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In recent years, several properties and recurrence criteria of discrete-time open quantum
walks (OQWs) have been presented. Recently, Pellegrini introduced continuous-time
open quantum walks (CTOQWs) as continuous-time natural limits of discrete-time
OQWs. In this work, we study semifinite CTOQWs and some of their basic properties
concerning statistics, such as transition probabilities and site recurrence. The notion

of SJK-recurrence for CTOQWs is introduced, and it is shown to be equivalent to the
traditional concept of recurrence. This statistic arises from the definition of δ-skeleton of
CTOQWs, which is a dynamic that allows us to obtain a discrete-time OQW in terms of

a CTOQW. We present a complete criterion for site recurrence in the case of CTOQW
induced by a coin of finite dimension with a set of vertices Z such that its auxiliary
Lindblad operator has a single stationary state. Finally, we present a similar criterion

that completes the case in which the internal degree of freedom of each site is of dimension
2.

Keywords: Continuous-time open quantum walks, Lindblad generator, Site recurrence,

SJK-recurrence, Stationary state

1. Introduction

The discrete-time model of open quantum walk (OQW) was presented by Attal et al. ([4]) by

the implementation of appropriate completely positive (CP) maps, considering the theory of

open quantum systems. As in the classic case, we can define the concept of recurrence of a

vertex from the average number of returns to the vertex. However, unlike the classical case, the

quantum version allows a vertex to be recurrent with respect to a certain initial density and

transient (non-recurrent) with respect to another initial density, thus any recurrence criteria

must be more sophisticated.

Regarding the recurrence types of OQWs, many works can be found in the literature

describing recurrence properties (see [9, 10, 12]). Recently, Jacq and Lardizabal ([13]) exhibited

complete recurrence criteria for two classes of OQWs on the real-line induced by a coin, one

for irreducible OQWs (see [8]) based on an auxiliary CP map for finite coins and the other

for the case where the coin is two-dimensional. The recurrence type considered in their work

concerns the mean number of returns to site |0〉 , and therefore to any site since they analyzed

the homogeneous OQW.
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578 Site recurrence for continuous-time open quantum walks on the line

In this work, we present some basic statistical properties of continuous-time Markov chains

(CTOQWs) and recurrence criteria for some classes of those random walks. Those CTOQWs

were presented by Pellegrini ([17]) as dynamics arising as continuous-time limits of time-discrete

OQWs. CTOQW displays a graph’s continuous-time evolution in which a particle jumps from

vertex to vertex at random intervals. Jump intensity is determined by the internal degrees of

freedom, which are affected by the jump but continue to evolve between jumps. A quantum

mechanical model can be used to justify the form of the intensity as well as the evolution of

the internal degrees of freedom at jump times and between them in both circumstances.

Since the behavior of the position of a CTOQW is not Markovian, and consequently

does not retain memory, some characteristics of the transition probabilities differ from those

of classical random walks. The Chapman-Kolmogorov identity, for example, is no longer

valid, although a generalization for the quantum version can be produced. The initial density

operator carries the dynamic’s memory, and all potential generalizations rely on an adjustment

to the density operator. Remark that the joint distribution of the position at instant t with

the density operator at time t is a Markov process, however, the position alone is not.

We will only be dealing with semifinite CTOQWS, and once the transition probabilities for

this class of walks are clearly understood, we will discuss some basic transition probabilities for

those CTOQWs. We also provide an equivalency result between the recurrence of CTOQWs

and discrete-time OQWs by a discretization of the CTOQW.

Concerning recurrence, we treat the one-dimensional case for nearest-neighbor homogeneous

CTOQWs on the line, that is, with a set of vertices Z, thus we will be considering the Lindblad

generator introduced in [7] with d = 1 and the rates of transition can be identified by the

graph represented in Figure 1, where C,A,H are operators acting in the same finite Hilbert

space and thus each site has the same internal degrees of freedom.

The operators C and A can be understood as rates of jumping to left and right, taking

data from some vertex |i〉 and producing an output in |i− 1〉 and |i+ 1〉 , respectively, while

H represents a mixing of rates at |i〉 since it takes any data on vertex |i〉 and produces an

output on |i〉 , for each i ∈ Z. Therefore, H can contribute with the statistics of the walk,

however, the walker must, at each step, jump to one of the two nearest-neighbors, and cannot

jump in a loop to itself.

−2 −1 0 1 2 . . .. . .
A A A A A A

CCCCCC

HH HH H

Fig. 1. Nearest-neighbor homogeneous walk on Z.

With this context well described, we intend to obtain a recurrence criterion for this kind of

CTOQW in terms of the properties of the components of the Lindbladian: C, A and H, where

H is the Hamiltonian operator and a new operator to be considered to discuss recurrence when

we compare it with the discrete-time model. As will be seen, some connections can be done

with the discrete-time model, and thus we can apply some similar ideas to the continuous-time
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version. The great differences here are that we also use an auxiliary map, however, this map is

no more a quantum channel, but a Lindblad operator acting in a finite-dimensional Hilbert

space, and the statistics of the walk do not depend only on a dissipative part, but also on a

Hamiltonian part of the Lindblad generator.

When the Hamiltonian operator H is null, the evolution of the CTOQW depends only on

the transition rates established by C and A. On the other, a non-null H will interfere with

the stationary state of the auxiliary Lindblad operator that will be defined later and thus the

recurrence may not depend exclusively on the conjugation generated by C and A.

This article is organized as follows. In Section 2 we review CTOQWs, recurrence, and

transition probability properties. We also present a new concept of recurrence based on

the δ-skeleton and show that this definition for site recurrence is equivalent to the standard

definition. Section 3 is devoted to presenting recurrence criteria for CTOQWs induced by a

finite coin such that the auxiliary Lindblad operator has a unique stationary state. In Section

4 we focus on the case where the coin has dimension 2, and we give a complete recurrence

criterion for this class of CTOQWs. Section 5 illustrates the results with examples. Section 6

contains some of the most technic proofs of the paper.

2. Continuous-Time Open Quantum Walks

Let H denote a complex, separable Hilbert space with inner product 〈 · | · 〉, whose closed

subspaces will be referred to as subspaces for short. The Banach algebra B(H) of bounded

linear operators on H is the topological dual of its ideal I(H) of trace-class operators with

trace norm

‖ρ‖1 = Tr(|ρ|), |ρ| =
√
ρ∗ρ,

through the duality [2, Lec. 6]

(1) 〈ρ,X〉 = Tr(ρX), ρ ∈ I(H), X ∈ B(H),

where the superscript ∗ denotes the familiar adjoint operator.

If dimH = k <∞, then B(H) = I(H) is identified with the set of square matrices of order

k, represented by Mk(C), and its identity operator will be denoted by Ik. The duality (1)

yields a useful characterization of the positivity of an operator ρ ∈ I(H),

ρ ∈ I(H) : ρ ≥ 0 ⇔ Tr(ρX) ≥ 0, ∀X ∈ B(H), X ≥ 0,

and similarly for the positivity of X ∈ B(H).

Moving toward the definition of CTOQWs, we recall a few basic results of one-parameter

semigroups and completely positive maps. In particular, we discuss completely positive (CP)

trace-preserving (TP) semigroups, which have a special generator operator. Those semigroups,

called Continuous-time Open Quantum Walks (CTOQW’s), are quantum generalizations of

classical Markov continuous-time random walks.

Unlike the classical model, CTOQW describes the behavior of a random walk that retains

some amount of memory, and this memory is encoded by a quantum state, which is a density

operator acting on the associated Hilbert space.

2.1. Basic Properties of Continuous-Time Open Quantum Walks
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An operator semigroup T on a Hilbert space H is a family of bounded linear operators (Tt)

acting on H, t ≥ 0, such that

TtTs = Tt+s, ∀s, t ∈ R+ and T0 = IH.

If t 7→ Tt is continuous for the operator norm of H, then T is said to be uniformly

continuous. This class of semigroups is characterized by the following result:

Theorem 1 ([6], page 161). The following assertions are equivalent for a semigroup T on H :

(1) T is uniformly continuous;

(2) There exists a bounded linear operator L on H such that

Tt = etL, ∀t ≥ 0.

Further, if the equivalent conditions (1) and (2) are satisfied, then

L = lim
t→∞

1

t
(Tt − IH).

The operator L is called the generator of T .

In our subsequent discussion, we consider a countable set V and a Hilbert space H of the

form

(2) H =
⊕
i∈V

hi,

where each hi represents a separable Hilbert space.

A semigroup T := (Tt)t≥0 of CP-TP maps acting on the set of trace-class operators

on H, denoted I1(H), is called a Quantum Markov Semigroup (QMS) on I1(H). When

limt→0 ||Tt − I|| = 0, then T has a generator L = limt→∞(Tt − I)/t (see [15]), which is a

bounded operator on I1(H), also known as Lindblad operator.

The set of density operators on a Hilbert space K will be denoted by

S(K) := {ρ ∈ I1(K), ρ ≥ 0, Tr(ρ) = 1}

and the set of block-diagonal density operators of H by

D :=

{
ρ ∈ S(H) : ρ =

∑
i∈V

ρ(i)⊗ |i〉 〈i|

}
.

This means that if ρ ∈ D, then ρ(i) ∈ I1(hi), ρ(i) ≥ 0 (positive semidefinite) and
∑
i∈V Tr(ρ(i)) =

1.

Let [A,B] ≡ AB −BA denote the commutator between A and B and {A,B} ≡ AB +BA

the anti-commutator between A and B.

Definition 2. Let V be a finite or countable infinite set and H be a Hilbert space of the

form (2). A Continuous-time Open Quantum Walk (CTOQW) in V is an uniformly

continuous QMS on I1(H) with Lindblad operator of the form

L : I1(H) → I1(H)

ρ 7→ −i[H, ρ] +
∑
i,j∈V

(
Sji ρS

j∗

i −
1

2
{Sj∗i S

j
i , ρ}

)
.(3)
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We can write Sji = Rji ⊗ |j〉 〈i| for bounded operators Rji ∈ B(hi, hj), the bounded operators H

and Sji on H are of the form H =
∑
i∈V Hi⊗|i〉 〈i| , Hi is self-adjoint on hi, and

∑
i,j∈V S

j∗
i S

j
i

converges in the strong sense.

The generator L preserves D. That is, for an initial density ρ =
∑
i∈V ρ(i)⊗ |i〉 〈i| ∈ D,

etL(ρ) = Tt(ρ) =
∑
i∈V ρt(i)⊗ |i〉 〈i| ,∀t ≥ 0, with

d

dt
ρt(i) = −i[Hi, ρt(i)] +

∑
j∈V

(
Rijρt(j)R

i∗

j −
1

2
{Rj∗i R

j
i , ρt(i)}

)
.

An alternative way to write (3) is given by equation (18.7) in [5]:

L(ρ) =
∑
i∈V

Giρ(i) + ρ(i)G∗i +
∑
j∈V

Rijρ(j)Ri∗j

⊗ |i〉 〈i| ,
where

Gi = −iHi −
1

2

∑
j∈V

Rj∗i R
j
i .

Since the operator Hi is hermitian, we have Gi + G∗i = −
∑
j∈V R

j∗
i R

j
i . The reader should

compare this identity with the Zero Line-Sum Matrices (or Q-matrices), and make a connection

with the classical Markov chains. For more details on this, see [17, Proposition 3.9].

Let us now explain the dynamics of a CTOQW: given a finite or countably infinite set

of vertices V, a CTOQW is a stochastic process evolving on a Hilbert space of the form (2).

The label i ∈ V represents the position of the walker and when the walker is located at i ∈ V,
its internal state is encoded in hi, that is, hi describes the internal degrees of freedom of the

walker when it is at site i ∈ V.
Starting the walk on site |i〉 with initial density operator ρ ∈ S(hi) =

∑
i∈V ρ(i)⊗ |i〉 〈i| ,

the quantum measurement of the “position” gives rise to a probability distribution p0 on V,

such that

p0(i) = P(the quantum particle is in site |i〉) = Tr(ρ(i)),

and for evolution on time t ≥ 0,

(4) pt(i) = P(the quantum particle, at time t, is in site |i〉) = Tr(ρt(i)),

where

etL(ρ) =
∑
i∈V

ρt(i)⊗ |i〉 〈i| .

We say that the CTOQW is semifinite when dim(hi) <∞ ∀i ∈ V. If in addition |V | <∞,
then the CTOQW is said to be finite.

We follow [5, 17] to discuss the quantum trajectory describing the indirect measurement

of the position of a CTOQW of the more general form (3) in order to obtain probabilistic

properties of this quantum system. For more general results of quantum trajectories, see [14].

So, let (Ω,F , (Ft)t≥0,P) be a probability space where independent Poisson point processes

N ij , i, j ∈, V, i 6= j (N ii = 0 by convention) on R2 are defined. The jump from site i to site j

on the graph V will be governed by these Poisson point processes.
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Definition 3. Consider a CTOQW with generator of the form (3) and an initial density

operator µ =
∑
i∈V ρ(i)⊗ |i〉 〈i| ∈ D. The quantum trajectory describing the indirect measure-

ment of the position of the CTOQW is the Markov chain represented by the density operators

(µt)t≥0 such that µ0 = ρ0⊗|X0〉 〈X0| , where X0 and ρ0 are random variables with distribution

P
(

(X0, ρ) =

(
i,

ρ(i)

Tr(ρ(i))

))
= Tr (ρ(i)) for all i ∈ V,

and µt =: ρt ⊗ |Xt〉 〈Xt| satisfies the stochastic differential equation

µt =µ0 +

ˆ t

0

M(µs−)ds

+
∑
ij

ˆ t

0

ˆ
R

(
Sji µs−S

j∗
i

Tr(SSj∗i µs−S
j∗
i )
− µs−

)
10<y<Tr(Sjiµs−S

j∗
i )N

ij(dy, ds)

(5)

for all t ≥ 0, where

M(u) = L(u)−
∑
ij

(
Sji µS

j∗
i − µTr(Sji µS

j∗
i )
)
.

Hence, for a fixed µ =
∑
i ρ(i)⊗ |i〉 〈i| ∈ D,

M(µ) =
∑
i

(Giρ(i) + ρ(i)G∗i − ρ(i)Tr (Giρ(i) + ρ(i)G∗i ))⊗ |i〉 〈i| .

The evolution of the solution µt of (5) is described as follows: suppose X0 = i0 for some

i0 ∈ V and ρ0 ∈ V (hi0). For all t ≥ 0, consider the solution

ηt = ρ0 +

ˆ t

0

(
Gi0ηs + ηsG

∗
i0 − ηsTr

(
Gi0ηs + ηsG

∗
i0

))
ds,

which is a density operator on hi0 . For j 6= i0, define

T j1 = inf{t ≥ 0;N i0,j
(
u, y|0 ≤ u ≤ t, 0 ≤ y ≤ Tr(Rji0ηuR

j∗
i0

)
)
≥ 1}.

Since the random variables T j1 are mutually independent and nonatomic, we can define

T1 = infj 6=i0{T
j
1 } once there exists a unique j ∈ V such that T j1 = T1. The random variable

T1 is said to be the first jump time of the CTOQW conditional on X0 = i0.

The first jump time to site |j〉 is then denoted by T j1 and has distribution

P(T j1 > ε) = e−
´ ε
0
Tr(Rji0

ηuR
j∗
i0

)du,

thus

P(T1 ≤ ε) ≤ ε
∑
j 6=i0

‖Rj∗i0R
j
i0
‖.

The strongly convergence of
∑
ij S

j∗
i S

j
i implies that P(T1 > 0) = 1. Thereby, on [0, T1], we

can define the solution (Xt, ρt)t≥0 as

(Xt, ρt) = (i0, ηt) for t ∈ [0, T1) and

(XT1 , ρT1) =

(
j,

RjiηT1−R
j∗
i

Tr(RjiηT1−R
j∗
i )

)
if T1 = T j1 .
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Now we solve

ηt = ρT1 +

ˆ t

0

(
Gjηs + ηsG

∗
j − ηsTr

(
Gjηs + ηsG

∗
j

))
ds

and then obtain the second jump time T2. So on we obtain an increasing sequence of jumps

(Tn)n with limn→∞ Tn = ∞ almost surely (see section 18.2.3 of [5] for more details). This

means that the walk does not explode, thus the walker has a finite number of jumps in a finite

interval. For details concerning explosions of classical Markov chains, see [16, Section 2.2].

The CTOQWs of our interest in this work will be defined now:

Definition 4. Consider a CTOQW on V = Z.

(1) It is called homogeneous if

Rij = Ri+kj+k

for every i, j, k ∈ Z.

(2) If it is homogeneous and there exist operators C,A,H such that

Rii+1 = C, Ri+1
i = A, Hi = H ∀i ∈ V and Rij = 0 for |j − i| 6= 1,

then we say that the CTOQW is induced by a coin (C,A)H .

When a CTOQW is induced by a coin (C,A)H , then we can let hi = h for all i ∈ Z. If

dim(h) = d, then C,A and H can be represented by square matrices of order d and we say

that (C,A)H is a coin of dimension d.

A CTOQW with generator L is irreducible when, for all X ∈ I1(H) with X ≥ 0 and

X 6= 0, there exists t > 0 such that etL(X) > 0.

2.2. Recurrence and Transience for CTOQWs

This section is devoted to introducing concepts of recurrence of CTOQWs following some

classical definitions, but with the introduction of the initial quantum state, which is a density

operator.

Analogous to the classical walk (see [1]), we pick δ > 0 in order to discretize a CTOQW by

a process {X(nδ), n ≥ 0} having one-step transition probability pji;ρ(δ) (thus it has n step

transition probabilities pji;ρ(nδ)). This process will be called the δ-skeleton of {X(t), t ≥ 0}
and one can check that it performs a discrete Open Quantum Walk.

With this notation, pji;ρ(t) denotes the probability of being at site j at time t, given that

we started at site i, with initial density ρ concentrated at i, that is,

pji;ρ(t) = pt(ρ⊗ |i〉 → |j〉) = Tr(ρt(j)⊗ |j〉 〈j|) = Tr
(
etL(ρ⊗ |i〉 〈i|)(I ⊗ |j〉 〈j|)

)
.

Therefore, the dynamics starts with a density operator ρ concentrated at some vertex |i〉 , takes

the evolution up to time (t) through the exponential of the Lindblad operator L, producing a

new density operator

ρt =
∑
k

ρt(k)⊗ |k〉 〈k| = etL(ρ⊗ |i〉 〈i|), Tr

(∑
k

ρt(k)

)
= 1,

and then we project ρt onto the subspace generated by vertex |j〉 . Note that

etL(ρ⊗ |i〉 〈i|)(I ⊗ |j〉 〈j|) = ρt(j)⊗ |j〉 〈j| ,
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which represents the data concentrated at vertex |j〉 at time t.

Consider a semifinite CTOQW on some set of vertices V , let i ∈ V, ρ ∈ S(hi) and δ > 0.

We say that a vertex i is

• ρ-recurrent if ˆ ∞
0

pii;ρ(t)dt =∞.

Otherwise, i is said to be ρ-transient;

• ρ-SJK-recurrent†in the δ-skeleton if
∞∑
n=0

pii;ρ(nδ) =∞.

Otherwise, i is said to be ρ-SJK-transient in the δ-skeleton;

• recurrent, if i is ρ−recurrent for all ρ ∈ Shi ;

• transient, if i is ρ−transient for all ρ ∈ Shi ;

• SJK-recurrent, if i is ρ-SJK-recurrent in the δ-skeleton for all ρ ∈ Shi ;

• SJK-transient, if i is ρ-SJK-transient in the δ-skeleton for all ρ ∈ Shi .

Remark 5. Further in this section, assuming that the walk is semifinite, we shall show that a

vertex is ρ-recurrent in the δ-skeleton if, and only if, it is ρ-recurrent in the δ′-skeleton for

any δ′ > 0. So, the definitions of SJK-recurrence and SJK-transience are consistent.

Definition 6. A CTOQW is said to be:

• recurrent if every vertex is recurrent;

• transient if every vertex is transient;

• SJK-recurrent if every vertex is SJK-recurrent;

• SJK-transient if every vertex is SJK-transient.

When the CTOQW is semifinite and irreducible, we have the following dichotomy due to

[5]:

Proposition 7. Consider a semifinite irreducible CTOQW. We are in one (and only one) of

the following situations:

• Every vertex is recurrent;

• Every vertex is transient.

If a CTOQW is induced by a coin of finite dimension, then we can determine the set of

densities operators in which the CTOQW is transient by analyzing the common invariant

subspaces of the components of the coin. Let us explain this in the following remark.

Remark 1. Let us consider a CTOQW induced by a coin (C,A)H of dimension d <∞, and

assume that (C,A)H is ρ-transient. We suppose that the walk starts on vertex |0〉 with initial

density operator ρ, then after a jump on instant T1, the new density is

ρT1 =
AρA∗

Tr(AρA∗)
or ρT1 =

CρC∗

Tr(CρC∗)
.

†The notion of SJK-recurrence in the discrete-time unitary setting is described on [19]. SJK-recurrence is

named after the initials of the authors of that work.
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If we consider a new CTOQW starting on vertex |−1〉 or |1〉 with ρT1
as given above, then

the walk must be ρT1
-transient, by the homogeneity in space of the walk. So on we see that

(C,A)H is ρTn transient for every n = 1, 2, . . . , where ρTn is the n-th jump. Therefore the set

of densities {ρTn}n must be contained in a subset S(Y) ⊆ D, where Y is a common invariant

subspace of both C and A.

In particular, if (C,A)H is a coin of dimension 2, then Y is or a common eigenspace of A

and C or one of the trivial common subspaces {0}, C2.

2.3. Properties of Probability Transitions

In this subsection, we present generalizations of some results about Markov Chains described

previously. For instance, the Chapman-Kolmogorov Identity, which arises from the Markov

Property, however, the quantum model is non-Markovian, hence we obtain an equation that

seems like Chapman-Kolmogorov Identity, but with a perturbation on the initial quantum

state.

The proofs of the results presented in this subsection will be given in the Appendices

(Section 6).

Proposition 8. Consider a CTOQW in V, α, β ≥ 0, and let j, i ∈ V , then

pji;ρ(α+ β) =
∑
k

pjk;ρ′ki(β)(α)pki;ρ(β),

where

ρ′ki(β) =
eβL(ρ⊗ |i〉 〈i|)Pk

Tr(eβL(ρ⊗ |i〉 〈i|)Pk)
, k ∈ V.

Letting dim(hi) = 1 ∀i ∈ V gives ρ′ki(β) = 1 ∈ C, ∀k, i ∈ V. Therefore, this formula gives

the Chapman-Kolmogorov Identity for continuous-time Markov chains.

To show equivalence between recurrence and SJK-recurrence, we will show that the function

g(ρ, s) = pji;ρ(s) is jointly continuous under the variables s ∈ [0,∞) and ρ ∈ S(hi), which is a

result that is not necessary to show this equivalence for classical Markov chains.

Proposition 9. Consider a CTOQW in V , let i, j ∈ V and denote Wi := S(hi)× [0,+∞).

The function g : Wi → [0, 1] defined by g(ρ, s) = pji;ρ(s) is jointly continuous on Wi.

The following proposition gives properties of the transition functions of CTOQWs. They

have fundamental importance to the next definitions and results since they give sufficient

conditions to the transition functions to be strictly positive for t sufficiently large. Items (1),

(2), (3) generalize Proposition 1.3 of [1] and (4) associate the positivity of pji;ρ(t) with all the

initial densities operators.

Proposition 10. Consider a CTOQW in V and let i ∈ V. The following assertions hold.

(1) For all ρ ∈ S(hi) and t ≥ 0, pii;ρ(t) > 0;

(2) If pij;ρ(t) > 0 for some t > 0, then pij;ρ(s) > 0 ∀s ≥ t;
(3) If pii;ρ(t) = 1 for some t > 0, then pii;ρ(s) = 1,∀s ∈ [0, t];

(4) If δ > 0, dim(hi) < ∞ and there exists t0 ∈ [0, δ] such that pji;ρ(t0) > 0, then the

minimum Nji := min{pji;ρ(s) : ρ ∈ S(hi) and s ∈ [t0, δ]} is attained on (0, 1].
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We denote for i, k ∈ V and δ > 0 the following values

Ξδki(ρ) =

∞∑
n=0

pki;ρ(nδ)

and

Ei,ρ(nk) =

ˆ ∞
0

pki;ρ(t)dt.

Those values are associated with the following Theorem. Proof of the classical result can

be found in [1, Proposition 5.1.1].

Theorem 11. Consider a CTOQW in V, δ > 0 and i, j ∈ V. If dim(hj) <∞, then

Ξδji(ρ) = +∞ ⇔ Ei,ρ(nj) = +∞.

In particular, j is ρ-recurrent if, and only if, j is ρ-SJK-recurrent in the δ-skeleton.

Now we have an equivalence between the CTOQW and its discretized random walk with

n-step transition probabilities in the δ-skeleton. To finish this section, we give some results

about site recurrence in terms of the initial density operators.

Proposition 12. Consider a CTOQW in V , i ∈ V, dim(hi) = n <∞, ρ̃ ∈ S(hi) and suppose

that i is ρ̃-recurrent.

(1) For any faithful ρ ∈ S(hi), i is ρ-recurrent;

(2) If ρ ∈ S(hi) and there exists δ ≥ 0 such that ρ′ii(δ) is faithful, then i is ρ-recurrent;

(3) If n ≥ 2, there is a non-faithful density ρ on S(hi) in which i is ρ-recurrent;

(4) If n ≥ 2, then the non-faithful density ρ on item (3) can be assumed to be pure;

(5) If n = 2, then i is ρ-transient for at most one density ρ.

Remark 13. By contraposition, we get by the first item of the Proposition 12 that if i ∈ V,
dim(hi) = n <∞ and ρ ∈ S(hi) is faithful with i being ρ-transient, then i is ρ′-transient for

any ρ′.

3. Recurrence criteria for CTOQWs induced by a finite coin

Now we consider the special generator of CTOQWs of the form

(6) L(µ) = −i[H⊗ I, µ] +
∑
i∈Zd

2d∑
r=1

(
Bri µB

r∗
i −

1

2
{Br∗i Bri , µ}

)
,

where {e1, . . . , er} is the canonical basis of Zd and we set e0 = 0d, ed+r = −er for all

r ∈ {1, . . . , d}, and Bri = Dr ⊗ |i+ er〉 〈i| .
The auxiliary Lindblad operator L : B(h)→ B(h) of a CTOQW with generator of the

form (6) is defined by

L(ρ) = G0ρ+ ρG∗0 +

2d∑
r=1

DrρD
∗
r ,

where

G0 = −iH − 1

2

2d∑
r=1

D∗rDr.

Given such an auxiliary Lindblad operator, we can consider the hypothesis
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• (H1): there exists a unique density operator ρinv ∈ S(h) such that L(ρinv) = 0.

Concerning CTOQWs induced by a coin, we can imagine the concept of recurrence with a

scale of two pans, where there are many weights and they depend on the operators A and C.

In this situation, the CTOQW is recurrent if and only if the scale is in a state of equilibrium,

thus one may conclude that there is a value depending on A and C that guarantees this

equilibrium. As will be shown later, when (H1) holds, this value is

(7) m = Tr(AρinvA
∗)− Tr(CρinvC

∗),

thus the equilibrium indeed depends on A and C and also on ρinv (and therefore it also

depends on the Hamiltonian operator). In a more general way, we let

m =

2d∑
r=1

Tr (DrρinvD
∗
r) er.

As discussed above, if V = Z (d = 1), we let D1 = A, D2 = C, m becomes the value of

Equation (7) and the auxiliary Lindblad operator has the form

(8) L(ρ) = −iHρ+ iρH − 1

2
(C∗C +A∗A) ρ− 1

2
ρ (C∗C +A∗A) + CρC∗ +AρA∗.

Lemma 14 ([7]). For all u ∈ Rd, the equation

(9) L∗(Ju) = −

(
2d∑
r=1

(er.u)D∗rDr − (m.u)I

)
admits a solution and the difference between any couple of solutions of (9) is a multiple of the

identity.

The following Theorem is a continuous-time version of the Law of Large Numbers given in

[3, Theorem 5.2], and it is a consequence of the results of [7].

Theorem 15 (Law of Large Numbers for CTOQWs). Let (ρt, Xt)t≥0 be the Markov process

on Definition 3 and assume that the generator is of the form (6). If (H1) holds, then

Xt

t
→ m a.s.

Proof. We have the following assertions from [7, Theorem 3.0.9]:

(1) The process (Mt)t≥0 defined by

Mt = Tr(ρtJu)− Tr(ρ0Ju) +Xt.u−X0.u− (m.u)t

is a martingale with respect to the filtration associated with (ρt, Xt)t≥0;

(2) ∆Ms is bounded independently of s;

(3) Tr(ρtJu)− Tr(ρ0Ju)−X0.u is bounded independently of t.

Using items (1) and (2), Azuma’s inequality and the Borel Cantelli lemma, we get Ms/s→ 0

a.s. Now we use item (3) to obtain

Xt

t
→ m a.s.

The following Lemma is adapted from the discrete case (see [13, Lemma 6]), however, this

continuous-time version gives a stronger result in terms of invariant subspaces.
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Lemma 16. Consider a homogeneous CTOQW with V = Z, let (Xt, ρt)t≥0 be the Markov

chain given on Definition 3 and assume that Y is a subspace of Cd which is invariant for each

Rji . Let ε > 0 and ω > 1 an integer, then for every ρ ∈ D := D(Y), we have

ˆ ∞
0

P0,ρ (|Xt| < ωε) dt ≤ 2ω.max
σ∈D

ˆ ∞
0

P0,σ (|Xt| < ε) dt.

Proof. We write (−ω, ω) ⊂ ∪ω−1k=−ω[k, k + 1) to get the inequality

ˆ ∞
0

P0,ρ (|Xt| < ωε) dt ≤
ˆ ∞
0

ω−1∑
k=−ω

P0,ρ (kε ≤ Xt < (k + 1)ε) dt.

Denote Tk = inf{y ≥ 0 : kε ≤ Xy < (k + 1)ε} and

ζρε,k =

ˆ ∞
0

P0,ρ (kε ≤ Xt < (k + 1)ε) dt,

then we obtain the identity

ζρε,k =

ˆ ∞
0

ˆ ∞
0

P0,ρ (kε ≤ Xt < (k + 1)ε, Tk = y) dydt.

For Tk = y, we have kε ≤ Xy < (k+1)ε, thus −(k+1)ε < −Xy ≤ −kε and −ε < Xt−Xy < ε,

thereby Fubini’s Theorem gives

ζρε,k =

ˆ ∞
0

ˆ ∞
0

P0,ρ (|Xt −Xy| < ε, Tk = y) dydt

=

ˆ ∞
0

ˆ ∞
y

P0,ρ (|Xt −Xy| < ε, Tk = y) dtdy

=

ˆ ∞
0

P0,ρ (Tk = y)

ˆ ∞
y

P0,ρ (|Xt −Xy| < ε) dtdy,

where the last equality follows from independence.

Denote Pk,y0,ρ = P0,ρ (Tk = y) . Since Y is invariant by all Rji , the quantum trajectory never

leaves D, thus a summation over D and Z and an application of Fubini’s Theorem give

ζρε,k =

ˆ ∞
0

Pk,y0,ρ

ˆ ∞
y

P0,ρ (|Xt −Xy| < ε) dtdy

=

ˆ ∞
0

Pk,y0,ρ

ˆ ∞
y

∑
σ∈D,j∈Z

P0,ρ (|Xt −Xy| < ε, (Xy, ρy) = (j, σ)) dtdy

=

ˆ ∞
0

Pk,y0,ρ

∑
σ∈D,j∈Z

ˆ ∞
y

P0,ρ (|Xt −Xy| < ε|(Xy, ρy) = (j, σ))P0,ρ ((Xy, ρy) = (j, σ)) dtdy.

The summation over D is valid because P0,ρ ((Xy, ρy) = (j, σ)) is supported on a finite set as

a function of σ.



Newton Loebens 589

By homogeneity on space and the change of variables s = t− y, we get

ζρε,k =

ˆ ∞
0

Pk,y0,ρ

∑
σ∈D,j∈Z

ˆ ∞
y

Pj,σ (|Xt−y −X0| < ε) dtP0,ρ ((Xy, ρy) = (j, σ)) dy

=

ˆ ∞
0

Pk,y0,ρ

∑
σ∈D,j∈Z

ˆ ∞
0

Pj,σ (|Xs − j| < ε) dsP0,ρ ((Xy, ρy) = (j, σ)) dy

=

ˆ ∞
0

Pk,y0,ρ

∑
σ∈D

ˆ ∞
0

P0,σ (|Xs| < ε) ds
∑
j∈Z

P0,ρ ((Xy, ρy) = (j, σ)) dy

≤
ˆ ∞
0

Pk,y0,ρ max
τ∈D

ˆ ∞
0

P0,τ (|Xs| < ε) ds
∑

σ∈D,j∈Z
P0,ρ ((Xy, ρy) = (j, σ)) dy

=

ˆ ∞
0

Pk,y0,ρdymax
τ∈D

ˆ ∞
0

P0,τ (|Xs| < ε) ds

= max
τ∈D

ˆ ∞
0

P0,τ (|Xs| < ε) ds.

Therefore,

ˆ ∞
0

P0,ρ (|Xt| < ωε) dt ≤
ω−1∑
k=−ω

ζρε,k ≤
ω−1∑
k=−ω

max
τ∈D

ˆ ∞
0

P0,τ (|Xs| < ε) ds

=2ω.max
τ∈D

ˆ ∞
0

P0,τ (|Xs| < ε) ds.

Some properties regarding the recurrence of CTOQWs induced by coins will be presented

below as applications of the Law of Large Numbers and the Lemma above.

Theorem 17 (Chung-Fuchs Theorem for CTOQWs). Consider a CTOQW induced by a coin

(C,A)H of dimension d <∞ with

Xt

t
→ 0 in probability.

If Y is a subspace of Cd that is invariant for C and A, then there exists σ ∈ D = D(Y)

such that vertex |0〉 is σ-recurrent.

Proof. Firstly we denote uρt (x) = P0,ρ (|Xt| < x) and by σ the density that attains the

maximum ˆ ∞
0

uσt (1) = max
ρ∈D

ˆ ∞
0

uρt (1).

By lemma 16,

2ω.

ˆ ∞
0

uσt (1)dt ≥
ˆ ∞
0

uρt (ω)dt, 1 < ω ∈ Z, ρ ∈ D.

Let A > 0 an integer, thenˆ ∞
0

p00;σ(t)dt =

ˆ ∞
0

uσt (1) ≥ 1

2ω

ˆ ∞
0

uρt (ω)dt

≥ 1

2ω

ˆ Aω

0

uρt (ω)dt ≥ 1

2ω

ˆ Aω

0

uρt (t/A)dt,

(10)
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since uρt (x) is a non-negative increasing function on x.

By the Weak Law hypothesis, we have

lim
ω→∞

1

2ω

ˆ ωA

0

uρt (t/A)dt =
A

2
lim
ω→∞

ˆ ωA

0

uρt (t/A)

ωA
=
A

2
,

thus Equation (10) gives ˆ ∞
0

p00;σ(t)dt ≥ A

2

for every integer A > 0, from where we conclude that |0〉 is σ-recurrent.

Those results bring us to the main result of this paper:

Theorem 18 (Recurrence criteria for CTOQWs satisfying (H1)). Consider a CTOQW induced

by a coin (C,A)H . If condition (H1) holds, then

(1) Tr(AρinvA
∗) = Tr(CρinvC

∗)⇒ (C,A)H is recurrent;

(2) Tr(AρinvA
∗) 6= Tr(CρinvC

∗)⇒ (C,A)H is transient.

Proof. Let m = Tr(AρinvA
∗)−Tr(CρinvC

∗). If m = 0, we have by Theorem 15 that Xt/t→ 0

and thus Theorem 17 assures that |0〉 is σ-recurrent for some σ ∈ Y, where Y is any common

invariant subspace of C and A. If (C,A)H was ρ-transient for some ρ, then it would be transient

with respect to all densities of S(X ), where X is a common invariant subspace for C and A,

which is a contradiction.

On the other hand, if m 6= 0, we have Xt/t → m 6= 0 by Theorem 15, thus Xt must be

unbounded on probability, that is,

Pi,ρ (Xt = 0 i.o.) = 0,

for any ρ. Therefore the number of visits to |0〉 is finite for any initial density operator, thus

(C,A)H is transient.

We remark that, fixed a coin (C,A)H , the CTOQW induced by this coin may be recurrent

or transient according to the Hamiltonian operator since it changes the value of the stationary

state ρinv appearing in Theorem 18 (See Example 25 below).

4. The C2 case

This section is restricted to CTOQWs induced by coins of dimension 2. This lower dimension

allows us to give a complete recurrence criterion for this kind of CTOQW in terms of its

generator.

Proposition 19. Consider a CTOQW induced by a coin (C,A)H of dimension 2. If L
has more than one invariant state, then A and C are both diagonal with respect to some

orthonormal basis of C2.

Equivalently, C and A share two orthogonal eigenvectors.

Proof. We suppose that L has two distinct invariant states, then by [18, Proposition 3], there

exist two proper orthogonal subspaces of C2 that are both invariant by L. Also as remarked in

[18], this implies that there exist two orthogonal subspaces of C2 that are both invariant for C

and A. Those operators are acting in a Hilbert space of dimension 2, thereby they must share
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two orthogonal eigenvectors, and therefore they are normal operators, thus diagonal under the

same basis.

Lemma 20. Consider a CTOQW induced by a coin (C,A)H of dimension 2, where the linear

operators C,A,H are of the form

C =

[
c1 0
0 c2

]
, A =

[
a1 0
0 a2

]
, aj , cj ∈ C, j = 1, 2,

H =

[
h1 h2
h2 h3

]
, 0 6= h2 ∈ C, h1, h3 ∈ R.

If L has 2 distinct stationary states, then the Hamiltonian operator H does not contribute

with the recurrence of the walk and a1 = a2, c1 = c2.

Proof. Let us consider a CTOQW induced by a coin (C,A)H of dimension 2 with Lindblad

generator L, and

ρ =

[
ρ11 ρ12
ρ12 1− ρ11

]
, ρ11 ∈ [0, 1], ρ12 ∈ C, L(ρ) =

[
0 0
0 0

]
,

such that |ρ12|2 ≤ ρ11(1− ρ11), that is, ρ is a stationary state of L.
In this case, [

0 0
0 0

]
= L(ρ) =

[
τ1 τ2
τ3 τ4

]
,

where

τ1 =− 2Im(h2ρ12),

τ2 =
ρ12
2

(−|a1|2 − |a2|2 − |c1|2 − |c2|2 + 2a1a2 + 2c1c2) + ih2(2ρ11 − 1)− i(h1 − h3)ρ12,

τ3 =
ρ12
2

(−|a1|2 − |a2|2 − |c1|2 − |c2|2 + 2a1a2 + 2c1c2)− ih2(2ρ11 − 1) + i(h1 − h3)ρ12,

τ4 =2iIm(h2ρ12).

(11)

The values τj , j = 1, 2, 3, 4, were obtained with Equation (8).

Note that h2ρ12 6= 0. Indeed, h2 6= 0 by assumption and ρ12 can not be null, otherwise we

would have ρ11 = 1/2 and ρ = I/2 would be the only stationary state of L.
By the multiplication h2τ3 = 0, we get

0 =
h2ρ12

2
(−|a1|2 − |a2|2 − |c1|2 − |c2|2 + 2a1a2 + 2c1c2)− i|h2|2(2ρ11 − 1) + i(h1 − h3)h2ρ12

=h2ρ12

(
−|a1|2 − |a2|2 − |c1|2 − |c2|2 + 2a1a2 + 2c1c2

2
+ i(h1 − h3)

)
− i|h2|2(2ρ11 − 1).

Recalling that (h1 − h3), |h2|2(2ρ11 − 1) ∈ R, and that h2ρ12 is also real (since τ4 = 0), we

obtain that

Re
(
|a1|2 + |a2|2 + |c1|2 + |c2|2 − 2a1a2 − 2c1c2

)
= 0,

which happens if and only if a1 = a2 and c1 = c2. Furthermore, A = aI2 and C = cI2, where

a1 = a2 = a ∈ C and c1 = c2 = c ∈ C and thus H does not contribute with the recurrence of

the walk.
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Theorem 21 (Recurrence criteria for coins of dimension 2). Consider a CTOQW induced by

a coin (C,A)H of dimension 2, and let

|u1〉 =

[
1
0

]
, |u2〉 =

[
0
1

]
.

(1) If L has a unique stationary state ρinv, then

• Tr(AρinvA
∗) 6= Tr(CρinvC

∗)⇒ the walk is transient;

• Tr(AρinvA
∗) = Tr(CρinvC

∗)⇒ the walk is recurrent.

(2) If L has more than one stationary state, then C and A share two orthogonal eigenvectors,

and H does not contribute with the recurrence of the walk. In this case, we can represent

C,A,H by

C =

[
c1 0
0 c2

]
, A =

[
a1 0
0 a2

]
, aj , cj ∈ C, j = 1, 2,

H =

[
h1 h2
h2 h3

]
, h2 ∈ C, h1, h3 ∈ R.

In this case, the two common orthonormal eigenvectors of C,A are |u1〉 , |u2〉 .
(2.1) If h2 = 0, then

a: |ai| 6= |ci| for i = 1, 2 ⇒ (C,A)H is transient;

b: |ai| = |ci| for i = 1, 2 ⇒ (C,A)H is recurrent;

c: |ai| = |ci|, |aj | 6= |cj |, i 6= j, i, j ∈ {1, 2} ⇒ (C,A)H is |uj〉 〈uj |-transient and

ρ-recurrent for all densities ρ 6= |uj〉 〈uj |.
(2.2) If h2 6= 0, then a1 = a2 = a, c1 = c2 = c for some a, c ∈ C2. In this case,

• a = c⇒ the walk is recurrent;

• a 6= c⇒ the walk is transient.

Proof. Item (1) is a particular case of Theorem 18.

Now we suppose that L has more than one stationary state. By Proposition 19, C and A

are diagonal with respect to some orthonormal basis of C2, thus they are normal and share two

orthonormal eigenvectors, namely |u1〉 , |u2〉 ∈ C2. By the spectral theorem, we can assume

that

C =

[
c1 0
0 c2

]
, A =

[
a1 0
0 a2

]
, aj , cj ∈ C, j = 1, 2,

in the basis β := {|u1〉 , |u2〉} of C2.

Letting

H =

[
h1 h2
h2 h3

]
, h1, h3 ∈ R, h2 ∈ C,

in β, we first suppose that h2 = 0 and either a1 6= a2 or c1 6= c2.

Consider the set

D̂ :=

{
ρ ∈ S(H) : ρ =

∑
i∈V

ρ(i)⊗ |i〉 〈i| , ρ(i) ∈M2(C) is diagonal for each i in basis β

}
,

which is a subset of D. Note that D̂ represents the set of all block-diagonal densities such that

each ρ(i) ∈M2(C) can be represented by a diagonal matrix in basis β.
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If ρ ∈ D̂, then is straightforward that L(ρ ⊗ |i〉 〈i|) ∈ D̂, since C,A,H are all diagonal.

Therefore L2(ρ⊗ |i〉 〈i|), L3(ρ⊗ |i〉 〈i|), L4(ρ⊗ |i〉 〈i|), . . . ∈ D̂, and so on we see that

etL(ρ⊗ |i〉 〈i|) =

∞∑
n=0

tn

n!
Ln(ρ⊗ |i〉 〈i|) ∈ D̂.

We have

C =

[
c1 0
0 c2

]
, A =

[
a1 0
0 a2

]
, aj , cj ∈ C, |u1〉 =

[
1
0

]
|u2〉 =

[
0
1

]
,

thus

A |uj〉 = aj , C |uj〉 = cj , k = 1, 2.

Consider the densities

ρ1 = |u1〉 〈u1| =
[
1 0
0 0

]
, ρ2 = |u2〉 〈u2| =

[
0 0
0 1

]
.

As discussed above, etL(ρ1 ⊗ |i〉 〈i|) ∈ D̂, showing that ρt(i), as defined in Equation (4), is of

the form

ρt(i) =

[
τt 0
0 0

]
, 0 < τt < 1,

leading us to the probability

pii;ρ1(t) = Tr(ρt(i)⊗ |i〉 〈i|) = τt.

So we can note that if we start the walk at vertex i with initial density operator ρ1, the

values c2 and a2 do not contribute with the transition probabilities. Moreover, the operator

H does not contribute with the transitions, since

Giρ1 + ρ1G
∗
i = −iHiρ1 −

1

2

∑
j∈V

Rj∗i R
j
iρ1 + iρ1Hi −

1

2
ρ1
∑
j∈V

Rj∗i R
j
i = −

∑
j∈V

Rj∗i R
j
iρ1,

where H is hermitian and the commutative property holds because all the involved matrices

ρ1 and Rj∗i R
j
i are diagonal and hermitian. Now it is trivial that the CTOQW is ρ1-recurrent

if and only if the continuous-time Markov chain with Q-matrix‡

Q =



. . .
. . .

. . . 0
|a1|2 −|a1|2 − |c1|2 |c1|2

|a1|2 −|a1|2 − |c1|2 |c1|2
|a1|2 −|a1|2 − |c1|2 |c1|2

0
. . .

. . .
. . .


is recurrent, which is recurrent only for |a1| = |c1| [11, Example 3.66]. See [1, 16] for more on

Q-matrices. An analogous result can be obtained for ρ2 and the values |a2|, |c2|.
In short,

(C,A)H is ρj-recurrent if and only if |aj | = |cj |.
Let us assume the walk is neither recurrent nor transient, then by items 3 and 4 of

Proposition 12, the walk is

|v1〉 〈v1| -recurrent and |v2〉 〈v2| -transient

‡Some authors call a Q-matrix as the infinitesimal operator matrix of the continuous-time Markov chain [11].
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for some |v1〉 , |v2〉 ∈ C2. This implies that (C,A)H is |v2〉 〈v2|-transient and σ-recurrent for

all σ 6= |v2〉 〈v2| , otherwise

Y = {ρ : (C,A)H is ρ-transient} ⊂ C2

would be an invariant subspace of dimension 2.

Since the CTOQW is homogeneous, |v2〉 must be a common eigenvector of C and A. Indeed,

if the initial density operator is ρ = |v2〉 〈v2| , we must have ρ = ρTn for all n ∈ N, otherwise

the walk would be ρTn -recurrent, since we could refresh the walk after the n-th jump and the

density operator at this stage would be ρTn , which is a contradiction (see Remark 1).

We conclude that |v2〉 is a multiple of |uj〉 for some j ∈ {1, 2}, and consequently the walk is

neither recurrent nor transient when or |a1| = |c1| and |a2| 6= |c2| or |a2| = |c2| and |a1| 6= |c1|.
Finally, in this case, Proposition 12 assures that (C,A)H is transient with respect to a unique

initial density operator and recurrent with respect to all the other density operators according

to the modulus of |cj | and |aj |, j = 1, 2.

Now we let h2 6= 0. By Lemma 20, H does not contribute with the recurrence of the

CTOQW, a = a1 = a2 and c = c1 = c2, thus the arguments above show that the walk is

recurrent if and only if |a| = |c|.

The last result of this work is a consequence of the Theorem above. It shows that the

recurrence of a CTOQW induced by a coin (C,A)H of dimension 2 with C and A being

diagonal in a common basis depends only on the modulus of the elements on the diagonal

(also the modulus of the eigenvalues) of C and A, once we know if ρinv is unique.

Proposition 22. Consider a CTOQW induced by a coin (C,A)H such that there exists a

basis in which

C =

[
c1 0
0 c2

]
, A =

[
a1 0
0 a2

]
, aj , cj ∈ C, j = 1, 2.

The Hamiltonian H determines if ρinv is unique, and after that, it does not contribute with

the recurrence of the walk and we are in one of the following situations:

(i): If L has only one stationary state ρinv, then ρinv = I2 and

• |a1|2 + |a2|2 = |c1|2 + |c2|2 ⇒ (C,A)H is recurrent;

• |a1|2 + |a2|2 6= |c1|2 + |c2|2 ⇒ (C,A)H is transient.

(ii): If L has more than one stationary state, then we are in situation (2) of Theorem

21.

Proof. We just have to prove the case (i). So, let us suppose that ρinv is unique, then

ρ11 =
1

2
and ρ12 = 0

is a solution for Equation (11), thus

ρinv =
1

2

[
1 0
0 1

]
is the only stationary state of L. A simple calculation gives

Tr (AρinvA
∗)− Tr (CρinvC

∗) =
(
|a1|2 + |a2|2

)
−
(
|c1|2 + |c2|2

)
,
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which is null if and only if |a1|2 + |a2|2 = |c1|2 + |c2|2. The proof is finished by an application

of Theorem 21, item (1).

5. Examples

In this section, we present examples of CTOQWs induced by different coins and describe how

to verify their recurrence. The stationary states were computed with Equation (8), and some

of the most exhaustive calculations were obtained with Maple 15 software.

Example 23. Let us consider a CTOQW induced by the coin (C,A)H ,

C =

[√
2 0

0
√

11

]
, A =

[
−
√

5 0
0 a

]
, H =

[
1 1− 2i

1 + 2i 1

]
, a ∈ C.

Since H is not diagonal, L has a unique stationary state ρinv = I2. Indeed, if L had at least two

stationary states, we would be in situation (2.1) or (2.2) of Theorem 21, which is impossible.

Therefore, we are in situation (i) of Proposition 22 (also situation (1) of Theorem 21), from

where we conclude that

• (C,A)H is recurrent ⇔ 5 + |a|2 = 13⇔ |a| = 2
√

2;

• (C,A)H is transient ⇔ |a| 6= 2
√

2.

♦

Example 24. Consider the CTOQW induced by the coin (C,A)H ,

C =
1

2

[
1 + c i(−1 + c)
i(1− c) 1 + c

]
, A =

1

2

[
2 + a i(2− a)

i(−2 + a) 2 + a

]
, i =

√
−1, a, c ∈ C,

and

H =

[
h1 h2
h2 h3

]
, h2 ∈ C, h1, h3 ∈ R.

The matrices C and A share two orthogonal eigenvectors

|u1〉 =

√
2

2
[−i, 1]t, |u2〉 =

√
2

2
[i, 1]t

with C |u1〉 = |u1〉 , C |u2〉 = c |u2〉 , A |u1〉 = a |u1〉 , A |u2〉 = 2 |u2〉 . By the Spectral Theorem,

we have

C = U

[
1 0
0 c

]
U∗, A = U

[
a 0
0 2

]
U∗, H = U

(
U∗
[
h1 h2
h2 h3

]
U

)
U∗,

where U is the unitary matrix of C2 such that U |e1〉 = |u1〉 , U |e2〉 = |u2〉 , and {|e1〉 , |e2〉} is

the canonical basis of C2. In matrix terms,

U =

√
2

2

[
−i i
1 1

]
.

Therefore, we have

C =

[
1 0
0 c

]
, A =

[
a 0
0 2

]
, H =

1

2

[
h1 − 2Re(h2) + h3 −i (h1 + 2Im(h2)− h3)

i (h1 − 2Im(h2)− h3) h1 + 2Re(h2) + h3

]
,

in basis {|u1〉 , |u2〉}. Firstly, let us suppose that

h1 + 2Im(h2)− h3 = 0,
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then the antidiagonal of H (in the basis {|u1〉 , |u2〉}) is null and L has more than one stationary

state. The values aj , cj , j = 1, 2, appearing at item (2.1) of Theorem 21 are

c1 = 1, c2 = c, a1 = a, a2 = 2.

We have

a: If |a| 6= 1 and |c| 6= 2, then the walk is transient;

b: If |a| = 1 and |c| = 2, then the walk is recurrent;

c: If |a| 6= 1 and |c| = 2, then (C,A)H is |u1〉 〈u1|-transient and ρ-recurrent for all

densities ρ 6= |u1〉 〈u1|;
d: If |a| = 1 and |c| 6= 2, then (C,A)H is |u2〉 〈u2|-transient and ρ-recurrent for all

densities ρ 6= |u2〉 〈u2|.
On the other hand, if h1 + 2Im(h2)− h3 6= 0, then L has only one stationary state and by

Proposition 22, item (i), (C,A)H is recurrent for

|c|2 − |a|2 = 3

and transient otherwise.

♦

Example 25. Let us consider the CTOQW induced by the coin (Cy, Ay)Hh ,

Cy =

[
−1 1
2y 1

]
, Ay =

[
1 1
y 2

]
, Hh =

[
0 ih
−ih 0

]
, y, h ∈ R.

For simplicity, we assume that |y| 6= 1 and 25y4+8h2−30y3−12yh+37y2+12h−36y+14 6= 0.

The reason for this hypothesis will be cleared later.

The invariant state of L is ρinv =

[
a b
b 1− a

]
, where

a =
2(7 + 6h− 18y − 8yh+ 13y2 + 2h2)

25y4 + 8h2 − 30y3 − 12yh+ 37y2 + 12h− 36y + 14
,

b =
2(−10y3 + 15y2 + 5y2h− 6y − 2h)

25y4 + 8h2 − 30y3 − 12yh+ 37y2 + 12h− 36y + 14
.

A calculation gives

m =Tr(AyρinvA
∗
y)− Tr(CyρinvCy)

=
12yh− 16h+ 48y3h− 12y2h2 + 111y2 + 12h2 − 3y4 − 62y3 + 4y2h

25y4 + 8h2 − 30y3 − 12yh+ 37y2 + 12h− 36y + 14
.

Firstly, we assume that y = 0. In this case, C0 and A0 share only one eigenvector, namely

|u〉 = [1, 0]t, thus by Theorem 21, the walk is recurrent (transient) if and only if m = 0 (m 6= 0).

The value m is explicitly

m =
2h(3h− 4)

4h2 + 6h+ 7

{
= 0, if h ∈ {0, 4/3}
6= 0, otherwise.

Therefore (C0, A0)Hh is recurrent if and only if h = 0 or h = 4/3. Otherwise, the walk is

transient.
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Secondly, let us assume that y 6= 0. In this case, Cy and Ay share no eigenvector, thus by

Theorem 21, the walk is recurrent if and only if m = 0, which happens when

h =
y2 − 4 + 3y + 12y3 ±

√
415y4 − 332y2 − 48y3 − 162y5 + 16 + 120y + 135y6

6(y2 − 1)
.

Otherwise, the walk is transient.

In particular, taking y = 1/2 we conclude that the coin (C 1
2
, A 1

2
)Hh is recurrent for

h =
2±
√

71

12

and otherwise, it is transient.

♦

Example 26. Let us finish this section with an example of CTOQW induced by a coin (C,A)H
of dimension 3. We consider

C =

c 0 0
1 0 0
0 0 1

 , c ∈ R, A =

1 1 0
0 0 1
0 0 1

 , Hi =

1 2 0
2 0 0
0 0 0

 , i ∈ R.

If c = 0, then

ρinv =
1

53

 21 −19− 2i 0
−19 + 2i 32 0

0 0 0


and m = Tr(AρinvA

∗)− Tr(CρinvC) = −6/53.

If c = 1, then

ρinv =
1

2

1 0 0
0 1 0
0 0 0


and m = 0.

By Theorem 18, we conclude that

• c = 0⇒ the walk is transient;

• c = 1⇒ the walk is recurrent.

For completeness, it is possible to show that this CTOQW is recurrent if and only if c = 1.

♦
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13. Jacq, T.S., Lardizabal, C.F. Homogeneous open quantum walks on the line: criteria for site
recurrence and absorption. Quantum Inf. Comput. 21(1-2), 37-58 (2021).

14. Kuemmerer, B., Maassen, H. (2004). A pathwise ergodic theorem for quantum trajectories.
Journal of Physics A: Mathematical and General, 37(49), 11889.

15. Lindblad, G. On the Generators of Quantum Dynamical Semigroups. Communications in
Mathematical Physics, v. 48, n. 2, p.119-130, 1976.

16. Norris, J. R. Markov Chains. Cambridge university press, 1998.
17. Pellegrini, C. Continuous Time Open Quantum Random Walks and non-Markovian Lindblad

Master Equations. Journal of Statistical Physics, v. 154, n. 3, p. 838-865, 2014.
18. Schirmer, S. G., Wang, X. (2010). Stabilizing open quantum systems by Markovian reservoir

engineering. Physical Review A, 81(6), 062306.
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Appendix A

Proof of Proposition 8. Let i, j ∈ V and α, β ≥ 0. For simplicity, we will denote

Pk = I ⊗ |k〉 〈k| for k ∈ V, then we use the semigroup property to obtain

pji;ρ(α+ β) =Tr
[
e(α+β)L(ρ⊗ |i〉 〈i|)Pj

]
= Tr

[
eβL(ρ⊗ |i〉 〈i|)eαL

∗
(Pj)

]
=
∑
k

Tr
[
eβL(ρ⊗ |i〉 〈i|)Pk eαL

∗
(Pj)

]
=
∑
k

Tr
[
eαL

(
eβL(ρ⊗ |i〉 〈i|)Pk

)
Pj
]

=
∑
k

Tr

[
eαL

(
eβL(ρ⊗ |i〉 〈i|)Pk

Tr(eβL(ρ⊗ |i〉 〈i|)Pk)

)
Pj

]
Tr(eβL(ρ⊗ |i〉 〈i|)Pk)

=
∑
k

pjk;ρ′ki(β)(α)pki;ρ(β),

where

ρ′ki(β) =
eβL(ρ⊗ |i〉 〈i|)Pk

Tr(eβL(ρ⊗ |i〉 〈i|)Pk)

is a density operator. �

Proof of Proposition 9. Define the function g : Wi → [0, 1] by g(ρ, s) = pji;ρ(s). Since

etL is uniformly continuous, g is continuous on [0,+∞) for a fixed ρ ∈ Shi , thus, given ε > 0,

there is an α > 0 such that |t− s| < α implies |g(ρ, t)− g(ρ, s)| < ε/2.

Let β := min(α, ε/2). If |t− s| < β and ‖ρ− ρ′‖1 < β, where ‖ · ‖1 is the trace norm in hi,

we have

|g(ρ, s)− g(ρ′, s)| =
∣∣Tr
[
esL((ρ− ρ′)⊗ |i〉 〈i|)Pj

]∣∣
=
∣∣∣Tr
[
((ρ− ρ′)⊗ |i〉 〈i|)esL

∗
(Pj)

]∣∣∣
≤‖(ρ− ρ′)⊗ |i〉 〈i|‖1

∥∥∥esL∗(Pj)∥∥∥
<β,

thus we obtain

|g(ρ, t)− g(ρ′, s)| ≤ |g(ρ, t)− g(ρ, s)|+ |g(ρ, s)− g(ρ′, s)| < ε.

This concludes the proof. �

Proof of Proposition 10. (1)By contradiction, suppose that there exists k > 0 with

pii;ρ(k) = 0. Since pii;ρ(t) is jointly continuous on (t, ρ) ∈ ([0,∞)× S(hi)) and pii;ρ(0) = 1,

we can assume that k = min{s > 0 : pii;ρ(s) = 0}. Moreover, there exists ε > 0 such that, for

t < k,

k − t < ε and ‖ρ− ρ̃‖ < ε⇒ pii;ρ̃(t) > 0.

Now, note that

ρ′ii(k/n) =
e
k
nL(ρ⊗ |i〉 〈i|)Pi

Tr(e
k
nL(ρ⊗ |i〉 〈i|)Pi)

n→∞−→ (ρ⊗ |i〉 〈i|)Pi
Tr((ρ⊗ |i〉 〈i|)Pi)

= ρ⊗ |i〉 〈i| .
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Now, take n > 0 such that k
n < ε and ‖ρ⊗ |i〉 〈i| − ρ′ii(k/n)‖ < ε, then pii;ρ′ii(k/n)((kn−

k)/n) > 0, thus

pii;ρ(k) ≥ pii;ρ′ii(k/n)((kn− k)/n)pii;ρ(k/n) > 0

holds by Proposition 8, which gives a contradiction.

For item (2), let x ≥ 0, then item (1) gives

pij;ρ(t+ x) ≥ pii;ρ′ij(t)(x)pij;ρ(t) > 0.

Suppose pii;ρ(t) = 1 for some t > 0. If we had pji;ρ(s) > 0 for some j 6= i and s ∈ [0, t],

then

0 =
∑
k 6=i

pki;ρ(t) ≥ pji;ρ(t− s+ s) ≥ pii;ρ′ji(s)(t− s)pji;ρ(s) > 0,

which is a contradiction. This shows item (3).

To prove item (4), note that for fixed 0 ≤ t0 < δ, W (i, δ) := S(hi)× [t0, δ] is a compact set

in Wi = S(hi)× [0,+∞). Hence, by the jointly continuity, Nji is attained on (0, 1]. �

Proof of Theorem 11. If pji;ρ(t) = 0 for all t, then the result is obvious. Thus suppose

pji;ρ(t) > 0, for some t ≥ 0. Item (2) of Proposition 10 assures the existence of Mδ ∈ N such

that pji;ρ(nδ) > 0, ∀n ≥Mδ.

By the Mean Value Theorem for Integrals, we have

ˆ ∞
0

pji;ρ(t)dt =

∞∑
n=0

ˆ (n+1)δ

nδ

pji;ρ(t)dt =

∞∑
n=0

δpji;ρ(nδ + sn),

where (sn)∞n=0 is a sequence in [0, δ].

By Proposition 8,

(A.1) pji;ρ(nδ + sn) ≥ pji;ρ(nδ)pjj;ρ′ji(nδ)(sn), ∀n ≥Mδ,

and

(A.2) pji;ρ(nδ+δ) = pji;ρ(nδ+sn+δ−sn) ≥ pjj;ρ′ji(nδ+sn)(δ−sn)pji;ρ(nδ+sn), ∀n ≥Mδ,

so that for any fixed ρ,

ˆ ∞
0

pji;ρ(t)dt = δ

∞∑
n=0

pji;ρ(nδ + sn)dt ≥ δ
∞∑

n=Mδ

pji;ρ(nδ + sn)dt

(A.1)

≥ δ

∞∑
n=Mδ

pji;ρ(nδ)pjj;ρ′ji(nδ)(sn) ≥ δNjj
∞∑

n=Mδ

pji;ρ(nδ)

(A.3)
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and
∞∑
n=0

pji;ρ(nδ + δ)
(A.2)

≥
∞∑
n=0

pjj;ρ′ji(nδ+sn)(δ − sn)pji;ρ(nδ + sn)

≥
∞∑

n=Mδ

pjj;ρ′ji(nδ+sn)(δ − sn)pji;ρ(nδ + sn)

≥ Njj
∞∑

n=Mδ

pji;ρ(nδ + sn)

=
Njj
δ

∞∑
n=Mδ

δpji;ρ(nδ + sn)

=
Njj
δ

∞∑
n=0

δpji;ρ(nδ + sn)− Njj
δ

Mδ−1∑
n=0

δpji;ρ(nδ + sn)

=
Njj
δ

ˆ ∞
0

pji;ρ(t)dt−
Njj
δ

Mδ−1∑
n=0

δpji;ρ(nδ + sn).

(A.4)

Whence, for a state ρ, the divergence of the series in (A.3) implies the divergence of the

integral on the left. Also, if we suppose the integral on (A.4) diverges, then the series on the

left diverges since the series on the right-hand is finite. �

Proof of Proposition 12. 1. Since ρ is faithful, there exists α > 0 such that ρ ≥ αρ̃, thusˆ ∞
0

pii;ρ(t)dt =

ˆ ∞
0

Tr
[
etL(ρ⊗ |i〉 〈i|)Pi

]
dt

≥α
ˆ ∞
0

Tr
[
etL(ρ̃⊗ |i〉 〈i|)Pi

]
dt

=α

ˆ ∞
0

pii;ρ̃(t)dt

=∞.

2. Suppose ρ′ii(δ) is faithful for some δ ≥ 0. The item 1 gives that i is ρ′ii(δ)-recurrent, thus
ˆ ∞
0

pii;ρ(t)dt ≥
ˆ ∞
0

pii;ρ(t+δ)dt ≥
ˆ ∞
0

pii;ρ(δ)pii;ρ′ii(δ)(t)dt = pii;ρ(δ)

ˆ ∞
0

pii;ρ′ii(δ)(t)dt =∞.

3. Let ρ ∈ S(hi) be non-faithful. By the Spectral Theorem, ρ can be written as

(A.5) ρ =

n∑
x=1

λx |x〉 〈x| ,

where the vectors |x〉 , x = 1, . . . , n, are the eigenvectors of ρ with eigenvalues λx, x = 1, . . . , n.

Since ρ is non-faithful, there is at least one null eigenvalue and the remainder eigenvalues are

positive summing 1. Thus, (A.5) can be rewritten as

ρ =
∑
x∈S

λx |x〉 〈x| , S  {1, . . . , n}.

Take a sequence of positive numbers (αr)r∈R, where R := {1, . . . , n}/S 6= ∅, whose sum is 1.
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Defining the density operator

ρX =
∑
x∈S

λx
2
|x〉 〈x|+

∑
x∈R

αx
2
|x〉 〈x| =

n∑
x=1

α̃x
2
|x〉 〈x| , α̃x =

{
λx, if x ∈ S
αx, if x ∈ R

,

we get by item (1) that i is ρX -recurrent, since ρX is faithful.

Now, define

ρY =
∑
x∈R

αx |x〉 〈x| ,

which is a non-faithful density operator and then we get 2ρX = ρ+ ρY . This leads us toˆ ∞
0

pii;ρ(t)dt+

ˆ ∞
0

pii;ρY (t)dt =

ˆ ∞
0

(pii;ρ(t) + pii;ρY (t)) dt

=

ˆ ∞
0

(
Tr
[
etL(ρ⊗ |i〉 〈i|)Pi

])
+ Tr

[
etL(ρY ⊗ |i〉 〈i|)Pi

]
)dt

=

ˆ ∞
0

Tr
[
etL((ρ+ ρY )⊗ |i〉 〈i|)Pi

]
= 2

ˆ ∞
0

Tr
[
etL(ρX ⊗ |i〉 〈i|)Pi

]
= 2

ˆ ∞
0

pii;ρX (t)dt.

The integral on the right-hand diverges once i is ρX -recurrent. This implies that at least

one of the integrals on the left-hand side diverges. Therefore, i is ρ-recurrent or ρY -recurrent.

4. By item (3), vertex i is ρ-recurrent with respect to some non-faithful ρ. By the spectral

theorem, ρ =
∑
j λj |j〉 〈j| , where each λj is an eigenvalues of ρ with corresponding eigenvector

|j〉 , thereby we have

∞ =

ˆ ∞
0

pii;ρ(t)dt =
∑
j

λj

ˆ ∞
0

pii;|j〉〈j|(t)dt,

where the members of the sum are all positives, thus we haveˆ ∞
0

pii;|j〉〈j|(t)dt =∞ for some j.

5. If i is ρ-transient, then we can assume that ρ = |u〉 〈u| for some |u〉 ∈ C2 by item 4. Now

let |v〉 be any unitary vector of C2 linearly independent of |u〉 , then ρ = 1
2 |u〉 〈u|+

1
2 |v〉 〈v| is

a faithful density operator and thus i is ρ-recurrent, implying that i is |v〉 〈v|-recurrent. Since

{|u〉 , |v〉} forms a basis of C2, i must be recurrent with respect to every density different from

ρ. �


