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Abstract

Exploration plays a fundamental role in any active learning system. This study evaluates the role of explo-
ration in active learning and describes several local techniques for exploration in �nite, discrete domains,

embedded in a reinforcement learning framework (delayed reinforcement).

This paper distinguishes between two families of exploration schemes: undirected and directed exploration.

While the former family is closely related to random walk exploration, directed exploration techniques
memorize exploration-speci�c knowledge which is used for guiding the exploration search. In many �nite
deterministic domains, any learning technique based on undirected exploration is ine�cient in terms of

learning time, i.e. learning time is expected to scale exponentially with the size of the state space (Whitehead,
1991b). We prove that for all these domains, reinforcement learning using a directed technique can always be
performed in polynomial time, demonstrating the important role of exploration in reinforcement learning.

(The proof is given for one speci�c directed exploration technique named counter-based exploration.)

Subsequently, several exploration techniques found in recent reinforcement learning and connectionist adap-

tive control literature are described. In order to trade o� e�ciently between exploration and exploitation {
a trade-o� which characterizes many real-world active learning tasks { combination methods are described
which explore and avoid costs simultaneously. This includes a selective attention mechanism, which allows

smooth switching between exploration and exploitation.

All techniques are evaluated and compared on a discrete reinforcement learning task (robot navigation). The

empirical evaluation is followed by an extensive discussion of bene�ts and limitations of this work.
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1 Introduction

Whenever a learning system learns to control an unknown environment, two opposing objectives

have to be combined. On the one hand, in order to identify a (sub-)optimal controller, the en-

vironment must be su�ciently explored. For example a robot facing an unknown environment

has to spend time moving around and acquire knowledge of its environment. On the other hand,

experience made during learning must also be considered for action selection in order to minimize

the costs of learning (e.g. in terms of negative reward). E.g. although a robot has to explore its

environment, it should avoid collisions with obstacles, once it received some negative reward for

collisions. Thus for e�cient learning, actions should be generated such that a) the environment is

explored and b) pain is avoided. This fundamental trade-o� between exploration and exploitation

demands e�cient exploration capabilities, maximizing the e�ect of learning while minimizing the

costs of exploration and learning time.

This paper addresses the issue of e�cient exploration in a reinforcement learning framework.

Several exploration techniques found in recent literature are investigated and their e�ciency is

compared in terms of learning time and learning costs (negative reward). We group exploration

strategies into two categories: undirected exploration and directed exploration. While undirected

techniques, e.g. random walk exploration and Boltzmann distributed exploration (to be de�ned

later), utilize no exploration-speci�c knowledge and ensure exploration by merging randomness into

action selection, directed techniques rely on knowledge about the learning process itself, allowing

for exploring in a more directed manner.

This paper is organized in two parts. It theoretically evaluates the impact of exploration knowledge

on the complexity of learning for environments, where no a priori knowledge is provided to guide the

exploration (zero-knowledge environments). In particular, the e�ciency and thus superiority of one

particular directed exploration rule named counter-based exploration over all indirect techniques

is proved. Subsequently, several undirected and directed exploration techniques, including most

of those found in literature, are described and carefully evaluated on a two-dimensional robot

navigation task. Finally, based on the view of exploration and exploitation as establishing di�erent

and mostly opposing behaviors, a selective attention mechanism for dynamically switching between

exploration and exploitation is described and shown to further improve the e�ciency of directed

exploration in the robot navigation task.

Although the issue of e�cient exploration is very general in nature, we relate this paper to one

particular learning technique, namely reinforcement learning. Both theoretical and experimental

results are inspired by tasks where minimal knowledge is given in advance, since such tasks demon-

strate the e�ects of exploration best. Chapter 8 gives an extensive discussion about limitations of

this work and relates exploration to more general active learning tasks.

3



2 The role of exploration in active learning

Consider the one-dimensional n-state deterministic world depicted in Fig. 1. Each time tick, the

robot, starting at the left, has three actions to chose from, two of which carry the robot to the

left and one of which carries it to the right (except on the leftmost and rightmost states). For

simpli�cation, assume the robot had access to an action model, which is a predictive function from

states-action pairs to next states. The goal is to get to the rightmost state, and positive reward is

only received upon this goal state. This scenario de�nes a typical reinforcement learning task: the

task is to identify a reactive controller, carrying the robot to its goal with as few steps as possible.

Although this task is simple, it serves well for illustrating the fundamental role of the exploration

strategy in the complexity of learning.

Let us begin by evaluating the complexity of the most basic and uninformed exploration technique,

namely random exploration1. The complexity of random exploration is of interest for a much richer

class of exploration techniques, the class of undirected techniques. As we will see below, every

undirected technique performs random walk in the �rst trial (by �rst trial we mean the sequence

of actions that leads to the goal state, where non-zero reward is received for the �rst time). In the

particular task at hand, the de�nition of actions makes it more likely for the robot to get away

from the goal state than to get closer, given that actions are selected with uniform probability. If

random actions are more likely to increase the distance to the goal rather than decreasing it, a

fundamental theorem about the complexity of reinforcement learning with undirected exploration

by Whitehead (Whitehead, 1991a), (Whitehead, 1991b) becomes applicable:

Theorem (Whitehead): In any �nite homogeneous problem solving task2, the expected time using

undirected exploration (such as random walk exploration) required to identify an optimal policy is

bounded below by an expression exponential in the depth of the state space l, if the number of actions

leading away from the goal state is larger than the number of actions leading closer to it.3

The theorem is proved using a standard technique from probability theory, evaluating the expected

1Here and in turn we will use the term random exploration to refer to exploration where actions are generated

randomly with uniform probability distribution.
2This condition is used in Whitehead's proof for projecting general state spaces to one-dimensional state spaces {

Some of the conditions could easily be extended yielding a more general theorem. According to Whitehead (White-

head, 1991b), a task is a homogeneous problem solving task, if a) each trial begins in a designated start state sstart,

b) each trail ends when the system gives up or upon reaching a designated goal state sgoal, c) the system receives

a reward only upon entering the goal state, d) there is no prior knowledge which could be used to guide the search

of the goal, e) the state space is 1-step invertible, i.e. each action has its inverse action, and f) the state space is

uniformly l-bounded (l is called depth), i.e. optimal policies take less than l steps, actions change the distance to the

goal state only by -1,0, or 1, and for each state (except on the border) there are equally many actions which increase

the distance by 1, equally many actions which decrease the distance by 1, and equally many actions which leave the

distance unchanged.
3This result is especially surprising since one of the preconditions in his proof is that the world is 1-step invertible,

i.e. every action has its inverse. With the knowledge of how to invert actions, e�cient search techniques for �nding

the goal state become applicable, e.g. depth-�rst search.
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Figure 1: A one-dimensional navigation task. If actions a1 and a2 carry the robot to the left

and action a3 carries it to the right, random walk exploration, and as we will see all undirected

exploration techniques, are expected to take O(2n) time, while counter-based exploration takes O(n)

time for �nding the goal state.

complexity for �nding a goal state by random walk. Any learning system with an exploration

technique performing random walk in the �rst trial is thus expected to be at least exponential

in the depth4 of the state space, e.g. the widely used Boltzmann-distributed exploration (Barto

et al., 1991), (Watkins, 1989), (Lin, 1991b), (Lin, 1992), (Singh, 1992), (Sutton, 1990) described

below. As Whitehead points out, he believes that this theorem holds for many non-homogeneous

and non-deterministic cases, and so do we. The crucial condition for exponential complexity is that

by taking an action randomly we expect the \distance" to the goal to increase or, more general,

to worsen the situation. In this case, a random walk is expected to take exponential time in the

depth of the state space. Since the size of state space n is usually polynomial in its depth, the

expected time is also exponential in n itself. We believe that many real-world environments ful�ll

the condition that random actions are expected to worsen the situation in this sense. This is

especially the case if the number of possible actions is large. We therefore believe that this theorem

covers a rather large class of reinforcement learning tasks, all of which become intractable using

any kind of undirected exploration.

Whitehead's theorem is applicable to the example demonstrated in Fig. 1. The depth of the state

space is n (as is the size of the state space itself) and therefore the expected time to �nd the

goal state with random exploration is exponential in n, and so is reinforcement learning. In this

particular example, the expected time for �nding the goal is given by 3(2n � n � 1). E.g., with

n = 50, we expect the agent to take 3:38 �1015 steps for �nding the goal { and each additional state

roughly doubles this number (Howard, 1960), (Nafeh, 1976).

We will now present a polynomial worst case bound for any deterministic environment using a

directed exploration technique, namely counter-based exploration. In our example and as we will

see in general state-spaces, there is a very simple directed exploration rule which allows for �nding

the goal state e�ciently. Assume we had an action model (we will drop this condition later). The

basic principle of counter-based exploration is to count the occurrences of each state. Initially these

counters are set to (1; 0; . . . ; 0) for our example, since only the initial, leftmost state has occurred

4according to Whitehead, the depth of a state space measures the maximal distance to the goal state. See Appendix

for a de�nition
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so far. By applying the simple rule \go to the least occurred adjacent state", the agent will explore

the state right next to it, and the resulting counter will be (1; 1; 0; . . . ; 0). By iteratively applying

this rule, the agent will take exactly n � 1 steps to �nd the goal, thus the complexity of the �rst

trial is linear in the size of the state space n. E.g. with n = 50 as above, the expected time for

�nding the goal state is 49. In our example, an optimal policy can be identi�ed by browsing the

state-space n� 1 times using standard reinforcement learning methods, and thus the complexity of

reinforcement learning is in O(n2). In conclusion, in this simple example any undirected exploration

rule is expected to take exponential number of actions for reinforcement learning, while counter-

based exploration and in fact all directed exploration techniques discussed in this paper are always

done with O(n2) actions, both measured in the number of states in the environment, n. This

observation can be extended to a general complexity bound, stating that counter-based exploration

takes always polynomial exploration time in all ergodic5 deterministic state spaces.

Theorem 1 (Complexity of the �rst trial using a complete action model): There is a local counter-

based exploration rule, by which the number of actions required for the �rst trial in any �nite ergodic

deterministic Markov decision task using a complete action model is bounded above by O(ln2).

Here l denotes the depth of the state space with l � n. The proof of this and other theorems can

be found in the appendix. Note that Theorem 1 covers all environments Whitehead's theorem is

valid for. Moreover, this result does not depend on the number of valid actions at each state.

Obviously, the action model plays an important role in this counter-based exploration rule. Unlike

there, in many reinforcement learning tasks there is no action model given in advance. It turns

out that even in this more general case, the time complexity of counter-based exploration is always

polynomial in the size of the state space n:

Theorem 2 (Complexity of the �rst trial without an action model): There is a local counter-based

exploration rule, by which the number of actions required for the �rst trial in any �nite ergodic

deterministic Markov decision task is bounded above by O(dln2).

Here d denotes the maximum number of actions valid at each state. Using this theorem, the worst

case complexity of reinforcement learning using counter-based exploration is bounded polynomial

in the number of states n and the maximum number of actions d:

Theorem 3 (Complexity of �nite deterministic, semi-bounded reinforcement learning tasks): There

is a local, counter-based exploration rule, by which the number of actions required for �nding an

optimal policy (controller) in any �nite ergodic deterministic, semi-bounded Markov decision task

with a goal state is bounded above by O((d2l + l2)n2). If a complete action model is available in

advance, the complexity reduces to O(l2n2).

This theorem emphasizes the importance of exploration in reinforcement learning tasks: With

5A state space is ergodic, if for all states s and s
0 there is a possibility to get from s to s

0 with non-zero probability.

Note that any forward-connected state space is ergodic, if there is a designated reset-action.
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undirected exploration one expects at least exponential time in many cases, while by using counter-

based exploration an optimal controller can be identi�ed always in polynomial time. All theorems

claimed in this section (except Whitehead's theorem) are worst case bounds, i.e. the optimal

controller is always found within this time. However, in order to derive worst case bounds one has

to assume that the environment is deterministic. It is in principle impossible to state a similar result

for all non-deterministic environments, since it can be proven that there are stochastic environments

at which any exploration and learning technique is at least exponential (see Appendix). But

these environments are malicious in the sense that even an optimal controller is expected to take

exponential time for entering the goal state. We believe that Theorem 3 bounds the expected

learning time in several non-malicious stochastic environments in which no a priori knowledge is

available, and the simulation results presented below demonstrate this. However, little is known

about the complexity of directed exploration in non-malicious stochastic environments.
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3 The exploration scene

So far, we addressed the complexity of reinforcement learning using directed and undirected ex-

ploration techniques. In the theoretical results, we neglected a fundamental principle of various

reinforcement learning tasks: Usually there is a trade-o� between exploration and exploitation.

Whenever a controller learns to control its environment, two opposing principles have to be com-

bined: exploration (long-term optimization) and avoiding negative rewards (short-term optimiza-

tion). Let us demonstrate this with two intuitive examples: If a robot is to optimize its behavior,

we want it to use its partial knowledge already during learning in order to avoid bad rewards, e.g.

for preventing crashes against obstacles. A child, once having burned itself, will avoid doing this

again although it continues exploration and learning.

Fig. 2 shows a personal overview over the exploration scene in reinforcement learning and connec-

tionist adaptive control. The interaction of a learning controller and its environment is character-

ized by the trade-o� between exploration and exploitation. There are basically two techniques for

exploration: undirected exploration and directed exploration.

As de�ned above, undirected exploration relys only on knowledge related to optimal control

(e.g. utility estimates), but does not utilize any exploration-speci�c knowledge about the learning

process itself. If we think in terms of a learning phase and a performance phase, this knowledge is

best characterized by the fact that it is used for control even after learning. The most uninformed

undirected exploration technique is the random walk (Nguyen and Widrow, 1989), (Anderson,

1986), (Mozer and Bachrach, 1989), (Bachrach and Mozer, 1991), (Jordan, 1989), (Jordan and

Jacobs, 1990), (Mel, 1989), (Munro, 1987), (Thrun et al., 1991) which completely ignores costs

and negative rewards from the environment. As a result of Whitehead's Theorem and as we will

demonstrate, this exploration technique is even in scenarios where costs do not matter inferior

to other exploration techniques. Other undirected exploration techniques rely on optimal control

knowledge only { hence the only way to take exploitation into account is by using this knowledge

to make \better" actions more likely, while exploring stochastically. The term \undirected" is

due to this observation: exploration is ensured only by randomness. Exploration by modifyed

probability distributions is typically found in reinforcement learning literature: The probability

distribution for action selection is drawn by the utility estimate of each action. We will later present

two explicit members of this exploration technique class: Boltzmann distributions (Barto et al.,

1991), (Watkins, 1989), (Lin, 1991b), (Lin, 1992), (Singh, 1992), (Sutton, 1990) and semi-uniform

distributions (Whitehead and Ballard, 1991), (Mahadevan and Connell, 1990), (Mahadevan and

Connell, 1991).

Directed exploration on the other hand does utilize further knowledge of the learning process
(Moore, 1990), (Moore, 1991), (Kaelbling, 1990), (Sutton, 1990), (Schmidhuber, 1991), (Thrun and

M�oller, 1991), (Thrun and M�oller, 1992). This exploration-speci�c knowledge typically cannot be

used for controlling the environment and is thus useless after learning. We assume throughout this

paper that this knowledge does not exceed the complexity of the knowledge stored for control, and
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Figure 2: The exploration scene (see text)

that the time for action selection does not su�er from considering this knowledge by more than a

constant factor. The term \directed" stems from the fact that { except in some ambiguous cases {

the agent directly explores those states which promise to maximize the improvement gain. Unlike

undirected exploration, directed techniques can resign the randomness in action selection. We

already discussed a basic way of exploring in a directed manner, namely counter-based exploration.

Besides this (plus a straightforward extension of counter-based exploration) we will describe two

other principles for directed exploration both characterized by the knowledge and the underlying

heuristics used for exploration: Error-based exploration bases on estimation of errors of a controller.

Such techniques try to provoke states where the controller has previously shown a high prediction

error, in order to maximize the knowledge gain. (Schmidhuber, 1991), (Thrun and M�oller, 1991),
(Thrun and M�oller, 1992). Error-based exploration is highly heuristic in nature, since an accurate

estimation of the current error is di�cult to obtain in most domains. The third directed exploration

technique, recency-based exploration, is based on the view of the learning system as a dynamical

system, which changes its accuracy over time. Recency-based exploration measure the time each

state has not occurred, and tries to provoke states which occurred less recently (Sutton, 1990). The

underlying assumption is that the control knowledge of a state gets worse by the time it is not

updated.
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Clearly all directed exploration rules are heuristic in nature, but as we saw in the previous section

such heuristics may prevent from exponential learning time in many cases. With respect to rein-

forcement learning it is important to mention that we use a reinforcement learning scheme very

similar to Sutton's AHC algorithm (Sutton, 1984). Here each state s is evaluated by a utility-value

V (s), measuring the future reward one expects if the environment is in state s. However, there is a

second important framework for reinforcement learning, namely Q-Learning by Watkins (Watkins,

1989), which di�ers from AHC in that utility-values are associated with state-action pairs rather

than states only. Q-Learning has empirically found to outperform AHC by some authors (Lin,

1992), (Sutton, 1990), although it usually blows up the search space for learning. On the other

hand, it is independent of the action selection policy during learning. Given that the state space

is su�ciently explored, Q-Learning has proven to always converge to the optimal policy (Watkins,

1989), (Barto and Singh, 1990), but there is no equivalent proof for AHC. However, the exten-

sion of the exploration techniques presented here to Q-Learning is not too di�cult. Counters or

recency-values are then associated to state-action pairs rather than states, as are utility-values. We

will address the in
uence of exploration on AHC- and Q-learning in the discussion.
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4 Reinforcement learning

Although above discussion as well as the simulations are very much related to particular reinforce-

ment learning tasks, namely tasks with a designated goal state (absorbing state) such as many

adaptive robot navigation tasks studied in reinforcement learning literature, we will embed explo-

ration into a more general framework. Reinforcement learning has often been studied by means of

Markov decision problems, where one tries to identify a controller which minimizes costs over time.

We will now give a more precise description of what we mean by environments, deterministic envi-

ronments, policies, utilities, and reinforcement learning. Excellent and more detailed introductions

may be found in (Barto et al., 1990), (Barto et al., 1991).

AMarkovian environment (or simple: environment, world ) is a stochastic mapping from states and

actions to subsequent states and rewards. Each time an action is performed on the environment,

the environmental state is changed. In addition, an (immediate) reward is generated evaluating the

current state. The sets of states and actions are �nite, but the set of rewards may not. The transi-

tion function yielding next states and rewards, subsequently referred to as state-transition function

and reward function, respectively, is probabilistic in nature. Suppose the actual environmental state

is x and the action performed by the controller is a. We denote the probability of the next state

being y by Pxy(a) for any state y and the reward at state y by r(y).6 A Markovian environment can

be completely described by its one-step transition probabilities for states fPxy(a)gx;y;a, the reward

function fr(y)gy, and the current state s. We assume that these transition probabilities are �xed

throughout time, i.e. the environment is static. Furthermore we make the important assumption

that the complete state is observable and input to the learning system.7 A special and important

case of a Markovian environment is a deterministic environment. Here the state transition function

is a deterministic and fully predictable function, as is the reward function. In terms of a Markovian

environment, an environment is deterministic, if and only if for all states x and all actions a there

is a state y with Pxy(a) = 1 and for all states y0 6= y: Pxy0(a) = 0. Note that in the complexity

theorems we also assume that the environment is ergodic, i.e. for any state s, it is possible to

change subsequently the environmental state to every arbitrary state s0. This assumption is very

6As in (Barto et al., 1991), we assume the reward function to be deterministic, although the framework given here

can be easily extended to stochastic rewards, too. We furthermore assume that reward is a function of states rather

than state transitions.
7In fact, whether an environment is Markovian or not depends often on the notion of a state. In a more general

framework one often distinguishes the internal state of the environment and an externally observable state being

a projection of the internal state and assumes that the internal state transition function is Markovian and static.

E.g. an autonomous robot might not be able to observe the whole environment due to the limited information

provided by his sensors. The observed state is often modeled as a probabilistic projection of the internal state, with

noise being the probabilistic factor in this function (Kalman, 1960). Although such partially observable Markovion

environments play an important role in various applications, we will restrict this paper to fully observable Markovian

environments. Many techniques for dealing with the perceptual aliasing problem in partially observable environments

base on techniques for identifying and distinguishing internal states or state clusters (recent ones are e.g. described in
(Bachrach and Mozer, 1991), (Whitehead and Ballard, 1991), (Chapman and Kaelbling, 1991), (Rivest and Schapire,

1987), (Chrisman, 1992)). It seems straightforward to apply the ideas presented in this paper to this more general

case.
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common in reinforcement learning literature.

A Markov decision problem is the problem of identifying a controller for a Markovian environment

which optimizes rewards over time. This controller is represented as a reactive policy, which maps

states to actions: For each state of the environment, a policy tells us which action to do next.

In general, the policy might be a non-deterministic function, even if the environment is not. If

during learning the policy is applied for action selection, actions are usually merged with some

non-deterministic function in order to ensure exploration { the exploration techniques evaluated in

this paper can be viewed accordingly. The ultimate goal of reinforcement learning is to identify

or at least to approximate an optimal policy, i.e. a policy which for each state yields an action

optimizing future expected cumulated reward. There are several di�culties in �nding an optimal

policy. Firstly, a learning system receives an immediate reward as response to an action, but

never receives the information which action would have been the best, as it happens in supervised

learning tasks. Therefore a learning system can �gure out optimal actions only by performing

repeated trials. But by having performed an action, the environment might be in a di�erent state,

hindering to try other actions on the same state. A second problem is called the temporal credit

assignment problem: Actions might a�ect the rewards of the environment with some unknown

delay. For example, if a battery-powered robot runs out of power, the resulting pain might not

only result from the last action. Thus if the learning system receives some reward, it is not clear

by which of the actions in the past this particular reward was caused. Reinforcement learning is

a learning methodology for these problems. According to dynamic programming, reinforcement

learning, as we will describe it here, relys on the notion of utility of a state, which evaluates states

with respect to cumulated future reward. The major characteristic of reinforcement learning in

terms of asynchronous dynamic programming is that actions are generated in real-time, thus the

time for action selection may not depend on the size of the state space n (usually it is linear in the

number of actions d).

We will now de�ne the utility of a state. Generally speaking, there are several ways to represent a

policy, the simplest of which is a direct mapping from states to actions, yielding one action a time

but no further information. In Markovian decision tasks the notion of a policy is often coupled to

the notion of utility. According to AHC-learning and dynamic programming, the utility V �(s) of

a state s measures the expected cumulated discounted future reward discounted by a discount factor


 (0 � 
 � 1), given that s is the actual state of the environment and � is the actual policy used:

V �(s) = E

2
4 1X
t=t0


trtjs

3
5 (1)

rt denotes the expected reward at time tick t, and t0 is the actual time tick. Clearly, the utility of

a state is also a function of the policy � subsequently applied for action selection, by which future

reward is also determined. The discount factor 
 weights future rewards in the sum of Eq. (1)

and basically serves to bound utilities (if 
 < 1). Note, that the utility V �(s) of a state s does

not depend on the time tick t, since we assume environments to be static. Thus Eq. (1) can be
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rewritten as

V �(s) = E

"
1X
t=0


trtjs

#
(2)

The higher the utility of a state, the better the future reward one expects. If a controller has

the choice between di�erent actions, thus entering di�erent states, and if it is to optimize future

reward, it will prefer those actions yielding the highest utility. This selection process recursively

de�nes an optimal policy ��: At every state s, select the action a which maximizes:

f�(a) =
X

s0 is state

Pss0(a) � V
��(s0) (3)

An optimal policy is found by identifying the function V �� . This policy can be approximated by

asynchronously updating the V̂ -estimates in a recursive manner (policy iteration). Let V̂ t be the

current estimate for V �� at time t, and �̂t be the policy obtained by maximizing the exploitation

measure

f(a) =
X

s0 is state

Pss0(a) � V̂
t(s0) (4)

for action selection. By performing an action a at state s, the current V̂ -estimate of the actual

state s is updated with the immediate reward rt received and the V̂ -estimate of the subsequent

state s0:

V̂ t+1(s) =

8>>><
>>>:

(1� �) � V̂ t(s) + � � (rt + 
 � V̂ t(s0))
if s is the state at time t

and s0 is the state at time t+ 1

V̂ t(s) otherwise

(5)

� > 0 is a su�ciently small learning rate. Reinforcement learning updates states using this updating

rule, but in order to exhaustively explore the whole state space it does not strictly use the policy of

maximizing f(�) for action selection. Instead, action selection is merged with an exploration term,

which prevents from getting trapped in poor local minima. The update rule (5) is often referred to

as reinforcement comparison, and the correction term rt+ 
 � V̂ t(s0)� V̂ t(s) taken from Eq. (5) as

temporal di�erence (TD) error (Sutton, 1984), (Sutton, 1988).
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5 Exploration techniques

5.1 Undirected exploration

Undirected exploration is characterized by generating actions based on randomness. There is no

knowledge about the learning process itself available. In order to deal with the trade-o� between

exploration and exploitation, the current utility estimates can be used to draw the probability

distribution actions are selected with. Note that in many reinforcement learning tasks, undirected

exploration degrades to a uniform random walk in the �rst trial, unless there is some a priori

information about utilities available. We will discuss three types of undirected exploration often

found in literature: (uniform) random exploration and two utility-driven undirected exploration

techniques.

5.1.1 Random exploration

The most uninformed and basic way of exploring an unknown environment is to generate actions

randomly with uniform probability. This method is often applied if exploration costs do not matter

during learning. Sometimes tasks are divided into two phases, namely a learning and a performance

phase, and costs are not considered during the learning phase. However, if one wants a learning

system to exploit also during learning, this method is most une�cient in terms of costs. Random

exploration is also frequently used if it is not feasible to extract exploitation knowledge such as

utility-estimates. This is often done in real-valued state spaces (Nguyen and Widrow, 1989), (An-

derson, 1986), (Mozer and Bachrach, 1989), (Bachrach and Mozer, 1991), (Jordan, 1989), (Jordan

and Jacobs, 1990), (Mel, 1989), (Munro, 1987), (Thrun et al., 1991).

5.1.2 Utility-driven probability distributions

The major charterization of random exploration in our framework is the �xed uniform probability

distribution for action selection, which is of course independent of the utility estimates. If costs

are relevant during learning, non-uniform undirected exploration techniques utilize the current

utility estimates to in
uence action selection. This is typically done by modifying the probability

distribution actions are selected with: The higher the expected utility by selecting action a, the more

likely a gets selected. This ensures that the learning system explores and exploits simultaneously,

and can be viewed as combination of pure random walk and pure exploitation (see Fig. 3).
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Figure 3: Undirected exploration techniques: Boltzmann distributions and semi-uniform distribu-

tions are one-dimensional combinations of pure exploitation and random exploration.

5.1.3 Semi-uniform distributions

Semi-uniform distributions establish a simple, undirected exploration rule. Every time tick, each

action a is evaluated by f(�) (c.f. Eq. (4)). With some prede�ned probability Pbest that action a

with the best expected utility is selected: a� = argmaxaf(a) (if several best actions exist, one is

selected randomly), and with probability 1� Pbest an action is selected randomly, regardless of its

expected utility:

P (a) =

8>>>><
>>>>:

Pbest +
1� Pbest

#of actions
, if a maximizes f

1� Pbest

#of actions
, otherwise

(6)

The parameter Pbest allows for smoothly blending from pure random exploration (Pbest = 0) to

pure exploitation (Pbest = 1, see Fig. 3).

5.1.4 Boltzmann distributions

Unline semi-uniform exploration, Boltzmann-distributed exploration takes the f -evaluations of all

actions into account. The probability for an action to get selected is a non-linear function of f :8

P (a) =
ef(a)�

�1X
a0 is action

ef(a
0)��1

(7)

Here � > 0 is a gain factor, often called \temperature", which determines the amount of randomness

in the action selection procedure. With � �! 0 pure exploitation is approached and with � �! 1

the resulting distribution approaches the uniform distribution, i.e. random exploration (Fig. 3).

8The particular probability distribution is closely related to and motivated by the probability distribution in

Brown molecular movements in potential �elds.
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5.2 Directed exploration

Unlike the exploration techniques described so far, directed exploration memorizes knowledge about

the learning process itself and utilizes this knowledge for directing the exploration. In turn we will

describe directed exploration techniques based on a) counters, b) error estimates, and c) recency

values.

5.2.1 Counter-based exploration

For each state s, a counter c(s) counts how often this state occurred. Actions are now evaluated

by a linear combination of an exploitation term and an exploration term9:

evalc(a) = � � f(a) +
c(s)

E[cjs;a] (8)

E[cjs; a] = Ps0 Pss0(a) � c(s0) denotes the expected counter value of the state obtained by applying

action a at state s. � � 0 is a constant gain weighting exploration versus exploitation. As usual,

we de�ne 0
0
:= 0 and z

0
:= 1 for all z > 0. Eq. (8) evaluates actions with respect to a linear

combination of exploitation and exploration. The action selection rule bears the randomness: Al-

ways the action maximizing evalc is chosen deterministically.10 Related counter-based exploration

techniques might be found in (Sato et al., 1990), (Barto and Singh, 1990).

Generally speaking, counter-based exploration evaluates states on the basis of how often they

occurred. We have seen that this simple rule prevents from exponential exploration time in many

cases. But thinking in terms of fast learning, what we really are interested in is provoking those

states which yield the best performance improvement. In order to achieve this, we will extend

counter-based exploration by two straightforward heuristics, namely decay and an error estimate.

5.2.2 Counter-based exploration with decay

Plain counter values describe the accuracy of a utility estimate only partially, since they do not

contain information when a state occurred, although this information is also relevant for e�cient

exploration. For instance, if two states occurred equally often but one only at the very early

beginning of learning, while the other one most recently, we ought to give preference to the �rst.

This observation, which is more radically addressed by recency-based exploration described below,

9The counter-based rule described here di�ers from the previously introduced one by using the quotient of counters

rather than the di�erence. We found this exploration rule more appropriate for combination with an exploitation

term, since by using the di�erence each state will occur equally often in the limit.
10If it happens that more than one action have equal best evaluation, one might be picked by an arbitrary rule:

e.g. the �rst action due to any alphabetical order, if any, or one action might be picked randomly. We used the latter

technique in the simulations.
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is the basis for extending counter-based exploration with decay: At each time tick every counter is

multiplied with a �xed decay �
<

� 1.

c(s)  � � � c(s) 8s (9)

Hence the more recent an occurrence of a state, the more these occurrences contribute to the

counter value of this state. With an appropriate choice for � the resulting decayed counter re
ect

the accuracy of the utility values better than any undecayed counter, and we will demonstrate this

in the simulation results.

5.2.3 Error-/counter-based exploration

Another way to extend counter-based exploration is achieved by directly estimating the change of

the utility-estimates V̂ obtained by updating it (Schmidhuber, 1991), (Thrun and M�oller, 1991),
(Thrun and M�oller, 1992). The idea of the particular error-/counter-based exploration rule de-

scribed here is to memorize the latest change of the utility estimation of each state denoted by

�V̂last(s). The more the utility value of a state changed, the more likely is that neighboring

states update its utility value correspondingly. Thus it makes sense to prefer actions leading to

states whose utility value has recently changed the most, thus extending the evaluation function of

counter-based exploration (8):

evalc=e(a) = � � f(a) +
c(s)

E[cjs;a] + � �E[�V̂lastjs; a] (10)

� > 0 is a constant factor determining the portion of the error-heuristic in action selection, and

E[�V̂lastjs; a] denotes the expected �V̂last-value by taking action a at state s and is initialized with a

large value. A connectionist architecture for exploration in real-valued domains using counter/error-

based directed exploration might be found in (Thrun and M�oller, 1992).

5.2.4 Recency-based exploration

A more rigorous approach to overcome the limitations of plain counter-based exploration is called

recency-based exploration (Sutton, 1990). The principle of recency-based exploration is to prefer

adjacent states which occurred less recently. Basically, for recency-exploration there is a recency

value �(s) associated with each state s memorizing the number of actions performed since the last

occurrence of this state.11 Based on the recency value, actions are evaluated with respect to the

recency value of the corresponding next state:

evalr(a) = � � f(a) +
q
E[�js;a] (11)

11For e�ciency reason, this is implemented by storing the time tick of the last occurrence. The di�erence between

the current time tick and the last occurrence measures the recency of this state.
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Again, � � 0 is a constant gain, the action with the highest evaluation evalr(a) is selected de-

terministically, and E[�js; a] denotes the expected recency-value by selecting action a at state s.

Note that even in the �rst run recency-based exploration behaves di�erent from any counter-based

technique. If a state has only occurred once but very recently, actions yielding this state are not

likely to get selected.

Sutton (Sutton, 1990) named the exploration term
p
E[�js;a] in Eq. (11) exploration bonus. He

uses this bonus di�erently: Instead of locally evaluating the recency of neighboring states only,

the recency-values are subject to an o�-line dynamic programming process. A model is used o�-

line for aligning recency values through the state space, very similar to the alignment of utilities in

reinforcement learning (c.f. Eq. (5)). This has the advantage of exploring with an extended horizon:

The exploration rule selects actions with respect to all states and not only to the neighboring

states, which de�nes a non-local exploration rule. In addition to a model, this requires much o�-

line computation-time for performing dynamic programming, which clearly violates our real-time

constraint. However, by not performing a complete dynamic programming evaluation at each time

an action is selected, the o�-line computation time can be gradually reduced, and in the limit (i.e.

no o�-line computation) the exploration rules equals our notion of recency-based exploration.
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6 Experimental results

6.1 A two-dimensional robot navigation task

We tested all exploration techniques on the two-dimensional robot navigation task depicted in Fig.

4. The task is to navigate the robot (left circle) to its goal position (right circle) with as few

actions as possible. The state space consists of roughly 4 500 states which are represented by its

x-y-coordinates in the grid. Each time the robot has 8 valid actions, each of which corresponds to

one neighbor in the grid. There are two kinds of non-zero rewards. If the robot collides against a

wall, it will not move but receive the negative reward -1. Positive reward 1 is only received upon

entering the goal position. Thus, no a priori information is provided to guide the search of the goal,

and the V̂ -values are initialized with 0. We investigated exploration with a deterministic and a

non-deterministic state-transition function { in the latter case there was 10% randomness merged

in the state transition function, i.e. in 90% of the cases actions were performed correctly, but in

10% actions led to a randomly selected neighboring state. In both cases, an action model was given

to the system.

Based on the speci�c task at hand, we extended our version of reinforcement learning to three

update mechanisms:

1. If the agent moves from state s to state s0, the value V̂ (s) is updated with 
 � V̂ (s0), if and
only if this term is larger than V̂ (s). The restrictive de�nition of the task { more speci�cally:

V̂ (�) is monotonically increasing in time { allows direct alignment of utility values (i.e. the

learning rate is 1 in standard reinforcement learning) and overcomes some of the problems of

plain AHC-learning.

2. Knowing about the invertibility of this task (i.e. to each action leading from state s to state

s0, there is an inverse action leading from s0 to s), the above alignment is inverted: V̂ (s0) is

updated, if smaller, by 
 � V̂ (s).

3. To make things actually working, the most recent run (at most 30 000 steps) is temporarily

stored and once replayed in reverse order after the goal state is reached. This experience replay

technique accelerates the backward-alignment of utility values tremendously (Lin, 1991b),
(Lin, 1992).

We will now describe the results obtained by applying all above exploration techniques to this

task. For each evaluation, parameters have been optimized by hand. Exploration techniques

can be assessed by two criteria: the average time for the �rst trial and the performance during

reinforcement learning.
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Figure 4: Task: The task is to navigate the robot (left circle, room 1) to its destination (right circle,

room 17) on the shortest possible path (its length is roughly 94.0, measured with L2-norm). The

shortest possible path leads through the rooms 1-10-11-15-12-14-17; other paths are 1-2-7-13-14-17

and 1-2-7-6-5-4-17 etc. The task is considerably complex { there are about 4 500 states.

6.2 Complexity of the �rst trial

An important characteristic of the exploration techniques investigated is the number of actions

required for the �rst trial. In this �rst run there is no knowledge about the environment available,

thus the V̂ -values are initialized with 0. As pointed out above, undirected exploration techniques

which rely on an estimation of the utility function cannot do anything but pure random search.

Counter-based exploration, error-based exploration and counter-based exploration with selective

attention (see Section 7) all follow the same rule \Go to the least visited state". Thus there remain

only four di�erent classes of exploration techniques. The following table sketches the average

number of steps required for the �rst run, averaged over 50 experiments each:
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exploration-technique deterministic version stochastic version

average steps average steps

Uniform distribution

Boltzmann distribution 43 000 43 000

Semi-uniform distribution

Counter-based exploration

Counter/error-based exploration 4 700 4 800

Counter-based exploration with selective attention

Counter-based exploration with decay (� = 0:99999) 5 800 7 300

Recency-based exploration 7 400 8 900

Counter-based techniques appear to be most e�cient in terms of expected search steps for �nding

the goal in the beginning and to be least sensitive to the randomness in the transition function.

Random exploration takes in this particular task about nine times more steps. It is somehow

surprising that counter-based exploration with decay performs clearly poorer than counter-based

exploration without decay, although this decay was close to 1. Another result is that recency-based

exploration takes signi�cantly more time for the �rst trial than counter-based exploration. If one is

interested in minimizing this �rst run, counter-based exploration seems to be the best choice for the

�rst trial. As we will see in the next section, this judgement does not hold if one is interested in cheap

and fast learning, i.e. optimal performance over several learning trials using reinforcement learning.

These results also clearly demonstrate the weakness of all undirected exploration techniques. Due

to above theorems, we expect the gap between directed and undirected exploration techniques to

grow with the size of the state space.

6.3 Explanation of the learning curves

We will now compare the e�ects of the di�erent exploration techniques to the learning process. For

each technique, its impact to learning is illustrated by three curves, with the horizontal axis being

the number of steps (i.e. actions taken, total of 250000 steps) in all �gures.

1. The �rst �gure shows the average length of each trial, averaged over all trials so far. This curve

is intended to re
ect the portion of exploitation in the learning process and is the best measure

for exploration costs we found for this particular task. Minimizing costs during learning is thus

equivalent to minimizing this average length. Therefore one technique outperforms another

if, with the same learning result, more runs could be completed with the same number of

steps, i.e. the average length of each trial is smaller.

2. The second �gure plots the length of the optimal path due to the current utility estimation.

Here exploration (and learning) is switched o� for a moment, and a single run is performed
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to compute the path length which the controller would generate if learning were stopped

now (pure exploitation). Shortest path-curves illustrate the state of learning through time.

The closer this curve approaches the shortest possible path length (which is in the particular

environment at hand approximately 94.0), the better the resulting controller.

3. The third �gure visualizes the accuracy of the utility function, i.e. the (negative) deviation of

the correct utility function V ��

and the current utility estimation V̂ (measured with L1-norm)

scaling from 0% to 100%. In some way, this value measures also the success of the learning

process, since the better the utility function, the more likely the optimal solution is found in

many tasks.

Due to the trade-o� between exploration and exploitation, an exploration technique clearly outper-

forms another if its average path (�gure a) is shorter and [ the model accuracy (�gure b) is higher,

or the shortest path found (�gure c) is shorter ].

6.4 Results obtained for the deterministic environment

In the deterministic version, the state transition function and thus the whole environment is de-

terministic. For all simulations we carefully optimized parameters by hand. Since the gain factor

usually weighs exploitation vs. exploration, gain was chosen such that the results became most

comparable.

1. Random exploration (Fig. 5 & 6):

This technique is characterized by its extremely high exploration costs, as shown in Fig.

5. Random exploration succeeds in �nding a nearly-optimal path after about 350000 steps

without taking any exploitation into account. Moreover, due to the missing action selection

criterion, the number of wall collisions is unreasonable large (not plotted here).

2. Semi-uniform distribution (Figs. 6 & 8):

The diagrams plot the learning curves obtained with Pbest = 0:5. This exploration technique

almost always fails in �nding the shortest path within the �rst 250 000 steps. (The same is

expected to hold for all Pbest > 0:5.)

3. Boltzmann distributions (Fig. 6):

With � = 0:025 this technique clearly fails in �nding the shortest path within the �rst 250 000

steps, too (Fig. 6b). Apparently, the task at hand is too di�cult using this kind of exploration

and only a suboptimal solution is found. It is worth noting that Boltzmann distribution turned

out to work poorer than semi-uniform distributions in many cases, although the former ones

are more frequently found in literature.
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Unlike undirected exploration techniques, which succeeded in identifying an optimal controller

within the �rst 350 000 steps only for random exploration { with extremely high exploration costs

{, directed techniques always converged much faster. As quoted above, counter-based techniques

are fastest in �nding the goal (�rst trial), but the di�erent techniques show interesting di�erent

characteristics during learning.

1. Counter-based exploration (Fig. 7):

With � = 4:0 we achieved the best results. The learning diagrams show clearly that this

directed exploration technique outperforms all undirected ones in all three performance mea-

sures: While exploration costs are lower, the result in terms of shortest paths and the accuracy

of the utility function are signi�cantly better. However, directed exploration can be done more

e�ciently due to the above described limitations of plain counter-based exploration.

2. Counter-based exploration with decay (Figs. 7 & 8):

By decaying each counter with � = 0:99999 and � = 25:0 the results of counter-based

exploration were signi�cantly improved. While exploration costs were lower, the shortest

path was found much faster. However, the agent focussed its exploration more on states

closed to the optimal path while other regions were explored less. Therefore an accurate

utility estimate for the whole state space was found slower.

3. Error-/counter based exploration (Fig. 7):

Best results were obtained for � = 1. Although we tried a couple of di�erent parameter

settings, we did not �nd any signi�cant improvement over plain counter-based exploration. It

should be noted that this type of exploration heuristics is assumed to work better in dynamic

environments, where changes in the environment cause changes in the utility function. Error

estimations might then accelerate learning by attracting states whose utility value has changed

due to the dynamics in the environment. However, we restricted the evaluations in this paper

to static environments.

4. Recency-based exploration (Figs. 7 & 8):

Best results were achieved using � = 200:0. Except for the �rst trial, this technique worked

better than counter-based exploration and showed equally good performance for all � 2
[20;200]. The robustness against the choice of � indicates the appropriateness of recency-

based exploration for environments where a good estimate for the optimal � is di�cult to

obtain. It should also be noted that the accuracy of V̂ -values increases very slowly, indicating

that exploration is focussed on regions close to the optimal path { the same important e�ect

was observed for counter-based exploration with decay (Fig. 7c).

23



(a) exploration costs (average steps per run)
40 000 steps

run

0 steps
run 0 250 000

training steps
Figure 5: Random walk, deterministic environment: Costs of exploration. Note the di�erent scale:

The dashed line indicates the upper border of all other costs diagrams.

6.5 Results obtained for the stochastic environment

In order to test the exploration techniques on stochastic environments we merged the state tran-

sition function with 10% randomness, as described above. By that the performance of undirected

exploration techniques is not expected to change signi�cantly, since randomness is already their

basis of exploration. E.g. random exploration works equally well in both cases, and with semi-

uniform distributions the e�ect of randomness in the state transition function is equivalent to

changing the parameter Pbest (This is a special case, since the particular randomness in our en-

vironment happens to be equivalent to the randomness in semi-uniform exploration). Thus the

results of undirected exploration did not di�er signi�cantly from those shown in Fig. 5 & 6. How-

ever, we found that among all directed exploration techniques, none was signi�cantly in
uenced

by this 10%-randomness either, besides the e�ects listed in Section 6.2. Fig. 8 gives the results

for those undirected and directed techniques showing best performance in the deterministic case,

namely semi-uniform distributed undirected exploration, counter-based exploration with decay and

recency-based exploration, using the same parameter settings as above.
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(a) exploration costs (average steps per run)
5 000 steps

run

0 steps
run 0 250 000

training steps

(b) shortest path (pure exploitation)
160 steps

94 steps
0 250 000

training steps

(c) accuracy utility function
100%

0%
0 250 000

training steps

uniform
Boltzmann
semi-uniform

Figure 6: Undirected exploration, deterministic environment: Uniform distribution (thin lines),

Boltzmann distribution (medium lines) and semi-uniform distribution (thick lines). The cost func-

tion of uniform random exploration does not �t in this diagram and is thus plotted in Fig. 5.

25



(a) exploration costs (average steps per run)
5 000 steps

run

0 steps
run 0 250 000

training steps

(b) shortest path (pure exploitation)
160 steps

94 steps
0 250 000

training steps

(c) accuracy utility function
100%

0%
0 250 000

training steps

counter-based
counter/error-based
counter-b. with decay
recency-based

Figure 7: Directed exploration, deterministic environment: Counter-based exploration (thin lines),

counter/error-based exploration (medium lines), counter-based exploration with decay (thick lines),

and recency-based exploration (very thick lines).
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(a) exploration costs (average steps per run)
5 000 steps

run

0 steps
run 0 250 000

training steps

(b) shortest path (pure exploitation)
160 steps

94 steps
0 250 000

training steps

(c) accuracy utility function
100%

0%
0 250 000

training steps

semi-uniform
counter-b. with decay
recency-based

Figure 8: Stochastic environment: Semi-uniform distributed exploration (thin lines), counter-based

exploration with decay (medium lines) and recency-based exploration (thick lines). Note that these

results di�er not signi�cantly from those obtained with the deterministic version.
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7 Combining exploration with selective attention

So far we have presented and empirically compared several undirected and directed exploration

techniques all dealing with the trade-o� between exploration and exploitation. We will now ad-

dress a principal ine�ciency all those techniques have in common: the �xed, linear combination

of exploration and exploitation. This can yield an undesired e�ect, namely: If exploration and

exploitation point exactly into the opposite direction, the exploration rule might yield an action

which neither explores, nor exploits. E.g., suppose an agent facing a lion. Exploitation might make

the agent to 
ee and exploration makes it to explore { but a �xed linear combination of both makes

the agent stay where it is, which is clearly the less e�cient solution: The agent should either run

away, or explore, but not do nothing at all. This clearly undesired e�ect is ine�cient in terms of

exploration costs. Since exploration and exploitation usually are opposing, �xed linearly combin-

ing both seems to be questionable, and some kind of dynamic combination of both criteria might

help to decrease the costs. We will describe a selective attention technique based on counter-based

exploration, which switches attention dynamically between exploration and exploitation (Thrun

and M�oller, 1992). The basic idea is to establish a parameter of attention � which determines the

behavior { exploitation or exploration { playing the major role in action selection. This parameter

is updated with a hysteresis property making it considerably stable over several steps. Bene�ts

of switching attention between exploration and exploitation are demonstrated in the simulation

results.

Selective attention is established by extending the evaluation function evalc(�) (c.f. Eq. (8)) of

counter-based exploration by an attention parameter �, 0 < � < 1:

evalc�sa(action) = � � �f(a) + (1� �) � c(s)

E[cjs;a] (12)

� determines which of the two principles in
uences the action selection most: If � is close to 1,

actions are selected such that they optimize the expected future reward (exploitation). With �

close to 0, exploration is favored almost regardless of the rewards. At each trial � is initialized with

0.5; after having selected an action, � is updated by the bistable equation:

�  � � � f(a)
V t(s)

� (1� �) � c(s)

E[cjs;a] (13)

�  � :8

1 + e�a��
+ :1 (14)

The value � measures the trade-o� between exploitation and exploration under the current focus

of attention �, and the new � is then obtained by squashing �. Here, a > 0 is a factor which

determines switching shape. Note that � will always be in the interval (:1; :9), hence whenever the

system chooses one behavior (exploration or exploitation), the other will contribute at least 10% to

the action selection. If one thinks in terms of an exploration behavior and an exploitation behavior

of a learning systems, these equations establish a conservative way for smoothly switching between

behaviors. Note that these switching equations represent only one choice among many others for

selective attention.
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7.1 Experimental results with selective attention

We applied counter-based exploration with selective attention to the robot navigation task. Learn-

ing curves for both the deterministic and the stochastic version of the environment are shown in

Fig. 9. With the switching parameter a set to 30, selective attention could signi�cantly reduce the

costs of counter-based exploration while leaving the quality of solutions almost una�ected. The

switching behavior established by selective attention can clearly be recognized in (Fig. 9a&b).

After a �rst optimization phase, the controller focuses for some time on pure exploitation, keeping

the costs considerably low. After roughly 27 000 steps it changes to exploration and makes one

expensive but su�cient exploration walk, which subsequently allows for �nding the optimal path

while keeping the costs low. In terms of trade-o� between exploration and exploitation, selective

attention has been empirically shown to improve counter-based exploration.

We also applied selective exploration to recency-based exploration, but did not �nd this to improve

solutions at all.
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(a) exploration costs (average steps per run)
5 000 steps

run

0 steps
run 0 250 000

training steps

(b) shortest path (pure exploitation)
160 steps

94 steps
0 250 000

training steps

(c) accuracy utility function
100%

0%
0 250 000

training steps

stochastic
deterministic

Figure 9: Selective attention: Counter-based exploration with selective attention with the stochastic

(thin lines) and the deterministic (thick lines) version of the environment. It is clear to see that

after ca. 27 000 steps the agent performs an exhausting directed exploration walk which improves

both shortest path and model accuracy signi�cantly, while keeping the average costs on a very low

level. 30



8 Limitations and discussion

In this paper we addressed exploration and reinforcement learning in a very basic form, in order

to clearly demonstrate the principal e�ects of the di�erent exploration techniques. By doing this,

we were able to derive the superiority of directed over undirected exploration analytically, and

we subsequently demonstrated this on a simple two-dimensional robot navigation task. Although

we hope that the di�erent techniques presented in this paper cover a wide variety of exploration

mechanisms applicable in more di�cult and real-world problems, we neglected important aspects

relevant for many learning systems in the area of reinforcement learning and adaptive control, the

most important of which will be outlined in turn.

Huge or in�nite environments. The theoretical results on the complexity of exploration, as

well as all the directed exploration techniques as they are presented here, base on the assumption

that it is feasible to exhaustively explore the whole state space. In many domains, including those

typically studied in AI, state-spaces or state-action spaces are too large, hence exploring the whole

state space is too expensive or simply impossible as it is in real-valued domains (e.g. robot arm

control). Generally speaking, the exploration techniques have to be extended or eventually new

ones have to be developed which ensure su�ciently much exploration for local optimization, but

avoid exhaustive exploration.

An interesting technique to deal with huge state spaces is teaching (Lin, 1991b), (Lin, 1991a). By

teaching we mean learning scenarios in which a human teacher provides some potentially suboptimal

solutions for the problem, and the aim of reinforcement learning is now to re�ne these solutions.

It is unclear how the directed exploration techniques apply to such tasks. There is evidence that

selective attention, as it is presented here, does a poor job, since once exploration is switched on it

might spend too much time searching in unrelevant regions of the state space, never switching back

to exploitation. Conversely, counter-based exploration with decay and recency-based exploration

seems to be most appropriate. This evidence is taken from the accuracy results for these techniques

shown in Fig 7c. In our simulations we observed these two techniques to concentrate very much on

the current optimal path, while regions in the state space far away from this path were explored only

considerably seldom. Usually we are not interested in having the most accurate utility estimate

but in the best possible solution, which clearly makes a di�erence: irrelevant parts of the state

space need no exploration. This observation can be utilized for further reducing the complexity

of reinforcement learning yielding a di�erent kind of switching attention: If one knows already a

solution, exploration should be turned o� if it cannot improve this known solution at all. In our

example, exploration may be switched o� if the length of the exploration walk exceeds n̂, given

that one found already a path to the goal with length n̂.

Incorporation of pre-given knowledge. Another way of e�ciently dealing with huge state

spaces is to give the learning system some knowledge in advance, represented e.g. as initial estimates
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of the utilities, logical rules, constraints etc. A priori knowledge is similar to teaching. Although we

did not discuss such scenarios in this paper, we believe that incorporating this knowledge in order

to diminish exploration costs is feasible within this framework { A �rst attempt could be to linearly

combine this knowledge in the action evaluation functions, as it is done for combining exploration

and exploitation (c.f. Eq. (8)). There is evidence that extensions of counter-based exploration with

decay as well as recency-based exploration ensure e�cient exploration even in large state spaces.

It is important to mention that Whitehead's theorem holds only for tasks where no a priori knowl-

edge to guide the search is provided. Indirected exploration techniques are reported to scale much

more e�ciently even with little such knowledge (Lin, 1991b), (Whitehead, 1991b), and the results

of this paper cannot be directly transferred to such scenarios.

Exploration and generalization. We did not address the very important interaction of explo-

ration and generalization throughout this paper. Many learning techniques use a generalization

technique for predicting sensations/utilities for not yet explored states. Clearly, if this general-

ization function is appropriate, exploring the whole state space becomes unnecessary. It is not

straightforward to extend the exploration techniques presented here to any learning system which

generalizes. One way towards the e�cient combination of exploration and generalization it to esti-

mate the accuracy of the generalization and to explore those regions in the state space with lower

predicted accuracy (Thrun and M�oller, 1992). However, this topic is beyond the scope of the paper.

Q-Learning and Exploration. As mentioned above, most of the exploration techniques pre-

sented have their counterpart in Q-learning { in fact, some of the techniques, e.g. all undirected

ones, counter-based exploration and recency-based exploration have already been studied with re-

spect to Q-Learning (Barto and Singh, 1990), (Barto et al., 1991), (Watkins, 1989), (Lin, 1991b),
(Lin, 1992), (Singh, 1992), (Sutton, 1990), (Whitehead and Ballard, 1991). We strongly believe that

the even with Q-Learning the directed exploration techniques presented here outperform the undi-

rected ones, and the theoretical results support this. Counters, error estimates or recency-values

may now be associated to state-action pairs rather than states.

The e�ect of exploration on AHC and Q-Learning. The e�ect that Q-Learning seems to

outperform AHC-Learning in several applications cannot be seen independent from the particular

exploration and learning technique at hand, since the result of AHC-Learning depends crucially

on the policy and thus the exploration technique actions are generated with during learning, and

Q-Learning does not (Barto and Singh, 1990). We will discuss this with an example: If an agent

has the choice between ten actions, one of which leading to the goal state and the other nine

leading to a highly negative reward, the utility found by AHC-like algorithms would average the

cumulated reward observed so far. By using e.g. undirected exploration, the agent will eventually

more often select an action which yields negative reward rather than the optimal action, and thus

the estimated utility of this particular state, updated by the average observed next utility, would
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clearly be low. This strikes the notion of optimal utility which bases on the assumption that best

actions will be performed always. Q-Learning does a better job, since utilities are assigned to

state-action pairs, explaining why Q-Learning is reported to outperform AHC, to the expense of a

much larger search space. However, it is not clear that AHC-like representations are still inferior to

Q-Learning if exploration is done with a directed technique, and the learning rule takes into account

whether an action is selected due to exploration or due to optimization, since the search space of

AHC is much smaller than that of Q-Learning. The reader may recognize that the update rule

used throughout the simulations established exactly this behavior, but this rule is not applicable

in general stochastic domains.

Exploration and system identi�cation. Another point addressed in the Theorems but not in

the exploration rules and the simulations is to use directed exploration for system identi�cation.

A theoretical result stating the worst-case complexity of system identi�cation can be found in

the Appendix. The exploration rules presented in this paper can very easily be extended to do

system identi�cation simultaneously. E.g. in the proof of Theorem 3, system identi�cation has

always preference to exploration, establishing exploration with greedy system identi�cation. It is

straightforward, but beyond the scope of this paper to combine the action evaluation of the directed

exploration techniques with a term measuring the demand for system identi�cation. For a directed

exploration approach to system identi�cation see also (Thrun and M�oller, 1992).

Undirected exploration and pseudo random numbers. An important drawback of all

undirected exploration techniques completely neglected in recent literature is their dependence

of random numbers. While \real" random number generators are only rarely available, computer

implementation usually rely on pseudo random number generators. These generators may turn

non-exponential problems into exponential, and in the extreme one cannot be sure that with an

unknown pseudo random number generator it is possible to reach a goal state at all. Directed

techniques do not depend crucially on random numbers, and above theorems hold for any choice

of random numbers since they state worst-case results.
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9 Conclusion

This paper addresses the fundamental role of exploration in the complexity of reinforcement learn-

ing. Exploration techniques are grouped into two categories based on the underlying exploration

knowledge: Undirected exploration techniques do not rely on any exploration-speci�c knowledge

and basically explore unknown environments with randomness. Examples for undirected tech-

niques described in this paper are: Uniform random exploration, semi-uniform distributed explo-

ration, and Boltzmann distributed exploration. Conversely, directed exploration techniques utilize

knowledge about the learning process itself, represented e.g. in terms of counters (Counter-based

exploration with and without decay), error estimates (error/counter-based exploration), or recency-

values (recency-based exploration). While undirected techniques are often found in reinforcement

learning and related literature, directed techniques are rare.

The signi�cance of this somehow ad-hoc looking distinction is demonstrated by both the theoretical

results in Section 2 and the experimental results in Section 6. While for many deterministic

environments undirected techniques are proven to be ine�cient (Whitehead, 1991b), (Whitehead,

1991a), meaning that their expected learning complexity scales exponentially in the size of the state

space, this paper proves as an example the e�ciency of a particular directed exploration technique,

namely counter-based exploration, by showing that the worst-case complexity of learning is always

polynomial in the size of the state space. We furthermore demonstrated the superiority of all

directed techniques on a two-dimensional robot navigation task. This task di�ered from many

tasks found in reinforcement literature in that it was too complex for all undirected techniques to

succeed, but optimal solutions were always found by all directed techniques.

These results are intriguing. Reinforcement learning is often considered to work well with simple

tasks but to fail in complex ones. We argue that exploration plays an important role in reinforce-

ment learning, and that e�cient exploration is a precondition for lifting reinforcement learning to

more complex tasks. Although this paper is strongly related to reinforcement learning, exploration

addresses a much broader �eld of active learning and adaptive control systems. We expect the

results found in this study to be not irrelevant to related �elds such as adaptive control, robot

navigation etc.
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Appendix: The complexity of reinforcement learning

Recall that an Markovian environment is de�ned as a mapping from states � actions to states �
rewards, which furthermore is Markovian. The environment may be deterministic (unless otherwise

noted), �nite (i.e. the number of states n and the number of actions d are �nite) and ergodic. By

a Markov decision task we mean the task of, given an unknown environment, �nding an optimal

policy, a mapping from states to actions which yields for any state an optimal trajectory in terms of

cumulated rewards. Let l denote an upper bound of all shortest paths between two arbitrary states

s1 and s2 (depth of the state space). In the worst case l = n�1, but at many tasks l is signi�cantly
smaller than n (e.g. for navigation in a d-dimensional grid l might be as small as O(d d

p
n)). Finally,

by a trial we mean one trajectory in state space, starting at some initial state, usually ending at

the goal state or after each state having occurred at least once. If not otherwise noted, the term

�rst trial refers to the �rst trajectory in state space during a reinforcement learning process. By

a Markov decision task with a goal state we mean a Markov decision task, for which the reward

function is 0 for all states except a designated goal state, sgoal, with r(sgoal) = 1.

Complexity of the �rst trial using a complete action model

Given that the agent has a complete action model, i.e. a model of the state transition function

of the environment, an upper bound for the number of actions required for a trial is given by the

following Theorem:

Theorem 1 (Complexity of the �rst trial using a complete action model): There is a local counter-

based exploration rule, by which the number of actions required for the �rst trial in any �nite ergodic

deterministic Markov decision task using a complete action model is bounded above by O(ln2). The

time for action selection is in O(d), and the additional storage requirement is in O(n).

Before we prove the Theorem, we will de�ne the exploration rule and prove two Lemmata.

For the exploration rule, which indeed is a (slightly modi�ed, see Step 2 below) counter-based

exploration rule, we associate to each state s a counter c(s). This counter indicates in essence how

often state s has occurred before and is updated only if the state of the environment is s. We use

ct(s) to refer to c(s) at time tick t (t = 0; 1; . . .), meaning c(s) after t actions being executed.

We denote the state of the environment after t actions executed by st. Furthermore, let the set of

states which can be reached from state s by one single action be denoted by Succ(s). Then we use

the following exploration rule for generating actions and updating the look-up table c:

Exploration rule: In the beginning, the time t is set to 0 and for all states s the c-table is initialized

by 0: (8s) c0(s) � 0. At each time tick t = 0; 1; . . ., select an action by the following (local) rule:

1. Let smin be that state in Succ(st) that minimizes c(s) over all possible next states s 2
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Succ(st). If several such states exist, choose one randomly. Note that this selection is done

in O(d) time on a single processor.

2. If c(st) � c(smin), i.e. the c-value of the current state is not greater than the c-value of smin,

set c(st) to c(smin) + 1.

3. (Now c(st) > c(smin).) Select and execute the action that leads to smin. By performing this

action, the counter of the new actual state c(smin) is incremented by 1, and the time t is also

incremented by 1.

4. Goto 1.

Note t is the number of actions performed so far, and
P

s c
t(s) is an upper bound for t. Furthermore,

ct(s) is an upper bound for the number state s occurred so far and c is monotonically increasing

in t. The storage requirement for c is in O(n), assuming that the storage required for storing a

integer 2 f0; 1; . . . ; ng is in O(1).

The following Lemma shows that if the agent takes a sequence of actions to get from a state with

counter m to a state with counter � m + 1, then Step 2 above is executed at least once on some

state ŝ, whose counter was c(ŝ) � m formerly and is now c(ŝ) � m+ 1.

Lemma 1: Let for some m � 0; t0 > t � 0: ct(st) = m and ct
0

(st
0

) � m + 1. Then there is a

t̂ 2 ft; t + 1; . . . ; t0g with ct(st̂) � m and ct
0

(st̂) � m+ 1.

Proof: There are two ways to increase a counter of a state: Step 2 and Step 3. Whenever

Step 3 is performed, the agent gets from a state s1 to a state s2 with c(s2) < c(s1) and

the counter of s2 is subsequently incremented by one. Therefore, if the counter of the

current state is less than or equal to m, Step 3 cannot change this: the counter of the

new current state will again be less than or equal to m. The counter of the current

state can only be increased by Step 2.

The remainder of this proof is simple. Since ct(st) = m, there must be a intermediate

state st̂ at which Step 2 is applied, updating the counter ct̂(st̂) from a value � m to a

value � m+ 1. The Lemma follows from the fact that c(�) is monotonically increasing

in t. 2

The next Lemma shows that there are no arbitrarily large \jumps" in the c-table.

Lemma 2: At any time t, for all states s and ŝ with s 2 Succ(ŝ), the following holds: ct(ŝ)� ct(s) �
n.

Proof: Choose s and ŝ arbitrarily with s 2 Succ(ŝ). Let m := ct(s) and m̂ := ct(ŝ).

39



Indirect proof: Assume m̂�m > n. First we will show that, beginning at a certain time

t̂, the counter of state ŝ was only increased by Step 3 of above exploration rule, which

implies that the change of c(ŝ) in ft̂ + 1; . . . ; tg equals exactly the number occurrences

of ŝ in that time interval.

More precisely, since m̂ > m, there was a time t̂ < t at which c(ŝ) became greater than

m. This happened either by Step 2 or Step 3 of the exploration rule, but in either cases

ct̂(ŝ) = m+ 1, since the succeeding state s had a counter ct̂(s) � m (thus ct̂(smin) � m

and Step 2 could not increase ct̂(ŝ) to a value � m+ 1).

The argument for the next t� t̂ actions is basically the same: for all � 2 ft̂ + 1; . . . ; tg
holds: c�(ŝ) > m and c�(s) � m. Since s 2 Succ(ŝ), for all those � at which state ŝ

occurred was c�(smin) � c�(s) � m. This again implies that Step 2 was not executed

whenever the agent was in state ŝ, and c(ŝ) was only incremented by entering ŝ, i.e. by

Step 3. Therefore ŝ occurred exactly (m̂�m� 1) times in ft̂ + 1; . . . ; tg.
Since per assumption m̂�m� 1 � n, the ŝ occurred at least n times in ft̂+ 1; . . . ; tg.
Step 1 always chooses the state with the smallest counter. Therefore the agent left al-

ways to states with counter � m within this time interval. It also returned at least n�1
times to ŝ, which itself had a counter � m + 1. Lemma 1 implies that for each return

at least one state changed its counter from a value � m to a value � m + 1. Since c

is monotonically increasing, each counter (i.e. each state) can do this only once. Thus,

after n � 1 returns all n � 1 remaining states (i.e. states 6= ŝ) have counter � m + 1,

which still holds at time t. This contradicts the assumption ct(s) = m. 2

The proof of the Theorem is now simple:

Proof of the Theorem: The counter of the last state of a trial when �nally �nding it is

c(slast) = 1. By Lemma 2 and induction over all paths to this state it follows that no

state has a counter c(s) > 1+(n�1)� l = ln� l+1. Thus, each state occurred less than

ln times, which implies
P

s c(s) < ln2. As mentioned above, this is an upper bound for

the number of actions t, which completes the proof of the Theorem. 2

Remark: The proof of Theorem 1 implies that, if a state is not found after ln2 steps, there is no

path from the current state to this state at all. The environment is then not ergodic and reducible

and the states the agent cycles in can be outruled and the trial restarted.

Complexity of the �rst trial without a complete action model

A crucial restriction of above Theorem is that it holds only if a complete action model is available,

which is used for action selection in Step 1. In adaptive Markov decision tasks in general one
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seeks an optimal policy without having a complete action model in advance (Barto et al., 1991),
(Watkins, 1989). The widely used Q-learning algorithm does not rely on a complete action model

either. One straightforward and common way to identify optimal policies in such cases is to do

system identi�cation and policy iteration simultaneously: Whenever the agent selects some action a

which has not been selected at the current state s before, it keeps track of the resulting subsequent

state s0. It incrementally constructs an internal action model, which approximates the transition

function of the environment. We will derive a complexity bound for this more general case based

on this principle.

Theorem 2 (Complexity of the �rst trial without an action model): There is a local counter-based

exploration rule, by which the number of actions required for the �rst trial in any �nite ergodic

deterministic Markov decision task is bounded above by O(dln2). The time required for action

selection is in O(d), and the additional storage requirement is in O(dn) for the model.

For deriving this more general complexity bound, we have to modify the exploration rule. In essence,

the extension forces the agent to select new actions, if any, in order to construct an internal action

model as fast as possible. This is achieved by extending above exploration rule:

0. If there is any action a which has never been tried before at the current state s, select a

(regardless of the counter-table c). Execute a and increment the counter of the new state, as

well as t by one. Store the observed state transition in the action model. Goto 0.

...

4. Goto 0.

Note that whenever Step 1, 2 or 3 is executed, the precondition of Step 0 is not ful�lled, meaning

that all actions have been tried at the current state s. Then the internal model is complete for

state s and allows for a complete 1-ply lookahead for all valid actions at this particular state.

Note also that all of the remarks after the exploration rule still hold true.

Proof of the Theorem: Lemma 1 is violated by the extended exploration rule, since Step

0 might bring the agent to a state with a counter larger than the current counter. Since

the number of state-action pairs is generally bounded by dn, this can only happen at

most dn times in the whole trial. Therefore Lemma 1 is extended to:

Lemma 3: Let for some m � 0; t0 > t � 0: ct(st) = m and ct
0

(st
0

) � m + 1. Then

there is a t̂ 2 ft; t + 1; . . . ; t0g at which Step 0 was used for action selection (i.e. the

corresponding action a has not been tried before at st̂), or Lemma 1 holds.

Following the proof of Lemma 2, Lemma 3 implies that the number of occurrences of a

state ŝ with ct(ŝ) = m̂ in the time interval ft̂ + 1; . . . ; tg is bounded above by n + nd.
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The additional complexity of nd stems from \new actions" bringing the agent to states

with larger counter. Since per de�nition, c�(ŝ) > m = ct(s) for all � 2 ft̂ + 1; . . . ; tg,
m0 �m+ 1 counts how often the agent entered ŝ in this interval. For each occurrence

there are now two possibilities: a) Lemma 2 holds and some other state changed its

counter from a value � m to a value � m+1, or b) there was at least one \new" action

tried which led from a state with counter � m to a state with counter � m+ 1. There

are at most n � 2 states which can change its counter to a value � m + 1 (all states

except s and ŝ), and the number of new actions is bounded by dn, yielding the upper

bound m̂�m� 1 � n� 2+ dn < n+ dn. This leads to the extended version of Lemma

2:

Lemma 4: At any time t, for all states s and all states ŝ with s 2 Succ(ŝ), the following

holds: ct(ŝ)� ct(s) � n(d+ 1).

The remainder of the proof is equivalent to the proof of Theorem 1, taking the addi-

tional complexity factor d into account. This leads to the upper bound O(dln2) for the

number of actions taken in any �nite ergodic deterministic Markov decision task using

the extended counter-based exploration rule. 2

After d occurrences of a state s, all valid actions have been tried at least once and the action model

is complete for this state. Therefore a worst-case complexity of system identi�cation is given by

the complexity of d exploration walks each with at least one occurrence of each state:

Corollary 2 (Complexity of system identi�cation): At any �nite ergodic deterministic Markovian

environment the number of actions required for system identi�cation using above exploration tech-

nique is bounded by O(d2ln2).

Complexity of deterministic reinforcement learning with a goal state

We will now show that ergodic �nite deterministic Markov Decision tasks with a goal state sgoal
can be solved by reinforcement learning in polynomial time using counterbased exploration. This

Theorem basically combines the costs of �nding a state with the costs of Dynamic Programming.

Theorem 3 (Complexity of �nite ergodic deterministic Markov Decision tasks with a goal state):

With above exploration rule, the number of actions required for �nding an optimal policy in any �-

nite ergodic deterministic Markov Decision task with a goal state is bounded above by O((d2l+l2)n2).

If a complete action model is available in advance, the complexity reduces to O(l2n2). The rein-

forcement learning rule is local and takes O(d) time for each iteration12.

12The time requirement for the learning rule in
uences the number of actions required for learning an optimal

policy, because there is a trade-o� between o�-line processing time and number of actions taken. We chosed O(d) as

an upper bound for real-time tasks, since the same time is required for action selection { by this the exploration rule
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Let r(s) denote the immediate reward received at state s. Before learning, the utility-values V̂ (s)

of all states are initialized by l �mins r(s), which is a lower bound for V̂ ��

along the optimal path

to the goal, and V̂ (�) is subsequently updated by the following rule update:

Learning rule update:

V̂ t+1(s) =

(
maxfV̂ (s); r(s) + 
 � max

a is action
V̂ t(Succ(s; a))g , if s = st

V̂ t(s) , otherwise

The learning rule establishes a standard policy iteration rule for real-time asynchronous dynamic

programming and extends the formerly introduced reinforcement learning rule based on the as-

sumption that the environment is deterministic. At the actual state st, update updates the utility

estimate of state st with respect to all neighboring states using the current internal action model

(if this is learned on 
y, unknown transitions are simply neglected). Note that update(s) takes at

most O(d) computing time.

Proof of the Theorem: The reinforcement learning rule implies two important obser-

vations. Firstly, V̂ (�) is monotonically increasing in the learning time. Secondly, if

hs = s1; s2; . . . ; sk = sgoali is an optimal path for some initial state s, and V̂ (si) is

correct for some state si on this path (0 < i � k), then applying the learning rule at

state si�1 will assign the correct utility-value to si�1, given that the action leading to

state si is known to the current action model.

System identi�cation and subsequently browsing the whole state space l times will

identify the correct utility function and therefore an optimal policy, given that there is

a goal state.

� If no complete action model is given in advance, identify the action model. By

Corollary 2 this can be done with at most O(d2ln2) actions.

� Do l exploration trials and apply the learning rule update(s) at each state s. With

each exploration run each state occurs { under the preconditions of Corollary 1 {

at least once. Thus along each shortest path to the goal the correct utility value is

aligned backwards at least one state. Since the length of shortest paths is bounded

by l, after l + 1 iterations the optimal policy is found.

Note that system identi�cation and learning are completely separated. In the learning

runs, a complete action model is available. By Theorem 1 the complexity of each trial is

then bounded above by O(ln2). The resulting worst-case complexity for reinforcement

learning is then in O(l2n2), if a complete action model is available in advance, and

O((d2l + l2)n2), if not. 2

does not increase the processing time at each state by more than a constant factor.
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Although this proves that reinforcement learning (under the above preconditions) using counter-

based exploration is always polynomial in time, we expect the expected learning time to be much

smaller than this worst-case bound. E.g. for this proof we did not utilize the utility-estimations

for action selection, although action selection usually relies on the utility estimations, which has

heuristically been found to accelerate the convergence of reinforcement learning. Moreover, we

found empirically that in many tasks the expected time for �nding the goal using counter-based

exploration is much smaller.

Complexity of reinforcement learning in stochastic environments

The probably most crucial assumption we made throughout all the theorems is that the environment

is deterministic. Reinforcement learning and adaptive control is often applied for non-deterministic

Markovian environments, at which state transitions as well as reinforcement are drawn by non-

deterministic probability distributions, and the utility-values re
ect expected utilities. We will

show that for above complexity bounds the condition of determinism cannot be dropped.

Theorem 4 (Complexity of some ergodic non-deterministic Markov Decision tasks): For each n 2
f2; 3; . . .g, there is a ergodic non-deterministic Markov Decision task, at which the expected time

for reaching the goal state is exponential in n, even if the optimal policy is given in advance.

Proof: We will reduce this Theorem to Whitehead's Theorem. Consider the following

one-dimensional environment (similar to that depicted in Fig. 1): There are n states

fs1; . . . ; sn = sgoalg and the initial state is s1. For each state, there is only one action: a,
thus the optimal policy is selecting a all the time. The environment is non-deterministic:

With probability P� = 2
3
it brings the agent from the current state si (i 2 f1; . . . ; ng)

to si�1 (to si, if i = 1) and with probability P+ = 1
3
to si+1 (to si, if i = n). For

this particular environment, Whiteheads theorem applies, showing that the number of

actions required for entering the goal state is exponential in n. 2

A direct consequence of this Theorem, as Whitehead points out, is that the expected time for

reinforcement learning in such tasks is at least exponential in n. Theorem 4 illustrates the potential

e�ects of non-determinism. However, those environments \untractable", since even an optimal

policy cannot prevent from exponential time. Little is known for more realistic non-deterministic

tasks, at which the expected time for an agent to get to the goal state is linear (or polynomial with

small degree) in n.
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