly reduce
resource utilisation while maintaining systems performance.
The results also suggest that the larger the gap between the
optimal microservice’s composition and others, the larger
the amount of resources that can be saved. Also, it is im-
portant to mention that the best performing composition is
not always obvious. In this particular case, due to previ-
ous experiments, we already knew that cache was the best
composition for Workload A and default was the best for
Workload B, but for a real deployment, this may not be the
case. Furthermore, the workload pattern can change mid-
execution, which justifies the need for online learning.

6. Discussion
In this section, we discuss the limitations of our ap-

proach as opportunities for future work. Although the results
demonstrate that the EM works well in locating and learning
the best available internal composition, the approach, as well
as emergent software systems in general, still have limita-
tions [25]. Specifically, we discuss the challenges related to
classifying workload patterns, the impact of the variability
options for the microservice, further integrating EMs with
autoscalers, and online learning.

Workload classification still remains an open issue.
Firstly, the features that are used to classify patterns are
manually defined in a case-by-case manner. In addition,
the current methodology to select the features that best
characterise the incoming pattern is based on trial-and-error.
This has a direct effect on the quality of learning. Secondly,
classifying workload patterns as the learning algorithm
runs (to learn which software composition has the best
performance) is tricky. The workload pattern is perceived
through an executing composition, which may distort the
value of some of its features. For instance, if the average

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 12 of 14



Emergent Microservices in Elastic Environments

response size over a set of incoming requests is a workload
feature, depending on the current microservice composition
(e.g., if it employs compression), its value may change even
though the actual pattern remains unchanged.

Another aspect of learning that also needs to be carefully
considered is related to the actual algorithm. In this work, we
used the baseline algorithm described in [25], whose explo-
ration phase happens only once and has a fixed duration. This
allows coordination between EM and autoscalers by simply
defining different observation windows for the two systems.
For the experiments shown in this paper, the autoscaler
observation window was set to 30s, whereas the observation
window for analysing each microservice composition was
set to 5s. Considering that our microservice has a total of
four unique compositions, it takes the learning algorithm a
total of 20 seconds to learn, thus fitting inside the autoscaler
window. This approach has the advantage of simplicity, but
may not be appropriate if a more sophisticate exploration
phase is needed.

Moreover, the baseline algorithm may lead to negative
side effects. Considering that the algorithm makes decisions
after experimenting with each composition only once, in op-
erating environments where the reward for each composition
fluctuates, this approach has a high probability of converging
towards the wrong composition. To handle this problem,
algorithms that account for fluctuations on the reward, e.g.,
as determined by a probability distribution, may be more
suitable. On the other hand, such algorithms have a dynamic
balance between exploration and exploitation phases, which
makes it difficult to coordinate with autoscalers and other
elements of the microservice ecosystem. Thus, a future
research direction is to investigate stochastic learning algo-
rithms and their interaction with autoscalers.

Another important detail of the proposed approach is the
impact a variability option may have on the microservice
execution. In our experiments, we used cache components.
Caching may positively affect system performance but can
also present undesirable effects on data timeliness. If the
microservice requires high data timelessness, caching would
not be a viable variability option. This has to be care-
fully considered by the microservice’s developers before-
hand since our approach has no autonomic mechanism to
detect and avoid the selection of compositions that may
have undesired side-effects. Moreover, further investigation
on the impact of interceptors on the system’s performance
is an interesting avenue for future work. Our experiments
have not suggested any serious side effects of the use of
interceptors on the performance of the microservice. How-
ever, the application of this approach to a diverse set of
microservice implementations and the exploration of higher
workload volumes may provide a deeper perspective on how
interceptors may affect the microservice performance and/or
generate potential negative side effects.

Finally, our online learning approach has its convergence
time directly connected to the size of the search space.
Considering that we explore all available microservice com-
positions, by adding new component variants, the search

space grows exponentially and so does the convergence time.
This problem is out of scope in this paper, but there are some
approaches that aim to solve it. For example, Ontanón [22]
explores reinforcement learning algorithms with millions of
actions to be learned at runtime. Similarly, Donckt et al. [32]
use neural networks to reduce the search space at runtime.
Both approaches are complementary and relevant to ours.

7. Conclusion
We demonstrated that the Emergent Microservice (EM)

approach is able to automate the evolution of the internal
composition of microservices to quickly and accurately re-
spond to changes in workload patterns. We also experi-
mented with EM on elastic environments, showing that EM
can save infrastructure resources when the microservice is
autonomously optimised for the current workload.

We applied the approach in a single-case mechanism
experiment, conducting a series of experiments in an indus-
trial deployment platform to demonstrate that EM is able to
learn the most suitable internal architectural composition at
runtime when given a goal such as response time to optimise
– a result achieved by combining programmer-supplied busi-
ness logic with generalised performance tuning interceptors.
We also demonstrate that our EM implementation coexists
well with other elements of the microservice deployment
platform, such as horizontal autoscalers, with no need for
special adjustments.

In future work, we will explore the macro level of mi-
croservice composition in two major ways. First, we aim to
investigate how multiple emergent systems (each modeled
as its own microservice) can reach good decisions while
learning and adapting at the same time as part of the same
global system, so that globally-efficient compositions can
be achieved. Second, we plan to investigate how EM co-
exists with other supporting elements that are often present
in microservice deployment platforms. We aim to demon-
strate that, as the workload volume increases and its pattern
changes, our preliminary result, which shows the emergent
microservice interacting with a horizontal autoscaler, can
be generalised, thus showing that EM enables near-optimal
performance with less overall resource consumption in more
complex scenarios. We also aim to explore the interaction
between EM and vertical autoscalers, external cache sys-
tems, and API gateways, which is important to demonstrate
the effectiveness of EM on cloud computing environments.

Acknowledgments
This research is also part of the INCT of the Future

Internet for Smart Cities funded by the National Council
for Scientific and Technological Development (CNPq) proc.
465446/2014-0, the Coordination for the Improvement of
Higher Education Personnel (CAPES) proc. 88887.136422
/2017-00, and the São Paulo Research Foundation (FAPESP)
procs. 14/50937-1, 15/24485-9, and 23/00811-0. Roberto
Rodrigues Filho thanks FAPESP for funding his postdoc-
toral work under the process 2020/07193-2.

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 13 of 14



Emergent Microservices in Elastic Environments

References
[1] Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P., 2017. Au-

tonomic vertical elasticity of docker containers with ELASTIC-
DOCKER, in: 2017 IEEE 10th International Conference on Cloud
Computing (CLOUD), pp. 472–479. doi:10.1109/CLOUD.2017.67.

[2] Arcaini, P., Riccobene, E., Scandurra, P., 2015. Modeling and analyz-
ing mape-k feedback loops for self-adaptation, in: 2015 IEEE/ACM
10th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pp. 13–23. doi:10.1109/SEAMS.2015.10.

[3] Bauer, A., Herbst, N., Spinner, S., Ali-Eldin, A., Kounev, S., 2019.
Chameleon: A hybrid, proactive auto-scaling mechanism on a level-
playing field. IEEE Transactions on Parallel and Distributed Systems
30, 800–813. doi:10.1109/TPDS.2018.2870389.

[4] Blair, G., Grace, P., 2012. Emergent middleware: Tackling the
interoperability problem. IEEE Internet Computing 16, 78–82.

[5] Brondolin, R., Santambrogio, M.D., 2020. Presto: a latency-aware
power-capping orchestrator for cloud-native microservices, in: 2020
IEEE International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS), IEEE. pp. 11–20.

[6] Chen, L., 2018. Microservices: Architecting for continuous delivery
and devops, in: 2018 IEEE International Conference on Software
Architecture (ICSA), pp. 39–397. doi:10.1109/ICSA.2018.00013.

[7] Coulson, N.C., Sotiriadis, S., Bessis, N., 2020. Adaptive microservice
scaling for elastic applications, IEEE. pp. 4195–4202.

[8] Dai, F., Mo, Q., Qiang, Z., Huang, B., Kou, W., Yang, H., 2020.
A choreography analysis approach for microservice composition in
cyber-physical-social systems, IEEE. pp. 53215–53222.

[9] De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J.,
Litoiu, M., Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T., et al.,
2013. Software engineering for self-adaptive systems: A second re-
search roadmap, in: Software Engineering for Self-Adaptive Systems
II. Springer, pp. 1–32.

[10] Del Esposte, A.M., Kon, F., Costa, F.M., Lago, N., 2017. Interscity:
A scalable microservice-based open source platform for smart cities.,
in: SMARTGREENS, pp. 35–46.

[11] Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi,
F., Mustafin, R., Safina, L., 2017a. Microservices: yesterday, to-
day, and tomorrow, in: Present and Ulterior Software Engineering.
Springer, pp. 195–216.

[12] Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R.,
Safina, L., 2017b. Microservices: How to make your application scale,
in: International Andrei Ershov Memorial Conference on Perspectives
of System Informatics, Springer. pp. 95–104.

[13] Ebert, C., Gallardo, G., Hernantes, J., Serrano, N., 2016. Devops.
IEEE Software 33, 94–100. doi:10.1109/MS.2016.68.

[14] Esfahani, N., Malek, S., 2013. Uncertainty in self-adaptive software
systems, in: Software Engineering for Self-Adaptive Systems II.
Springer, pp. 214–238.

[15] Jamshidi, P., Pahl, C., Mendonca, N.C., Lewis, J., Tilkov, S., 2018.
Microservices: The journey so far and challenges ahead. IEEE
Software 35, 24–35. doi:10.1109/MS.2018.2141039.

[16] Kang, H., Le, M., Tao, S., 2016. Container and microservice driven
design for cloud infrastructure devops, in: 2016 IEEE International
Conference on Cloud Engineering (IC2E), pp. 202–211. doi:10.1109/
IC2E.2016.26.

[17] Kephart, J.O., Chess, D.M., 2003. The vision of autonomic comput-
ing. Computer 36, 41–50.

[18] Larrucea, X., Santamaria, I., Colomo-Palacios, R., Ebert, C., 2018.
Microservices. IEEE Software 35, 96–100. doi:10.1109/MS.2018.
2141030.

[19] Leite, L.A., Oliva, G.A., Nogueira, G.M., Gerosa, M.A., Kon, F.,
Milojicic, D.S., 2013. A systematic literature review of service chore-
ography adaptation. Service Oriented Computing and Applications 7,
199–216.

[20] Mendonça, N.C., Garlan, D., Schmerl, B., Cámara, J., 2018. Gen-
erality vs. reusability in architecture-based self-adaptation: the case
for self-adaptive microservices, in: Proceedings of the 12th European
Conference on Software Architecture: Companion Proceedings, pp.

1–6.
[21] Monteiro, D., Gadelha, R., Maia, P.H.M., Rocha, L.S., Mendonça,

N.C., 2018. Beethoven: An event-driven lightweight platform for
microservice orchestration, in: European Conference on Software
Architecture, Springer. pp. 191–199.

[22] Ontanón, S., 2017. Combinatorial multi-armed bandits for real-time
strategy games. Journal of Artificial Intelligence Research 58, 665–
702.

[23] Porter, B., Grieves, M., Rodrigues-Filho, R., Leslie, D., 2016. REX: A
development platform and online learning approach for runtime emer-
gent software systems, in: Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementation, USENIX.

[24] Porter, B., Rodrigues-Filho, R., 2021. A programming lan-
guage for sound self-adaptive systems, in: 2021 IEEE International
Conference on Autonomic Computing and Self-Organizing Sys-
tems (ACSOS), IEEE Computer Society, Los Alamitos, CA, USA.
pp. 145–150. URL: https://doi.ieeecomputersociety.org/10.1109/

ACSOS52086.2021.00036, doi:10.1109/ACSOS52086.2021.00036.
[25] Rodrigues Filho, R., Porter, B., 2017. Defining emergent software

using continuous self-assembly, perception, and learning. ACM
Transactions Autonomic Adaptive Systems 12, 16:1–16:25. URL:
http://doi.acm.org/10.1145/3092691, doi:10.1145/3092691.

[26] Rodrigues Filho, R., de Sá, M.P., Porter, B., Costa, F.M., 2018. To-
wards emergent microservices for client-tailored design, in: Proceed-
ings of the 19th Workshop on Adaptive and Reflexive Middleware,
Association for Computing Machinery, New York, NY, USA.

[27] Rossi, F., Cardellini, V., Presti, F.L., 2020a. Hierarchical scaling of
microservices in kubernetes, in: 2020 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS),
IEEE. pp. 28–37.

[28] Rossi, F., Cardellini, V., Presti, F.L., 2020b. Self-adaptive threshold-
based policy for microservices elasticity, in: 2020 28th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pp. 1–8. doi:10.1109/
MASCOTS50786.2020.9285951.

[29] Sampaio, A.R., Rubin, J., Beschastnikh, I., Rosa, N.S., 2019. Improv-
ing microservice-based applications with runtime placement adapta-
tion, SpringerOpen. pp. 1–30.

[30] Sutton, R.S., Barto, A.G., 1999. Reinforcement learning. Journal of
Cognitive Neuroscience 11, 126–134.

[31] Trihinas, D., Tryfonos, A., Dikaiakos, M.D., Pallis, G., 2018. Devops
as a service: Pushing the boundaries of microservice adoption. IEEE
Internet Computing 22, 65–71. doi:10.1109/MIC.2018.032501519.

[32] Van Der Donckt, J., Weyns, D., Quin, F., Van Der Donckt, J., Michiels,
S., 2020. Applying deep learning to reduce large adaptation spaces
of self-adaptive systems with multiple types of goals, in: Proceedings
of the IEEE/ACM 15th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, pp. 20–30.

[33] Vuppalapati, C., Ilapakurti, A., Chillara, K., Kedari, S., Mamidi, V.,
2020. Automating tiny ml intelligent sensors devops using microsoft
azure, in: 2020 IEEE International Conference on Big Data (Big
Data), pp. 2375–2384. doi:10.1109/BigData50022.2020.9377755.

[34] Wettinger, J., Breitenbücher, U., Leymann, F., 2014. Standards-based
devops automation and integration using tosca, in: 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing, pp.
59–68. doi:10.1109/UCC.2014.14.

R. Rodrigues-Filho, et al.: Preprint submitted to Elsevier Page 14 of 14

http://dx.doi.org/10.1109/CLOUD.2017.67
http://dx.doi.org/10.1109/SEAMS.2015.10
http://dx.doi.org/10.1109/TPDS.2018.2870389
http://dx.doi.org/10.1109/ICSA.2018.00013
http://dx.doi.org/10.1109/MS.2016.68
http://dx.doi.org/10.1109/MS.2018.2141039
http://dx.doi.org/10.1109/IC2E.2016.26
http://dx.doi.org/10.1109/IC2E.2016.26
http://dx.doi.org/10.1109/MS.2018.2141030
http://dx.doi.org/10.1109/MS.2018.2141030
https://doi.ieeecomputersociety.org/10.1109/ACSOS52086.2021.00036
https://doi.ieeecomputersociety.org/10.1109/ACSOS52086.2021.00036
http://dx.doi.org/10.1109/ACSOS52086.2021.00036
http://doi.acm.org/10.1145/3092691
http://dx.doi.org/10.1145/3092691
http://dx.doi.org/10.1109/MASCOTS50786.2020.9285951
http://dx.doi.org/10.1109/MASCOTS50786.2020.9285951
http://dx.doi.org/10.1109/MIC.2018.032501519
http://dx.doi.org/10.1109/BigData50022.2020.9377755
http://dx.doi.org/10.1109/UCC.2014.14

