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Entanglement-assisted quantum error-correcting codes, which can be seen as a gener-

alization of quantum error-correcting codes, can be constructed from arbitrary classi-

cal linear codes by relaxing the self-orthogonality properties and using pre-shared en-
tangled states between the sender and the receiver, and can also improve the perfor-

mance of quantum error-correcting codes. In this paper, we construct some families

of entanglement-assisted quantum maximum-distance-separable codes with parameters

[[ q
2−1
a

, q
2−1
a

− 2d + 2 + c, d; c]]q , where q is a prime power with the form q = am ± `,

a = `2−1
3

is an odd integer, ` ≡ 2 ( mod 6) or ` ≡ 4 ( mod 6), and m is a positive integer.

Most of these codes are new in the sense that their parameters are not covered by the

codes available in the literature.

Keywords: Entanglement-assisted quantum error-correcting codes, Cyclic codes, Cyclo-

tomic coset, Defining set

1 Introduction

Quantum error-correcting(QEC) codes can preserve coherent states against noise and other

unwanted interactions in quantum communication and quantum computation . For any prime

power q, an [[n, k, d]]q QEC code is a qk-dimensional subspace of the Hilbert space Cq
n

with

minimum distance d, which can correct up to bd−12 c quantum errors. It is well-known that

QEC codes can be constructed from classical linear codes with certain self-orthogonality (or

dual-containing) properties. However, such properties of some famous codes are hard to de-

termine. In 2006, a more general framework called entanglement-assisted stabilizer formalism

was introduced [2, 20], the associated codes are the so-called entanglement-assisted quan-
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tum error-correcting (EAQEC) codes, which not only can be contructed from any classical

linear codes without self-orthogonality properties by utilizing pre-shared entangled states be-

tween the sender and the receiver, but also can increase the communication capacity. After

that, many EAQEC codes with good parameters have been constructed. (Please see, for

example,[10, 11, 12, 19, 20, 25, 32, 47, 48] and the relevant references therein).

Assume that q is a prime power. A q-ary EAQEC code with minimum distance d, denoted

by [[n, k, d; c]]q, encodes k information qudits into n channel qudits with the aid of c pairs

of maximally entangled states and can correct up to bd−12 c errors. If c = 0, it is indeed the

standard [[n, k, d]]q QEC code. Hence, EAQEC codes can be seen as the generalization of QEC

codes. In this paper, QEC codes are also regarded as EAQEC codes. Similar to QEC codes,

the parameters of EAQEC codes satisfy the following well-known entanglement-assisted (EA)

quantum Singleton bound.

Theorem 1.1: [1, 2, 16, 25](EA-quantum Singleton bound) For any [[n, k, d; c]]q EAQEC

code with d ≤ n+2
2 , its parameters satisfy

2d ≤ n− k + c+ 2,

where 0 ≤ c ≤ n− 1.

An EAQEC code achieving such bound is called an entanglement-assisted quantum maxim-

um-distance-separable (EAQMDS) code. If c = 0, it is indeed the quantum Singleton bound

and a quantum code achieving such bound is called a quantum maximum-distance-separable

(MDS) code. For the case d > n+2
2 , Grassl [15] gave some examples of EAQEC codes beat-

ing such bound. As we said before, EAQEC codes can be constructed from any classical

codes. However, it is still hard to construct such codes due to the difficulty in determining

the number of maximally pre-shared entangled states. Thanks to [18], a relationship between

the number of maximally pre-shared entangled states required to construct an EAQEC code

from a classical code and the hull of classical code was obtained, and some EAQEC codes

with flexible parameters were also constructed. Since then, many families of EAQMDS codes

were obtained via the computation of the hull dimension of generalized Reed-Solomon codes,

Goppa codes, et al. [3, 11, 14, 17, 27, 35, 41, 42, 46]. Very recently, due to the excellent work

of Chen [4, 5, 6], many families of EAQMDS codes with flexible parameters were obtained

via the Euclidean and Hermitian hulls of linear codes. Allahmadi et al. [1] presented two

new interesting constructions of EAQEC codes, which indicate that EAQEC codes can be

constructed through LCD codes and the related concatenation constructions.

Recently, some research showed that EAQEC codes can be directly derived from QEC

codes or EAQEC codes. Lai and Brun [26] first showed that any (nondegenerate) standard

[[n, k, d]] stabilizer code can be transformed into an [[n − c, k, d; c]] EAQEC code that can

correct errors on the qudits of both the sender and the receiver, where 0 ≤ c ≤ n − k.

Particularly, the obtained EAQEC codes are equivalent to standard stabilizer codes. Galindo

et al. [12] generalized [26] to arbitrary finite fields, and they got some EAQEC codes from

QEC codes by considering Euclidean, Hermitian and symplectic duality, respectively. Very

recently, a surprising and interesting result was given by Grassl et al. [16]. They showed that

any EAQEC code can be derived from a pure QEC code, i.e., if there is a pure QEC code
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with parameters [[n, k, d]]q, an EAQEC code with parameters [[n − c, k, d; c]]q exists for all

c < d. Luo et al. [36] presented three new propagation rules for constructing EAQEC codes

from EAQEC codes and discussed how each of them affects the error handling.

Due to their rich algebraic structure, constacyclic codes including cyclic codes and ne-

gacyclic codes are preferred objects on the construction of EAQMDS codes. Lu et al. [33]

and Chen et al. [7] respectively utilized the decomposition of the defining set of constacyclic

codes to determine the number of maximally pre-shared entangled states c, which transmitted

the determination of c into determining a subset of the defining set of the underlying codes,

and they also constructed some EAQMDS codes with large minimum distance. After that,

many families of EAQMDS codes with lengths divide q2 ± 1 have been constructed via such

technique.(Please see, [7, 8, 9, 13, 21, 22, 24, 28, 29, 30, 31, 33, 34, 38, 39, 40, 43, 44] and the

relevant references therein).

As listed above, EAQMDS codes with lengths divide q2 − 1, i.e., q2−1
a have been con-

structed. However, almost all the a either divides q + 1 or divides q − 1 . Very recently,

EAQMDS codes of length q2−1
a have been constructed in [45], where a either divides q + `

or divides q − ` and ` > 1 is an odd integer. Going on the line of such study, in this paper,

based on the decomposition of the defining set of cyclic codes, we construct some families of

EAQMDS codes with parameters [[ q
2−1
a , q

2−1
a −2d+ 2 + c, d; c]]q by exploiting less pre-shared

maximally entangled states c, where q is a prime power with the form q = am± `, a = `2−1
3

is an odd integer, ` ≡ 2 (mod 6) or ` ≡ 4 (mod 6), and m is a positive integer.

The paper is organized as follows. In Section 2, some notations and basic results of cyclic

codes and EAQEC codes are presented. In Section 3, some new families of EAQMDS codes

with small pre-shared entangled states are derived from cyclic codes. The conclusion is given

in Section 4.

2 Preliminaries

Assume that q is a prime power and Fq2 is the Galois field with q2 elements. A q2-ary linear

code C of length n with dimension k, denoted by [n, k]q2 , is a k-dimensional linear subspace

of Fnq2 . The number of nonzero components of c ∈ C, denoted by wt(c), is called the weight

of the codeword c. The minimum nonzero weight of all codewords in C, denoted by d(C), is

called the minimum distance of C. [n, k, d]q2 is used to denote an [n, k]q2 linear code with

minimum distance d. It is well-known that the parameters of C satisfy the Singleton bound:

d ≤ n − k + 1, and if the minimum distance d of the code C achieves such bound, it is the

so-called MDS code.

Given any two vectors x = (x0, x1, . . . , xn−1), and y = (y0, y1, . . . , yn−1) ∈ Fnq2 , their

Hermitian inner product is defined as

〈x,y〉h := x0y
q
0 + x1y

q
1 + · · ·+ xn−1y

q
n−1.

The vectors x and y are called orthogonal if 〈x,y〉h = 0. For a q2-ary linear code C of length

n, its Hermitian dual code, denoted by C⊥h , is defined as

C⊥h := {x ∈ Fnq2 : 〈x,y〉h = 0 for all y ∈ C}.

Actually, C⊥h is a q2-ary linear code with dimension n− dim(C). If C⊥h ⊆ C, then C is called

an Hermitian dual-containing code, and C is called an Hermitian self-dual code if C⊥h = C.
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Assume that τ : τ(c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2) is the cyclic shift on Fnq2 . A

q2-ary linear code C of length n is said to be cyclic if τ(C) = C. Defining a map

σ : Fnq2 −→ R =
Fq2 [x]

〈xn − 1〉
,

(c0, c1, . . . , cn−1) 7−→ c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1.

Then a q2-ary linear code C of length n is a cyclic code if and only if σ(C) = {σ(c) : c ∈ C} is

an ideal of the quotient ring R. As we know, each ideal of R is principal, so each cyclic code

C is generated by a monic divisor f(x) of xn − 1, which has the minimal degree in C.
Assume that gcd(n, q) = 1, and m is an integer, where 0 ≤ m ≤ n− 1. The q2-cyclotomic

coset of m modulo n, denoted by Cm, is defined as

Cm := {mq2s (mod n) : 0 ≤ s ≤ sm − 1},

where sm is the smallest positive integer such that mq2sm ≡ m (mod n), and it is also called

the size of Cm, i.e., |Cm| = sm, where |Cm| denotes the cardinality of the set Cm.

Let C be a q2-ary cyclic code of length n with generator polynomial f(x), then the set

Z = {0 ≤ i ≤ n−1 : f(ηi) = 0} is called the defining set of C, where η is a primitive n-th root

of unity in some extension field of Fq2 . It is obvious that the defining set Z of C is a union

of some q2-cyclotomic cosets and dim(C) = n − |Z|. The minimum distance of C satisfy the

following well-known bound.

Theorem 2.1: [37](BCH bound) Let δ be an integer in the range 2 ≤ δ ≤ n. Suppose that

C is a cyclic code of length n with defining set Z. If Z consists of δ− 1 consecutive elements,

then d(C) ≥ δ.

The following lemma gives a criterion for verifying that C contains its Hermitian dual code

C⊥h .

Lemma 2.1: [23] Let C be a cyclic code of length n over Fq2 with defining set Z. Then C
contains its Hermitian dual code C⊥h if and only if Z

⋂
Z−q = ∅, where Z−q = {−qz( mod n) :

z ∈ Z}.

As we said before, scholars had proposed several methods to construct EAQMDS codes.

Among these methods, the most frequently used one is to decompose the defining set of the

associated codes, please see [7, 33] et al. Similar to such method, we can get the following

result.

Theorem 2.2: Let C be a q2-ary cyclic code of length n with defining set Z. Suppose that

Z = Z∩Z−q, where Z−q = {−qz ( mod n) : z ∈ Z}. If the parameters of C are [n, n−|Z|, d]q2 ,

then there is an EAQEC code with parameters [[n, n− 2|Z|+ |Z|, d; |Z|]]q.
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3 New EAQMDS codes of length n = q2−1
a with a = `2−1

3

In this section, we will construct some new families of EAQMDS codes of length n = q2−1
a ,

where q = am ± `, and a = `2−1
3 is an odd positive integer. Since q2 ≡ 1(mod n), then the

q2-cyclotomic coset Cx modulo n is Cx = {x} for each x in the range 1 ≤ x ≤ n.

3.1 The Case q = am+ `

In this subsection, we consider that q is a prime power of the form q = am+`, where a = `2−1
3

is an odd positive integer. As a = `2−1
3 should be an odd integer, one can get ` ≡ 2(mod 6)

or ` ≡ 4(mod 6). We first consider the case ` ≡ 2(mod 6) and a useful lemma is given in the

following.

Lemma 3.1: Let n = q2−1
a , where q is a prime power of the form q = am + `, a = `2−1

3 ,

` = 6t+ 2, and t,m are positive integers. If C is a q2-ary cyclic code of length n with defining

set

Z =

δ⋃
j=0

C1+j , 0 ≤ δ ≤ (2t+ 1)m− 1,

then C⊥h ⊆ C.

Proof: According to Lemma 2.1, we only need to consider that Z ∩ Z−q = ∅. Suppose that

Z ∩ Z−q 6= ∅, then there exist two integers i and j, where 0 ≤ i, j ≤ (2t+ 1)m− 1, such that

1 + i ≡ −q(1 + j)(mod n),

which is equivalent to

1 + q + i+ qj ≡ 0(mod n).

Since ` = 6t+ 2, a = `2−1
3 , then

q = am+ ` = (12t2 + 8t+ 1)m+ 6t+ 2,

n =
q2 − 1

a
= (12t2 + 8t+ 1)m2 + (12t+ 4)m+ 3.

If km ≤ j ≤ (k + 1)m− 1, where 0 ≤ k ≤ 2t. Then we have

kn+[12t2+8t+1−k(6t+2)]m+6t+3−3k ≤ 1+q+i+qj ≤ (1+k)n−k(6t+2)m−3(1+k)−(4t+1)m,

Hence,

kn < 1 + q + i+ qj < (1 + k)n,

which is a contradiction.

Therefore, we conclude that Z ∩ Z−q = ∅ as desired. Then C⊥h ⊆ C.

Lemma 3.2: Let n = q2−1
a , where q is a prime power of the form q = am + `, a = `2−1

3 ,

` = 6t+ 2, and t,m are positive integers. Then

(1) −qC(2t+2)m+1 = C(8t+3)m+4;
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(2) For 1 ≤ i ≤ 3, we have −qCi[(2t+1)m+1] = Ci[(2t+1)m+1].

Proof: (1) As q = (12t2 + 8t+ 1)m+ (6t+ 2) and n = (12t2 + 8t+ 1)m2 + (12t+ 4)m+ 3,

then we have

−q[(2t+ 2)m+ 1] = −[(12t2 + 8t+ 1)m+ 6t+ 2][(2t+ 2)m+ 1]

= −(2t+ 2)n+ (8t+ 3)m+ 4

≡ (8t+ 3)m+ 4 (mod n),

which implies that −qC(2t+2)m+1 = C(8t+3)m+4.

(2) For 1 ≤ i ≤ 3, −qCi[(2t+1)m+1] = Ci[(2t+1)m+1] holds for the following reason

−qi[(2t+ 1)m+ 1] = −i[(12t2 + 8t+ 1)m+ 6t+ 2][(2t+ 1)m+ 1]

= −i[(2t+ 1)n− (2t+ 1)m− 1]

≡ i[(2t+ 1)m+ 1] (mod n).

Lemma 3.3: Let n = q2−1
a , where q is a prime power of the form q = am + `, a = `2−1

3 ,

` = 6t+ 2, and t,m are positive integers. If C is a q2-ary cyclic code of length n with defining

set

Z =

δ⋃
j=0

C1+j , or Z =

δ′⋃
j=m

C1+j ,

then

|Z ∩ Z−q| =


0, 0 ≤ δ ≤ (2t+ 1)m− 1;
1, (2t+ 1)m ≤ δ ≤ (4t+ 2)m;
2, (4t+ 2)m+ 1 ≤ δ′ ≤ (6t+ 3)m+ 1;
3, (6t+ 3)m+ 2 ≤ δ′ ≤ (8t+ 3)m+ 2.

Proof: (1) Let Z =
⋃δ
j=0 C1+j , where 0 ≤ δ ≤ (2t + 1)m − 1. Then |Z ∩ Z−q| = 0 follows

from Lemma 3.1.

(2) Let

Z =

δ⋃
j=0

C1+j = Z1 ∪ Z2 ∪ C(2t+1)m+1,

where Z1 =
⋃(2t+1)m−1
j=0 C1+j , Z2 =

⋃δ
j=(2t+1)m+1 C1+j and (2t+ 1)m+ 1 ≤ δ ≤ (4t+ 2)m.

Then

Z−q ∩ Z = (Z1
−q ∪ Z2

−q ∪ −qC(2t+1)m+1) ∩ (Z1 ∪ Z2 ∪ C(2t+1)m+1)

= (Z1
−q ∩ Z1) ∪ (Z1

−q ∩ Z2) ∪ (Z1
−q ∩ C(2t+1)m+1)∪

(Z2
−q ∩ Z1) ∪ (Z2

−q ∩ Z2) ∪ (Z2
−q ∩ C(2t+1)m+1)∪

(−qC(2t+1)m+1 ∩ Z1) ∪ (−qC(2t+1)m+1 ∩ Z2)∪
(−qC(2t+1)m+1 ∩ C(2t+1)m+1)
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According to Lemma 3.1, Z1 ∩ Z−q1 = ∅. Due to Lemma 3.2, one can get

−qC(2t+1)m+1 ∩ Z1 = ∅,
−qC(2t+1)m+1 ∩ Z2 = ∅,
Z1
−q ∩ C(2t+1)m+1 = ∅,

Z2
−q ∩ C(2t+1)m+1 = ∅,

−qC(2t+1)m+1 ∩ C(2t+1)m+1 = C(2t+1)m+1.

Now we only have to proof that Z1
−q ∩ Z2 = Z2

−q ∩ Z1 = ∅, Z2
−q ∩ Z2 = ∅.

Suppose that Z2
−q ∩ Z1 6= ∅, then there exist two integers i and j, where 0 ≤ i ≤

(2t+ 1)m− 1 and (2t+ 1)m+ 1 ≤ j ≤ (4t+ 2)m such that

1 + i ≡ −q(1 + j)(mod n),

which is equivalent to

1 + q + i+ qj ≡ 0(mod n).

As 0 ≤ i ≤ (2t+ 1)m− 1. If km+ 1 ≤ j ≤ (k + 1)m, where 2t+ 1 ≤ k ≤ 4t+ 1. Then we

have

kn+ [24t2 + 16t+ 2− k(6t+ 2)]m+ 12t+ 5− 3k

≤ 1 + q + i+ qj ≤
(1 + k)n− [(1 + k)(6t+ 2)− 12t2 − 10t− 2]m− (3k − 6t+ 1),

Hence,

kn < 1 + q + i+ qj < (1 + k)n,

which is a contradiction. It shows that Z2
−q ∩ Z1 = ∅, then Z1

−q ∩ Z2 = (Z2
−q ∩ Z1)−q = ∅.

Finally, suppose that Z2
−q ∩ Z2 6= ∅, then there exist two integers i and j, where (2t +

1)m+ 1 ≤ i, j ≤ (4t+ 2)m, such that

1 + i ≡ −q(1 + j)(mod n),

which is equivalent to

1 + q + i+ qj ≡ 0(mod n).

If km+ 1 ≤ j ≤ (k + 1)m, where 2t+ 1 ≤ k ≤ 4t+ 1. Then we have

kn+ [24t2 + 18t+ 3− k(6t+ 2)]m+ 12t+ 6− 3k

≤ 1 + q + i+ qj ≤
(1 + k)n− [(1 + k)(6t+ 2)− 12t2 − 12t− 3]m− 3(k − 2t),

which implies that kn < 1 + q + i + qj < (1 + k)n. It is also a contradiction. Hence,

Z2
−q ∩ Z2 = ∅. Therefore,

Z−q ∩ Z = C(2t+1)m+1 = {(2t+ 1)m+ 1},

which means that |Z ∩ Z−q| = 1.
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(3) Let Z =
⋃δ′

j=m C1+j = Z1∪Z2∪Z3∪C(2t+1)m+1∪C(4t+2)m+2, where Z1 =
⋃(2t+1)m−1
j=m C1+j ,

Z2 =
⋃(4t+2)m
j=(2t+1)m+1 C1+j , Z3 =

⋃δ′

j=(4t+2)m+2 C1+j and (4t + 2)m + 2 ≤ δ′ ≤ (6t + 3)m + 1.

Going on the line of the proofs similar to the above cases, one can get |Z ∩ Z−q| = 2.

(4) The remaining case can be proved by using the same method, here we omit it.

Theorem 3.1: Let n = q2−1
a , where q is a prime power of the form q = am + `, a = `2−1

3 ,

` = 6t+2, and t,m are positive integers. Then there exist EAQMDS codes with the following

parameters:

(1) [[ q
2−1
a , q

2−1
a − 2d+ 2, d]]q, where 2 ≤ d ≤ (2t+ 1)m+ 1;

(2) [[ q
2−1
a , q

2−1
a − 2d+ 3, d; 1]]q, where (2t+ 1)m+ 2 ≤ d ≤ (4t+ 2)m+ 2;

(3) [[ q
2−1
a , q

2−1
a − 2d+ 4, d; 2]]q, where (4t+ 1)m+ 3 ≤ d ≤ (6t+ 2)m+ 3;

(4) [[ q
2−1
a , q

2−1
a − 2d+ 5, d; 3]]q, where (6t+ 2)m+ 4 ≤ d ≤ (8t+ 2)m+ 4.

Proof: Let q be a prime power of the form q = am+ `, a = `2−1
3 , and ` = 6t+2. Considering

the cyclic code C of length n = q2−1
a over Fq2 with defining set

Z =

{ ⋃δ
j=0 C1+j , 0 ≤ δ ≤ (4t+ 2)m;⋃δ′

j=m C1+j , m ≤ δ′ ≤ (8t+ 3)m+ 2.

(1) If Z =
⋃δ
j=0 C1+j , where 0 ≤ δ ≤ (4t+2)m. By Lemma 3.3, we get that |Z ∩Z−q| = 0

if 0 ≤ δ ≤ (2t + 1)m − 1, and |Z ∩ Z−q| = 1 if (2t + 1)m ≤ δ ≤ (4t + 2)m. Since every

q2-cyclotomic coset Cx = {x} and x is an integer, then one obtains that Z consists of δ + 1

consecutive integers

{1, 2, 3, . . . , δ + 1},

which implies that C has minimum distance at least δ+2. Hence, C is a q2-ary cyclic code with

parameters [n, n − δ − 1,≥ δ + 2]. Combining Theorem 2.2 with the EA-quantum Singleton

bound, there are q-ary EAQMDS codes with parameters as desired.

(2) If Z =
⋃δ′

j=m C1+j , where m ≤ δ′ ≤ (8t + 3)m + 2. By Lemma 3.3, we obtain that

|Z ∩ Z−q| = 2 if (4t + 2)m + 1 ≤ δ′ ≤ (6t + 3)m + 1, and |Z ∩ Z−q| = 3 if (6t + 3)m + 2 ≤
δ′ ≤ (8t + 3)m + 2. Since every q2-cyclotomic coset Cx = {x} and x is an integer, then one

can get that Z consists of δ′ −m+ 1 consecutive integers

{1 +m, 2 +m, 3 +m, . . . , δ′ + 1},

which implies that C has minimum distance at least δ′ −m + 2. Hence, C is a q2-ary cyclic

code with parameters [n, n − δ′ + m − 1,≥ δ′ − m + 2]. Combining Theorem 2.2 with the

EA-quantum Singleton bound, there are q-ary EAQMDS codes with parameters as desired.

The result follows.

Now we consider the case ` ≡ 4(mod 6) and a useful lemma is given in the following.

Lemma 3.4: Let n = q2−1
a , where q is a prime power of the form q = am + `, a = `2−1

3 ,

` = 6t+ 4, and t,m are positive integers. If C is a q2-ary cyclic code of length n with defining
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set

Z =

δ⋃
j=(2t+2)m+1

C1+j ,

where (2t+ 2)m+ 1 ≤ δ ≤ (6t+ 5)m+ 1, then C⊥h ⊆ C.

Proof: According to Lemma 2.1, we only need to proof that Z ∩ Z−q = ∅. Suppose that

Z ∩Z−q 6= ∅, then there exist two integers i and j, where (2t+ 2)m+ 1 ≤ i, j ≤ (6t+ 5)m+ 1

such that

1 + i ≡ −q(1 + j)(mod n),

which is equivalent to

1 + q + i+ qj ≡ 0(mod n).

Since ` = 6t+ 4, a = `2−1
3 , then

q = am+ ` = (12t2 + 16t+ 5)m+ 6t+ 4,

n =
q2 − 1

a
= (12t2 + 16t+ 5)m2 + (12t+ 8)m+ 3.

Due to (2t+ 2)m+ 1 ≤ j ≤ (6t+ 5)m+ 1, we now divide into the following subcases.

(i) If km+ 1 ≤ j ≤ (k + 1)m, where 2t+ 2 ≤ k ≤ 4t+ 3. Then we have

kn+ [(24t2 + 34t+ 12)− k(6t+ 4)]m+ 12t+ 10− 3k

≤ 1 + q + i+ qj ≤
(1 + k)n− [(1 + k)(6t+ 4)− (12t2 + 22t+ 10)]m− 3(k − 2t− 1),

which implies that kn < 1 + q + i+ qj < (1 + k)n. It is a contradiction.

(ii) If km+ 2 ≤ j ≤ (k + 1)m+ 1, where 4t+ 4 ≤ k ≤ 6t+ 4. Then we have

kn+ [(36t2 + 50t+ 17)− k(6t+ 4)]m+ 18t+ 14− 3k

≤ 1 + q + i+ qj ≤
(1 + k)n− [(1 + k)(6t+ 4)− (24t2 + 32t+ 10)]m+ 12t− 3k + 7,

which implies that kn < 1 + q + i+ qj < (1 + k)n. It is also a contradiction.

(iii) Note that

−q[(4t+ 4)m+ 1] ≡ (12t2 + 24t+ 11)m+ 6t+ 8 (mod n),

and C(12t2+24t+11)m+6t+8 /∈ Z =
⋃δ
j=(2t+2)m+1 C1+j , where (2t+2)m+1 ≤ δ ≤ (6t+5)m+1,.

Therefore, we conclude that Z ∩ Z−q = ∅ as desired.

Lemma 3.5: Let n = q2−1
a , where q is a prime power of the form q = am + `, a = `2−1

3 ,

` = 6t+ 4, and t,m are positive integers. Then

(1) −qC(6t+5)m+3 = C(6t+5)m+3;
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(2) −qC(8t+6)m+4 = C(4t+4)m+2;

(3) −qC(10t+7)m+5 = C(2t+3)m+1.

Proof: (1) As q = (12t2 + 16t+ 5)m+ 6t+ 4, and n = (12t2 + 16t+ 5)m2 + (12t+ 8)m+ 3,

then

−q[(6t+ 5)m+ 3] = −[(12t2 + 16t+ 5)m+ 6t+ 4][(6t+ 5)m+ 3]

= −(6t+ 5)n+ (6t+ 5)m+ 3

≡ (6t+ 5)m+ 3 (mod n),

which implies that −qC(6t+5)m+3 = C(6t+5)m+3.

(2) −qC(8t+6)m+4 = C(4t+4)m+2 holds for the following reason

−q[(8t+ 6)m+ 4] = −[(12t2 + 16t+ 5)m+ 6t+ 4][(8t+ 6)m+ 4]

= −(8t+ 6)n+ (4t+ 4)m+ 2

≡ (4t+ 4)m+ 2 (mod n).

(3) −qC(10t+7)m+5 = C(2t+3)m+1 also holds for the following reason

−q[(10t+ 7)m+ 5] = −[(12t2 + 16t+ 5)m+ 6t+ 4][(10t+ 7)m+ 5]

= −(10t+ 7)n+ (2t+ 3)m+ 1

≡ (2t+ 3)m+ 1 (mod n).

Lemma 3.6: Let n = q2−1
a , where q is a prime power of the form q = am + `, a = `2−1

3 ,

` = 6t+ 4, and t,m are positive integers. If C is a q2-ary cyclic code of length n with defining

set Z =
⋃δ
j=(2t+2)m+1 C1+j , then

|Z ∩ Z−q| =

 0, (2t+ 2)m+ 1 ≤ δ ≤ (6t+ 5)m+ 1;
1, (6t+ 5)m+ 2 ≤ δ ≤ (8t+ 6)m+ 2;
3, (8t+ 6)m+ 3 ≤ δ ≤ (10t+ 7)m+ 3.

Proof: (1) Let Z =
⋃δ
j=(2t+2)m+1 C1+j , where (2t + 2)m + 1 ≤ δ ≤ (6t + 5)m + 1. Then

|Z ∩ Z−q| = 0 follows from Lemma 3.4.

(2) Let

Z =

δ⋃
j=(2t+2)m+1

C1+j = Z1 ∪ Z2 ∪ C(6t+5)m+3,

where Z1 =
⋃(6t+5)m+1
j=(2t+2)m+1 C1+j , Z2 =

⋃δ
j=(6t+5)m+3 C1+j and (6t+5)m+3 ≤ δ ≤ (8t+6)m+2.
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Then

Z−q ∩ Z = (Z1
−q ∪ Z2

−q ∪ −qC(6t+5)m+3) ∩ (Z1 ∪ Z2 ∪ C(6t+5)m+3)

= (Z1
−q ∩ Z1) ∪ (Z1

−q ∩ Z2) ∪ (Z1
−q ∩ C(6t+5)m+3)∪

(Z2
−q ∩ Z1) ∪ (Z2

−q ∩ Z2) ∪ (Z2
−q ∩ C(6t+5)m+3)∪

(−qC(6t+5)m+3 ∩ Z1) ∪ (−qC(6t+5)m+3 ∩ Z2)∪
(−qC(6t+5)m+3 ∩ C(6t+5)m+3)

According to Lemma 3.4, Z1 ∩ Z−q1 = ∅. It follows from Lemma 3.5, one can get

−qC(6t+5)m+3 ∩ Z1 = ∅,
−qC(6t+5)m+3 ∩ Z2 = ∅,
Z1
−q ∩ C(6t+5)m+3 = ∅,

Z2
−q ∩ C(6t+5)m+3 = ∅,

−qC(6t+5)m+3 ∩ C(6t+5)m+3 = C(6t+5)m+3.

Now we only have to proof that Z1
−q ∩ Z2 = Z2

−q ∩ Z1 = ∅, and Z2
−q ∩ Z2 = ∅.

Suppose that Z2
−q ∩Z1 6= ∅, then there exist two integers i and j, where (2t+ 2)m+ 1 ≤

i ≤ (6t+ 5)m+ 1 and (6t+ 5)m+ 3 ≤ j ≤ (8t+ 6)m+ 2, such that

1 + i ≡ −q(1 + j)(mod n),

which is equivalent to

1 + q + i+ qj ≡ 0 (mod n).

We seek a contradiction as follows.

As (2t+2)m+1 ≤ i ≤ (6t+5)m+1. If km+3 ≤ j ≤ (k+1)m+2, where 6t+5 ≤ k ≤ 8t+5.

Then we have

kn+ [48t2 + 66t+ 22− k(6t+ 4)]m+ 24t+ 18− 3k

≤ 1 + q + i+ qj ≤
(1 + k)n− [(1 + k)(6t+ 4)− 36t2 − 54t− 20]m− (3k − 18t− 11),

Hence,

kn < 1 + q + i+ qj < (1 + k)n.

It is a contradiction. Therefore, Z2
−q ∩ Z1 = ∅, and Z1

−q ∩ Z2 = (Z2
−q ∩ Z1)−q = ∅.

Finally, suppose that Z2
−q ∩ Z2 6= ∅, then there exist two integers i and j, where (6t +

5)m+ 3 ≤ i, j ≤ (8t+ 6)m+ 2, such that

1 + q + i+ qj ≡ 0(mod n).

Going on the line of the proofs similar to the above cases, one can get such case is impossible

either.

Therefore,

Z−q ∩ Z = C(6t+5)m+3 = {(6t+ 5)m+ 3},
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which means that |Z ∩ Z−q| = 1.

(3) Let

Z =

δ⋃
j=(2t+2)m+1

C1+j = Z1 ∪ Z2 ∪ Z3 ∪ C(6t+5)m+3 ∪ C(8t+6)m+4,

where Z1 =
⋃(6t+5)m+1
j=(2t+2)m+1 C1+j , Z2 =

⋃(8t+6)m+2
j=(6t+5)m+3 C1+j , Z3 =

⋃δ
j=(8t+6)m+4 C1+j and

(8t + 6)m + 4 ≤ δ ≤ (10t + 7)m + 3. Then it can be proved by using the same method, we

omit it here for simplification.

Theorem 3.2: Let n = q2−1
a , where q is a prime power of the form q = am + `, a = `2−1

3 ,

` = 6t+4, and t,m are positive integers. Then there exist EAQMDS codes with the following

parameters:

(1) [[ q
2−1
a , q

2−1
a − 2d+ 2, d]]q, where 2 ≤ d ≤ (4t+ 3)m+ 2;

(2) [[ q
2−1
a , q

2−1
a − 2d+ 3, d; 1]]q, where (4t+ 3)m+ 3 ≤ d ≤ (6t+ 4)m+ 3;

(3) [[ q
2−1
a , q

2−1
a − 2d+ 5, d; 3]]q, where (6t+ 4)m+ 4 ≤ d ≤ (8t+ 5)m+ 4.

Proof: Let C be a cyclic code of length n = q2−1
a over Fq2 with defining set Z =

⋃δ
j=(2t+2)m+1 C1+j ,

where (2t+ 2)m+ 1 ≤ δ ≤ (10t+ 7)m+ 3.

By Lemma 3.6, we obtain that |Z ∩ Z−q| = 0 if (2t + 2)m + 1 ≤ δ ≤ (6t + 5)m + 1,

|Z ∩Z−q| = 1 if (6t+ 5)m+ 2 ≤ δ ≤ (8t+ 6)m+ 2, and |Z ∩Z−q| = 3 if (8t+ 6)m+ 3 ≤ δ ≤
(10t + 7)m + 3. Since every q2-cyclotomic coset Cx = {x} and x is an integer, then one can

get that Z consists of δ − (2t+ 2)m consecutive integers

{(2t+ 2)m+ 2, (2t+ 2)m+ 3, (2t+ 2)m+ 4, . . . , δ, δ + 1},

which implies that C has minimum distance at least δ − (2t + 2)m + 1. Hence, C is a q2-ary

cyclic code with parameters [n, n− δ + (2t+ 2)m,≥ δ − (2t+ 2)m+ 1]. Combining Theorem

2.2 with the EA-quantum Singleton bound, there are q-ary EAQMDS codes with parameters

as desired. The result follows.

Example 3.1: In Table 1, we list some new EAQMDS codes of length q2−1
a obtained from

Theorems 3.1 and 3.2, where q is a prime power of the form q = am+ `, a = `2−1
3 is an odd

integer, and m is a positive integer.

3.2 The Case q = am− `
In this subsection, we consider the case q is a prime power of the form q = am − `, where

a = `2−1
3 , ` ≡ 2 (mod 6) or ` ≡ 4 (mod 6), and ` is a positive integer. We first consider the

case ` ≡ 2 (mod 6) and a useful lemma is given in the following.

Lemma 3.7: Let n = q2−1
a , where q is a prime power of the form q = am − `, a = `2−1

3 ,

` = 6t+ 2, and t,m are positive integers. If C is a q2-ary cyclic code of length n with defining

set

Z =

δ⋃
j=2tm−1

C1+j ,
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Table 1. New EAQMDS codes of length n = q2−1
a

with a = `2−1
3

odd

` m q = am+ ` [[n, k, d; c]]q d

4 1 9 [[16, 18− 2d, d]]9 2 ≤ d ≤ 5

[[16, 19− 2d, d; 1]]9 6 ≤ d ≤ 7

[[16, 21− 2d, d; 3]]9 8 ≤ d ≤ 9

3 19 [[72, 74− 2d, d]]19 2 ≤ d ≤ 11

[[72, 75− 2d, d; 1]]19 12 ≤ d ≤ 15

[[72, 77− 2d, d; 3]]19 16 ≤ d ≤ 19

5 29 [[168, 170− 2d, d]]29 2 ≤ d ≤ 17

[[168, 171− 2d, d; 1]]29 18 ≤ d ≤ 23

[[168, 173− 2d, d; 3]]29 24 ≤ d ≤ 29

8 1 29 [[40, 42− 2d, d]]29 2 ≤ d ≤ 4

[[40, 43− 2d, d; 1]]29 5 ≤ d ≤ 8

[[40, 44− 2d, d; 2]]29 8 ≤ d ≤ 11

[[40, 45− 2d, d; 3]]29 12 ≤ d ≤ 14

3 71 [[240, 242− 2d, d]]71 2 ≤ d ≤ 10

[[240, 243− 2d, d; 1]]71 11 ≤ d ≤ 20

[[240, 244− 2d, d; 2]]71 18 ≤ d ≤ 27

[[240, 245− 2d, d; 3]]71 28 ≤ d ≤ 34

10 1 43 [[56, 58− 2d, d]]43 2 ≤ d ≤ 9

[[56, 59− 2d, d; 1]]43 10 ≤ d ≤ 13

[[56, 61− 2d, d; 3]]43 14 ≤ d ≤ 17

3 109 [[360, 362− 2d, d]]109 2 ≤ d ≤ 23

[[360, 363− 2d, d; 1]]109 24 ≤ d ≤ 33

[[360, 365− 2d, d; 3]]109 34 ≤ d ≤ 43

14 1 79 [[96, 98− 2d, d]]79 2 ≤ d ≤ 6

[[96, 99− 2d, d; 1]]79 7 ≤ d ≤ 12

[[96, 100− 2d, d; 2]]79 12 ≤ d ≤ 17

[[96, 101− 2d, d; 3]]79 18 ≤ d ≤ 22



428 New entanglement-assisted quantum MDS codes derived from cyclic codes

where 2tm− 1 ≤ δ ≤ (6t+ 1)m− 5, then C⊥h ⊆ C.

Proof: Due to Lemma 2.1, we have to proof that Z ∩ Z−q = ∅. Assume that Z ∩ Z−q 6= ∅,
then there exist two integers i and j, where 2tm− 1 ≤ i, j ≤ (6t+ 1)m− 5, such that

1 + i ≡ −q(1 + j)(mod n),

which is equivalent to

1 + q + i+ qj ≡ 0(mod n).

Since ` = 6t+ 2, a = `2−1
3 , then

q = am− ` = (12t2 + 8t+ 1)m− 6t− 2,

n =
q2 − 1

a
= (12t2 + 8t+ 1)m2 − (12t+ 4)m+ 3.

We now divide into the following subcases to seek some contradictions.

(i) If km− 2 ≤ j ≤ (k + 1)m− 3, where 2t+ 1 ≤ k ≤ 4t− 1. Then we have

kn+ [k(6t+ 2)− 12t2 − 6t− 1]m+ 6t+ 2− 3k

≤ 1 + q + i+ qj ≤
(1 + k)n− [24t2 + 10t+ 1− (k + 1)(6t+ 2)]m+ 12t− 3k − 3.

Hence,

kn < 1 + q + i+ qj < (1 + k)n.

It is a contradiction.

(ii) If km− 3 ≤ j ≤ (k + 1)m− 4, where 4t+ 1 ≤ k ≤ 6t− 1. Then we have

kn+ [k(6t+ 2)− 24t2 − 14t− 2]m+ 12t+ 4− 3k

≤ 1 + q + i+ qj ≤
(1 + k)n− [36t2 + 18t+ 2− (k + 1)(6t+ 2)]m+ 18t− 3k − 1.

Hence,

kn < 1 + q + i+ qj < (1 + k)n.

It is a contradiction.

(iii) If 2tm− 1 ≤ j ≤ (2t+ 1)m− 3, then

2tn+ (12t2 + 6t)m− 6t ≤ 1 + q + i+ qj ≤ (2t+ 1)n− (12t2 − 1)m+ 6t− 3,

which implies that 2tn < 1 + q + i+ qj < (2t+ 1)n. Hence, it is a contradiction.

(iv) If 4tm− 2 ≤ j ≤ (4t+ 1)m− 4, then

4tn+ (12t2 + 2t− 1)m− 6t+ 2 ≤ 1 + q + i+ qj ≤ (4t+ 1)n− (12t2 + 4t)m+ 6t− 1,

which implies that 4tn < 1 + q + i+ qj < (4t+ 1)n. Hence, it is a contradiction.

(v) If 6tm− 3 ≤ j ≤ (6t+ 1)m− 5, then

6tn+ (12t2 − 2t− 2)m− 6t+ 4 ≤ 1 + q + i+ qj ≤ (6t+ 1)n− q − 1,
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which implies that 6tn < 1 + q + i+ qj < (6t+ 1)n. Hence, it is a contradiction.

Therefore, we conclude that Z ∩ Z−q = ∅ as desired, which implied that C⊥h ⊆ C.

Lemma 3.8: Let n = q2−1
a , where q is a prime power of the form q = am − `, a = `2−1

3 ,

` = 6t+ 2, and t,m are positive integers. Then

(1) −qC(6t+1)m−3 = C(6t+1)m−3;

(2) −qC(8t+2)m−4 = C4tm−2;

(3) −qC(10t+2)m−5 = C(8t+1)m−4.

Proof: (1) As q = (12t2 + 8t+ 1)m− (6t+ 2) and n = (12t2 + 8t+ 1)m2 − (12t+ 4)m+ 3,

then we have

−q[(6t+ 1)m− 3] = −[(12t2 + 8t+ 1)m− (6t+ 2)][(6t+ 1)m− 3]

= −(6t+ 1)n+ (6t+ 1)m− 3

≡ (6t+ 1)m− 3 (mod n),

which implies that −qC(6t+1)m−3 = C(6t+1)m−3.

(2) −qC(8t+2)m−4 = C4tm−2 holds for the following reason

−q[(8t+ 2)m− 4] = −[(12t2 + 8t+ 1)m− (6t+ 2)][(8t+ 2)m− 4]

= −(8t+ 2)n+ 4tm− 2

≡ 4tm− 2 (mod n).

(3) −qC(10t+2)m−5 = C(8t+1)m−4 also holds for the following reason

−q[(10t+ 2)m− 5] = −[(12t2 + 8t+ 1)m− (6t+ 2)][(10t+ 2)m− 5]

= −(10t+ 2)n+ (8t+ 1)m− 4

≡ (8t+ 1)m− 4 (mod n).

Lemma 3.9: Let n = q2−1
a , where q is a prime power of the form q = am − `, a = `2−1

3 ,

` = 6t+ 2, and t,m are positive integers. If C is a q2-ary cyclic code of length n with defining

set Z =
⋃δ
j=2tm−1 C1+j , then

|Z ∩ Z−q| =

 0, 2tm− 1 ≤ δ ≤ (6t+ 1)m− 5;
1, (6t+ 1)m− 4 ≤ δ ≤ (8t+ 2)m− 6;
3, (8t+ 2)m− 5 ≤ δ ≤ (10t+ 2)m− 7.

Proof: (1) Let Z =
⋃δ
j=2tm−1 C1+j , where 2tm− 1 ≤ δ ≤ (6t+ 1)m− 5. Then |Z ∩Z−q| = 0

follows from Lemma 3.7.

(2) Let

Z =

δ⋃
j=2tm−1

C1+j = Z1 ∪ Z2 ∪ C(6t+1)m−3,
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where Z1 =
⋃(6t+1)m−5
j=2tm−1 C1+j , Z2 =

⋃δ
j=(6t+1)m−3 C1+j and (6t+1)m−3 ≤ δ ≤ (8t+2)m−6.

Then

Z−q ∩ Z = (Z1
−q ∪ Z2

−q ∪ −qC(6t+1)m−3) ∩ (Z1 ∪ Z2 ∪ C(6t+1)m−3)

= (Z1
−q ∩ Z1) ∪ (Z1

−q ∩ Z2) ∪ (Z1
−q ∩ C(6t+1)m−3)∪

(Z2
−q ∩ Z1) ∪ (Z2

−q ∩ Z2) ∪ (Z2
−q ∩ C(6t+1)m−3)∪

(−qC(6t+1)m−3 ∩ Z1) ∪ (−qC(6t+1)m−3 ∩ Z2)∪
(−qC(6t+1)m−3 ∩ C(6t+1)m−3)

By Lemma 3.7, Z1 ∩ Z−q1 = ∅. It follows from Lemma 3.8, one can get

−qC(6t+1)m−3 ∩ Z1 = ∅,
−qC(6t+1)m−3 ∩ Z2 = ∅,
Z1
−q ∩ C(6t+1)m−3 = ∅,

Z2
−q ∩ C(6t+1)m−3 = ∅,

−qC(6t+1)m−3 ∩ C(6t+1)m−3 = C(6t+1)m−3.

Now we only have to verify that Z1
−q ∩ Z2 = Z2

−q ∩ Z1 = ∅, and Z2
−q ∩ Z2 = ∅.

Assume that Z2
−q ∩ Z1 6= ∅, then there exist two integers i and j, where 2tm − 1 ≤ i ≤

(6t+ 1)m− 5 and (6t+ 1)m− 3 ≤ j ≤ (8t+ 2)m− 6, such that

1 + i ≡ −q(1 + j)(mod n),

which is equivalent to

1 + q + i+ qj ≡ 0 (mod n).

We seek contradictions by dividing into the following subcases.

(i) If km− 4 ≤ j ≤ (k + 1)m− 5, where 6t+ 2 ≤ k ≤ 8t. Then we have

kn+ [k(6t+ 2)− 36t2 − 22t− 3]m+ 18t+ 6− 3k

≤ 1 + q + i+ qj ≤
(1 + k)n− [48t2 + 26t+ 3− (1 + k)(6t+ 2)]m+ 24t− 3k + 1,

Hence,

kn < 1 + q + i+ qj < (1 + k)n.

It is a contradiction.

(ii) If (6t+ 1)m− 3 ≤ j ≤ (6t+ 2)m− 5, then

(6t+ 1)n+ (12t2 + 4t)m− 6t+ 1 ≤ 1 + q + i+ qj ≤ (6t+ 2)n− (12t2 + 2t− 1)m+ 6t− 2,

which implies that (6t+ 1)n < 1 + q + i+ qj < (6t+ 2)n. It is a contradiction.

(iii) If (8t+ 1)m− 4 ≤ j ≤ (8t+ 2)m− 6, then

(8t+ 1)n+ (12t2 − 1)m− 6t+ 3 ≤ 1 + q + i+ qj ≤ (8t+ 2)n− (12t2 + 6t)m+ 6t,

which implies that (8t+ 1)n < 1 + q + i+ qj < (8t+ 2)n. It is a contradiction.
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Therefore, Z2
−q ∩ Z1 = ∅, and Z1

−q ∩ Z2 = (Z2
−q ∩ Z1)−q = ∅.

Finally, suppose that Z2
−q ∩ Z2 6= ∅, then there exist two integers i and j, where (6t +

1)m− 3 ≤ i, j ≤ (8t+ 2)m− 6 such that

1 + q + i+ qj ≡ 0(mod n).

Going on the line of the proofs similar to the above cases, one can get such case is impossible

either.

Therefore,

Z−q ∩ Z = C(6t+1)m−3 = {(6t+ 1)m− 3},

which means that |Z ∩ Z−q| = 1.

(3) The remaining case can be proved by using the same method, we omit it here for

simplification.

Theorem 3.3: Let n = q2−1
a , where q is a prime power of the form q = am − `, a = `2−1

3 ,

` = 6t+2, and t,m are positive integers. Then there exist EAQMDS codes with the following

parameters:

(1) [[ q
2−1
a , q

2−1
a − 2d+ 2, d]]q, where 2 ≤ d ≤ (4t+ 1)m− 2;

(2) [[ q
2−1
a , q

2−1
a − 2d+ 3, d; 1]]q, where (4t+ 1)m− 1 ≤ d ≤ (6t+ 2)m− 3;

(3) [[ q
2−1
a , q

2−1
a − 2d+ 5, d; 3]]q, where (6t+ 2)m− 2 ≤ d ≤ (8t+ 2)m− 4.

Proof: Let C be a cyclic code of length n = q2−1
a over Fq2 with defining set Z =

⋃δ
j=2tm−1 C1+j ,

where 2tm− 1 ≤ δ ≤ (10t+ 2)m− 7.

By Lemma 3.9, we obtain that |Z∩Z−q| = 0 if 2tm−1 ≤ δ ≤ (6t+1)m−5, |Z∩Z−q| = 1

if (6t+ 1)m− 4 ≤ δ ≤ (8t+ 2)m− 6, and |Z ∩Z−q| = 3 if (8t+ 2)m− 5 ≤ δ ≤ (10t+ 2)m− 7.

Since every q2-cyclotomic coset Cx = {x} and x is an integer, then one can get that Z consists

of δ − 2tm+ 2 consecutive integers

{2tm, 2tm+ 1, 2tm+ 2, . . . , δ, δ + 1},

which implies that C has minimum distance at least δ − 2tm+ 3. Hence, C is a q2-ary cyclic

code with parameters [n, n− δ + 2tm− 2,≥ δ − 2tm+ 3]. Combining Theorem 2.2 with the

EA-quantum Singleton bound, there are q-ary EAQMDS codes with parameters as desired.

The result follows.

Remark 3.1: Let t = 1, then EAQMDS codes of length q2−1
21 with q = 21m − 8 have been

constructed. Actually, EAQMDS codes of length q2−1
21 with q = 42m + 13 have also been

constructed in [31] with different c from ours. Within the same c = 3, one can see that our

codes have larger minimum distances than theirs. For example, if q = 97, we get EAQMDS

codes with parameters [[448, 453− 2d, d; 3]]97, where 38 ≤ d ≤ 46, while the EAQMDS codes

constructed in [31] have parameters [[448, 453− 2d, d; 3]]97, where 32 ≤ d ≤ 45.

Now we consider the case ` ≡ 4 (mod 6) and a useful lemma is shown in the following.

Lemma 3.10: Let n = q2−1
a , where q is a prime power of the form q = am − `, a = `2−1

3 ,

` = 6t+ 4, and t,m are positive integers. If C is a q2-ary cyclic code of length n with defining
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set

Z =

δ⋃
j=0

C1+j ,

where 0 ≤ δ ≤ (2t+ 1)m− 3, then C⊥h ⊆ C.

Proof: Due to Lemma 2.1, we have to proof that Z ∩ Z−q = ∅. Assume that Z ∩ Z−q 6= ∅,
then there exist two integers i and j, where 0 ≤ i, j ≤ (2t+ 1)m− 3, such that

1 + i ≡ −q(1 + j)(mod n),

which is equivalent to

1 + q + i+ qj ≡ 0(mod n).

Since ` = 6t+ 4, a = `2−1
3 , then

q = am− ` = (12t2 + 16t+ 5)m− 6t− 4,

n =
q2 − 1

a
= (12t2 + 16t+ 5)m2 − (12t+ 8)m+ 3.

We now divide into the following subcases to seek some contradictions.

(i) If km− 1 ≤ j ≤ (k + 1)m− 2, where 1 ≤ k ≤ 2t− 1. Then we have

kn+k(6t+4)m−3k+1 ≤ 1+q+i+qj ≤ (1+k)n−[12t2+14t+4−(k+1)(6t+4)]m+6t−3k−1.

Hence,

kn < 1 + q + i+ qj < (1 + k)n.

It is a contradiction.

(ii) If 2tm− 1 ≤ j ≤ (2t+ 1)m− 3, then

2tn < 2tn+ 2t(6t+ 4)m− 6t+ 1 ≤ 1 + q + i+ qj ≤ (2t+ 1)n− q − 1 < (2t+ 1)n,

which is a contradiction.

(iii) If 0 ≤ j ≤ m− 2, then

0 < 1 + q ≤ 1 + q + i+ qj ≤ n− (12t2 + 8t)m+ 6t− 1 < n,

which is also a contradiction.

Therefore, we conclude that Z ∩ Z−q = ∅ as desired, which implied that C⊥h ⊆ C.

Lemma 3.11: Let n = q2−1
a , where q is a prime power of the form q = am − `, a = `2−1

3 ,

` = 6t + 4, and t,m are positive integers. Then for 1 ≤ i ≤ 4, we have −qCi[(2t+1)m−1] =

Ci[(2t+1)m−1].

Proof: As q = (12t2 + 16t + 5)m − (6t + 4) and n = (12t2 + 16t + 5)m2 − (12t + 8)m + 3,

then we have

−qi[(2t+ 1)m− 1] = −i[(12t2 + 16t+ 5)m− (6t+ 4)][(2t+ 1)m− 1]

= i[−(2t+ 1)n+ (2t+ 1)m− 1]

≡ i[(2t+ 1)m− 1] (mod n),
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which implies that −qCi[(2t+1)m−1] = Ci[(2t+1)m−1], where 1 ≤ i ≤ 4.

Lemma 3.12: Let n = q2−1
a , where q is a prime power of the form q = am − `, a = `2−1

3 ,

` = 6t+ 4, and t,m are positive integers. If C is a q2-ary cyclic code of length n with defining

set Z =
⋃δ
j=0 C1+j , then

|Z ∩ Z−q| =


0, 0 ≤ δ ≤ (2t+ 1)m− 3;
1, (2t+ 1)m− 2 ≤ δ ≤ (4t+ 2)m− 4;
2, (4t+ 2)m− 3 ≤ δ ≤ (6t+ 3)m− 5;
3, (6t+ 3)m− 4 ≤ δ ≤ (8t+ 4)m− 6.

Proof: (1) Let Z =
⋃δ
j=0 C1+j , where 0 ≤ δ ≤ (2t + 1)m − 3. Then |Z ∩ Z−q| = 0 follows

from Lemma 3.10.

(2) Let

Z =

δ⋃
j=0

C1+j = Z1 ∪ Z2 ∪ C(2t+1)m−1,

where Z1 =
⋃(2t+1)m−3
j=0 C1+j , Z2 =

⋃δ
j=(2t+1)m−1 C1+j and (2t+1)m−1 ≤ δ ≤ (4t+2)m−4.

Then

Z−q ∩ Z = (Z1
−q ∪ Z2

−q ∪ −qC(2t+1)m−1) ∩ (Z1 ∪ Z2 ∪ C(2t+1)m−1)

= (Z1
−q ∩ Z1) ∪ (Z1

−q ∩ Z2) ∪ (Z1
−q ∩ C(2t+1)m−1)∪

(Z2
−q ∩ Z1) ∪ (Z2

−q ∩ Z2) ∪ (Z2
−q ∩ C(2t+1)m−1)∪

(−qC(2t+1)m−1 ∩ Z1) ∪ (−qC(2t+1)m−1 ∩ Z2)∪
(−qC(2t+1)m−1 ∩ C(2t+1)m−1)

According to Lemma 3.10, Z1 ∩ Z−q1 = ∅. It follows from Lemma 3.11, one can get

−qC(2t+1)m−1 ∩ Z1 = ∅,
−qC(2t+1)m−1 ∩ Z2 = ∅,
Z1
−q ∩ C(2t+1)m−1 = ∅,

Z2
−q ∩ C(2t+1)m−1 = ∅,

−qC(2t+1)m−1 ∩ C(2t+1)m−1 = C(2t+1)m−1.

Now we only have to verify that Z1
−q ∩ Z2 = Z2

−q ∩ Z1 = ∅, Z2
−q ∩ Z2 = ∅.

Assume that Z2
−q ∩ Z1 6= ∅, then there exist two integers i and j, where 0 ≤ i ≤

(2t+ 1)m− 3 and (2t+ 1)m− 1 ≤ j ≤ (4t+ 2)m− 4 such that

1 + i ≡ −q(1 + j)(mod n),

which is equivalent to

1 + q + i+ qj ≡ 0(mod n).

We now divide into the following subcases to seek some contradictions.



434 New entanglement-assisted quantum MDS codes derived from cyclic codes

(i) If (2t+ 1)m− 1 ≤ j ≤ (2t+ 2)m− 3, then

(2t+ 1)n+ (12t2 + 14t+ 4)m− 6t− 2

≤ 1 + q + i+ qj ≤
(2t+ 2)n− (12t2 + 10t+ 1)m+ 6t,

which implies that (2t+ 1)n < 1 + q + i+ qj < (2t+ 2)n. It is a contradiction.

(ii) If km− 2 ≤ j ≤ (k + 1)m− 3, where 2t+ 2 ≤ k ≤ 4t. Then we have

kn+ [k(6t+ 4)− (12t2 + 16t+ 5)]m+ 6t+ 5− 3k

≤ 1 + q + i+ qj ≤
(1 + k)n− [24t2 + 30t+ 9− (1 + k)(6t+ 4)]m+ 12t− 3k + 3.

Hence,

kn < 1 + q + i+ qj < (1 + k)n,

which is a contradiction.

(iii) If (4t+ 1)m− 2 ≤ j ≤ (4t+ 2)m− 4, then

(4t+ 1)n+ (12t2 + 6t− 1)m− 6t+ 2

≤ 1 + q + i+ qj ≤
(4t+ 2)n− (12t2 + 18t+ 6)m+ 6t+ 4,

which implies that (4t+ 1)n < 1 + q + i+ qj < (4t+ 2)n. It is a contradiction.

Therefore, Z2
−q ∩ Z1 = ∅, and Z1

−q ∩ Z2 = (Z2
−q ∩ Z1)−q = ∅.

Finally, suppose that Z2
−q ∩ Z2 6= ∅, then there exist two integers i and j, where (2t +

1)m− 1 ≤ i, j ≤ (4t+ 2)m− 4, such that

1 + q + i+ qj ≡ 0(mod n).

Going on the line of the proofs similar to the above cases, such case is impossible either.

Therefore,

Z−q ∩ Z = C(2t+1)m−1 = {(2t+ 1)m− 1},

which means that |Z ∩ Z−q| = 1.

(3) The remaining cases can be proved by using the same method, here we omit it.

Theorem 3.4: Let n = q2−1
a , where q is a prime power of the form q = am − `, a = `2−1

3 ,

` = 6t+4, and t,m are positive integers. Then there exist EAQMDS codes with the following

parameters:

(1) [[ q
2−1
a , q

2−1
a − 2d+ 2, d]]q, where 2 ≤ d ≤ (2t+ 1)m− 1;

(2) [[ q
2−1
a , q

2−1
a − 2d+ 3, d; 1]]q, where (2t+ 1)m ≤ d ≤ (4t+ 2)m− 2;

(3) [[ q
2−1
a , q

2−1
a − 2d+ 4, d; 2]]q, where (4t+ 2)m− 1 ≤ d ≤ (6t+ 3)m− 3;

(4) [[ q
2−1
a , q

2−1
a − 2d+ 5, d; 3]]q, where (6t+ 3)m− 2 ≤ d ≤ (8t+ 4)m− 4.

Proof: Let C be a cyclic code of length n = q2−1
a over Fq2 with defining set Z =

⋃δ
j=0 C1+j ,

where 0 ≤ δ ≤ (8t+ 4)m− 4.
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According to Lemma 3.12, we obtain that

c = |Z ∩ Z−q| =


0, 0 ≤ δ ≤ (2t+ 1)m− 3;
1, (2t+ 1)m− 2 ≤ δ ≤ (4t+ 2)m− 4;
2, (4t+ 2)m− 3 ≤ δ ≤ (6t+ 3)m− 5;
3, (6t+ 3)m− 4 ≤ δ ≤ (8t+ 4)m− 6.

Since every q2-cyclotomic coset Cx = {x} and x is an integer, then one can get that Z

consists of δ + 1 consecutive integers

{1, 2, 3, . . . , δ, δ + 1},

which implies that C has minimum distance at least δ+2. Hence, C is a q2-ary cyclic code with

parameters [n, n − δ − 1,≥ δ + 2]. Combining Theorem 2.2 with the EA-quantum Singleton

bound, there are q-ary EAQMDS codes with parameters as desired. The result follows.

Remark 3.2: Let t = 0 in Theorems 3.2 and 3.4, then EAQMDS codes of length q2−1
5 have

been constructed, where q = 5m±4. Actually, EAQMDS codes of length q2−1
5 have also been

constructed in [29] and [30]. However, their q is different from ours.

Example 3.2: In Table 2, we list some new EAQMDS codes of length q2−1
a obtained from

Theorems 3.3 and 3.4, where q is a prime power of the form q = am− `, a = `2−1
3 is an odd

integer, and m is a positive integer.

4 Conclusion

EAQMDS codes with parameters [[ q
2−1
a , q

2−1
a − 2d + 2 + c, d; c]]q were constructed by

exploiting less pre-shared maximally entangled states c, where q is a prime power with the

form q = am ± `, a = `2−1
3 is an odd integer, ` ≡ 2 (mod 6) or ` ≡ 4 (mod 6), and m is a

positive integer. As said in [45], EAQMDS codes of length q2−1
a with a either divides q + 1

or divides q − 1 had been extensively studied. However, our a either divides q + ` or divides

q − `.
In [1], maximal-entanglement EAQMDS codes, i.e., c = n−k, were constructed. It is easy

to see that our EAQMDS codes are not maximal-entanglement ones.

In [5], the author presented that an EAQEC code with parameters [[2n, n−h, d, n−h]]q can

be derived from an Hermitian self-dual code with parameters [2n, n, d]q2 , while in [4], some

families of EAQMDS codes with flexible parameters were also constructed via Hermitian

self-dual codes and three of them with the similar lengths to ours are listed below:

• [[ q
2−1
m , q

2−1
m −w−h,w+ 1, w−h]]q, where q ≥ 3 is a prime power, m = 2k+ 1 is an odd

divisor of q+ 1, w is a positive integer satisfying w < (k+1)(q−1)
2k+1 , and h is a nonnegative

integer satisfying 0 ≤ h ≤ w.

• [[ q
2−1
m1

+ q2−1
m2
− q2−1
m1m2

, q
2−1
m1

+ q2−1
m2
− q2−1
m1m2

−k−h, k+1, k−h]]q, where q ≥ 3 is a prime

power, m1 and m2 are odd divisors of q + 1 satisfying gcd(m1,m2) = 1, k is a positive

integer satisfying 1 ≤ k ≤ q−1
2 , and h is a nonnegative integer satisfying 0 ≤ h ≤ k.
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Table 2. New EAQMDS codes of length n = q2−1
a

with a = `2−1
3

odd

` m q = am− ` [[n, k, d; c]]q d

8 5 97 [[448, 450− 2d, d]]97 2 ≤ d ≤ 23

[[448, 451− 2d, d; 1]]97 24 ≤ d ≤ 37

[[448, 453− 2d, d; 3]]97 38 ≤ d ≤ 46

10 3 89 [[240, 242− 2d, d]]89 2 ≤ d ≤ 8

[[240, 243− 2d, d; 1]]89 9 ≤ d ≤ 16

[[240, 244− 2d, d; 2]]89 17 ≤ d ≤ 24

[[240, 245− 2d, d; 3]]89 25 ≤ d ≤ 32

14 3 181 [[504, 506− 2d, d]]181 2 ≤ d ≤ 25

[[504, 507− 2d, d; 1]]181 26 ≤ d ≤ 39

[[504, 509− 2d, d; 3]]181 40 ≤ d ≤ 50

16 3 239 [[672, 674− 2d, d]]239 2 ≤ d ≤ 14

[[672, 675− 2d, d; 1]]239 15 ≤ d ≤ 28

[[672, 676− 2d, d; 2]]239 29 ≤ d ≤ 42

[[672, 677− 2d, d; 3]]239 43 ≤ d ≤ 56

20 1 113 [[96, 98− 2d, d]]113 2 ≤ d ≤ 11

[[96, 99− 2d, d; 1]]113 12 ≤ d ≤ 17

[[96, 101− 2d, d; 3]]113 18 ≤ d ≤ 22

22 1 139 [[120, 122− 2d, d]]139 2 ≤ d ≤ 6

[[120, 123− 2d, d; 1]]139 7 ≤ d ≤ 12

[[120, 124− 2d, d; 2]]139 13 ≤ d ≤ 18

[[120, 125− 2d, d; 3]]139 19 ≤ d ≤ 24
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• [[ q
2−1
m , q

2−1
m − k − h, k + 1, k − h]]q, where q = 2ha+ 1 ≥ 3 is an odd prime power, a is

odd, m = 2h1a1 ≥ 6 is an even divisor of q − 1, h1 ≤ h, a1 is an odd divisor of a, k is

a positive integer satisfying 1 ≤ k ≤ q+1
2 + 2h−h1 a

a1
− 1, and h is a nonnegative integer

satisfying 0 ≤ h ≤ k.

One can see that their lengths are different from ours, and the method presented in [4, 5]

is also different from ours.

In [6], the author proved that for any given length n ≤ q2 + 1 and any given distance

d ≤ n+2
2 , there exsits at least one [[n, k, d, c]] EAQMDS code with nonzero c parameter. In

one sense, our results proved the rightness of his.

In [36], three new propagation rules for constructing EAQEC codes were introduced:

• [[n, k, d, c]]q −→ [[n, k + i, d, c+ i]]q;

• [[n, k, d, c]]q −→ [[n+ 1, k − 1, d′, c]]q, where d ≤ d′ ≤ d+ 1;

• [[n, k, d, c]]q −→ [[n+ 1, k, d′, c− 1]]q, where d′ ≤ d.

Actually, the idea of the first propagation rule is quite the same as our construction method

(Theorem 2.2), and the EAQMDS codes in this paper can’t be derived via the last two

propagation rules due to the fact that EAQEC codes of length q2−1
a − 1 with a = `2−1

3 are

unknown either.

Hence, EAQMDS codes obtained in this paper are new in the sense that their parameters

are not covered by the codes available in the literature, please see Table 3. The case a being

an even integer will be considered later.
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