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Abstract

A four-hybrid information system (4HIS) is an information system (IS) where
the dataset of object descriptions consists of categorical, boolean, real-valued
and missing data or attributes. This paper studies measures of uncertainty
for a 4HIS and its application in attribute reduction. The distance function
for each type of attribute in a 4HIS is first provided. Then, this distance
is used to produce the tolerance relation induced by a given subsystem in a
4HIS. Next, information structure of this subsystem is proposed in terms of
a set vector and dependence between information structures is introduced.
Moreover, granulation and entropy measures in a 4HIS are investigated on
the basis of information structures. In order to verify the feasibility of the
proposed measures, effectiveness analysis is performed from a statistical per-
spective. Finally, an application of the proposed measures for attribute re-
duction in a 4HIS is given.
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Effectiveness analysis; Attribute reduction.

1. Introduction

1.1. Research background

Due to the complex diversity of the objective world, uncertainty exists in
real life. randomness, vagueness and imprecision are the most important con-
cepts for uncertainty which can be appeared everywhere. Uncertainty plays
a vital role in practical problems. Measuring uncertainty (UM) is helpful for
understanding the nature of various kinds of information and then offer new
visual angle for data analysis. UM a significant issue in many research field-
s, such as machine learning [33], pattern recognition [11], medical diagnosis
[14], data mining [8] and so on.

Granular computing (GrC), proposed by Zadeh [39, 40], is a mode of
thinking or method for solving practical problems based on granularity struc-
ture. Because GrC reflects the global view and approximate solution ability
of human beings when dealing with multilevel and multiperspective prob-
lems, GrC has gradually become an important theory for solving uncertain.
Information granulation is the basic content of GrC. An object is divided
into a series of different information granules under given granulation crite-
ria which is called the process of information granulation. Under dissimilar
granulation criteria, the different granularity layers can be obtained, and
then multi-granularity grid structure. Granular structure is the collection of
information granules. Lin [16] and Yao [35] talked about the importance of
GrC, it caught people’s attention. GrC is a superset that integrates many
theoretical methods in artificial intelligence fields such as rough set theory
(RST) [25], fuzzy set theory [41], concept lattice [24, 31] and quotient space
theory [46].

RST is a considerable mathematical tool. Not only does it offers new
scientific logic and research methods for information science and cognitive
science, but also provides a tool dealing with uncertainty. Its essential idea
is to construct a partition of the universe by means of indistinguishable re-
lations, obtain equivalence classes, and then establish an approximate space.
Information system (IS) based on RST is also called knowledge representa-
tion system [25]. An IS can be represented by a data table. Furthermore,
the data table contains rows labeled by objects of interest, columns labeled
by attributes, and entries of the table indicating attribute values. There are
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many applications in RST, for instance, uncertainty modeling [7], reason-
ing with uncertainty [10], rule extraction [4, 23], classification and feature
selection [6, 13] are associated with IS.

In order to systematically assess uncertainty, the notion of entropy to
communicate theory Shannon [30] was introduced to deal with UM. Beauboue-
f et al. [3] investigated other methods to rough sets’ uncertainty. Miao et al.
[22] proposed some more effective and significance measure tools, including
information, combination and rough entropy. Liang et al. [19] introduced
a rough metric method for knowledge in an incomplete information system
(IIS). Mi et al. [23] gave some properties of fuzzy approximation operators
and a method of uncertainty measurement for generalized fuzzy rough sets.
Li et al. [21] studied uncertainty measurement for a fuzzy relation IS. Li et al.
[18] measured uncertainty of a fully fuzzy IS by using Gaussian kernel. Dai
et. al [9] studied entropy measures and granularity measures for a set-valued
IS. Li et. al [20] investigated UM for a covering IS.

For GrC in an IS, the information structure is a significant research topic.
An equivalence relation is a special kind of similarity between objects from
a dataset. Given an IS, each attribute subset determines an equivalence re-
lation. The object set of this IS is divided into disjoint classes by this equiv-
alence relation, and these classes are said to be equivalence classes. If two
objects belong to the same equivalence class, then we may say that they
cannot be distinguished under this equivalence relation. Thus, each equiva-
lence class is seen as an information granule consisting of indistinguishable
objects. The family of all these information granules constitutes a vector;
this vector is said to be an information structure in the IS induced by this
attribute subset. Equally, information structures in an IS are also granular
structures in the meaning of GrC. Yu [36] proposed information structures in
an IIS. Zhang et al. [45] investigated information structures and uncertainty
measures in a fully fuzzy IS. Li et. al [17] investigated information structures
in a covering IS.

1.2. Motivation and inspiration

If an IS has many kinds of attributes or data, such as boolean attributes,
categorical attributes, real-valued attributes, missing value and so on, then
this IS can be called a multiple data IS. Zeng et al. [43] called such an IS as
a hybrid information system (HIS). How to process this kind of hybrid data?
Zeng et al. [43] investigated the measurement problem of mixed data and the
incremental updating method when IS changed. Martti et al. [15] introduced
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two distance measures in the presence of missing values is very useful to study
for medical data of mixed-type variables. Han et al. [12] introduced a useful
approach to process hybrid data that a database consisting of six data types.
Yu [37] considered information structures and UM of a hybrid information
system with images (HISI).

In practical applications, hybrid data exists anywhere. It is very mean-
ingful topic to discuss UM of an IS. The main purpose of this paper is to
study UM of a 4HIS.

In recent years, some scholars have discussed topics related to informa-
tion structures and uncertainty in an IS, such as [1, 5, 32]. However, their
research lacks numerical experiments and big data analysis support. To make
sure our work is more convincing and complete, this paper gives numerical
experiments and data analysis.

1.3. Discussion and contribution

In this part, we discuss several references for hybrid data, so as to see the
contribution or innovation of this paper more clearly.

(1) Zeng et al. [43] defined a new distance based on the value difference
metric and then constructed a novel fuzzy rough set by combining the dis-
tance and Gaussian kernel. Considering an IS often vary with time, they
analyzed the updating mechanisms for feature selection with the variation
of the attribute set. Moreover, they presented fuzzy rough set approach-
es for incremental feature selection on HIS and proposed two corresponding
algorithms. Finally, extensive experiments on eight datasets show that the
incremental approaches significantly outperform non-incremental approaches
with feature selection in the computational time.

(2) Zeng et al. [44] analyzed the changing mechanisms of the attribute
values and fuzzy equivalence relations in fuzzy rough set and then presented
fuzzy rough set approaches for incrementally updating approximations in an
HIS. Moreover, they gave two corresponding incremental algorithms. Finally,
extensive experiments on eight data sets show that incremental approaches
can effectively improve the performance of updating approximations and not
only significantly shorten the computational time, but also increase approx-
imation classification accuracies.

(3) Yu [37] considered a hybrid information system with images (HISI).
First, he developed new hybrid distance in an HISI. Then, he obtained the
fuzzy Tcos-equivalence relation by using Gaussian kernel. Next, he described
information structures in an HISI by set vectors, and studied dependence
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between them by using inclusion degree. Finally, he investigated UM for an
HISI by means of its information structures.

(4) Yuan et al. [38] introduced fuzzy rough sets to deal with the prob-
lem of outlier detection in hybrid data (numerical, categorical). First, they
defined the granule outlier degree to characterize the outlier degree of fuzzy
rough granules by employing the fuzzy approximation accuracy. Then, they
constructed the outlier factor based on fuzzy rough granules by integrating
the outlier degree and the corresponding weights to characterize the outlier
degree of objects. Furthermore, they designed the corresponding outlier de-
tection algorithm. Finally, they evaluated the effectiveness of the algorithm
through experiments on 16 real-world datasets. The experimental results
show that the algorithm is more flexible for detecting outliers and is suitable
for hybrid data.

(5) Zhang et al. [42] proposed a fuzzy rough set based information en-
tropy for feature selection for hybrid data (nominal, real-valued). They first
proved that the newly-defined entropy meets the common requirement of
monotonicity and can equivalently characterize the existing feature selection
in the fuzzy rough set theory. Then, they formulated a feature selection
algorithm based on the proposed entropy and a filter-wrapper method is
suggested to select the best feature subset in terms of classification accura-
cy. Finally, they carried out an extensive numerical experiment to assess the
performance of the feature selection algorithm.

(6) This paper deal with hybrid data (categorical, boolean, real-valued
and missing data). The main details are based on the following considera-
tions: a) a 4HIS itself has uncertainty; b) how to define a tolerance relation
in a 4HIS; c) Information structure is very helpful for knowledge discovery
from a 4HIS; d) the magnitude of the measured value in a 4HIS can be com-
pared by dependence between information structures; e) which measure is
chosen to measure the uncertainty of a 4HIS; f) it is very necessary to ana-
lyze the effectiveness of the proposed measurement; h) it is important to give
an application of the proposed measures for attribute reduction in a 4HIS.

This paper first provides the distance function for each type of attribute
in a 4HIS. This distance is used to produce the tolerance relation induced
by a given subsystem. Then, information granules of a 4HIS based on the
tolerance relation are constructed. By the way, the information structure
formed by information granules composed of toleration classes is presented.
Next, the dependence between them is discussed. By means of the depen-
dence, four kinds of measurement to estimate the uncertainty of a 4HIS are
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Figure 1: The work process of the paper

put forward. Moreover, the effectiveness analysis about the proposed mea-
sures ia carried out from a statistical perspective. We find the influence of θ
value on the UM for a 4HIS, which may have potential application value in
data mining. Finally, an application of the proposed measures for attribute
reduction in a 4HIS is given.

1.4. Structure and organization

The work process of the paper is given in Figure 1.
The remaining part of this paper is organized as follows. Section 2 recalls

some notions about a 4HIS. Section 3 constructs the distance between the
information values of two objects about each type of attribute in a 4HIS and
proposes the tolerance relation induced by a given subsystem of a 4HIS. Sec-
tion 4 describes information structures in a 4HIS and studies the dependence
between them. Section 5 introduces some tools for measuring uncertainty of
a 4HIS. Section 6 conducts effectiveness analysis for showing the feasibility
of these tools. Section 7 gives an application of the proposed measures for
attribute reduction in a 4HIS. Section 8 concludes this paper.
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Table 1: A 4HIS

X Headache(a1) Muscle pain(a2) Temperature(a3) Symptom(a4)

x1 Sick Yes 40 Flu
x2 Sick Yes 39.5 Flu
x3 Middle * 39 Flu
x4 Middle Yes 36.8 Rhinitis
x5 Middle No * Rhinitis
x6 No No 36.6 Health
x7 No * * Health
x8 No Yes 38 Flu
x9 * Yes 37 Health

2. Preliminaries

In this section, some basic concepts about a 4HIS are introduced.

Definition 2.1 ([26]). Suppose that X is a finite set of objects. Assume that
AT expresses a finite set of attributes. Then the ordered triple (X,AT ) is
referred to as an information system (IS), if every attribute a ∈ AT is able
to decide a function a : X → Ya, where Ya = {a(x) : x ∈ X}.

Let (X,AT ) be an IS. If there is a ∈ AT such that ∗ ∈ Ya, here ∗ means
a null or unknown value, then (X,AT ) is called an incomplete information
system (IIS).

Definition 2.2. Suppose that (X,AT ) is a IIS. Then (X,AT ) is referred to
as a four-hybrid information system (4HIS), if A = Acat ∪Aboo ∪Area, where
Acat, Aboo and Area are the categorical, boolean and real-valued attribute set,
respectively.

Example 2.3. In Table 1, categorical attribute “Headache”, boolean attribute
“Muscle pain”, real-valued attribute “Temperature” and categorical attribute
“Symptom” are denoted as a1, a2, a3 and a4, respectively, and “ * ” in-
dicates the missing value. Then, Table 1 depicts a 4HIS (X,AT ), where
X = {x1, x2, x3, x4, x5, x6, x7, x8, x9} is an object set, A = {a1, a2, a3, a4} ex-
presses a attribute set.

Y ∗
a is denoted as the set of non-missing information values of the attribute

a. Then
Y ∗
a1

= {Sick,Middle, No}, Y ∗
a2

= {Y es,No},

7
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Y ∗
a3

= {36.6, 36.8, 37, 38, 39, 39.5, 40}, Y ∗
a4

= {F lu, Rhinitis,Health}.

3. Tolerance relations in a 4HIS

In this section, the distance between the information values of two ob-
jects about each type of attribute in a 4HIS is first constructed. Then, the
tolerance relation induced by a given subsystem of a 4HIS is proposed.

3.1. The distance function for each type of attribute in a 4HIS

∀ A,B ∈ 2X , denote

A⊕ B = A ∪ B − A ∩B.

∀ a ∈ Area, denote
â = maxY ∗

a −minY ∗
a .

∀ a ∈ Acat and x ∈ X with a(x) )= ∗, denote

[x]a = {y ∈ X : a(x) = a(y), a(y) ∈ Y ∗
a }.

For missing data, we have the following thoughts.
1) Consider “x )= y, a(x) = ∗, a(y) )= ∗, a ∈ A”, because “a(x)” is treated

as “do not care” condition, thus a(x) has the probability of 1
|Y ∗

a |
to equal to

one certain value of Y ∗
a .

2) Consider “x )= y, a(x) )= ∗, a(y) = ∗, a ∈ A”, because “a(y)” is treated
as “do not care” condition, thus a(y) has the probability of 1

|Y ∗
a |

to equal to
one certain value of Y ∗

a .
3) Consider “x )= y, a(x) = ∗, a(y) = ∗, a ∈ A”, a(x) and a(y) both

have the probability of 1
|Y ∗

a |
to equal to one certain value of Y ∗

a , so the joint

probability of a(x) and a(y) is 1
|Y ∗

a |2
.

For “x )= y, a(x) )= ∗, a(y) )= ∗, a(x) )= a(y), a ∈ Area”, define

dis(a(x), a(y)) =
|a(x)− a(y)|

â
.

For “x )= y, a(x) )= ∗, a(y) )= ∗, a(x) )= a(y), a ∈ Aboo”, according to the
opinion of [43], define

dis(a(x), a(y)) = 1.
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For “x )= y, a(x) )= ∗, a(y) )= ∗, a(x) )= a(y), a ∈ Acat”, according to the
opinion of [37], define

dis(a(x), a(y)) =
|[x]a ⊕ [y]a|

|[x]a ∪ [y]a|
.

In this way, the following definition is proposed.

Definition 3.1. Suppose that (X,AT ) is a 4HIS with AT = Acat∪Aboo∪Area.
Then ∀ u, y ∈ X, ∀ a ∈ A, the distance between a(x) and a(y) is defined as

dis(a(x), a(y)) =































































0, x = y, a ∈ A;

1− 1
|Y ∗

a |2
, x $= y, a(x) = ∗, a(y) = ∗, a ∈ A;

1− 1
|Y ∗

a |
, x $= y, a(x) = ∗, a(y) $= ∗, a ∈ A;

1− 1
|Y ∗

a |
, x $= y, a(x) $= ∗, a(y) = ∗, a ∈ A;

0, x $= y, a(x) $= ∗, a(y) $= ∗, a(x) = a(y), a ∈ A;

1, x $= y, a(x) $= ∗, a(y) $= ∗, a(x) $= a(y), a ∈ Aboo [43];
|[x]a⊕[y]a|
|[x]a∪[y]a|

, x $= y, a(x) $= ∗, a(y) $= ∗, a(x) $= a(y), a ∈ Acat [37];
|a(x)−a(y)|

â
, x $= y, a(x) $= ∗, a(y) $= ∗, a(x) $= a(y), a ∈ Area.

Example 3.2. (Continued from Examples 2.3)
(1) Since a1 is a categorical attribute, a1(x1) = Sick and (a1(x3) =

Middle, we have

[x1]a1 = {x1, x2}, [x3]a1 = {x3, x4, x5}.

By Definition 3.1,

dis((a1(x1), a1(x3)) =
|[x1]a1 ⊕ [x3]a1 |

|[x1]a1 ∪ [x3]a1 |
=

|[x1]a1 ∪ [x3]a1 − [x1]a1 ∩ [x3]a1 |

|[x1]a1 ∪ [x3]a1 |
=

5

5
= 1;

(2) Since a2(x1) = Y es )= ∗, a2(x3) = ∗, by Definition 3.1, we have

dis((a2(x1), a2(x3)) = 1−
1

|Y ∗
a2
|
= 1−

1

2
= 0.5;

(3) Since a3 is a real-valued attribute, by Definition 3.1, we have

dis((a3(x1), a3(x3)) =
|a3(x1)− a3(x3)|

â3
=

|40− 39|

40− 36.6
≈ 0.2941;
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(4) Since a4(x1) = F lu = a4(x3), by Definition 3.1, we have

dis((a4(x1), a4(x3)) = 0.

Below, for convenience, the 4HIS (X,C ∪D) with C = Acat ∪Aboo ∪Area

is denoted as the 4HIS (X,AT ) where every element of D is be viewed as a
categorical attribute.

Definition 3.3. Let (X,AT ) be a 4HIS. ∀ a ∈ A, put

Ma = (dis(a(xi), a(aj)))n×n.

Then Ma is referred to as the distance matrix of the attribute a in (X,AT ).

Example 3.4. (Continued from Examples 2.3)

Ma1
=



























0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6667
0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6667
1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.6667
1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.6667
1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.6667
1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.6667
1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.6667
1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.6667
0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 0.0000



























,

Ma2
=



























0.0000 0.0000 0.5000 0.0000 1.0000 1.0000 0.5000 0.0000 0.0000
0.0000 0.0000 0.5000 0.0000 1.0000 1.0000 0.5000 0.0000 0.0000
0.5000 0.5000 0.0000 0.5000 0.5000 0.5000 0.7500 0.5000 0.5000
0.0000 0.0000 0.5000 0.0000 1.0000 1.0000 0.5000 0.0000 0.0000
1.0000 1.0000 0.5000 1.0000 0.0000 0.0000 0.5000 1.0000 1.0000
1.0000 1.0000 0.5000 1.0000 0.0000 0.0000 0.5000 1.0000 1.0000
0.5000 0.5000 0.7500 0.5000 0.5000 0.5000 0.0000 0.5000 0.5000
0.0000 0.0000 0.5000 0.0000 1.0000 1.0000 0.5000 0.0000 0.0000
0.0000 0.0000 0.5000 0.0000 1.0000 1.0000 0.5000 0.0000 0.0000



























,

Ma3
=



























0.0000 0.1471 0.2941 0.9412 0.8571 1.0000 0.8571 0.5882 0.8824
0.1471 0.0000 0.1471 0.7941 0.8571 0.8529 0.8571 0.4412 0.7353
0.2941 0.1471 0.0000 0.6471 0.8571 0.7059 0.8571 0.2941 0.5882
0.9412 0.7941 0.6471 0.0000 0.8571 0.0588 0.8571 0.3529 0.0588
0.8571 0.8571 0.8571 0.8571 0.0000 0.8571 0.9796 0.8571 0.8571
1.0000 0.8529 0.7059 0.0588 0.8571 0.0000 0.8571 0.4118 0.1176
0.8571 0.8571 0.8571 0.8571 0.9796 0.8571 0.0000 0.8571 0.8571
0.5882 0.4412 0.2941 0.3529 0.8571 0.4118 0.8751 0.0000 0.2941
0.8824 0.7353 0.5882 0.0588 0.8571 0.1176 0.8571 0.2941 0.0000



























,

Ma4
=



























0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000
0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000
0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000
1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 0.0000
1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 0.0000



























.

3.2. The tolerance relation induced by a given subsystem of a 4HIS

Below, the tolerance relation induced by a given subsystem of a 4HIS is
established.
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Definition 3.5. Suppose that (X,AT ) is a 4HIS and A ⊆ AT . Pick θ ∈

[0, 1]. Put

Rθ

A = {(x, y) ∈ X ×X : ∀ a ∈ A, dis(a(x), a(y)) ≤ θ}.

Then Rθ

A is referred as to the relation induced by the subsystem (X,A) with
respect to θ.

Clearly, Rθ

A is a tolerance relation on X .
Denote

Rθ

A(x) = {y ∈ X : (x, y) ∈ Rθ

A}.

Then Rθ

A(x) is referred as to the tolerance class of the object x under the
tolerance relation Rθ

A.

Proposition 3.6. Let (X,AT ) be a 4HIS. Then the following properties hold:
(1) If A ⊆ B ⊆ AT , then for any θ ∈ [0, 1] and x ∈ X,

Rθ

B(x) ⊆ Rθ

A(x);

(2) If 0 ≤ θ1 ≤ θ2 ≤ 1, then for any A ⊆ AT and x ∈ X,

Rθ1
A (x) ⊆ Rθ2

A (x).

Proof. (1) Suppose y ∈ Rθ

B(x). Then ∀ a ∈ B, dis(a(x), a(y)) ≤ θ.
Note that A ⊆ B. Then ∀ a ∈ A, dis(a(x), a(y)) ≤ θ. Thus y ∈ Rθ

A(x).
Hence Rθ

B(x) ⊆ Rθ

A(x).
(2) Suppose y ∈ Rθ1

A (x). Then ∀ a ∈ A, dis(a(x), a(y)) ≤ θ1.
Note that θ1 ≤ θ2. Then ∀ a ∈ A, dis(a(x), a(y)) ≤ θ2. Thus y ∈ Rθ2

A (x).
Hence Rθ1

A (x) ⊆ Rθ2
A (x).

Example 3.7. (Continued from Example 2.3) Pick θ = 0.5. By Example
3.4, we have

Rθ

AT (x1) = Rθ

AT (x2) = {x1, x2}, Rθ

AT (x3) = {x3}, Rθ

AT (x4) = {x4},
Rθ

AT (x5) = {x5}, Rθ

AT (x6) = {x6}, Rθ

AT (x7) = {x7}, Rθ

AT (x8) = {x8},
Rθ

AT (x9) = {x9}.
In what follows, an algorithm of computing Rθ

A is designed as follows.
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Algorithm 1: Computing Rθ

A.

Input: A 4HIS (X,AT ), A ⊆ AT and θ ∈ [0, 1].
Output: The tolerance relation Rθ

A on X.
1 for i = 0; i < |X|; i++ do

2 for j = |X|− 1;j > i; j −− do

3 for a(xi) = ∗ or a(xj) = ∗, do
4 if a(xi) = ∗, a(xj) )= ∗ then

5 dis(a(xi), a(xj)) = 1− 1
|Y ∗

a |
;

6 end

7 if a(xi) )= ∗, a(xj) = ∗ then

8 dis(a(xi), a(xj)) = 1− 1
|Y ∗

a |
;

9 end

10 if a(xi) = ∗, a(xj) = ∗ then

11 dis(a(xi), a(xj)) = 1− 1
|Y ∗

a |2
.

12 end

13 end

14 for a(xi) )= ∗, a(xj) )= ∗, a(xi) = a(xj), do
15 dis(a(xi), a(xj)) = 0.
16 end

17 for a(xi) )= ∗, a(xj) )= ∗, a(xi) )= a(xj), do
18 if a ∈ Aboo then

19 dis(a(xi), a(xj)) = 1;
20 end

21 if a ∈ Acat then

22 dis(a(xi), a(xj)) =
|[xi]a⊕[xj]a|

|[xi]a∪[xj ]a|
;

23 end

24 if a ∈ Area then

25 dis(a(xi), a(xj)) =
|a(xi)−a(xj)|

â
.

26 end

27 end

28 Pick θ. Put
Rθ

A = {(x, y) ∈ X ×X : ∀ a ∈ A, dis(a(x), a(y)) ≤ θ}.
29 Obtain Rθ

A.

30 end

31 end
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4. Information structures in a 4HIS

In this section, information structures in a 4HIS are studied.

4.1. The concept of information structures in a 4HIS

Definition 4.1. Suppose that (X,AT ) is a 4HIS and A ⊆ AT . Pick θ ∈

[0, 1]. Put
InSθ(A) = (Rθ

A(x1), R
θ

A(x2), · · · · · · , R
θ

A(xn)).

Then InSθ(A) is referred to as θ-information structure of the subsystem
(X,A).

Example 4.2. (Continued from Example 3.7)

InSθ(AT ) = ({x1, x2}, {x1, x2}, {x3}, {x4}, {x5}, {x6, x8}, {x7}, {x6, x8}, {x9}).

Definition 4.3. Suppose that (X,AT ) is a 4HIS. Given A,B ⊆ AT and
θ1, θ2 ∈ [0, 1]. If for any i, Rθ1

A (xi) = Rθ2
B (xi), then InSθ1(A) and InSθ2(B)

are called to be the same. It’s written as InSθ1(A) = InSθ2(B).

4.2. Dependence between information structures in a 4HIS

Definition 4.4. Let (X,AT ) be a 4HIS. Given A,B ⊆ AT and θ1, θ2 ∈ [0, 1].
(1) If for any i, Rθ1

A (xi) ⊆ Rθ2
B (xi), then InSθ2(B) is referred to as depend

on InSθ1(A). It is written as InSθ1(A) . InSθ2(B).
(2) If InSθ1(A) . InSθ2(B) and InSθ1(A) )= InSθ2(B), then InSθ2(B)

is referred to as depend strictly on InSθ1(A). It is written as InSθ1(A) ≺

InSθ2(B).

Obviously,

InSθ1(A) = InSθ2(B) ⇔ InSθ1(A) . InSθ2(B) and InSθ2(B) . InSθ1(A),

InSθ1(A) ≺ InSθ2(B) ⇒ InSθ1(A) . InSθ2(B).

Theorem 4.5. Suppose that (X,AT ) is a 4HIS. Given A,B ⊆ AT and
θ1, θ2 ∈ [0, 1]. Then

InSθ1(A) = InSθ2(B) ⇔ Rθ1
A = Rθ2

B .

Proof. Obviously.
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Theorem 4.6. Suppose that (X,AT ) is a 4HIS. Given A,B ⊆ AT and
θ1, θ2 ∈ [0, 1]. Then

InSθ1(A) . InSθ2(B) ⇔ Rθ1
A ⊆ Rθ2

B .

Proof. Clearly.

Corollary 4.7. Suppose that (X,AT ) is a 4HIS. Given A,B ⊆ AT and
θ1, θ2 ∈ [0, 1]. Then

InSθ1(A) ≺ InSθ2(B) ⇔ Rθ1
A ⊂ Rθ2

B .

Proof. By Theorems 4.5 and 4.6, it is easy to prove.

Theorem 4.8. Suppose that (X,AT ) is a 4HIS. Then the following prop-
erties hold:

(1) If A ⊆ B ⊆ AT , then for any θ ∈ [0, 1], InSθ(B) . InSθ(A);
(2) If 0 ≤ θ1 ≤ θ2 ≤ 1, then for any A ⊆ AT , InSθ1(A) . InSθ2(A).

Proof. (1) Since A ⊆ B, by Proposition 3.6(1), ∀ i, we have

Rθ

B(xi) ⊆ Rθ

A(xi).

Thus InSθ(B) . InSθ(A).
(2) Since θ1 ≤ θ2, by Proposition 3.6(2), ∀ P ⊆ A, we have

Rθ1
A (x) ⊆ Rθ2

A (x).

Then InSθ1(A) . InSθ2(A).

5. UM of a 4HIS

In this section, we studies UM of a 4HIS.

5.1. Granulation measures of a 4HIS

Definition 5.1. Let (X,AT ) be a 4HIS. Given θ ∈ [0, 1]. Suppose that
Mθ : 2AT → (−∞,+∞) is a mapping. Then Mθ(A) is referred to as θ-
information granulation function of the subsystem (X,A), if Mθ satisfies the
following conditions:

(1) ∀ A ⊆ AT , Mθ(A) ≥ 0 (Non-negativity);
(2) Sθ(A) = Sθ(B) implies Mθ(A) = Mθ(Q) (Invariability);
(3) Sθ(A) ≺ Sθ(B) implies Mθ(A) < Mθ(Q) (Monotonicity).
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Similar to Definition 5 in [29], θ-information granulation in a 4HIS is
given as follows.

Definition 5.2. Let (X,AT ) be a 4HIS and A ⊆ AT . Pick θ ∈ [0, 1]. Then
θ-information granulation of (X,A) is defined by

Gθ(A) =
1

n2

n
∑

i=1

|Rθ

A(xi)|.

Proposition 5.3. Let (X,AT ) be a 4HIS and A ⊆ AT . Pick θ ∈ [0, 1].
Then

1

n
≤ Gθ(A) ≤ 1.

Proof. ∀ i, 1 ≤ |Rθ

A(xi)| ≤ n. Then n ≤
n
∑

i=1

|Rθ

A(xi)| ≤ n2.

By Definition 5.2,
1

n
≤ Gθ(A) ≤ 1.

∀ i, |Rθ

A(xi)| = 1. Then Gθ(A) = 1
n
.

∀ i, |Rθ

A(xi)| = n. Then Gθ(A) = 1.

Theorem 5.4. Let (X,AT ) be a 4HIS and A,B ⊆ AT . Pick θ1, θ2 ∈ [0, 1].
Then the following properties hold:

(1) If InSθ1(A) . InSθ2(B), then Gθ1(A) ≤ Gθ2(B);
(2) If InSθ1(A) ≺ InSθ2(B), then Gθ1(A) < Gθ2(B).

Proof. (1) This is obvious.
(2) By Definition 5.2,

Gθ1(A) =
1

n2

n
∑

i=1

|Rθ1
A (xi)|, Gθ2(B) =

1

n2

n
∑

i=1

|Rθ2
B (xi)|.

Note that InSθ1(A) ≺ InSθ2(B). Then ∀ i, Rθ1
A (xi) ⊆ Rθ2

B (xi) and ∃ j,
Rθ1

A (xj) ! Rθ2
B (xj). Thus ∀ i, |Rθ1

A (xi)| ≤ |Rθ2
B (xi)| and ∃ j, |Rθ1

A (xj)| <

|Rθ2
B (xj)|.
Hence Gθ1(A) < Gθ2(B).
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This theorem shows that when the available information becomes coarse,
the θ-information granulation increases, and when the available information
becomes finer, the θ-information granulation decreases. In other words, the
greater the uncertainty of the existing information, the greater the value of
the θ-information granulation. Therefore, we can draw the conclusion that
the θ-information granulation introduced in definition 5.2 can be used to
evaluate the degree of a 4HIS.

Proposition 5.5. Let (X,AT ) be a 4HIS. Then the following properties hold:
(1) If A ⊆ B ⊆ AT , then for any θ ∈ [0, 1], Gθ(B) ≤ Gθ(A);
(2) If 0 ≤ θ1 ≤ θ2 ≤ 1, then for any A ⊆ AT , Gθ1(A) ≤ Gθ2(A).

Proof. These follow from Theorems 4.8 and 5.4(1).

Definition 5.6. Let (X,AT ) is a 4HIS and A ⊆ AT . Pick θ ∈ [0, 1]. Then
θ-information amount of (X,A) is defined by

Eθ(A) =

n
∑

i=1

1

n
(1−

|Rθ

A(xi)|

n
).

Theorem 5.7. Let (X,AT ) be a 4HIS and A,B ⊆ AT . Pick θ1, θ2 ∈ [0, 1].
Then the following properties hold:

(1) If InSθ1(A) . InSθ2(B), then Eθ2(B) ≤ Eθ1(A);
(2) If InSθ1(A) ≺ InSθ2(B), then Eθ2(B) < Eθ1(A).

Proof. (1) This is clear.
(2) By Definition 5.6,

Eθ1(A) =
n

∑

i=1

1

n
(1−

|Rθ1
A (xi)|

n
), Eθ2(B) =

n
∑

i=1

1

n
(1−

|Rθ2
B (xi)|

n
).

Note that InSθ1(A) ≺ InSθ2(B). Then ∀ i, Rθ1
A (xi) ⊆ Rθ2

B (xi) and ∃ j,
Rθ1

A (xj) ! Rθ2
B (xj). Thus ∀ i, |Rθ1

A (xi)| ≤ |Rθ2
B (xi)| and ∃ j, |Rθ1

A (xj)| <

|Rθ2
B (xj)|.
Hence Eθ2(B) < Eθ1(A).

This theorem shows that when the structure of hybrid information be-
comes finer, the θ-information amount increases, and when the hybrid infor-
mation structure becomes rough, the θ-information amount decreases.
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Proposition 5.8. Let (X,AT ) be a 4HIS. Then the following properties hold:
(1) If A ⊆ B ⊆ AT , then for any θ ∈ [0, 1], Eθ(A) ≤ Eθ(B);
(2) If 0 ≤ θ1 ≤ θ2 ≤ 1, then for any A ⊆ AT , Eθ2(A) ≤ Eθ1(A).

Proof. These follow from Theorems 4.8 and 5.7(1).

Theorem 5.9. Let (X,AT ) be a 4HIS. Given A ⊆ AT and θ ∈ [0, 1]. Then

Gθ(A) + Eθ(A) = 1.

Proof.

Gθ(A) + Eθ(A) =
1

n2

n
∑

i=1

|Rθ

A(xi)|+
n

∑

i=1

1

n
(1−

|Rθ

A(xi)|

n
)

=
1

n2

n
∑

i=1

(|Rθ

A(xi)|+ n− |Rθ

A(xi)|)

=
1

n

n
∑

i=1

n = 1.

Corollary 5.10. Let (X,AT ) be a 4HIS. Given A ⊆ AT and θ ∈ [0, 1].
Then

0 ≤ Eθ(A) ≤ 1−
1

n
.

Proof. By Proposition 5.3, 1
n
≤ Gθ(A) ≤ 1. We have

−1 ≤ −Gθ(A) ≤ −
1

n
.

By Theorem 5.9, Gθ(A) + Eθ(A) = 1.
Hence

0 ≤ Eθ(A) ≤ 1−
1

n
.

5.2. Entropy measures of a 4HIS

Definition 5.11. Let (X,AT ) be a 4HIS. Given A ⊆ AT and θ ∈ [0, 1].
Then θ-rough entropy of (X,A) is defined by

17

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Eθ

r (A) = −

n
∑

i=1

1

n
log2

1

|Rθ

A(xi)|
.

Proposition 5.12. Let (X,AT ) be a 4HIS. Given A ⊆ AT and θ ∈ [0, 1].
Then

0 ≤ Eθ

r (A) ≤ log2 n.

Proof. ∀ i, 1 ≤ |Rθ

A(xi)| ≤ n. Then

0 ≤ − log2
1

|Rθ

A(xi)|
= log2 |R

θ

A(xi)| ≤ log2 n.

By Definition 5.11,
0 ≤ Eθ

r (A) ≤ log2 n.

∀ i, |Rθ

A(xi)| = 1. Then Eθ

r (A) = 0.
∀ i, |Rθ

A(xi)| = n. Then Eθ

r (A) = log2 n.

Theorem 5.13. Let (X,AT ) be a 4HIS and A,B ⊆ AT . Pick θ1, θ2 ∈ [0, 1].
Then the following properties hold:

(1) If InSθ1(A) . InSθ2(B), then Eθ1
r (A) ≤ Eθ2

r (B);
(2) If InSθ1(A) ≺ InSθ2(B), then Eθ1

r (A) < Eθ2
r (B).

Proof. (1) Obviously.
(2) By Definition 5.11,

Eθ1
r (A) = −

n
∑

i=1

1

n
log2

1

|Rθ1
A (xi)|

, Eθ2
r (B) = −

n
∑

i=1

1

n
log2

1

|Rθ2
B (xi)|

.

Note that InSθ1(A) ≺ InSθ2(B). Then ∀ i, Rθ1
A (xi) ⊆ Rθ2

B (xi) and ∃ j,
Rθ1

A (xj) ! Rθ2
B (xj). Thus ∀ i, |Rθ1

A (xi)| ≤ |Rθ2
B (xi)| and ∃ j, |Rθ1

A (xj)| <

|Rθ2
B (xj)|.
Hence, Eθ1

r (A) < Eθ2
r (B).

This theorem shows that the greater the uncertainty of the available in-
formation, the greater the θ-rough entropy. Therefore, we can draw the
conclusion that the θ-rough entropy proposed in Definition 5.11 can be used
to evaluate the degree of determination of a 4HIS.
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Proposition 5.14. Let (X,AT ) be a 4HIS. Then the following properties
hold:

(1) If A ⊆ B ⊆ AT , then for any θ ∈ [0, 1], Eθ

r (B) ≤ Eθ

r (A);
(2) If 0 ≤ θ1 ≤ θ2 ≤ 1, then for any A ⊆ AT , Eθ1

r (A) ≤ Eθ2
r (A).

Proof. It can be proved by Theorems 4.8 and 5.13(1).

Definition 5.15. Let (X,AT ) be a 4HIS. Given A ⊆ AT and θ ∈ [0, 1].
Then θ-information entropy of (X,A) is defined by

Hθ(A) = −

n
∑

i=1

1

n
log2

|Rθ

A(xi)|

n
.

Theorem 5.16. Suppose that (X,AT ) is a 4HIS and A,B ⊆ AT . Pick
θ1, θ2 ∈ [0, 1]. Then the following properties hold:

(1) If InSθ1(A) . InSθ2(B), then Hθ2(B) ≤ Hθ1(A);
(2) If InSθ1(A) ≺ InSθ2(B), then Hθ2(B) < Hθ1(A).

Proof. (1) Obviously.
(2) By Definition 5.15,

Hθ1(A) = −

n
∑

i=1

1

n
log2

|Rθ1
A (xi)|

n
, Hθ2(B) = −

n
∑

i=1

1

n
log2

|Rθ2
B (xi)|

n
.

It should be noted that InSθ1(A) ≺ InSθ2(B). Then ∀ i, Rθ1
A (xi) ⊆

Rθ2
B (xi) and ∃ j, Rθ1

A (xj) ! Rθ2
B (xj). Thus ∀ i, |Rθ1

A (xi)| ≤ |Rθ2
B (xi)| and ∃ j,

|Rθ1
A (xj)| < |Rθ2

B (xj)|.
Hence Hθ2(B) < Hθ1(A).

This theorem shows that when the structure of hybrid information be-
comes finer, the θ-information amount increases, and when the hybrid infor-
mation structure becomes rough, the θ-information amount decreases.

Proposition 5.17. Suppose that (X,AT ) is a 4HIS. The the following prop-
erties hold:

(1) If A ⊆ B ⊆ AT , then for any θ ∈ [0, 1], Hθ(A) ≤ Hθ(B);
(2) If 0 ≤ θ1 ≤ θ2 ≤ 1, then for any A ⊆ AT , Hθ2(A) ≤ Hθ1(A).

Proof. It follows from Theorems 4.8 and 5.16(1).
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Theorem 5.18. Suppose that (X,AT ) is a 4HIS. Given A ⊆ AT and θ ∈

[0, 1]. Then
Eθ

r (A) +Hθ(A) = log2 n.

Proof.

Eθ

r (A) +Hθ(A) = −

n
∑

i=1

1

n
log2

1

|Rθ

A(xi)|
−

n
∑

i=1

1

n
log2

|Rθ

A(xi)|

n

= −

n
∑

i=1

1

n
(log2

1

|Rθ

A(xi)|
+ log2

|Rθ

A(xi)|

n
)

= −

n
∑

i=1

1

n
log2

1

n

= log2 n.

Corollary 5.19. Suppose that (X,AT ) is a 4HIS. Given A ⊆ AT and θ ∈

[0, 1]. Then
0 ≤ Hθ(A) ≤ log2 n.

Proof. By Proposition 5.12, 0 ≤ Eθ

r (A) ≤ log2 n. Then

− log2 n ≤ −Eθ

r (A) ≤ 0.

By Theorem 5.18, Eθ

r (A) +Hθ(A) = log2 n.
Thus

0 ≤ Hθ(A) ≤ log2 n.

6. Experiments and analysis

In this section, we design a numerical experiment and do effectiveness
analysis to evaluate the proposed measures.

6.1. A numerical experiment

In order to show the performance of the proposed measures for the uncer-
tainty in a 4HIS, we select nine data sets that come from UCI (Repository of
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machine learning databases) which is described in Table 2, where each data
set can be expressed as a 4HIS. We carry out a numerical experiment on the
nine data sets.

Table 2: Nine data sets from UCI

Date sets Objects Features
Scale Ordinal Nominal

Annealing 798 39
Automobile 205 26

Contraceptive Method Choice 1473 10
Credit Approval 690 16
Dermatology 366 35

Echocardiogram 132 13
Hepatitis 155 20
Meta-data 528 22

Post-Operative Patient 90 9

Table 3: Description of data sets

No Data sets Sample Scale Ordinal Nominal Classes

1 Echocardiogram 132 7 1 3 2
2 Wine 178 11 2 0 3
3 ILPD 583 5 4 1 2
4 Credit 690 3 8 4 2
5 ThoracicSurgery 470 2 4 10 2

In Annealing, pick Li = {a1, · · · , a3×i} (i = 1, · · · , 13) and θj = 0.1 × j
(j = 1, · · · , 9). Measure sets on Annealing are defined as follows:

X
θj

G
(An) = {Gθj (L1), · · · , G

θj (L13)}, X
Li
G

(An) = {Gθ1 (Li), · · · , G
θ9 (Li)};

X
θj

E
(An) = {Eθj (L1), · · · , E

θj (L13)}, X
Li
E

(An) = {Eθ1 (Li), · · · , E
θ9(Li)};

X
θj

Er
(An) = {E

θj
r (L1), · · · , E

θj
r (L13)}, X

Li

Er
(An) = {Eθ1

r (Li), · · · , E
θ9
r (Li)};

X
θj

H
(An) = {Hθj (L1), · · · ,H

θj (L13)}, X
Li

H
(An) = {Hθ1 (Li), · · · ,H

θ9 (Li)};
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In Automobile, pick Mi = {a1, · · · , a2×i} (i = 1, · · · , 13) and θj = 0.1 × j
(j = 1, · · · , 9). Measure sets on Automobile are defined as follows:

X
θj

G
(Au) = {Gθj (M1), · · · , G

θj (M13)}, X
Mi

G
(Au) = {Gθ1 (Mi), · · · , G

θ9 (Mi)};

X
θj

E
(Au) = {Eθj (M1), · · · , E

θj (M13)}, X
Mi

E
(Au) = {Eθ1(Mi), · · · , E

θ9(Mi)};

X
θj

Er
(Au) = {E

θj
r (M1), · · · , E

θj
r (M13)}, X

Mi
Er

(Au) = {Eθ1
r (Mi), · · · , E

θ9
r (Mi)};

X
θj

H
(Au) = {Hθj (M1), · · · ,H

θj (M13)}, X
Mi
H

(Au) = {Hθ1 (Mi), · · · ,H
θ9 (Mi)};

In Contraceptive Method Choice, pick Ni = {a1, · · · , ai} (i = 1, · · · , 10) and
θj = 0.1 × j (j = 1, · · · , 9). Measure sets on Contraceptive Method Choice
are defined as follows:

X
θj

G
(Co) = {Gθj (N1), · · · , G

θj (N10)}, X
Ni

G
(Co) = {Gθ1 (Ni), · · · , G

θ9 (Ni)};

X
θj

E
(Co) = {Eθj (N1), · · · , E

θj (N10)}, X
Ni
E

(Co) = {Eθ1 (Ni), · · · , E
θ9(Ni)};

X
θj

Er
(Co) = {E

θj
r (N1), · · · , E

θj
r (N10)}, X

Ni
Er

(Co) = {Nθ1
r (Mi), · · · , E

θ9
r (Ni)};

X
θj

H
(Co) = {Hθj (N1), · · · ,H

θj (N10)}, X
Ni
H

(Co) = {Hθ1 (Ni), · · · ,H
θ9 (Ni)};

In Credit Approval, pick Oi = {a1, · · · , a2×i} (i = 1, · · · , 8) and θj = 0.1× j
(j = 1, · · · , 9). Measure sets on Credit Approval are defined as follows:

X
θj

G
(Cr) = {Gθj (O1), · · · , G

θj (O8)}, X
Oi
G

(Cr) = {Gθ1 (Oi), · · · , G
θ9 (Oi)};

X
θj

E
(Cr) = {Eθj (O1), · · · , E

θj (O8)}, X
Oi
E

(Cr) = {Eθ1(Oi), · · · , E
θ9(Oi)};

X
θj

Er
(Cr) = {E

θj
r (O1), · · · , E

θj
r (O8)}, X

Oi

Er
(Cr) = {Oθ1

r (Mi), · · · , E
θ9
r (Oi)};

X
θj

H
(Cr) = {Hθj (O1), · · · ,H

θj (O8)}, X
Oi
H

(Cr) = {Hθ1 (Oi), · · · ,H
θ9 (Oi)};

In Dermatology, pick Ai = {a1, · · · , a5×i} (i = 1, · · · , 7) and θj = 0.1 × j
(j = 1, · · · , 9). Measure sets on Dermatology are defined as follows:

X
θj

G
(De) = {Gθj (A), · · · , Gθj (A7)}, X

Ai
G

(De) = {Gθ1 (Ai), · · · , G
θ9 (Ai)};

X
θj

E
(De) = {Eθj (A), · · · , Eθj (A7)}, X

Ai
E

(De) = {Eθ1 (Ai), · · · , E
θ9 (Ai)};

X
θj

Er
(De) = {E

θj
r (A), · · · , E

θj
r (A7)}, X

Ai

Er
(De) = {Aθ1

r (Mi), · · · , E
θ9
r (Ai)};

X
θj

H
(De) = {Hθj (A), · · · ,Hθj (A7)}, X

Ai
H

(De) = {Hθ1 (Ai), · · · ,H
θ9 (Ai)};

In Echocardiogram, pick Qi = {a1, · · · , ai} (i = 1, · · · , 13) and θj = 0.1× j

22

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



(j = 1, · · · , 9). Measure sets on Echocardiogram are defined as follows:

X
θj

G
(Ec) = {Gθj (Q1), · · · , G

θj (Q13)}, X
Qi

G
(Ec) = {Gθ1 (Qi), · · · , G

θ9(Qi)};

X
θj

E
(Ec) = {Eθj (Q1), · · · , E

θj (Q13)}, X
Qi
E

(Ec) = {Eθ1 (Qi), · · · , E
θ9(Qi)};

X
θj

Er
(Ec) = {E

θj
r (Q1), · · · , E

θj
r (Q13)}, X

Qi
Er

(Ec) = {Qθ1
r (Mi), · · · , E

θ9
r (Qi)};

X
θj

H
(Ec) = {Hθj (Q1), · · · ,H

θj (Q13)}, X
Qi
H

(Ec) = {Hθ1 (Qi), · · · , H
θ9 (Qi)};

In Hepatitis, pick Ri = {a1, · · · , a2×i} (i = 1, · · · , 10) and θj = 0.1 × j
(j = 1, · · · , 9). Measure sets on Hepatitis are defined as follows:

X
θj

G
(He) = {Gθj (R1), · · · , G

θj (R10)}, X
Ri
G

(He) = {Gθ1 (Ri), · · · , G
θ9 (Ri)};

X
θj

E
(He) = {Eθj (R1), · · · , E

θj (R10)}, X
Ri
E

(He) = {Eθ1(Ri), · · · , E
θ9 (Ri)};

X
θj

Er
(He) = {E

θj
r (R1), · · · , E

θj
r (R10)}, X

Ri

Er
(He) = {Rθ1

r (Ri), · · · , E
θ9
r (Ri)};

X
θj

H
(He) = {Hθj (R1), · · · ,H

θj (R10)}, X
Ri
H

(He) = {Hθ1 (Ri), · · · ,H
θ9 (Ri)};

In Meta-data, pick Si = {a1, · · · , a2×i} (i = 1, · · · , 11) and θj = 0.1 × j
(j = 1, · · · , 9). Measure sets on Meta-data are defined as follows:

X
θj

G
(Me) = {Gθj (S1), · · · , G

θj (S11)}, X
Si
G

(Me) = {Gθ1 (Si), · · · , G
θ9 (Si)};

X
θj

E
(Me) = {Eθj (S1), · · · , E

θj (S11)}, X
Si
E

(Me) = {Eθ1 (Si), · · · , E
θ9(Si)};

X
θj

Er
(Me) = {E

θj
r (S1), · · · , E

θj
r (S11)}, X

Si

Er
(Me) = {Rθ1

r (Si), · · · , E
θ9
r (Si)};

X
θj

H
(Me) = {Hθj (S1), · · · ,H

θj (S11)}, X
Si
H

(Me) = {Hθ1 (Si), · · · ,H
θ9 (Si)};

In Post-Operative Patient, pick Ti = {a1, · · · , ai} (i = 1, · · · , 9) and θj =
0.1 × j (j = 1, · · · , 9). Measure sets on Post-Operative Patient are defined
as follows:

X
θj

G
(Po) = {Gθj (T1), · · · , G

θj (T9)}, X
Ti
G

(Po) = {Gθ1 (Ti), · · · , G
θ9 (Ti)};

X
θj

E
(Po) = {Eθj (T1), · · · , E

θj (T9)}, X
Ti
E

(Po) = {Eθ1(Ti), · · · , E
θ9 (Ti)};

X
θj

Er
(Po) = {E

θj
r (T1), · · · , E

θj
r (T9)}, X

Ti

Er
(Po) = {Rθ1

r (Ti), · · · , E
θ9
r (Ti)};

X
θj

H
(Po) = {Hθj (T1), · · · ,H

θj (T9)}, X
Ti

H
(Po) = {Hθ1 (Ti), · · · , H

θ9 (Ti)};

From Figures 1-9, the following conclusions are obtained:
(1) When the threshold θ is a fixed value, Gθ and Eθ

r are both mono-
tonically decreasing as the cardinality of attribute subset increases. Mean-
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Figure 2: Values of UM on Annealing.
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Figure 3: Values of UM on Automobile.
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Figure 4: Values of UM on Contraceptive Method Choice.
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Figure 5: Values of UM on Credit Approval.
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Figure 6: Values of UM on Dermatology.
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Figure 7: Values of UM on Echocardiogram.
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Figure 8: Values of UM on Hepatitis.
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Figure 9: Values of UM on Meta-data.
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Figure 10: Values of UM on Post-Operative Patient.
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while, Eθ andHθ are both monotonically increasing with the attribute subset
growth. It shows that the uncertainty of a 4HIS decreases as the attribute
subset growth.

(2) When the attribute subset A is given, Gθ and Eθ

r are both monoton-
ically increasing as the threshold θ increases. Meanwhile, Eθ and Hθ are
both monotonically decreasing with the threshold θ growth. It shows that
the uncertainty of a 4HIS increases as the threshold θ increases.

Thus, Gθ, Eθ, Eθ

r and Hθ can be applied to measuring uncertainty of a
4HIS.

6.2. Dispersion analysis

In this part, the standard deviation is applied to do effectiveness analysis
of the proposed measures.

Let X = {x1, · · · , xn} be a data set. Then arithmetic average value,
standard deviation and standard deviation coefficient of X are defined as
follows:

x =
1

n

n
∑

i=1

xi, σ(X) =

√

√

√

√

1

n

n
∑

i=1

(xi − x)2,

CV (X) =
σ(X)

x
.

Then, according to the above experiments, the CV values of measure sets
on each data set are computed (see Figures 10-18).
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Figure 11: CV -values of measure sets on Annealing.

From Figures 10-18, the following conclusions are obtained:
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Figure 12: CV -values of measure sets on Automobile.
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Figure 13: CV -values of measure sets on Contraceptive Method Choice.
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Figure 14: CV -values of measure sets on Credit Approval.
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Figure 15: CV -values of measure sets on Dermatology.
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Figure 16: CV -values of measure sets on Echocardiogram.
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Figure 17: CV -values of measure sets on Hepatitis.
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Figure 18: CV -values of measure sets on Meta-data.
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Figure 19: CV -values of measure sets on Post-Operative Patient.

(1) When the threshold θ is changing, X
θj

E is minimum in four measure
sets in each data set except for Xθ6

E (Ec), Xθ7
E (Ec), Xθ8

E (Ec) and Xθ9
E (Ec). It

shows that the dispersion degree of Eθ is minimum in most cases.
(2) When the attribute subset Ai is changing, XAi

E is minimum in four
measure sets in each data set except for XN1

E (Co), XN2
E (Co), XO1

E (Cr),
X

Q1

E (Ec), XQ2

E (Ec), XQ3

E (Ec) and XR1
E (He). It shows that the dispersion

degree of Eθ is minimum in most cases.
Therefore, Eθ has much better performance to measure 4HISs’ uncertain-

ty.
By summarizing the above experiments, the following results are ob-

tained:
(1) If people need only monotonicity, then Gθ, Eθ, Eθ

r and Hθ can be
used to measure the uncertainty of a 4HIS;
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(2) If people investigate only dispersion degree, then Eθ has better per-
formance to measure the uncertainty of a 4HIS;

(3) If people consider both monotonicity and dispersion degree, then Eθ

has much better performance to measure the uncertainty of a 4HIS.

7. An application

In this part, an application of the proposed measures for attribute reduc-
tion in a 4HIS is given.

Definition 7.1. Suppose that (X,AT ) is a 4HIS. Given A ⊆ AT and θ ∈

[0, 1]. Then A is called θ-consistent, if Rθ

A = Rθ

AT .

Definition 7.2. Suppose that (X,AT ) is a 4HIS. Given a ∈ A ⊆ AT . Then
a is called θ-independent in A, if Rθ

A )= Rθ

A−{a}.

Definition 7.3. Suppose that (X,AT ) is a 4HIS. Given A ⊆ AT and θ ∈

[0, 1]. Then A is called θ-independent, if for any a ∈ A, a is θ-independent
in A.

Definition 7.4. Suppose that (X,AT ) is a 4HIS. Given A ⊆ AT and θ ∈

[0, 1]. Then A is called a θ-reduct of AT , if A is both θ-consistent and θ-
independent.

In this paper, the family of all θ-coordination subsets (resp., all θ-reducts)
of AT is denoted by coθ(AT ) (resp., redθ(AT )).

Obviously,

A ∈ redθ(AT ) ⇐⇒ A ∈ coθ(AT ) and ∀ P ′ ⊂ P, P ′ )∈ coθ(AT ).

Theorem 7.5. Suppose that (X,AT ) is a 4HIS. Given A ⊆ AT and θ ∈

[0, 1]. Then the following conditions are equivalent:
(1) A ∈ coθ(AT );
(2) Gθ(A) = Gθ(AT );
(3) Hθ(A) = Hθ(AT );
(4) Eθ

r (A) = Eθ

r (AT );
(5) Eθ(A) = Eθ(AT ).

Proof. (1) ⇒ (2). This is obvious.
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(2) ⇒ (1). Suppose Gθ(A) = Gθ(AT ). Then

1

n2

n
∑

i=1

|Rθ

A(xi)| =
1

n2

n
∑

i=1

|Rθ

AT (xi)|.

So
n

∑

i=1

(|Rθ

A(xi)|− |Rθ

AT (xi)|) = 0.

Note that Rθ

AT ⊆ Rθ

A. Then ∀ i, Rθ

AT (xi) ⊆ Rθ

A(xi). This implies that

∀ i, |Rθ

A(xi)|− |Rθ

AT (xi)| ≥ 0.

So ∀ i, |Rθ

A(xi)|− |Rθ

AT (xi)| = 0. It follows that ∀ i, Rθ

A(xi) = Rθ

AT (xi).
Thus Rθ

A = Rθ

AT . Hence

A ∈ coθ(AT ).

(2) ⇔ (5). It can be obtained by Theorem 5.9.
(1) ⇒ (3). This is obvious.
(3) ⇒ (1). Suppose Hθ(A) = Hθ(AT ). Then

−

n
∑

i=1

1

n
log2

|Rθ

A(xi)|

n
= −

n
∑

i=1

1

n
log2

|Rθ

AT (xi)|

n
.

So
n

∑

i=1

log2
|Rθ

A(xi)|

|Rθ

AT (xi)|
= 0.

Note that Rθ

AT ⊆ Rθ

A. Then ∀ i, Rθ

AT (xi) ⊆ Rθ

A(xi). This implies that

∀ i, log2
|Rθ

A(xi)|

|Rθ

AT (xi)|
≥ 0.

So ∀ i, log2
|Rθ

A
(xi)|

|Rθ

AT
(xi)|

= 0. It follows that ∀ i, Rθ

A(xi) = Rθ

AT (xi).

Thus Rθ

A = Rθ

AT . Hence

A ∈ coθ(AT ).
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(3) ⇔ (4). It follows from Theorem 5.18.

Corollary 7.6. Suppose that (X,AT ) is a 4HIS. Given A ⊆ AT and θ ∈

[0, 1]. Then the following conditions are equivalent:
(1) A ∈ redθ(AT );
(2) Gθ(A) = Gθ(AT ) and ∀ a ∈ A, Gθ(A− {a}) )= Gθ(AT );
(3) Hθ(A) = Hθ(AT ) and ∀ a ∈ A, Hθ(A− {a}) )= Hθ(AT );
(4) Eθ

r (A) = Eθ

r (AT ) and ∀ a ∈ A, Eθ

r (A− {a}) )= Eθ

r (AT );
(5) Eθ(A) = Eθ(AT ) and ∀ a ∈ A, Eθ(A− {a}) )= Eθ(AT ).

Proof. It can be proved by Theorem 7.5.

8. Conclusions

A HIS contains many types of attributes. It is more difficult to measure
an HIS than an IS with a type of attribute. This paper has measured the
uncertainty of a 4HIS that contains four types of data or attributes and giv-
en its application in attribute reduction. First, a novel distance function for
each type of attribute in a 4HIS has been proposed. The proposed distance
is more consistent with reality in measuring the difference between two in-
formation values on each type of attribute. And then, the tolerance relation
has been produced by using the proposed distance. By the way, the infor-
mation granules composed of the tolerance classes have been constructed,
and the information structure formed by the information granules has been
presented. Next, four UMs based on the structures have been investigated.
Furthermore, the effectiveness of four measures has been verified by statis-
tical analysis. AS an application of the proposed UMs, attribute reduction
has been studied. We have found the influence of θ value on the UM for
a 4HIS, which may have potential application value in data mining. This
paper provides a new idea of UM for hybrid data. The disadvantage is that
attribute reduction algorithms are not given. In the future, we will continue
to explore attribute reduction algorithms in a 4HIS based on its UM.
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