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This paper presents an improved method for imaging in turbid water by using the individual strengths of the quadrature
lock-in discrimination (QLD) method and the retinex method. At first, the high-speed QLD is performed on images, aiming at
capturing the ballistic photons. Then, we perform the retinex image enhancement on the QLD-processed images to enhance
the contrast of the image. Next, the effect of uneven illumination is suppressed by using the bilateral gamma function for
adaptive illumination correction. The experimental results depict that the proposed approach achieves better enhancement
than the existing approaches, even in a high-turbidity environment.
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1. Introduction

Underwater image restoration plays a crucial role in object
detection, object recognition, and video tracking[1]. The visibil-
ity of underwater images is degraded by the scattering and
absorption of the incident light field. The imaging quality dete-
riorates with the increased distance between the target and the
sensor as well as with the turbidity.
In recent years, many de-scattering techniques have been put

forth to cope with the degradation of the image. These methods
are typically divided into two categories: image restoration
methods based on the physical model and image recovery meth-
ods based on image enhancement[2,3]. The image restoration
methods use the atmospheric scattering model or prior knowl-
edge to reverse the degradation caused by the scattering of light,
which includes using the dark channel prior (DCP) method[4],
the polarization imaging method[5], and the intensity modula-
tion of an active light source[6]. The other is built on image
enhancement algorithms, such as the histogram equalization
(HE)[7], the contrast limited adaptive histogram equalization
(CLAHE)[8], and the retinex algorithms[9]. These algorithms
can improve image contrast, but they are ineffective at restoring
visibility range.
A simpler and more competitive approach is to use an inten-

sity modulated continuous-wave light source[6,10,11]. The theory

builds on the hypothesis that the modulating frequency and
phase of the captured ballistic photons, in contrast to those of
the multiply scattered photons, remain the same as that of an
incident modulated light source. This method requires demodu-
lation of the received signal at themodulating frequency. Typical
ballistic filtering requires modulation at high frequencies[12].
However, low modulation frequencies can be chosen, at the
expense of fewer ballistic or snake-like photons, to meet the
requirements of available imaging systems[13]. Sudarsanam et al.
used low frequencies to demonstrate imaging through spherical
polydisperse scatterers, and the demodulation was performed by
using quadrature lock-in discrimination (QLD)[13]. An instan-
taneous all-optical single-shot technique demonstrated
demodulation at higher frequencies (≥ 5 kHz) up to the radio
frequency range[14]. However, the aforementioned technique
has a few shortcomings, such as a smaller field of view, an
increased cost of optical elements, and system complexity.
Imaging through the real fog has been realized over hectome-

tric distances to validate the performance of the QLD tech-
nique[15]. In our previous work, we developed a tracking
method for active light beacons to realize underwater docking
in highly turbid water. TheQLD technique was employed to lock
on the blinking frequency of the light beacons located at the
docking station and to successfully suppress the effect of
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unwanted light and stray noise at other frequencies[16]. Recently,
imaging through flame and smoke was demonstrated by
employing a blue light-emitting diode (LED) and by using the
QLD algorithm.[17] Although the QLD algorithm is well studied
for imaging using scattering media such as polydisperse scatter-
ers, real-time fog, smoke, and flame, it is still not thoroughly
investigated for underwater image restoration where an LED
is used to illuminate the target object.
In this Letter, we presented a novel underwater image recov-

ery method based on a cascade method. It benefits from the
strengths of the image restoration method, such as the tradi-
tional QLD technique, to improve visibility and mitigate the
noise. The high-speed QLD method is proposed to help imple-
ment our cascaded approach in real-world systems. The well-
known image enhancement method, such as the multiscale
retinex (MSR) technique, is employed to recover the contrast
of the output image. In the MSR, the multiscale guided filter
is used instead of the multiscale Gaussian filter to avoid the halo
artifacts at the boundaries, information loss, and the blurring
effect of the output image. Additionally, the adaptive illumina-
tion correction algorithm is optimized and incorporated to over-
come the non-uniform illumination in the output image. The
weighted fusion method is then developed to obtain the final
enhanced output image.

2. Proposed Method

The proposed approach consists of three main steps described in
the following sections.

2.1. High-speed quadrature lock-in discrimination algorithm

The quadrature lock-in discrimination technique works based
on the principle of a lock-in amplifier. Consider the captured
light modulated at a frequency of f m (Hz) and modulation index
M; the intensity at the receiver is written as Ir�t� = Iavg�1�
M sin�2πf mt�� for the average received intensity Iavg. When
the signal is multiplied by a sine wave of the known modulating
frequency and a relative phase Δϕ followed by the time averag-
ing over a few cycles, one obtains an in-phase component
I = A cos Δϕ. Meanwhile, the multiplication of the signal with
the cosine wave of the known modulating frequency and the
time averaging over a few cycles give rise to the quadrature com-
ponent Q = A sin Δϕ. The quadrature components can be

squared and added to retrieve the amplitude A =
����������������
I2 � Q2

p
,

and the relative phase difference Δϕ = arctan�Q=I� between
the source and the detector can also be obtained. In our experi-
ments, we used a scientific complementary metal-oxide-semi-
conductor (sCMOS) camera to capture signals as 2D images
of a scene over a certain length of time. The images are then
processed offline by the QLD algorithm to reconstruct an output
image by computing the amplitude of the received signal at each
pixel using MATLAB as a programming tool.
The frame rate (or sampling frequency f s) of the camera is N

times the modulation frequency in the traditional QLDmethod.

Moreover, N should be greater than or equal to 2,
i.e., f s = N × f m, N ≥ 2 in accordance with the Nyquist sam-
pling criterion.When the multiple is four (i.e.,N = 4), a periodic
sequence of sine and cosine signals can be written as S =
�0, 1, 0, − 1� and C = �1, 0, − 1, 0�, respectively, and the I and
Q components can be written in the form of Eqs. (1) and (2)[18].

I = ImM×L × � 0 1 0 −1 : : : 0 1 0 −1 �T1×L, �1�

Q = ImM×L × � 1 0 −1 0 : : : 1 0 −1 0 �T1×L, �2�

where ImM×L is a matrix, and the subscriptM indicates the total
number of pixels in an image and L is the number of captured
images. The sine �S� and cosine �C� sequences are concatenated
L=4 times in Eqs. (1) and (2), respectively, to calculate the I and
Q components. The number of multiplications has been reduced
to half of the traditional QLD method for the same multiple of
modulated signal frequency (i.e.,N = 4) using orthogonal vector
arithmetic. Additionally, the central processing unit (CPU) does
not need to allocate memory space to save the reference signals
of the sine and cosine at the known frequency, which reduces the
processor’s burden and results in faster calculations. The higher
values of N are found to have a negligible effect on the quality of
the QLD processed image.

2.2. Multiscale retinex method

Since the underwater image is degraded due to low contrast and
uneven illumination, the retinex method is used to overcome
these problems[19]. Retinex theory states that the perceived
image can be broken down into illumination and reflection
images, as shown in Eq. (3),

IQLD�x, y� = IL�x, y� × R�x, y�, (3)

where IQLD�x, y� is the input image to retinex method. IL�x, y�
and R�x, y� denote the illumination and reflection images,
respectively. The conventional retinex algorithm uses the
Gaussian filtering of a perceived image to get the illumination
image. The later versions proposed the multiscale retinex
(MSR) method, which employs a multiscale Gaussian filter with
different weights to recover the local dynamics and contrast of
the image more efficiently[20],

ILi�x, y� = IQLD�x, y��Gi�x, y�, (4)

where � denotes a convolution operator. The illumination image
at the ith scale ILi�x, y� is approximated from IQLD�x, y� by con-
volving it with a Gaussian filter of the ith scale. Gi�x, y� is a mul-
tiscale Gaussian filter with a standard deviation σi defined as

Gi�x, y� =
1

2πσ2i
exp−

�
x2 − y2

2σ2i

�
, (5)

rMSR�x, y� =
Xn
i=1

wiflog�IQLD�x, y�� − log�ILi�x, y��g, (6)
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where rMSR�x, y� is the logarithm of RMSR�x, y�; wi is the weight-
ing factor, which should add up to 1.0; and n is the number of
scales. We used MSR along with the guided filter to avoid the
relatively lower contrast and the halo artifacts at the edges of
the image obtained by using the traditional MSR method[21].
Three different window sizes of the guided filter, 15 × 15,
25 × 25, and 40 × 40, corresponding to n = 3, are used in our
experiments.
The Gaussian filtering of the resulting illumination compo-

nent is done at the highest scale to remove the noise. We used
the simplest color balancing algorithm[22] as a post-processing
method, which clips a certain proportion of pixels on either side
of the image histogram to stretch the values of the image to the
widest possible range [0, 255].

2.3. Improved bilateral gamma function for adaptive
intensity correction

The resulting image from the previous step still has an impact of
uneven illumination, especially at high turbidity levels. Here, to
reduce the impact, we employed an improved bilateral gamma
function in the adaptive intensity correction algorithm[23] to
adaptively update the illumination component from the pre-
vious step. The equations of the improved bilateral gamma func-
tion are as follows:

Oh�x, y� =
�
255 ·

�
RMSR�x, y�

255

��
γ

, (7)

Ol�x, y� = 255 ·

�
1 −

�
255 − RMSR�x, y�

255

��
γ

,

γ = γ
jμ−IL�x,y�j

μ ,
0 (8)

Iadpt�x, y� = α · Oh�x, y� � �1 − α� · Ol�x, y�,

α =
�
1, IL�x, y� ≤ μ,

0, IL�x, y� > μ,
(9)

where μ is the mean of the illumination image, and α is a binary
subsection correction parameter, which can take the value 0 or 1.
When a pixel value �x, y� of the illumination image is less than or
equal to μ, the output of the improved bilateral gamma function
Ic�x, y� is a gamma function Oh�x, y�, which implies that the
intensity value of the pixel �x, y� is increased for the low illumi-
nation pixels. If the pixel value �x, y� of the illumination image is
greater than μ, then the output is a gamma function Ol�x, y�,
which results in the reduction of intensity values for the high
illumination pixels. The parameter γ varies dynamically and is
controlled by the distribution characteristics of the illumination
image, which enables adaptive correction of the nonuniformly
illuminated underwater image. The base γ0 is optimally chosen
to be equal to 0.8 since it gives the best illumination distribution
for each turbidity level and different target objects in our
experiments.

We proposed an adaptive illumination correction algorithm
for underwater images based on the bilateral gamma function
by using both the reflection and illumination images.
Meanwhile, the gamma-corrected illumination image ILc�x, y�
is calculated and added back to the reflection image to restore
the naturalness of the image[24]. The corrected reflection image
Ic�x, y� is expressed as

Ic�x, y� = RMSR�x, y� × ILc�x, y�: (10)

The final output image is the weighted fusion of the two dif-
ferent illumination corrected images,

Iout�x, y� = β · Ic�x, y� � �1 − β� · Iadpt�x, y�: (11)

We chose β = 0.5 in our experiments. The flowchart of the
proposed method is shown in Fig. 1.

3. Experiments and Results

The experimental setup is shown in Fig. 2. We used a 625-nm
red LED (M625L4) as a light source, and the current through

Fig. 1. Flowchart of the proposed method.

Fig. 2. Experimental setup.
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the LED is modulated (modulation index M = 1.43) using the
internal sinusoidal modulation function. Two types of objects,
such as a Rubik’s cube and a rubber toy, are used as underwater
targets with the corresponding modulation frequencies for the
LED being adjusted to 37Hz and 38Hz, respectively. Themodu-
lated LED illuminates the target, and the image, formed by the
reflection of light from the target, is captured using a camera
(16-bit Dhyana 400BSI sCMOS camera). The volume of the
transparent water tank is 38 cm × 25 cm × 26 cm. We added
up to 21 mL of milk into the water tank to simulate a high-
turbidity environment. The distance between the target object
and the camera is 90 cm. The frame rate of the camera is adjusted
to four times the modulating frequency of the LED. The images
are captured for a time duration of 2 seconds. We did not
observe any improvement in the final results for a longer time
series.
To demonstrate that our approach can realize image restora-

tion, we used an image of a rubber toy, which is amulti-level gray
image and is more prone to degradation caused by noise and
turbidity. The performance comparison of our approach with
other traditional image restoration and image enhancement
methods is shown in Figs. 3 and 5. It is important to mention
that the time averaging of 100 images is performed to minimize
the effect of noise prior to applying traditionalmethods. It can be
seen in Fig. 3 that the grayscale span of the output image of the
CLAHE is more widely distributed, and the overall contrast is
enhanced. Despite the enhancement in visibility, the problems
of uneven illumination and poor performance for high-turbidity
images cannot be solved. The guided filter used in the MSR
method contributed to the high contrast and elimination of
the halo artifacts along the boundaries. The adaptive gamma
correction adjusts the illumination adaptively by increasing
the intensity in low illumination areas and vice versa. Thus,
the shadow caused by uneven illumination is eliminated consid-
erably, and from the results, it can be seen that our method is
more efficient for a high-turbidity environment. We select a
zoomed-in region of the high-turbidity image, and the intensity
profiles at colored dashed lines in the zoomed-in view of Fig. 3

are plotted and shown in Fig. 4. For a fair comparison, the mini-
mum grayscale intensity value of each curve is subtracted from
the original value to shift its lowest point to the horizontal axis.
The intensity profile of a clear image (image captured in clear
water) is also plotted. It can be seen that the trend of the curve
in our method is similar to that of a clear image. Furthermore, it
is clear that the proposed approach has the highest contrast and
signal-to-noise ratio (SNR) as compared with other methods.
The MSR method tends to have a loss of details, bleaching of
image information, and lower contrast as compared to our
method, and the DCP and DehazeNet[25] suffer from a low con-
trast and uneven illumination problem.
The universality of the proposed method is verified by imag-

ing the Rubik’s cube with handwritten words on it as a target.
Different methods at different turbidities and their zoomed-in
views are shown in Fig. 5. We compute various evaluation met-
rics of the image quality for the zoomed-in view in Fig. 5 to
quantify and compare the image quality for various methods
in the absence of reference images. The metrics include the stan-
dard deviation (STD), the peak signal-to-noise ratio (PSNR), the
average gradient (AG)[26], the entropy[27], the value of the mea-
sure of enhancement (EME)[28], the blind-reference-less image
spatial quality evaluator (BRISQUE)[29], and the natural image
quality evaluator (NIQE)[30]. The values of these metrics are

Fig. 3. Comparison results for the images captured in low-turbidity (first row)
and high-turbidity (second row) and their zoomed-in views (of high-turbidity in
the third row) of different methods using the rubber toy as a target object.

Fig. 4. Intensity profiles at colored dashed lines in the zoomed-in view of
Fig. 3.

Fig. 5. Comparison results for the images captured in low-turbidity (first row)
and high-turbidity (second row) and their zoomed-in views (of high-turbidity in
the third row) of different methods using the Rubik’s cube as a target object.
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reported in Table 1, and the best indicators are marked in bold.
One may find that our method achieved the highest values for
most of the metrics, which further supports the effectiveness of
the proposed method over the other traditional methods.
The performance of the proposed method is also evaluated

for the modulated light source with different modulation
indexes. The zoomed-in parts of the high-turbidity images of
the target objects from Fig. 5 (Rubik’s cube) are used to evaluate
the effect by taking the PSNR as an evaluation metric. Two
modulation indexes have been chosen, first by taking a modu-
lation index ofM = 1.43 and secondM = 0.66. The PSNR values
of the recovered images are shown at the top of the correspond-
ing images in Fig. 6. It is clear that the small modulation index
leads to poor image recovery results for high-turbidity images.
Compared with each other, the PSNR value has been decreased
by 1.42 dB. It is deduced that the higher values of themodulation
index aid in obtaining a better quality of the recovered image in
our experiments.

4. Conclusion

We present a three-stage processing method for recovering
underwater images. Initially, we preprocessed the series of
images of the scene, illuminated with a modulated source of
light, using the high-speed QLD technique at the known modu-
lating frequency. The QLD technique helped reduce the noise
caused by turbidity and increased the visibility of the scene by

filtering the small number of ballistic photons. Next, we per-
formed retinex enhancement using a guided filter to separate the
illumination component, which restores the contrast of the
image and reduces uneven illumination at the cost of increased
processing noise. The proposed approach makes better use
of the retinex method to improve contrast by using a QLD-
processed image instead of the original underwater image.
Finally, the usage of the bilateral gamma function for adaptive
illumination correction aids the visual quality by reducing the
over-exposure effects that then preserve details in the image.
The results show that our method has distinct benefits in con-
trast enhancement, detail recovery, uneven illumination correc-
tion, and noise reduction in both low and high-turbidity
environments.
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