
www.oeaw.ac.at

www.ricam.oeaw.ac.at

A Newton’s method for best
uniform polynomial

approximation

I. Georgieva, C. Hofreither

RICAM-Report 2021-46

A Newton’s method for best uniform polynomial
approximation

Irina Georgieva1, Clemens Hofreither2

1 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
Acad. G. Bonchev, Bl. 8, Sofia 1113, Bulgaria, irina@math.bas.bg

2 Johann Radon Institute for Computational and Applied Mathematics (RICAM),
Altenberger Str. 69, 4040 Linz, Austria, clemens.hofreither@ricam.oeaw.ac.at

Abstract. We present a novel algorithm, inspired by the recent BRASIL
algorithm [10] for rational approximation, for best uniform polynomial
approximation based on a formulation of the problem as a nonlinear sys-
tem of equations and barycentric interpolation. We use results on deriva-
tives of interpolating polynomials with respect to interpolation nodes to
compute the Jacobian matrix. The resulting method is fast and sta-
ble, can deal with singularities and exhibits superlinear convergence in a
neighborhood of the solution.

1 Introduction

Motivated by applications in solving fractional diffusion problems [6, 7, 9], there
has recently been renewed interest in the fast and stable computation of best
uniform rational approximations. The classical algorithm towards this end is
the rational Remez algorithm (see, e.g., [3, 4, 12]), which is based on the idea of
iteratively determining the nodes in which the approximation error equioscillates.
Unfortunately, this approach suffers from severe numerical instabilities, which
are usually dealt with by using extended precision arithmetic (as in [12]), which
in turn significantly slows down the execution of the algorithm. New approaches
for stabilizing the Remez algorithm were recently proposed in [11, 5] based on
so-called barycentric rational representations.

A new algorithm for computing best rational approximations was recently
proposed in [10] based on a different idea: observing that the best approximation
must interpolate the function to be approximated in a number of nodes, the
new approach is to search for these interpolation nodes, rather than the nodes
of equioscillation as is done in the Remez algorithm. The BRASIL algorithm
proposed in [10] attempts to do so by a simple heuristic, iteratively applied, which
attempts to rescale the lengths of the intervals between the interpolation nodes
so as to equilibrate the local errors. Rational interpolation is performed using the
barycentric formula. This novel approach appears to enjoy excellent numerical
stability. However, as a fixed-point iteration, its convergence rate is only linear,
whereas the Remez algorithm converges quadratically in a neighborhood of the
exact solution. Therefore a natural question is how to construct an algorithm
which seeks the interpolation nodes while converging quadratically.

The present work represents the next step towards such an algorithm. We
restrict our attention to the somewhat simpler case of best uniform polynomial
approximation (note that the Remez algorithm was originally formulated for
polynomial approximation as well). We again treat the interpolation nodes as our
unknowns and rewrite the best approximation problem as a system of nonlinear
equations, for which we then formulate a Newton’s method. In order to compute
the Jacobian matrix, we derive expressions for the derivative of an interpolating
polynomial with respect to an interpolation node.

The content of the paper is laid out as follows: we first formulate the nonlinear
system of equations for best uniform polynomial approximation in Section 2.
We compute derivatives of interpolating polynomials in Section 3 and use these
results to obtain the Jacobian of the system of equations in Section 4. The
complete approximation algorithm is formulated in Section 5, and numerical
experiments are presented in Section 6.

2 Best uniform polynomial approximation as a system of
nonlinear equations

We seek to determine a polynomial p ∈ Pn which best approximates a given
function f ∈ C[a, b] in the maximum norm. It is a classical result that such a
best approximation exists, is unique, and that the best approximation error f−p
equioscillates in n+ 2 distinct nodes (yj)

n+1
j=0 in [a, b] (see, e.g., [1]). That is, we

have
f(yj)− p(yj) = λ(−1)j , j = 0, . . . , n+ 1,

where λ = ±‖f−p‖∞. Due to continuity, this implies that there are n+1 distinct
interpolation nodes (xi)

n
i=0 in (a, b) with

p(xi) = f(xi), i = 0, . . . , n,

interleaving the equioscillation nodes in the sense

a ≤ y0 < x0 < y1 < . . . < yn < xn < yn+1 ≤ b.

Let x ∈ X denote a vector of interpolation nodes in the admissible set

X := {x ∈ (a, b)n+1 : x0 < · · · < xn}

of nodes in increasing order. We denote by p[x] ∈ Pn the unique polynomial
which interpolates f in the nodes x. In each interval (xj−1, xj), j = 0, . . . , n+ 1
(letting x−1 = a and xn+1 = b), let

yj := arg max
y∈(xj−1,xj)

|f(y)− p(y)|, j = 0, . . . , n+ 1,

denote the abscissa where the error |f − p| is largest. Denote

Φ(x) := (f(yj)− p[x](yj))
n+1
j=0 , w := ((−1)j)n+1

j=0 .

Theorem 1. If there exists λ ∈ R such that

F (x, λ) := Φ(x)− λw = 0, F : Rn+2 → Rn+2, (1)

then p[x] is the best polynomial approximation to f with error |λ| = ‖f−p[x]‖∞.

Proof. By definition, ‖f − p[x]‖∞ = maxn+1
j=0 |f(yj) − p[x](yj)| = |λ|, and thus

the error f − p[x] equioscillates in (yj)
n+1
j=0 . ut

The above result shows that we can view finding the best polynomial ap-
proximation as solving the nonlinear equation (1).

In the following, we propose a Newton’s method to solve this equation. Given
initial guesses for the nodes x0 ∈ X and the signed error λ0 ∈ R, a Newton step
for the solution of (1) is given by

d0 := (d0
x, d

0
λ) := −(∇F (x0, λ0))−1F (x0, λ0) ∈ Rn+2.

We must make sure that the interpolation nodes remain within the interval (a, b)
and in increasing order, i.e., in the admissible set X . For this purpose, we take
a damped step 2−kd0, where k is chosen according to

min{k ∈ N0 : x0 + 2−kd0
x ∈ X}. (2)

Since x0 ∈ X and X is an open set, such a choice always exists. The updated
iterates are then given by

x1 := x0 + 2−kd0
x, λ1 := λ0 + 2−kd0λ.

The main challenge in realizing this Newton’s method is the computation of the
Jacobian matrix of F , which we discuss in the following.

3 Derivatives of polynomial interpolants

In this section, we compute the derivatives of interpolating polynomials with
respect to the interpolation nodes which are required for forming the Jacobian
matrix. Let

π : X × R→ R, π((ξ0, . . . , ξn), y) := p[ξ](y)

denote the unique polynomial of degree at most n in y which interpolates f :
C[a, b]→ R in the nodes ξ. Given x ∈ X , we can write

π(x, y) =

n∑
k=0

`k(y)f(xk)

with the Lagrange basis polynomials

`k(y) =
ωk(y)

ωk(xk)
=

ω(y)

(y − xk)ωk(xk)
, k = 0, . . . , n, (3)

where we use the notations

ω(y) =

n∏
k=0

(y − xk), ωi(y) =
ω(y)

y − xi
.

Theorem 2. The derivative of the polynomial interpolant with respect to the
interpolation node xi, i = 0, . . . , n, is given by

∂π

∂ξi
(x, y) =

n∑
k=0

f(xk)
∂

∂xi
`k(y) + `i(y)f ′(xi) = `i(y)

n∑
k=0

qik (4)

with

qik =

{
f ′(xk)− f(xk)

∑
m6=k

1
xk−xm

, i = k,

f(xk) ωi(xi)
ωk(xk)(xk−xi)

, i 6= k.

Proof. By elementary calculations we have

∂

∂xi
`i(y) = −`i(y)

∑
m 6=i

1

xi − xm
,

∂

∂xi
`k(y) = `k(y)

y − xk
(y − xi)(xk − xi)

= `i(y)
ωi(xi)

ωk(xk)(xk − xi)
, i 6= k.

The statement directly follows from these identities. ut

4 Computing the Jacobian

Our aim is to compute the total derivative d
dxi

π(x, yj), keeping in mind that the
local maxima yj themselves depend on x. In the following we assume sufficient
smoothness, in particular, f ∈ C1[a, b]. We have

d

dxi
π(x, yj) =

∂π

∂y
(x, yj)

∂yj
∂xi

+
∂π

∂ξi
(x, yj),

where in the first term the derivative of the interpolating polynomial is taken
with respect to the evaluation point yj , whereas in the second term the derivative
is taken only with respect to the interpolation node xi, but the evaluation point
yj is considered constant.

Making use of this formula, we obtain

∂Φj
∂xi

(x) =
∂yj
∂xi

(f ′(yj)− p[x]′(yj))−
∂π

∂ξi
(x, yj).

Since the nodes yj are local extrema of the error f − p[x], the term f ′(yj) −
p[x]′(yj) vanishes whenever yj ∈ (a, b). On the other hand, if yj ∈ {a, b}, we

have that either
∂yj
∂xi

or (f − p[x])′(yj) is 0 by a duality argument. Thus,

∂Φj
∂xi

(x) = − ∂π
∂ξi

(x, yj),

meaning that the dependence of the yj on x can be ignored while computing the
Jacobian matrix. The term on the right-hand side can be computed using (4).

We define the matrix J(x) ∈ R(n+2)×(n+1) as

[J(x)]j,i := − ∂π
∂ξi

(x, yj), j = 0, . . . , n+ 1, i = 0, . . . , n,

to be computed by means of formula (4), such that the Jacobian of F (x, λ) is
given by

J̄(x, λ) :=
[
J(x) −w

]
∈ R(n+2)×(n+2). (5)

5 The algorithm

The complete method for best uniform polynomial approximation is given in
Algorithm 1.

Algorithm 1 Newton’s method for best polynomial approximation

function BestPoly(f ∈ C[a, b], n ∈ N, ε > 0)
set initial nodes x ∈ (a, b)n+1 to Chebyshev nodes of first kind
loop

set p← Interpolate(f,x)
compute abscissae of local maxima

yj = arg max
y∈(xj−1,xj)

|f(y)− p(y)|, j = 0, . . . , n+ 1

if
maxj |f(yj)−p(yj)|
minj |f(yj)−p(yj)|

− 1 < ε then

return p
end if
if in first iteration: set λ to the mean of the local errors |f(yj)− p(yj)|
compute F (x, λ) and Jacobian J̄(x, λ) by (5)
compute Newton step

(dx, dλ)← −J̄(x, λ)−1F (x, λ)

determine step size 2−k by rule (2)
update

x← x + 2−kdx, λ← λ+ 2−kdλ

end loop
end function

Some remarks are in order on the implementation of this algorithm:

– The function Interpolate(f,x) computes the polynomial interpolant to f
in the nodes x by means of barycentric Lagrange interpolation [2].

– The local maxima yj may be computed efficiently by means of a golden
section search; see [10] for details.

– An initial guess for the error λ is obtained in the first iteration of the algo-
rithm by taking the mean of the local error maxima.

– Formula (4) requires the first derivative f ′, which we assume to be specified
along with f itself. If it is not available, finite differences could be used.

– For evaluating `i(y) in (4), we use the so-called barycentric form given by
the last expression in (3) for reasons of numerical stability [2, 8].

– The algorithm terminates when the equioscillation property of the local max-
ima is valid up to a user-specified tolerance ε.

6 Numerical examples

We give numerical results for two functions,

f1(x) =
x1/4

1 + 10x1/4
, x ∈ [0, 1], f2(x) = |x|, x ∈ [−1, 1].

The function f1 is a challenging example motivated by applications in fractional
diffusion; cf. [10]. Using f2 we demonstrate that the algorithm also works in the
case of reduced smoothness; we use the sign function sign(x) in place of f ′(x)
in this case. We approximate these functions using Algorithm 1 with varying
polynomial degree n. In all cases, the tolerance for the stopping criterion is
ε = 10−10. The results were obtained on a laptop with an AMD Ryzen 5 3500U
CPU.

Results for f = f1 are shown in Figure 1, and for f = f2 in Figure 2.
In both cases, the table on the left shows the degree n, the maximum error
‖f −p‖∞, the needed number of iterations, and the computation time (averaged
over several runs). The plot on the right shows the convergence history for one
particular run, displaying both the residual ‖F (x, λ)‖ and the deviation from

equioscillation
maxj |f(yj)−p(yj)|
minj |f(yj)−p(yj)| − 1 (which is used for the stopping criterion)

over the iterations. We observe that both of these error measures behave rather
similarly and exhibit superlinear convergence during the final iterations. We also
remark that the step sizes 2−k chosen by (2) are always 1 except for a few initial
iterations, thus taking full Newton steps. The convergence rates in the maximum
norm are of course rather poor since the functions are not analytic and thus the
polynomial approximations converge slowly.

Since f2 is an even function, the best approximating polynomials for degrees
2n and 2n + 1 are identical. Our algorithm requires the use of the odd degree
2n+ 1 in order to compute this solution.

Acknowledgments

This work was supported by the bilateral project KP-06-Austria/8/2019 (WTZ
BG 03/2019), funded by Bulgarian National Science Fund and OeAD (Austria).
The second author gratefully acknowledges additional support by the Austrian
Science Fund (FWF) grant P 33956-NBL.

n error iter time (s)

10 0.02857802 14 0.068
20 0.02472576 19 0.136
30 0.02243189 23 0.248
40 0.02081294 27 0.383
50 0.01957241 31 0.580
60 0.01857363 35 0.823
70 0.01774225 40 1.17

0 5 10 15 20 25 30
iterations

10 12

10 8

10 4

100

104

108

1012
res
dev

Fig. 1. Results for f = f1. Left: Maximum error, number of iterations, and CPU time
in dependence of degree n. Right: Convergence history for n = 50.

n error iter time (s)

5 0.06762090 6 0.024
15 0.01994878 16 0.084
25 0.01166106 12 0.095
35 0.00823581 16 0.167
45 0.00636543 21 0.288
55 0.00518721 25 0.440
65 0.00437698 30 0.654
75 0.00378564 35 0.928

0 5 10 15 20
iterations

10 12

10 9

10 6

10 3

100

103

106 res
dev

Fig. 2. Results for f = f2. Left: Maximum error, number of iterations, and CPU time
in dependence of degree n. Right: Convergence history for n = 45.

Bibliography

[1] N.I. Achieser. Theory of Approximation. Dover books on advanced mathe-
matics. Dover Publications, 1992. ISBN 9780486671291.

[2] J.-P. Berrut and L. N. Trefethen. Barycentric Lagrange interpolation. SIAM
Review, 46(3):501–517, 2004. doi: 10.1137/s0036144502417715.

[3] D. Braess. Nonlinear Approximation Theory. Springer Berlin Heidelberg,
1986. ISBN 978-3-642-64883-0. doi: 10.1007/978-3-642-61609-9.

[4] A. J. Carpenter, A. Ruttan, and R. S. Varga. Extended numerical compu-
tations on the 1/9 conjecture in rational approximation theory. In Rational
Approximation and Interpolation, pages 383–411. Springer Berlin Heidel-
berg, 1984. doi: 10.1007/bfb0072427.

[5] S.-I. Filip, Y. Nakatsukasa, L. N. Trefethen, and B. Beckermann. Rational
minimax approximation via adaptive barycentric representations. SIAM
Journal on Scientific Computing, 40(4):A2427–A2455, 2018. doi: 10.1137/
17m1132409.

[6] S. Harizanov, R. Lazarov, S. Margenov, P. Marinov, and Y. Vutov. Optimal
solvers for linear systems with fractional powers of sparse SPD matrices.
Numerical Linear Algebra with Applications, 25(5):e2167, 2018. doi: 10.
1002/nla.2167.

[7] S. Harizanov, R. Lazarov, S. Margenov, P. Marinov, and J. Pasciak. Analysis
of numerical methods for spectral fractional elliptic equations based on the
best uniform rational approximation. Journal of Computational Physics,
408:109285, 2020. doi: 10.1016/j.jcp.2020.109285.

[8] N. J. Higham. The numerical stability of barycentric Lagrange interpo-
lation. IMA Journal of Numerical Analysis, 24(4):547–556, 2004. doi:
10.1093/imanum/24.4.547.

[9] C. Hofreither. A unified view of some numerical methods for fractional dif-
fusion. Computers & Mathematics with Applications, 80(2):332–350, 2020.
doi: 10.1016/j.camwa.2019.07.025.

[10] C. Hofreither. An algorithm for best rational approximation based on
barycentric rational interpolation. Numerical Algorithms, 2021. doi:
10.1007/s11075-020-01042-0.

[11] A. C. Ionit, ă. Lagrange rational interpolation and its applications to ap-
proximation of large-scale dynamical systems. PhD thesis, Rice University,
Houston, TY, 2013.

[12] R. S. Varga and A. J. Carpenter. Some numerical results on best uniform
rational approximation of xα on [0, 1]. Numerical Algorithms, 2(2):171–185,
1992. doi: 10.1007/bf02145384.

	A Newton's method for best uniform polynomial approximation

