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Abstract
Climate change interacts with local processes to threaten biodiversity by disrupting the complex network
of ecological interactions, wherein variation in network links drastically affects ecosystems (e.g., species
loss). However, how ecological networks respond to climate change is largely unknown. We herein
consider 24–43 years of monthly data from plankton communities in �ve peri-alpine Swiss lakes subject
to warming and re-oligotrophication. Using empirical dynamic modeling, we show that the number and
strength of causal taxa interactions respond nonlinearly, yet predictably, to water temperature and
phosphorus. Warming reduces the connectance of ecological networks, particularly under high phosphate
levels. This network reorganization shifts trophic control of food webs, leading to consumers being
controlled by resources—signaling stability loss. By exposing the outcomes of complex interactions
between warming, nutrient supply and plankton ecology, our results provide tools for studying and
advancing our understanding of how climate change impacts the fabric of biodiversity.

Main Text
Human impacts, such as climate change and pollution, are reorganizing entire ecosystems by affecting
the nature and strength of ecological interactions and thereby the composition of communities1–4. In
fact, the global warming experienced by many lakes, particularly in the last decade, has shifted the
balance of these delicate networks to an unstable situation in which slight increases in nutrient levels can
trigger dramatic changes5,6. If the current rise in temperature continues, as predicted6, the dynamics of
these communities are expected to destabilize3,7,8. Recent work suggests that an air temperature increase
of 3°C may affect lake water quality similar to the eutrophication of the 20th century9. Such a loss of
stability can portend the possibility of rapid transitions in ecosystem states and the potential to increase
species extinction risks6,10−12. Though it is known that human activities affect ecosystems, adapting to a
changing climate means we still need better tools for measuring and predicting how changes to any
component of the ecosystem shape other components and relative processes2,13−15.

Ecological interactions between species are the engine of community dynamics and ecosystem
processes, though they remain perhaps the most overlooked component of biodiversity change16,17.
Studying the structure and dynamics of these community interactions, which can be conceptualized as
information networks, has proven to be fundamental to understanding how global change alters
ecosystem structure and function18. Networks vary over space and time in the number of interactions
between taxa (i.e., addition or loss of connections, connectance) or in the magnitude (strength) of
interactions (i.e., rerouting energy �ows through existing connections)2. Network connectance and the
strength of species interactions—particularly in trophic networks—are structural properties that can signal
large-scale changes in the whole ecosystem, with potential implications for system stability and the
maintenance of biodiversity2.
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However, knowledge about how entire interaction networks reorganize as a consequence of global
change is limited owing to many challenges, including the scarcity of long-term, well-curated time series
of complete ecological networks19, which, when available, are often nonlinear and require speci�c
inference methods20,21. Additionally, most research focuses on only one type of interaction (e.g., trophic
or competitive). Moreover, until recently, ecological theory and practice have often assumed that
interactions are �xed and constant over time20,22. Because of the limited available data on large-scale
ecosystems and the lack of quantitative data-analytic methods that can address complex relationships
that vary with system state, it has been di�cult to assess how the properties of ecological networks
respond to interacting environmental challenges.

Here, we address these gaps by studying the effects of two major anthropogenic stressors on plankton
networks: warming and re-oligotrophication, referring to the process of controlled phosphorus reduction
to revert lakes to their original state before anthropogenic nutrient pollution. We measure the temporal
changes in connectance and interaction strengths at three levels: (i) the whole network, (ii) top-down and
bottom-up links that control food-web dynamics, and (iii) different interaction types. To understand the
interdependent effects of warming and oligotrophication on plankton networks, we examined 24–43
years of well-curated monthly plankton community data across �ve peri-alpine Swiss lakes (Fig. 1a, Tab.
S1); this dataset is a long-term and consistent historical series of an entire ecological network along with
measurements of abiotic environmental variables, which is very rare in ecology. Thus, these data,
analyzed via tools for nonlinear dynamic systems, such as empirical dynamic modeling (EDM) (pyedm,
rEDM for analyzing non-equilibrium systems) (https://github.com/SugiharaLab), provide a timely
opportunity to investigate network-wide consequences of climate change in natural lake ecosystems.

We �rst analyze the data collected from the �ve Swiss lakes for the trends in phosphate levels and
temperature, as dissolved inorganic phosphorus (phosphate) is the main limiting factor for
phytoplankton growth in temperate lakes and the principal driver of eutrophication23. Starting in the
1970s, the lakes considered in this study underwent managed re-oligotrophication to control the release
of phosphorus into the ecosystems (Fig. 1b). At the same time, the average water column temperature
has steadily increased since the 1950s24, and warming can have both direct and indirect effects on the
ecosystems of deep and temperate lakes such as the ones studied here through the regulation of nutrient
supply25. From 2010–2020, the average water column temperature rose by an alarming 0.6 to 1.8°C (Tab.
S1), similar to the increase observed over the previous 60 years (1950–2010)24,26. This rise in
temperature fosters water column stability, reducing turbulence and deep mixing and decreasing the
resuspension of phosphorus from the deep and nutrient-rich waters24,27,28. To examine these issues, we
use a non-linear causality test (convergent cross-mapping, CCM) from the empirical dynamic modeling
(EDM) framework to analyze the relationship between phosphate levels and water temperature in our
datasets (Methods). From this, we �nd that water column temperature causally in�uences changes in
phosphate levels, but not vice versa (Fig. S1). This unidirectional relationship suggests that warming, by
regulating phosphate availability, may have a more pervasive in�uence on plankton networks than would
be expected by the effects of water temperature alone.



Page 4/28

To study network connectance, which can be affected by warming3,29, we next group the plankton
species present in the lakes into well-known trophic guilds16,22,30 based on species' body size, nutrition
requirements, and foraging behavior. The resulting conceptual network consists of up to 16 nodes
(Fig. 1c, Methods) comprising: invertebrate predators, omnivores large and small herbivores, mixotrophic
dino�agellates and primary producers. Guilds of primary producers (phytoplankton) represent the base of
aquatic food webs and, worldwide, they account for half of the global primary production31. We divided
each of their guilds into two nodes based on cell size and coloniality (Fig. 1c). Each node in the network
contains a time series of monthly abundances that records how guilds wax and wane over time, while the
number of nodes per lake remains constant (Fig. S2, Fig. S3). These time series contain essential
information about how the nodes in�uence each other (i.e., dynamic links). We consider direct (e.g.,
predator-prey) and indirect (e.g., competition for resources) interactions.

To employ this established network for studying how interactions change as a function of system state
(as reasonably expected from nonlinear systems20,32), we use EDM to recover and analyze the putative
attractor that generated the observational time series. We quantify the strength of causal associations
between network nodes using CCM and Pearson’s correlation between predictions and observations (rho,
cross-map accuracy)32. CCM quanti�es how changes in one time series (the driven variable) can predict
changes in another (the causal driver). That is, it quanti�es how much information about the driver is
contained in the driven variable. Of note, with CCM, we can detect nonlinear linkages between nodes that
show no correlation with each other or whose ephemeral correlations can �ip signs—a common
phenomenon in nonlinear systems. Causal interactions between two network nodes are tested in both
directions (e.g., from prey to a predator and from predator to its prey). To highlight the intrinsic nonlinear
dynamics among the guilds and minimize the interannual signal of the environmental drivers,
interactions are corrected for seasonality by assuming no interaction when the interaction strength given
by CCM is lower than that of a seasonal surrogate null model33,34 (Methods). By measuring cross-map
accuracy (rho) in a 60-month moving window, we track how the strength of causal in�uence between
plankton guilds varies. Thus, within each window, we calculate a CCM network and measure (i)
connectance as the percentage of signi�cant causal links between guilds (nodes), C = 100 x (L / N(N-1)),
where L is the number of interactions between nodes and N is the number of nodes in the system, and (ii)
interaction strengths among causal links. The main trends in connectance and interaction strength
reported below are robust to the choice of window size (Fig. S4).

At the network level, we �nd that connectance and average interaction strengths vary over time in each
lake (Fig. 2a-b). Plankton network connectance increases across lakes as nutrient availability decreases;
then drops sharply after 2010 (from an average connectance of 24% realized links to 10%) as warming
accelerates (Fig. 2a). The average interaction strength among plankton guilds is less variable over time
than network connectance, with a slight temporal decrease after re-oligotrophication (Fig. 2b).

To then examine the relationship between network properties and environmental factors, we study the
effects of contrasting gradients of decreasing phosphorus and lake warming experienced by all the lakes
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in our dataset (Fig. 1b). Using s-maps (Methods), we model the highly non-linear relationship between
network properties as a function of the interaction between temperature, phosphate, and the lake’s depth
and volume23,35. Those models allow us to examine the effects of warming, usually convolved with re-
oligotrophication, as a function of lake size. Moreover, within the observed ranges of temperature and
phosphate levels, we can now make out-of-sample predictions for previously unobserved temperature
and phosphate level combinations across lakes.

We found that network connectance and interaction strength show non-linear responses to changes in
lake phosphate concentration and water temperature (Fig. 2c-d). Here, the degree of nonlinearity is
measured by the maximum Δrho: the difference in Pearson’s correlation between the best nonlinear
model (when the locality parameter [Θ] in the s-maps is greater than 0) and the global linear model (when
Θ = 0) (Tab. S2). Though dependent on temperature and lake size, overall the connectance and interaction
strength increase with decreasing phosphorus levels in the S-map models. However, the observed
historical trajectories show that network connectance responds idiosyncratically when phosphate levels
decrease, tending to increase in large lakes and decrease in small (+ 8.0%, -6.7%, respectively; Fig. 2c).
When water temperature and phosphate levels remain relatively stable, connectance increases in small
and large lakes (+ 14.8%, + 9.3%; Fig. 2c). Finally, connectance drastically decreases when warming
accelerates (-15.8.%, -12.1%; Fig. 2c). S-map models predict network connectance to be highest at
moderate to low temperature and low phosphate levels (T < 8.12°C, P < 0.03 mg/L), though connectance
is consistently lower in both small and large lakes at high temperature, irrespective of phosphate levels
(T > 8.83°C, P > 0.03 mg/L; Fig. 2c). Our results here, showing signi�cantly reduced connectance across
different lake ecosystems with increasing water temperature, especially under eutrophic conditions, agree
with recent evidence from natural freshwater systems3 that warming reduces the connectance of natural
ecological networks.

Regarding interaction strength, we see that a decrease in phosphorus is a stronger driver than water
temperature. S-map models predict network interactions to be generally stronger under low phosphate
levels (P < 0.03 mg/L) and weaker at low temperatures and high phosphate levels (T < 7.23°C, P > 0.11
mg/L, Fig. 2d). Moreover, the strength of network interactions in smaller lakes is predicted to be higher
and more dynamic on average when compared to larger lakes (0.44 ± 0.06, 0.31 ± 0.02, respectively;
Fig. 2d). Overall, stable ecosystems are characterized by high connectivity and weak interaction
strengths7, and a reduction in nutrient levels can increase competition for resources and thus lead to
stronger interactions36,37. Our models predict that stable conditions are satis�ed in our dataset under low
to intermediate water temperatures, implying that the warming of temperate lakes might destabilize
plankton networks, particularly when interacting with very high phosphorus levels, as previously
suggested5.

We next examined the directionality of trophic control, as warming can alter the metabolic rates of
producers and consumers differently, in�uencing the strength of trophic interactions and the direction of
controls (e.g. consumers controlling the population of their resource or vice versa), especially under
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reduced nutrient levels3,5,38. Experimental evidence suggests that warming strongly impacts aquatic food
web interactions by reducing trophic transfer e�ciency38–40 and may also affect trophic controls in large
lakes, particularly when co-occurring with changes in nutrient availability4,25,41. If warming shifts control
to bottom-up, where resources control consumers, the system dynamics become sensitive to nutrient
inputs5,42. If top-down forces control a system, managing the lake’s productivity would require food web
manipulations (e.g., stocking of piscivorous �sh)43. When ecosystems depend on resources to meet
consumers' demands, they also become signi�cantly destabilized3.

To therefore explore the directionality of trophic control, we use CCM to calculate the relative frequency of
causal effects descending (top-down links, e.g. predator controls prey abundance), and ascending
(bottom-up links, e.g. prey controls predator abundance) the network (Fig. 1c, Methods). To reveal the
complex responses of bottom-up and top-down controls to phosphate concentration and warming, we
use s-maps models analogous to those used to predict connectance and interaction strength. We �nd
that top-down causal links are more frequent than bottom-up links in all lakes (Fig. 3a, Fig. S6a), though
in 4 out of 5 lakes, the bottom-up links are stronger on average (Fig. 3b). Additionally, bottom-up and top-
down controls are not static and change over time and environmental gradients4. We �nd that, across
lakes, a reduction in phosphate levels slightly increases the number of top-down links (Fig. 3c). Warming
in lakes, however, generally decreases both the number and strength of top-down links relative to bottom-
up links (Fig. 3c-d). Our s-map models predict that under high water temperature and high phosphate
levels, plankton networks are bottom-up controlled (number and strength of links, T > 8.00°C, PO4 > 0.025
mg/L), whereas they are top-down controlled under low water temperature and low nutrients (T < 8.00°C,
PO4 < 0.025 mg/L; Fig. 3c-d). Although combined warming and nutrient levels can have system-speci�c

and idiosyncratic shifts in bottom-up and top-down controls5,42, our results suggest that under warming
conditions, resources increasingly control consumers in planktonic food webs, particularly when
phosphorus levels are high.

So far, our results have shown how plankton networks respond to changes in temperature and phosphate
concentration. To better understand the mechanisms leading to the observed network reorganization, we
examine how different interaction types and guilds contribute to the temporal changes in connectance,
interaction strength, and trophic controls. We obtain the frequency and average strength of trophic, non-
trophic, and hybrid links, the latter of which can be both trophic and non-trophic depending on the
conditions (e.g., mixotrophic dino�agellates that change nutrition mode, or links involving large
zooplankton that both prey on and compete with microzooplankton like rotifers and ciliates). The
temporal dynamics show that hybrid links are signi�cantly more common in the causal network than
non-trophic and trophic links, especially after 2010 (Fig. 4a, Fig. 4c). Trophic (e.g., predator-prey
interactions) and non-trophic links (e.g., competition and facilitation) were similarly frequent across lakes
(p = 0.26, Fig. 4c), though non-trophic links were strongest on average, especially before nutrient
stabilization in the systems (p < 0.001; Fig. 4b,d), while trophic and hybrid links had similar strengths (p = 
0.31; Fig. 4d). These results suggest that hybrid links are important regulators of plankton network
structure, as previously hypothesized2.
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By shifting our focus from interactions to the constituent nodes, we �nd that temperature and phosphate
availability have a strong causal in�uence on speci�c guilds: small grazers (i.e., rotifers, ciliates and
mixotrophic dino�agellates; guilds R, Ci, and M) and colonial cyanobacteria (P2) (Fig. 5). These guilds
lead the responses of plankton networks to warming and re-oligotrophication as they have the strongest
in�uence on the dynamics of other guilds (Fig. 5). Mixotrophic dino�agellates account for most of the
top-down links (Fig. S6b), while ciliates have the strongest top-down links, followed by rotifers and
mixotrophic dino�agellates (Fig. S6c). These �ndings agree with previous knowledge of mixotrophic
organisms and small grazers being more resilient to environmental change due to their plastic nutrition
strategies and foraging behavior. As a central regulator of plankton food webs30,44, they in�uence
community structure35 and food web dynamics2. Colonial, bloom-forming (and often toxic)
cyanobacteria are among the most frequent and strongest linked primary producers in our plankton
networks (Fig. 5 and S6). As expected, the dynamics of cyanobacteria are strongly linked to changes in
phosphate levels and temperature45 (Fig. 5). While their connectivity and interaction strengths decrease
with re-oligotrophication, the strength of their interactions increases with warming (Fig. S7).

The results we present here provide much-needed information about how lake plankton interaction
networks, which are paramount for the functioning of aquatic ecosystems, respond to climate change
and pollution, and characterize their highly nonlinear behavior. These results also highlight the necessity
for studies of this type, as we show that the warming experienced by the lakes in this dataset, particularly
in the last decade, has shifted network properties and trophic controls to an area of parameter space
where slight increases in temperature or phosphorus levels can trigger dramatic changes in the network
(Figs. 2–3, S5). Given the high stakes for biodiversity and water security, it is essential to develop the
capacity to forecast future lake ecosystem states, and to allow conservation and management by
exploring outcomes under different climate scenarios. The tools used here will enable us to measure and
predict the complex relationships between network properties, climate change, and nutrient supply. With
adequate data, we are now in a position where ecological forecasting is feasible, not only in lakes but in
other systems where data-driven modeling tools similar to those used here can be applied by researchers
and stakeholders alike.
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Methods
Data collection 

Plankton abundance time series covering three levels of a lake’s food web

Plankton samples were collected between 1977 and 2020 monthly (occasionally bi-monthly) across 5
Swiss lakes (Fig. 1, Tab. S1). In Lake Baldegg and Sempach, data from 2010 onwards were excluded
from analyses due to irregular plankton sampling (i.e., bi- or tri-monthly). Samples in all lakes have been
collected at identical locations over the years and were counted by the same group of taxonomists.
Phytoplankton and small zooplankton grazers (i.e., rotifers and ciliates) were sampled integrated over the
water column using a Schröder sampler 46 or at discrete depths, where the lowest depth varied across
lakes. Taxa abundances were converted to cells/L to compare across lakes. In Zurichsee, the sampling
method was changed in 2012 from discrete depth sampling (0, 1, 2.5, 5, 7.5, 10, 12.5, 15, 20, 30, 40, 60,
80, 100, 120, 130, 135 m) to integrated sampling (<20 m, 20-40 m and >40 m of the water column). To
compare discrete with integrated samples, we multiplied each discrete sample by a conversion factor and
aggregated them to match the corresponding integrated samples, e.g. multiplied discrete samples within
0 to 20 m by their corresponding factor and summed them up to match the integrated samples of < 20 m.
Conversion factors for the speci�c depths can be found on an open data repository linked to this article
(link to ERIC server). Zurichsee (ZHR) sampling did not consider small grazers (ciliates and rotifers).
Large zooplankton was sampled using net-tows going from the bottom of the lake to the surface. Details
about the lake sampling protocols can be found elsewhere 26,35. Densities were converted to
individuals/m2 to compare across lakes. A full taxonomic list of species considered within this study can
be found in an open access data repository linked to this article (link to ERIC server). Plankton abundance
data were winsorized, where values lying outside the 99 % quantile were replaced by the highest values
within the 99 % quantile using the function Winsorize from the R package DescTools (v 0.99.43). This
was done to reduce the power of large outliers without deleting data. 

Water temperature and nutrient availability as environmental drivers
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Chemical and physical parameters were measured monthly (occasionally bi-monthly) in the same
locations where plankton samples were collected. Samples were done from the surface to the lake’s
bottom at discrete depths. We focused on two main drivers of anthropogenic change in Swiss lakes,
water temperature and freely available dissolved phosphate (PO4) 47,48. We used mean water temperature
and mean phosphate concentration over the whole water column. Missing values were estimated using
linear interpolation with na_approx from the R package zoo (v 1.8-9). The approximated values ranged
between 1 and 218, with a median of 2.5 (Tab. S1). After re-oligotrophication, PO4 levels remained
constant and often below the detection limit in Lake Hallwil. Sampling for nutrients in this lake was
changed to bi- or tri-monthly early on in 1988, resulting in 218 missing values. 

Conceptual planktonic network 

To understand processes at the network level and control for potential biases in taxa classi�cation across
lakes and over time, we aggregated plankton taxa abundances into a conceptual network. This allowed
us to overcome the limitations of a monitoring frequency lower than the generation time of the organisms
(monthly sampling and noise in time series), and account for the intrinsic variability of species
interactions. We aggregated taxa into guilds based on functional traits allows to reduce the potential
effects of taxonomic misclassi�cation 49, and the dynamics of trophic guilds, contrary to the dynamics of
taxa (which occur at the scale of days), occur at the scale of months and well represent seasonal and
interannual network transitions 30,44. 

The sorting into guilds and drawing links between them was based on taxonomic classi�cation, body
size, and feeding behavior 44. Our conceptual network consisted of up to 16 nodes (guilds) across three
trophic levels of the food web, containing large invertebrate predators, omnivores, large herbivore grazers,
small grazers, mixotrophs, and primary producers. The relationships (links) between nodes can be trophic
(classic predator-prey relationship), non-trophic (i.e., mutualisms and competition) or hybrid, where guilds
can have trophic or non-trophic relationships (i.e., mixotrophic dino�agellates) (Fig. 1c). All links are bi-
directional (in both directions), whereas trophic and hybrid links can go up the network (BU), i.e., from a
primary producer to a grazer, or down the network (top-down), i.e., from a grazer to a primary producer
(Fig. 1c). We sorted in total 1383 distinctive taxa into 16 guilds. In Zurichsee, we only had 14 guilds
because of missing counts for rotifers and ciliates. We conducted a sensitivity analysis where we
excluded rotifers (R) and ciliates (Ci) from Greifensee data. Connectance and interaction strength were
similar with and without rotifers (R) and ciliates (Ci) (R2

connectance = 0.92, p-valueconnectance< 2.2 e-16,

R2
interaction strength = 0.79, p-valueinteraction strength < 2.2 e-16). Because we could not differentiate between

calanoid and cyclopoid nauplii nor their larval stage and thus had not enough information on their
feeding behavior, nauplii were excluded from our study. Euglenoids were also excluded. An overview of
the taxonomic list and guild classi�cation can be found in an open access data repository linked to this
article (link to ERIC server). The guild abundances for each lake, as shown in Fig. S2 are freely available
and can be downloaded here (link to ERIC server) after the manuscript submission.
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For analyses, time series were completed by adding a placeholder for missing values (NA’s) to ensure
having evenly spaced monthly data. If guilds did not meet a 50% abundance criteria, i.e., present (values
greater than 0) at least half of the time during the studied period, they were excluded from the analysis.
This has been the case for P1 (small cyanobacteria) in HAL, BAL, SEM and ZHR. 

 Empirical Dynamic Modeling (EDM)

Chaos is ubiquitous in plankton communities, making linear statistical approaches un�t to study long-
term changes in their network properties 50. Linear statistical techniques are based on a correlation
between two or more variables. In nonlinear systems, causality does not require correlation and
correlation does not imply causation 32. Nonlinear systems can exhibit state dependency, where the
relationships between variables may change depending on the system’s state. For example, large
herbivore populations (H) may be affected by invertebrate predators (C2) only when their resource,
phytoplankton (P), is scarce 51. Equation-free approaches offer a promising way to detect causal
relationships in complex non-linear systems. 

Empirical dynamic modeling (EDM) is rooted in state-space reconstruction, which does not assume any
equations governing the system and recovers dynamics from empirical data. In EDM, a state space (i.e.,
an attractor) is reconstructed using time series belonging to the same dynamical system. An attractor is a
description of rules that govern the system - without any a priori assumptions. For example, suppose the
dynamics of large herbivores (H) are affected by phytoplankton (P) and invertebrate predators (C2). In
that case, an attractor of the system’s dynamics can be reconstructed by plotting the time series of H, P
and C2 along the x,y, and z axes. An educative animation on state-space reconstruction can be found
here: https://deepeco.ucsd.edu/videos/#page-content. 

In practice, we typically don’t have knowledge of or data on every variable in a system. Takens’ Theorem
(1981), however, postulated that one can substitute any unknown or unobserved variables with a lag of a
single time series to reconstruct the system’s attractor 52. If two variables are from the same dynamical
system, i.e. large herbivores (H) and phytoplankton (P), information about current phytoplankton
populations will be encoded in past large herbivores' time series. Thus, if we have no information on
phytoplankton (P) and invertebrate predators (C2), the system from above can be reconstructed using
large herbivore abundance (H) at t-τ and H abundance at t-2τ respectively, where τ stands for time lag
(e.g. 1 month). 

To reconstruct the attractor of a system properly, one needs to know the ideal embedding. The ideal
embedding is de�ned by the number of variables or lags used to build a system’s attractor, each of them
representing a coordinate axis; and provides information on the complexity of the system and the quality
of data (i.e. highly resolved time series contain more information on the system and will thus result in a
higher ideal embedding dimension). In our example above, the embedding dimension was set arbitrarily
to three and a shadow attractor was reconstructed using large herbivore abundance (H) at t, t-τ and t-2τ.
Ideally, we would de�ne the best embedding �rst and then reconstruct the attractor using (H(t), H(t-τ), H(t-

https://paperpile.com/c/U8S7sD/Urltt
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https://paperpile.com/c/U8S7sD/tKP6q
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2τ), …, H(t-(E)τ), where τ is the desired lag (i.e. one month) and E the best embedding (see below for
further explications). 

In empirical dynamic modeling, the attractor of a system can be used (among others) to determine the
number of dimensions required to describe a system (best embedding) 53,54, quantify the non-linearity of
time series 55–57, forecasting 53,58–60 and infer causality between two variables 32. We expanded the
classical empirical dynamical framework by adding a temporal component to convergent cross mapping
(studying local correlations among observations and predictions within a moving window) and using the
predictive skill rho (corrected for seasonality) as a proxy for how strongly a variable interacts and/or
affects another variable. Below we brie�y introduce the EDM concepts used in this paper and how we
applied them to our data. Please refer to the cited references for proof of concepts and further
information. 

Before analysis using empirical dynamical modeling, guild time series have been rescaled using the
function scale in the R package base (v-4.1.0). All analyses were performed using the rEDM package in R
(v-0.7.5). Up-to-date versions of rEDM can be found at https://github.com/SugiharaLab/rEDM. More
information to perform EDM analyses can be found here: https://deepeco.ucsd.edu/resources/#page-
content. “Empirical dynamic modeling for beginners” is another helpful resource, addressing basic
applications with step-by-step example code 61. 

Optimal Embedding Dimension

To reconstruct the dynamic attractor, one needs to know the ideal embedding dimension, i.e. the number
of independent variables. The ideal embedding can be de�ned with simplex projection, a forecasting
method relying on nearest neighbors 53. Simplex projection uses only neighboring points in the state
space of the predicted variable to make forecasts. The highest prediction skill (rho, Pearson’s correlation ρ
between the observed and the predicted values) indicates the optimal embedding dimension. If the right
number of lags are used, the attractor reconstruction will map closely to that of the true underlying
attractor of the system. If embeddings are insu�cient, points corresponding to different system states
will overlap in the reconstruction and thus hinder forecast accuracy. 

We used simplex from the R package rEDM (v-0.7.5) to perform simplex projection and de�ne the best
embedding dimension for each time series in our data. The embedding dimension was run over E = 2:15.
Time lag and prediction horizon were set to 1 month. The number of nearest neighbors used to make
predictions was set to E+1. Forecasting was done using leave-one-out cross-validation and the best
embedding was selected based on maximizing the forecasting skill rho (Tab. S2).

Non-linearity 

EDM was designed for non-linear deterministic systems, an assumption that must be tested before
analysis. The degree of state dependency re�ects the nonlinearity of a system. State dependency, and
thus the degree of non-linearity, can be determined using univariate s-maps forecasting (s-map stands for

https://paperpile.com/c/U8S7sD/A6w7H+f3sxR
https://paperpile.com/c/U8S7sD/pbjV1+xtaKr+Nt1je
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https://github.com/SugiharaLab/rEDM
https://deepeco.ucsd.edu/resources/#page-content
https://paperpile.com/c/U8S7sD/HxNM9
https://paperpile.com/c/U8S7sD/A6w7H
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sequential locally weighted global linear map)55. S-maps use the whole library of points to make
forecasts and apply a weighting function (e.g. in the form of an exponential decay kernel), giving closer
points in attractor space more weight. The non-linear tuning parameter theta controls the state
dependency in the weighting function of an s-map. If theta = 0, all library points receive the same weight
and thus, the system is considered linear. In that case, the model reduces to a linear autoregressive
model. However, nearby points receive larger weights if theta is greater than 0. The s-map forecasting will
depend on the system’s local state. It will produce different �ttings depending on the position along the
attractor. The larger theta, the more weight is given to closer points (neighbors) in the attractor space for
forecasting. Nonlinearity can be explored by comparing the forecasting skill of linear (theta = 0) to
nonlinear models (theta > 0).

We used s_map from the R package rEDM (v-0.7.5) to quantify the degree of nonlinearity (theta) for each
time series in our data set. Embedding was �xed depending on the previously de�ned best embedding
dimension (Tab. S3) and theta run over a list of values (0, 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1,
0.3, 0.5, 0.75, 1.0, 1.5, 2, 3, 4, 6, and 8). Time lag and prediction horizon were set to 1 month. Forecasting
was made using leave-one-out cross-validation and theta was selected based on maximized forecasting
skill rho (Tab. S3).

Convergent Cross Mapping 

Convergent cross-mapping (CCM) is considered a “non-linear causality test” and assesses if one variable
signi�cantly affects another. As a consequence of Taken’s theorem, univariate attractor reconstructions
map to the original system and each other. By testing for mapping between two univariate attractor
reconstructions, we can determine if two variables belong to the same system and thus share a causal
relationship 32. If large herbivores (H), phytoplankton (P) and invertebrate predators (C2) belong to the
same system (are causally linked) and the best embedding is 3, the attractor (H(t), H(t-τ), H(t-2τ)) maps to
the attractor (H(t), P(t), C2(t)) as well as (P(t), P(t-τ), P(t-2τ)) and (C2(t), C2(t-τ), C2(t-2τ)). In practice, this
is done by testing how well a variable can be predicted using another variable's attractor reconstruction.
We measure the forecasting skill rho (Pearson's correlation between predictions and observations), also
called the “cross-mapping skill”. For example, we may use the univariate reconstructed attractor (P(t), P(t-
τ), P(t-2τ)) based on phytoplankton (P) to predict large herbivore abundance (H) at t or t-τ. Note that
some causal relationships may be unidirectional, e.g., temperature will map to large herbivores (H) but
not vice versa.

Convergence and surrogate time series are critical components of inferring causality between two
variables using empirical data. Cross-mapping from one variable to another shall be “convergent”, i.e., the
predictive skill rho improves with library size (time-series length). Reconstructed univariate attractors
become denser with more library points and thus, forecasts using nearest neighbors become better. The
state space is reconstructed using different library lengths (number of data points) subsampled randomly
from the time series to test for convergence. Seasonal co-occurrence patterns might obscure a causal
relationship of one variable to another, which is especially true for plankton communities (i.e. PEG model

https://paperpile.com/c/U8S7sD/pbjV1
https://paperpile.com/c/U8S7sD/iPIis
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62. Two variables with a seasonal cycle can have a high prediction skill, even if they don’t share a causal
link. Therefore, one can compare the forecasting skill rho of the original time series to rho estimated from
seasonal surrogates. Seasonal surrogate time series are created by randomly reshu�ing the time series
while keeping the seasonal signal (i.e., reshu�ing among months). 

Local cross-mapping skills (rho) describe changes in signi�cant links over time and can be used to
estimate time-varying (interaction) strength. Cross-mapping-skill is usually calculated over the whole time
series. Local cross-mapping skills document changes in (plankton) networks and aid in overcoming a
common trend. Instead of calculating Pearson’s correlation between all observations and predictions,
cross-mapping skills are estimated within a moving window. This results in a time series of cross-
mapping skills, which can be used to derive time-dependent causal links when compared to seasonal
surrogate time series. The local cross-mapping skill can be used as a proxy for the strength of the causal
link when subtracting the seasonal component (i.e., rhooriginalTS - mean (rhosurrogateTS)). If this is done for
a link between two network nodes, i.e., phytoplankton (P) and large herbivores (H), local cross-mapping
skills can be used as a proxy for interaction strength between those two nodes.

In the following two paragraphs, we will brie�y describe how we used convergent cross-mapping to derive
time-dependent causal links and estimate the strength of those causal links. Consider two variables, V1
and V2. We want to know if V1 (e.g., phytoplankton) had a signi�cant link with V2 (e.g., large herbivores
or temperature) at time point tx and how strong the link was. To do this, we would call it V1 xmap V2 and
the direction of effect we are testing is V1 ←  V2. 

Convergence test. We tested the convergence of V1 xmap V2 by comparing the predictive power of using
20% and 50% of the data, respectively. This was done with 100 consecutive random subsets of the time
series. The ideal embedding dimension was de�ned for V1 based on forecasting with simplex-projection
(see above and STab. 2), while the time lag tp was kept at 0. Convergent cross mapping was run with the
function ccm from the R package rEDM (v-0.7.5). Convergence was considered true if rho50% > rho20% for
the 100 subsets, determined by a one-sided t-test (95% quantile). Local cross-mapping-skill (rho). If the
convergence test was signi�cant, we performed CCM between V1 and V2 this time using the maximum
library (whole time series) and tp = -1. Using the predictions from the CCM-output, we calculated local
rho’s, i.e. the correlation between observation of V1 and predictions of V1 (using V2’s attractor) within
moving windows (n=60 months, sliding 1 month forward at a time). This resulted in a time series of rho’s
(forecast skills). Seasonal surrogates. The local rho’s were then compared to rho’s from 100 random
seasonal surrogate time series for each time window (time point tx). Causal link. We considered the link
V1 ←  V2 at time point tx as signi�cant if 95% of the times rhooriginalTS > rhosurrogateTS. Strength. If the link
was signi�cant, we estimate the strength of V1 ← V2 at tx by removing the seasonal component from the
local rhooriginalTS, i.e.  rhooriginalTS - mean (rhosurrogateTS), the average local rho of the 100 surrogate time
series.

Network links. To calculate network connectance, we summed all causal links (passed the surrogate test)
per lake and date (month) and divided them by the total possible links for this network (based on the

https://paperpile.com/c/U8S7sD/SqVE8
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conceptual network and convergence test). We obtained connectance (%), the number of connected
nodes, for this time point and a time series of connectance per lake (Fig. 2a). Interaction strength. We
calculate the mean interaction strength (correlation between observed and predicted values) across
nodes per date and lake. This resulted in average interaction strength for this time point and a time series
of average interaction strength per lake (Fig. 2b). If there were no signi�cant links at a given time point,
connectance was set to 0 and strength to NA. Interaction strength over time and across lakes (Fig. 5) was
calculated by estimating the average strength of each link and multiplying it by its prevalence over time
(per lake), i.e. corrected the strength for how often it occurred in the time series, and then average across
lakes. Environment effect on guilds. To get at the strength of water temperature and phosphate variability
over time for each guild (Fig.5), we averaged the strength for each node and multiplied by its prevalence
over time and then averaged across lakes (analogous to calculating interaction strengths between guilds
over time across lakes). Feedback between temperature and nutrients. To test for a causal relationship
(feedback) between water temperature and phosphate concentration (Fig. S1), we used convergent cross-
mapping on the whole time series and performed a convergence test (n=100) and seasonal surrogate test
(n=100). If both the convergence test (rho50% > rho20%) and seasonal surrogate test (>95% of times
rhooriginalTS > rhosurrogateTS) passed, we considered an effect as signi�cant (lake displayed as points in
Fig. S1). To get a robust estimation of the effect’s magnitude (i.e. �lter out single episodic events and
diminish the power of outliers), we multiplied the strength of each time point by its prevalence over time
(per lake), i.e. we corrected the strength by how often a signi�cant link occurred in the time series. The
resulting value was plotted on the y-axis in Fig. S1. Network control. We summed up all causal links going
up (bottom-up) and down (top-down) the food web (i.e., trophic and hybrid links) per time point and lake
and divided them by all the total possible bottom-up or top-down links for this network. Moreover, we
averaged the strength of all signi�cant bottom-up and top-down links per time point and lake. Then we
calculated the difference between realized top-down and bottom-up links (i.e. top-down connectance -
bottom-up connectance) and top-down and bottom-up strength (i.e., top-down interaction strength -
bottom-up interaction strength). This resulted in a time series of changes in top-down - bottom-up
connectance and interaction strength over time, whereas a value > 0 indicated top-down and < 0 bottom-
up control (Fig. 3a-b). If there were no signi�cant bottom-up and/or top-down links at a given time point,
connectance was set to 0 and strength to NA. Interaction types. We summed up all trophic, non-trophic
and hybrid interactions (according to Fig. 1c) per time point and lake and divided them by all total
possible links per interaction type. Then we averaged connectance and interaction strength for trophic,
non-trophic and hybrid links per time point across lakes. This resulted in a time series of connectance (%)
and interaction strength of trophic, non-trophic and hybrid links (Fig. 4a-b). We compared connectance
(%) and strength of interaction types using a Kruskal-Wallis test, a non-parametric method for testing if
samples originate from the same distribution (Fig. 4c-d).  

Scenario exploration using multivariate S-maps

We used multivariate s-maps (locally weighted linear maps) to model network properties and extract their
relationship with phosphate levels and water temperature. S-maps compute a unique locally weighted
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linear regression to make a forecast at each point in time where closer points on the attractor are given a
higher weight. The strength of weighting is controlled by the parameter theta and indicates the degree of
non-linearity and state dependency. Each regression provides a set of coe�cients that de�ne
relationships (dynamics) between variables at each unique state.  These coe�cients were used to
estimate (predict) each network property at varying levels of temperature and phosphate (Fig. 2-4 c-d). To
account for important differences in the morphometry of lakes, which in�uence these ecosystems'
responses to changes in nutrient inputs and warming, we included depth at the sampling site and lake
total water volume in the s-map models 35. To generate model predictions for the smallest lake (Fig. 2-4 c-
d), we used the depth and volume of Lake Greifensee and for the largest lake, the depth and volume of
Lake Zurich. Predictions for the three other lakes (Baldegg, Hallwil and Sempach) are in Supplementary.

We ran s-map models using rEDM (v-0.7.5) and the function block_lnlp. Environmental drivers were
smoothed within 60-month moving windows to match the temporal scale of modeled network properties.
Methods within the function were set to “s-map” and the exclusion radius to 12 to avoid the high temporal
autocorrelation caused by the moving windows. Theta was selected to maximise predictive skill rho when
varied over a list of values (0, 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 0.75, 1.0, 1.5, 2, 3, 4, 6,
and 8) and tp set to 0.
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Figure 1

Environmental change in �ve Swiss lakes over the past �ve decades and its implications for plankton
networks. [a] Study sites: Lake code names stand for HAL (Hallwil), BAL (Baldegg), SEM (Sempach), GRE
(Greifen) and ZHR (Zurich). Lakes belong to the same geographic region, and the size and distance
between them are to scale. [b] Monthly phosphate concentrations (PO4) and water temperature data
averaged over the water column: blue lines represent time series for single lakes, the black line represents
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a smoothing average across lakes; dashed vertical lines indicate transitions in the lakes’ histories, i.e., the
end of the oligotrophication phase (circa the year 2000), and the increase in net lake warming (from circa
2010). [c] Conceptual model of a plankton network in temperate lakes: in the legend, (s) stands for small
single cells, (l) for large single cells, and (c) for colonial taxa). Non-trophic links encompass facilitation
and competition. Trophic links represent predator-prey interactions. Hybrid links can be both trophic and
non-trophic, e.g., mixotrophic protists can prey on or compete with other phytoplankton species. Hybrid
and trophic links go from the bottom to the top of the food web, i.e., from a primary producer to a grazer
(bottom-up - BU) or from top to bottom, i.e., from a grazer to a primary producer (top-down - TD).
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Figure 2

Connectance and interaction strength between the nodes of plankton networks are dynamic and exhibit
non-linear relationships with water temperature and phosphorus. [a] Connectance (% realized network
links across time); [b] average interaction strength between guilds across time (lines are drawn based on
the center point of a moving window of 60 months - used for causality detection via CCM). [c] Combined
effects of average water-column phosphate levels and temperature on realized connectance and [d]
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average interactions strengths: color-coded contour plots depict the s-map model inferred relationships,
which emerge from predicting network properties (Z-axis) over varying levels of the chosen pair of
explanatory variables (water temperature and phosphate), across the entire dataset while keeping lake
depth and volume constant (Methods). To model the smallest and largest lake, we used lake depth and
volume from Greifensee and lake Zurich, respectively (other lakes in Supplementary). Water temperature
(y-axis), phosphate levels (x-axis), connectance (legend c) and average interaction strength (legend
d) ranged between the minimum and maximum observed value across all lakes. Dots depict the start/end
of the re-oligotrophication and net-warming phase. Trajectories show the direction of time, for Greifensee
(small lake) and Zurich (large lake), with the arrowhead pointing to the end of each phase. The displayed
year is the middle point of a 5-year time window. Upwards triangles represent the maximum value of
connectance or strength measured for paired values of water temperature and phosphate, whereas
downwards triangles indicate the minimum.
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Figure 3

Warming reduces the number and strength of top-down (TD) relative to bottom-up (BU) network links. [a]
Difference between amount of realized TD and BU links and [b] difference between the strength of TD
and BU links: positive values mean more TD links, while negative values indicate more BU links;
smoothing line shows a trend of TD vs. BU controls, and all lines are drawn based on the center point of a
moving window of 60 months, used for causality detection via CCM. [c-d] Combined effects of average
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water-column phosphate levels and temperature on realized TD and BU links [c], and the difference
between the strength of TD and BU links [d]: color-coded contour plots depict the s-map model inferred
relationships across the entire dataset while keeping lake depth and volume constant (see Fig. 2 and
Methods).

Figure 4
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Hybrid links are conspicuous at the onset of lake warming, while non-trophic interactions are strongest
during re-oligotrophication [a] Temporal changes in realized connectance (%) and [b] strength of trophic,
non-trophic and hybrid interactions: all lines are drawn based on the central point of a moving window of
60 months, used for causality detection via CCM. [c] Prevalence and [d] Strength of trophic, non-trophic
and hybrid links: points represent averages over time within lakes; boxes encompass all links across
lakes during the whole studied period, whereas the lower and upper hinges correspond to the �rst and
third quantiles (the 25th and 75th percentiles); P-values were calculated using pairwise comparisons and
a Kruskal-Wallis test.
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Figure 5

Small grazers and colonial cyanobacteria are the most strongly connected guilds in the network.
Interaction strengths were calculated by multiplying the average strength (rho, corrected for seasonality)
by its prevalence (i.e., if a link was signi�cant within 50% of time windows, prevalence would be 0.5). The
direction of the interaction is Variable 2 → Variable 1. Ave. is the average interaction strength for each
guild. T is water temperature and P is phosphate levels. White tiles are interactions not occurring based
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on the conceptual network (Fig. 1 c) and gray tiles are interactions that were not signi�cant in none of the
lakes based on a convergence test in CCM.
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