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Abstract Temporal data are ubiquitous nowadays and efficient management
of temporal data is of key importance. A temporal data typically describes the
evolution of an object over time. One of the most useful queries over temporal
data are the durable top-k queries. Given a time window, a durable top-k
query finds the objects that are frequently among the best. Existing solutions
to durable top-k queries assume that all temporal data are sampled at the same
time points (i.e., at any time, there is a corresponding observed value for every
temporal data). However, in many practical applications, temporal data are
collected from multiple data sources with different sampling rates. In this light,
we investigate the efficient processing of durable top-k queries over temporal
data with different sampling rates. We propose an efficient sweep line algorithm
to process durable top-k queries over non-synchronized temporal data. We
conduct extensive experiments on two real datasets to test the performance
of our proposed method. The results show that our methods outperforms the
baseline solutions by a large margin.
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1 Introduction

Temporal data are ubiquitous nowadays. They can be found in many areas
such health [1,2], energy [3,4], traffic [5,6], environment [7,8], etc. In fact, with
the fast development and wide deployment of data collection devices, many
practical data are temporal in nature. Generally speaking, a temporal data
describes the evolution of some data object over time [9]. In many practical
applications, a data object has a wvalue at any time during its evolution. For
example, a stock may have a closing price every day; a power generator may
run at a varying load depending on the need of power consumption; a traffic
sensor by the road may record a traffic flow every hour. In such applications,
users often show particular interests to the top data objects (i.e., the data
objects with the best scores) within a time period.

In fields such as data management and information retrieval, there have
been extensive studies on querying temporal data. The quereis can be roughly
classified into two categories: point-wise queries and period-wise queries. Point-
wise queries measure a data object at each time point. For example, Lee et
al. [10] studied the consistent top-k (CTop-k) queries over temporal data, aim-
ing at finding all data objects whose scores are always among the k highest
ones at each time point. In contrast, period-wise queries focus on some ag-
gregated measurement (e.g., average score, total score, etc.) of a data object
over a time period. For example, Jestes et al. studied aggregate top-k queries
on temporal data [11], aiming at finding the k data objects with the highest
aggregation scores.

Durable top-k (DTop-k) queries are a relatively novel type of queries over
temproal data. Similar to consistent top-k queries, a durable top-k query has
particular interests in data objects with the best k scores at each time point.
Nonetheless, unlike the case with CTop-k queries, for a data object to be a
DTop-k result, it is unnecessary that its score remains a top-k at every time
point. Instead, within a given time period, any data object that becomes one of
the top-k for sufficiently many time points is interesting enough to a DTop-k
query. In this sense, DTop-k queries can be viewed as an extension of CTop-k
queries.

U et al. [12] first proposed and studied durable top-k queries on document
archives. A document in an archive may have different versions over time.
For example, a Wikipedia document may be editted by different users from
all the world. Specifically, U et al. wanted to ideantify the documents match-
ing some given keywords for sufficiently many time points. Wang et al. [13]
studied DTop-k queries over times series data. They argue that, comparing
to archived documents (which are piecewise constant), time series are more
dynamic than archived documents, thus it requires dedicated techniques for
efficient processing of DTop-k queries.

A key assumption in [13] is that the time series are synchronized, i.e.,
each time series has an observation/score at every time point; hence, the top-
k objects at every time point can be precomputed and organized in certain
index structures. However, in many practical applications, massive temporal
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data are collected from multiple data sources, and different data sources may
use different sampling rates [14, 15]. For example, cars with different GPS
devices or speedometers may generate speed data at different frequencies using
different mechanisms. Therefore, it is very unlikely that such temporal data
could be synchronized. Instead, practical temporal data are more likely to be
non-synchronized [16].

In this paper, we investigate efficient processing of DTop-k queries over
non-synchronized temporal data. The main challenge from non-synchronicity
is that the time is continuous instead of discrete. Existing index structures
(e.g. [13]) for synchronized, thus discrete, data are hardly applicable. There-
fore, we propose a novel sweep line algorithm (SLA) to efficiently deal with
the non-synchronicity. The key insight of SLA is the property of intersections:
When two temporal data intersect, they change their relative order, and vice
versa. In light of this property, SLA answers DTop-k queries by tracking snap-
shot top-k objects. To sum up, we make the following contributions:

1. To the best of our knowledge, we are the first to investigate the problem
of efficient DTop-k processing with non-synchronized temporal data.

2. We propose a novel sweep line algorithm (SLA) to efficiently answer DTop-
k queries.

3. We conduct extensive experiments using two real datasets. The results
show that SLA outperforms its competitors by a large margin.

The rest of the paper is organized as follows. Section 2 introduces some
preliminary knowledge (such as concepts and existing methods). Section 3
presents the solutions to DTop-k queries, including a straightforward solution
(Section 3.1) and our main proposal SLA (Section 3.2). Then, Section 4 shows
the experimental results. Finally, Section 5 concludes the paper.

2 Preliminaries
2.1 Concepts and Problem Definition

Definition 1 (Temporal data) A temporal data describes the evolution of
a data object over time. Formally, the j-th data object in a temporal database
D can be represented as a sequence

0= {(tot). () o (5).

where vﬁ is the score of object o7 at time t? (¢=1,2,---,n;) and T} is the
recorded length of the temporal sequence of object o’.

Note that Definition 1 offers a general representation that naturally allows
asynchronicity in D. Indeed, given two data objects in the temporal database
0',0’ € D, it is allowed that the time points t{,t5,--- ,t% and t],t;,--- ,téwj
are not aligned (and even T; # T).
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Definition 2 (Snapshot Top-k Object) Given a data object

0= <(t1,111) ) (t2702) P 7(tT»vT)> )

the value of o at time ¢, denoted o (t), is defined as

o(t) = Ko (t —tg) + vg, if there exists 1 < £ < T such that t, <t <tp4q,
a —o0, otherwise,

where k¢ = (ve41 — v¢) / (te41 — te). Given a temporal database of N objects,
D = {01,02, e 7ON}, an object o/ € D is called a snapshot top-k object at
time ¢ if o7 (¢) is no less than the k-th highest score among all o(t) (o € D).

A clear implication in Definition 2 is that, given T" discrete samples in time,
we also view the temporal data o = ((t1,v1), (t2,v2), -+, (tr,vr)) as a con-
catenation of T'— 1 line segments. Thus o(t), the score of object o at time ¢, is
a linear interpolation on the line segment within [¢¢, t41], with endpoint cases
of o(ty) = ve and o (tg41) = vey1. This view is closely related to the piecewise
linear representation of temporal data [17,18], which may lose accuracy be-
cause actual temporal data are usually smoother. Nonetheless, in this work,
we do not replace or remove original data points to obtain any approxima-
tion of the temporal data. We leave the accuracy issue to the data generation
mechanism (which is beyond the scope of this work) and assume that any data
o € D, when viewed as a concatenation of line segments, is accurate enough
for any potential application. Hence, in this work, we alternatively represent
a temporal data o = ((t1,v1), (t2,v2),- -, (tr,vr)) as o = (1,82, ,87-1)
where s; is the line segment with endpoints (¢;,v;) and (¢;41, vit1)-

Definition 3 (DTop-k Query) A durable top-k (DTop-k) query over a tem-
poral database D is defined by a triple ¢ = (W, k,~y), where

1. W = [thegin, tend] is a time interval (thegin < tend);
2. k is a positive integer; and
3. v € (0,1] is a threshold.

Given a data object o € D, define the durability of o € D with respect to W
and k as

dur(o; W, k) = card {t ew ‘0 e Top* (D) } /W],

where Top? (D) C D denotes the set of all snapshot top-k objects in D at time
t. Then, the DTop-k query ¢ = (W, k,) finds all o € D with dur(o; W, k) > ~.

Figure 1 shows an example temporal dataset D = {o',0% 0% 0*} and an
example DTop-k query g = (W, k,~) with W = [3.5,8.5], k = 2, and v = 0.75.
Note that D is non-synchronized: the temporal data are sampled with different
rates. Even, some data (e.g., 0, o) are not sampled using regular frequencies.
Via simple calculation, we know that dur (01; W, k:) = 0.94, dur (02; W, k;) =
1.0, dur (03; W, k) = 0.0, and dur (04; W, k) = 0.06. Since the query threshold
is g.y = 0.75, o' and o? are the only two results to the query q.
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Fig. 1 Example temporal data and a DTop-k query g = ([3.5, 8.5],2,0.75)

2.2 The Essence of Intersections

Previous studies have discovered the relationship between intersections of line
segments and snapshot top-k objects (see, e.g., [13]). We summarize the main
result as follows.

Lemma 1 (Intersection Lemma) Let Top} (D) = {o',0?,- - ,0"} be the
set of snapshot top-k objects at time t, where o*(t) > o’ (t) for any i < j without
loss of generality. Then, if some object o & TopiC (D) becomes a snapshot top-k
result at a later time t + At, then there must exist line segments s € o and
sk € of such that s and s* have at least one intersection within [t,t + At].

We omit the proof of the intersection lemma as it is quite intuitive that,
for a non-top-k object o to become a top-k, it must at least go up to beat
the k-th best object oF. In fact, the converse of Lemma 1 is also true: for any
intersection (v, t) of two line segments, there must exist a particular k such that
the snapshot top-k set Topi€ (D) changes at time t. Therefore, intersections of
line segments play an important role in DTop-k query processing.

3 Query Processing
3.1 A Straightforword Method

In light of the intersection lemma (Lemma 1), in order to process a DTop-k
query g = (W, k,v) over non-synchronized temporal data, it suffices to com-
pute the snapshot top-k sets at every intersection within the interval W. With
all the snapshot top-k sets computed, it is relatively trivial to compute dur(o)
for each candidate data object o.

Algorithm 1 summarizes the above idea. Algorithm 1 first finds the set of all
intersections within W (Lines 1-2), P = (p1,p2,- -+ ,pa }. Note that the size of
P (i.e., the number M) might be quadratic to the total number of line segments
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Algorithm 1: Straightforward Algorithm

Input: Temporal dataset D = {01, 0%, 7ON}; DTop-k query g = (W, k, )
Output: R, the set of all data object o € D with dur(o; W, k) > v
1 Let T = {¢1,¢2,--- ,ta} be the set of all time points when intersection happens
within W
2 T+ {to,t1,t2, - ,tM,tMJrl} where tg = W‘tbegin and tpr41 = Witgng
3 fori«+0,1,--- , M +1do
4 L Compute the snapshot top-k set S; + Topfi (D)
5 for each object o € UMI' S; do
6 Initialize counters o.c <— —1 and o.L < 0
7 for i+ 0,1,2,--- ,M +1do
8 if o € S; then
9 if 0.c = —1 then
10 L Start the counter o.c < p;.t
11 else
12 Update o.L <— 0.L 4+ p;.t — o.c
13 L Update o.c < p;.t
14 else
15 L Update o.c = —1
16 if o.L/|W| > ~ then
17 L Add o into R

18 return R

within W. Algorithm 1 then finds the snapshot top-k set S; = Top];i.t (D) at
every intersection (Lines 3-4). After obtaining all the snapshot top-k sets, the
rest of the algorithm becomes trivial. It uses a counter ¢ to maintain the state
of each object 0. The counting procedure contains two cases.

— Case 1: 0 € S;. In this case, o.c = —1 means o just becomes a top-k at
the intersection, thus the counter records the starting time (Lines 9-10);
whereas o.c # —1 means that o is already a top-k before the intersection,
thus the duration is calculated and accumulated to o.L (Lines 11-13).

— Case 2: 0 € S;. In this case, o.c = —1 means o is not a top-k before the
intersection, thus there is nothing to do with o at this moment, whereas
o.c # —1 means a top-k object o just gets replaced by some other object.
In either case, the counter is reset to -1 (Lines 14-15).

After the counting, Algorithm 1 gets the durability of each candidate object
o and returns the durable top-k results (Lines 16-17).

It remains to be clarified how to obtain the intersections (Line 1) and the
snapshot top-k sets (Line 4).

3.1.1 Finding the Intersections

Given a set of line segments, finding all the intersections are a fundamental task
in computer geometry. It can be efficiently solved via a sweep line algorithm
[19]. Specifically, let D = {o',0%,--- 0" } be the temporal database and S =
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{s%,s%, e ,51T171, R AN TABR ,SQJYNA} be the set of all line segments in
D. Note that each line segment s € S lies in the ¢-v plane, having a start
point (t%,vz) and an end point (ti 41 vg +1). The sweep line algorithm first
sorts all the 2|S| endpoints in the ¢-axis. Then, it moves a vertical line ¢ = £
(i.e., the “sweep line”) from left to right to scan over the sorted endpoints.

The algorithm maintains two data structures, a status data structure DSg¢atus
and a stopping points data structure DSgop.

— The status data structure DSgatys is @ balanced binary search tree storing
the endpoints and the v-values (i.e., scores) of line segments, ordered by
the scores. It supports efficient insertion, deletion, and adjacent neighbor
searching of line segments.

— The stopping points data structure DSgtop is a min-heap, storing all stop-
ping points (i.e., endpoints and intersections), ordered by the t-values (i.e.,
time).

The line sweeping process works with the stopping points data structure
DSstop. It visits the stopping points in DSgtop in the temporal order. Upon
visiting a stopping point x, the main operations depend on the type of x:

— If x is a start point of some line segment s € S, then s is inserted into
DSgtatus- The intersections between s and its neighboring segments are
computed and inserted into DSgop. Delete the intersection of the original
adjacent neighbors (if any) from DSgop.

— If x is an end point of some s, then s is deleted from DSg;a¢us- The neighbors
of s become adjacent and their intersection is computed and inserted into
DSstop-

— If x is an intersection of line segments s; and so, then swap the positions
of s1 and sy in DSgiatus-

In this way, all intersections can be computed in O ((|S| + K)log|S|) time,
where K is the actual number of intersections in S [19].

3.1.2 Finding the Snapshot Top-k

Efficient solutions to snapshot top-k queries have been studied in literature.
Li et al. [20] proposed a SEB-tree index to support snapshot top-k queries
(which are termed “top-k(t) queries”). SEB-tree is a randomized index struc-
ture with deterministic correctness guarantees. Specifically, SEB-tree is based
on p-samples of S. A p-sample S, C S is constructed by selecting each line
segment s € S with probability p. To construct the SEB-tree index, Li et
al. first construct a sequence of p;-samples S,, C S for p; =27 (i =1,2,--+),
and then build a B-tree based on each Sp,. A snapshot top-k query can then
be answered using the SEB-tree index in O (log|S| + k) time.

3.1.8 Complezity Analysis

Given a temporal dataset D and the corresponding line segment set S, the
intersections can be computed prior to any DTop-k query. When answering a
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DTop-k query g = (W, k,~), Algorithm 1 first takes O (log K) time to identify
the intersections within W (Lines 1-2). Then, the main cost is to run M snap-
shot top-k queries, taking O (M - (|S] + K)log|S|) time. Finally, Algorithm 1
takes O (C - M) time to generate the final durable top-k results, where C' is
the total number of candidates (i.e., the number of objects that ever is a top-k
at any time in W).

3.2 A Sweep Line Method

Through the analysis in Section 3.1.3, we see that a major drawback of the
straightforward method is that it issues many snapshot top-k queries, which is
quite time-consuming. We argue that such a computational cost can be largely
saved, as an intersection x = (v,t) in fact carries much useful information.

In light of the intersection lemma (Lemma 1), an alternative solution to
processing a DTop-k query ¢ = (W, k,~) over non-synchronized temporal data
is to track the changes of the snapshot top-k£ set within the indicated time
interval W = [tbegin, tend]- Specifically, we may first find the snapshot top-k
set TopiC (D) for t = Thegin and then scan all the intersections in temporal
order to see whether and how Topic (D) changes as t goes to tenq. Algorithm 2
summarizes the above idea, follwing the paradigm of sweep line algorithms [19].

For each data object o € D, Algorithm 2 maintains a counter (chegin, Cend, L)
(Line 1), which records the last time when o enters or leaves the snapshot top-
k set (Lines 18-19). Whenever o leaves the snapshot top-k set at time ¢, L
accumlates the total duration for which o has ever remained a snapshot top-k
(Lines 11&17). According to the intersection lemma (Lemma 1), Algorithm 2
updates the counters whenever it discovers a new intersection = (Line 7). As
will be explained later, an intersection z can provide Algorithm 1 with the
information of the intersecting line segments as well as their corresponding
objects (0in and ooy at Line 7). If 0oyt is not the current k-th best, then it
is either oi,, 0ouy € Topf (D) or 0in, 0ous & Topf (D), in either case Topf (D)
remains unchanged.

The initial snapshot top-k set can be computed using the same technique
as introduced in Section 3.1.2. The intersections used in Line 7 can be pre-
computed using the method introduced in Section 3.1.1. The precomputed
intersections can be organized in a Bt-tree to support efficient positioning
with respect to a query window W.

It remains to be clarified how to maintain the snapshot top-k set during
the line sweeping process, i.e., how to efficiently retrieve the k-th best object
(Line 15).

3.2.1 Maintaining the Snapshot Top-k

Considering fact that the parameter k is query-related, keeping track of the
k-th best object is to maintain the entire ordering of the temporal database D.
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Algorithm 2: Sweep Line Algorithm

Input: Temporal dataset D = {01, 0%, 7ON}; DTop-k query g = (W, k, )
Output: R, the set of all data object o € D with dur(o; W, k) > v

1 Initialize counters 0.cpegin = —1, 0.Cenq < —1, and 0.L <= 0 for all 0 € C'
2 Find the snapshot top-k set C < TopiC (D)
3 for each o € C do
4 L Update counters o0.cpegin = Withegin
5 t <« Wtbcgin
6 while true do
7 Find the next intersection = = (¢',v) and the corresponding objects o0, and ooyt
satisfying t/ >t
8 if t' ¢ W then
9 for each o € C' do
10 if 0.cpegin # —1 then
11 L 0.L <= 0.L + Witenq — 0.Chegin
12 if 0.L/|W| > ~ then
13 L Add o into R
14 break
15 if ooyt ts not the k-th best object in C then
16 L continue
17 Update oout-L + 0out-L +t' — Oout-Chegin
18 Update oout-Chegin + —1 and oout-Ceng < t’
19 Update 0jy.Chegin < t' and ojy.copg + —1
20 Update C' + C U{ojn} — {oout }
21 | Updatet + t/

22 return R

Since we focus on top-k objects where k < |D|, in practice we may maintain
the top-kmax set, where kpax < | D] is the maximum possible query parameter.

Let x; = (t;,v;) (¢ = 1,2,---, M) be all the intersections in D in tem-
poral order. It is easy to see that the snapshot top-k set remains unchanged
within every interval [t;,¢;11], since there is no intersection between z; and
Zi+1. Therefore, we may precompute the snapshot top-kyax sets between each
interval [t;,t;4+1], organizing the results in an index structure (e.g., a hash
table). In this way, Line 15 of Algorithm 2 can be execute in constant time.
Figure 2 illustrates the above idea. From Figure 2, it is also clear that the time
efficiency is at the cost of index size. It requires O (M - knmax) space. Although
kmax < |D| by assumption, the total number of intersections M is usually at
the magnitude of O (|D|?). Thus the hash table index of all snapshot top-kmax
takes quadratic space.

To strike a balance between the space cost and time efficiency, we may
use a tree-based data structure similar to the status data structure DSgiatus
(Section 3.1.1) to facilitate the line sweeping. Specifically, we use a max-heap
as an auxiliary data structure. The heap is initialized with the snapshot top-k
ranking (1,0'),(2,0%),---, (k,0"). Without loss of generality, here we assume
that there is no tie in the ranking. Nonetheless, ties can be trivially handled
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Fig. 2 Precomputing the snapshot top-kmax sets

in such a data structure. Using the auxiliary data structure, though it takes
constant time to retrieve the k-th best object, it takes additional O (log k)
time to maintain the max-heap property. Thus, the overall time for processing
an intersection is O (log k).

3.2.2 Complexity Analysis

Algorithm 2 first takes O (log|S| + k) time to compute the initial snapshot
top-k using the SEB-tree index, where S is the set of line segments derived
from the temporal database D. Then, it takes O (log K) time to positioning
the intersections in the query interval W, where K is the total number of inter-
sections in S. Assume that there are M intersections in W. Then, Algorithm
2 takes O (M) or O (M -logk) time to compute the durable top-k results, de-
pending on whether a quadratic index is used. Comparing to the analysis in
Section 3.1.3, we see that Algorithm 2 is much more efficient in processing
DTop-k queries.

3.2.3 Early Termination

Given a DTop-k query ¢ = (k, W, ), it is possible for Algorithm 2 to terminate
before actually sweeping the entire query interval W. Let t be the current
position of the sweep line and r; = W.tenq —t. For any object o with a counter
(Cbegins Cend, L), the actually durability of o satisfies

(L + rt) /‘W|7 ifCbegin = _17

< *(0) =
dur(o) < dur*(o) { (L + tend — Cbegin) /|W], otherwise.

A clear observation is that o cannot be a DTop-k result if the upper bound
dur*(o) < ~. If at some time ¢ € W, all so-far recorded objects are either
confirmed into or safely excluded from R, Algorithm 2 can terminate without
actually sweeping over the entire W.
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4 Experiments

In this section, we evaluated our proposed methods. We simulate durable top-£
queries over two real datasets and compare our proposed method with straight-
forward solutions. We also study the impact of query parameters.

4.1 Dataset

We use the Stock Market Data (SMD) as our dataset for the experiments.
SMD records the daily stock market prices for all NASDAQ listed companies.
Specifically, there are 1,557 companies. Each company is a temporal data from
the day it was listed on NASDAQ until Aug 29, 2022. The earliest company
was listed on Jan 2, 1970, whereas the latest one was just listed on Aug 24,
2022. So the SMD dataset has a timespan over 50 years.

Therefore, the temporal data are of various lengths in SMD. Each temporal
data has 5,509.45 values in average, with the maximum and minimum lengths
being 13,283 and 4. The oldest and youngest companies The distribution of
temporal data lengths is shown in Figure 3.

50 q

N w N
o o o
L L

Number of Companies

-
o
L

T R WY Y TR | B

0 2000 4000 6000 8000 10000 12000
Length

Fig. 3 Distribution of the lengths the temporal data in SMD

The original SMD dataset is synchronized in a daily manner. We randomly
disturb the dataset a bit to generate a non-synchronized temporal dataset.
Specifically, given a temporal object o = ((t1,v1), (t2,v2), -, (tr,vr)), we
add a random time shift At; to time ¢; (i = 1,2,--- ,T). The time shift At;
is chosen in the range of £1440 minutes uniformly at random. In this way,
we turn the original synchronized data into a non-synchronized one without
affecting much semantics of the data.
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4.2 Efficiency of SLA

In this section, we compare SLA with some baseline methods. Specifically, we
consider the following methods in this experiment.

— Baseline (Section 3.1). The straightforward method that issues a snapshot
top-k query at every intersection.

— SLA-Q: The SLA algorithm with quadratic index (with all the top-k objects
precomputed between any two intersections).

— SLA-H: The SLA algorithm with a heap structure to faciliate the line
sweeping process.

We vary k in the range 5, 10, 15, 20, and 25. For each k£ = 5, 10, 15, 20, 25,
we randomly generate 1,000 DTop-k queries with a fixed v = 0.75. The length
of the query interval W is also fixed to a week (i.e., 7 days, or 10,080 minutes),
but the position of the interval W may vary from the first day (Jan 2, 1970)
to the last (Aug 29, 2022). For each k, each of the 1,000 query is answered by
each method 10 times to get an average time cost. Then, the performance of
a method is measured by the average of its performance on 1,000 queries.

-©- Baseline
—A— SLA-Q

2501 _e_ SLA-H

200 A

150

Average Time (ms)

50 1

Fig. 4 Performance of SLA

Figure 4 show the results. As can be seen, the time costs of all methods
increase as k gets larger. Baseline increases faster than SLA does. This is be-
cause when k increases, it costs more from snapshot top-k computation. In
addition, it can be seen that SLA outperforms Baseline by orders of mag-
nitude because SLA avoids snapshot top-k queries. Moreover, SLA-Q slightly
outperforms SLA-H due to the quadratic index of precomputed top-k rankings.
Nonetheless, the improvement of SLA-Q over SLA-H is not very significant.
This implies a wise choice should be made to balance the space and time costs
in practice.
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4.3 Sensitivity to the Length of Query Interval

In this section, we investigate the impact of |IW|, the length of the query
interval, on the performance of SLA. We fix k = 5 and vary the length |W| in
the range 7, 14, 21, and 28 days. This range covers the time length from one
week to approximately one month. Again, we randomly generate 1,000 DTop-k
queries for each choice of |W|. Each query is answered by each algorithm 10
times. The average time costs are recorded and shown in Figure 5.
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-4~ sl

w

o

Is)
L

Average Time (ms)
N
o
o

=

o

S
L

Wi

Fig. 5 Performance of SLA with varying |W|

From Figure 5, it is clear that, as the query interval W gets larger, the time
cost of Baseline increases much faster than SLA does. This is expected because
the number of intersections may be quadratic to the number of line segments
in W. In addition, we see that SLA-Q and SLA-H are not as sensitive to ||
as Baseline is. Indeed, comparing to the initial snapshot top-k computation,
the line sweeping process over W is relatively cheap (either reading a precom-
puted top-k list or updating a size-k heap). In addition, the difference between
SLA-Q and SLA-H is very small, which is also a reference when deciding the
implementation details of SLA in practice.

5 Conclusions

In this paper, we study the problem of DTop-k queries over non-synchronized
temporal data. The major challenge brought by non-synchronicity is that the
time space becomes continuous and thus solutions based on discrete time space
are no longer efficient. We propose an efficient sweep line algorithm SLA to
process DTop-k queries over non-synchronized temporal data. The key insight
of SLA is the property of intersections: When two temporal data intersect, they
change their relative order, and vice versa. Using this property, SLA answers
DTop-k queries by tracking snapshot top-k objects. We conduct extensive
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experiments on two real datasets to test the performance of our proposed
method. The results show that our methods outperforms the baseline solutions
by a large margin.
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