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Abstract
Stroke significantly impacts quality of life. However, the long-term cognitive evolution in stroke is poorly
predictable at the individual level. There is an urgent need for a better prediction of long-term symptoms
based on acute clinical neuroimaging data. Previous works have demonstrated a strong relationship
between the location of white matter disconnections and clinical symptoms. However, rendering the entire
space of possible disconnections-deficit associations optimally surveyable will allow for a systematic
association between brain disconnections and cognitive-behavioural measures at the individual
level. Here we present the most comprehensive framework, a composite morphospace to predict
neuropsychological scores one year after stroke. Linking the latent disconnectome morphospace to
neuropsychological outcomes yields biological insights available as the first comprehensive atlas of
disconnectome-deficit relations across 86 neuropsychological scores. Out-of-sample prediction derived
from this atlas achieved average accuracy over 80%, which is higher than any other framework. Our novel
predictive framework is available as an interactive web application, the disconnectome symptoms
discoverer (http://disconnectomestudio.bcblab.com), to provide the foundations for a new and practical
approach to modelling cognition in stroke. Our atlas and web application will reduce the burden of
cognitive deficits on patients, their families, and wider society while also helping to tailor personalized
treatment programs and discover new targets for treatments. We expect the range of assessments and
the predictive power of our framework to increase even further through future crowdsourcing.

Introduction
The fidelity of lesion-deficit models depends not only on the quality of the data but also on the underlying
theoretical framework. Together they produced evidence of a relationship between the location of brain
lesions and clinical symptoms such as visuospatial neglect 1-3, aphasias 4-6, apraxias 7,8 or motor
anosognosia 9,10 amongst others. Recently, the associations between anatomical white matter networks
and clinical presentations revealed that there is no one-to-one relationship between structures and clinical
presentation, as different lesions can cause the same functional impairments 11,12. One example would
be that a stroke in the middle or posterior cerebral artery may lead to visuospatial neglect 13, just like
different perisylvian white matter disconnections can lead to aphasia 11. Hence, the current
methodologies do not capture the potential overlap between brain signatures and clinical manifestations
nor the distributed nature of their neural substrate, now familiar from network analyses of functional
imaging data 14. Therefore, a comprehensive framework that would systematically associate brain
disconnections with cognitive-behavioural assessments is needed for accurate precision medicine 15-19.  

Modelling distributed relations is computationally expensive and requires large scale data. With advances
in data modelling and the availability of databases, tackling the high complexity of clinical-anatomical
relationships is now conceivable. Beneath the surface complexity there may lie a simpler order that can
be described within a compacted representational space. As such, dimensionality reduction algorithms
allow defining low-dimensional spaces that can embed multivariate data. In embedding spaces, also
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known as morphospaces 20,21, patients with similar features cluster together while diverging features are
placed apart 12,22. Morphospaces render lesion-deficit relations more easily surveyable. Hence, specific
brain features can define territories in a morphospace and help predict symptoms and brain pathologies,
similar to typical machine learning approaches 23,24. Artificial intelligence (AI) has recently progressed in
modelling the association of symptom severity with medical imaging modalities, e.g., reaching high
accuracy and sensitivity in the characterisation of tumour tissues 25. However, AI models need to be
refined with a broader spectrum of clinically practical endpoints, including neuropsychological measures.
The next challenge will be making AI patient-centric for a more effective deployment into the clinical
routine and to efficiently benefit patients’ quality of life 26. 

To drive the realisation of this challenge forward, we propose a modelling approach that employs a
morphospace to predict neuropsychological assessments of one of the most common neurological
disorders: stroke 27. We first mapped the distribution of 1333 brain disconnection patterns in stroke — the
disconnectome morphospace. A second dataset (training set) with rich neuropsychological measures 1-
year after stroke was imported into this disconnectome morphospace. This second dataset enriched the
morphospace with clinical symptoms obtained from 86 neuropsychological assessments. An out-of-
sample “validation set” with the same neuropsychological data served to assess prediction accuracy.
This procedure, hereafter referred to as disconnectome symptoms discoverer (DSD), reliably predicted the
performance of patients with an average accuracy > 80%. To make the DSD tool readily available to the
clinical-academic community and facilitate its incorporation into the clinic, we provide an open-access
web application (http://disconnectomestudio.bcblab.com), in which individual disconnection patterns
can be uploaded to predict the expected 1-year neuropsychological scores. The web application will be
interactively updated, thanks to future crowdsourcing, informing the DSD model with any newly available
datasets.

Results
The disconnectome morphospace 

The first dataset (N=1333 stroke lesions 28; see Supplementary Table 1) was processed to obtain
disconnectome maps. Disconnectome maps quantify the pattern of connections interrupted by each
lesion based on the high-resolution tractography of a healthy population 12,29,30. Subsequently, the
Uniform Manifold Approximation and Projection (UMAP) 31 method was used to embed disconnection
complexity. A latent 2 dimensions configuration of the disconnectome maps was obtained. Figure 1
indicates that patients’ disconnectome profiles distribute based on lesion location and commonly
disconnected tracts. For instance, patients with major left or right hemisphere disconnections were
embedded in the right and left half of the morphospace, respectively. Similarly, patients with posterior or
anterior disconnections were localised at the top or the bottom of the embedded space. Patients with a
prominent disconnection of the inferior-fronto occipital fasciculus (IFOF) located at the bottom left and
right extremities of the morphospace while corticospinal (CST) and arcuate (AF) disconnections were
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relatively more central. Hence the morphospace appropriately segregated the different profiles of
disconnection of the classic tract 32,33.

The composite morphospace

The extent to which the disconnectome morphospace can predict different neuropsychological
performances is currently unknown. To answer this question, we took advantage of the second
independent dataset of stroke patients (N=119 stroke lesions 14; see Supplementary Table 1) that was
extensively explored with standard neuropsychological assessments (N=86, see Supplementary Table 2).
For each patient of the second dataset, disconnectome maps were calculated and imported into the
disconnectome morphospace using the UMAP defined transformation. To tackle uncertainty, patient
coordinates in the morphospace were spatially smoothed (see methods). In so doing, each patient's
coordinates in the disconnectome morphospace were converted into probabilities of localisation. A
Pearson correlation approach was then used to estimate the association between each morphospace
coordinate and a neuropsychological performance (see Supplementary Figure 1 for more details). Figure
2 indicates that a medium to large effect size association (all |r| >0.2) existed between territories in the
disconnectome morphospace and neuropsychological scores (Figure 2a-c). Importantly, for some scores,
multiple clusters in the disconnectome morphospace, corresponding to different disconnection profiles,
apparently led to the same neuropsychological impairment. This confirmed that no one-to-one
relationship exists between lesion of structures and clinical disorders, and likewise, different locations of
brain damage can lead to the same functional impairment. To avoid simple linear association between
the morphospace coordinates magnitude and neuropsychological scores, patients’ probabilities of
localisation in clusters of significance were modelled by a principal component analysis (later referred to
as spatial PCA). For each patient, the first three-component of the spatial PCA were entered into a
multiple regression analysis to predict single-patient neuropsychological scores 1 year after symptom
onset. The multiple regressions created equations, modelling the relationship between each patient's
potential localisation in the disconnectome morphospace (i.e., as defined by the three first components of
the spatial PCA) and their neuropsychological scores. In so doing, we obtained a composite
morphospace that takes advantage of the joint strengths of the two datasets. The composite
morphospace accurately and reliably predicted 83 out of 86 neuropsychological scores with a small to
large effect size (see Supplementary Table 3).

Disconnectome morphospace component mapping 

In the next level, we brought the score prediction results back to the neuroimaging space to explore the
neuroanatomical patterns leading to symptoms. The first dataset was split in half (2 X 666
disconnectomes maps) to assess reproducibility. Latent patterns of predicted neuropsychological
performances were statistically associated with brain disconnections maps of the two halves of the first
dataset using voxelwise linear regressions. In doing so we obtained two sets of maps of brain
disconnection for each neuropsychological score (see example in figure 2d-f and all maps together with
their full discussion in Supplementary Material - Section C). We were able to produce a comprehensive
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atlas of the brain disconnections associated with neuropsychological test scores and the statistical
comparison of the two sets of maps indicated a good level of reproducibility (Pearson R = 0.82). Figure 3
summarises the highest statistical associations spanning from a medium (0.25 > f2 >0.42) to a high
effect size (0.42< f2). The highest effect sizes were in the left hemisphere, particularly in the frontal lobe
connections, indicating the strongest associations between these disconnections and neuropsychological
scores (Figure 4a). Some areas can also be associated with multiple different neuropsychological scores.
To summarise this information, we calculated a versability map that indicates how many
neuropsychological scores can be predicted with a large effect size per volume unit of white matter
(Figure 4b). The versatility maps revealed a clear asymmetry between the left and the right hemispheres.
This lower effect size and higher versatility in the right hemisphere suggests that more work is required to
finely measure and dissociate right hemisphere functions in neuropsychology. 

Accuracy in predicting neuropsychological score at 1-year after stroke

 To assess the accuracy of the predictions, data derived from a third independent dataset (20 stroke
patients withheld from the original dataset14; see Supplementary Table 1) were projected into the
morphospace. From there, equations derived from the composite morphospace were applied to predicted
individual neuropsychological scores. Prediction accuracy was assessed as the difference between the
observed and predicted scores, normalized by the maximum score (i.e., normalized prediction error; Figure
5). The profile of neuropsychological scores for single patients was predicted with an average accuracy
of 84.3 ± 5.6 % while each test was predicted individually with an average accuracy of 83.9 ± 7 %. Overall,
the prediction of two-thirds (N=65) of the tests was replicated in this third independent dataset with an
accuracy >80% (Supplementary Table 4). 

Disconnection Symptoms Discovery web application 

To make this resource and method available for the clinical-research community, we deployed an
interactive web application platform called Disconnectome Symptoms Discovery - DSD
(http://disconnectomestudio.bcblab.com). The DSD requires the input of brain lesions converted to
disconnection maps and returns the expected 1-year neuropsychological scores for individual
disconnectome maps (see the DSD user guide in the Supplementary Material Section E). The DSD tool
prediction model relies on the databases presented in this study that can be updated on-demand with
new neuropsychological assessments and patients’ disconnectomes.

Discussion
Applying state-of-the-art data embedding methods we succeeded in combining complementary
databases of stroke patients and produced an atlas of neuropsychological scores associated with brain
disconnections. This atlas applied to an out-of-sample dataset accurately predicted 65
neuropsychological scores with an accuracy of over 80%. An openly available web application, the
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disconnectome symptoms discoverer (DSD) capitalises on our methods and provides new anatomical
insights into cognitive symptoms for researchers and clinicians.

Similar patterns of stroke-induced white matter disconnections were distributed close by in the
embedding space comparably to other research fields using UMAP methods 31, e.g., single-cell genetic
transcriptomes 34,35. Therefore, the disconnectome morphospace acted as a reference to quickly import
and summarize new stroke disconnections. Such embedded information allowed us to associate single-
patient neuropsychological profiles at 1-year after a stroke with territories in the morphospace and profile
of disconnection. By exploring white matter correlates systematically, we created a comprehensive atlas
of the neuropsychological scores associated with brain disconnections. Classical functional associations
were confirmed, e.g., the lateralisation of motor functions, the left perisylvian language network, the
fronto-parietal attentional networks, or the right insula for sickness sensations. In addition, new insights
on functioning and disconnection were reported, e.g., the callosum connectivity related to visual neglect,
the cerebellum hub for visuospatial memory, and the lingual gyrus for verbal memory (for individual
results and discussion see Supplementary Material - Section C).

The atlas allowed for the evaluation of acute MRI scans to predict long-term stroke symptom severity.
These results indicate the suitability of the disconnectome model in predicting a wide range of functional
performances and addressing a complete personalised, individual patient profile. This information will be
a valuable resource in clinical settings, for example for the planning of personalized therapeutic and
rehabilitation strategies. This is a step forward in comparison to many stroke AI methods that have a
purely diagnostic purpose 36. The DSD model has a prognostic vocation based on cross-modal data
(neuroimaging input - neuropsychological outcome prediction).

However, predictions were not equally accurate across functions (see Supplementary Table 4). Three
factors might explain these differences. First, some neuropsychological scores are more reliable than
others in assessing performances 37. Second, plasticity and interindividual variability might interact with
recovery 11,38-40. Third, the disconnectome model may not capture all the variance of brain injuries.
Indeed, hypoperfusion 41 and hypometabolism 42 factors as well as acute imaging changes such as
pseudonormalization 43 are not included. 

Besides these limitations, the disconnectome symptoms discoverer (DSD) web application is a free and
user-friendly web browser tool that only requires an internet connection. Instant software access and
automatic updates make the word-wide-web the ideal media for clinical translations. The application of
the DSD results can help personalized prognosis. Further, while our predictions were validated in an out-
of-sample dataset, the DSD web application allows for a wider validation with crowdsourcing usage,
through new dataset implementation. Hence, the DSD aims to benefit the researchers' understanding of
brain functioning and the patient’s treatments alike. 

Methods
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Bash and Python programming languages have been used for automatizing all the processing steps
summarized in Supplementary Materials figure 1. 

Stroke lesions. Lesion data were derived from two different centres. Dataset 1: (N=1333 strokes) MRI
scans were acquired at University College London Hospitals 28. Patient demographics were an average
age of 6416 years [age range: 18-97 years] and 56% were men. This cohort was approved by the West
London & GTAC Research Ethics Committee for consent use of fully anonymised data. Dataset 2 and
dataset 3 were recruited at the School of Medicine of the Washington University in St. Louis and included
both MRI and neuropsychological assessments 14. All participants of datasets 2 and 3 provided informed
consent following the Declaration of Helsinki (2013) and procedures established by the Washington
University in Saint Louis Institutional Review Board. For dataset 2 (N=119 strokes), the patient average
age was 5411 years [age range: 19-83 years] and 54% men. The average education level was 132.5 years,
and 91% were right-handed participants. For dataset 3 (N=20 strokes), the average age was 5812 years
[age range: 34-95 years], with 40% men; average education level was 142.6 years, and 85% were right-
handed. Patient imaging parameters, inclusion criteria and demographics are reported in the
Supplementary Materials Section A and lesion distributions across the three databases in the
Supplementary Figure 2. 

Neuropsychological scores. Neuropsychological scores were available for datasets 2 and 3. The details
of each neuropsychological evaluation (grading, test battery, administration) are reported in the
Supplementary Materials Section C. In brief, motor abilities (Section C.1) were assessed for upper limb
hand grasping, gripping, pinching, grip strength, peg replacement, motion shoulder flexion, wrist
extension, and lower limb walking. Language abilities (Section C.2) were assessed using picture naming,
non-word repetition, commands, sentence reading, sentence comprehension, and semantic fluency.
Visuospatial abilities (Section C.3) were tested for using discrimination accuracy, reaction time, subbing,
behavioural inattention, and unstructured symbol cancellation. Visuospatial memory (Section C.4) was
evaluated using abstract figures retrieval scores and verbal memory (Section C.5) for listed word
recognition scores. A pain scale during the MRI scanning was recorded (Section C.6) and a stroke
sickness questionnaire administrating, investigating physical and psychosocial daily sickness (Section
C.7). 

Disconnectome. The probability of white matter disconnections caused by the stroke event was
quantified accounting for controls’ connectivity where the lesion occurred. Stroke lesions were manually
delineated in T1-weighted MRI scans and subsequently normalized to the MNI152 space (2 mm
resolution). The BCBtoolkit “normalization tool” was used with the enantiomorphic normalization option
(http://toolkit.bcblab.com) 44. From the Human Connectome Project (HCP), 7T MRI diffusion-weighted
scans were processed for N=163 healthy participants, 45% males. For the healthy participants, whole-
brain tractography was reconstructed using the same procedure reported in 12. Then, disconnectome
profiles were processed with the BCBtoolkit 45. HCP tractography was filtered considering only
streamlines passing through each stroke lesion. The filter tractography was binarized and averaged

http://toolkit.bcblab.com/
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across the HCP participants. As a result, for each stroke patient a map of probability, ranging from 0 to 1,
was obtained to quantify lesion disconnections. 

Spatial embedding. Dimensionality reduction of patients’ disconnectome was obtained using the UMAP
method 31. A non-linear embedding method that distributes data variability along major axes. Dataset 1
3-dimensional disconnectome maps were vectorised and imported as features of the embedding
methods. As UMAP parameters, an approximation of 15 neighbours and a minimum 0.1 Euclidean
distance was set to obtain a two-dimensional embedding of dataset 1. A space locally connected as
Riemannian manifold that we addressed in the paper as disconnectome morphospace. The UMAP
embedding transformation was stored as a Python object, using the Pickle library, to apply the same low-
dimensional transformation further when new patients are imported into the model. Subsequently, to
have positive coordinates with a zero origin, the maximum negative dataset 1 UMAP values across
dimensions were added to shift the coordinate scales (Umap 1 and Umap 2). 

Relationship to neuropsychological scores. Statistical correlations between patient localisation in the
disconnectome morphospace and neuropsychological scores were conducted. Before the multiple
regression formula, UMAP coordinates were converted into a 2D nifti image (260x260 matrix, 0.05 mm
pixel size), and a Gaussian kernel spatial smoothing of 1 mm was applied (using FSL libraries
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). This step was conducted to consider the uncertainty of UMAP
coordinates and obtaining a spatial distribution of patient localisation in the disconnectome
morphospace. Pixel-wise Pearson correlations between the patient probability of localisation and
neuropsychological scores were conducted with iterative loops in Python (python numpy.corrcoef).
Medium effect size correlation results only were considered informative (). Subsequently, since multiple
clusters of voxels survived the threshold, a principal component analysis (PCA) has been run to compress
the patient coordinate distribution variability. Three main principal components have been considered
(Python sklearn.decomposition.PCA). Subsequently, patients’ principal components have been entered, as
dependent variables, in the multiple regression model (Python sklearn.linear_model.LinearRegression) to
predict neuropsychological scores:

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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White matter atlas of neuropsychological components. In order to create a white matter atlas of the
evaluated neuropsychological assessments, white matter disconnectomes (dataset 1) were correlated
with patients’ PCA scores, evaluated by running the prediction model on the dataset 1. The former
disconnectome data were used in defining the UMAP space, whereas the latter model weights as
variables of the multiple regression model to predict long term neuropsychological symptoms. Using
randomise (FSL libraries) a generalized voxel-based linear regression model was run, with disconnectome
maps as independent variables and PCA scores as dependent variables. To address the result of
replicability this procedure was repeated twice, splitting the dataset 1 into two halves of n=666 subjects
each. 

The randomise T-maps obtained were used to calculate the correspondent effect size maps (f2, python
code reported in http://www.bcblab.com/BCB/Coding/Coding.html). For each neuropsychological score
three principal component scores were evaluated and the maximum effect size across the components
was considered. Subsequently, the highest effect size across neuropsychological assessments was
reported in the white matter atlas summary map (FSL libraries find_the_biggest function). The
replicability of the neuropsychology white matter atlas was quantified by means of Pearson correlations
between the two summary maps.

DSD web application development. The DSD web application was built using the Django framework
(https://www.djangoproject.com). This web framework allows database manipulation and is Python-
based. The DSD frontend was created with standard Javascript and css templates; whereas the backend
is hosted in a DigitalOcean webserver (https://www.digitalocean.com). Gunicorn and Ngnix are used for
the web application live production.

Visualization. 

A visualisation of the results was performed using Trackvis (http://trackvis.org), FSLeyes for imaging
data, and Python matplotlib and seaborn libraries for scatter plots and matrices. 

Reporting summary. Further information on research design is available in the Nature Research Reporting
Summary linked to this article.  

Data availability. All the neuropsychological score map used for defining the white matter atlas of
neuropsychological components are freely available at https://neurovault.org/collections/11260/. The
raw dataset imported in the BCBtoolkit software to calculate individual patient disconnectomes is
available at https://www.humanconnectome.org (7 T diffusion data). In addition, processed data are
available on request to the corresponding author. 

Code availability. The code used in the analyses is available as part of the BCBtoolkit package
http://toolkit.bcblab.com and the DSD web application http://disconnectomestudio.bcblab.com. Any
additional information is available on request to L.T. 

http://www.bcblab.com/BCB/Coding/Coding.html
https://www.djangoproject.com/
https://www.digitalocean.com/?gclid=Cj0KCQjw-NaJBhDsARIsAAja6dOdp8Z1nbM5dEgfWFce7nf1yCEVMywCVijH0UwLoGCqHUxRrcNd-toaAlTKEALw_wcB
http://trackvis.org/
https://neurovault.org/collections/11260/
https://www.humanconnectome.org/
http://toolkit.bcblab.com/
http://disconnectomestudio.bcblab.com/
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Figure 1

Disconnectome morphospace. Embedding of N=1333 stroke disconnectomes using Uniform manifold
approximation and projection (Umap). (Top) three patients’ disconnectomes, where a red-yellow colour
map indicates the probability of disconnection. (Bottom) the disconnectome morphospace, where
patients are marked with a circle (“o”) or with a cross (“x”) when their disconnection involves dominantly
the right (R) or the left (L) hemisphere, respectively. Colours in the morphospace indicate the probability
of disconnection of three white matter tracts: the cortico-spinal tract (CST), the arcuate fasciculus (AF),
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and the inferior-fronto occipital fasciculus (IFOF). Brain lobe annotations indicate the dominant location
of each stroke lesion.

Figure 2

Composite morphospace. The composite morphospace corresponds to the disconnectome morphospace
statistically combined with individual neuropsychological scores, (a-c) are three examples of different
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neuropsychological score associations with morphospace territories presented together with (d-f) their
prototypical disconnection profile. Blue-Red background colours in the morphospace correspond to
Pearson correlation scores (R) with neuropsychological scores. Medium effect size territories (F) are
delineated in black. All neuropsychological assessments and maps are reported in the Supplementary
Materials (Section C). i: effect size; laragrasp: left grasping Action Research Arm test test; boston_raw:
Boston naming test; pos_acc_disengage: accuracy in the Posner orienting task; CC: Corpus Callosum; EC:
External/Extreme Capsule; IFg: Inferior Frontal gyrus; Ins: Insula; LSA: Long Segment of the Arcuate
fasciculus; MTg: Middle Temporal gyrus; STg: Superior Temporal gyrus; Str: Striatum; Th: Thalamus.

Figure 3

White matter neuropsychological atlas. Summary maps of neuropsychological scores associated with
white matter disconnections with the highest statistical level (see Supplementary Materials Section D for
high-resolution images).
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Figure 4

Neuropsychological score statistic onto white matter. (a) Effect size maps (f2) for the most significant
associations between disconnectome and neuropsychological performances. (b) Disconnectome
versability maps indicating how many neuropsychological scores can be predicted for each voxel of
white matter.
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Figure 5

Accuracy of the neuropsychological scores. (left) Predicted neuropsychological scores, according to the
composite disconnectome morphospace modelling. (center) Measured neuropsychological scores 1-year
after the stroke onset. (right) Normalised error as the difference between predicted and measured scores.
Rows correspond to single patients’ neuropsychological profiles. Columns correspond to different



Page 18/18

neuropsychological scores. See the Supplementary Materials Figure 4 for the same figure derived from
the training set.
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