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Chapter 1: Introduction

1.1 Research motive

Superfluidity in helium isotopes, 4He [1, 2, 3] and 3He [4, 5, 6], offers a remarkable
opportunity to study quantum mechanics on a macroscopic scale. These superfluids ex-
hibit unique properties, primarily due to fundamental excitations or quasiparticles such
as phonons and quantized vortices, which offer a comprehensive view of quantum statis-
tics and particle interactions in macroscopic quantum phenomena. 4He, existing as a
Bose-Einstein condensate of bosons, and 3He, characterized by its two distinct superfluid
phases (A and B) composed of Cooper pairs of fermions, exhibit diverse topological and
quantum properties. The purity and controllability of these systems in laboratory en-
vironments make them ideal for investigating complex quantum fluid dynamics and for
testing theoretical predictions in quantum mechanics and superfluidity.
Research in this domain has driven many technological advancements in low-temperature
physics, including the development of novel cryogenic techniques and a deeper understand-
ing of phase transitions at low temperatures [7]. The study of quasi-particle dynamics in
superfluid helium can also provide insights into other fields, such as astrophysics, partic-
ularly in understanding neutron stars that are believed to contain superfluid components
[8]. Additionally, examining vortex formation during phase transitions offers analogues
to symmetry breaking events in the early universe [9].
A primary method for studying excitations in superfluids involves immersing a moving
object, such as a vibrating-wire viscometer, in the superfluid. Observing the damping
of these devices provides insights into the transport of energy by quasiparticles under
various conditions. In previous studies, experimental approaches such as using tuning
forks [10, 11], vibrating wires [12], and beams [13, 14] have been employed to investigate
thermal excitations in superfluid helium. These methods focus on understanding how
energy is dissipated in a superfluid, despite its lack of viscosity, and the role of quantum
turbulence as a mechanism for energy dissipation at low temperatures. Additionally, the
attenuation of second sound has also been employed as a technique to probe vortex density
[15]. These experiments aim to elucidate the creation, stability, interaction, and decay of
vortices within superfluids, though conclusive experimental evidence remains elusive.

Recently, nano-electromechanical systems (NEMS) sensors have emerged as promis-
ing tools for analyzing the rapid dynamics of these excitations in superfluid 4He. The
submersion of NEMS devices in superfluids introduces complexities such as acoustic wave
emission, nonlinear behavior, and interactions with nearby structures [13, 14, 16]. It
is crucial to understand the interactions between the devices and the fluid at the meso-
scopic scale for deeper insight into these dynamics. Despite recent advancements in NEMS
technology, a technique for probing superfluids at a mesoscopic length scale is yet to be
developed. However, carbon nanotube nanomechanical resonators (CNT) present a novel
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route for examining mesoscopic systems, such as superfluid 4He and 3He. Their high-
quality factor, versatility across various temperature ranges, and heightened sensitivity
position them as ideal tools for investigating superfluids at the sub-atomic scale.

The resonance frequency of these resonators can be fine-tuned by adsorbed masses,
charges, and impurities up to the energy required for quasiparticle formation, around
70MHz. This is a crucial attribute since mechanical resonators are most sensitive to ex-
ternal forces when these forces align with the device’s mechanical resonance frequency.
This characteristic emphasizes the importance of frequency tuning in exploring phenom-
ena that manifest at specific frequencies, including resonant Kelvin waves in quantized
vortices within superfluids [17, 18], acoustic modes within cavities [19], and states bound
to vortex cores in superfluid helium [20]. We aim to explore these superfluid excitations,
employing a carbon nanotube viscometer to probe at unprecedented frequency and length
scales.

Research questions

This thesis addresses two primary research questions:

1. How do CNT resonators interact with superfluid excitations at high fre-
quencies and small diameters? The resonators operate within the frequency
range of 10MHz to 100MHz, with diameters between 1 nm to 3 nm and lengths of
1 µm to 2 µm, dimensions smaller than those used in conventional nanomechanical
resonators. The CNTs’ radii (0.5 nm to 1.5 nm) closely match the coherence length
of superfluid 4He (0.34 nm [21]), making them highly sensitive to nanoscale interac-
tions with quantum fluids. This dimensional match allows CNTs to strongly couple
with quantum excitations, including phonons, rotons, and individual vortices, whose
cores are on the same order as the coherence length. This enables studies of vortex
pinning, local perturbations, and dissipation mechanisms in superfluid helium.

2. How does tuning the resonance frequency enhance the detection sensi-
tivity of CNT resonators? One key advantage of CNT resonators is their ability
to tune resonance frequencies via the DC gate voltage [22], which increases tension
in the nanotube. This tunability allows the resonance frequencies to match those
of specific superfluid excitations, enhancing the interaction between the CNT and
phenomena such as Kelvin waves generated by vortex motion and acoustic emis-
sions. Additionally, tuning the device near a Coulomb peak enhances the coupling
between the nanotube’s mechanical motion and quantum dot effects via single-
electron tunneling [23, 24]. This strong coupling boosts sensitivity, enabling the
CNT to detect subtle superfluid interactions, such as quasiparticle excitations. The
combined ability to fine-tune resonance frequencies and enhance sensitivity through
Coulomb blockade effects makes CNT resonators highly effective tools for studying
quantum fluids.

We have developed CNT resonators to study superfluid 4He. Initially, the devices are
measured in a vacuum, allowing for a comprehensive understanding of their intrinsic
properties. Subsequently, when operated in superfluid 4He, the devices exhibit inherent
nonlinear behavior along with a considerable reduction in their Q factor and resonance fre-
quency due to helium adsorption and vortex interactions. This work presents preliminary
experiments on bulk superfluid 4He using the CNT resonator. These experiments require
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further experimental and theoretical investigation to fully understand their dynamics.
However, initial observations suggest that the CNT resonator has greater sensitivity to
superfluid excitations, making it a potentially excellent tool for probing even more exotic
quantum fluids like 3He in future studies.

1.2 Thesis overview

This thesis presents a detailed investigation into the behavior of CNTs as mechanical
resonators, focusing on their interactions with superfluid 4He. The research combines
theoretical modeling with experimental measurements to elucidate the dynamics of CNT
resonators immersed in superfluid helium. The structure of the thesis is as follows:
Chapter 2: Introduces superfluid 4He and carbon nanotubes, covering the superfluid 4He
phase diagram, two-fluid model, and key phenomena such as quantum vortices followed by
an introduction to the electronic traits and mechanics of carbon nanotubes. The chapter
concludes with a review of how mechanical oscillators have been used to study helium
fluids.
Chapter 3: Simulates CNTs’ dynamics in 4He, highlighting their potential as tools for
studying quantum and hydrodynamic phenomena in low-temperature physics.
Chapters 4 and 5: Offers a detailed overview of the fabrication and characterization
of advanced CNT devices, emphasizing controlled growth processes and their preliminary
evaluations. Chapter 5 details the design of a specialized 4He cell, along with a gas han-
dling system and associated filling lines. Furthermore, it elaborates on their integration
into a Triton dilution refrigerator and provides insights into the experimental setup and
measurement methodologies.
Chapter 6: Focuses on the interaction between single-electron tunneling and nonlinear
behavior in CNT resonators. It elucidates the factors influencing mechanical motion such
as how the mechanical motion of the CNT approaches the quantum ground state through
coupling to higher vibrational modes.
Chapter 7: Investigates a CNT resonator in superfluid helium-4, revealing significant
damping due to remnant vorticies and resonance frequency shifts due to helium adhesion,
alongside detailed observations of fluid-resonator interactions that lead us to observed
Kelvin-wave resonances and temperature-dependent behaviors.
Chapter 8: Summarizes the research’s key findings and implications, discussing its con-
tributions and limitations, and suggesting potential directions for future study.

Note: Carbon nanotube is referred to as either “CNT” or “nanotube” throughout this
thesis.
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Chapter 2: Basics of superfluid 4He and car-
bon nanotube resonators

In this chapter, we discuss the foundational theories that underlie the study of superfluid
4He and carbon nanotube resonators. We begin with superfluid 4He, elucidating its phase
diagram, the two-fluid model, and the fascinating phenomena of excitations, like quan-
tum vortices and turbulence. The discussion then transitions into an in-depth look at
carbon nanotubes, discussing their electronic properties, quantum dot confinements, and
the mechanics that determine their physical behaviors. The CNT resonators are advanced
nanotechnological structures that utilize the unique properties of CNTs to produce com-
pact and sensitive devices. These resonators, vibrating at specific frequencies, are crucial
in electronics, sensors, and communication systems. With two main types - mechanical
and electromechanical - the former relies on physical dimensions like length and tension
to vibrate, while the latter uses the piezoelectric properties of CNTs to convert mechan-
ical vibrations into electrical signals. The chapter concludes by reviewing research that
employs mechanical oscillators as probes for studying helium fluids, including superfluid
3He.

2.1 Superfluid 4He

4He, one of the two stable isotopes of helium, became a subject of scientific fascination
in the early 20th century. It was first liquefied in 1908 by Heike Kamerlingh Onnes as
he managed to cool it down to 1.5K [25]. However, at that time, the phase transition
within 4He went unnoticed. It was not until 1932 when Keesom and Clusius examined
its specific heat capacity that the pivotal discovery was made. They identified a distinct
transition point at 2.17K, now famously known as the λ-point [1], marking the division
between He-I and He-II phases. Additionally, Keesom delved into viscosity within He-
II and stumbled upon superfluidity – a state where 4He flowed without any measurable
viscosity, as independently confirmed by Kapitza [2] and Allen and Meisner [3] in 1938.

This complex behavior of 4He prompted theoretical exploration. Fritz London [26] in
1939 proposed a connection to Bose-Einstein Condensates (BECs), where a multitude of
bosons occupies the lowest energy state of the system. Although 4He is indeed composed
of bosons, a liquid with strong intermolecular forces, somewhat challenging BEC assump-
tions. Nonetheless, BEC theory provides a fundamental framework for understanding
what happens below the λ-point. A more comprehensive model emerged when Tisza sug-
gested that He-II consists of two coexisting fluids [27]: a normal fluid with temperature,
viscosity, and entropy, as observed by Keesom, and a superfluid with zero temperature,
viscosity, and entropy, as noted by Kapitsa. These two fluids interpenetrate each other,
remaining non-interacting when no excitations are present. Both the normal and super-
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fluid components have their own temperatures, viscosity, densities, and velocities, denoted
as ρn, vn, ρs, and vs, respectively. The total density of He-II, ρ, is the sum of these compo-
nents, expressed as ρ = ρn+ρs. Above the λ-point, the normal fluid dominates, gradually
diminishing with decreasing temperature, until it becomes negligible around 1K. This in-
tricate interplay of components defines the captivating behavior of 4He below its λ-point,
offering a window into the intriguing world of superfluidity.

2.1.1 Phase diagram

The phase diagram of 4He, shown in Fig. 2.1(top panel), illustrates its intriguing behavior
in the vicinity of the superfluid transition. At atmospheric pressure, this transition occurs
at T = 2.17K. Additionally, 4He lacks a liquid-solid transition at low pressures, in contrast
to most materials.

Figure 2.1: Top panel: Phase diagram of 4He, illustrating the regions of distinct phases:
gas, liquid, and superfluid. The diagram shows critical point and the lambda transition,
which marks the onset of superfluidity in 4He at low temperatures. Bottom panel: The
fractional relative density as a function of temperature of the normal (orange) and super-
fluid (green) components of 4He.
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Further insights into the behavior of 4He below the λ-point are provided by Fig. 2.1(bot-
tom panel), which depicts the temperature dependence of the normal and superfluid den-
sities, ρn and ρs, respectively. Above the λ-point, the normal fluid dominates, but as
the temperature decreases, the normal fluid fraction diminishes rapidly, becoming prac-
tically insignificant around 1K [28]. Andronikashvili first experimentally measured the
temperature variation of the normal-fluid fraction using a set of rotational discs.

2.1.2 Landau’s two-fluid model

Landau [29] and Tisza [27] independently developed the two-fluid model to elucidate the
behavior of superfluid helium. However, Landau’s model provided a more detailed and
successful explanation. Central to Landau’s insights was the recognition of an energy
gap within the superfluid, which separates the ground state from excitations. This gap
is crucial because it prevents energy dissipation in excitations, enabling the superfluid to
flow with zero viscosity.
To delve into Landau’s key ideas, let’s consider an object of massM moving at a constant
velocity u through a stationary superfluid, generating an excitation. If this excitation has
energy E and momentum p, the mass’s velocity must change to v to conserve both
momentum and energy. Mathematically, this is expressed as:

p+Mv =Mu (2.1)

and
1

2
M |v|2 + E =

1

2
M |u|2 (2.2)

Rearranging these equations, we find

E =
1

2
M(|u|2 − |v|2) (2.3)

In the limit where the excitation’s mass is much smaller than the massive object’s mass,
we can approximate |u− v| as approximately zero, leading to

E ≈ p · u (2.4)

Furthermore, we define Landau’s velocity vL as the minimum velocity required to create
an excitation, which is given by

vL =
E

p
(2.5)

In normal fluids, there is no energy gap, and therefore vL equals zero. However, in
superfluid helium (He-II), there exists an energy gap, and Landau’s velocity is non-zero.
Experimental measurements show that Landau’s velocity in He-II is approximately 50m/s
[30].
This model considers the superfluid’s total density, ρ, as the sum of the normal fluid
density, ρn, and the superfluid density, ρs. At absolute zero, the normal fluid vanishes,
and at the λ-point temperature, the superfluid fraction disappears. Only the normal fluid
has non-zero entropy and viscosity.
The momentum density of mass flow, j, combines both fluid components:

∂ρ

∂t
= −∇ · j (2.6)
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Well below the lambda point, the viscosity of the normal fluid is negligible and it behaves
like an ideal fluid [31]:

∂j

∂t
+ ρnvn · ∇vn = −∇p (2.7)

where p is the fluid pressure. In low velocity superfluid flows, entropy remains conserved.
While superfluid helium exhibits zero-viscosity flow, macroscopic objects in it face some
resistance. Resonators, for instance, lose energy through acoustic emission. At velocities
well below vL, they face higher drag from vortex ring formations, leading to superfluid
turbulence.
In superfluid helium, macroscopic objects such as mechanical resonators do encounter
damping. Resonators, for instance, emit phonons [32] which deplete their energy. Espe-
cially at higher velocities, significantly below Landau’s velocity, these objects experience
increased drag from vortex rings, inducing superfluid turbulence. This will be further
discussed in relation to quantum vortices. In essence, Landau’s two-fluid model eluci-
dates superfluid helium’s behavior, emphasizing the energy gap’s role in zero-viscosity
flow. Even with this model, macroscopic interactions with the superfluid reveal damping
and fascinating turbulence phenomena.

2.1.3 Drag coefficient

The drag coefficient quantifies the resistance encountered by a resonator moving through
superfluid 4He [33], primarily due to interactions with the normal fluid component. In
the two-fluid model of superfluid 4He, the fluid consists of a normal component, which
exhibits viscosity, and a superfluid component, which flows without viscosity. Only the
normal fluid exerts drag on the resonator, while the superfluid does not contribute to
viscous drag.

The drag coefficient is a dimensionless parameter used to describe the drag force acting
on the resonator, defined as:

Cd =
Fd

1
2
ρnv2A

where:

• Cd is the drag coefficient,

• Fd is the drag force,

• ρn is the density of the normal fluid component of superfluid 4He,

• v is the velocity of the resonator,

• A is the cross-sectional area of the resonator.

As the resonator moves through superfluid helium, the drag force increases with the
square of the velocity. Below the λ-point, the normal fluid density ρn decreases, reducing
the drag force.
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2.1.4 Excitations and quantum vortices

In the two-fluid model, while superfluid 4He behavior is well-described, the microscopic
foundations of its phenomena are less explored. Landau pioneered the microscopic per-
spective by identifying that a finite energy gap, ∆ [34], is necessary for the emergence of
collective excitations, ensuring dissipationless flow. This gap hinders momentum transfer
at low velocities, resulting in a critical velocity, vL, beyond which the superfluid’s flow
disturbs the condensate.

Landau introduced two primary excitations in superfluid 4He:

1. Phonons: These are longitudinal excitations with linear dispersion, playing a piv-
otal role in sound emission. Their velocity, u1, determines the first sound’s velocity.
The dispersion relation is:

E = pcph (2.8)

2. Rotons: These excitations are characterized by a specific energy gap. Near the
roton momentum p0, the dispersion relation is:

E ≈ ∆+
(p− p0)

2

2m∗ (2.9)

The critical velocity, vL, corresponding to superfluid 4He, is roughly 50 m/s. Landau
posited that these excitations contribute to the normal fluid, as:

ρn = ρph + ρro (2.10)

On the other hand, superfluid 4He also features quantum vortices, rooted in the coherent
wave function Ψ [35] shared by the condensate of atoms. This function can be expressed
as:

Ψ(r) = ψ0e
iθ(r) (2.11)

From this, the momentum and superfluid velocity equations are derived as [31]:

p = ℏ∇θ (2.12)

vs =
ℏ∇θ
m

(2.13)

where vs represents the superfluid velocity, and m is the mass of a 4He particle. Given
the vorticity definition ω = ∇× v, in a superfluid we have ω = ℏ

m
∇× (∇θ) = 0.

Although superfluids are irrotational (∇ × vs = 0), they can exhibit rotational mo-
tion, as evident in experiments [36]. Landau’s proposition of quantized circulation was
experimentally validated [37], leading to the concept of a quantum vortex, where vortices
in superfluids have their vorticity contained within the core’s normal fluid. The energy of
these vortices correlates with the surrounding fluid’s kinetic energy. Higher-order vortices
tend to decay into single quantum vortices due to their energy being proportional to n2,
where n is an integer representing the number of circulation quanta. This quantization
arises from the fact that circulation in a superfluid is quantized in multiples of κ = nh

m4
,

with n = 1 representing the fundamental vortex state. Therefore, higher values of n corre-
spond to vortices with multiple units of circulation, which are energetically less favorable
compared to multiple single-quantum vortices. This understanding estimates the vortex
core size in superfluid 4He to be approximately 0.3 nm [38].
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Figure 2.2: The phonons and rotons quasiparticles in superfluid 4He.

2.1.5 Quantum turbulence

Turbulence, commonly observed in all fluids, arises when fast-moving objects generate
vortices as they pass through a fluid. These vortices interact, breaking down into smaller
ones until they fade due to viscous damping at the Kolmogorov [39] length scale. This
transfers energy from the object to the fluid, slowing the object down. The unpredictable
nature of vortex development poses challenges for engineers trying to reduce drag on vehi-
cles like airplanes and ships. Thus, turbulence remains one of classical physics’ unsolved
problems.

Introduction to quantum turbulence

Quantum turbulence in superfluid 4He is a unique form of turbulence that shares some
similarities with classical turbulence, which occurs when fluids exhibit chaotic motion at
high flow rates. Nevertheless, it’s essential to recognize that at the scale of an individual
vortex, quantum and classical turbulence are driven by distinct physical principles due
to the quantized nature of vortices in quantum fluids [40]. This fundamental difference,
evident at the microscopic scale, highlights the unique interplay between quantum and
classical principles in fluid dynamics. In this discussion, we will explore the physics of
single vortices and delve into systems comprising multiple vortices.

Nature of vortices: Feynman’s insights

Historically, it was believed that superfluids, due to their lack of viscosity, could not sup-
port any intrinsic circulation. This belief was expressed by the mathematical relationship:

∇× vs = ∇×∇ϕL = 0 (2.14)

However, Richard Feynman challenged this view by proposing that circulation in superflu-
ids is quantized due to the principles of quantum mechanics, specifically suggesting that
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the circulation in a superfluid could only take discrete values because of the quantization
of angular momentum [41, 42]. Furthermore, Feynman argued that the core of a vor-
tex in a superfluid represents a topological defect [43]. His insights were experimentally
confirmed by Vinen [44], who used a vibrating wire in rotating 4He to capture vortices,
leading to the splitting of previously degenerate oscillation modes. While Feynman laid
the foundation for understanding quantized vortices, the term quantum turbulence was
introduced later by Carlo Barenghi to describe the turbulent state of quantized vortices
in superfluids [43].

Quantization of superfluid circulation

Stokes’ theorem provides a method to quantify circulation in superfluids [45]. The circu-
lation in a superfluid region enclosed by a length L and an area A is given by:

κ =

∫∫
A

(∇× vs) · dA =

∮
L

vs · dl =
ℏ∆ϕL

m4

(2.15)

where vs =
ℏ∇ϕ(r)
m4

, and m4 is the mass of a 4He atom. This equation demonstrates that
the circulation, κ, is quantized, taking the form

κ =
nh

m4

(2.16)

with n being an integer. This quantization leads to vortices in superfluid 4He having spe-
cific quantized values of circulation. The superfluid velocity increases as one approaches
the core of the vortex, described by

vs =
κ

2πrv
(2.17)

However, it does not surpass the Landau critical velocity, ensuring the formation of a core
that behaves similarly to normal fluids. The diameter of this core is approximately [46]

d =
κ

2πvc
≈ 9.97× 10−8

2π × 10
≈ 1.59× 10−9m (2.18)

Here, κ is the quantum of circulation, given by κ ≈ 9.97× 10−8m2/s, and the critical
velocity is vc ≈ 10m/s. This results in a vortex core diameter d of approximately 1.59
nm, representing the distance over which the superfluid fraction decreases to zero from
its bulk value.

However, variations in the observed vortex core diameter can arise due to temperature-
dependent changes in the coherence length, which also affect the critical velocity. Boundary-
induced distortions, as well as excitations that impact the local superfluid density, can
further modify the core structure. Additionally, in quantum turbulent states, interactions
between vortices, or small deviations from ideal purity in experimental setups, may lead
to measurable deviations from the theoretical core size. These factors contribute to the
variability in the observed core diameter, although it remains within the nanometer range.

Dynamics of quantum vortices

In systems with multiple quantized vortices, the energy per unit length of a vortex, de-
noted as EL, is pivotal. It’s calculated by integrating the kinetic energy per unit volume

18



Figure 2.3: (a) The graph showcases the superfluid velocity around the quantum vortex
along with its radius. When the superflow reaches Landau’s velocity vL, the superfluid
starts to transform into normal fluid, determining the vortex core’s radius, rv as per
Equation 2.17. (b) An illustration of quantum vortex core (Adapted from [38]).

from the core of vortex (distance d) to its nearest neighbor (distance b). Mathematically,
this relationship is represented as [31]:

EL =
ρsκ

2

4π
ln

(
2b

d

)
(2.19)

Since EL ∝ n2, where n is the integer number of circulation quanta, the energy increases
quadratically with n. This energy consideration implies that it’s more efficient to have
two vortices with n = 1 rather than a single vortex where n = 2. A notable characteristic
of these vortices is their common, quantized circulation, h/m4, which imparts simplicity
to the study of quantum turbulence.

In addition to linear formations, vortices in 4He can fold onto themselves to form
“vortex rings”. These closed-loop structures have a length of 2πrv, where rv is the ring’s
radius. Their energy, Er, is expressed as:

Er = 2πrvEL (2.20)

The propagation velocity of the vortex is defined by equations:

vr =
κ

4πrr

[
ln

(
2rv
d

)
− 1

4

]
(2.21)

The dynamics of these rings and their propagation velocity offer intriguing insights
into the nature of quantum turbulence [31].

Origins and decay of quantum turbulence

There are two primary methods to initiate quantum turbulence in 4He: intrinsic and
extrinsic nucleation. The former requires a high critical velocity (vc ∼ 10m/s), while
the latter, which involves manipulating existing vortex lines under superflow, can occur
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at much lower velocities [47, 43] (vc ∼ 10−3m/s). Often, the Kibble-Zurek mechanism
[48], a process during rapid cooling through the superfluid phase transition, is responsible
for creating initial vortex lines in the system. This leads to the formation of topological
defects as quantum vortices.

The dissipation of quantum turbulence is also governed by two mechanisms. At tem-
peratures above 1K, mutual friction between the normal and superfluid components re-
sults in dissipation. However, at lower temperatures, Kelvin waves—helical displacements
of vortex cores—dominate the dissipation process. These waves transfer energy across
various scales, leading to the generation of high-frequency Kelvin waves that decay into
phonons [49, 50].

Classical vs. Quantum turbulence

Classical turbulence’s behavior is often described using the Reynolds number (Re), defined
as [51]:

Re =
ρvL

η
(2.22)

where ρ is the fluid density, v is the velocity, L is the characteristic size, and η is the
dynamic viscosity. For low Reynolds numbers (Re≪ 1), the flow is laminar and smooth,
lacking vorticity. On the contrary, high Reynolds numbers (Re≫ 1) result in chaotic and
turbulent flow.

In the case of superfluids, quantum vortices give rise to quantum turbulence. Each
vortex maintains a fixed size, leading to a tangle of vortex lines that continually reconnect.
Despite their differences, the larger-scale motion in superfluids resembles that of classical
turbulence.

2.2 Carbon nanotubes

CNTs are renowned for their distinctive structural configuration and associated electronic
properties, which closely relate them to graphene [52, 53]. These nanostructures, through
their electronic band structure, mechanical resilience, and unique chirality-driven electri-
cal characteristics, serve as a foundation for advanced quantum devices, particularly when
configured as quantum dots [54]. In the upcoming sections, we will explore the transport
phenomena in CNTs, their electronic and mechanical attributes, and the implications of
quantum dot confinement within these nanotubes.

2.2.1 Charge carrier transport in carbon nanotubes

CNTs possess transport characteristics that are intricately shaped by their unique struc-
tural and electronic properties. This section provides an insight into the roles of quantum
dots and transport spectroscopy in CNTs; see [55, 56, 57] for extensive review.

2.2.1.1 Electronic band structure

Carbon nanotubes, like graphene, possess a hexagonal lattice structure with a lattice
constant of approximately 0.25 nm [58, 59]. This hexagonal arrangement can be viewed
as a triangular network of two distinct atom types (A and B), defined by lattice vectors a⃗1
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and a⃗2, as shown in Fig. 2.4 (a) [60]. Any point on the graphene lattice can be described
using a combination of these vectors, starting from either atom A or B.

Figure 2.4: Transformation of graphene into CNTs: (a) Highlighting the hexagonal lattice
structure with atoms A and B, defined by the lattice vectors a⃗1 and a⃗2 (reproduced from
[60]). (b) The reciprocal lattice of graphene forms a triangular pattern, characterized by
the reciprocal lattice vectors b1 and b2. Within this lattice, there are two distinct sets
of high-symmetry points, denoted as K and K ′. The shaded region illustrates the first
Brillouin zone. The conduction and valence bands of graphene touch at the Fermi level
(blue plane) at the first Brillouin zone (redrawn from [61]). (c) A strip of width |⃗c| cut
from a graphene sheet, where c⃗ is a linear combination of the graphene lattice vectors,
can be rolled into a seamless cylinder, forming what is known as a single-wall carbon
nanotube. n and m represent the chiral vectors that define the CNT’s chirality (redrawn
from [61]).

Graphene’s electronic band structure is well-known [62] (detailed descriptions can be
found in [54, 59]). In reciprocal space, the Fermi surface of graphene includes the “K
points” located at the corners of the first Brillouin zone, where the energy dispersion
is conical. This creates the famous “Dirac points,” where the conduction and valence
bands meet, resulting in its unique semimetallic behavior (Fig. 2.4 (b)). These points are
critical for graphene’s ability to conduct electrons with no energy gap, meaning electrons
can move freely.

However, when graphene is rolled into a CNT (Fig. 2.4 (c)), its electronic properties
change due to the cylindrical structure. This rolling introduces quantization of mo-
mentum along the nanotube’s circumference, resulting in discrete subbands, unlike the
continuous band structure of graphene. In simpler terms, wrapping the graphene sheet
alters how electrons behave, creating discrete energy levels instead of a continuous range.
The electronic nature of the CNT, whether it behaves like a metal or a semiconductor, is
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determined by its chirality, defined by the chiral vector (n,m), which tells us how the
graphene is rolled.

Chirality and electronic nature

The chirality of a CNT, determined by the integers n and m, dictates its electronic
properties. If n−m is a multiple of 3, the subbands cross at the Dirac points (Fig. 2.5 (a)),
allowing for metallic behavior, where electrons can conduct without an energy gap. On the
other hand, if n−m is not a multiple of 3, a bandgap forms between the conduction and
valence bands (Fig. 2.5 (b)), and the CNT exhibits semiconducting properties. In simple
terms, whether the CNT conducts electricity or not depends on the way the graphene is
rolled.

Figure 2.5: (a) Metallic CNT: Defined by a subband crossing either K or K’ points,
especially when n −m is a multiple of 3. (b) Semiconducting CNT with a bandgap Eg:
Characterized by the absence of subband intersections at K or K’, typically when n−m
is not a multiple of 3.

Bandgap and curvature effects

The bandgap in semiconducting CNTs is inversely related to the tube’s diameter, meaning
smaller diameter CNTs exhibit larger bandgaps. Mathematically, this relationship can be
expressed as Eg ∝ 1

D
, where D is the diameter of the CNT. Simply put, as the nanotube

becomes narrower, the energy gap widens, making it harder for electrons to jump between
energy levels. Additionally, the curvature of the nanotube affects its electronic structure,
particularly in smaller CNTs. The curvature induces a rehybridization of the carbon
atoms from an sp2 to a partial sp3 configuration, which introduces strain and slightly
alters the bandgap, depending on the tube’s chirality and diameter.

Quantization of k⃗ and 1D subbands

When transitioning from graphene to a CNT, the component of the wavevector k⃗ along
the tube’s circumference (denoted as k⃗⊥) becomes quantized, leading to the formation
of one-dimensional (1D) subbands (Fig. 2.5). In metallic CNTs, these subbands meet
at the K and K’ points, resulting in no bandgap. In semiconducting CNTs, however,
the subbands are separated by a bandgap. This 1D structure of CNTs, along with their
ability to exhibit spin and valley degeneracies, can be further manipulated by external
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factors like magnetic fields, enabling the tuning of their electronic properties for specific
applications.

Therefore, CNTs can exhibit either metallic or semiconducting behavior depending
on their chirality and structural properties, in contrast to the semimetallic nature of
graphene.

Electrical properties

• CNTs can be metallic, semiconducting, or small-band gap semiconductors depend-
ing on their chirality.

• Semiconducting CNTs have a band gap (Eg = 0.7 eV/D) that decreases with in-
creasing diameter (D). The diameter of a single walled nanotube is around 1 nm to
3 nm.

• They act as 1D conductors due to their cylindrical structure, following the Landauer-
Buttiker model.

• CNTs exhibit quantized conductance in ballistic transport, reaching the quantum
limit G = 4e2/h for ideal transmission [63, 64]. This conductance, predicted by
the Landauer-Büttiker formalism, accounts for two spin channels and two subbands
(valleys) in CNTs. When the transmission coefficient T = 1, electrons travel without
scattering, leaving only quantum contact resistance.

• Electrical properties can be modified using an electrostatic field, enabling field-effect
transistor (FET) behavior for applications in circuits and sensors.

Mechanical properties

• CNTs possess exceptional mechanical strength due to the strong sp² hybridized C-C
bonds.

• The elastic modulus (E) ranges from 0.5 TPa to 5 TPa, with tensile strengths (σs)
between 10 GPa and 40 GPa.

• Experimental measurements, challenging due to CNT size, align with theoretical
predictions.

• Mechanical strain can alter the band gap of semiconducting CNTs, offering the
potential to induce a band gap in metallic tubes, depending on atomic configuration.

2.2.1.2 Quantum dot confinement in the carbon nanotube

In Figure 2.9, we present a field effect transistor (FET) device utilizing a carbon nanotube
to measure the current I through a single nanotube. The device incorporates a CNT
between metallic source and drain electrodes [65, 63]. Additionally, gate electrodes are
used to modulate the electrostatic potential of the nanotube.

Electrons are confined in the region between the tunnel barriers created by the source,
drain, and gate potentials, forming a quantum dot [66, 67]. By measuring the current
through this quantum dot under different parameters such as bias voltage Vsd, gate voltage
Vg, and magnetic field, we can deduce the electron energy levels within the CNT. This
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quantum dot transport spectroscopy typically operates at temperatures ≤1K to minimize
thermal fluctuations that can obscure the transport properties.

The Constant Interaction Model

This model simplifies the analysis of electron interactions within CNT quantum dots,
focusing on electrostatic interactions and stability of energy levels. As outlined by Hanson
et al. [55], this model includes:

• Electrostatic interactions: These are determined by the total capacitance CΣ,
which is the sum of all capacitances between the quantum dot and its surroundings.
Specifically, CΣ includes contributions from the source Cs, drain Cd, and gate Cg

capacitances, as well as any additional stray capacitances Crest.

• Energy level stability: Despite electron-electron interactions, the available energy
levels remain unaffected, preserving a constant single-particle energy spectrum.

The total energy of a quantum dot occupied by N electrons in the ground state is
given by:

U(N) =
(−eN + CsVsd + CgVg)

2

2CΣ

+
N∑

n=1

En (2.23)

=
(Ne)2

2CΣ

−Ne(αsVsd + αgVg) +
CΣ

2
(αsVsd + αgVg)

2 +
N∑

n=1

En (2.24)

Here:

• The last term is the sum over all occupied single-particle energy levels En, which
depend on the spatial confinement of the quantum dot.

• The first term (Ne)2

2CΣ
represents the charge occupation energy of the quantum dot,

quantized with respect to the elementary charge.

• CsVsd and CgVg represent the effective induced charge, modifying the dot’s electro-
static potential continuously.

• The lever arms αs and αg are introduced and given by:

αs =
Cs

CΣ

, αg =
Cg

CΣ

(2.25)

illustrate how the quantum dot’s energy levels respond to variations in the source-
drain and gate voltages.

2.2.1.3 CNT resonator based single electron transistor

A carbon nanotube, when structured in a transistor geometry, can function as a single
electron transistor (SET), especially when the charging energy of the electrons surpasses
their thermal energy significantly. Figure 2.6 illustrates a CNT electromechanical sensor,
where the nanotube is anchored between the source and drain electrodes. The central
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segment of the nanotube remains suspended and initiates vibration when a direct current
(dc) voltage is applied across the contact electrodes. Below the nanotube, five local finger
gates are placed to adjust the tension in the resonator, aiming to modify the resonance
frequencies.

Generally, a nanotube exhibits semiconductor properties as any defects or strain in-
duce a bandgap in it, creating regions of conductivity and non-conductivity. Through a
combination of Schottky barriers at the interface and varying gate voltages, the electrical
potential of the nanotube can be fine-tuned.

To elucidate further, consider the chemical potentials of the source and drain leads
plotted on the left and right respectively, and that of the nanotube in the center as
shown in Fig 2.6. Within the leads, the density of states (DOS) is continuous up to the
Fermi level as all states are filled. However, within the nanotube, DOS is discrete due
to its quantum dot nature, leading to Coulomb blockades. This implies a charge energy
penalty must be paid to add an electron to the nanotube. The chemical potential on the
nanotube island ascends stepwise, depicted as a ladder in Fig 2.6, indicating that altering
the gate voltage can shift this ladder vertically within the nanotube. This mechanism
enables the switching between two configurations; in one, available states in the nanotube
allow electron tunneling through the island, while in the other, the absence of available
states between the source and drain potentials prevents electron addition to the island.
As the gate voltage varies, the current through the nanotube oscillates regularly. Peaks
occur when the nanotube level is within the permissible window, while dips signify no
level within the permissible window. Hence, as depicted in Fig. 2.6, each peak represents
an electron addition to the nanotube, illustrating the device’s transistor nature since its
conductance alters with gate voltage. Moreover, it qualifies as an SET as the entire
current cycle toggles on and off corresponding to the addition of a single electron to the
nanotube.
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Figure 2.6: A carbon nanotube resonator in a single electron transistor geometry, depicted
across three panels. The left panel shows the device model with the nanotube suspended
between source and drain electrodes. The top right panel illustrates the band diagram
model, demonstrating conditions under which electron tunneling onto the nanotube from
the source and drain is allowed or blocked. The bottom right panel displays the current
versus gate voltage curve of the nanotube, indicating peaks and dips corresponding to the
alignments of the nanotube potential with the source or drain electrodes (data from the
same ultra-clean CNT device as presented in Fig. 2.7). These visualizations capture the
dynamics of charge transfer and the device’s conductance modulation in response to gate
voltage changes.

2.2.1.4 Coulomb blockade and transport spectroscopy

At low temperatures, CNT quantum dots exhibit Coulomb blockade, especially when the
thermal energy kBT is much smaller than the quantum dot’s charging energy, EC = e2

CΣ

[68]. In this regime, electron transport only occurs when the quantum dot’s energy levels
align with the chemical potentials of the source and drain electrodes, µS and µD. The
limited thermal energy prevents electrons from moving between the source, drain, and
quantum dot unless this alignment occurs. With Vsd = 0 and µS = µD, the quantum dot
remains in a current-blocked state, known as Coulomb blockade, unless its energy levels,
µ(N), align with µS and µD [69]. Applying a gate voltage Vg shifts the energy levels of
the quantum dot, lifting the blockade and allowing electron transport [70].

The chemical potential µ(N) of a quantum dot is defined as:

µ(N) = U(N)− U(N − 1) =
e2

2CΣ

(2N − 1)− e(αsVsd + αgVg) + EN (2.26)

The chemical potential forms a ladder of discrete steps, with each step corresponding to
a change in electron occupation number N . This ladder can be shifted up or down by
adjusting the gate voltage. The spacing between adjacent energy levels represents the
energy required to add an additional electron to the quantum dot.

The addition energy Eadd is defined as the difference in chemical potential between
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consecutive electron numbers:

Eadd(N) = µ(N + 1)− µ(N) =
e2

CΣ

+ EN+1 − EN = EC +∆EN (2.27)

Here, EC is the constant electrostatic charging energy, and ∆EN represents the differ-
ence between single-particle energy levels due to quantum confinement.
Electron states in CNT quantum dots exhibit a fourfold degeneracy, arising from spin and
valley degrees of freedom. This results in larger steps in the chemical potential for every
four added electrons. The degeneracy, along with the spacing between single-particle
energy levels (∆Econf), dictates the addition energy. The interplay between electrostatics
and quantum confinement, influenced by the CNT’s band structure and the quantum
dot’s environment, is key to understanding and optimizing CNT quantum dots [57].

Applying a bias voltage Vsd enables current flow if a quantum dot energy level lies
within the bias window defined by µS − µD = −eVsd. By keeping Vsd constant and ad-
justing Vg, one observes alternating current peaks and Coulomb blockade regions. As Vsd
approaches zero, these peaks become sharper, while they blur as Vsd increases. Plotting
current I or differential conductance dI

dVsd
against gate and bias voltages results in a “sta-

bility diagram.” This diagram displays diamond-shaped non-conductive regions (Coulomb
blockade) surrounded by conductive areas. Analyzing this data provides insights into the
quantum dot’s fundamental parameters, such as capacitance and addition energy.

By examining Fig. 2.7, it is clear that the quantum dot transitions between conductive
and non-conductive states when an energy level aligns with either µD or µS [71]. This
alignment is governed by the equations:

µ(N) =
e2

2CΣ

(2N − 1)− e(αsVsd + αgVg) + EN = µD (2.28)

µ(N) =
e2

2CΣ

(2N − 1)− e(αsVsd + αgVg) + EN = µS (2.29)

Where µ(N) characterizes the energy level of the quantum dot for a specific occupation
number (N), and αs and αg describe the variations in energy levels with respect to voltage.
Using these equations, we can determine the slopes (λ1 and λ2) of the diamonds present
in the stability diagram (refer to Fig. 2.7):

dVsd
dVg

= −Cg

Cs

= λ1 < 0 (2.30)

dVsd
dVg

=
Cg

CΣ − Cs

= λ2 > 0 (2.31)

The slopes λ1 and λ2 also allow us to calculate the lever arms αs and αg, which describe
how the energy levels respond to voltage variations:
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Figure 2.7: Top Panel: Coulomb diamonds measured in our ultra-clean nanotube res-
onator, allowing us to calculate the energy levels of electronic ground and excited states.
Bottom Panel: Energy band diagram explaining the underlying mechanism behind a
Coulomb diamond.

αg =
|λ1||λ2|

|λ1|+ |λ2|
(2.32)

αs =
αg

|λ1|
(2.33)
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The gate voltage Vg,0(N) required to align a quantum dot energy level with µS,D when
the bias voltage Vsd = 0 is:

Vg,0(N) =
e

2Cg

(2N − 1) +
CΣ

eCg

(EN − µD) (2.34)

Therefore, when analyzing the stability diagram at Vsd = 0, the spacing between
consecutive conductance peaks ∆Vg(N) can be calculated as:

∆Vg(N) = Vg,0(N + 1)− Vg,0(N) (2.35)

∆Vg(N) =
e

Cg

+
CΣ

eCg

(EN+1 − EN) =
Eadd

eαg

(2.36)

With the fourfold degeneracy of energy levels in a CNT quantum dot, this leads to a
characteristic fourfold symmetry in CNT quantum dot stability diagrams:

∆Vg(N) =

{
1

eαg
(EC +∆Econf) for N = 4n, n ∈ N

1
eαg
EC otherwise

(2.37)

In stability diagrams of CNT quantum dots, a fourfold symmetry pattern is often observed
[72]. Coulomb diamonds corresponding to occupation numbers N = 4n are notably larger
compared to those corresponding to other N values. This symmetry helps determine the
quantum dot’s capacitance:

Cg =
e

∆Vg
for N ̸= 4n, n ∈ N (2.38)

Finally, using Equations 2.30 and 2.31, we can determine the remaining capacitance
parameters of the quantum dot:

Cs =
Cg

|λ1|
(2.39)

CΣ =
Cg

αg

(2.40)

We have determined the addition energy Eadd, lever-arm, and capacitances of the nan-
otube quantum dot shown in Fig. 2.7, and these are plotted in Fig. 2.8. These parameters
offer detailed insights into the electrostatic properties and behavior of the quantum dot.
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Figure 2.8: Geometrical parameters of a CNT quantum dot derived from the stability
diagram shown in Fig. 2.7 using the Eq. 2.25 and Eq. 2.27.

2.2.2 Carbon nanotube mechanics

2.2.2.1 Bending and flexing: Euler-Bernoulli theory

The Euler-Bernoulli beam theory offers insights into material responses under external
forces [73]. Even for nanotubes with few atoms in their outer layer, continuum mechanics
principles effectively analyze the mechanical attributes of CNT resonators [74].
In Fig 2.9, a CNT of suspended length L along the x-axis is supported over a trench via
source and drain electrodes, while five finger-gate electrodes are underneath the nanotube.
The displacement u(x, t) is in the z-direction. According to the Euler-Bernoulli theory,
the system’s motion is described by:

ρA
∂2u

∂t2
+ η

∂u

∂t
+ EI

∂4u

∂x4
− T

∂2u

∂x2
= F (2.41)
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Figure 2.9: A CNT mechanical resonator displays a nanotube segment of length L sus-
pended between source and drain electrodes over a trench. Below the trench, gate elec-
trodes regulate tension and initiate motion, with the displacement direction denoted as
u(x).

Here:

• First term: inertia (ρA: mass density times cross-sectional area).

• Second term: damping.

• Third term: restoring force due to bending rigidity (with Young’s modulus E and
second moment of inertia I).

• Fourth term: restoring force due to tension T .

• F : external force per unit length.

We focus on two scenarios: bending rigidity or tension dominates the behavior. For
comprehensive studies on CNT resonators refer to [75, 76].
When bending rigidity dominates (EI ∂4u

∂x4 ≫ T ∂2u
∂x2 ), the corresponding eigenfrequency is:

f0, beam =
22.37

2πL2

√
EI

ρA
(2.42)

Similarly, in tension dominance (T ∂2u
∂x2 ≫ EI ∂4u

∂x4 ), the system acts like a tensioned string.
The eigenfrequencies are:

fn, string =
n

2L

√
T

ρA
(2.43)

2.2.2.2 Mechanical resonator-quantum dot interaction

We investigated the interplay between a mechanical resonator and a quantum dot. For
simplicity, we neglect the screening effects from source and drain electrodes, allowing us
to model the nanotube as an infinite solid cylinder with radius r.
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Potential profile of the CNT

This nanotube is positioned at height hg above a conductive plate with an electrostatic
potential Vg at z = 0 [77]. The potential profile at u = 0 is the following:

ϕ(y, z) = Vg − arccosh

(
hg
r

)
ln
[
y2 +

(
z − h2g − r2

)2]
/ (2LρA · hg) (2.44)

This equation describes the electrostatic potential around the CNT due to the gate elec-
trode. The logarithmic term represents the potential due to the cylindrical geometry of
the CNT. The arccosh function arises from the geometry of the nanotube and its proximity
to the gate. Figure 2.10 depicts the field lines of this potential.

Figure 2.10: Electrostatic potential field lines from the gate electrode in a suspended CNT
FET. Adapted from [73]

Capacitance of the CNT

When the nanotube deflects, its height above the conductive plate is hg − u. The capaci-
tance per unit length, cg(x), is given by [73]:

cg(x) =
2πϵ0

arccosh
(

hg−u(x)

r

) (2.45)

This equation describes how the capacitance between the nanotube and the gate electrode
changes with the nanotube’s position. As the nanotube gets closer to the electrode, its
capacitance increases. The inverse relationship with the arccosh function ensures that the
capacitance is always positive and increases as the tube gets closer to the gate.

Electrostatic potential energy

The electrostatic potential energy for a segment of the nanotube, UF, is given by:

UF = −
∫ L

0

cg(x)V
2
g

2
dx (2.46)

The negative sign indicates that the electrostatic force is attractive, pulling the nanotube
closer to the gate electrode.

This energy can also be expressed as:

UF =

∫ L

0

Fu dx (2.47)
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Force on the CNT due to electrostatic interaction

The force FES(t) exerted on the nanotube by the gate electrode’s electric field is given by:

FES(t) =
1

2

∂Cg

∂u
· V 2

g (2.48)

The force, influenced by gate capacitance Cg, draws the CNT resonator towards the gate
electrode. This action adjusting the tension and resonance frequency of the nanotube,
much like tuning a guitar string.

2.2.3 Tension in nanotube resonator

The tension in the nanotube can be modulated by applying a gate voltage Vg. The
electrostatic force between the gate and the nanotube results in a bending of the CNT,
which, in turn, increases the tension within the device.

The total tension T in the CNT can be expressed as the sum of the initial residual
tension T0 and the additional tension induced by the gate voltage. The total tension can
be modeled as:

T = T0 +
ES

2L

∫ L

0

(
du

dz

)2

dz (2.49)

where E is the Young’s modulus of the CNT, S = πr2 is the cross-sectional area of the
CNT, L is the length of the CNT, and u(z) represents the displacement of the CNT due
to the electrostatic force. The electrostatic force per unit length FES, which scales with
V 2
g , leads to a displacement of the CNT and alters the tension. We can divide the tension

behavior into two regimes based on the gate voltage.

2.2.3.1 Weak bending regime

For low gate voltages, the bending of the CNT is weak, and the increase in tension is
small. In this regime, the increase in tension is dominated by the initial residual stress,
and the tension increases quadratically with the gate voltage:

T ≈ T0 +
ϵ0V

2
g

d2
(2.50)

where ϵ0 is the permittivity of free space, and d is the distance between the CNT and the
gate. The tension in this regime is proportional to the square of the applied gate voltage.

2.2.3.2 Strong bending regime

In the case of higher gate voltages, the bending becomes significant, and the system enters
the strong bending regime. Here, the tension scales with V

2/3
g , as derived from Sapmaz

et al. [78]:

T ≈
(
ESV 2

g

L2

)1/3

(2.51)

This relationship highlights that in the strong bending regime, the tension increases more
slowly with the gate voltage compared to the weak bending regime. In Appendix Sec. A.4,
we calculate the tension for the four different modes of the nanotube, using the experi-
mentally observed frequencies in vacuum for both the weak bending and strong bending
regimes.
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2.2.3.3 Displacement sensitivity

The displacement sensitivity of the device can be directly related to the tension. As
the gate voltage increases, the tension in the CNT rises, which leads to a corresponding
increase in the resonance frequency of the device. The resonance frequency f0 is given by:

f0 ∝
√
T

m
(2.52)

where m is the effective mass of the resonator. Thus, operating the device in the high-
tension regime, where the tension scales with V

2/3
g , allows for precise control of the reso-

nance frequency, which in turn improves displacement sensitivity.
This analysis provides a useful model for understanding the mechanical response of

carbon nanotube-based NEMS devices to applied gate voltages, contributing to improved
performance in sensing and quantum dot applications.

2.2.3.4 Measuring the nanotube vibrations via embedded SET

In the section 2.2.1.3, it was mentioned that the electron flow through the nanotube is
governed by single-electron charging, leading to a pronounced slope in the current peak.
This implies that minor alterations in the potential can trigger significant changes in the
current. The characteristic behavior of the nanotube SET is harnessed to transduce its
mechanical movements into electrical signals.

The detection mechanism can be elucidated by redrawing the data similar to the cur-
rent versus gate voltage graph (Fig 2.6), but instead plotting current versus displacement
(Fig.2.11). This comparison is reasonable because the potential varies in a way that is
directly related to the displacement. Consequently, the movement of the nanotube in-
duces variations in the potential, navigating the current along the slope of the Coulomb
peak (Fig.2.11). If the nanotube is oscillating, this would manifest as fluctuations in the
current, since the instantaneous nanotube current corresponds to the immediate displace-
ment. Given that the current is tied to the electrical potential, this relationship can be
used to discern the displacement direction. Specifically, an upward displacement would
result in a notable current, whereas a downward displacement would induce a modest
change in current.

34



Figure 2.11: Utilizing the embedded SET to gauge carbon nanotube oscillations. The
right panel depicts the relationship between current and nanotube displacement, analo-
gous to the current versus gate voltage presented in Fig 2.6. This is just for illustration
and not actual data, as we do not experimentally measure the nanotube displacement.
The movement of the nanotube modulates the electrical potential, shifting the current
along the slope of the Coulomb peak, thereby transducing mechanical movements into
measurable electrical signals. Changes in current reflect the nanotube’s displacement,
enabling precise monitoring of its oscillatory behavior.

In summary, CNTs possess a spectrum of attributes favorable to a range of applications.
In electron transport, they enable precise control through Coulomb blockade, essential
for quantum computing. At low temperatures, Coulomb diamonds form as energy levels
within quantum dots align with source and drain potentials, allowing for controlled elec-
tron flow. In mechanics, CNT resonators follow Euler-Bernoulli beam theory or string
theory, providing high-quality factor sensing and tunable resonance frequencies. Further-
more, CNT resonators, when coupled with quantum dots, offer intriguing possibilities for
tuning and sensing through electrostatic interactions. Since CNTs can function as SETs,
sensitive to gate voltage changes, making them powerful detectors of mechanical motion.

We will now discuss the mechanics of various mechanical oscillators to explore their
applications in investigating various superfluid phenomena.
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2.3 Oscillating structures as probes for helium fluids

2.3.1 Abstract

Understanding the behavior of superfluid helium is crucial in low-temperature research,
particularly for its potential in cooling electronic devices to millikelvin temperatures.
However, knowledge of possible losses in such a ‘mechanical vacuum’ is essential to dis-
tinguish their contribution from actual measurements. Conventionally, mechanical os-
cillators have been employed to identify damping sources in cryogenic liquids. This re-
view examines previous research on nano-electromechanical systems (NEMS) and micro-
electromechanical systems (MEMS) in helium, where several damping mechanisms are
detected, including viscous drag, ballistic scattering in quasiparticles, emission of sound,
and generation and detection of turbulent flow. Moreover, recent work involving carbon
nanotube resonators has demonstrated impressive sensitivity to helium interactions, par-
ticularly in detecting helium adsorption and layering transitions in a quasi-2D system.
These findings not only provide insights into confined helium geometries but also offer a
framework for exploring bulk superfluid helium, a key focus of this review.

2.3.2 Introduction

The use of liquid helium as a cooling agent has been crucial in low-temperature research
for several decades, allowing the investigation of a wide range of quantum phenomena
and exotic states of matter. However, this cooling agent can also introduce potential
sources of damping that can interfere with measurements and impede progress. To better
understand the behavior of liquid helium at ultra-low temperatures, researchers have
traditionally used mechanical oscillators to probe damping sources present in cryogenic
liquids. Previous work has been done on MEMS and NEMS devices inside the helium
chamber, where several theoretically-predicted damping mechanisms have been detected,
including viscous drag, ballistic scattering in quasiparticles, emission of sound, and even
the generation and detection of turbulent flow. The detection and characterization of
these damping sources are essential for accurate measurements and for improving the
performance of devices operating at ultra-low temperatures.

The superfluid behavior of 3He and 4He is an example of collective quantum behavior
that arises due to the bosonic nature of 4He and the fermionic nature of 3He [79]. Espe-
cially as systems approach absolute zero, the manifestation of intriguing quantum phe-
nomena becomes more pronounced, leading researchers into hitherto unexplored realms of
the physical world. While superfluid 4He flows without viscosity, its normal fluid compo-
nent retains a finite viscosity, which plays a key role in turbulence formation even at very
low temperatures. The Reynolds number in superfluid 4He can remain high, typically
ranging from 104 to 108, due to the contribution of the normal fluid, the flow velocity, and
the system’s characteristic length [80, 47]. As a result, interactions involving the normal
fluid at high velocities lead to turbulence, despite the inviscid nature of the superfluid
component. In contrast, the fermionic quantum fluid, 3He, offers insights into several
other complex systems. This includes unconventional superconductors, neutron stars,
and potentially even scenarios reminiscent of the early universe [8]. Such insights have
far-reaching applications in the realms of high-Tc superconductivity, topological defect
dynamics, and cosmology.

Investigations into these superfluids are significantly enriched by employing mechani-
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cal resonators whose vibrations are highly sensitive to helium interaction. The resonance
frequencies of these oscillators can be influenced by adsorbed masses, charges, and impu-
rities, making them ideal for studying helium fluid’s properties [81, 82]. Over the years,
numerous phenomena related to helium fluids, such as quantum turbulence [83, 12], Lan-
dau critical velocity in 3He [84], and even the quantization of topological defects [44, 85]
have been explored using mechanical oscillators.

In light of this, the current literature review discusses the experiments that have
employed MEMS and NEMS submerged in liquid helium at ultra-low temperatures. The
purpose is to provide a comprehensive understanding of various phenomena observed in
this ‘quantum vacuum’ and the mechanisms, such as viscous drag, ballistic scattering,
and sound emission, detected through these oscillating structures.

Comparing damping mechanisms in 4He with nanobeams and
other oscillators

Bradley et al.[13] investigated the thermal properties of superfluid 4He using a NEMS
resonator. Nanomechanical oscillators, with dimensions comparable to the superfluid
coherence length, exhibit exceptionally high sensitivity to changes in resonance frequency.
This sensitivity allows for precise probing of quantum phenomena, making it possible to
access and explore different quantum regimes at mesoscopic scales [86, 73].
The power dependence of the resonance frequency was initially measured to determine
the maximum velocity up to which the nanobeam demonstrates a linear force-velocity
relationship. Using the quality factor definition:

Q =
f0
∆f

=
πf0mbeamv

2

Pmax

,

velocity and force can be expressed as:

v =

√
Pmax

πmbeam∆f
;F =

√
πmbeam∆fPmax. (2.53)

where, f0 is the frequency in vacuum and mbeam is the mass of the beam resonator. It was
found that the nanobeam exhibits a 0.1 m/s maximum linear velocity. Consequently, any
non-linear characteristics observed for the beam submerged in helium at velocities below
0.1 m/s are attributed to the beam’s interaction with the helium fluid.
Upon immersing Al-beams in 4He fluid near the transition temperature, a notable change
in resonance frequency as a function of temperature was observed. Specifically, a signifi-
cant damping width, approximately 105Hz, much greater than intrinsic losses, was noted
for the temperature range of 1.3-4.2 K as shown in Fig.2.12(c). Moreover, a reduction
of approximately 10% in the resonance frequency from its vacuum value suggests an in-
creased effective mass of the beam, likely due to viscously clamped fluid on the beam
surface and fluid back-flow around the oscillator.
The two-fluid model was employed to explain the observed results, treating the ‘beam +
liquid’ as a damped harmonic oscillator with a changeable effective mass and a consistent
effective spring constant [87]. The resonant frequency fH of the beam in the viscous fluid
is reduced from its vacuum value f0, and this change is given by:
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(
f0
fH

)2

= 1 + β
ρHV

me

+B
S

me

√
ηρn
πf0

. (2.54)

In this expression, ρn and η represent the normal fluid density and viscosity, respectively,
while ρH denotes the liquid helium density [87]. S and V are the area and volume of
the oscillating body, respectively. The term me denotes the effective mass of the system,
accounting for both the beam and the surrounding fluid.
For high-frequency scenarios where the penetration depth of the rotational fluid δ is
smaller than the dimensions of the beam, the resonance width due to hydrodynamic drag
is:

∆fhyd = C
S

2m0

√
ρnηf0
π

(
fH
f0

)2

. (2.55)

The experimental data, as displayed in Fig.2.12, aligns well with the theoretical predic-
tions for the majority of the temperature spectrum. However, for temperatures below
1.7K, deviations from the theoretical model are evident, the cause of which remains
unidentified.
Comparing Al-beams with other resonators like vibrating wires and quartz tuning forks,
the relationship in Eq. (2.54) can be reformulated as:(

f0
fH

)2

− 1 =
1

ρbeam

(
βρH +

4B

d

√
ηρn
πf0

)
. (2.56)

From this, oscillators with a lower density and smaller dimensions display enhanced fre-
quency sensitivity, marking them as preferable for probing the properties of liquid helium.
For various oscillators, the fractional change in frequency is illustrated in Fig. 2.14(a).
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Figure 2.12: (a) SEM image presenting a 15µm-long, doubly clamped aluminium beam
on a silicon substrate, having a cross-sectional area of 0.1 µm × 0.1 µm. This beam is
integrated with a microwave circuit under a transverse magnetic field. (b) A depiction of
the squared frequency ratio for a nanobeam against liquid helium temperatures. Note the
swift change in resonance frequency below the transition point, attributed to the release
of normal fluid from the resonator’s surface. (c) Illustration of the resonance width’s
temperature dependence, highlighting a nanobeam’s sensitivity in gauging viscous fluid
dynamics between 1.7 K and 4.2 K. Adapted from [13].

Figure 2.13: Tuning Fork and Vibrating wire resonators.

The Q-factor, deduced from Eq. (2.55), represents another crucial characteristic for de-
termining the optimal device:
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Q = 2C

√
π

ρnη

(
f0
fH

)2√
fHdρbeam. (2.57)

The relationship between frequency sensitivity and quality factor reveals a trade-off, as
illustrated in Fig. 2.14(b).

Figure 2.14: (a) Depiction of how the resonant frequency’s fractional change depends
on the normal helium fraction for various oscillators between 1.06K and 2.18K. This
highlights the superior sensitivity of smaller, lighter probes in assessing helium fluid’s
viscous properties. (b) Charting the reduced Q-factor against temperature. Notably,
massive resonators with high frequencies have the highest Q-factor (as seen in the Inset).
For 15µm NEMS, a significant rise in the reduced Q-factor below the superfluid transition
suggests potential minimal acoustic losses at these temperatures. Adapted from [13].

In light of the above, NEMS resonators exhibit potential for operations in liquid 3He, an
optimal environment for cooling electrons to their ground states [88], thus paving the way
for probing uncharted quantum domains.

Transition of damping mechanisms in 4He from ballistic to acous-
tic regimes with NEMS

Guénault et al.[14] delved into dissipation mechanisms within superfluid 4He by utilizing
nanomechanical beams in a helium bath at a base temperature of 7mK. When these Al-
beams were measured in a vacuum, both in their normal and superconducting states, they
demonstrated a notably high quality factor (Q = 5 × 106), indicating minimal intrinsic
losses.
A subsequent evaluation involved measuring damping across varied external magnetic
fields B up to 5 Tesla, as depicted in Fig. 2.15(a). Damping remained consistent up to
150 mT, after which magnetomotive forces began to dominate in a B2 relation. When
these nanobeams were then introduced to a 4He chamber, spanning temperatures from
7mK to 3K, unexpected damping was observed, even at minimal magnetomotive losses.
Given that the normal fraction of superfluid 4He should be inconsequential at 7mK, this
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elevated loss cannot be attributed to the viscous forces from the normal component, given
the sparse density of thermal excitations[89].

Figure 2.15: (a) Damping in a nanobeam measured against external magnetic field in
both vacuum and superfluid 4He at 10mK. Inset: Variation of acoustic damping with
resonator frequency in 4He. (b) Temperature’s effect on loss mechanisms, highlighting
distinct sources of damping across three temperature zones. Adapted from [14].

To understand the microscopic origins of this damping within superfluid 4He, the nanobeam’s
quality factor was plotted against temperature, as seen in Fig. 2.15(b). Throughout the
temperature regime, dissipation was evident. However, three specific temperature zones
revealed additional, distinct loss mechanisms, beyond just intrinsic and magnetomotive
dissipation. Above 1K, hydrodynamic losses become dominant as per Eq. (2.57). Below
1K, the influence of damping, due to collisions with thermal excitations like phonons
and rotons, becomes pronounced[89]. At the lowest temperature bracket, significant,
temperature-independent losses were observed, which surpassed internal losses. These
can be ascribed to the dipole acoustic emission from the cylindrical beam[90]. The ex-
perimentally documented damping regimes align closely with the subsequent theoretical
models for phonons, rotons[89], and acoustic emissions[91], respectively:

Q−1
ph = A k4B

45ℏ3df0(ρbeam + ρs)c4ph
T 4, (2.58)

Q−1
rot =

Ap0
π2df0ρbeam

(
m∗kBT

2πℏ2

)3/2

exp

(
− ∆

kBT

)
, (2.59)

Q−1
ac =

π3

2

ρs
ρbeam

(
df0
cph

)2

, (2.60)

Here, cph represents sound velocity, while p0, m
∗, and ∆ are the associated Landau pa-

rameters for roton[89].
Given that acoustic losses rely quadratically on the resonant frequency [as per Eq. (2.60)],
it’s inferred that resonators with lower frequencies can significantly curtail sound’s dipole
emission. Additionally, resonators with a reduced diameter, such as carbon nanotube
mechanical resonators, might effectively minimize acoustic emissions. Recent studies,
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such as those conducted on low-frequency, high-sensitivity π-shaped NEMS, reported
in [16], highlight their suitability for detecting low-frequency excitations in superfluids,
including Kelvin waves in both 4He and 3He.

Dissipation Dynamics in 4He Using Tuning Forks

Bradley et al.[10] studied quartz tuning forks’ behavior in both normal and superfluid 4He,
specifically for temperatures above 1.5K. They ensured that the oscillation amplitude
remained minimal to uphold linear force-velocity dynamics.
The resonance width of the tuning forks, when submerged in liquid helium, was recorded
as a function of their resonant frequency. This was done under both normal (4.2K)
and superfluid (1.5K) conditions. The resultant measurements are depicted in Fig. 2.16,
having accounted for intrinsic losses. At sub-100 kHz frequencies, damping showcased
a mild dependency on the resonance frequency. However, as the frequency increased,
the resonance width experienced substantial changes, escalating by nearly two orders of
magnitude in the normal phase and three in the superfluid phase. Initial low-frequency
losses align with the hydrodynamic drag exerted by the viscous fluid. In contrast, at
elevated frequencies, the dissipation is best explained by the 3D model of quadrupole
sound emission[32]. Both theoretical models aptly fit the experimental observations.

Figure 2.16: Damping width variation of the tuning fork with respect to its resonant
frequency. Measurements taken in normal 4He at 4.2K (black points) and in superfluid
4He at 1.55K (blue points). The dashed lines represent the cumulative effects of hydro-
dynamic and the 3-D longitudinal quadrupole acoustic emission models. Adapted from
[10].

Dissipation dynamics in 3He using tuning forks

Guenault et al.[11] investigated the behavior of tuning forks in both the normal and
superfluid phases of 3He, initially comparing their responses in 4He. As depicted in
Figure 2.17(a), damping characteristics in 4He correlate with frequency: lower frequencies
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fit the hydrodynamic model, while at higher frequencies, 3D quadrupole acoustic emission
dominates the dissipation. This pattern is consistent in both the normal and superfluid
states at respective temperatures of 4.2K and 1.5K. At 450mK, where the normal-fluid
fraction is negligible, dissipation is predominantly due to quasiparticle scattering in the
ballistic regime, as described in Eq. (2.58). The observed ballistic drag coefficient of 18
suggests a geometric influence from the tuning forks and the ambient pressure.

Figure 2.17: Resonance frequency width and damping of tuning forks in 4He and 3He:
(a) Normal 4He at 4.2K and superfluid 4He at 1.5K and 450mK with hydrodynamic
(dashed lines) and combined 3D sound emission models (dotted lines); (b) Damping in
superfluid 3He-B and vacuum; (c) Enhanced damping in normal 3He highlighting the
viscous fermionic behavior. Adapted from [11].

Moving to liquid 3He, resonance measurements mirrored those in 4He (Figure 2.17(b)).
At frequencies below 100 kHz, damping levels in vacuum and superfluid 3He-B are com-
parable; beyond this threshold, damping in superfluid 3He-B markedly increases, likely
due to additional damping mechanisms inherent to this state. Contrastingly, damping
in normal 3He significantly surpasses that in both the superfluid and vacuum conditions
(Figure 2.17(c)). Low-frequency damping aligns with Stokes’ drag, intensifying as tem-
perature decreases due to the viscous nature of the Fermi fluid. Although most data fit a
model combining hydrodynamic and ballistic theories, deviations suggest an impact from
the cavity acoustics, prompting further investigation.

This research underscores the need for precise experimental design, particularly in the
cavity dimensions for high-frequency NEMS and MEMS, to accurately probe the quantum
fluid dynamics such as thermal excitation motion or quantum turbulence.
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Turbulent flow dynamics in superfluid 4He using MEMS res-
onators

Barquist et al.[79] utilized a MEMS resonator to discern quantum turbulence in superfluid
4He. Capacitive driving powers the device, and an electrical current is gauged through it
by applying a DC bias on its electrodes. The MEMS is tailored in shear mode to main-
tain consistent velocity during measurements, facilitating the extraction of its intrinsic
properties before the turbulence is generated and detected.
A tuning fork (TF) is employed to induce turbulence in the ultra-low temperature (14mK)
superfluid. This turbulent regime is demarcated by measuring the TF’s force-velocity
characteristics. On-resonance operation ensures that the damping force and driving force
equilibrate. Initial low velocities show a linear drag dependency, i.e., F ∝ v, signaling a
laminar regime. However, velocities surpassing 140mm witness a sudden drop, suggesting
increased dissipation attributed to turbulent flow where force exhibits a non-linear velocity
dependency. The critical velocity, vc, marking the transition to turbulence, is 90mms−1.

Figure 2.18: Frequency-response of MEMS with (Turbulent) and without (Quiescent)
turbulence at 14mK. The dual reverse frequency sweeps in both regimes showcase the
quadrature components of the signal. The inset illustrates the signal amplitude. Turbulent
flow’s smaller peak underscores increased damping and the extra noise stemming from
damping fluctuations. Adapted from [79].

Both frequency and time domains are utilized to observe MEMS behavior in turbulent
flow. Figure 2.18 illustrates dual descending frequency sweeps with an excitation voltage
of 400mV. The ‘turbulent’ curve corresponds to a fork velocity of 126mms−1. The
MEMS’s motion under turbulent conditions is evident from the sweep’s transition to
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higher frequencies and diminished amplitude compared to the ‘Quiescent’ sweep. The
diminished peak magnitude in the turbulent setting, given identical excitation, indicates
MEMS’s augmented damping.

Although the sensitivity of MEMS to turbulent flow is validated across measurements,
further empirical work is essential for a holistic quantitative analysis of vortex interactions
with MEMS resonators.

Turbulence detection in superfluid 3He-B using vibrating wires

Fisher et al.[12] were the first to observe turbulence in superfluid 3He-B, deploying vibrat-
ing wires for both the generation and detection of turbulent flow. This turbulence was
activated at the Landau criterion for Cooper pair breaking [84]. The real-time detection
of this turbulence was elucidated by the creation of a flow barrier through entangled vor-
tices at ultra-low temperatures. Here, the modulation in the quasi-particle dynamics due
to this barrier was significant enough to map out the effects of turbulence in the fermi
superfluid.

To initiate the resonator’s motion, an oscillating current flowed through a wire placed
in a steady magnetic field, leveraging the Lorentz force. Subsequently, the wire’s induced
emf was measured to determine damping from the resonance width. At low velocities
in superfluid 3He-B, vibrating wires manifested minimal, temperature-independent in-
trinsic losses. The temperature-dependent damping arising from thermal excitations is
represented by exp(− ∆

KT
). In particular, substantial thermal drag emerges as a result of

Andreev scattering in the superfluid backflow around the detecting wire. This results in
the quasiparticle dispersion curve tilting by an energy gap v⃗.p⃗ in the presence of super-
flow v⃗. Surpassing a critical velocity vc =

vL
3
, where vL = ∆

Pf
denotes the Landau critical

velocity, the breakage of the cooper pair by the generating wire leads to a pronounced
surge in damping due to the amplified quasiparticle flux at the detector wire [92].

Figure 2.19: (a) Dissipation in the detector wire over time for various power levels applied
to the generating wire (shaded area). For each period, the generator velocity is scaled by
the Landau critical velocity. Adapted from [12].
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Counterintuitively, as shown in Figure 2.19, increased thermal excitation from the gen-
erator wire leads to decreased damping in the detector wire. This implies a diminishing
quasiparticle flux to the detector with rising thermal excitation density. Given the neg-
ligible quasiparticle scattering at such a low temperature, it’s postulated that Andreev
reflection, due to an additional flow field produced by the generator wire, shields the
excitation flux from the detector wire, leading to turbulence.

Such pioneering observations of Andreev scattering due to the vortex flow field have
ushered in the possibility of exploring previously unknown mechanisms in quantum fermi-
liquids at ultra-low temperatures, particularly through minute vibrating structures. In
conclusion, vibrating wire resonators have been instrumental in successfully demonstrat-
ing turbulence generation and detection in superfluid 3He-B. Preliminary observations of
Andreev scattering owing to the vortex flow field have set the stage for future investiga-
tions into the dynamic behaviors of quantum fermi-liquids, especially when studied using
high-frequency NEMS and MEMS.

2.4 Superfluid 4He adsorption on a nanotube res-

onator

Noury et al. [93] conducted an impressive study investigating the interaction of super-
fluid helium with carbon nanotube resonators, revealing interesting insights into quan-
tum phase transitions and helium layering. Utilizing a suspended carbon nanotube, they
probed the mechanical effects of helium adsorption on the nanotube’s surface, showing,
for the first time, clear discontinuities in the resonance frequency associated with first-
order layering transitions. Their results underscore the unique capacity of the nanotube
to detect tiny changes in mass and elasticity, making it an effective probe for superfluid
helium at ultralow temperatures.

The study focuses on helium adsorption in a quasi-two-dimensional (2D) geometry,
where the nanotube surface serves as a high-quality substrate for the helium layers. This
2D system is fundamentally different from bulk superfluid 4He, as it allows for unique
phenomena such as layering transitions and third sound excitations within the helium film.
These effects, however, provide critical insights into the behavior of helium in confined
geometries, serving as a precursor to understanding more complex interactions in bulk
superfluid systems, which is the primary focus of this thesis.
The nanotube acts as a mechanical resonator, with its resonance frequency f0 determined
by the relationship:

f0 =
1

2π

√
K

M
, (2.61)

where K is the total spring constant, andM is the effective mass of the system. As helium
atoms adsorb onto the nanotube, the total mass increases by the mass of the adsorbed
helium mHe, leading to a shift in the resonance frequency:

f ′
0 =

1

2π

√
K

M +mHe

. (2.62)

This relationship allows the measurement of helium adsorption by observing the frequency
shift ∆f = f0 − f ′

0, which is directly proportional to the mass of the adsorbed helium.
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Figure 2.20: Helium film growth and desorption on nanotube. (a) The plot shows
the resonance frequency shift as a function of helium atom adsorption. Each step corre-
sponds to the completion of a helium layer, with the frequency decreasing progressively
as successive layers form on the carbon nanotube. The stepwise nature of the frequency
shift highlights the first-order layering transitions. (b) As the temperature increases, the
helium layers desorb from the nanotube surface, leading to a progressive increase in res-
onance frequency. (c) This plot captures the spring constant effect near 0.5 K, where a
slight minimum in the frequency shift is observed due to changes in surface tension and
the interaction between the nanotube’s elasticity and the helium film.

The study revealed the formation of discrete helium layers, with resonance frequency
measurements demonstrating that each layer formed in a stepwise manner. Fig. 2.20(a)
from the study illustrates the layer-by-layer growth of the helium film on the nanotube,
where each step corresponds to the completion of a helium layer, causing a measurable
decrease in the resonance frequency. The stepwise decrease in frequency marks the com-
pletion of successive helium layers as helium atoms condense on the nanotube surface,
clearly delineating the first-order nature of the layering transitions [93].
Fig. 2.20(b) shows the desorption of helium layers with increasing temperature, where the
resonance frequency rises as helium evaporates, directly correlating with the nanotube’s
mass change. Fig. 2.20(c) reveals a subtle spring constant effect, with a slight frequency
shift minimum near 0.5 K due to changes in helium surface tension. This interaction
between the nanotube’s elasticity and the helium surface tension becomes more prominent
as helium desorbs (supplementary of [93]).

To quantify the effects of helium adsorption, we examine the shift in the total spring
constant, Ktotal, which is given by:

Ktotal = KNT +KHe, (2.63)
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where KNT is the intrinsic spring constant of the pristine nanotube and KHe is the con-
tribution from the helium film. The helium spring constant, KHe, is associated with the
surface tension γ of the helium film, which varies with temperature due to thermally
excited third sound modes. The relation for KHe is:

KHe = γπ3rHe/L, (2.64)

where rHe is the radius of the helium film on the nanotube, and L is the length of the
nanotube. The resonance frequency shift δf0 due to changes in surface tension is given
by:

δf0 = −0.074
1

MNTf0

rHe

L

(
kBT

ℏc

)3

, (2.65)

where kB is the Boltzmann constant, ℏ is the reduced Planck constant, and c is the speed
of third sound within the helium film. This cubic temperature dependence is evident in
the experimental results and provides a direct link between the helium film’s dynamics
and the nanotube’s resonance behavior.

Fig. 2.21 illustrates the temperature-dependent dynamics of third sound in the helium
film adsorbed on the nanotube. The resonance frequency shift follows the cubic law,
indicating the excitation of third sound modes. This temperature dependence, shown in
Fig. 2.21 (a) and (b), reflects the nanotube’s mechanical response to thermally excited
superfluid waves. The resonance shift reveals the sound velocity in the helium layer, with
a significant jump from ∼ 30 m/s to ∼ 170 m/s between the third and fourth layers,
consistent with the sharp discontinuity expected in a first-order phase transition [93].

These experimental results showcase the exceptional sensitivity of nanotube resonators
in detecting small mass changes and elasticity shifts. While this study focuses on helium
in a 2D configuration on the nanotube surface, differing from bulk superfluid helium,
it provides a valuable framework for understanding interactions in confined geometries.
These findings serve as a precursor to probing more complex dynamics in bulk 4He, a key
aim of this thesis.

The ability of CNT resonators to detect both mass loading and elasticity changes from
helium adsorption highlights their potential as powerful probes for studying bulk super-
fluid 4He. Their minimal mass and nanoscale dimensions allow them to resolve subtle
interactions with the surrounding superfluid, making them highly effective for investigat-
ing quantum turbulence, vortex interactions, and phase changes. With their unmatched
sensitivity and high-frequency operation, CNTs are poised to play a pivotal role in ad-
vancing low-temperature physics, particularly in exploring quantum phenomena in bulk
helium systems.

48



Figure 2.21: Third sound dynamics and resonance shift. The temperature depen-
dence of the resonance frequency shift follows a cubic law, indicating the excitation of
third sound modes within the helium film. The plot shows the significant jump in sound
velocity between the third and fourth helium layers, with the velocity increasing from
∼30 m/s to ∼170 m/s, corresponding to a first-order phase transition.
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2.4.1 Summary

Liquid helium, in its isotopic forms 3He and 4He, has been an invaluable asset in low-
temperature research, enabling the exploration of intricate quantum behaviors of macro-
scopic systems close to absolute zero. The pivotal role of mechanical resonators, particu-
larly MEMS, NEMS, and recently carbon nanotube resonators, in this exploration cannot
be understated. Carbon nanotube resonators, in particular, have demonstrated an im-
pressive capacity to detect helium adsorption, layering transitions, and the excitation of
third sound modes in helium films. These studies in quasi-2D geometries provide critical
insights into helium-fluid dynamics and are a precursor to understanding more complex
behaviors in bulk superfluid helium systems, which is the focus of this review.

It is evident from past research that lighter resonators with high resonant frequencies in
the megahertz range exhibit greater sensitivity to helium interactions. The study of bulk
superfluid helium through mechanical resonators promises to unlock further understand-
ing of quantum turbulence, vortex dynamics, and topological excitations in helium fluids.
The miniaturization of nanomechanical oscillators, such as nanotube-based systems, offers
enhanced sensitivity for detecting these phenomena, enriching our understanding of con-
densed matter physics and opening new possibilities for cooling technologies and quantum
devices. The interplay between mechanical resonators and helium fluids remains crucial
for advancements in fields ranging from low-temperature physics to cosmology, where the
unique properties of helium fluids continue to offer profound insights.
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Chapter 3: Modeling of nanotube vibrations
in liquid 4He

This chapter simulates the dynamics of vibrating CNTs submerged in superfluid 4He,
focusing on the damping mechanisms in NEMS and MEMS oscillators within liquid 4He.
Initially, we examine the temperature-dependent hydrodynamic interactions, revealing a
significant frequency sensitivity of nanotubes to the viscous behavior of liquid helium
near the superfluid transition. In addition, we analyze ballistic and acoustic damping
mechanisms, illustrating the superior damping behavior of nanotubes compared to those
of nanobeam resonators. Furthermore, we discuss the phenomenon of transverse oscilla-
tions within the normal component of superfluid helium confined in CNTs. The findings
emphasize the potential of CNT resonators as potent probes for studying quantum and
hydrodynamic phenomena in low-temperature physics, particularly in probing the dynam-
ics of topological excitations and various sound waves in different-dimensional superfluid
systems.

3.1 Damping mechanisms in NEMS and MEMS os-

cillators in 4He

Mechanical oscillators immersed in liquid 4He experience additional damping mechanisms
beyond intrinsic losses. This section explores the dissipation mechanisms affecting res-
onators in helium at extremely low temperatures, evaluating their sensitivity as detectors.

Two key temperature-dependent damping regimes are the hydrodynamic and ballistic
regimes. In the hydrodynamic regime, the mean free path of quasiparticles, lmfp, is much
shorter than the characteristic oscillator size, lmfp ≪ d. In contrast, in the ballistic regime,
lmfp exceeds the oscillator dimensions, lmfp ≫ d. For a nanotube in helium, the hydrody-
namic regime occurs above approximately 1K, while the ballistic regime dominates below
this temperature.
In the hydrodynamic regime, quasiparticles frequently collide, and dissipation arises
mainly from the viscous behavior of normal liquid helium, following macroscopic dy-
namics. However, as the temperature falls to T ⩽ 1K, collisions decrease, and thermal
excitations behave like a rarified gas. In the ballistic regime, damping is governed by the
microscopic dynamics of the superfluid.

At the lowest temperatures, acoustic losses from the oscillating body itself become sig-
nificant, limiting the probe’s ability to study quantum vacuum properties. The following
sections will further detail these regimes and their impact on the motion of mechanical
oscillators in helium.
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3.1.1 Hydrodynamic regime

From the two-fluid model (section 2.1.2), we understand that liquid 4He contains both
a normal and a superfluid component even below the λ transition. In this section, we
elaborate on the effect of the viscous fluid surrounding a mechanical oscillator, where
dissipation primarily stems from Stokes’ drag. As an oscillator moves through the liquid
4He, it displaces a liquid mass of ρHV , where ρH and V denote the fluid density and
the resonator volume respectively. This fluid backflow around the oscillator seemingly
augments the mass of the oscillating body. Moreover, the normal fluid in close proximity
to the oscillating surface exhibits rotational movement, with the penetration depth of this
rotational flow expressed as:

δ =

√
η

πf0ρnf
, (3.1)

where ρnf and η represent the normal fluid density and viscosity [87], respectively. This
small portion of normal fluid viscously adheres to the moving surface, contributing an
additional mass term ρnfSδ, with S representing the area of the oscillating body. Conse-
quently, a resonator oscillates with an enhanced effective mass, depicted as:

mH = m0 + βρHV +BρnfSδ, (3.2)

Here, β and B are geometric parameters approximately equal to unity. This leads to a
diminished resonant frequency, expressed as:

fH =

√
k

mH

, (3.3)

Employing Eq. (3.2) and Eq. (3.3), the normal fluid-fraction dependence of the resonance
frequency alteration can be derived as:(

f0
fH

)2

= 1 + β
ρHV

me

+B
S

me

√
ηρnf
πf0

, (3.4)

Here, me denotes the effective mass of the system, accounting for both the beam and the
surrounding fluid. This theory holds validity provided the viscous penetration depth is
significantly less than the nanotube dimensions. When δ > l, the behavior of the displaced
liquid hinges on the clamped fluid, especially when ρnf = ρH above Tλ. In such scenarios,
a comprehensive Stokes’ theory is needed for precise frequency shift (or hydrodynamic
losses) measurement.

Considering a large cylinder in the high-frequency limit, we model the hydrodynamic
damping resulting from the frequency shift observed in Eq. (3.4). This damping is at-
tributed to the viscous forces exerted by the surrounding fluid on the oscillating body. In
this regime, we apply the principles from classical fluid dynamics as developed by Landau
and Lifshitz [91]. The Stokes’ force, which describes the resistive force experienced by an
object moving through a viscous fluid, can be expressed as:

F = CS
√
πηρnffHv (3.5)

Here, F represents the drag force experienced by the oscillating object, C is a geometrical
constant that depends on the shape and boundary conditions of the resonator, S is the
cross-sectional area, η is the dynamic viscosity of the fluid, ρnf is the normal fluid density,
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fH is the hydrodynamic resonance frequency of the system, and v denotes the oscillation
velocity.

This formulation of the Stokes’ force assumes that the system operates in the high-
frequency limit, where the viscous effects are primarily confined to a thin boundary layer
near the surface of the resonator. The term

√
πηρnffH captures the dependence of the

drag force on both the fluid’s viscosity and density, as well as the frequency of oscillation.
The model simplifies the complex interactions between the fluid and the oscillator by
overlooking edge effects such as zero velocity at the oscillator boundaries, which can
complicate the analysis [94].

To quantify the energy dissipation due to this hydrodynamic damping, we use the
concept of the inverse quality factor, Q−1. The quality factor describes the ratio of the
stored energy in the system to the energy lost per oscillation cycle. The inverse quality
factor for the hydrodynamic damping can be derived using the definition:

Q−1 =
1

2πmf0

dF

dv
(3.6)

This expression relates the damping force F to the oscillation velocity v, where m is the
effective mass of the system and f0 is the natural frequency of the resonator in vacuum.
Substituting the expression for the Stokes’ force from Eq. (3.5), we obtain the following
expression for the inverse quality factor due to hydrodynamic damping:

Q−1
hyd = C

S

2me

√
ρnfηf0
π

(
f0
fH

)2

, (3.7)

This equation shows that the inverse quality factor Q−1
hyd depends on the cross-sectional

area S, the effective massme of the resonator, the density ρnf and viscosity η of the normal
fluid, as well as the ratio of the natural frequency f0 to the hydrodynamic resonance
frequency fH.

At sub-kelvin temperatures, the normal fluid density ρnf approaches zero as the super-
fluid fraction dominates. This leads to a significant reduction in hydrodynamic damping,
resulting in negligible frequency shifts and a shift in the resonator dynamics towards the
ballistic regime, where the motion is no longer dominated by fluid interactions but by
ballistic transport processes. In this regime, the oscillatory motion is governed by the
intrinsic properties of the resonator rather than viscous drag, providing insights into the
quantum mechanical behavior of the system in such low-temperature environments.

3.1.2 Ballistic regime

As the temperature decreases, the mean free path of thermal excitations such as phonons
and rotons extends, becoming comparable to or exceeding the dimensions of the oscillating
body. Consequently, these thermal excitations are considered as a rarified gas rather than
a component of the normal fluid [95], becoming the primary source of dissipation for the
oscillator within this temperature range.
We adopt a theoretical framework from Ref. [89] to ascertain the individual damping
contributions from the scattering of phonons and rotons off the oscillating surface of the
nanotube resonator. This framework is particularly useful for describing the interaction
of excitations with surfaces in the quantum regime of superfluid 4He, where both phonons
and rotons are the main excitations contributing to the damping of the oscillator. The
validity of this model is contingent on temperatures being low enough (typically below
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1K), such that the system resides in the ballistic regime where the interaction between
the resonator and quasiparticles can be described by kinetic theory. In this regime, the
damping is largely driven by scattering processes rather than classical viscous drag.
The total drag force experienced by the resonator, which moves with velocity v over a
given time interval, is given by the following equation:

F = −1

2
Anp0vdL, (3.8)

In this equation, A = 2.67 is a constant for cylindrical geometry that accounts for the
geometry of the resonator, while d and L represent the diameter and length of the nan-
otube resonator, respectively. The term p0 represents the momentum of an individual
excitation (either phonon or roton), and n is the total number density of the excitations
in the superfluid helium.
The parameter n plays a crucial role in determining the total damping experienced by the
resonator. It represents the number density of quasiparticles (phonons and rotons) within
the superfluid helium. The significance of n is tied to its temperature dependence. For
phonons, the number density increases as T 3, while for rotons, n follows an exponential
dependence on temperature, exp(−∆/kBT ), where ∆ is the roton energy gap. Therefore,
the damping contribution from each type of excitation can be expressed as a function of
n, leading to distinct temperature-dependent behaviors for phonon and roton damping.
For phonons, we rewrite Eq. (3.8) in terms of the phonon mass-density ρph = n p0

cph
and

utilize the relevant parameters from Ref. [89]. The resulting expression for the inverse
quality factor due to phonon scattering is:

Q−1
ph = A k4B

45ℏ3df0(ρ+ ρs)c4ph
T 4, (3.9)

In this equation, cph represents the velocity of phonons, ρ is the oscillator density, and ρs
represents the superfluid density. The T 4 dependence indicates that phonon damping be-
comes more pronounced as the temperature increases, particularly at higher temperatures
within the low-temperature regime (typically around 0.1K to 1K).
Similarly, the damping contribution from roton scattering is given by:

Q−1
rot =

Ap0
π2df0ρ

(
m∗kBT

2πℏ2

)3/2

exp

(
− ∆

kBT

)
, (3.10)

Here, p0, m
∗, and ∆ are the Landau parameters for rotons, with p0 representing the roton

momentum, m∗ the roton effective mass, and ∆ the roton energy gap. The exponential
dependence on temperature highlights that roton damping becomes negligible at low
temperatures but grows exponentially as the temperature rises above a certain threshold
(typically above 0.3K). This behavior contrasts with the T 4 dependence for phonons,
resulting in different temperature ranges where phonon and roton damping dominate.
These equations, Eq. (3.9) for phonon damping and Eq. (3.10) for roton damping, encapsu-
late the microscopic phenomena occurring within superfluid 4He, making them applicable
for describing quasiparticle dynamics at millikelvin temperatures. However, it is impor-
tant to note that, while phonon and roton damping provide a significant contribution at
low temperatures, real experimental measurements of high-frequency oscillators are often
limited by temperature-independent damping mechanisms, such as acoustic emission [10].
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3.1.3 Sound emission from acoustic dipoles

Small amplitude oscillators oscillating in a compressible fluid, such as superfluid helium,
are known to emit sound waves. Each end of a doubly clamped nanotube or nanobeam
behaves as an acoustic monopole, which radiates sound waves isotropically in all direc-
tions [91]. In these nanoscale resonators, the two ends form an acoustic dipole, where the
oscillation of the structure generates sound waves from both ends. This dipole configura-
tion is relevant when the separation between the two ends is smaller than the wavelength
of the first sound, which is the normal sound propagation speed in the fluid. Additionally,
this effect is significant at sufficiently low temperatures where second sound, a unique
wave of entropy in superfluid helium, becomes observable.

In this scenario, the power radiated as sound by an infinitely long cylinder with radius
R is given by the far-field approximation. According to this model, the power of sound
emitted is expressed as:

P =
π2

4c2ph
ρHω

3R4Lv2, (3.11)

where P represents the emitted sound power, cph is the velocity of the first sound, ρH is
the density of superfluid helium, ω is the angular frequency of oscillation, R is the radius
of the nanotube or nanobeam, L is its length, and v is the oscillation velocity.

The energy loss associated with the radiated sound per oscillation cycle can be de-
scribed by the inverse quality factor Q−1. The expression for the acoustic losses is given
by:

Q−1
ac =

P

2πmv2
1

ω
, (3.12)

where m is the effective mass of the resonator. The mass m of the nanotube can be
expressed in terms of its density ρ as:

ρ =
m

πR2L
. (3.13)

Substituting this into Eq. (3.12) and using the relation ω = 2πf0, where f0 is the
resonant frequency, we obtain the final form of the acoustic damping:

Q−1
ac =

π3

2

ρH
ρ

(
df0
2cph

)2

, (3.14)

where d = 2R is the diameter of the nanotube.
This equation shows that the acoustic damping increases with both the square of the
diameter d and the resonant frequency f0. At very low temperatures, acoustic losses
become dominant because other forms of dissipation, such as those due to ballistic scat-
tering, scale as T 4 and diminish as the temperature decreases. Hence, the dissipation due
to acoustic emission becomes the primary limitation on the performance of the resonator.

To minimize acoustic losses, it is necessary to use resonators with smaller diameters
and lower resonant frequencies. This design choice reduces the power radiated as sound,
thereby enhancing the sensitivity of the mechanical probe to interactions with super-
fluid helium. In the millikelvin temperature range, where this sensitivity is crucial for
studying the damping mechanisms, it is essential to mitigate acoustic losses for accurate
measurements.
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3.2 CNT resonator in liquid 4He

A vibrating CNT is a promising nanomechanical probe for exploring collective quantum
phenomena in superfluid 3He/4He, owing to its high crystallinity, impressive quality factor,
and mass sensitivity reaching atomic resolution, alongside an optimal surface potential
conducive for helium adsorption. Beyond the damping caused by phonons and rotons,
the interaction of nanotubes with superfluids could unveil the dynamics of topological
excitations, for instance, vortex-vortex interaction in cylindrical geometry, quantization
of a single vortex, and quantum turbulence across the vortex core.

3.2.1 Dissipation modeling in hydrodynamic and ballistic regimes

Intrinsic damping in carbon nanotubes tends to be negligible relative to NEMS such
as nanobeam resonators due to their large length-to-diameter ratio. This implies that
the dissipation mechanisms mainly originate from thermal and topological excitations in
superfluids. For a quantitative insight into the damping behavior of vibrating nanotubes,
we consider a nanotube device [96] with a resonance frequency of 55.6MHz and an intrinsic
quality factor of approximately 5× 106, submerged in superfluid 4He.

3.2.1.1 Hydrodynamic losses

The behavior of a nanotube resonator in liquid helium close to its transition temperature
serves as a robust medium for investigating the fluid’s viscous properties. When operated
in a viscous medium, a nanotube resonator experiences damping due to Stokes’ drag,
which apparently augments its mass. This apparent mass enhancement arises from two
primary contributions: the clamping of the normal fluid onto the nanotube’s surface
and the fluid’s backflow across the resonator. As a result, the resonant frequency of the
nanotube when submerged in the viscous fluid descends from its vacuum value. The
fractional change in frequency can be derived from Eq. (3.4), simplifying to -(

f0
fH

)2

− 1 =
1

ρNT

(
βρH +

4B

d

√
ηρnf
πf0

)
. (3.15)

Here, ρNT and d represent the density and diameter of the nanotube respectively. Eq. (3.15)
implies that owing to its extremely low density and nano-scale dimensions, the nanotube
may exhibit higher frequency sensitivity when compared to commercially available, denser,
and larger oscillators. Figure 3.1(a) delineates the squared fractional change in resonance
frequency as a function of temperature for a nanotube resonator within liquid helium.
Above the transition point, the resonance frequency in helium immediately halves from
its vacuum value, i.e., fH ≈ 1

2
f0, maintaining this characteristic down to the λ point.

However, this fractional value surges almost linearly with the temperature below the su-
perfluid transition, indicative of the reduction in clamped normal fluid fraction to the
nanotube. Analyzing the fractional frequency response reveals a linear decrease in ρnf
with a temperature drop from 1.06K to 2.18K since the fluid backflow term has a feeble
temperature dependence. For the quantitative description, Figure 3.1(b) illustrates the
normal fluid fraction dependence of the fractional frequency change within the tempera-
ture span of 1.06K to 2.18K, showing a substantial frequency alteration with the ρnf/ρH
over this temperature range, indicating the nanotube’s superior sensitivity in exploring
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the viscous behavior of helium fluid compared to NEMS, vibrating wire, and tuning fork
resonators [13].

Figure 3.1: (a) The change in fractional frequency of the resonator as a function of
temperature shows a linear trend in resonance frequency below the superfluid transition.
This trend is attributed to the unclamping of normal fluid from the resonator surface.
(b) Relationship between the fractional frequency change in the resonator and the normal
fluid fraction for the nanotube using Eq. (3.15).

Moreover, the hydrodynamic drag forces exerted on the nanotube contribute to damping,
especially when the oscillator size surpasses the viscous penetration depth δ as defined in
Eq. (3.1). The resonance frequency width can thus be computed from Eq. (3.7) as:

∆fhyd = C
S

2m0

√
ρnfηf0
π

(
fH
f0

)2

, (3.16)

where C is a geometrical constant, S and m0 are the area and mass of the nanotube,
respectively.
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Figure 3.2: (a) Stokes’ damping experienced by the resonator, plotted against its frequency
at a temperature of 1.5K under saturated vapor pressure using Eq. (3.16). (b) Resonance
width as a function of temperature within a hydrodynamic framework.

The hydrodynamic damping contribution for a nanotube resonator immersed in super-
fluid 4He at 1.5K is illustrated in Fig. 3.2(a), utilizing the relevant liquid 4He parameters
from Donnelly and Barenghi [97]. The graph manifests the resonance width dependency
on the nanotube’s resonant frequency as per Eq. (3.16). Remarkably, the dissipations
span a wide frequency range and alter nearly by an order of magnitude, authenticating
the profound frequency sensitivity of our nanotube resonators in the viscous damping
regime of the two-fluid system in the vicinity of transition temperature. Subsequently,
Fig. 3.2(b) demonstrates the temperature dependence of hydrodynamic damping for a
nanotube resonator with a resonance frequency of 55.6MHz. Above the superfluid tran-
sition, the dissipations, which are substantial (on the order of 8MHz) for the nanotube
due to its high resonance frequency and lightweight, maintain a constant level above the
lambda point. Yet, the resonance width exhibits a sharp linear decline below the transi-
tion temperature, attributed to the reduction in the effective mass of the resonator due
to unclamping of normal fluid fraction. This pronounced drop in hydrodynamic losses by
61.1%, within the temperature span of 1.06K to 2.18K, substantiates the reliability of
our carbon nanotube oscillator in describing hydrodynamic behavior.

3.2.1.2 Ballistic and acoustic losses

The mean free path of phonons and rotons [89] is illustrated in Fig. 3.3(a), and compared
against both nanotube and nanobeam dimensions to discern the ballistic regime for each
oscillator. It is apparent that the quasiparticles’ mean free path surpasses the nanotube
diameter (5 nm) around 1K, and outstrips the nanobeam diameter (150 nm) below 0.7K,
signifying a relatively higher temperature threshold for the nanotube to enter the ballistic
regime.

Therefore, a nanotube can undergo damping due to thermal excitations, as described
by Eq. (3.9) and Eq. (3.10), for temperature T ≤ 1K, depicted by blue dashed lines
in Fig. 3.3(b) for the temperature range of 0.4K to 0.7K. A parallel simulation for a
nanobeam [14] is presented in Fig. 3.3(c), wherein a nanobeam displays a considerably
narrower ballistic regime of ≈ 0.5K to 0.7K compared to that of a nanotube ≈ 0.4K
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to 1K. This marked extension in the ballistic regime for the nanotube, with thermal
excitation dynamics dominant down to ≈ 0.4K, underscores its sensitivity in studying
quantum fluids over an extended temperature range. Moreover, despite a notably higher
resonance frequency compared to a nanobeam (1.6MHz), our nanotube oscillator incurs
substantial losses (≈ 10−1 to 10−5) from quasiparticle scattering, attributable to its low
effective mass.
However, it is well-known that the high frequency cylindrical resonators act as dipole emit-
ters at millikelvin temperatures, as described in Eq. (3.14). This implies potential acoustic
losses for the nanotube; it indeed sets a bound on the sensitivity of oscillators. The red
lines in Fig. 3.3(b) and Fig. 3.3(c) aggregate the damping contribution from all sources
present in the superfluidic system: acoustic emissions from a nanotube are predominant
at temperature T ⩽ 0.4K; while for a nanobeam, first sound emission emerges as the
dominant loss mechanism at T ⩽ 0.5K. Therefore, it is deduced that a nanotube, with
a much higher resonance frequency compared to a nanobeam, exhibits minimal acoustic
losses of 2×10−6, ascribed to the two order of magnitude smaller diameter of the nanotube
relative to the nanobeam.

Fig. 3.3(d) illustrates the aggregate dissipation in superfluid 4He for several nanotube
oscillators with varied resonant frequencies and intrinsic losses. These nanotube devices,
taken from Refs. [93, 98, 99, 23, 96], exhibit resonance frequencies of 30MHz, 40 kHz,
350MHz, 180MHz, 55.6MHz, respectively. For the device with the lowest resonant fre-
quency, acoustic losses are negligible (≈ 10−12) as indicated by the green line, where
ballistic damping predominates across the entire temperature range until intrinsic losses
prevail. Conversely, thermal excitation dynamics for devices with higher resonance fre-
quencies and significant internal losses (blue and cyan lines) are suppressed by acoustic
and internal losses, almost throughout the entire temperature range. However, nanotube
resonators with high-quality factors (≈ 105/106) and few megahertz oscillation frequen-
cies (30-60 MHz) demonstrate optimal sensitivity (red and black lines) in probing both
excitation-dynamics in superfluid 4He and acoustic emission from the oscillators. Hence,
a 1-micron-long vibrating nanotube with an exceptionally high-quality factor stands as a
potent probe for investigating distinct damping mechanisms observed in liquid helium.

Frequency Q Factor Length Diameter Publication
30 MHz 2× 105 1.1 µm 3nm Noury et al., 2019
40 kHz 2245 5 µm 3nm Tavernarakis et al., 2018
350 MHz 1× 105 0.8 µm 1.5 nm Huttel et al., 2009
180 MHz 6000 0.8 µm 5nm Wen et al., 2018
55.6 MHz 5× 106 1.5 µm 2nm Moser et al., 2014

Table 3.1: Parameters for different CNT resonators
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Figure 3.3: A comprehensive depiction of damping mechanisms impacting a nanotube
resonator submerged in superfluid 4He: (a) The temperature-dependent mean free path
of phonons and rotons in 4He [89], within the temperature range of 250mK to 3.5K. The
black dashed line indicates the temperature (1K) at which the mean free path of the
quasiparticles exceeds the dimensions of the nanotubes, marking the onset of the ballistic
regime. (b) Simulates the different damping mechanisms that affect a 1 µm-long nanotube
resonator using Eq. (3.9), Eq. (3.10), and Eq. (3.14), indicating that the intrinsic losses
are around the order of ≈ 10−7. (c) Mirrors the analysis in (b), but for a nanobeam
resonator, providing a comparative insight into the damping behavior between nanotube
and nanobeam resonators. (d) The overall dissipations for nanotube resonators with
different resonant frequencies and internal losses (see the Table 3.1 for parameters) offer
a broader perspective on how the resonant frequency and internal losses influence the
damping mechanics within the superfluid environment.

3.2.2 CNT resonators: studying multidimensional sound waves
in superfluid 4He

CNTs loaded with superfluid helium can function as quasi-one-dimensional capillary
tubes, enabling the detection of fourth sound. However, fourth sound is not exclusive

60



to 1D systems; it has also been observed in 2D and 3D systems when the superfluid com-
ponent moves independently of the clamped normal component, particularly in confined
geometries. This phenomenon is detected in 2D nanofluidic channels and 3D Helmholtz
resonators when the normal component is sufficiently suppressed and the superfluid com-
ponent is free to move [100, 101].

Additionally, due to the substrate potential of nanotubes, superfluid thin films can
form on their surface, enabling the measurement of 3rd and 5th sound in these two-
dimensional superfluid 4He films [93]. Immersing nanotube resonators in a helium bath
can also facilitate the probing of 2nd sound, a bulk superfluid phenomenon in 3D systems.

Beyond these longitudinal acoustic waves, a transverse sound wave can exist within
the normal component of superfluid helium, driven by the geometric characteristics of
the quantum fluid. A theoretical study by Tkachenko [102] suggests that superfluid he-
lium confined in a carbon nanotube is a promising system for detecting these transverse
oscillations in the normal component of 4He, governed by the equation:

Vn =
Vs

∂r ln
(

ρnf
SρH

) (1− e
∂r

(
ρnf (R−r)

SρH

))
, (3.17)

where Vn and Vs represent the velocities of the normal and superfluid components, respec-
tively, and S and R denote the nanotube surface area and radius.
In superfluid helium, the transverse sound waves arise from the differential motion between
the normal and superfluid components, as described by Landau’s two-fluid model[91]. This

model presents two distinct velocities: V⃗s for the superfluid component and V⃗n for the
normal component. Unlike conventional hydrodynamics, where only longitudinal sound
waves exist, in superfluid helium, the interaction between these two fluids gives rise to
transverse sound waves, where the normal component oscillates perpendicularly to the
direction of wave propagation.
The transverse sound propagation in superfluid helium confined within carbon nanotubes
introduces a fascinating intersection of quantum fluid dynamics and nanoscale geometry.
The cylindrical geometry and boundary conditions of the nanotube significantly influence
the transverse wave propagation. Furthermore, the confinement of helium within such
nanoscale systems alters the behavior of the normal and superfluid components, leading
to the emergence of unique sound modes.
Theoretical studies, such as those by Adamenko and colleagues [103], have demonstrated
that transverse sound can be observed in highly anisotropic systems like superfluid helium
confined in carbon nanotubes. Their work suggests that differential motion between the
normal and superfluid components creates the necessary conditions for transverse wave
propagation, further validating the potential for observing these oscillations in nanoscale
systems. This framework opens the possibility of experimental exploration of transverse
oscillations in superfluid helium, offering new avenues for understanding the quantum
fluid dynamics at the nanoscale.

Therefore, nanotube resonators present a novel avenue for investigating discrete damp-
ing mechanisms in superfluid 4He stemming from various sound waves. In conclusion, a
single vibrating nanotube could serve as a potent tool for detecting excitation dynam-
ics across one-, two-, and three-dimensional superfluid systems, marking a significant
advancement beyond the capabilities of current state-of-the-art nanomechanical probes.
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3.3 Summary

We simulate the behavior of nanotube resonators inside superfluid helium 4He, and real-
ize their potential as nanomechanical probes for investigating quantum phenomena. The
advantages of CNTs are highlighted, such as their high aspect ratio, impressive qual-
ity factor, and atomic resolution mass sensitivity. This chapter provides an analysis
of hydrodynamic losses when a CNT resonator is submerged in liquid helium, point-
ing to the apparent mass enhancement and resonant frequency decrease due to Stokes’
drag, along with a wide range of hydrodynamic damping over various frequencies and
temperatures. We then examined vibration damping, mainly attributed to thermal and
topological excitations within the superfluid 4He, revealing the wider ballistic damping
temperature range of CNTs compared to nanobeam resonators. Additionally, it sheds
light on significant quasiparticle scattering losses in CNTs because of their low effective
mass. Furthermore, the discussion extends to potential acoustic losses in CNT resonators,
with minimal losses because of their smaller diameter. Dissipation mechanisms in vari-
ous nanotube oscillators are presented, which indicates the optimal sensitivity in specific
frequency ranges for nanotube resonator to study superfluids. Furthermore, we discuss
the possibility to observe the transverse oscillation of superfluid inside CNTs, revealing
their potential as one-dimensional capillary tubes for detecting sound waves characteris-
tic of superfluid systems and discussing the unique behavior of superfluid helium under
nanoscale confinement. Through detailed theoretical models, the chapter elucidates the
interactions between CNT oscillators and the surrounding superfluid, which are crucial
for understanding and interpreting the experimental observations.
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Chapter 4: Nanotube growth and device char-
acterization at room tempera-
ture

This chapter explains how we fabricate and characterize the CNT devices, particularly
those with side gates in a transistor geometry and finger-gated pristine carbon nanotube
devices. Starting with the basic steps of substrate preparation to fabricate electrical con-
tacts, side-gates, and back-gate trenches, we navigate through the nanotube growth. We
also describe the procedure of locating nanotubes using the scanning electron microscope
(SEM) and discuss the challenges in developing metal stacks resilient to high-temperature
CNT growth. Furthermore, we emphasize the significance of room temperature probing,
offering insights into the potential performance of CNT devices in low-temperature envi-
ronments.

4.1 Nanotube growth

Nanotube synthesis was initially done at Edward’s previous lab in Oxford, specifically
for the side-gated devices, which we will discuss in the next section. However, we did
not continue using those devices for low-temperature measurements in both vacuum and
superfluid environments. For our main measurements, we utilized finger-gated pristine
nanotube devices grown in the Lancaster furnace.

Here is the Oxford furnace recipe:

• To grow nanotubes, start by flushing with Ar (2000 sccm), H2 (1000 sccm), and
CH4 (1000 sccm).

• Heat the chemical vapour deposition (CVD) [104] furnace from room temperature
to 950 ◦C using Ar at 200 sccm.

• Proceed with a 10-minute reduction using Ar (145 sccm) and H2 (25 sccm).

• The growth phase lasts 30 minutes, utilizing H2 (800 sccm) and CH4 at rates of
220 sccm for the first chip and 240 sccm for the second—the latter producing more
CNTs.

• After growth, conduct another 10-minute reduction with Ar (145 sccm) and H2 (25
sccm).

• Finally, cool down from 950 ◦C to room temperature using Ar at 200 sccm.
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4.1.1 Optimized nanotube recipe for Lancaster furnace

Our Lancaster CVD oven, capable of reaching 1200 ◦C, is equipped with a 26mm diam-
eter quartz tube. To enhance the control and reproducibility of the nanotube growth
process, we integrated digital mass flow controllers to precisely regulate gas flow rates.
Additionally, a gas handling system has been added to ensure both safety and stability
throughout the growth process.

In this setup, we place a chip containing predefined W/Pt electrodes (details in the
next section) inside the quartz tube. Here is the growth recipe for our on-chip ultra-clean
nanotube devices:

• Start by flushing with Ar (1000 sccm), H2 (1000 sccm), and CH4 (1000 sccm).

• Heat the CVD furnace from room temperature to 830 ◦C in Ar at 1000 sccm.

• The nanotubes are grown for 10 minutes at 830 ◦C in 520 sccm CH4 and 700 sccm
H2. Note: Initially, we conducted the growth at 900 ◦C. Subsequently, in each
growth run, we gradually reduced the temperature of the CVD furnace to achieve
a significant device yield without melting the electrodes.

• Cool down the furnace from 830 ◦C to 600 ◦C in Ar at 1000 sccm.

• Set the Ar flow rate to zero and open the furnace lid to speed up the cooling process.
This is crucial when the growth is being done at predefined metal electrodes to
prevent melting.

Through the optimization of various growth parameters, including catalyst composi-
tion, temperature, and gas flow rates, we have achieved a significant yield. Specifically, we
observe a yield greater than 70% of single-wall CNTs with on-chip growth method. This
CVD growth process is versatile, capable of producing CNTs on both flat SiO2 substrates
and predefined metal contacts and trenches.

Figure 4.1: Our new furnace installed at Lancaster in December 2021.
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4.2 Device fabrication

This section describes two fabrication methods. The first method involves side-gated nan-
otube devices, where nanotube growth is done in the initial steps and contact electrodes,
trenches, and side gates are fabricated in subsequent steps. The second method provides
finger-gated pristine devices, where nanotube growth occurs in the final fabrication step,
and contact electrodes, trenches, finger, and global gates are fabricated initially.

The main advantage of the first fabrication method is the flexibility it offers in choosing
metals for contact electrodes and gates. Since nanotube growth occurs early, there is no
risk of electrode melting in the CVD furnace. However, this approach is time-consuming
as it requires locating each nanotube in SEM (which may degrade nanotube quality) and
aligning each SEM image in AutoCAD, as described in the next sections.

Conversely, our on-chip fabrication method restricts metal choice to high melting
point metals to withstand the high temperatures during CVD growth. Nevertheless, this
method yields pristine quality nanotube devices with significantly less effort.

4.2.1 Side-gated carbon nanotube devices

Here we describe the steps involved in the fabrication of nanotube resonators with side
gates in the transistor geometry. This recipe is adapted from [105, 106] with some modi-
fications.

Substrate preparation

Clean a Si/SiO2 wafer using acetone, isopropyl alcohol, and deionized water. Dry with a
nitrogen blower.

Alignment markers

Use electron beam lithography (EBL) to pattern markers on the substrate. Deposit a
Cr/Au (5 nm/25 nm) layer using thermal evaporation as a reference for EBL and pho-
tolithography (PL) alignment.

Catalyst pads and deposition

Then spin coat a double-layer of e-beam resist (MMA-EL6 and PMMA-A2) onto the
substrate. The recipe is as follows:

• Spin MMA at 2000 rpm for 60 seconds.

• Bake for 3 minutes at 200 ◦C.

• Spin PMMA at 7000 rpm for 60 seconds.

• Bake for 3 minutes at 200 ◦C.

After that, pattern 2 × 2 µm2 squares using EBL for catalyst pads. Prepare a catalyst
mixture of 25mg Fe(NO3)3 · 9H2O, 5.65mg MoO2(acac)2, and 18.75mg alumina nanopar-
ticles in 50mL methanol. Apply using a PMMA mask and bake for 10 minutes at 150 ◦C.

To ensure precise catalyst placement and minimize unintended spread on SiO2 surfaces,
a two-step lift-off process is essential. First, quickly immerse the sample in warm acetone
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with a sonicator. Then, move the wet sample to another acetone beaker and leave it for
5 minutes. After that, nanotube growth is done as described in Sec. 4.1.

4.2.1.1 Locating nanotubes via SEM

We employ the SEM for identifying nanotube positions. However, prolonged exposure
to SEM can degrade the quality of nanotubes. The high-energy secondary electrons
produced during SEM scans can displace or knock out electrons from the carbon atoms
in the nanotube lattice, leading to defects. These defects can result in poor electrical
conductivity or, in severe cases, a complete loss of conductance in the nanotubes.

Secondary electron interactions may also trigger chemical reactions, particularly in
the presence of residual gases such as water vapor or oxygen in the SEM chamber. These
reactions can etch the nanotube structure, especially the outer shells, as shown by Mølhave
et al. [107]. This damage can alter the carbon-carbon bonds, leading to disordered
structures that scatter charge carriers, significantly impacting the nanotube’s electronic
properties.

Figure 4.2: (a)-(c) Imaging CNTs in SEM to align and write the contact electrodes. (d)
Final side-gated suspended CNT device after CPD drying.

To minimize these effects during SEM imaging:

• Use the In-Lens detector with a voltage between 3 kV to 5 kV, as lower voltage
reduces the likelihood of damaging the nanotubes.

• Keep the working distance at approximately 10mm to maintain a good resolution
without excessive electron bombardment.
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• Minimize time spent at high magnification directly on the nanotubes. Instead, first
focus and adjust on an alignment mark in the device area, then capture an image
covering all corner alignment marks.

Image at a resolution of 100µm and use frame averaging to check for stage drift. Post-
imaging, import the image into AutoCAD and align the software pattern with the image.
This method reliably yielded an alignment precision of about 100 nm within our 100µm
scans, enabling accurate targeting of nanotubes while minimizing exposure to damaging
electron beams.

For device integration, we prefer straight, elongated nanotubes, prioritizing straight-
ness to ensure optimal device performance.

Contact electrodes and side gates with EBL

Clean the nanotube chip using standard solvents, avoiding sonication to preserve nan-
otubes on the substrate. Prepare PMMA (A2) and bake for 3 minutes. For nanofabrica-
tion with the Raith EBPB5200, use a beam current of 100 pA, wafer size of 2 inch, dot
count of 100× 106, and a dwell time of 10 ns for small features.

Develop by immersing the sample in a 1:3 MIBK to IPA solution for 60 seconds. Rinse
with IPA and dry with nitrogen. This enhances contrast between exposed and unexposed
areas. After that, deposit 5 nm/25 nm of Cr/Au using thermal evaporation.

Bondpads with PL

Spin-coat double-layer photoresist on the substrate. The recipe is as follows:

• Spin LOR-3A at 4000 rpm for 60 seconds.

• Bake for 5 minutes at 180 ◦C.

• Spin S1813 at 4000 rpm for 60 seconds.

• Bake for 2 minutes at 115 ◦C.

Then, pattern using photolithography with 2.6 seconds soft contact. Deposit a Cr/Au
(10 nm/80 nm) layer using thermal evaporation.

4.2.1.2 Nanotube trenches with HF etching and CPD

To create suspended carbon nanotube devices, the substrate between the electrodes is
etched, ensuring the nanotube remains free from liquid-gas interfaces through critical
point drying (CPD). E-beam resist layers EL6 and PMMA are applied, and 2 × 5 µm2

rectangles are patterned using EBL between the electrodes to define etching areas. For
Si/SiO2 substrates, a diluted (10:1) buffered hydrofluoric acid (BHF) is the etchant of
choice, with etching guided by an EBL-patterned resist mask. We left the sample for
21 minutes to etch away 1.2 µm thick oxide layer. After BHF etching, the hydrophobic
sample is kept submerged during transition from BHF to water rinse and methanol CPD
to prevent water bead damage.

To ensure continuous immersion of the samples in a liquid medium until reaching the
critical point during flushing, it is essential to maintain a consistent level of CO2 in the
CPD chamber. Additionally, for effective prevention of dust or impurities adhering to the
sample during the drying process, it is recommended to position the chip upside down.
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4.2.2 Finger-gated pristine carbon nanotube devices

This method outlines the process for fabricating back-gate and local finger-gate devices. In
this approach, the nanotube growth is performed as the final step, resulting in ’as-grown’
pristine nanotube devices.

4.2.2.1 Metal stacks for high temperature CNT growth

To fabricate suspended devices that incorporate on-chip CNT growth in the final step, we
developed a method for creating metal stacks that can withstand the high temperatures
of CVD used for nanotube synthesis. Achieving this compatibility is crucial, given the in-
herent challenges. Many metal combinations tend to form eutectic alloys, which results in
the entire stack having a melting point lower than that of its individual components[108].
Moreover, certain metals might inadvertently promote nanotube growth during the CVD
process. We illustrate these phenomena with four distinct cases in Figure 4.3.

Specifically, when we introduced a thin layer of titanium (Ti) of 5 nm into the stack, it
caused platinum (Pt) to melt and agglomerate, as shown in Figure 4.3(a). Incorporating
a significant 20 nm layer of chromium (Cr) caused the material to permeate through both
the chromium and platinum layers, as depicted in Figure 4.3(b). Interestingly, a thicker
layer of tungsten (W) at 60 nm gave rise to an unusual nanowire formation, as presented in
Figure 4.3(c). However, a combination of 40 nm of W and 160 nm of Pt proved to be more
effective than the other stacks. A minor issue of melting was observed at 900 ◦C (Figure
4.3(d)), which was subsequently addressed by moderating the growth temperature.

The following fabrication steps are involved in preparing the ultra-clean nanotube
devices:

Substrate cleaning

Prepare a Si/SiO2 wafer using acetone, isopropyl alcohol, and deionized water. Dry with
a nitrogen blower.

Alignment markers

Once the wafer is clean, E-beam lithography (EBL) is used to pattern the markers on
the substrate. Then, a layer of W/Pt (5 nm/25 nm) is deposited onto the substrate using
E-beam evaporation as a reference for EBL and PL alignment layers.

Back-gate with PL and HF etching

A double-layer of photoresist is spin-coated onto the substrate and 2×5 µm2 rectangles are
patterned using the PL to create the back-gate contacts. Employ wet etching with HF to
etch back-gate contacts into the substrate. Again, the etchant is a diluted (10:1) solution
of BHF. Once the oxide layer is etched away, deposit another W/Pt layer (40 nm/160 nm)
to wire-bond the back-gate from the upside of the substrate.
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Figure 4.3: Illustration of various metal stacks’ behavior under high-temperature CVD. (a)
5 nm/25 nm Ti/Pt: 5 nm Ti causing Pt agglomeration, (b) 20 nm/150 nm Cr/Pt: 20 nm
Cr permeating through Cr and Pt layers, (c) 60 nm/160 nm W/Pt: 60 nm W leading to
nanowire formation, and (d) 40 nm/160 nm W/Pt: This shows a slight melting at 900 ◦C.

Finger gates with EBL

Apply PMMA electron-beam resist to the wafer and then expose the resist to an electron
beam to pattern desired structures. Develop the resist to reveal the patterns. Finally,
deposit a W/Pt layer (5 nm/20 nm) through sputtering.

Contact Electrodes with EBL

To fabricate the contact electrodes, first spin-coat the EBL resist and pattern the elec-
trodes using a beam current of 100 pA. After developing the resist, deposit the contact
metals for the CNTs.

It is standard practice to use tungsten (W) and platinum (Pt) as contact metals for
as-grown carbon nanotubes, due to their favorable properties in such applications [109,
106]. The goal here is to avoid the need for substrate etching, which can be achieved by
depositing thicker layers of W and Pt. However, this approach has a notable drawback:
thicker metal layers are less durable when exposed to high temperatures during nanotube
growth.
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A practical solution is to reduce the operating temperature in the furnace from 900 ◦C
to 830 ◦C. This reduction allows the use of thinner metal layers, which in turn promotes
smoother nanotube growth while maintaining the desired trench aspect ratio. Addition-
ally, operating at a lower temperature mitigates the issue of excessive multi-walled nan-
otube growth, which can occur with thicker W layers. Such growth, when the nanotubes
exceed the spacing between contacts, often leads to electrical shorts.

Through extensive testing, a W layer thickness of 40 nm was found to be optimal.
This thickness stabilizes the Pt layer without significantly increasing the occurrence of
unwanted multi-walled nanotubes.

Bond pads with PL

In order to write the bond pads for wire-bonding the devices, spin-coat double-layer
photoresist on the substrate as per the previously mentioned recipe. After patterning the
design, a fourth layer of W/Pt (40 nm/160 nm) is then deposited onto the substrate using
sputtering.

Figure 4.4: An optical image of the silicon chip with bond pads and nanotube contact
electrodes.

Catalyst pads with EBL

Another layer of PMMA resist is spin-coated onto the substrate and 4 × 4 µm2 squares
are patterned using EBL on top of the W/Pt source and drain electrodes.

Catalyst deposition and nanotube growth

We have slightly modified the recipe for the nanotube catalyst, which is adapted from
Ref. [104].

Catalyst compositions:

• 20.2mg of Fe(NO3)3 · 9H2O

• 4.89mg of MoO2(acac)2
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• 15mg of Al2O3 nanoparticles

• 15mL of H2O, as suggested in [106]

Procedure:

• Stir the mixture for more than 3 hours.

• Sonicate for 1 hour. The resulting mixture should be deep orange or red in color.

• Develop the desired pattern.

• Apply the catalyst to the pattern.

• Blow off the excess using N2.

• Spray the chip with an acetone bottle. Ensure not to spray into this bottle.

• Immerse in acetone for 20 minutes.

• Rinse with IPA.

• Nanotube growth can be done either immediately or later using the recipe described
in subsection 4.1.1.

Figure 4.5: An SEM image of a CNT device with on-chip and a nanotube in the inset.
This image illustrates a carbon nanotube suspended across three W/Pt contacts, with Pt
positioned on top. This configuration serves the purpose of creating one back-gated and
the other with local multiple quantum dot devices, either utilizing the same nanotube or
different ones depending on the natural growth. The central square area is composed of
Fe/Mo catalyst particles on top of the contact electrodes.
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4.3 Room temperature probing

Not all types of CNT devices are suitable for low-temperature measurements. After the
growth, CNTs are evaluated at room temperature using our probestation[110]. This initial
assessment is crucial for several reasons:

• It aids in estimating the band gap and the contact resistance of the nanotubes.

• A preliminary understanding of whether a CNT behaves like a metal with a tiny
electrical gap or a semiconductor can be established.

• The connectivity quality between the CNT and the metal contacts can be discerned.

• And also important: most devices do not have a nanotube between the electrodes
at all.

The behavior of a CNT device at room temperature can provide insights into its per-
formance at very low temperatures, although making precise predictions based on these
initial tests can be challenging. Devices displaying smooth transistor-like characteristics,
efficient electrical flow, and specific measurement near zero gate voltage during these tests
are often indicative of their good performance at very low temperatures.

It is noteworthy that nanotubes with smaller band gaps are preferred for few-electron
quantum dots, showing conductance 8µAV−1 at room temperature. In contrast, nan-
otubes with larger band gaps require a conductance level greater than this to ensure a
measurable current near the band gap.

For a visual understanding, refer to Figure 4.6 for typical bias and back-gate sweeps.
In particular, Figure 4.6(b) highlights the behavior of a nanotube with a small band gap.

Figure 4.6: (a) Our automatic probestation picture while scanning a CNT chip. (b) Room
temperature measurement post nanotube growth, aiding in the selection of ideal devices
for low temperature evaluations.

4.4 Summary

This chapter discusses the fabrication, characterization, and initial evaluation of our CNT
devices with a focus on side-gated and finger-gated configurations.
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Device Fabrication:

Fabrication methods discussed include side-gated and finger-gated devices. The former
offers flexibility in metal choice but requires time-consuming SEM alignment. The latter
restricts metal choice due to CVD growth temperatures but yields pristine devices with
less effort.

Nanotube Growth:

We initially experimented with nanotube synthesis at Edward’s previous lab in Oxford,
utilizing side-gated devices. However, for our main measurements, we switched to finger-
gated pristine nanotube devices grown in the Lancaster furnace. We detail the growth
recipes for both the Oxford and Lancaster setups, optimizing parameters such as gas flow
rates and temperatures to achieve significant yield (with up to 70% of the time a nanotube
is found between the contact electrodes) and high-quality nanotubes.

Room Temperature Probing:

Room temperature probing is conducted post-growth to evaluate device characteristics
such as band gap, contact resistance, and electrical flow. Devices displaying transistor-
like behavior and efficient electrical flow are preferred for subsequent low-temperature
measurements.
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Chapter 5: 4He cell design and measurement
setup

This chapter discusses the design and construction of a specialized 4He cell, specifically
made for submerging nanotubes in superfluid 4He. We also made a 4He gas handling
system to integrate with the Triton dilution refrigerator. We further elucidate the mea-
surement techniques used, including the capacitive driving approach for actuating the
nanotube motion and the frequency modulation method for resonance detection. Overall,
this chapter aims to provide readers with a thorough understanding of the experimental
setup, underlining its design logic and operational aspects.

5.1 4He cell design

The design of a specialized experimental cell ensures the immersion of carbon nanotubes
in superfluid 4He. This cell is designed to be superleak-tight and customized to the
unique requirements of this experiment. The cell comprises a bottom flange integrated
with feedthroughs, a top flange housing capillaries and a cooling sinter, and a clamp that
securely joins the two flanges.

Figure 5.1: The 4He cell assembly illustrating hermetic DC and RF electrical feedthroughs.
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5.1.1 Bottom flange

The bottom flange, with a diameter of 27mm, serves as the foundation of the helium cell.
It houses the electrical feedthroughs, provides a mount for the PCB, and incorporates a
space for an indium seal to ensure leak-proof integrity.

5.1.1.1 RF feedthroughs

The bottom flange contains six custom-made RF feedthroughs arranged in a circular
pattern. The creation of these feedthroughs involves soldering two MMCX connectors
back-to-back. The void between the connectors is then sealed using a two-step Clear
Stycast process, ensuring a hermetic connection [111]. This construction is robust, and
their fabrication is relatively quick compared to other components.
The feedthroughs are specified by the manufacturer to perform up to 6GHz. In our
experimental setup, we have used them to successfully transmit signals in the 500MHz
range. Furthermore, the feedthroughs have undergone thermal cycling three times without
any observable leaks or degradation in performance. This indicates their reliability in
cryogenic conditions and their suitability for repeated use.

5.1.1.2 DC feedthroughs

The central feature of the bottom flange is a DC feedthrough that offers 24 DC connec-
tions. Given the cell’s compact design, utilizing a D-sub connector was not feasible. Mean-
while, Nano-D connectors, although suitable, are quite expensive and have extended lead
times. Consequently, we opted for USB-C connectors due to their accessibility, smaller
size, and cost-effectiveness relative to Nano-D connectors.
Constructing feedthroughs using USB-C connectors was challenging due to the precision
required in soldering. The small connector pins necessitated the use of a microscope for
accuracy. However, with experience and improved techniques, the soldering became more
efficient and simpler to execute.

After several attempts, we successfully soldered several USB-C pairs. To ensure their
hermetic nature, we again employed a two-step Stycast process. Subsequent testing within
a glass cryostat at 1.5K in superfluid 4He validated their superleak-tight properties, mark-
ing their use as hermetic connectors.

5.1.1.3 Hermetic sealing

Hermetic sealing with Stycast involves a careful process to ensure a reliable seal. Initially,
clear Stycast 1266 is prepared by mixing 2 g of epoxy resin with 21 drops of catalyst. The
mixture is then degassed to eliminate air bubbles, typically achieved by vacuum pumping.

Once properly prepared, the Stycast is carefully applied to cover the pins of back-to-
back soldered USB-C and MMCX connectors (see Fig. 5.2(a) and (b)) to create electrical
hermetic feedthroughs. After curing the Stycast on these feedthroughs, they are mounted
onto the bottom flange and again glued with Stycast, as shown in Fig. 5.2(e).

5.1.1.4 PCB integration and indium seal

The inner (helium) side of the bottom flange accommodates a PCB for the CNT chip,
ensuring effective interfacing with the feedthroughs on the bottom flange (see Fig. 5.2(c)).
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Additionally, a ring structure is incorporated along the edge of this bottom flange to place
a thin indium wire (0.5mm), taking advantage of indium’s excellent sealing properties at
cryogenic temperatures [112].

Figure 5.2: (a) DC feedthrough created with 24 lines by soldering the pins of two USB-Cs.
(b) RF feedthrough made by joining two MMCX connectors. (c) The nanotube PCB with
6 MMCX connectors and a central USB-C for interfacing with the bottom flange. This
allows the electrical drive and measurement of CNT motion in a superfluid bath. (d) An
adaptor designed to link a 51-way D-sub connector inside the Triton fridge to the USB-C
connector on the bottom flange exterior. (e) Bottom flange with RF and DC feedthroughs
glued with Stycast.

5.1.2 Top flange

The top flange encapsulates the cell and is fitted with capillaries for helium introduction
and a sinter for gas cooling.

5.1.2.1 Sinter

The top flange incorporates a sinter, a key component for cooling the helium gas within
the cell. This sinter is connected to two silver wires emerging from the upper section of
the top flange and is thermally anchored to the mixing chamber plate for effective cooling.

To fabricate this sinter:

1. Two silver wires were spot-welded onto a thin, circular silver plate, as shown in
Fig. 5.3(a).

2. The assembly was annealed at 1000 ◦C in a controlled air environment for 10 hours.
This process purifies the assembly and minimizes Kapitza resistance [113].

3. 3 g of silver powder was evenly distributed on both sides of the silver plate to achieve
a 50% packing fraction.

4. The assembly underwent a compression force of approximately 2 tons.

5. To solidify the structure while ensuring it remained porous enough for superfluid
passage, the sinter was heated on a hot plate at 70 ◦C in a nitrogen atmosphere for
20 minutes.
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Figure 5.3: (a) A thin circular silver plate with two point-welded silver wires. (b) The
completed sinter, after silver powder application and heat treatment in a nitrogen atmo-
sphere.

5.1.2.2 Capillaries and a clamp

Two capillaries on the top flange connect to the refrigerator’s fill lines, which are made
of thick-walled Cu–Ni tubes, allowing 4He injection into the cell.
The cell’s integrity is maintained by a clamp that joins the top and bottom flanges.
This clamp applies pressure on the indium through eight screws on its top, ensuring a
superleak-tight seal between the top and bottom flanges.

5.2 PCB design and electronics for nanotube me-

chanics

The printed circuit board (PCB) designed for CNT mechanics is optimized for com-
pactness and efficiency. It allows the measurement of up to five devices simultaneously
using the DC detection technique and three devices when employing the RF measurement
scheme.

This PCB incorporates two 24-pin USB-C connectors. One serves the purpose of
providing the DC signal to the nanotube, while the other ensures grounding of the CNT
during the wirebonding process. Additionally, the board contains six MMCX connectors,
designated for supplying the RF signal to actuate the CNT motion. Notably, half of these
RF connections are integrated with bias-tees on the PCB. This allows for the simultaneous
application of both DC and RF gate signals to a single nanotube electrode, each being
applied from a separate source.
Furthermore, the PCB is equipped with three impedance matching tank circuits, aimed at
mitigating parasitic capacitances and enhancing the sensitivity of the nanotube signals.
For an in-depth understanding of these circuits, refer to [114]. However, the results
presented in this thesis only employ the DC detection technique, bypassing the use of the
tank circuit. Hence, these circuits are not elaborated upon in this context.
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Figure 5.4: (a) The top layer of the CNT PCB, highlighting the integrated bias-tees
footprint alongside the chip space with bonding pads. (b) The bottom layer of the CNT
PCB, showing the 24-pin USB-C connector and RF MMCX connector footprints.

5.2.1 Grounding and wirebonding of CNT resonators

Suspended CNT devices present unique challenges during handling and wirebonding due
to their mechanical and electrical fragility. It is essential to ensure that both the CNT
resonator and the handler are continuously grounded to prevent potential damage.

During the wirebonding process, multiple devices can be bonded onto a single PCB.
However, if the PCB pad connections or the wirebonder stage lack proper grounding, the
majority of these devices may fail post-bonding. To address this, we developed a USB-C
adapter in which all 24 pins are interconnected using a single copper wire, as depicted
in Fig. 5.5(b). This adapter plugs into a female USB-C port on the bottom side of
the PCB. The copper wire then establishes a connection to the primary ground via the
wirebonder stage. This arrangement, shown in Fig. 5.5(a), is concealed between the PCB
and its holder, making it invisible to the observer. To further ensure the efficiency of the
wirebonding process, we minimized the placement of electrical components on the PCB’s
top layer, leaving only the nanotube chip. This prevents the bonder tip from becoming
trapped, which could complicate the wirebonding process.
Despite adequate electrical grounding, some devices may not exhibit any current post-
bonding, especially if more than two bonding attempts are made on the same CNT.
This suggests that mechanical vibrations, possibly from the ultrasonic waves used during
wirebonding, can degrade the contact between the CNT and the Pt electrodes. This
degradation can increase the electrical resistance to the point where it becomes challenging
to measure any current. Therefore, successful wirebonding of CNT devices hinges on both
a robust grounding setup and sufficient hands-on practice prior to working on the main
chip.
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Figure 5.5: (a) Representation of the CNT chip and PCB placed on a holder during
the wirebonding process, highlighting the grounding set-up. (b) The USB-C connector,
shorted to ensure consistent grounding of all the bonding pads on the PCB, aiding in the
protection and efficiency of the wirebonding procedure for delicate CNT devices.

5.3 Fill lines and 4He gas handling panel integration

in Triton dilution refrigerator

Efficient management of 4He gas is critical for sustaining a superfluid environment within
the experimental cell [115]. In this section, we detail the design and function of the fill lines
and the 4He gas handling system, both incorporated into our Triton dilution refrigerator.

The fill lines are essential as they introduce 4He gas into the cell, while also providing
precise control over its pressure and volume. Additionally, the 4He gas handling system
is designed to ensure the purity and stability of the gas environment.

5.3.1 Cu–Ni tubes for 4He gas filling

For effective 4He gas filling, we integrated two thick-walled capillary lines, each 1mm in
outer diameter and 0.65mm inner diameter, extending from the dilution refrigerator’s top
plate (see the inset of Fig. 5.8) at room temperature down to the mixing chamber plate
at 7mK. The following details the steps involved in this process:
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Figure 5.6: Helium cell mounted below the MC plate inside the Triton fridge and con-
nected to the filling lines through a tee-junction.

Figure 5.7: (a) This illustrates an individual sinter assembly designed to thermalize each
temperature stage of the fridge. (b) The sinter process involves pressing silver powder
under two tons of pressure inside the sinter assembly, forming a semi-solid heat exchanger
with micropores. (c) Here is a damaged sinter, detached from the copper cylinder walls
due to excessive heating during soldering. (d) This depicts the final leak-tight insert,
ready for fridge installation, after soldering the Cu–Ni tubes to the sinter assembly for
the five different temperature stages of the cryostat.

• The initial step involves creating an efficient sinter design as depicted in Fig. 5.7(a).
The central portion of the sinter, filled with semi-solid silver powder, is constructed

80



from copper to optimize thermal transfer between the hot helium gas and the dilu-
tion refrigerator’s cold plates. The end caps, made of brass, allow for easier soldering
to the Cu–Ni tubes, ensuring the silver sinter remains intact.

• For the creation of the silver sinters, we begin by calculating the required silver
powder quantity for a 50% packing fraction (taken from the current recipe in our lab)
within the copper cylinder. The mass m of the silver powder needed is determined
by m = ρ × V , where ρ = 10.47 g/cm3 represents silver’s density and V is the
cylinder’s volume. Given a cylinder height h = 9mm and base diameter d = 8mm.
The mass of the required silver is then:

m = ρ× π

(
d

2

)2

× h× packing fraction = 2.37 g (5.1)

• With 2.37 g of silver powder loaded into the copper cylinder which is then placed
in a pressing machine, as depicted in Fig. 5.7(b), and subjected to approximately
2 tons of pressure. We optimize the recipe to ensure the silver remains semi-solid
without disintegrating back into the powder.

• Subsequently, the assembled sinter is heated on a hot plate at 70 ◦C in a nitrogen
atmosphere for 20 minutes. Upon cooling, the sinter should adhere to the copper
cylinder’s inner walls without any powder residue.

• The next step is to flame-solder the brass caps to both ends of the copper cylinder.
Care is taken to prevent overheating of the copper, as this could compromise the
sinter’s integrity. We produce multiple sinters to account for potential damage
during the soldering process. Leak tests are performed after soldering each joint to
ensure leak-tightness before installation into the cryostat. For the leak testing of
individual sinters, we use an adapter to connect the sinter assembly directly to the
leak detector.

• Finally, Cu–Ni tubes are soldered atop the brass caps. After each soldering step,
leak tests are performed to guarantee the integrity of each joint. The completed
two fill lines, suitable for all five temperature stages of the refrigerator, are shown
in Fig. 5.7(d) and ready for mounting inside the fridge.

5.3.2 Gas handling system

The 4He gas handling system, depicted in Fig. 5.8, comprises five inlets: a helium gas
injection line, two inlets associated with liquid nitrogen traps, a pumping line, and an
inlet for a pressure bomb. The system utilizes Swagelok connectors with the exception
of the stainless steel valves, bought from Parker. A quarter-inch diameter tube has been
implemented both on the panel and outside the fridge, allowing faster pumping speeds.
After tightening each Swagelok joint, leak tests are conducted to check for potential leaks.

Two channels extend from the panel to the fridge’s top, connecting to the Cu-Ni tube
lines within the fridge via feedthroughs on its top plate (inset in Fig. 5.8). Both lines
on the panel are equipped with a separate pressure gauge to monitor the pressure. A
bypass valve is placed between the traps, enabling system operation without engaging the
nitrogen traps, especially when utilizing purified helium directly from the dewar.
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Figure 5.8: 4He gas handling panel connected to the fridge’s top plate through two quarter-
inch tubes, as shown in inset. The inset shows the feedthrough on the fridge’s room
temperature top plate connects the gas handling system lines to the Cu–Ni gas lines
within the fridge.

To slowly fill the 4He gas into the experimental cell, starting from the 4He inlet line on the
panel at room temperature and down to the mixing chamber plate at 7mK, we use the
first capillary while keeping the second capillary closed. These capillaries are connected at
a tee-junction below the mixing chamber and lead to the cell, which contains a nanotube
chip. Typically, we introduce 4He through the N2 traps by closing the bypass to reduce the
risk of any impurities that helium might contain. However, although we have a bomb for
filling helium at high pressures, we are not pressurizing the helium in the measurements
presented in this thesis. Thus, we fill the cell at atmospheric pressure and do not utilize
the bomb at this time.
While filling the cell through the first filling line, we monitor the pressure gauge of the
second filling line. We ensure the cell is full when the pressure in the second pressure
gauge matches the atmospheric pressure indicated on the first gauge.

5.4 Measurement schemes

This section describes how we actuate and detect the tiny vibrations of a nanotube res-
onator in the millikelvin regime.

5.4.1 Actuating the mechanical motion

To initiate the motion of the nanotube, we utilize a capacitive driving scheme. In this
approach, a voltage given by

Vg = V DC
g + Ṽg cos(ωt)
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is applied to one of the gates located beneath the nanotube, as shown in Fig. 5.9. As
a result, an additional charge, q = VgCg, is induced on the nanotube, which is equal in
magnitude (in an ideal case when there are no parasitic capacitances) and opposite in sign
to the charge on the gate. The attraction between these charges exerts an electrostatic
force on the nanotube. This force is represented by:

Fel =
1

2

dCg

dx
V 2
g (5.2)

=
1

2

dCg

dx

(
V DC
g + Ṽg cos(ωt)

)2
(5.3)

=
1

2

dCg

dx

((
V DC
g

)2
+ 2V DC

g Ṽg cos(ωt) + Ṽg
2
cos2(ωt)

)
(5.4)

For small values of Ṽg (the AC component), the term Ṽg
2
becomes very small and can

be ignored. Therefore, the electrostatic force simplifies to:

Fel ≈
1

2

dCg

dx

((
V DC
g

)2
+ 2V DC

g Ṽg cos(ωt)
)

This results in two terms:

• A DC term,
(
V DC
g

)2
, which modulates the tension in the nanotube.

• An AC term, 2V DC
g Ṽg cos(ωt), which drives the nanotube’s oscillation.

Here, Cg represents the gate capacitance, and x is the distance between the nanotube and
the gate electrode.

The conductance of the nanotube, G, depends on the induced charge q, which means
any change in the charge q̃ leads to a modulation in the nanotube conductance:

G̃ =
dG

dq
q̃

The variation in induced charge q̃ is given by:

q̃ = C̃g(ω)V
DC
g + CgṼg

Therefore, any variation in the gate voltage Vg or the capacitance Cg changes the
conductance G. At the resonance frequency, this conductance undergoes changes due to
the nanotube’s displacement, which modulates the gate capacitance Cg. On the other
hand, the gate voltage Vg can also modulate G at any driving frequency.

5.4.2 Detecting the mechanical motion

To detect vibrations of the nanotube through conductance modulation, we use a frequency
modulation (FM) technique, as outlined in Ref. [116, 117]. This method involves operating
a nanotube resonator as a single-electron transistor (SET). By applying a radio-frequency
(RF) voltage to the gate, we control electron tunneling at the source and drain electrodes.
The SET configuration allows us to closely monitor the conductance, which is directly
linked to the nanotube’s displacement. This displacement, and thus any conductance
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changes, are detected by measuring the DC or AC current flowing through the nanotube
while applying a constant DC bias across the source and drain contacts.

The schematic in Fig. 5.9 illustrates the simplified yet comprehensive FM setup we em-
ploy in our measurement to determine the resonance frequencies of a CNT resonator. In
this setup, the frequency f is modulated at 79Hz with an amplitude of about 10 kHz. Fluc-
tuations in current are monitored through a synchronized lock-in amplifier. A prominent
peak in the lock-in response, which is proportional to the derivative of the time-averaged
current through the nanotube, indicates that the system has reached resonance.

When a nanotube’s motion is activated by applying a radio frequency signal with
angular frequency ω and amplitude δVg to the back gate, the resonances are detected in
direct current due to a mixing effect. When the gate voltage oscillates as

δVg(t) = δVg cos(ωt),

it induces vibrations in the nanotube. These vibrations are described by:

δu(t) = δu0 cos(ωt+ ϕM),

where u(t) is the displacement of the nanotube, δu0 is the vibrational amplitude, t is time,
and ϕM is the phase change between the applied force and the resulting motion.

Accompanying these vibrations, an oscillation occurs in the source-drain voltage Vsd(t)
due to capacitive coupling between the leads and the nanotube. This oscillation is ex-
pressed as:

δVsd(t) = δVsd cos(ωt+ ϕC),

where δVsd is the amplitude, and ϕC is the phase induced by capacitive coupling. These
terms reflect synchronized changes in the electrostatic environment with the frequency of
the applied gate voltage.

The conductance of the nanotube, G(Vg, u), depends on both the source-drain and
gate voltages, as well as the displacement of the nanotube. For small variations in the
driving voltages, we approximate the conductance using a linear expansion as follows:

G(Vg(t), u(t)) ≈ G0 +

(
∂G

∂Vg

)
δVg(t) +

(
∂G

∂u

)
δu(t)

Here, G0 represents the conductance in the absence of variation, while the terms ∂G
∂Vg

and ∂G
∂u

capture the rate of change of conductance with respect to the gate voltage and
displacement, respectively.

The time-averaged current through the device is then expressed as:

I = ⟨G(t)Vsd(t)⟩

Substituting the expression for G(t) into this equation, we obtain:

I = ⟨
(
G0 +

∂G

∂Vg
δVg(t) +

∂G

∂u
δu(t)

)
Vsd(t)⟩
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Figure 5.9: Schematic of the frequency modulation technique employed to actuate and
detect the motion of a suspended CNT.

Breaking this down:

• The first term gives G0V
DC
sd , representing the DC current.

• The second term gives the contribution due to gate voltage variation, expressed as:

δVsd
2

∂G

∂Vg
δVg cos(ϕC)

• The third term represents the contribution from the nanotube’s displacement:

δVsd
2

∂G

∂u
δu0 cos(ϕC − ϕM)

Thus, the resulting average current through the device is given by:

I = G0V
DC
sd +

δVsd
2

(
∂G

∂Vg
δVg cos(ϕC) +

∂G

∂u
δu0 cos(ϕC − ϕM)

)
(5.5)

5.4.2.1 Resonance signal and quality factor Q

To extract the quality factor Q, we analyze the derivative of the current, dI
df
, with respect

to frequency. Resonant peaks in dI
df

are highly sensitive to the mechanical properties of
the nanotube, and the sharpness of these peaks is directly related to the quality factor Q.
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The current I(f) depends on both the displacement δu0 of the nanotube and the
frequency f . We assume the frequency dependence of I primarily enters through δu0 and
the phase ϕM. Differentiating the current with respect to frequency gives:

dI

df
=
δVsd
2

∂G

∂u

d

df
[δu0 cos(ϕC − ϕM)] (5.6)

Since the nanotube exhibits simple harmonic motion, we describe the instantaneous
displacement as:

δu(t) = Re
{
δu0e

i2πft
}

where δu0 = δu0e
iϕM is the complex amplitude of motion. Substituting this into the

derivative of the current, we get:

dI

df
=
δVsd
2

∂G

∂u

d

df

[
Re
{
δu0e

−iϕM
}]

(5.7)

For a driven harmonic oscillator, the displacement amplitude δu0 near resonance is
given by the standard Lorentzian formula:

δu0 ∝
1

f 2
res − f 2 + ifresf

Q

(5.8)

where fres is the resonance frequency, and Q is the quality factor. Near resonance, the
displacement δu0 changes rapidly as a function of frequency, leading to a corresponding
peak in dI

df
.

Taking the absolute value of the displacement and substituting into the expression for
dI
df
, we obtain:

dI

df
= A

∣∣∣∣∣ ddf
(
Re

{
e−iϕC

f 2
res − f 2 + ifresf

Q

})∣∣∣∣∣+B (5.9)

where A is a scaling factor related to the source-drain voltage δVsd and B accounts
for the background signal. This equation is used to fit the experimental data, and by
determining the full width at half maximum (FWHM) of the resonance curve, we can
extract the quality factor Q using the relation:

Q =
fres
∆f

(5.10)

where ∆f is the full width of the resonance peak at half maximum. Higher values
of Q correspond to sharper resonance peaks and indicate lower energy dissipation in the
system.

The mechanical resonances detected using this frequency modulation method can be
clearly seen in the lock-in amplifier response. These sharp peaks in dI

df
, which we extract

by fitting the data to Eq. 5.9, are proportional to the quality factor Q and allow for
accurate determination of both fres and Q.

The mechanical nature of these resonances is further confirmed by their dependence
on the DC gate voltage, as we discuss in Chapter 6.
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Chapter 6: Characterisation of a nanotube
resonator in vacuum

In this chapter, we characterize a CNT resonator in vacuum. Initially, we measure the
electronic transport at 7mK and realize a single-electron transistor (SET) within the res-
onator. Following this, we detect the mechanical motion of the nanotube and demonstrate
how these vibrations can be tuned using a DC gate voltage. Subsequently, we determine
the Q factor and investigate the influence of RF driving power on both the resonance fre-
quency and the Q factor. After that, we study the impact of the SET on the mechanical
motion of the nanotube. The chapter concludes by measuring the Duffing response in
the nanotube, where we observe significant hysteresis and bistability during forward and
reverse frequency sweeps.

6.1 Characterisation of a SET in the nanotube

We first perform transport measurements on a suspended CNT device. The nanotube is
supported on source and drain electrodes (Fig. 4.5), and the substrate is used as a back
gate to tune the nanotube’s potential. Fig. 6.1 presents the differential conductance as
a function of both bias voltage Vsd and gate voltage Vg. We measure the source-drain
current Isd by varying Vsd from −8mV to 10mV. Simultaneously, we modulate Vg from
−150mV to 250mV.
Coulomb blockade in Fig. 6.1 (left panel) is evident in low-temperature transport mea-
surements, depicting diamond-shaped areas of suppressed current known as Coulomb
diamonds. This quantum phenomenon results from electrons preventing each other from
tunneling onto a tiny conducting region on the nanotube due to Coulomb repulsion when
thermal energy is insufficient to counteract this repulsion. The height of the diamonds
corresponds to the charging energy of the quantum dot, which in our study ranges from
7meV to 12meV (discussed in Sec. 2.2.1.2 and Sec. 2.2.1.4). The asymmetry in the height
of the Coulomb diamonds, where more energy is required to add electrons on the positive
gate side compared to adding holes on the negative gate side, can be explained by the
band bending effects in the nanotube. As shown in the right panel of Fig. 6.1, holes can
move through the valence band, represented by the red band, with relative ease. This is
due to a smaller Schottky barrier, allowing efficient tunneling of holes into and out of the
valence band. In contrast, the green band represents the conduction band, where electron
transport is hindered by a larger Schottky barrier. This barrier requires more energy for
electrons to tunnel, resulting in reduced conductance on the positive gate side.

We determined the overall average capacitance to be approximately 20 aF, with the
capacitance for the source/drain electrodes being ≈ 15 aF, and for the gate ≈ 3 aF. The
uniformity of the diamond shapes across the entire gate range in the graph is indicative
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of the high quality of our CNT.
An intriguing aspect of this measurement, as shown in Fig. 6.1 (left panel), is the no-
ticeable abrupt jumps in the differential conductance, as indicated by the yellow arrows.
These jumps can be attributed to self-oscillations in the suspended nanotube, which have
been studied extensively in the literature [22, 81, 118]. Self-oscillations arise due to the
interplay between the electronic and mechanical properties of the nanotube. Specifically,
when an electron tunnels into the nanotube, the resulting change in electrostatic force
causes a displacement in the nanotube, which affects the tunneling rate, leading to os-
cillatory behavior. These oscillations are particularly prominent within the −2.5mV to
2.5mV bias voltage range and across the measured gate voltage, where resonant feedback
between electronic transport and mechanical motion amplifies the effect.
Although these self-oscillations were not definitively confirmed in my measurements, sim-
ilar phenomena were clearly demonstrated in the 2020 study by Wen et al. [81]. In
these studies, self-oscillations were confirmed by observing sharp peaks in the mechanical
resonance of the nanotube in response to specific bias voltages, which coincide with coher-
ent oscillations of the nanotube’s position. The phenomenon has also been confirmed by
measuring the phase coherence between the mechanical motion and the tunneling current,
directly correlating the oscillations with electronic transport.
These established methods—spectral analysis of mechanical resonances and phase coher-
ence measurements—have been used to confirm self-oscillations in suspended nanotube
systems, as demonstrated in previous studies.

Figure 6.1: Left Panel- Stability diagram of the nanotube resonator observed at 7mK un-
der vacuum conditions. A comprehensive explanation of single-electron tunneling (SET)
mechanism is provided in subsection 2.2.1.3. Right Panel – Illustration of the band bend-
ing effect, showing efficient hole transport through the valence band due to a smaller
Schottky barrier, and hindered electron transport in the conduction band from a larger
barrier. This explains the higher energy needed for electron transport at large positive
gate voltages compared to hole transport at negative gate voltages in the Coulomb block-
ade behavior. (Redraw from [119]).
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6.1.1 Tunneling rate

The tunneling rate Γ of a quantum dot is the rate at which electrons traverse the quantum
dot. Therefore, Γ can be inferred from the current I through the quantum dot. This is
because the current is directly proportional to the number of electrons passing through
the quantum dot per unit time, i.e., I = e · Γ.
The calculated tunneling rate for the given I = 2.5 nA is Γ ≈ 15.6GHz. However, the
conductance spikes (indicated by arrows in the left panel of Fig. 6.1) can disappear when
decreasing the current, which leads to the tunneling rate falling below the mechanical
resonance frequency [22].

6.2 Measurement of mechanical vibrations

6.2.1 Detection and tuning of mechanical vibrations

The measurement bandwidth of the system can be calculated by modeling the nanotube
as a ballistic conductor in series with contact resistances and capacitances. In this con-
figuration, the CNT experiences a low-pass filtering effect, and the frequency, fbandwidth,
of this filter determines the measurement bandwidth [105].

We begin by calculating the total capacitance of the system, which includes the source
capacitance Cs and the drain capacitance Cd. For our system, the drain capacitance is
calculated using the parallel plate capacitor model:

Cd =
ϵ0ϵrA

d

where ϵ0 = 8.854× 10−12 F/m is the vacuum permittivity, ϵr = 3.9 is the relative permit-
tivity of SiO2, A = 10µm × 10µm = 100 × 10−12m2 is the area of the contact pad, and
d = 175 nm = 175× 10−9m is the thickness of the dielectric layer.

Substituting these values gives the drain capacitance:

Cd ≈ 1.97 pF.

Since the resistance of the nanotube is Rnanotube = 182 × 103Ω, the measurement
bandwidth fbandwidth is given by the standard formula for a low-pass RC filter:

fbandwidth =
1

2πRnanotubeCd

.

Substituting the values of Rnanotube and Cd, we calculate:

fbandwidth ≈ 1

2π × 182× 103 × 1.97× 10−12
≈ 443.6 kHz.

Thus, the calculated measurement bandwidth of the system is approximately 443.6 kHz.
This bandwidth limits the system’s ability to directly measure the high-frequency oscil-
lations of the mechanical resonator, which typically operate in the MHz range. Conse-
quently, the mechanical resonances are detected as a time-averaged signal using a lock-in
amplifier, operating within the system’s bandwidth constraints.
In Fig. 6.2 (top panel), the resonant frequencies of a CNT resonator are observed in
the lock-in signal when the driving frequency is plotted against the gate voltage. For
all datasets, frequencies are swept from lower to higher values unless explicitly stated

89



otherwise. The color plot represents the intensity of the lock-in signal, which indicates
the resonance strength of the different vibration modes of the nanotube for the entire
gate voltage range. We observed four dotted patterns (shown by green arrows), each
representing a particular vibrational mode of the nanotube. The first pattern indicates the
fundamental vibration mode (labeled as f0), while the subsequent three patterns, moving
upward, are associated with the 1st (f1), 2nd (f2), and 3rd (f3) harmonics, respectively.
As the gate voltage is reduced, the resonance frequency for the 3rd harmonic f3 increases
nearly two and half-fold, shifting from f3 =36.8MHz at Vg = 1.5V to f3 = 94.7MHz at
Vg = −1.5V.

The applied gate voltage generates an electrostatic force on the nanotube, adjusting
its tension and thereby altering its natural oscillation frequency [75]. We calculated the
residual tension at Vg = 0V, and the tuned tension for each mode in the respective strong
and weak bending regimes at Vg = −670mV, as detailed in Appendix Sec. A.4.

This behavior is analogous to tuning a guitar string by adjusting its tension. As the
gate voltage increases, both the tension and oscillation frequency of the nanotube rise,
with the extent of change depending on the mode’s shape and direction. The goal is to
determine whether the lock-in signal’s peaks or dips shift with changes in the DC gate
voltage. If the signal varies with gate voltage, it is mechanical in origin; otherwise, it
would indicate an electrical resonance from the measurement setup, which requires no
further analysis.
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Figure 6.2: Top panel: The graph shows the driving frequency versus gate voltage, where
the color intensity indicates the strength of the lock-in signal. The measurement is taken
at a driving power of −40 dBm and at Vsd = −2mV. The effect on resonance frequencies is
observed by measuring the mixing current Imix via a lock-in amplifier. Four distinct high-
intensity patterns emerge as the gate voltage sweeps from positive to negative, indicated
by green arrows. These patterns are attributed to the four different resonance modes
of a nanotube, demonstrating that the DC gate voltage can modulate the resonance
frequencies of a CNT. This data is of low resolution, with each dot representing a resonance
peak or dip in the lock-in signal. (The inset illustrates a cut along Vg = −103.9mV,
showing a peak in the resonance signal upon frequency sweep.). Bottom Panel: This
depicts the phenomenon of avoided crossing in a higher mode, revealing how tension-
induced coupling between modes allows for an energy exchange among them, achieved by
the DC gate voltage adjustment.

6.2.2 Strongly-coupled mechanical modes

In our detailed analysis of the CNT resonator, we observed significant interactions between
mechanical modes, particularly evident in mode anti-crossing as illustrated in the bottom
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panel of Fig. 6.2. This coupling stems mainly from motion-induced tension. When a
specific mode oscillates within the CNT resonator, it generates tension that affects the
dynamics of another interconnected mode. A key finding is that the resonance frequency
of one mode becomes commensurable with that of another, resulting in anti-crossing. This
effect was notably observed when the third harmonic f3 = 78.8MHz precisely doubled
the first harmonic f1 = 39.4MHz at Vg = −670mV, as indicated by the green arrows
in the upper section of Fig. 6.2. This phenomenon is consistent with the theoretical
model outlined in [120] and was experimentally validated in [121]. The modes f1 and f3
demonstrate significant tunability with gate voltage, mirroring the behavior of a bending
beam, whereas modes f0 and f2 show lesser tunability with Vg, resembling a catenary
shape as described in [105]. Interestingly, mode f2 appears to split into two submodes,
with an average frequency at the same Vg = −670mV being f2 = 48.37MHz, nearly twice
that of the fundamental mode f0 = 24.25MHz. Hence, when the second harmonic f2
becomes twice the fundamental mode f0, it results in the splitting of f2, as observed in
the upper section of Fig. 6.2 across the entire range of gate voltages measured.

Furthermore, the flexural (bending) mode coupling in CNT resonators, akin to the
Duffing nonlinearity, involves the interaction between different mode harmonics driven by
tension and single-electron forces. This coupling manifests when the frequencies of two
modes are commensurate, especially when tension from a lower mode triggers parametric
excitation in a higher mode. Such interactions lead to an avoided crossing in the resonance
frequency curve. Additionally, single-electron forces also play a role by modulating the
average charge through one mode’s motion, affecting the spring constant of another. This
modulation may either soften or stiffen the mode, depending on the measurement point
along the Coulomb peak.
Therefore, this observation underscores the efficient energy transfer between modes with
integer frequency ratios, attributed to nonlinear forces. This transfer is particularly pro-
nounced at mode anti-crossing points, leading to mixed eigenfunctions and unusual spec-
tra. Strong coupling between modes results in a frequency split, diverging from the
resonators’ original frequencies, with the degree of splitting indicating the strength of
the coupling. By adjusting the gate voltage Vg, we confirmed the tension-induced nature
of this coupling. Thus, the vibration of one mode not only generates mechanical stress
within the resonator but also mutually influences the behavior of other modes.

6.2.2.1 Thermal occupation at anti-crossing points and coupling strength

A resonator enters the quantum ground state regime when its thermal energy is signif-
icantly less than the spacing between its quantum energy levels, i.e., kBT ≪ ℏω. In
practical terms, at extremely low temperatures, typically in the millikelvin range, the
available thermal energy kBT falls short of the resonator’s energy ω, implying that there
is insufficient thermal energy to excite the flexural motion of the CNTs, i.e., ω ≫ kBT .

To understand the population of quantum states at a given temperature, we derived
the thermal occupation using the relation [86]:

n =
1

2
+

[
exp

(
hω

kBT

)
− 1

]−1

(6.1)

Here, we assume T ≈ TMC, the temperature of the mixing chamber, 7mK.
Then, we extracted n to be approximately

• For fmin = 77.73MHz: n ≈ 0.54
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• For fmax = 79.71MHz: n ≈ 0.53

In quantum mechanics, when n is close to 1
2
, the system is predominantly in its ground

state. Remarkably, n being comparable to 1
2
suggests that the nanotube vibrational modes

are approaching the quantum ground state. The only assumption we make here is that
the temperature of the CNT is equivalent to the mixing chamber temperature of our
cryostat.

The coupling strength between mechanical modes, denoted as ∆, is indicative of their
mutual interaction. At the point of mode anti-crossing, this strength can be quantified
as half the frequency difference between the two modes: ∆ = fmax−fmin

2
. For the given

frequencies, fmin = 77.73MHz and fmax = 79.71MHz, the computed coupling strength is
∆ ≈ 1MHz. This value emphasizes the strong coupling, with the modes avoiding a direct
crossing due to their interaction, leading to a frequency split. This split, and consequently
∆, offers insights into the magnitude of their mutual influence.
The phenomenon of anti-crossing observed in our study illustrates the complex interac-
tions in nanomechanical systems, governed by classical mechanics principles. The nonlin-
ear dynamics of the CNT resonator, notably influenced by motion-induced tension from
the oscillatory behavior of the nanotube, play a pivotal role in the interaction between
coupled modes. Such findings reveal the complexity of mechanics within CNT resonators
and emphasize their value in furthering our understanding of classical mechanics principles
at the nanoscale.

6.2.3 Extracting the Q factor

Before performing the nanotube measurements in superfluid 4He, we aim to extract the
intrinsic Q factor by driving the nanotube into the linear regime. The nanotube’s Q
factor is influenced by several parameters, including bias voltage, gate voltage, and driving
power, which are discussed in later sections. The Q factor is measured using a frequency
modulation scheme as illustrated in Fig. 5.9.
A constant DC bias of Vsd = −2mV and a gate voltage of Vg = −103.9mV are applied to
the CNT resonator. An oscillating voltage, generated by the signal generator at −88 dBm
and modulated at a low frequency of 79Hz, is introduced onto the gate. The resulting
DC current through the nanotube is amplified at room temperature and measured using
a lock-in amplifier. By sweeping the driving frequency from 20.7MHz to 20.9MHz, a
resonance peak is observed around 20.78MHz, as shown in Fig. 6.3.
We calculate the Q value using a frequency modulation method as discussed in subsec-
tion 5.4.2, where the frequency f is modulated at 79Hz with a frequency deviation of
10 kHz. The derivative of the measured current (derived in Eq. 5.4.2) with respect to

frequency,
∣∣∣dIdf ∣∣∣, peaks at resonance. This peak is used to derive Q and fres through the

following equation [117]:

dI(f)

df
= A

∣∣∣∣∣ ddfRe
(

e−iϕC

f 2
res − f 2 + iffres

Q

)∣∣∣∣∣+B (6.2)

Here, A and B are scaling and offset parameters for the peak, respectively, obtained
through fitting the experimental data. The resonant frequency fres and the quality factor
Q are also determined from the fit. This model presumes the nanotube behaves as a simple
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harmonic oscillator and the frequency mainly depends on the instantaneous displacement
and the mechanical phase of the resonator.

Figure 6.3: The Q factor of the nanotube in vacuum is determined to be 6076 by fitting
with Eq. 6.2. The free fit parameters, A and B, are found to be 1228 and 3 × 10−13,
respectively. Here, a DC bias of Vsd = −2mV and a gate voltage of Vg = −103.9mV are
applied, with a driving power of −88 dBm.

6.2.4 Power dependence of Q factor and resonance frequency

In our measurements, the inverse relationship between the RF driving power and the Q
factor observed in Fig. 6.4 arises from nonlinear damping in nanotube resonators. As the
driving power increases, the amplitude of the oscillations grows, causing the resonator to
enter a nonlinear regime, reducing the Q factor. In this regime, the restoring force follows
a cubic Duffing-type non-linearity instead of a linear dependence on displacement.

This nonlinear behavior is a direct consequence of the high aspect ratio of CNTs,
which makes them susceptible to geometrical and electrostatic nonlinearities. As the
amplitude of oscillation increases, additional tension is induced in the CNT due to its
stretching, which modifies the resonance frequency (spring-hardening effect). This effect
is observed as an upward shift in the resonance frequency with increasing drive power
(Fig. 6.4, bottom panel).

At the same time, nonlinear damping arises because of energy dissipation processes
that become more efficient at large oscillation amplitudes. In nanotube resonators, this
dissipation is often associated with phonon-phonon interactions, electron-phonon cou-
pling, and friction at the boundaries. The observed decrease in the Q factor at higher
drive powers can be attributed to these enhanced energy loss mechanisms[75].

Previous studies have extensively characterized these nonlinear damping effects in
CNT resonators. For instance, it has been demonstrated that at low driving powers, the
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damping remains dominated by intrinsic material properties and external friction, main-
taining a relatively high Q factor. However, as the power is increased, the resonator enters
the nonlinear regime, and the Q factor decreases sharply due to the onset of nonlinear
damping, as seen in other studies on high-Q nanotube resonators [75].

Thus, the observed power dependence of the Q factor and the resonance frequency
in our measurements aligns well with the expected nonlinear damping behavior in CNT
resonators.

Figure 6.4: Top Panel: This illustrates the inverse relationship between the RF driving
power and the Q factor of the CNT resonator, depicting a decrease in the Q factor from
approximately 1500 at −81 dBm to 400 at −73 dBm. This decline is attributed to non-
linear damping within the CNT resonator. Bottom Panel: This demonstrates the increase
in resonance frequency with the amplification of driving power, highlighting enhancements
in both the resonance frequency and its width due to the driving force. This behavior is
attributed to the spring hardening effect, which is characteristic of tensioned oscillators.
As a result, the frequency experiences a net increase of ≈ 40 kHz across the observed
range of driving power.
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6.3 The effect of the SET on the mechanical res-

onator

6.3.1 Resonance response across a Coulomb peak

In the previous section, we measured and tuned the CNT vibrations via DC gate voltage
dependence at a constant RF drive. Now, we turn our focus onto the shift in resonance
frequency due to single-electron tunneling. Fig. 6.5 (bottom-left panel) illustrates the
current when the gate voltage sweeps through a single Coulomb peak (dip in this as we
sit at −2mV bias). When the current is zero, it’s the Coulomb blockade region and the
number of electrons on the CNT is fixed. When there’s a spike in the current magnitude
(Coulomb dip), it indicates an electron has tunneled onto or off the CNT.

The tunneling rate, Γ, for I = 1.75 nA is approximately 10.9GHz, which corresponds
to roughly 525 times the mechanical frequency (20.185MHz). This suggests many single-
electron tunneling events occur for each mechanical oscillation. Therefore, single-electron
tunneling applies a force that changes over time to the mechanical vibrating resonator in
addition to the electrostatic force due to the DC gate as well as the driving force of the RF
signal on the gate. Interestingly, these electron movements don’t just make the transition
from one static point to another smoothly. Instead, they change the resonance frequency
at the Coulomb peak — even more than what’s caused by simple tuning shifts due to
modulation in the nanotube tension. Studies have shown that this changing force impacts
the nanotube’s inherent spring constant, softening its mechanical vibrations [122, 22, 123].
This behavior is observed in Fig. 6.5 (top-left panel), where the resonance frequency of
the CNT changes with the gate voltage over a span of a single Coulomb dip.
The essential point to grasp here is how the voltage and charge on the CNT change with
the gate voltage. When the CNT is at the Coulomb peak (where electrons can tunnel onto
or off the nanotube), the CNT tries to balance out the voltage from the gate. This process
is called ‘overscreening’. When this happens, the tension in the resonator changes. The
main takeaway here is that when single-electron tunneling occurs, it can cause a significant
dip in the CNT’s resonance frequency. This change in frequency due to tunneling is much
larger than changes due to other effects, like mechanical tension.
For a detailed analysis, we consider the 1D cuts at Vg = −109.4mV and Vg = −103.8mV
from Fig. 6.5 (top-left panel), which are illustrated in Fig. 6.5 (right panels). Along with a
dip in the resonance frequency, we observed significant damping which results in a reduced
Q factor at the Coulomb peak. Specifically, Fig. 6.5 (top-right panel) displays a resonance
peak at 20.8MHz in the lock-in signal as a function of the driving frequency. Since this
is taken at a gate voltage (Vg = −109.4mV) away from the Coulomb peak position, the
peak shape remains symmetric and has a Q factor of 2971. In contrast, moving closer
to the Coulomb peak as depicted in Fig. 6.5 (bottom-right panel), the resonance peak,
which occurs at approximately 20.725MHz, becomes asymmetric and exhibits a non-linear
response with the Q factor dropping to 592.
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Figure 6.5: Bottom-left Panel: This illustrates the variation in current across a single
Coulomb peak, with gate voltage ranging from −92.5mV to −112.5mV at a −2mV bias.
A zero current indicates a stable electron count on the CNT. Top-left Panel: Here, we
observe a dip in the CNT’s resonance frequency at or near the Coulomb peak during
single-electron tunneling events, demonstrating the non-linear behavior in the nanotube’s
resonance signal as the gate voltage sweeps through a single Coulomb peak. Top-right
Panel: Away from the Coulomb peak, the resonance signal exhibits a linear response with
a Q factor of ≈ 2971. Bottom-right Panel: Close to the Coulomb peak, the resonance
signal gives a non-linear response, characterized by a Q factor of ≈ 592.

The damping in mechanical motion arises from two key contributors: intrinsic damping
and damping due to the stochastic backaction force associated with electron tunneling (for
details refer to [75]). This stochastic force varies with electron numbers N and N +1 and
is influenced by the CNT’s charge and its proximity to the gate, both of which oscillate
with the CNT. The aggregate damping is captured by the total Q factor, inclusive of
electron tunneling effects. Notably, a shift from N to N + 1 electrons reduces the Q
factor, emphasizing the role of individual electron tunneling events. Damping is most
pronounced when CNT oscillation leads to significant charge shifts. Additionally, the
damping varies with gate voltage, affecting the Q factor as we change gate voltage.

6.3.1.1 Optimizing DC gate setpoint for intrinsic Q factor: nonlinear and
linear regimes

The primary goal of this measurement is to optimize the intrinsic Q factor of the CNT
resonator by carefully selecting the gate voltage setpoint, which influences the coupling
between the mechanical motion of the nanotube and single-electron tunneling (SET) [75].
The resonance behavior and the Q factor are highly sensitive to the proximity of the
Coulomb peak, where SET effects are strongest. As we move away from the Coulomb
peak, the coupling between electron tunneling and the mechanical vibrations weakens,
pushing the system into a more linear regime. In this linear regime, the signal-to-noise
ratio (SNR) is lower due to weaker SET-induced coupling, which leads to a narrower
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resonance peak and a higher Q factor, as demonstrated by the sharp peak with a Q factor
of 2971 (Fig. 6.5, top-right panel). However, this weak coupling also limits the resonator’s
excitation, producing a weaker overall signal.

Conversely, at the Coulomb peak, where SET effects are strongest, the interaction be-
tween electron tunneling and mechanical vibrations is significantly enhanced, improving
the SNR. This stronger coupling introduces additional damping due to stochastic back-
action forces [75, 23], broadening the resonance peak and reducing the Q factor to 592
(Fig. 6.5, bottom-right panel). Even at this relatively low drive power, the resonator is
pushed into a nonlinear regime, where the increased amplitude further broadens the reso-
nance signal. This nonlinearity manifests as a softening of the mechanical spring constant
due to SET effects, causing significant dips in the resonance frequency.

To optimize the Q factor, the gate voltage must be precisely tuned near, but not
directly at, the Coulomb peak. By adjusting the drive power to avoid excessive damp-
ing from SET coupling while still benefiting from enhanced interaction at the Coulomb
peak, we can maximize the resonator’s performance. This careful balance of gate volt-
age and drive power is crucial for achieving optimal performance in the CNT resonator,
emphasizing the interplay between electron tunneling and mechanical motion.

After selecting the optimal gate voltage setpoints, we then proceed to study the reso-
nance response as a function of bias voltage.

6.3.2 Resonance response with bias voltage

We examine how bias voltage affects the Q factor and resonance frequency of the CNT
resonator. By employing the FM technique, we determine the resonance frequency in
relation to the bias voltage Vsd through measuring the mixing current via lock-in detection
against frequency f . We maintain a constant DC gate voltage Vg = −104.3mV and a
driving power of −78 dBm. The resulting lock-in signal is presented as a color map in the
top-left panel of Fig. 6.6.
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Figure 6.6: Top-left Panel: Demonstrates the response of the nanotube’s resonance signal
as a function of bias voltage. Bottom-left Panel: Shows the IV characteristics of the
CNT resonator across the entire bias voltage range, with resonance responses measured
at a driving power of −78 dBm and a gate voltage Vg = −104.3mV. Top-right Panel:
Presents a 1D cut of the resonance signal at a bias voltage Vsd = −5mV, where the
resonance peak is nearly linear with a Q factor of 550. Bottom-right Panel: Depicts
resonance at Vsd = −2mV, highlighting a reduced Q factor of 110 and a fin-shaped peak
indicative of spring-softening Duffing oscillators.

Throughout the entire range of positive bias voltage, no resonance signal is detected unless
the drive power is increased (details not shown here). In contrast, applying a negative
bias voltage results in a significant change in the Q factor and a noticeable shift in the
resonance frequency. However, these changes do not follow a monotonic relationship with
the bias voltage. This data is reproducible; confirmation comes from measuring the same
plot up to three times, each time observing the same behavior.

To further illustrate, 1D cuts taken at two different bias voltages, Vsd = −5mV and
Vsd = −2mV, from the top-left panel of Fig. 6.6, show variations in the Q factor. Specif-
ically, at Vsd = −5mV, the Q factor is 550, which reduces to 110 at Vsd = −2mV. The
latter condition also displays a fin-shaped resonance peak, similar to the behavior observed
in Duffing oscillators. Overall, these findings highlight the CNT resonator’s asymmetric
response to bias voltage, providing insights on its potential as a SET and revealing the
complexities of nanoscale mechanics.
The distinction between positive and negative biases is notable. The lack of resonance
signal under positive bias may be due to electrostatic interactions at the CNT-electrode
interface or from SET operations. Such interactions might suppress mechanical vibra-
tions, particularly due to the ”back-action” effect from single-electron tunneling that
synchronizes with the CNT resonator’s frequency, thereby influencing the Q factor.

On the other hand, the irregularities observed under negative bias could be attributed
to electro-mechanical dynamics that affect localized charge distributions in the CNT due
to SET operations. This could lead to periodic changes in mechanical stiffness, resulting
in variations in the Q factor and resonance frequency. The fin-shaped resonance peak
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observed at −2mV bias (illustrated in the bottom-right panel of Fig. 6.6) suggests the in-
volvement of nonlinear mechanical dynamics. Such nonlinearity could originate from three
primary sources: electrostatic nonlinearity, nonlinearity due to single-electron tunneling,
and geometric nonlinearity resulting from mechanical tension. Although the sensitivity to
bias is not yet fully understood, it encourages further investigation, which could uncover
intriguing aspects of physics.

6.4 Duffing response with RF driving power

To identify the linear driving regime, we plot the resonance frequency response of the CNT
against various driving powers. The **dynamic range** of the mechanical oscillator, a key
parameter in our applications, represents the range of drive powers where the resonance
exhibits a linear response. This spans from the lowest drive power, where the signal just
surpasses noise, to the highest, where nonlinear behavior begins.

In Fig. 6.7, the top-left panel shows the upward frequency sweep, while the bottom-left
panel presents the downward sweep. During the upward sweep, increasing drive power
causes an upward shift in the resonance frequency, marking the onset of nonlinearity.
This nonlinear behavior is further confirmed by the hysteresis loop seen between the
upward and downward sweeps, which indicates the presence of multiple stable resonance
frequencies at high RF excitation levels.

At a drive power of −88 dBm, the CNT oscillates with such a small amplitude that its
motion is nearly indistinguishable from noise. As the drive power increases to −83 dBm,
a Lorentzian resonance lineshape becomes evident in the lock-in amplifier and digital
multimeter (DMM) readings, indicating that the system is in the linear regime, where the
restoring force is proportional to displacement (Hooke’s law). However, at −73 dBm, the
response transitions to a nonlinear regime, forming a characteristic ”sharkfin” lineshape
typical of Duffing systems. Further increasing the drive power to −72 dBm results in
bistability and hysteresis, as seen in Fig. 6.7 (bottom-right panel). This bistability allows
the CNT resonator to oscillate in either a high- or low-amplitude state at the same
frequency. The presence of hysteresis depends on the direction of the frequency sweep,
confirming the Duffing stiffening effect.
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Figure 6.7: Top-left: Resonance frequency vs. power for upward sweep. Bottom-left:
Resonance frequency vs. power for downward sweep, showing bistability and hysteresis
due to Duffing nonlinearity. Right: 1D cuts at −77.58 dBm (linear lineshape without
hysteresis) and −63 dBm (hysteresis with bistability) for both sweeps. The electrostatic
driving force is controlled by the oscillating gate voltage V AC

g , with gate and bias voltage
setpoints of Vg = −103.9mV and Vsd = −2mV.

The 1D cuts at −77.58 dBm (right panels of Fig. 6.7) reveal a clean Lorentzian line-
shape without hysteresis, indicating linear behavior. By contrast, the cuts at −63 dBm
show clear bistability and hysteresis, confirming nonlinear behavior at higher driving pow-
ers. This phenomenon is observed using the one-source mixing technique, which allows
us to monitor mechanical resonance across different driving forces by analyzing the mix-
ing current Imix as a function of driving frequency f . The electrostatic driving force is
modulated by the oscillating gate voltage V AC

g .
The size and shape of the hysteresis loop provide insight into the nonlinear dynamics

of the system. Critical power and frequency values define the thresholds between linear
and nonlinear behavior. Moreover, the intricate amplitude response at large drive powers
reveals the interplay between the resonator’s material properties, its geometry, and the
applied electrostatic force.

6.4.1 Displacement and velocity of nanotube mechanical motion
dependence on electrostatic force in vacuum

The displacement and velocity data shown in Fig. 6.8 were extracted from the resonance
response to RF power sweeps in vacuum (see Fig. 6.7). The detailed derivation and
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calculations for displacement and velocity as functions of force are provided in Appendix
Sec. A.3. This data reveals the transition from linear to nonlinear dynamics of the CNT
resonator as a function of electrostatic force in a Duffing-type system.

In the upward frequency sweep (Fig. 6.8(a)), the displacement amplitude of the nan-
otube initially increases linearly with the applied electrostatic force, rising rapidly to a
maximum of approximately 4 pm at around 0.5 pN. Beyond this force threshold, the dis-
placement begins to change nonlinearly, no longer following a linear relationship with the
force. This nonlinear behavior is characteristic of the Duffing response, where the me-
chanical properties of the system, such as stiffness, change with amplitude, leading to a
deviation from the linear Hooke’s law behavior.

Similarly, the velocity data (Fig. 6.8(c)) initially shows a linear increase with electro-
static force, reaching a peak of approximately 0.5mms−1 at around 0.5 pN. This velocity
corresponds to the critical velocity VC1 in vacuum, at which the nanotube enters the
nonlinear regime. Beyond this point, the velocity exhibits nonlinear behavior, reflecting
the same Duffing dynamics observed in the displacement data. The critical velocity VC1

represents the threshold beyond which the nanotube’s motion is no longer governed by
linear dynamics, and nonlinear forces dominate its mechanical response.

In contrast, the results from the downward frequency sweep (Fig. 6.8(b) and (d))
display hysteresis, as confirmed by the power sweep data shown in Fig. 6.7. During the
downward sweep (Fig. 6.8(d)), the critical velocity VC2 is observed at a lower electrostatic
force compared to VC1, indicating a delayed transition into the nonlinear regime. The
forward sweep retains higher amplitude and velocity. This is due to the stiffening of the
nanotube, which shifts the frequency toward higher values. This frequency shift results in
the observed hysteresis loop. In the downward sweep, the system enters a lower-amplitude
state sooner, leading to the bistability characteristic of Duffing systems.
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Figure 6.8: (a) Displacement amplitude versus electrostatic force during the upward fre-
quency sweep: The displacement amplitude initially increases linearly with electrostatic
force, reaching a maximum of 4 pm at 0.5 pN before transitioning to a nonlinear regime.
(b) Displacement amplitude during the downward sweep shows hysteresis, with a delay in
the transition to the nonlinear regime compared to the upward sweep. (c) Velocity versus
electrostatic force during the upward sweep: The velocity shows a linear increase up to
0.5mms−1 at 0.5 pN, marking the critical velocity VC1 at which the nanotube enters the
nonlinear regime, after which it changes nonlinearly. (d) Velocity during the downward
sweep exhibits hysteresis, with a slightly lower critical velocity VC2, and lower velocity
retained at larger forces compared to the upward sweep due to the stiffening of the nan-
otube in the forward sweep.

6.5 Summary

This chapter presents an in-depth characterization of a nanotube resonator in vacuum,
focusing on its electronic transport properties, mechanical vibrations, and nonlinear dy-
namics. Key findings include:

1. Single-electron tunneling and coulomb blockade: Transport measurements
at 7mK revealed Coulomb blockade phenomena, characterized by diamond-shaped
regions of suppressed current. The charging energy of the quantum dot within
the CNT ranged from 7meV to 12meV. Self-oscillations in the suspended CNT,
attributed to the interplay between electronic and mechanical properties, were also
observed. The SET tunneling rate, calculated from the current, was approximately
15.6GHz.

2. Mechanical vibrations and resonance tuning: The mechanical vibrations of
the CNT were detected, and the resonance frequency was tunable via the DC gate
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voltage. The gate voltage adjusted the electrostatic force on the CNT, altering its
tension and consequently its natural oscillation frequency, akin to tuning a guitar
string. The fundamental mode and higher harmonics were observed, with the third
harmonic f3 showing significant frequency tunability, increasing from 36.8MHz to
94.7MHz as the gate voltage was varied from 1.5V to −1.5V.

3. Coupling between mechanical modes and anti-crossing: Strong coupling
between mechanical modes was observed, particularly in the form of mode anti-
crossing, where resonance frequencies of different modes interact. This coupling,
driven by motion-induced tension, was most notable when the third harmonic f3
doubled the first harmonic f1, resulting in energy transfer and avoided crossing in
the frequency spectrum. The thermal occupation number n ≈ 0.53 suggests that the
CNT resonator approaches the quantum ground state at millikelvin temperatures.

4. Influence of single-electron tunneling on resonance: The resonance frequency
was significantly modulated by SET events. At the Coulomb peak, the resonance
frequency dipped due to changes in the CNT’s spring constant, a result of the elec-
trostatic force from tunneling electrons. The Q factor was lower near the Coulomb
peak due to additional damping from electron tunneling, with a reduction from 2971
(away from the peak) to 592 (at the peak).

5. Bias voltage effects: The resonance frequency and Q factor were found to depend
asymmetrically on the applied bias voltage. Under negative bias, the CNT exhibited
clear nonlinear responses, with the Q factor decreasing from 550 at −5mV bias to
110 at −2mV, accompanied by a fin-shaped resonance peak characteristic of spring-
softening Duffing oscillators.

6. Nonlinearity and Duffing response: The CNT resonator exhibited Duffing non-
linearity at higher RF driving powers, transitioning from linear resonance behavior
at low powers to a nonlinear regime at higher powers. At −73 dBm, a characteristic
“sharkfin” lineshape appeared, and at −72 dBm, bistability and hysteresis emerged,
indicating multiple stable resonance frequencies. The critical electrostatic force for
this transition was approximately 0.5 pN, corresponding to a displacement of 4 pm
and a critical velocity of 0.5mms−1 during upward frequency sweeps.

In conclusion, this chapter demonstrates the significant interplay between single-electron
tunneling and mechanical vibrations in the CNT resonator. The system’s behavior is
highly tunable through gate voltage, bias voltage, and RF driving power, exhibiting
complex nonlinear dynamics such as mode coupling, Duffing nonlinearity, and resonance
hysteresis. These findings are crucial for understanding the fundamental quantum and
mechanical properties of nanoscale resonators.
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Chapter 7: Measurements of a CNT resonator
in superfluid 4He

This chapter presents a detailed investigation of the dynamics of a nanotube resonator
operating in superfluid 4He at millikelvin temperatures. The aim is to investigate the
interactions between the nanotube and the superfluid, with a focus on how helium ad-
sorption, hydrodynamic forces, and quantum vortices affect the resonator’s mechanical
properties.Additionally, the response of the nanotube to varying radio frequency (RF)
drive powers is explored, particularly to understand the nonlinear mechanical effects and
the critical velocity at which the nanotube enters the turbulent regime. The study also
investigates vortex pinning to the nanotube surface, explored through the generation of
Kelvin waves. Finally, the chapter examines how temperature changes near the superfluid
transition affect the resonator’s behavior.

Note: Although many nanotube resonators have been fabricated and characterized,
this thesis presents all the experimental data from the same device in Chapters 6 and 7,
including Appendix Fig. A.1.

Cooldowns Figures
1st Fig. A.1
2nd Fig. 7.1, Fig. 7.3, Fig. 7.4 and Fig. 7.6
3rd Fig. 7.9 and Fig. 7.10

Table 7.1: Different cooldowns and the corresponding data.

7.1 Operating CNT resonator in superfluid 4He

To investigate the dynamics of thermal excitation in superfluid 4He, we first cooled a CNT
resonator to the base temperature in vacuum, confirming the stability of the resonance
frequency at this stage, as shown in Fig. 7.1 (top-left panel). We then gradually introduced
4He gas into the experimental cell through the second capillary (Fig. 5.8) at 1 bar, while
keeping the first capillary closed at 5 × 10−6mbar. These capillaries connect at a tee-
junction leading to the cell, which contains the CNT chip. The helium was introduced
from the top plate of the fridge (at room temperature) to the mixing chamber plate (at
7mK). It took about an hour to fill the cell, during which time the pressure equalized
between the two capillaries. Throughout this period, the resonance frequency remained
stable. However, the temperature of the mixing chamber rose to 1.5K during the helium
injection (Fig. 7.1, bottom-left panel).

After stopping the helium injection, the temperature began to decrease, eventually
stabilizing at 135mK. During this cooling process, we observed an increase in noise and a
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gradual decrease in the Q factor of the resonator. Specifically, the Q factor values dropped
from 425 to 347 and then to 188 over time, as shown in the 1D resonance cuts in Fig. 7.1
(right panels). Over the next 6–7 hours, the resonance signal completely disappeared,
although the background noise remained constant. We initially expected the resonance
to shift as the nanotube became covered in helium gas and disappear upon immersion
in superfluid helium. However, this delayed disappearance, occurring only several hours
later, was unexpected. The discrepancy can be attributed to the experimental setup,
particularly the presence of a solid silver plate sinter (see Sec. 5.1.2.1) placed above the
nanotube chip, which cooled the helium gas before it interacted with the nanotube.

Figure 7.1: Top-left Panel: This panel shows the variation in resonance frequency of the
first harmonic of the nanotube resonator before and after the introduction of superfluid
4He at a gate voltage of Vg = −825mV. Initially, the frequency remains stable at the base
temperature in vacuum. After 4He gas is introduced, the frequency remains stable for a
while, but noise increases and the Q factor gradually decreases. The resonance frequency
disappears completely within 6 − 7 hours, likely due to damping induced by remnant
vortices generated during the rapid cooling of helium via the Kibble-Zurek mechanism.
Bottom-left Panel: The temperature profile of the mixing chamber shows a rise to 1.5K
during the filling of 4He (indicated by blue arrows), followed by a rapid decrease and
stabilization at 135mK after stopping the helium injection. Right Panels: These panels
display 1D resonance cuts (marked by red arrows in the top-left panel) before, during,
and after helium injection, with Q factors of 425, 347, and 188, respectively, highlighting
the gradual noise enhancement and resonance degradation over time after the 4He filling.
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7.1.1 Slow response of nanotube resonance upon helium injec-
tion

The helium cell setup is illustrated in Fig. 7.2 (left panel). A large silver sinter plate,
suspended by two silver wires thermally anchored to the mixing chamber plate, was posi-
tioned above the CNT chip. These silver wires ensured efficient cooling of the helium gas
as it entered the cell. When the helium gas was introduced through the capillary fill line,
it first condensed onto the sinter plate due to its porous structure, acting as a cryopump.
This delayed the interaction of helium with the CNT chip, as the sinter absorbed most of
the helium gas before it could reach the nanotube.

Figure 7.2: Left panel: Schematic of the helium cell showing the sinter plate positioned
above the CNT chip. Helium gas (red dots) enters via the helium fill line, first condensing
on the sinter plate before interacting with the CNT chip. Right panel: A schematic
illustrating the scenario where vortices, generated via the Kibble-Zurek mechanism during
rapid cooling, become pinned between the suspended nanotube and the gate electrode
beneath it. This vortex pinning is believed to cause the significant noise increase observed
in the resonance signal after helium injection, consistent with the phase noise observed
by Barkist et al. in MEMS resonators inside superfluid 4He [124].

Initially, no changes were observed in the nanotube resonance as the helium condensed
onto the sinter plate. However, after about an hour, the sinter plate reached saturation,
and helium began interacting with the nanotube, leading to resonance damping and ad-
ditional noise. During a previous cooldown (Appendix, Fig. A.1), we observed a slight
downward shift, the signal eventually disappeared after helium injection after an extended
period. During this cooldown, the faster filling of helium led to an earlier interaction with
the nanotube and a more pronounced damping.
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Once the nanotube became fully immersed in superfluid helium at millikelvin tem-
peratures, the resonance disappeared, as expected under such conditions. Typically, the
resonance reappears as helium condenses at 135mK when the system transitions into the
superfluid phase, but at a lower frequency due to helium adsorption onto the nanotube.

7.1.2 Role of the Kibble-Zurek mechanism

In this experiment, the resonance did not reappear after cooling to 135mK, despite the
expectation that it would reemerge at the same drive power used in vacuum. Instead, the
resonance only reappeared after significantly increasing the drive power, suggesting that
remnant vortices formed during the rapid cooling from 1.5K to 135mK, inhibiting normal
resonance behavior in the superfluid. This behavior can likely be explained by the Kibble-
Zurek mechanism (KZM), which describes the formation of topological defects, such as
quantized vortices, during rapid phase transitions [125, 9]. In this case, the transition was
from a normal fluid state at 1.5K to superfluid helium at 135mK. As helium was injected
at a high flow rate and cooled rapidly from room temperature to millikelvin temperatures,
the system’s fluctuations froze before reaching equilibrium, resulting in the formation of
these remnant vortices [126].

These vortices dampened the nanotube’s motion, preventing the resonance from reap-
pearing at normal power levels. This behavior was also observed during the first cooldown,
where the rapid filling of helium caused the system to heat up to 1.5K. Although this
temperature is below the superfluid transition threshold, the helium retained a significant
normal component, which affected the system’s behavior. After the helium injection was
stopped, the system cooled to 135mK, fully immersing the nanotube in superfluid he-
lium. However, a superfluid 4He film in the capillaries likely prevented further cooling of
the mixing chamber by maintaining a thermal connection between the still plate and the
mixing chamber of the cryostat. To disconnect these two stages and achieve the cryostat’s
base temperature, a 4He film burner is needed.

Therefore, behavior suggests that the damping observed in the nanotube’s motion,
even at very low temperatures, was due to the quantized vortices generated by the Kibble-
Zurek mechanism during the rapid cooling phase, rather than by thermal excitations from
the normal helium component.

7.1.3 Noise observations after helium injection

Following the discussion of the Kibble-Zurek mechanism, we also observed a significant
increase in background noise immediately after the helium injection (Fig. 7.1 (top-left
panel)), particularly as the helium interacted with the nanotube. This noise was not
present during the vacuum measurements, where the background was normal, but became
prominent once helium was introduced, even at the lowest temperatures. We attribute
this noise to vortex pinning between the nanotube and the gate electrodes beneath it,
as illustrated in Fig. 7.2 (right panel). Defects on the nanotube, as well as impurities
or melting in the gate electrodes, can facilitate vortex pinning. The vortices generated
through the Kibble-Zurek mechanism likely became pinned in the system. The minimum
energy required for a vortex to attach to a surface is explained in detail in Sec. 7.4.3.
A similar phenomenon was observed by Barquist et al. [124], they detected noise in
a MEMS response in superfluid 4He, linked to vortex pinning between the resonator
and the substrate. The recurring observation of this noise at lowest temperatures upon
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helium interaction across multiple cooldowns (Fig. 7.9 and the Appendix, Fig. A.1) further
supports that vortex dynamics are responsible for the observed increase in noise.

7.2 Downward frequency shift after 4He injection

After injecting 4He into the system, a broad frequency sweep was conducted for a range
of gate voltages, similar to the measurement performed in vacuum (Fig. 6.2). Initially, no
resonances were detected within the helium environment under the same measurement
parameters used in vacuum (Fig. 7.3, top panel).
Upon increasing the driving power from −48 dBm to −28 dBm, multiple resonances reap-
peared, as shown in Fig. 7.3 (bottom panel). The lock-in signal intensity, representing
the resonance strength of the nanotube, revealed distinct vibrational modes of the nan-
otube in superfluid 4He, denoted as f0, f1, f2, and f3. These modes display a downward
frequency shift compared to their counterparts in vacuum, as shown in Fig. 6.2. The
observed downward shift in resonance frequency can be attributed to the adsorption of
helium atoms onto the surface of the nanotube, forming solid layers of 4He and conse-
quently increasing the effective mass of the nanotube. This increase in mass results in the
reduced vibration frequencies.
Notably, the higher harmonic modes exhibit a more pronounced frequency shift than the
fundamental mode. This behavior can be explained by differences in the distribution of
helium atoms along the nanotube in various vibrational modes, which more strongly affect
the higher harmonics. The fundamental frequency of a CNT resonator, f0, depends on
the mass, length, and tension of the nanotube and is given by

f0 =
1

2L

√
T

m
,

where m is the linear mass density. Higher harmonic frequencies are integer multiples of
f0, represented by

fn = n · f0
for the n-th harmonic. Helium adsorption increases the nanotube’s mass, leading to a
modified linear mass density m+∆m. Thus, the resonance frequencies adjust to

f ′
0 =

1

2L

√
T

m+∆m

for the fundamental mode and
f ′
n = n · f ′

0

for the n-th harmonic. The corresponding frequency shifts,

∆f0 = f0 − f ′
0

and
∆fn = fn − f ′

n,

gives that
∆fn = n ·∆f0,
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indicating that higher harmonic modes exhibit a shift that is n times that of the funda-
mental mode. This conclusion aligns with experimental data, where higher harmonics are
more significantly affected by the increased mass due to helium adsorption.
The adhesion of helium atoms on the surface of the nanotube likely forms solid layers
of 4He, increasing the mass and decreasing the resonance frequency. This behavior is
consistent with the expected influence of helium atom distribution on different vibrational
modes, especially the higher harmonics.

Figure 7.3: Top panel: No resonances detected in superfluid helium at a driving power of
−48 dBm. Bottom panel: Resonances reappear at −28 dBm, demonstrating the effect of
helium adsorption on the nanotube. The downward shift in vibrational modes compared
to vacuum is attributed to helium mass loading. The green dashed line separates two
regions of gate voltage tunability: (1) a region with effective frequency tuning up to
−0.8V, and (2) a region with reduced tunability from −0.8V to −1.5V, due to surface
tension effects and increasing electrostatic screening.
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7.2.1 Frequency shift due to helium adsorption and hydrody-
namic drag

The downward frequency shift observed in the CNT immersed in superfluid helium is
primarily caused by two factors: (i) the hydrodynamic contribution from the surrounding
helium fluid, and (ii) mass loading from helium adsorption onto the nanotube surface. In
the following, we calculate both contributions and estimate the number of helium layers
adsorbed onto the nanotube by comparing the frequencies in vacuum (Fig. 6.2) with those
measured in superfluid helium (Fig. 7.3) at Vg = 0 V.

Observed frequency shift

The CNT’s resonance frequency in vacuum for the third harmonic is fvac = 63.2MHz,
which decreases to fHe = 54MHz when immersed in superfluid 4He. The total observed
frequency shift is:

∆fexp = fvac − fHe = 63.2MHz− 54MHz = 9.2MHz.

Hydrodynamic contribution

The frequency shift due to hydrodynamic drag is caused by the interaction between the
oscillating nanotube and the surrounding helium fluid. Using the model from Eq.3.4, the
hydrodynamic shift caused by the fluid back-flow around the nanotube is:(

f0
fH

)2

− 1 = β
ρHV

meNT

,

where β is the geometric factor, ρH is the helium density, V is the nanotube volume,
and meNT

is the effective mass of the nanotube. This result reflects the contribution of
helium’s hydrodynamic drag to the total frequency shift. This gives:

∆fhydro = 1.57MHz (for the third harmonic).

Helium adsorption contribution

The remaining frequency shift is attributed to mass loading from helium adsorption onto
the nanotube surface. The shift due to helium adsorption is:

∆fads = ∆fexp −∆fhydro = 9.2MHz− 1.57MHz = 7.63MHz.

To estimate the number of helium layers adsorbed, we use the areal density of helium
atoms per layer, approximately 11 atoms/nm2 [93]. The mass of one helium layer can be
computed as:

mlayer = areal density× A×mHe atom = 6.89× 10−22 kg.

The total mass of adsorbed helium is given by:

mHe = 3.83× 10−21 kg,

corresponding to approximately 5.56 helium layers:

N =
mHe

mlayer

=
3.83× 10−21

6.89× 10−22
≈ 5.56 layers.
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Results for different harmonic modes

Following similar calculations for different harmonic modes at Vg = 0 V, we obtain the
following results:

• For the fundamental mode (fvac = 21MHz, fHe = 18MHz), the hydrodynamic
shift is 0.52MHz, and the adsorption shift is 2.48MHz, corresponding to 5.43 helium
layers.

• For the first harmonic (fvac = 32MHz, fHe = 27MHz), the hydrodynamic shift is
0.80MHz, and the adsorption shift is 4.20MHz, corresponding to 6.09 helium layers.

• For the second harmonic (fvac = 42.25MHz, fHe = 34.5MHz), the hydrodynamic
shift is 1.05MHz, and the adsorption shift is 6.70MHz, corresponding to 7.52 helium
layers.

• For the third harmonic (fvac = 63.2MHz, fHe = 54MHz), the hydrodynamic shift
is 1.57MHz, and the adsorption shift is 7.63MHz, corresponding to 5.56 helium
layers.

These results show that higher harmonics experience more pronounced frequency shifts
due to increased sensitivity to the adsorbed helium mass, in line with previous estimate.

7.2.2 Tuning behavior of nanotube frequencies in superfluid he-
lium

In addition to the downward shift of resonance frequencies, we observed a significant
change in the tunability of the nanotube resonance frequencies as a function of gate
voltage in superfluid helium compared to vacuum. In vacuum, the frequencies are highly
tunable with gate voltage, especially at larger negative voltages, where the tuning effect is
most pronounced. However, in superfluid helium, two distinct regions of tuning behavior
emerged, as shown in the bottom panel of Fig. 7.3 (dashed green line).

From 0.25V to −0.8V, the frequencies exhibit some degree of tunability, though less
pronounced than in vacuum. Beyond −0.8V, the tuning becomes even more suppressed
as the gate voltage decreases to −1.5V. This reduction in tunability reflects the combined
influence of mass loading through surface tension and electrostatic screening, which are
unique to the superfluid helium environment [93, 127].

7.2.2.1 Effect of surface tension and electrostatic screening

The reduced tunability of resonance frequencies in superfluid helium is primarily due to
two factors: surface tension, and electrostatic screening by the adsorbed helium layers.

• Surface tension: The adsorbed helium layers introduce surface tension that affects
the nanotube’s spring constant. As more helium accumulates, the spring constant
increases, effectively stiffening the nanotube and reducing its mechanical flexibility.
This stiffening limits the nanotube’s ability to respond to gate voltage changes,
leading to a diminished tunability of the resonance frequency [128].
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• Electrostatic screening: We attribute electrostatic screening as the most critical
factor influencing the reduced tunability, caused by the adsorbed helium layers.
In superfluid helium, the helium layers act as a dielectric barrier, weakening the
electrostatic coupling between the gate and the nanotube. As the gate voltage
increases, these helium layers partially screen the electric field, reducing the effect
of the gate voltage on the nanotube. This screening becomes more pronounced at
larger negative gate voltages, affecting the tunability of the resonance frequency.

At large negative gate voltages, the enhanced electrostatic screening by the helium
layers significantly reduces the ability of the gate voltage to induce strain in the nanotube,
thus limiting frequency tuning. The dielectric nature of the helium atoms increasingly
shields the electric field, preventing it from fully reaching the nanotube. This behavior
contrasts with vacuum conditions, where the absence of a dielectric allows for stronger
electrostatic interaction and greater tunability of the resonance frequency.

7.2.2.2 Effect of helium layer surface tension on nanotube spring constant

The surface tension of the helium layers significantly affects the spring constant of the
nanotube, which, in turn, influences its mechanical response and tunability. As helium
atoms adsorb onto the nanotube surface, they increase the effective radius of the nanotube
and introduce additional surface tension, which modifies the nanotube’s spring constant.
This effect is particularly pronounced in superfluid helium, where the helium layers are
uniform and exert a quantifiable influence on the nanotube’s mechanical properties.

The spring constant contribution from the helium layers, kHe, can be expressed as [93]:

kHe = γ
π3rHe

L
, (7.1)

where rHe is the radius of the helium layer, L is the length of the nanotube, and γ is the
surface tension of the helium layer. The surface tension γ influences kHe, and as helium
layers form, both the surface tension and the mass increase, contributing to reduced
tunability of the nanotube’s resonance frequency in response to gate voltage.

We can rearrange Eq. 7.1 to solve for the surface tension γ:

γ =
kHeL

π3rHe

. (7.2)

The spring constant kHe can be derived from the observed shift in resonance frequency
between the pristine nanotube and the helium-coated nanotube. The resonance frequency
of a helium-coated nanotube is given by:

f1 =
1

2π

√
kNT + kHe

mNT +mHe

, (7.3)

where f1 is the resonance frequency, kNT is the nanotube’s intrinsic spring constant, mNT

is the nanotube mass, and mHe is the adsorbed helium mass.
Assuming the mass change is relatively small, the frequency shift ∆fads due to helium

adsorption can be approximated as:

f1
f0

≈ 1− kHe

2kNT

, (7.4)
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where f0 = 63.2MHz is the resonance frequency in vacuum, and ∆fads = 7.63MHz rep-
resents the frequency shift caused by helium adsorption. Thus, the relationship between
the frequency shift and kHe becomes:

∆fads
f0

=
kHe

2kNT

. (7.5)

Solving for kHe, we get:

kHe = 2kNT
∆fads
f0

. (7.6)

By substituting kNT = 1.18 × 10−7N/m, ∆fads = 7.63MHz, and f0 = 63.2MHz, we
find:

kHe = 2× 1.18× 10−7 × 7.63

63.2
= 2.85× 10−8N/m. (7.7)

This result shows that, although kHe is an order of magnitude smaller than kNT, it still
makes a significant contribution to the overall spring constant and mechanical stiffness of
the nanotube.

Finally, using L = 1.5× 10−6m and rHe ≈ 1.77× 10−9m, we can calculate the surface
tension from Eq. 7.2 as:

γ =≈ 7.77× 10−7N/m. (7.8)

This calculated surface tension γ is approximately 7.77×10−7N/m, which aligns with
expectations for helium films. The surface tension of helium layers depends on various
factors, including chemical potential, film thickness, surface coverage, and temperature,
all of which play a role in mechanical response [127].

The quantitative impact of surface tension and spring constant changes underscores
how helium adsorption alters the resonance behavior of the nanotube and limits its tun-
ability with gate voltage.

Connecting observations to our data

The reduction in tunability beyond −0.8V in our data arises from the combined effects of
mass loading, surface tension, and partial electrostatic screening by the adsorbed helium
layers. As helium accumulates, the nanotube becomes heavier, and the increasing surface
tension stiffens the spring constant, reducing its responsiveness to gate voltage.

At low negative gate voltages, the resonance frequency is effectively tuned, but as
the voltage becomes more negative, these combined effects become more pronounced,
leading to a marked decrease in tunability. This behavior is consistent with our data and
underscores the distinct influence of superfluid helium compared to vacuum.

Despite this reduction in tunability, the resonance frequencies of the nanotube remain
adjustable in superfluid helium, which is a key advantage of CNT resonators. This allows
for the exploration of various frequency-dependent phenomena, such as acoustic modes
in cavities [19], phase transitions [129], and resonant Kelvin waves in quantized vortices
[17, 18].

7.3 Response with RF power in 4He

We now examine how RF driving power affects the resonance dynamics of the nanotube
within superfluid 4He. By lowering the mixing chamber temperature to 85mK from
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135mK through controlled helium film pumping, we monitored the nanotube’s response
over a frequency range of 17.1MHz to 18.1MHz for both upward and downward frequency
sweeps, starting with a drive power of −38 dBm.

Increasing the RF power initially broadens the resonance peak and strengthens the
response, indicating a reduction in the quality factor. As the nanotube enters the nonlin-
ear regime at higher powers (discussed further in Chapter 6), the resonance broadening
becomes more pronounced. This behavior contrasts with the Duffing non-linearity seen in
vacuum, where hysteresis typically occurs during frequency sweeps. In superfluid helium,
no such hysteresis is observed. The right panels of Fig. 7.4 show 1D cuts from the forward
and reverse sweeps at three power levels: −30 dBm, −25 dBm, and −18 dBm.

A drift of 19.92 kHz (detailed calculation shown in Sec. A.5) in peak positions is
observed for both forward and reverse sweeps across all power levels. This drift is caused
by the lock-in amplifier’s time constant and has been accounted for in the 1D plots.
A similar drift was observed in vacuum measurements (Fig. 6.7), but in vacuum, the
1D cuts were derived directly from the current through the nanotube, measured with a
DMM. In contrast, significant damping in the superfluid environment prevents detecting
the resonance through the CNT current alone. However, the lock-in signal clearly shows
the absence of hysteresis, suggesting that the nonlinearity here arises from interactions
between the nanotube and superfluid 4He, rather than intrinsic mechanical properties.

The key difference between the superfluid helium and vacuum environments is that in
helium, nonlinearity stems from interactions between the resonator and quantum vortices.
These vortices absorb mechanical energy from the nanotube, causing nonlinear damping.
As RF power increases, these interactions intensify, broadening the resonance peak until
the resonance eventually disappears at a critical power level of approximately −21 dBm.

The disappearance can be attributed to energy transfer from the nanotube to the
vortices. Once the nanotube reaches a critical velocity, it generates and transfers energy
to the vortices, exciting vortex waves (Kelvin waves) along the vortex lines. This energy
transfer leads to increased damping, and as the vortices accumulate energy, they detach
from the nanotube, resulting in overdamping and the disappearance of resonance.

Interestingly, as the RF power increases further, the resonance reappears. This sug-
gests that the vortices either detach from the resonator or reorganize into a more stable
configuration, allowing the nanotube to resume oscillations. The absence of hysteresis and
bistability in these power sweeps confirms that vortex dynamics, rather than mechanical
Duffing nonlinearity, dominate the nanotube’s behavior in superfluid 4He.
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Figure 7.4: Top-left: Resonance frequency sweep upwards as a function of driving power.
Bottom-left: Resonance frequency sweep downward. These graphs demonstrate changes
in nanotube resonance behavior, including broadening, attenuation, and disappearance
at critical power levels in superfluid 4He. The measurements are conducted at a DC gate
voltage of −128.5mV. Right panels: 1D cuts from forward and reverse sweeps were taken
at three different powers: −30 dBm, −25 dBm, and −18 dBm. Unlike in vacuum, the
frequency sweeps in superfluid 4He do not exhibit hysteresis or bistability at any power
level. However, we observe a consistent drift in the peak positions of 19.92 kHz, caused by
the lock-in amplifier’s time constant. This drift has been accounted for in the 1D plots.

Increasing RF power reveals that quantum vortices play a crucial role in the nanotube’s
nonlinear dynamics in superfluid helium. These interactions cause significant damping and
lead to the temporary disappearance of the resonance. As power continues to rise, the
reorganization or detachment of vortices allows the resonance to reemerge, underscoring
the intriguing dynamics between the resonator and the superfluid environment.
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7.3.1 Displacement and velocity response of nanotube to elec-
trostatic force in superfluid helium

Figure 7.5 presents the displacement and velocity data of the nanotube resonator, obtained
from RF power sweeps conducted in superfluid helium (see Fig. 7.4). These measurements
provide insights into the mechanical behavior of the nanotube under electrostatic forces
and how quantum vortices in superfluid helium affect its dynamics.

Figure 7.5(a) shows the displacement as a function of electrostatic force during an
upward frequency sweep. Initially, the displacement increases linearly, reaching approx-
imately 5 pm at 0.7 pN, near the threshold for entering the nonlinear regime. Beyond
this point, the displacement peaks at 9 pm around 1 pN, followed by a sharp drop. This
rapid decline in displacement indicates the onset of strong damping, likely caused by
interactions between the nanotube and quantized vortices in the superfluid. Quantum
vortices, as described by London [130], Feynman [131], and Anderson [132], disrupt the
steady-state motion of mechanical resonators through vortex shedding or pinning, which
absorbs energy and causes the resonance to disappear at higher electrostatic forces. This
behavior occurs after the critical velocity Vcs is reached in superfluid helium.

The velocity data in Fig. 7.5(c) exhibits a similar pattern to the displacement. Ini-
tially, the velocity increases linearly with electrostatic force, reaching 0.5mms−1 around
0.7 pN in superfluid helium. For comparison, in vacuum (Fig. 6.8(c)), the same velocity is
achieved at a lower electrostatic force of 0.4 pN, corresponding to the critical velocity Vc1.
The higher force required in helium suggests additional damping due to excitations in
the superfluid. As the system transitions into the nonlinear regime, the velocity peaks at
around 0.9mms−1 near 1 pN, followed by a sharp decline as the system enters a turbulent
state. This transition marks increased damping due to vortex formation, with the reso-
nance disappearing completely as the velocity drops to zero, consistent with the critical
velocity Vcs for vortex generation.

After the initial resonance disappearance, the velocity rises again as the electrostatic
force continues to increase. This suggests that vortices either detach from the resonator or
reorganize into a more stable configuration, allowing the nanotube to resume oscillations.
A similar phenomenon was observed by Barquist et al. [124] in their studies on a tuning
fork, where a sharp drop in velocity marked the transition to turbulence, followed by a
recovery of the resonance. In our case, the smaller size of the nanotube makes it more
sensitive to vortex interactions, leading to a complete damping and temporary disappear-
ance of resonance. This re-emergence supports the role of vortex dynamics, particularly
vortex generation and detachment, in the system’s nonlinear response, as seen in previ-
ous studies by Barquist et al. [79] and Guthrie et al. [133], who explored vortex-induced
dissipation and vortex pinning in nanomechanical resonators.

The downward frequency sweep, shown in Figs. 7.5(b) and 7.5(d), follows similar trends
to the upward sweep. Both displacement and velocity exhibit comparable behavior, with
no significant hysteresis between the sweeps. This absence of hysteresis suggests that the
observed damping and disappearance of resonance are primarily due to quantum vortex
interactions rather than the intrinsic mechanical properties of the nanotube. The con-
sistent behavior in both sweeps confirms that vortex dynamics dominate the nanotube’s
motion in superfluid helium.
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Figure 7.5: (a) Displacement as a function of electrostatic force during the upward fre-
quency sweep: The displacement peaks at around 9 pm near 1 pN before sharply decreas-
ing, indicating strong damping effects due to quantum vortex interactions. The red dashed
line marks the transition to the nonlinear regime, while the green circle highlights the re-
gion where the resonance is completely damped. (b) Displacement during the downward
sweep shows similar trends, confirming the absence of hysteresis and supporting the role
of vortex dynamics. (c) Velocity as a function of electrostatic force during the upward
frequency sweep: Velocity reaches Vc1 at 0.5mms−1 near 0.7 pN in superfluid, while in
vacuum (Fig. 6.8(c)) only 0.4 pN is required to achieve the same velocity. Then, the ve-
locity reaches Vcs at 0.9mms−1 near 1 pN in superfluid helium before sudden decline, this
sharp drop in velocity marks the transition to the turbulent regime. The velocity rises
again as the electrostatic force increases, indicating vortex detachment or reorganization.
(d) The velocity during the downward sweep mirrors the upward sweep, reinforcing the
observation that vortex dynamics dominate the system’s nonlinear behavior. The green
circle in all subfigures highlights the region where the resonance is completely damped,
with no measurable resonant response.

7.4 Kelvin wave-induced sidebands in a CNT res-

onator in superfluid helium

Building on our earlier observations, we continued to monitor the resonance behavior
of a CNT resonator immersed in superfluid 4He as a function of the RF drive power.
To improve detection sensitivity, the dc gate voltage was maintained near the Coulomb
peak, where strong coupling between single-electron tunneling and the mechanical motion
of the CNT enhances the signal-to-noise ratio (SNR). However, this gate voltage tuning
also modulates the frequency of the nanotube. This setup allowed us to detect subtle
interactions between the CNT resonator and the surrounding superfluid.
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As the RF drive power increased, a sideband appeared at 18.3MHz, offset by 400 kHz
from the CNT primary resonance at 18.7MHz (Fig. 7.6). This sideband emerged around
−41 dBm and intensified as the RF power increased. A second, weaker sideband was
detected at −31 dBm, but our analysis focuses on the more prominent first sideband.

Figure 7.6: This graph shows the resonance frequency response of the CNT resonator as
a function of RF drive power near the Coulomb peak (Vg = −105mV). A prominent
sideband is observed 400 kHz away from the central resonance at 18.7MHz, appearing
at −41 dBm and attributed to the third harmonic of Kelvin waves propagating along a
vortex pinned to the nanotube. A second, weaker sideband is detected at −31 dBm, but
due to its lower intensity, it is less well-resolved and was not analyzed further. Inset: A
schematic illustrating the scenario of a vortex pinned between the suspended nanotube
and the gate electrode beneath it.

7.4.1 Origin of the sidebands

We initially hypothesized that the observed sidebands might result from acoustic emis-
sions. Using the classical acoustic model f = v

2L
, where v = 238m s−1 (speed of sound in

superfluid helium) and L = 1.5 µm (CNT length), we calculated a resonance frequency of
79.34MHz, far above the observed sideband spacing. This discrepancy ruled out acoustic
resonance as the source of the sidebands.

Instead, we considered Kelvin waves, helical oscillations propagating along quantized
vortices pinned between the CNT and the gate electrode (Fig. 7.6). The Kelvin wave
dispersion relation, given by [134], is:
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ω = vk2 =
κ

4π
k2 log

(
1

ka

)
,

where κ = 0.0997×10−6m2 s−1 is the quantum of circulation, k = j2π
L

is the wavenumber,
a = 1×10−10m is the vortex core radius, and L is the wavelength. In our device geometry,
the nanotube is positioned 175 nm from the gate, resulting in a wavelength L = 350 nm.

We calculated the first three harmonics of the Kelvin waves to be 2.6MHz, 9.2MHz,
and 19.1MHz. Notably, the third harmonic (19.1MHz) closely matches the CNT reso-
nance frequency of 18.7MHz, with a 400 kHz difference corresponding to the sideband.
This suggests that the sideband is produced by frequency mixing between the CNT’s me-
chanical oscillations and the Kelvin waves, confirming that the sideband spacing matches
the predicted Kelvin wave frequency.

Our observation of a 400 kHz sideband, offset from the primary resonance frequency
of 18.7MHz, is consistent with the theoretical predictions of resonant coupling between
mechanical oscillations and Kelvin wave modes. Specifically, we observe that the sideband
emerges when the resonance frequency of the nanotube aligns with the third harmonic of
Kelvin waves. This behavior matches well with the findings of Nakagawa et al. [135], who
numerically studied vortex dynamics in superfluid helium and demonstrated that vortex
damping peaks when the oscillation frequency of the mechanical oscillator coincides with
the Kelvin wave mode frequency.
The tunability of the CNT resonator is key to observing Kelvin wave-induced sidebands.
By adjusting the gate voltage near the Coulomb peak, we can precisely control the nan-
otube’s mechanical resonance frequency, improving detection sensitivity to subtle inter-
actions with the surrounding superfluid. Matching the resonance frequency between the
CNT and Kelvin waves–challenging in conventional systems–is essential for detecting these
sidebands, as frequency mismatches have previously hindered similar experiments. Other
researchers, including Guthrie et al. [133] and Kamppinen et al. [16], have similarly
proposed to detect Kelvin waves experimentally, but these efforts have yet to achieve
successful detection due to challenges with frequency alignment and sensitivity.

7.4.2 Non-linear power dependence and sideband dynamics

The intensity of Kelvin wave-induced sidebands is closely tied to the RF drive power,
with the first sideband appearing around −41 dBm. We observe a power-law dependence
of sideband intensity Isideband on RF drive power P :

Isideband ∝ Pα

where α is the scaling exponent characterizing the non-linearity of the system. Similar
vortex-based systems, such as those studied by Nakagawa et al. [135], demonstrated that
Kelvin waves can scale quadratically with input power, corresponding to α ≈ 2 in highly
non-linear regimes.

Our experimental results show two distinct power regimes (Fig. 7.7):
1. **First regime**: Between −41 dBm and −35 dBm, the scaling exponent α =

1.02 suggests a near-linear response. In this regime, energy input is efficiently coupled
to the CNT’s mechanical oscillations, generating sidebands through frequency mixing
with weak non-linearity. This behavior is consistent with weakly non-linear dynamics of
Kelvin waves, as noted by Nakagawa et al. [135]. Additionally, this aligns with the weak
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turbulence model of L’vov and Nazarenko [136, 137], where energy cascades smoothly to
smaller scales without significant dissipation. In weak turbulence, Kelvin waves interact
weakly, allowing energy to transfer across scales while maintaining the wave structure.
This regime reflects a weakly non-linear state, as predicted by weak turbulence theory.

2. **Second regime**: Beyond −35 dBm, the scaling exponent shifts to α = −0.31,
indicating **non-linear damping**. At this higher power level, the system enters a more
complex non-linear regime where dissipation mechanisms such as vortex reconnections and
rough surface-induced dissipation (RSID) dominate. Simultaneously, a second sideband
appears, likely due to the excitation of additional Kelvin wave modes or higher harmon-
ics, redistributing energy across multiple modes. This behavior aligns with simulations
by Nakagawa et al. [135], which predict multi-mode Kelvin wave excitation at higher
power levels. Moreover, this is consistent with the strong turbulence model of Kozik and
Svistunov [138, 139], where strong interactions between Kelvin waves lead to significant
energy dissipation. In strong turbulence, highly non-linear interactions, such as vortex
reconnections, rapidly transfer energy to smaller scales, resulting in increased dissipation
through phonon emission. This is reflected in the observed energy dissipation and the
emergence of additional sidebands in our experiments.

Figure 7.7: Power dependence of Kelvin wave-induced sideband intensity (log-log scale).
The red line represents the first regime with a scaling exponent α = 1.02, while the green
line shows the second regime with α = −0.31, indicating non-linear damping and the
appearance of the second sideband.

7.4.3 Vortex energy density and tension in the context of pin-
ning and sideband observation

To fully understand the dynamics of vortex pinning and its impact on the observed side-
bands in the CNT resonator, two key physical quantities need to be considered: **energy
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density** and **vortex tension per unit length**. The energy density describes how en-
ergy is distributed around the vortex core when pinned to the nanotube, while the tension
governs the energy transfer that leads to Kelvin wave excitations and subsequent sideband
formation.

7.4.3.1 Energy loss due to vortex pinning on the nanotube surface

The energy lost by a quantized vortex when pinned to the nanotube can be calculated
based on vortex dynamics in superfluid helium. The energy density near the vortex core
is given by:

Energy density =
ρsV

2
θ

2
=
ρs
2

( κ

2πr

)2
where: - ρs is the superfluid density (ρs ≈ 145 kgm−3), - Vθ = κ

2πr
is the tangential

velocity at a distance r from the vortex core, - κ = 0.0997× 10−6m2 s−1 is the quantum
of circulation.

The total kinetic energy per unit length of a **free vortex** is calculated by integrating
the energy density from the vortex core radius a = 1 × 10−10m to the nanotube length
R = 1.5 µm:

Efree =
ρsκ

2

4π
log

(
R

a

)
When the vortex is pinned to the surface of the nanotube (as illustrated in Fig. 7.8),

the portion of the vortex near the pinned surface experiences a significant loss of rotational
energy. This results in a reduced total kinetic energy, given by:

Epinned =
ρsκ

2

4π
log

(
d/2

a

)
where d = 2nm is the diameter of the nanotube. The energy loss due to vortex pinning

can thus be expressed as:

∆E =
ρsκ

2

4π
log

(
R

d/2

)
This loss of rotational energy, as depicted in the **pinned vortex profile** in Fig. 7.8,

results in an energy loss of approximately ∆E ≈ 8.39×10−13 Jm−1, consistent with energy
dissipation reported in similar systems [135].
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Figure 7.8: Vortex pinning on a surface. The free vortex profile (left) shows the rotational
energy concentrated near the core. In the pinned vortex profile (right), energy loss near
the surface (shown with dashed black circle) stabilizes the vortex, which is essential for
understanding its interaction with nanostructures like CNTs.

7.4.3.2 Vortex tension and its relevance to sideband observations

Vortex tension per unit length quantifies the energy required to stretch or deform the
vortex line under external forces, such as the mechanical oscillations of the CNT resonator.
This tension directly influences Kelvin wave excitations, which manifest as sidebands in
the frequency spectrum. The vortex tension is expressed as:

ϵ =
ρsκ

2

4π
ln

(
R0

a0

)
where R0 = 175 nm is the distance between the nanotube and the gate electrode. Substi-
tuting the known values into this equation yields:

ϵ ≈ 8.56× 10−13 Jm−1

This vortex tension modulates the interaction between the vortex and the CNT res-
onator, facilitating energy transfer and the excitation of Kelvin waves, which in turn leads
to the formation of sidebands in the system. As shown in Fig. 7.8, the **pinned vortex
profile** represents the stable configuration that results from the energy dissipation near
the pinned surface.
Previous studies, including Avenel and Varoquaux [140], Donnelly [134], and Nakagawa
et al. [135], have reported vortex pinning energy losses ranging from 1 × 10−14 Jm−1 to
1× 10−11 Jm−1. Our calculated energy dissipation of 8.39× 10−13 Jm−1 falls within this
range. The close agreement between our calculated vortex tension and the values from
Nakagawa et al. reinforces the validity of our energy loss analysis and highlights the
critical role of vortex dynamics—including pinning and Kelvin wave excitations—in the
formation of sidebands in our experiment.

Therefore, through the precise tunability and enhanced sensitivity of the CNT res-
onator, we achieve successful detection of Kelvin wave-induced sidebands, advancing the
experimental study of vortex interactions in superfluid helium.
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7.5 Temperature dependence of resonance in 4He

In previous sections, we observed significant damping in 4He, which we attributed to
remnant vortices. These vortices likely interfered with the resonance behavior, making it
difficult to replicate the simulation results from Chapter 3. To investigate this further,
we conducted temperature-dependent measurements of the CNT resonator in 4He.

Initially, we warmed the cryostat to 30K to remove helium from the experimental
cell, then cooled it back down to 1K, allowing helium gas to gradually fill the cell. This
approach helped control the helium condensation process and allowed us to explore the
effect of temperature on the resonance frequency and damping.
Since the third harmonic f3 shows a significant downward frequency shift upon helium
adsorption compared to other modes (as shown in Fig. 7.3), we chose to track this mode
while changing the temperature inside the 4He cell. Fig. 7.9 illustrates the variation
in nanotube resonance frequency with respect to the cryostat temperature inside the
superfluid 4He. As the temperature increased from 1.5K to 7K, we observed only small
frequency shift of approximately 150 kHz at 7K. However, after quickly cooling the
system to 85mK, we observed a significant increase in noise, especially in the off-resonance
background, as illustrated in Fig. 7.9.

This enhanced noise at 85mK is likely caused by remnant vortices formed during
the rapid cooling process, as predicted by the Kibble-Zurek mechanism [125, 9]. These
vortices likely became pinned between the nanotube and the gate electrode beneath it,
disturbing the nanotube’s mechanical motion. The strong coupling between the nan-
otube’s mechanical motion and single-electron tunneling events enables us to detect these
disturbances in the electrical current signal, even off-resonance. Similar vortex-induced
noise has been observed in MEMS resonators, where vortex pinning between the resonator
and the substrate contributes to more pronounced phase noise [124].

Despite the increase in noise at 85mK, the quality factor (Q = 1317.2) was the highest
observed in helium, although still lower than in vacuum measurements. This suggests
that, while remnant vortices contribute to the noise, the mechanical properties of the
nanotube improve at low temperatures. As the temperature was raised and helium began
to evacuate, the Q factor gradually decreased due to increased damping. The lowest Q
value, Q = 246.9, was observed near the λ-transition at 2.15K, where helium transitions
from a superfluid to a normal fluid.

At higher temperatures, such as 23K, when helium was mostly in the gaseous phase,
the resonance frequency continued to decrease, reaching 66.62MHz. This behavior, shown
in Fig. 7.10, suggests that the nanotube’s spring constant may have been modulated by the
interaction with helium, resulting in further frequency shifts. Additionally, the Q factor
remained low at these higher temperatures, consistent with increased viscous damping
from the normal liquid and gas phases of helium.
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Figure 7.9: Top Panel: The resonance frequency of the third harmonic of the carbon
nanotube resonator is plotted against time as the temperature in the superfluid 4He
bath is varied, at a gate voltage of Vg = −758mV. The resonance frequency exhibits a
gradual decrease as the temperature rises from 1.5K to approximately 7K, followed by
more significant frequency shifts and reduced Q factor at higher temperatures. The color
intensity in the plot represents the amplitude of the resonance signal, with darker regions
indicating stronger resonance responses. This data shows clear noise in the background
(off-resonance) when cooled to the lowest temperature 85mK, attributed to the interaction
between the resonator and remnant vortices present in superfluid 4He via KZM. Bottom
Panel: This plot tracks the temperature of the cryostat over the same period, showing
the controlled temperature changes during the experiment. The time correlation between
the cryostat temperature and the resonance frequency shifts confirms the dependence of
the resonator’s behavior on the 4He temperature and phase transitions.
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Figure 7.10: One-dimensional cut of resonances at various temperatures, derived from
Fig. 7.9. The red dashed line is the data and blue solid lines are fits to the Eq. 6.2.
Measurements at 85mK and 1.6K are conducted with the CNT immersed in 4He. Notably,
the background noise at 85mK is higher than that at 1.6K. In contrast, measurements
at 2.15K, 10K, 17K, and 23K are taken as 4He is being pumped out and the mixing
chamber’s temperature is raised above the λ transition. The frequency decreases with
increasing temperature, while the Q factor shows significant fluctuations (lowest at 2.15K)
but generally decreases as the temperature rises.

Therefore, the temperature-dependent measurements provided valuable insights into
the interaction between the CNT resonator and 4He. The presence of remnant vortices
at low temperatures introduced significant noise and damping (detailed analysis of vortex
pinning and depinning events from the off-resonance noise is shown in Fig. A.6), though
the quality factor improved at cryogenic temperatures compared to higher temperatures
in helium. As the temperature increased, the resonance frequency shifted downward,
with larger shifts occurring above the λ-transition, where viscous effects in the normal
fluid phase became more prominent. These results align with existing studies on helium
damping effects and confirm the influence of temperature on the resonance properties of
the CNT resonator.
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7.6 Summary

This chapter provides a detailed investigation of the interactions between a nanotube
resonator and superfluid 4He, focusing on helium adsorption, vortex dynamics, and Kelvin
wave-induced sidebands.

Key findings include:

1. Helium adsorption and frequency shifts: The adsorption of helium atoms onto
the nanotube surface results in significant downward shifts in resonance frequency,
with higher harmonic modes showing more pronounced shifts. The estimated ad-
sorption of 5 to 6 helium layers contributes to the reduced vibration frequencies,
particularly affecting the third harmonic mode.

2. Gate voltage tunability in superfluid: The CNT’s resonance frequencies remain
tunable with gate voltage in superfluid 4He, though this tunability is reduced at
larger negative voltages (beyond −0.8V). This reduction is due to the combined
effects of mass loading from helium adsorption, surface tension, and electrostatic
screening from the helium layers.

3. Vortex dynamics and critical velocity: Vortex pinning was consistently ob-
served throughout the measurements, causing additional damping and noise at mil-
likelvin temperatures. Quantized vortices generated via the Kibble-Zurek mecha-
nism play a dominant role in shaping the behavior of the CNT resonator. A critical
velocity of 0.9mms−1 marks the transition to turbulence, where vortex interactions
lead to non-linear damping and the temporary disappearance of the resonance at
large driving force.

4. Kelvin wave-induced sidebands: Sidebands were observed at higher RF drive
powers, offset by 400 kHz from the main resonance at 18.7MHz. These sidebands,
attributed to the third harmonic of Kelvin waves along vortices pinned between the
CNT and the gate electrode, provide direct evidence of vortex dynamics in superfluid
4He. The sideband intensity scales non-linearly with input power, highlighting the
interplay between the nanotube’s mechanical oscillations and vortex excitations.

5. Temperature dependence and vortex-induced noise: Temperature-dependent
measurements reveal that as the temperature increases from 1.5K to 7K, the res-
onance frequency shifts downward by 150 kHz, with a notable increase in noise at
85mK due to vortex pinning, as seen in the enhanced off-resonance fluctuations.
This significant noise at low temperatures suggests that remnant vortices strongly
disturb the nanotube’s motion. The quality factor reaches its highest value of 1317.2
at low temperatures but decreases significantly near the superfluid-to-normal fluid
transition at 2.15K, where viscous damping becomes prominent.
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Chapter 8: Conclusions and outlook

This thesis has explored the interactions between carbon nanotube resonators and super-
fluid 4He, focusing on key phenomena such as helium adsorption, hydrodynamic forces,
quantum vortex dynamics, and nonlinear mechanical responses. Through comprehensive
experimental studies, we have gained new insights into the mechanical properties of CNTs
at millikelvin temperatures and demonstrated how single-electron tunneling (SET) and
superfluid helium affect the nanotube’s dynamics. These results have broad implications
for understanding quantum fluids and nanomechanical resonators.

The work presented here emphasizes the successful fabrication and characterization of
ultra-clean CNT resonators, both in vacuum and in superfluid 4He. The close dimensional
match between the CNT diameter (0.5 nm to 1.5 nm) and the coherence length of super-
fluid 4He (0.34 nm [21]) facilitated strong interactions with quantum excitations. This
allowed us to probe subtle quantum phenomena, including vortex dynamics and energy
dissipation, with unprecedented sensitivity.

Before immersing the nanotube inside superfluid 4 He, we tested the sensitivity of
these probes by simulating them in both the hydrodynamic and ballistic regimes of liquid
4He. The theoretical results indicated a significant reduction in frequency and quality
factor in the hydrodynamic temperature limit of liquid 4He, surpassing the measurements
made with previously used resonators such as vibrating wires, tuning forks, and Al NEMS.
The smaller dimensions of the CNT resonators seem to extend the ballistic regime. Their
significant aspect ratio and low mass also emphasized substantial damping due to excita-
tions in superfluid 4He, such as rotons and phonons, at lower temperatures. Furthermore,
simulation results suggested that CNT resonators experience substantial acoustic losses in
the superfluid bath due to their high frequencies, potentially limiting their sensitivity to
thermal excitations in superfluid 4He at sub-millikelvin temperatures. In our simulations,
we presumed the nanotube was initially driven in a linear regime, so any observed losses
and non-linearity in helium would originate from the excitations in superfluid 4He.

8.1 CNT resonator in vacuum

The initial characterization of the CNT resonator in vacuum established a foundation
for understanding its behavior in more complex environments, such as superfluid helium.
Even in vacuum, the resonator exhibited several nonlinear phenomena and coupling ef-
fects, which are crucial for interpreting its performance in superfluid helium.

Key observations from vacuum measurements include:
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Nonlinear dynamics and single-electron tunneling

• SET-induced nonlinearities: The CNT resonator in vacuum displayed strong
nonlinearities due to the interaction between SET and the nanotube’s mechanical
motion. This coupling enabled highly sensitive vibration measurements, even with
a direct current (DC) bias across the device, leading to self-oscillations.

• Self-oscillations: These self-oscillations were driven by the electrostatic forces
generated during electron tunneling events, which caused abrupt jumps in the dif-
ferential conductance. These conductance jumps highlighted the intricate coupling
between electronic transport and mechanical motion.

• Coulomb peak nonlinearities: Nonlinear effects were most pronounced near
Coulomb peaks, where variations in gate and bias voltages significantly influenced
the system’s behavior. This behavior provided insights into how electronic and
mechanical degrees of freedom interact in nanoscale systems.

Mode coupling and quantum ground state proximity

• Quantum regime and phonon population: At millikelvin temperatures, the
CNT resonator’s phonon population approached n ≈ 0.53, suggesting that the sys-
tem was nearing the quantum ground state. This proximity to the quantum regime
provides a promising platform for future quantum sensing applications. This effect,
reported by Samanta et al., highlights how significant vibrations can persist even as
the system nears the quantum ground state [141].

• Mode coupling and anti-crossing: Strong coupling between vibrational modes
was observed, particularly in the form of anti-crossing. This coupling, driven by
motion-induced tension, was especially clear in the third harmonic f3, with a mea-
sured coupling strength of approximately 1MHz.

Duffing nonlinearity and bistability

• Duffing nonlinearity: As the driving power increased, the system transitioned
from a linear regime to Duffing-type nonlinearity. This transition was marked by
hysteresis and bistability during forward and reverse frequency sweeps.

• Relevance to quantum applications: These nonlinear mechanical responses are
particularly significant for quantum applications, where controlled nonlinearities can
be used for precise tuning and sensing.

Quality factor optimization

• Intrinsic Q factor in vacuum: The CNT resonator’s intrinsic Q-factor was mea-
sured to be 6076 in the linear regime, decreasing significantly with increased driving
power due to nonlinear damping.

• Potential for improvement: The Q factor can be enhanced by fine-tuning the DC
gate and bias voltage settings. Previous devices, such as the one shown in Fig. A.5,
have achieved quality factors as high as 2 × 104 under DC current conditions in
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vacuum. With further refinement of these voltage parameters, there is potential for
even greater improvements, as other studies have reported Q factors reaching up to
5× 106 for carbon nanotube resonators in vacuum [96].

These findings form the basis for understanding how CNT resonators behave in more
complex environments, particularly in superfluid helium. The relationship between SET
tunneling and nonlinear dynamics, as well as the observation of mode coupling, under-
scores the need for a deeper exploration of quantum transport in nanoscale systems.

8.2 CNT resonator in superfluid 4He

The immersion of the CNT resonator in superfluid 4He revealed several important phe-
nomena, including helium adsorption, quantum vortex dynamics, and nonlinear mechan-
ical responses. These results provide valuable insights into the interactions between
nanomechanical systems and quantum fluids.

Key findings from the superfluid experiments include:

Helium adsorption and frequency shifts

• Mass loading from helium layers: Helium adsorption onto the nanotube surface
caused a significant downward shift in resonance frequency due to increased mass
loading. Approximately 5 to 6 layers of helium were adsorbed, altering the effective
mass and mechanical properties of the resonator.

• Sensitivity of higher harmonics: Higher harmonics, particularly the third har-
monic f3, exhibited more pronounced frequency shifts due to their greater sensitivity
to mass loading. Additionally, the resulting change in surface tension due to increase
in mass altered the mechanical properties of the resonator, particularly influencing
how the resonance frequencies are tuned with the DC gate.

Quantum vortices and nonlinear damping

• Vortex pinning and damping: Quantum vortices, generated through the Kibble-
Zurek mechanism, introduced significant damping and noise at millikelvin tempera-
tures. These vortices became pinned to the nanotube, affecting the overall dynamics
and leading to additional dissipation.

• Transition to turbulence: The resonance disappeared entirely at a critical ve-
locity of approximately 0.9mms−1, indicating the transition to turbulence driven
by vortex-induced damping. This critical velocity marked the onset of quantum
turbulence.

Kelvin waves and sidebands

• Kelvin wave-induced sidebands: Sidebands in the resonance spectrum were at-
tributed to Kelvin waves propagating along the pinned vortices. These sidebands,
detected at 18.3MHz with a 400 kHz offset from the main resonance, provided ex-
perimental evidence of dynamic interactions between the nanotube and quantum
vortices.
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• Vortex tension and energy density: The calculated energy density of the pinned
vortex and vortex tension per unit length were approximately 8.39×10−13 Jm−1 and
8.56× 10−13 Jm−1, respectively, in line with previous experimental and theoretical
studies [135].

Nonlinear dynamics in superfluid

• Absence of Duffing hysteresis: In contrast to vacuum measurements, no Duffing-
type hysteresis was observed in superfluid helium. Instead, the nonlinearity was
dominated by vortex interactions, which led to damping rather than mechanical
bistability.

• Vortex-dominated nonlinearity: The absence of hysteresis in power sweeps con-
firmed that the observed nonlinearity was primarily driven by vortex dynamics,
distinguishing it from the mechanical Duffing nonlinearity seen in vacuum.

Temperature dependence

• Temperature-dependent shifts: As the temperature increased from 1.5K to
7K, resonance frequency shifts were minimal. However, at 85mK, remnant vortices
introduced significant noise and damping, even though the normal component of
helium was negligible at this temperature.

• Q factor at low temperatures: The Q-factor was highest at low temperatures
but dropped significantly near the superfluid λ-transition temperature (2.15K) due
to increased damping from the normal fluid component.

Therefore, the interaction of the CNT resonator with superfluid helium revealed in-
tricate dynamics dominated by vortex interactions, nonlinear damping, and Kelvin wave
phenomena. These results provide valuable insights into the behavior of nanomechanical
systems in quantum fluids and demonstrate the potential of CNT resonators as sensitive
probes for studying quantum vortices and superfluid dynamics.

8.3 Outlook and future directions

While this study provides a detailed investigation of CNT-superfluid interactions, there
remain several opportunities to improve and expand upon these findings:

• Experimental cell modifications: Using a copper or brass experimental cell
could improve thermalization and allow for more precise temperature control, re-
ducing the risk of pressure-induced cell explosions at higher temperatures.

• Gradual helium filling: Filling the helium cell slowly at low pressures (below
1 bar) could minimize remnant vortex formation and improve the accuracy of mea-
surements, especially in the ballistic and hydrodynamic regimes, and can be directly
compared with simulation results.
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• Integration of tuning forks: Introducing a tuning fork near the CNT resonator
would allow for real-time monitoring of pressure and temperature, enhancing the
precision of experiments in both vacuum and superfluid environments as the behav-
ior of tuning forks in both normal and superfluid helium is well understood..

• Multiple CNT devices characterization: Future studies should aim to charac-
terize multiple CNT resonators during the same cooldown, ensuring consistency and
reliability in the results. This would also allow for more robust conclusions about
the interactions between CNTs and superfluid helium.

• Exploration of superfluid 3He: Given the promising results in superfluid 4He,
extending the experiments to superfluid 3He could reveal new quantum mechanical
effects and provide further opportunities to study phase transitions in quantum
fluids.

8.4 Summary

This work demonstrates the potential of CNT resonators as highly sensitive probes for
studying quantum fluids, specifically superfluid 4He. The findings provide valuable in-
sights into phenomena such as helium adsorption, quantum vortex dynamics, and Kelvin
wave interactions. These results lay a solid foundation for future research in nanome-
chanical resonators and quantum fluid dynamics, offering exciting prospects for further
theoretical and experimental investigations using a smallest doubly-clamped CNT res-
onator.
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Appendix A: Appendix

A.1 Measurements in helium

Figure A.1: Top Panel: This illustrates the behavior of the nanotube resonance over time,
both before and after the injection of 4He, using the same device discussed in Chapters 6
and 7. Initially, the nanotube cell was filled with 4He for 30 minutes via the first fill line,
while the second fill line remained closed, similar to the process explained in Fig. 7.1.
Subsequently, the helium filling was stopped without equalizing pressure in the second
line’s pressure gauge. Initially, the frequency stabilized at the base temperature in vacuum
across the first four frequency sweeps. Following the injection of helium gas, there was no
significant immediate frequency shift; however, there was an observable increase in noise
and a decrease in resonance amplitude. These changes are clearly visible in the bottom
two 1D resonance cuts from the top panel, illustrating the conditions before and during
4He injection. The effect of helium on the resonance was not evident until after 15 hours,
likely due to the minimal amount of helium present in the cell, which may suggest a high
impedance to filling. Additionally, only a minor increase in mixing plate temperature to
90mK was observed, in contrast to the scenario presented in Fig. 7.1. The resonance
frequency exhibited a downward shift before disappearing entirely after 15 hours. Beyond
this point, no resonances, including fundamental and higher harmonics, could be detected
at this driving power. 134



A.2 Other CNT devices measured in vacuum at 7mK

A.2.1 Resonance frequency at multiple Coulomb peaks

Figure A.2: Top Panel: This graph shows how the resonance frequency varies with gate
voltage at Coulomb peaks, similar to Fig. 6.5. This reveals several distinct features: a
slope, resulting from tension at a fixed charge; a frequency offset, indicating a difference
in tension between charge states; and frequency dips, caused by single-electron tunneling
events. Bottom Panel: The Coulomb oscillations in the current passing through a nan-
otube quantum dot. During the Coulomb blockade, the current is zero, indicating a fixed
number of electrons on the CNT. Between different charge states, there are peaks in the
current, signifying single-electron tunneling events.
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A.2.2 Resonance behavior with bias voltage at high drives

Figure A.3: Top Panel: This panel shows the resonance signal observed in the DC of a
nanotube, plotted against the bias voltage. This signal is similar to what is depicted in
Fig. 6.6 for another nanotube device. The measurement is conducted under high drives,
where resonance becomes nonlinear and readily detectable in DC current. Bottom Panel:
The corresponding IV characteristics of the nanotube resonator across the entire range
of bias voltage. These characteristics are measured at a constant gate voltage and drive
power.
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A.2.3 Bias sweep OFF and ON resonance

Figure A.4: Top Panel: The bias sweep of a nanotube when there is no oscillating signal
applied. The Coulomb blockade region is clearly visible as the suppressed current for low
bias. Bottom Panel: The bias sweep of the same device at resonance.
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A.2.4 Q factor comparison and dependence on nanotube clean-
liness

The Q factor of a nanotube resonator is a key parameter reflecting energy dissipation
within the system. In our experiments, we observed substantial variation in the Q factors
across devices, attributable to differences in nanotube cleanliness, contact quality, and
the measurement technique used. Specifically, devices with ultra-clean nanotubes and
well-formed electrical contacts tend to exhibit significantly higher Q factors.

One such ultra-clean device, measured using the direct current (DC) technique, dis-
played a Q factor of approximately 20,000, as shown in Figure A.5. This high Q factor
is particularly noteworthy, as the DC measurement method typically suffers from a lower
signal-to-noise ratio compared to more sensitive techniques such as frequency modulation
(FM) detection. The device’s pristine nature and excellent contacts are evidenced by
the clean Coulomb diamonds observed in Fig. 2.7, indicative of minimal defect presence
and a low Schottky barrier, which reduces energy dissipation. Similar trends have been
observed in literature, where ultra-clean CNTs and minimized surface contamination lead
to record-high Q factors [96].

In contrast, a device measured using the FM technique, discussed in Sec. 6.2.3, exhib-
ited a lower Q factor of 6,076. Despite the higher sensitivity of FM detection, this device
likely contained defects introduced during fabrication, which increased energy dissipation
by scattering charge carriers. Such imperfections have been shown to significantly reduce
Q, as even minor defects or surface contamination can induce surface friction, which limits
the resonator’s performance [99].

The literature corroborates these findings, where ultra-clean nanotubes at low tem-
peratures have demonstrated Q factors exceeding 100,000, highlighting the critical role of
nanotube quality in enhancing Q values. Devices cooled to millikelvin temperatures with
minimal contamination and well-formed electrical contacts have been reported to achieve
Q factors as high as 5 million [96, 82]. However, such high Q values require the use of
ultra-sensitive detection methods and noise suppression in the electrostatic environment,
factors not always feasible in standard DC measurements.

In conclusion, the significant Q factor variations observed in our experiments under-
score the importance of nanotube cleanliness and contact quality. The Q = 20, 000 device,
measured with the DC technique, demonstrates that ultra-clean CNTs can exhibit high
performance even under less sensitive measurement conditions, while devices with defects
or suboptimal contacts exhibit lower Q factors. Future work should focus on optimizing
fabrication techniques and minimizing defects to consistently achieve high Q values in
CNT resonators.
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Figure A.5: The quality factor Q measured using the DC current technique for an ultra-
clean carbon nanotube device, showing a Q value of approximately 20,000. This high
Q factor reflects the pristine nature of the nanotube and well-formed electrical contacts,
resulting in minimal energy dissipation.

A.2.5 Stability diagram of a semi-metallic nanotube

Figure A.6 presents the stability diagram of a carbon nanotube with a small band gap and
very high transparency between the electrical contacts and the nanotube itself. In regions
corresponding to negative gate voltages and small positive gate voltages, the observed
small diamond shapes in the diagram indicate characteristics similar to Fabry–Perot os-
cillations, as depicted in the top panel of Fig. A.6. This phenomenon highlights the small
energy required for current to flow through the nanotube. Notably, the stability diagram
also shows reproducible oscillations superimposed on the Fabry–Perot patterns, which
are highlighted by black arrows. Moreover, distinct Fano resonances appear at specific
gate voltages, indicated by green arrows. These are likely due to the interference from
electrons undergoing resonant tunneling in the nanotube quantum dot [142].
As the gate voltage shifts to more negative values (shown in the middle panel of Fig. A.6),
the electrical contacts exhibit increased transparency, diminishing the Coulomb blockade
effect. Conversely, at higher positive gate voltages (bottom panel of Fig. A.6), the trans-
parency decreases, enhancing the Coulomb blockade effect and resulting in the appearance
of pronounced Coulomb diamonds.
This behavior can be elucidated by examining controlled band bending. The inset of
the middle panel in Fig. A.6 illustrates hole movement through the valence band, where
green and red bands signify the conduction and valence bands, respectively. Here, holes
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can tunnel into and out of the valence band by overcoming a relatively small Schottky
barrier, thus facilitating efficient hole transport. Conversely, the inset of the bottom
panel portrays electron transport through the conduction band, where electrons face a
higher Schottky barrier when tunneling in and out, leading to reduced conductance. This
disparity in conductance is primarily due to two mechanisms: high conductance in the
valence band is achieved through Fabry–Perot interference, while low conductance in the
conduction band arises from the Coulomb blockade regime.

140



Figure A.6: Top Panel: This displays patterns that do not closely resemble diamonds but
suggest the presence of Fabry–Perot oscillations and indicate the low energy required for
electrical current to pass through the nanotube when gate voltages range from negative to
small positive. The diagram also exhibits reproducible oscillations and pronounced Fano
resonances, marked by black and green arrows, respectively. Middle Panel: Demonstrates
increased transparency of electrical contacts and diminished Coulomb blockade effect at
larger negative gate voltages, facilitated by controlled band bending and efficient hole
transport through the valence band. Bottom Panel: Shows an enhanced Coulomb block-
ade effect due to reduced transparency at high positive gate voltages, with pronounced
Coulomb diamonds emerging and reduced electron conductance through the conduction
band. Insets detail the band bending effect: efficient hole transport through the valence
band due to a small Schottky barrier (middle panel) and hindered electron transport in
the conduction band due to a higher barrier (bottom panel), demonstrating the interplay
between Fabry–Perot interference and Coulomb blockade in nanotube conductance.
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A.2.6 Fundamental and higher harmonics at Coulomb peak

Figure A.7: The fundamental and higher harmonics are clearly visible at the Coulomb
peaks in the DC current of the same nanotube, as shown in Fig. A.6. To enhance visi-
bility, we have subtracted the average current from each column. Remarkably, gigahertz
oscillations (9th and 10th modes) are observable in direct current due to the coupling of
the CNT resonator with single-electron tunneling.
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A.2.7 Stability diagram of a metallic nanotube

Figure A.8: Top Panel: The bias sweep of a metallic nanotube reveals little to no Coulomb
blockade regime, as current becomes detectable at very low source-to-drain voltages, typi-
cally in the microvolt range. Middle Panel: The stability diagram displays a gradual mod-
ulation of conductance on the fast oscillations as a function of the gate voltage. Instead
of the typical Coulomb diamonds, the conductance oscillations resemble Fabry–Perot os-
cillations[143]. Bottom Panel: This depicts the current in the nanotube as a function of
the gate voltage, clearly showing the slow oscillations superimposed on the rapid ones.
However, the mechanical resonance was not observed in this metallic nanotube, leading to
a preference for small bandgap nanotube devices. In small bandgap devices, mechanical
resonances are relatively easier to detect due to the Coulomb blockade effect.
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A.3 Displacement and velocity versus electrostatic

force calculation using FM technique

To detect the vibrations of the nanotube, we use a frequency modulation (FM) technique.
The nanotube is operated as a single-electron transistor (SET) in which the mechanical
vibrations modulate its conductance. The displacement of the nanotube u(t) is linked to
its conductance, which is measured as a current flowing through the nanotube.

The lock-in amplifier measures the derivative of the current with respect to the fre-
quency of the driving signal, dI

df
. At resonance, where the mechanical motion is maximum,

the derivative of the current peaks, indicating the maximum displacement amplitude δu0.
The displacement amplitude of the nanotube near resonance is modeled using a Lorentzian
response function:

δu0 ∝
1

f 2
res − f 2 + ifresf

Q

,

where fres is the resonant frequency, f is the driving frequency, and Q is the quality
factor. For our nanotube, the quality factor was determined to be 6076, with a reso-
nant frequency around 20.78 MHz. The maximum displacement occurs at the resonance
frequency.

A.3.1 Calculation of displacement amplitude

To calculate the exact displacement amplitude δu0, a device-specific constant Ccal is in-
troduced. This constant relates the current response measured by the lock-in amplifier to
the mechanical displacement. The displacement amplitude is given by:

δu0 = Ccal ·
(
dI

df

)
peak

,

where Ccal is the calibration constant in units of pA/nm/Hz, and
(

dI
df

)
peak

is the

peak value of the current derivative at resonance.
The calibration constant Ccal can be calculated using the system’s capacitance and

electrical properties. In this case, the gate capacitance Cg is 3 aF, and the nanotube-gate

separation d is 175 nm. The change in capacitance per displacement dCg

dx
is:

dCg

dx
≈ Cg

d
=

3× 10−18 F

175× 10−9m
= 1.71× 10−11 F/m.

The current change per unit displacement is given by:

dI

dx
=

dI

dCtotal

· dCg

dx
,

where dI
dCtotal

= Vsd

Rnanotube
depends on the source-drain voltage Vsd and the nanotube

resistance Rnanotube. For Vsd = 2mV and Rnanotube = 182 kΩ. Here, Ctotal is the total
capacitance. This gives:

dI

dCtotal

≈ 1.1× 10−8A/F,

144



and thus:

dI

dx
= 1.1× 10−8 × 1.71× 10−11 = 1.90× 10−19A/m = 1.90× 10−10 pA/nm.

Thus, the calibration constant Ccal is 1.90× 10−10 pA/nm/Hz.

A.3.2 Displacement amplitude and velocity for dI
df at nanotube

resonance

If dI
df

= 17.5pA/MHz and fres = 20.78MHz: The displacement amplitude is calcu-

lated using the calibration constant Ccal is 1.90× 10−10 pA/nm/Hz:

δu0 = Ccal ·
(
dI

df

)
peak

= 1.90× 10−10 × 17.5× 10−3 = 3.395× 10−12m.

Thus, the displacement amplitude is approximately 3.395 pm.
The maximum velocity is given by:

vmax = 2πfresδu0 = 2π × 20.78× 106 × 3.395× 10−12m

vmax ≈ 0.441mm/s.

Thus, the maximum velocity of the nanotube resonator at resonance varies as a function
of the peak value of dI

df
, with higher values of dI

df
leading to larger displacement amplitudes

and velocities.

A.3.3 Calculation of electrostatic force

The electrostatic force Fel on the nanotube is derived from the capacitive interaction
between the nanotube and the gate electrode. The force is expressed as:

Fel =
1

2

dCg

dx
V 2
g

where:

• Cg is the gate capacitance.

• x is the distance between the nanotube and the gate.

• Vg is the total gate voltage: Vg = V DC
g + Ṽg cos(ωt).

This results in:

Fel =
1

2

dCg

dx

((
V DC
g

)2
+ 2V DC

g Ṽg cos(ωt) + Ṽg
2
cos2(ωt)

)
For small values of Ṽg, we can neglect the Ṽg

2
term, which simplifies the force to:

Fel ≈
1

2

dCg

dx

((
V DC
g

)2
+ 2V DC

g Ṽg cos(ωt)
)
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DC and AC components of the force
The total electrostatic force consists of a constant DC component and an oscillatory

AC component:

• The DC component is given by:

FDC =
1

2

dCg

dx

(
V DC
g

)2
• The AC component is:

FAC =
dCg

dx
V DC
g Ṽg cos(ωt)

Numerical Calculation, for the specific case where:

• V DC
g = −128mV = −0.128V

• Ṽg = 0.089V (converted from −18 dBm)

• dCg

dx
= 1.71× 10−11 F/m

DC Component:

FDC =
1

2
× 1.71× 10−11 × (−0.128)2

FDC ≈ 1.44× 10−13N

AC Component:

FAC = 1.71× 10−11 × (−0.128)× 0.089 cos(ωt)

FAC ≈ −2.00× 10−13 cos(ωt)N

Total combined force
The total electrostatic force is the sum of the DC and AC components:

Ftotal(t) = FDC + FAC cos(ωt)

Substituting the calculated values:

Ftotal(t) = 1.44× 10−13 − 2.00× 10−13 cos(ωt)N

• Maximum: Fmax = 3.44× 10−13N

• Minimum: Fmin = −0.56× 10−13N

So, the total force oscillates between these two values over time.
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A.4 Tension calculation in nanotube resonator

The tension in a nanotube resonator can be modulated by applying a gate voltage Vg,
which induces an electrostatic force between the gate and the nanotube. This force leads
to a displacement of the nanotube and increases the tension within the device. The total
tension T in the nanotube is the sum of the initial, built-in tension T0 and the tension
generated by the applied gate voltage. The mechanical response of the CNT resonator
is governed by this total tension, which can be expressed in different bending regimes
depending on the magnitude of the gate voltage.

For a tension-dominated resonator, the resonance frequency fn for the n-th mode is
given by the following equation:

fn =
n

2L

√
T

µ

where L is the length of the CNT, T is the total tension, and µ is the linear mass density
of the nanotube, given by µ = mNT

L
, with mNT as the mass of the nanotube. The mode

number n represents the harmonic mode (e.g., n = 1 for the fundamental mode). The
dependence of the resonance frequency on tension allows for the calculation of tension
across different modes of oscillation.

Given the CNT parameters: L = 1.5 × 10−6m, mNT = 1.62 × 10−18 kg, the linear
mass density µ is determined by the mass of the nanotube divided by its length:

µ =
mNT

L
=

1.62× 10−18 kg

1.5× 10−6m
= 1.08× 10−12 kg/m

A.4.1 Residual tension for each mode

To calculate the residual tension for each mode at Vg = 0V, we use the frequencies
measured in vacuum in Fig. 6.2: f0 = 21MHz, f1 = 32MHz, f2 = 42.25MHz, f3 =
63.2MHz
The residual tension for each mode is calculated using the formula for tension in a tension-
dominated resonator:

T = 4L2f 2
nµ

Now, we can calculate the residual tension T0 for each mode at Vg = 0V:
For f0 = 21MHz:

T0 = 4(1.5× 10−6)2(21× 106)2(1.08× 10−12) = 4.29 nN

For f1 = 32MHz:

T1 = 4(1.5× 10−6)2(32× 106)2(1.08× 10−12) = 9.95 nN

For f2 = 42.25MHz:

T2 = 4(1.5× 10−6)2(42.25× 106)2(1.08× 10−12) = 15.6 nN

For f3 = 63.2MHz:

T3 = 4(1.5× 10−6)2(63.2× 106)2(1.08× 10−12) = 37.5 nN
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A.4.2 Tension modulation for each mode at Vg = −670mV

The total tension in each mode for frequencies – f0 = 24.25MHz, f1 = 39.4MHz, f2 =
48.37MHz, f3 = 78.8MHz at Vg = −670mV can be calculated using different bending
regimes. The modes f1 and f3 are calculated using the strong-bending regime due to their
higher tunability, while the modes f0 and f2 use the weak-bending regime, as they are less
tunable. The residual tension T0 is now replaced with the mode-specific residual tension
calculated above.

A.4.2.1 Strong bending regime

For the first harmonic f1 and third harmonic f3, we apply the strong-bending regime
where the tension scales with V

2/3
g . The total tension in this regime is modeled as:

Tstrong = Tn +

(
ESV 2

g

L2

)1/3

where E = 1× 1012 Pa [99] is the Young’s modulus, and S = πr2 = 3.14× 10−18m2 is
the cross-sectional area of the CNT, with a radius r = 1nm.
First harmonic (n = 1, f1 = 39.4MHz):

T1 = 9.95× 10−9 +

(
1× 1012 × 3.14× 10−18 × (−670× 10−3)2

(1.5× 10−6)2

)1/3

= 7.04 nN

Third harmonic (n = 3, f3 = 78.8MHz):

T3 = 37.5× 10−9 +

(
1× 1012 × 3.14× 10−18 × (−670× 10−3)2

(1.5× 10−6)2

)1/3

= 4.73 nN

A.4.2.2 Weak bending regime

For the fundamental mode f0 and second harmonic f2, we apply the weak-bending regime
where the tension increases quadratically with the gate voltage. The total tension in this
regime is modeled as:

Tweak = Tn +
ϵ0V

2
g

d2

where ϵ0 = 8.854× 10−12 F/m is the permittivity of free space, and d = 1.2× 10−6m
is the distance between the CNT and the gate.
Fundamental mode (n = 1, f0 = 24.25MHz):

T0 = 4.29× 10−9 +
8.854× 10−12 × (−670× 10−3)2

(1.2× 10−6)2
= 3.19 nN

Second harmonic (n = 2, f2 = 48.37MHz):

T2 = 15.6× 10−9 +
8.854× 10−12 × (−670× 10−3)2

(1.2× 10−6)2
= 4.32 nN

Thus, the total tensions for the different modes at Vg = −670mV are:
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• Fundamental mode: T0 = 3.19 nN

• First harmonic: T1 = 7.04 nN

• Second harmonic: T2 = 4.32 nN

• Third harmonic: T3 = 4.73 nN

A.5 Estimation of frequency shift due to Lock-in time

constant

In Fig. 7.4 (Left panel), the frequency sweep is performed from 17.5 MHz to 18 MHz with
a total of 251 frequency points. The time delay between consecutive frequency points is
10 ms, and the lock-in amplifier used for signal detection has an integration time constant
of 100 ms. Due to the finite time constant of the lock-in amplifier, the system exhibits a
phase lag during the frequency sweeps, leading to a measurable frequency shift between
the forward and reverse sweeps.

To estimate this frequency shift, we first calculate the sweep rate. The total frequency
range is 0.5 MHz (500 kHz) and the number of points is 251, yielding a frequency step
of approximately 1.992 kHz between each point. With a time delay of 10 ms (0.01 s)
between points, the sweep rate is given by:

sweep rate =
∆fstep

time per step
=

1.992 kHz

0.01 s
= 199.2 kHz/s

Next, we calculate the frequency shift using the lock-in time constant, which is 100
ms (0.1 s). The frequency shift due to this time constant is given by the product of the
sweep rate and the time constant:

∆f = sweep rate× time constant = 199.2 kHz/s× 0.1 s = 19.92 kHz

Thus, the estimated frequency shift between the forward and reverse sweeps is ap-
proximately 19.92 kHz due to system’s response lag caused by the lock-in amplifier’s
integration time.

A.6 Analysis of vortex number fluctuations from back-

ground noise

We attribute the observed off-resonance noise in the nanotube resonator response in su-
perfluid 4He to the dynamic processes of vortex pinning and depinning, influenced by
interactions between the nanotube and the underlying substrate. These interactions lead
to stochastic fluctuations in vortex number, which we analyze through a power spectral
and autocorrelation study of the off-resonance signal. To quantify this relationship be-
tween vortex number fluctuations and background noise in the CNT resonator, we follow
the methodological framework established by Barquist et al. [124], originally applied to
MEMS devices, adapting it for the nanotube resonator in a superfluid helium.

The CNT resonator in our study is driven by a capacitive gate voltage, defined as:

Vg(t) = V DC
g + Ṽg cos(ωt), (A.1)
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where V DC
g is the static DC voltage component, Ṽg is the AC driving voltage, and ω is

the angular driving frequency. This capacitive actuation induces mechanical vibrations
in the nanotube, described by the displacement function:

x(t) = A(t) cos(ωt+ ϕ(t)), (A.2)

where A(t) and ϕ(t) are the time-varying amplitude and phase, respectively, influenced
by interactions between the resonator and surrounding vortices. The current I(t) through
the nanotube depends on this displacement x(t) and is expressed as:

I(t) = G(Vg, x(t))Vsd, (A.3)

where G(Vg, x(t)) is the conductance of the nanotube, modulated by x(t), and Vsd is the
source-drain voltage. Fluctuations in x(t) induced by vortex pinning and depinning cause
variations in G, and consequently, in I(t). To monitor these fluctuations, we use a lock-in
amplifier to measure the response R = dI

df
, which captures frequency fluctuations in the

system.
On resonance, the response dI

df
is predominantly governed by amplitude fluctuations

of the CNT resonator, resulting in a stable signal phase locked to the driving force. Here,
phase noise is minimal, with amplitude fluctuations dominating due to a coherent, locked
phase response. Off-resonance, however, the mismatch between the driving frequency and
the natural resonance frequency destabilizes the system. This instability makes the system
more sensitive to phase fluctuations, amplifying the impact of vortex-induced phase noise.
Consequently, the off-resonance signal becomes dominated by fluctuations in the effective
resonance frequency, which are driven by stochastic vortex pinning and depinning.

A.6.1 Quantifying vortex number fluctuations

We derive the vortex number fluctuations ∆N by analyzing the fluctuations in the lock-in
signal R. The relationship between vortex pinning, energy dissipation, and noise fluctu-
ations is given by:

dΓ

dN
=

ϵ

8π2dmf0
, (A.4)

where ϵ = 8.56 × 10−19 Jµ m−1 represents the vortex line energy density, d = 175 nm is
the distance between the resonator and the substrate, m = 1.62 × 10−18 kg is the CNT
mass, and f0 = 67.1MHz is the resonance frequency. Using this dissipation rate dΓ

dN
, we

calculate the change in vortex number ∆N from changes in R by:

∆N =
∆R(

dR
dΓ

) (
dΓ
dN

) . (A.5)

The lock-in response Rres is inversely proportional to the damping Γ, so we find:

dR

dΓ
= −Rres

Γ
. (A.6)

This inverse relationship implies that as damping Γ increases due to vortex activity, the
signal R decreases accordingly.

The complete expression for R, taking into account external factors such as gate
voltage V DC

g and resonance frequency f0, is:

R ∝
V DC
g

Γ · f0
. (A.7)
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Thus, the derivative with respect to Γ is refined as:

dR

dΓ
= −

V DC
g

Γ2f0
. (A.8)

A.6.2 Gaussian and Poisson noise distributions in vortex fluc-
tuations

We select a frequency slice at 66.6 MHz from the top panel in Fig. 7.9, where substantial
background noise is observed in superfluid helium at the lowest measured temperature,
and plot the resulting noise distribution.

Figure A.9: Top panel: Gaussian fit of the R-channel noise. The black solid line represents
the Gaussian fit with mean µ = −3.86× 10−15 and standard deviation σ = 5.54× 10−13.
Bottom panel: Distribution of ∆N , the change in pinned vortices beneath the CNT
resonator. The red solid line shows a double Poisson fit with λ = 4.27 ± 0.06 s−1, while
the blue dashed line shows a Gaussian fit with µ = 0.02 and σ = 2.90.

In Fig. A.9, we analyze the noise distribution in the lock-in signal R, fitting it to a
Gaussian distribution with a mean of µ = −3.86 × 10−15 and standard deviation σ =
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5.54 × 10−13, indicating Gaussian behavior of the noise. Similarly, the distribution of
vortex number fluctuations ∆N is fitted with both a double Poisson model and a Gaussian
model, yielding a Poisson mean capture/removal rate λ = 4.27 ± 0.06 s−1. The Poisson
fit aligns with the stochastic, discrete nature of vortex pinning and depinning, while the
Gaussian fit suggests the system remains close to equilibrium.

A.6.3 Power spectral density and autocorrelation of vortex noise

In Fig. A.10 (top panel), the power spectral density (PSD) of vortex number noise SN(f)
reveals a power-law decay SN(f) ∼ f−0.50. This frequency scaling, indicative of scale-
invariance, suggests a random-walk-like process in vortex dynamics, a characteristic of
turbulent vortex interactions in superfluid helium. Such behavior aligns with the chaotic,
uncorrelated nature of vortex capture and release events across multiple timescales, similar
to findings in MEMS resonator studies.

Figure A.10: Top panel: Power spectral density (PSD) of vortex number noise SN(f)
derived from the amplitude noise data. The fitted power-law SN(f) ∼ f−0.50 sug-
gests a random walk process with significant vortex number correlations. Bottom
panel: Autocorrelation function of vortex number fluctuations with the fitted power law
⟨N(t)N(t+ τ)⟩ ∼ τ−1.35. The power-law fit shows long-time correlations, deviating from
the behavior of a random walk.
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The autocorrelation function for vortex number fluctuations, shown in Fig. A.10 (bot-
tom panel), decays as ⟨N(t)N(t+τ)⟩ ∼ τ−1.35, suggesting long-time correlations in vortex
dynamics. This deviation from the simple random walk model indicates that vortex inter-
actions introduce memory effects, where past pinning events influence future dynamics,
likely due to vortex-vortex interactions or clustering.

Our results imply that vortex dynamics in CNT resonators are distributed across a
wide range of timescales, contributing to both amplitude and phase noise in the system.
The absence of a dominant peak in the PSD further supports the notion of a broad,
chaotic frequency distribution driven by random vortex events. The flattening of the au-
tocorrelation function at large time lags may indicate a saturation point in the number of
pinning vortices, suggesting that vortex interactions limit the system’s ability to continu-
ally accumulate vortices. These observations are consistent with Barquist et al.’s findings
on MEMS devices in quantum turbulence, reinforcing the stochastic, multi-scale nature
of vortex dynamics in superfluid helium environments.

153



Bibliography

[1] Gregg Jaeger. “The Ehrenfest classification of phase transitions: introduction and
evolution”. In: Archive for history of exact sciences 53 (1998), pp. 51–81.

[2] Pyotr Kapitza. “Viscosity of liquid helium below the λ-point”. In: Nature 141.3558
(1938), pp. 74–74.

[3] John F Allen and AD Misener. “Flow of liquid helium II”. In: Nature 141.3558
(1938), pp. 75–75.

[4] DD Osheroff et al. “New magnetic phenomena in liquid he 3 below 3 mk”. In:
Physical Review Letters 29.14 (1972), p. 920.

[5] AJ Leggett. “Interpretation of recent results on He 3 below 3 mK: A new liquid
phase?” In: Physical Review Letters 29.18 (1972), p. 1227.

[6] N David Mermin and David M Lee. “Superfluid helium 3”. In: Scientific American
235.6 (1976), pp. 56–71.

[7] David R Tilley. Superfluidity and superconductivity. Routledge, 2019.

[8] Grigory E Volovik. The universe in a helium droplet. Vol. 117. Oxford University
Press on Demand, 2003.

[9] Wojciech H Zurek. “Cosmological experiments in superfluid helium?” In: Nature
317.6037 (1985), pp. 505–508.

[10] DI Bradley et al. “Crossover from hydrodynamic to acoustic drag on quartz tuning
forks in normal and superfluid 4 He”. In: Physical Review B 85.1 (2012), p. 014501.

[11] AM Guénault et al. “Acoustic damping of quartz tuning forks in normal and
superfluid He 3”. In: Physical Review B 100.10 (2019), p. 104526.

[12] Shaun N Fisher et al. “Generation and Detection of Quantum Turbulence in Su-
perfluid H 3 e- B”. In: Physical review letters 86.2 (2001), p. 244.

[13] David Ian Bradley et al. “Operating nanobeams in a quantum fluid”. In: Scientific
Reports 7.1 (2017), pp. 1–8.

[14] AM Guénault et al. “Probing superfluid He 4 with high-frequency nanomechanical
resonators down to millikelvin temperatures”. In: Physical Review B 100.2 (2019),
p. 020506.

[15] William Frank Vinen. “Mutual friction in a heat current in liquid helium II I.
Experiments on steady heat currents”. In: Proceedings of the Royal Society of
London. Series A. Mathematical and Physical Sciences 240.1220 (1957), pp. 114–
127.

154
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