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Novelty detection is the task of classifying test data that differ in some respect from the
data that are available during training. This may be seen as “one-class classification”, in
which a model is constructed to describe “normal” training data. The novelty detection
approach is typically used when the quantity of available “abnormal” data is insufficient
to construct explicit models for non-normal classes. Application includes inference in
datasets from critical systems, where the quantity of available normal data is very large,
such that “normality” may be accurately modelled. In this review we aim to provide an
updated and structured investigation of novelty detection research papers that have
appeared in the machine learning literature during the last decade.
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1. Introduction

Novelty detection can be defined as the task of recognis-
ing that test data differ in some respect from the data that
are available during training. Its practical importance and
challenging nature have led to many approaches being
proposed. These methods are typically applied to datasets
in which a very large number of examples of the “normal”
condition (also known as positive examples) is available
and where there are insufficient data to describe “abnorm-
alities” (also known as negative examples).

Novelty detection has gained much research attention
in application domains involving large datasets acquired
from critical systems. These include the detection of mass-
like structures in mammograms [1] and other medical
diagnostic problems [2,3], faults and failure detection in
complex industrial systems [4], structural damage [5],
intrusions in electronic security systems, such as credit
card or mobile phone fraud detection [6,7], video surveil-
lance [8,9], mobile robotics [10,11], sensor networks [12],
astronomy catalogues [13,14] and text mining [15]. The
complexity of modern high-integrity systems is such that
only a limited understanding of the relationships bet-
ween the various system components can be obtained.
An inevitable consequence of this is the existence of a
large number of possible “abnormal” modes, some of
which may not be known a priori, which makes conven-
tional multi-class classification schemes unsuitable for
these applications. A solution to this problem is offered
by novelty detection, in which a description of normality is
learnt by constructing a model with numerous examples
representing positive instances (i.e., data indicative of
normal system behaviour). Previously unseen patterns
are then tested by comparing them with the model of
normality, often resulting in some form of novelty score.
The score, which may or may not be probabilistic, is
typically compared to a decision threshold, and the test
data are then deemed to be “abnormal” if the threshold is
exceeded.

This survey aims to provide an updated and structured
overview of recent studies and approaches to novelty
detection that have appeared in the machine learning
and signal processing literature. The complexity and main
application domains of each method are also discussed.
This review is motivated in Section 1.2, in which we
examine previous reviews of the literature, concluding
that a new review is necessary in light of recent research
results.

1.1. Novelty detection as one-class classification

Conventional pattern recognition typically focuses on
the classification of two or more classes. General multi-
class classification problems are often decomposed into
multiple two-class classification problems, where the two-
class problem is considered the basic classification task
[16,17]. In a two-class classification problem we are given
a set of training examples X ¼ fðxi;ωiÞjxiARD; i¼ 1…Ng,
where each example consists of a D dimensional vector xi

and its label ωiAf�1;1g. From the labelled dataset, a
function hðxÞ is constructed such that for a given input
vector x0 an estimate of one of the two labels is obtained,
ω¼ hðx0jXÞ:
hðx0jXÞ : RD-½�1;1�

The problem of novelty detection, however, is approached
within the framework of one-class classification [18], in
which one class (the specified normal, positive class) has to
be distinguished from all other possibilities. It is usually
assumed that the positive class is very well sampled, while
the other class(es) is/are severely under-sampled. The scarcity
of negative examples can be due to high measurement costs,
or the low frequency at which abnormal events occur. For
example, in a machine monitoring system, we require an
alarm to be triggered whenever the machine exhibits “abnor-
mal” behaviour. Measurements of the machine during its
normal operational state are inexpensive and easy to obtain.
Conversely, measurements of failure of the machine would
require the destruction of similar machines in all possible
ways. Therefore, it is difficult, if not impossible, to obtain a
very well-sampled negative class [19]. This problem is often
compounded for the analysis of critical systems such as
human patients or jet engines, in which there is significant
variability between individual entities, thereby limiting the
use of “abnormal” data acquired from other examples [20,19].

In the novelty detection approach to classification,
“normal” patterns X are available for training, while
“abnormal” ones are relatively few. A model of normality
MðθÞ, where θ represents the free parameters of the model,
is inferred and used to assign novelty scores zðxÞ to
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previously unseen test data x. Larger novelty scores zðxÞ
correspond to increased “abnormality” with respect to the
model of normality. A novelty threshold zðxÞ ¼ k is defined
such that x is classified “normal” if zðxÞrk, or “abnormal”
otherwise. Thus, zðxÞ ¼ k defines a decision boundary.
Different types of models M, methods for setting their
parameters θ, and methods for determining novelty
thresholds k have been proposed in the literature and will
be considered in this review.

Two interchangeable synonyms of novelty detection
[21,1] often used in the literature are anomaly detection
and outlier detection [22]. The different terms originate from
different domains of application to which one-class classi-
fication can be applied, and there is no universally accepted
definition. Merriam-Webster [23] defines “novelty” to mean
“new and not resembling something formerly known or
used”. Anomalies and outliers are two terms used most
commonly in the context of anomaly detection; sometimes
interchangeably [24]. Barnett and Lewis [25] define an
outlier as a data point that “appears to be inconsistent with
the remainder of that set of [training] data”. However, it is
also used to describe a small fraction of “normal” data
which lie far way from the majority of “normal” data in
the feature space [9]. Therefore, outlier detection aims to
handle these “rogue” observations in a set of data, which
can have a large effect on the analysis of the data. In other
words, outliers are assumed to contaminate the dataset
under consideration and the goal is to cope with their
presence during the model-construction stage. A different
goal is to learn a model of normality MðθÞ from a set of data
that is considered “normal”, in which the assumption is that
the data used to train the learning system constitute the
basis to build a model of normality and the decision process
on test data is based on the use of this model. Furthermore,
the notion of normal data as expressed in anomaly detec-
tion is often not the same as that used in novelty detection.
Anomalies are often taken to refer to irregularities or
transient events in otherwise “normal” data. These transi-
ent events are typically noisy events, which give rise
to artefacts that act as obstacles to data analysis, to be
removed before analysis can be performed. From this
definition, novel data are not necessarily anomalies; this
distinction has also been drawn by recent reviews in
anomaly detection [24]. Nevertheless, the term “anomaly
detection” is typically used synonymously with “novelty
detection”, and because the solutions and methods used in
novelty detection, anomaly detection, and outlier detection
are often common, this review aims to consider all such
detection schemes and variants.
1.2. Overview of reviews on novelty detection

This review is timely because there has not been a
comprehensive review of novelty detection since the two
papers by Markou and Singh [26,27] in this journal ten
years ago. A number of surveys have been published since
then [26–32,24], but none of these attempts to be as wide-
ranging as we are in our review. We cover not only the
topic of novelty detection but also the related topics of
outlier, anomaly and, briefly, change-point detection, using
a taxonomy which is appropriate for the state of the art in
the research literature today.

Markou and Singh distinguished between two main
categories of novelty detection techniques: statistical
approaches [26] and neural network based approaches
[27]. While appropriate in 2003, these classifications are
now problematic, due to the convergence of statistics and
machine learning. The former are mostly based on using
the statistical properties of data to estimate whether a new
test point comes from the same distribution as the training
data or not, using either parametric or non-parametric
techniques, while the latter come from a wide range of
flexible non-linear regression and classification models,
data reduction models, and non-linear dynamical models
that have been extensively used for novelty detection
[33,34]. Another review of the literature of novelty detec-
tion using machine learning techniques is provided by
Marsland [28]. The latter offers brief descriptions of the
related topics of statistical outlier detection and novelty
detection in biological organisms. The author emphasises
some fundamental issues of novelty detection, such as the
lack of a definition of how different a novel biological
stimulus can be before it is classified as “abnormal”, and
how often a stimulus must be observed before it is
classified as “normal”. This issue is also acknowledged by
Modenesi and Braga [35], who describe novelty detection
strategies applied to the domain of time-series modelling.

Hodge and Austin [29], Agyemang et al. [30], and Chan-
dola et al. [36] provide comprehensive surveys of outlier
detection methodologies developed in machine learning and
statistical domains. Three fundamental approaches to the
problem of outlier detection are addressed in [29]. In the first
approach, outliers are determined with no prior knowledge
of the data; this is a learning approach analogous to unsu-
pervised clustering. The second approach is analogous to
supervised classification and requires labelled data (“normal”
or “abnormal”). In this latter type, both normality and
abnormality are modelled explicitly. Lastly, the third approach
models only normality. According to Hodge and Austin [29],
this approach is analogous to a semi-supervised recognition
approach, which they term novelty detection or novelty
recognition. As with Markou and Singh [26,27], outlier
detection methods are grouped into “statistical models” and
“neural networks” in [29,30]. Additionally, the authors sug-
gest another two categories: machine learning and hybrid
methods. According to Hodge and Austin [29], most “statis-
tical” and “neural network” approaches require cardinal or
ordinal data to allow distances to be computed between data
points. For this reason, the machine learning category was
suggested to include multi-type vectors and symbolic attri-
butes, such as rule-based systems and tree-structure based
methods. Their “hybrid” category covers systems that incor-
porate algorithms from at least two of the other three
categories. Again, research since 2004 makes the use of these
categories problematical.

The most recent comprehensive survey of methods
related to anomaly detection was compiled by Chandola
et al. [24]. Their focus is on the detection of anomalies; i.e.,
“patterns in data that do not conform to expected beha-
viour” [24, p. 15:1]. This survey builds upon the three
previous methods discussed in [29,30,36] by expanding
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the discussion of each method considered and adding two
more categories of anomaly detection techniques: informa-
tion theoretic techniques, which analyse the information
content of the dataset using information-theoretic measures
such as entropy; and spectral techniques, which attempt to
find an approximation of the data using a combination
of attributes that capture the bulk of the variability in
the data. The surveys [29,30,24] agree that approaches to
anomaly detection can be supervised, unsupervised, or
semi-supervised. More recently, Kittler et al. [37] addressed
the problem of anomaly detection in machine perception
(where the key objective is to instantiate models to explain
observations), and introduced the concept of domain anom-
aly, which refers to the situation when none of the models
characterising a domain are able to explain the data. The
authors argued that the conventional notions of anomalies
in data (such as being an outlier or distribution drift) alone
cannot detect all anomalous events of interest in machine
perception, and proposed a taxonomy of domain anomalies,
which distinguishes between component, configuration,
and joint component and configuration domain anomaly
events.

Some novelty detection methods have been the topic of
a number of other very brief overviews that have recently
been published [31,38–41,32]. Other surveys have focused
on novelty detection methods used in specific applications
such as cyber-intrusion detection [6,42,7] and wireless
sensor networks [12].

Only a few of the recent surveys attempt to provide a
comprehensive review of the different methods used in
different application domains. Since the review paper by
Markou and Singh [26,27], we believe that there has been
no rigorous review of all the major topics in novelty
detection. In fact, many reviews recently published contain
fewer than 30 references (e.g., the reviews [35,40,41]),
and do not include significant papers from the literature.
The most recent comprehensive survey of a related topic
(anomaly detection) was published by Chandola et al. [24].
However, as discussed in the previous subsection, although
they can be seen as related topics, there are some funda-
mental differences between anomaly detection and novelty
detection. Also, Chandola et al. [24] do not attempt to
review the novelty detection literature, which itself has
attracted significant attention within the research commu-
nity as shown by the increasing number of publications in
this field in the last decade. In this review, we therefore aim
to provide a comprehensive overview of novelty detection
research, but also include anomaly detection, outlier detec-
tion, and related approaches. To the best of our knowledge,
this is the first attempt (since 2003) to provide such a
structured and detailed review.

1.3. Methods of novelty detection

Approaches to novelty detection include both Frequen-
tist and Bayesian approaches, information theory, extreme
value statistics, support vector methods, other kernel
methods, and neural networks. In general, all of these
methods build some model of a training set that is selected
to contain no examples (or very few) of the important (i.e.,
novel) class. Novelty scores zðxÞ are then assigned to data
x, and deviations from normality are detected according to
a decision boundary that is usually referred to as the
novelty threshold zðxÞ ¼ k.

Different metrics are used to evaluate the effectiveness
and efficiency of novelty detection methods. The effective-
ness of novelty detection techniques can be evaluated
according to how many novel data points are correctly
identified and also according to how many normal data are
incorrectly classified as novel data. The latter is also known
as the false alarm rate. Receiver operating characteristic
(ROC) curves are usually used to represent the trade-off
between the detection rate and the false alarm rate.
Novelty detection techniques should aim to have a high
detection rate while keeping the false alarm rate low. The
efficiency of novelty detection approaches is evaluated
according to computational cost, and both time and space
complexity. Efficient novelty detection techniques should
be scalable to large and high-dimensional data sets. In
addition, depending on the specific novelty detection task,
the amount of memory required to implement the tech-
nique is typically considered to be an important perfor-
mance evaluation metric.

We classify novelty detection techniques according to
the following five general categories: (i) probabilistic,
(ii) distance-based, (iii) reconstruction-based, (iv) domain-
based, and (v) information-theoretic techniques. Approach
(i) uses probabilistic methods that often involve a density
estimation of the “normal” class. These methods assume
that low density areas in the training set indicate that
these areas have a low probability of containing “normal”
objects. Approach (ii) includes the concepts of nearest-
neighbour and clustering analysis that have also been used
in classification problems. The assumption here is that
“normal” data are tightly clustered, while novel data occur
far from their nearest neighbours. Approach (iii) involves
training a regression model using the training set. When
“abnormal” data are mapped using the trained model, the
reconstruction error between the regression target and the
actual observed value gives rise to a high novelty score.
Neural networks, for example, can be used in this way
and can offer many of the same advantages for novelty
detection as they do for regular classification problems.
Approach (iv) uses domain-based methods to characterise
the training data. These methods typically try to describe a
domain containing “normal” data by defining a boundary
around the “normal” class such that it follows the dis-
tribution of the data, but does not explicitly provide a
distribution in high-density regions. Approach (v) com-
putes the information content in the training data
using information-theoretic measures, such as entropy or
Kolmogorov complexity. The main concept here is that
novel data significantly alter the information content in a
dataset.

1.4. Organisation of the survey

The rest of the survey is organised as follows (see Fig. 1).
We provide a state-of-the-art review of novelty detection
research based on approaches from the different categories.
Probabilistic novelty detection approaches are described in
Section 2, distance-based novelty detection approaches are



Fig. 1. Schematic representation of the organisation of the survey (the numbers within brackets correspond to the section where the topic is discussed).
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presented in Section 3, reconstruction-based novelty detection
approaches are described in Section 4. Sections 5 and 6 focus
on domain-based and information-theoretic techniques,
respectively. The application domains for all five categories
of novelty detection methods discussed in this review are
summarised in Section 7. In Section 8 we provide an overall
conclusion for this review.
2. Probabilistic novelty detection

Probabilistic approaches to novelty detection are based
on estimating the generative probability density function
(pdf) of the data. The resultant distribution may then be
thresholded to define the boundaries of normality in the
data space and test whether a test sample comes from the
same distribution or not. Training data are assumed to be
generated from some underlying probability distribution
D, which can be estimated using the training data. This
estimate D̂ usually represents a model of normality. A
novelty threshold can then be set using D̂ in some manner,
such that it has a probabilistic interpretation.

The techniques proposed vary in terms of their complex-
ity. The simplest statistical techniques for novelty detection
can be based on statistical hypothesis tests, which are
equivalent to discordancy tests in the statistical outlier
detection literature [25]. These techniques determine
whether a test sample was generated from the same
distribution as the “normal” data or not, and are usually
employed to detect outliers. Many of these statistical tests,
such as the frequently used Grubbs0 test [43], assume a
Gaussian distribution for the training data and work only
with univariate continuous data, although variants of these
tests have been proposed to handle multivariate data sets; e.
g., Aggarwal and Yu [44] recently proposed a variant of the
Grubbs0 test for multivariate data. The Grubbs0 test com-
putes the distance of the test data points from the estimated
sample mean and declares any point with a distance above
a certain threshold to be an outlier [43]. This requires a
threshold parameter to determine the length of the tail that
includes the outliers (and which is often associated with a
distance of three standard deviations from the estimated
mean). Another simple statistical scheme for outlier detec-
tion is based on the use of the box-plot rule. Solberg and
Lahti [45] have applied this technique to eliminate outliers
in medical laboratory reference data. Box-plots graphically
depict groups of numerical data using five quantities: the
smallest observation (sample minimum), lower quartile (Q1),
median (Q2), upper quartile (Q3), and largest observation
(sample maximum). The method used in [45] starts by
transforming the original data so as to achieve a distribution
that is close to a Gaussian distribution (by applying the Box-
Cox transformation). Then, the lower and upper quartiles (Q1
and Q3, respectively) are estimated for the transformed
data, and the interquartile range (IQR), which is defined
by IQR¼Q3�Q1, is used to define two detection limits:
Q1�ð1:5� IQRÞ and Q3þð1:5� IQRÞ. All values located out-
side the two limits are identified as outliers. Although experi-
ments have shown that the algorithm has potential for outlier
detection, they also suggest that the normalisation of dis-
tributions achieved by use of the transformation functions is
not sufficient to allow the algorithm to work as expected.

Many other sophisticated statistical tests have been used
to detect anomalies and outliers, as discussed in [25]. A
description of these statistical tests is beyond the scope of
this review. Instead, we will concentrate on more advanced
statistical modelling methods that are used for novelty detec-
tion involving complex, multivariate data distributions.

The estimation of some underlying data density D from
multivariate training data is a well-established field [46,47].
Broadly, these techniques fall into parametric and non-
parametric approaches, in which the former impose a restric-
tive model on the data, which results in a large bias when the
model does not fit the data, while the latter set up a very
flexible model by making fewer assumptions. The model
grows in size to accommodate the complexity of the data,
but this requires a large sample size for a reliable fit of all free
parameters. Opinion in the literature is divided as to whether
various techniques should be classified as parametric or non-
parametric. For the purposes of providing a probabilistic
estimate D̂, Gaussian mixture models (GMMs) and kernel
density estimators have proven popular. GMMs are typically
classified as a parametric technique [26,24,41], because of the
assumption that the data are generated from a weighted
mixture of Gaussian distributions. Kernel density estimators
are typically classified as a non-parametric technique
[33,26,24] as they are closely related to histogram methods,
one of the earliest forms of non-parametric density estima-
tion. Parametric and non-parametric approaches are discussed
in the next two sub-sections (see Table 1).



Table 1
Examples of novelty detection methods using both parametric and non-parametric probabilistic approaches.

Probabilistic
approach

Section References

Parametric 2.1
Mixture models 2.1.1 Filev and Tseng [48,49], Flexer et al. [50], Ilonen et al. [51], Larsen [52], Paalanen et al. [53], Pontoppidan and Larsen [54],

Song et al. [55] and Zorriassatine et al. [56]
Extreme value

theory
2.1.1 Clifton et al. [57–61], Hazan et al. [62], Hugueny et al. [63], Roberts [64,65], Sohn et al. [66] and Sundaram et al. [67]

State-space models 2.1.2 Gwadera et al. [68,69], Ihler et al. [70], Janakiram et al. [71], Lee and Roberts [72], McSharry et al. [73,74],
Ntalampiras et al. [75], Pinto et al. [76], Qiau et al. [77], Quinn et al. [2,78], Siaterlis and Maglaris [79],
Williams et al. [80], Wong et al. [81,82] Yeung and Ding [83] and Zhang et al. [84]

Non-parametric 2.2
Kernel density

estimators
2.2.1 Angelov [85], Bengio et al. [86,87], Erdogmus et al. [88], Kapoor et al. [89], Kemmler et al. [90], Kim and Lee [91],

Ramezani et al. [92], Subramaniam et al. [93], Tarassenko et al. [94,95], Vincent et al. [96] and Yeung and Chow [97]
Negative selection 2.2.2 Dasgupta and Majumbar [98], Esponda et al. [99], Gómez et al. [100], González and Dasgupta [101],

Surace and Worden [5] and Taylor and Corne [102]
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2.1. Parametric approaches

Parametric approaches assume that normal data are
generated from an underlying parametric distribution with
parameters θAΘ, where θ is finite, and probability density
function pðx; θÞ, where x corresponds to an observation.
The parameters θ are estimated from the given training
data. The most commonly used form of distribution for
continuous variables is the Gaussian. The parameters of
which are estimated from the given training data using
maximum likelihood estimates (MLE), for which there is a
closed-form analytical solution for a Gaussian distribution.
More complex forms of data distribution may be modelled
by mixture models such as GMMs [34,103], or other
mixtures of different types of distributions such as the
gamma [104,105], the Poisson [106], the Student0s t [107],
and the Weibull [108] distributions. In the absence of prior
information regarding the form of the underlying distribu-
tion of the data, the Gaussian distribution is often used
because of its convenient analytical properties when
determining the location of a novelty threshold (discussed
later in this section).

2.1.1. Mixture models
GMMs estimate the probability density of the target

class (here the normal class), given by a training set,
typically using fewer kernels than the number of patterns
in the training set [46]. The parameters of the model may
be estimated using maximum likelihood methods (via
optimisation algorithms such as conjugate gradients or
expectation-maximisation, EM) or via Bayesian methods
(such as variational Bayes) [34]. Mixture models, however,
can suffer from the requirement of large numbers of
training examples to estimate model parameters. A further
limitation of parametric techniques is that the chosen
functional form for the data distribution may not be a
good model of the distribution that generates the data.
However, GMMs have been used and explored in many
studies for novelty detection, as described below.

One of the major issues in novelty detection is the
selection of a suitable novelty threshold. Within a prob-
abilistic approach, novelty scores can be defined using the
unconditional probability distribution zðxÞ ¼ pðxÞ, and a
typical approach to setting a novelty threshold k is to
threshold this value; i.e., pðxÞ ¼ k. This method has been
used for novelty detection in [25,1,109] among others.
However, because pðxÞ is a probability density function, a
threshold on pðxÞ has no direct probabilistic interpretation.
Some authors [1,110] have interpreted the model output
pðxÞ probabilistically, by considering the cumulative prob-
ability P associated with pðxÞ; i.e., determining the prob-
ability mass obtained by numerically estimating the
integral of pðxÞ over the region R for which the value of
pðxÞ is above the novelty threshold k. For unimodal
distributions, one can integrate from the mode of the
probability density function to the probability contour
defined by the novelty threshold pðxÞ ¼ k, which can be
achieved in closed form for most regular distributions. For
multi-modal distributions, however, this may need to be
performed using Monte-Carlo techniques, as suggested by
Nairac et al. [110]. An approximation in closed form for this
was proposed by Larsen [52]. The sampling approach can
then be used to set thresholds in relation to the actual
probability of observing novel data.

Ilonen et al. [51] introduce a confidence measure for
GMM pdfs that can be used in one-class classification
problems in order to select a novelty threshold. In this
case, confidence is used to estimate the reliability of a
classification result where a class label is assigned to
an unknown observation. If the confidence is low, it is
probable that a wrong decision has been made. The
method is based on a branch of functional theory dealing
with high-density regions (HDR), also termed the minimal
volume region, which was originally proposed by Hynd-
man [111]. To determine the confidence region Ilonen et al.
[51] use an approximation to find a pdf value τ which is at
the border of the confidence region. It is assumed that the
gradient of the pdf is never zero in the neighbourhood
of any point for which the pdf value is non-zero. The
proposed measure is based on the pdf density quantile;
specifically, τ is computed by rank-order statistics using
the density quantile FðτÞ and by generating data according
to the pdf. In [53], the use of confidence information was
demonstrated experimentally for face detection.

Another principled method of setting thresholds for
novelty detection uses extreme value theory (EVT) [112].
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EVT is a branch of statistics which deals with extreme
deviations of a probability distribution; i.e., it considers
extremely large or small values in the tails of the distribu-
tion that is assumed to generate the data. Existing work on
the use of EVT for novelty detection is described in [59].
Multivariate extrema defined in the EVT literature [113]
are those n-dimensional data xn that are maxima or
minima in one or more dimensions of n. Rather than
considering extrema in each dimension independently
(yielding the case of univariate distributions), extremes
with regard to the multivariate model of normality are
required. EVT was first used for novelty detection in
multivariate data by Roberts [64,65], with models of
normality represented by GMMs. According to the Fisher–
Tippett theorem [114], upon which classical EVT is based,
the distribution of the maximum of the training set must
belong to one of three families of extreme value distribu-
tions: the Gumbel, Fréchet, or Weibull distributions.
The method proposed by Roberts [64,65] is concerned
with samples drawn from a distribution whose maxima
distribution converges to the Gumbel distribution.
Although the multi-modal distribution was represented
by a mixture of Gaussian component distributions, the
problem was reduced to a single-component problem by
assuming that the component closest to the test data point
(determined using the Mahalanobis distance) dominates
the EVT statistics. In that case, the EVT probability for a test
point is based on the Gumbel distribution corresponding
to the closest component in the GMM. The contribution of
the other components is assumed to be negligible. This
method was applied to different biomedical datasets,
such as EEG (electroencephalography) records, in order
to detect regions of (abnormal or novel) epileptic activity,
and MRI (Magnetic Resonance Imaging) data, in order to
find the location of tumours in an image. However, Clifton
et al. [59] demonstrate that this single-component approx-
imation is unsuitable for novelty detection when the
generative data distribution is multivariate or multimodal.
In general, the assumption that only the closest compo-
nent distribution to the test data point needs to be
considered when determining the extreme value distribu-
tion is not valid. The main reason is that the effect of other
components on the extreme value distribution may be
significant due to the relative differences in variances
between kernels. Clifton et al. [59] propose a numerical
method of accurately determining the extreme value
distribution of a multivariate, multimodal distribution,
which is a transformation of the probability density con-
tours of the generative distribution. This allows the
extreme value distributions for mixture models of arbi-
trary complexity to be estimated by finding the MLE
Gumbel distribution in the transformed space. A novelty
threshold may then be set on the corresponding univariate
cumulative density function in the transformed space,
which describes where the most extreme samples gener-
ated from the normal distribution will lie.

Clifton et al. [59] have also proposed a closed-form,
analytical solution for multivariate, unimodal models of
normality. Classifying the extrema of unimodal distribu-
tions for novelty detection has been the focus of a large
body of work in the field of EVT [115,57,58,63,66,67,116].
In [59], the use of an alternate definition of extrema and
the derivation of closed-form solutions for the distribution
function over pdf values allow accurate estimates of
the extreme value distributions of multivariate Gaussian
kernels to be obtained. The approach was applied to
patient vital-sign data (comprising heart rate and breath-
ing rate), to identify physiological deterioration in the
patients being monitored.

EVT was also applied by Hazan et al. [62] in the context
of vibration log-periodograms. They proposed the use of
excess-value statistics instead of maximum statistics.
Under mild conditions for the pdf of the training set, the
probability of the excess value can be approximated by the
Generalised Pareto distribution if the novelty threshold is
sufficiently large. The fault detection algorithm begins by
selecting a subset of the learning dataset, comprising N
log-periodograms. For each frequency in the periodogram
the maximum of the log-periodograms across the subset is
computed, and a “mask” is obtained. Excesses over the
mask in the remainder of the training set are identified
and used for estimation of the parameters of the General-
ised Pareto distribution. A detection threshold is then
determined: any excess over the threshold is considered
to be a fault. The algorithm was evaluated in a publicly
available set of vibration data, and analysis of receiver
operating characteristics (ROC) curves corresponding to
the results of classification showed that bearing deteriora-
tion could be identified even when little wear was present.

Yamanishi et al. [117] provide a theoretical basis and
demonstrate the effectiveness of “SmartSifter”, an outlier
detection algorithm based on statistical learning theory.
This approach was first proposed in [118] for data mining,
specifically in fraud detection, network intrusion detec-
tion, or network monitoring. It uses a probabilistic model
which has a hierarchical structure. While the probability
density over the domain of categorical data is represented
by a histogram, a finite mixture is used to represent
the probability density over the domain of continuous
variables. When new data are presented as input, the
algorithm employs an online learning scheme to update
the model, using either a sequentially discounting Laplace
estimation algorithm for learning the histogram or a
sequentially discounting expectation and maximising algo-
rithm for learning the finite mixture model. The two
algorithms developed by the authors gradually “discount”
the effect of past examples in the online process; i.e.,
recent examples take a greater weight in the update
algorithm than older examples. A score is then assigned
to each new vector based on the normal model, measuring
how much the model has changed after learning the new
vector, with a high score indicating significant model
change, suggesting that the new vector is a statistical
outlier. The authors claim that one of the advantages of
their method is its ability to adapt to non-stationary
sources of data. The method has been successfully tested
using network intrusion and health insurance databases
from Australia0s Health Insurance Commission.

Disease outbreak detection has been proposed by detect-
ing anomalies in the event logs of emergency hospital
visits [119,120]. The authors propose a hierarchical Bayesian
procedure for data that arise as multidimensional arrays
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with each dimension corresponding to the levels of a
categorical variable. Anomalies are detected by comparing
information at the current time to historical data. The
distribution of data (deviations at current time) is modelled
with a two-component mixture of Gaussians, one for the
normal data and another for the outliers. Using Bayesian
inference, the probability of an observation being generated
by the outlier model is estimated. The authors assume that
the priors of an observation being normal or an outlier are
known a priori. The algorithm uses EM to set the parameters
of a mixture of models for the two classes, assuming that
each data point is an anomaly with a priori probability λ, and
normal with a priori probability 1�λ.

Zorriassatine et al. [56] use GMMs for pattern recogni-
tion in condition monitoring of multivariate processes. The
methodology for applying novelty detection to bivariate
processes, which was described in previous work [121],
was adapted to monitor the condition of a milling process
by analysing signals for 10 process variates. Signals col-
lected from the normal states of the machining process
were used to create various models of the underlying pdf
for the machining process, in which each model represents
the healthy states of the cutter at given combinations of
machining parameters, such as the depth of cut, spindle
speed, and feed rate. The centre of each Gaussian was
initialised using a k-means clustering algorithm, with all
model parameters then determined using EM. The GMM
with the lowest training error was used as the novelty
detector, with a threshold set to be the minimum log
likelihood of the training data (as in [21]). Previously
unseen data were used to adjust the novelty threshold
using a heuristic approach.

Pontoppidan and Larsen [54] describe a probabilistic
change detection framework based on Independent Com-
ponent Analysis (ICA), and compare it to a GMM-based
approach. Bayesian ICA using mean field training [122] is
used to train the ICA model. The noise is assumed to be
Gaussian and independent of the sources, with a diagonal
covariance matrix. This ICA-based method was success-
fully applied to the detection of changes in the condition of
large diesel engines using acoustic emission signals.

Flexer et al. [50] apply novelty detection to retrieve
songs from a library based on similarity to test songs and
genre label information. Experiments considered 2522
songs from 22 genres. Two minutes of each song were
evaluated and novel data detected using two algorithms.
The first, named ratio-reject, uses a GMM in order to
estimate the pdf of the training data. The second algo-
rithm, named Knn-reject, defines a neighbourhood which
is used to classify unseen data. Both methods were shown
to perform equally well in terms of sensitivity, specificity,
and accuracy within a genre-classification context.

Filev and Tseng [48,49] describe a real-time algorithm
for modelling and predicting machine health status. It
utilises the concepts of fuzzy k-nearest neighbour clustering
and the GMM to model the data acquired from the machine
as a collection of clusters that represent the dynamics of the
machine0s main operating modes. The Greedy EM cluster-
ing algorithm [123] is used to identify and initialise clusters
corresponding to different operating modes. An unsuper-
vised learning algorithm then continuously reads new
feature data and recursively updates the structure and the
parameters of the operating mode clusters. The algorithm
was validated using a set of experimental vibration data
collected in an accelerated testing facility.

Song et al. [55] propose a conditional anomaly detection
(CAD) technique by assuming that attributes are already
partitioned into contextual and behavioural attributes; that
is, the context of the measurements is considered before
identifying a data point as “anomalous”. To detect anoma-
lies, the CAD technique learns two models: the statistical
behaviour of the monitored system, and the statistical
behaviour of the environment. The probabilistic links
between the models are also learnt, giving a combined
model of likely data that co-occurs in the environment and
the system. True anomalies can then be defined as being
statistically unlikely events in the system parameters that
occur when the environment is normal. Within the CAD
literature, the parameters from the system under study are
described as the indicator parameters, while those from
the surrounding conditions are called the environment
parameters. The technique used in [55] for learning the
indicator and environment models is Gaussian mixture
modelling.

Zhang et al. [124] propose a hierarchical probabilistic
model for online document clustering. The generation of
new clusters is modelled with a Dirichlet process mixture
model, for which the base distribution can be treated as
the prior of the general English model and the precision
parameter is related to the generation rate of new clusters.
The empirical Bayes method is used to estimate model
hyperparameters based on a historical dataset. This prob-
abilistic model was compared with existing approaches in
the literature, such as logistic regression, and applied to
the novelty detection task of topic detection and tracking.
The objective of this task was to detect the earliest report
for each news event as soon as the report arrives in a
temporal sequence of new stories. Results showed that the
performance of the proposed method is comparable to
other methods in terms of topic-weighted measure (i.e., in
terms of the topic detection and tracking evaluation mea-
sure in which the cost of the method is computed for every
event, and then the average is taken).

Perner [125] outlines a new approach to novelty
detection, which is based on a case-based reasoning (CBR)
process. The author combines statistical and similarity
inference methods. This view of CBR takes into account
the properties of data such as uncertainty, and underlying
concepts such as adaptation, storage, and learning. Known
classes are described by statistical models. The performance
of the models is improved by incremental updating based
on newly available events, once a sufficiently large number
of cases is collected. Information about cases is now impli-
citly represented by the model, and storage capacity is
preserved. New events, not belonging to one of the known
case classes, are classified as being novel events. These
events are stored by a similarity-based registration proce-
dure in a second case base. The similarity-based learning
procedure ensures that similar cases are grouped into case
classes, a representative for the case class is learnt, and
generalisation over case classes can be performed. Novel
events can be collected and grouped so that retrieval is



M.A.F. Pimentel et al. / Signal Processing 99 (2014) 215–249 223
efficient. When a sufficiently large number of cases is
available in the second case base, the case class is passed
to the statistical learning unit to learn a new statistical
model. The statistical learning strategy for updating a model
and learning new models is based on the minimum message
length learning principle.

Hempstalk et al. [126] introduce a technique that
combines density estimation and class probability estima-
tion for converting one-class classification problems into
binary classification tasks. The initial phase of the method
involves an examination of the training data for the
normal class in order to determine its distribution (such
as fitting a GMM to the data). This knowledge is subse-
quently used in the generation of an artificial dataset
that represents an abnormal class. In the second phase, a
standard binary classifier is trained based on the normal
class and the generated abnormal class. Using Bayes0 rule,
the authors demonstrate how the class density function
can be combined with the class probability estimate
to yield a description of the normal class. The authors
conclude that the combination of the density function
with a class probability estimate (i.e., a classification
model) produces an improvement in accuracy beyond that
which results from one-class classification with the den-
sity function alone, but this will depend on how well the
artificial dataset represents the abnormal class.

Chen and Meng [127] propose a framework for patient-
specific physiological monitoring, in which the ratio the
densities of training and test data [128,129] are used to
define a health status index. The density ratio is estimated
by a linear model whose parameter values are found using
a least-squares algorithm, without involving density esti-
mation. The training and testing data were selected
from the MIT-BIH Arrhythmia Database, which contains
sequences of ECG (electrocardiogram) signals acquired
from 10 patients. The authors claim that the method is
advantageous because density ratio parameters are esti-
mated without involving actual density estimation (a
comprehensive review of density ratio estimation meth-
ods can be found in [130]).

Another strategy for novelty detection is to use time-
series methods such as the well-known stochastic process,
the Autoregressive Integrated Moving Average (ARIMA). This
may be used to predict the next data point, and hence
determine if it is artefactual or not; see, for example, [131].
In the latter, an online novelty detector, the Automatic
Dynamic Data Mapper (ADDaM), is proposed, which is
based on the construction of a pdf using Gaussian kernels.
Two forms of pdf are possible: a static pdf for which
the prior probability of each kernel is determined by the
number of observations it represents, and a “temporal” pdf
for which more recent observations have a higher prior
probability. Testing against the current pdf assesses the
novelty of the next test point. The performance of this
method for artefact detection in heart rate data (from an
automatic anaesthesia monitoring database) was com-
pared with Kalman filtering, ARIMA, and moving average
filters using ROC curves. The authors reported that both
ADDaM-based methods outperformed all other methods
tested. Their proposed method is similar to that proposed
earlier by Roberts and Tarassenko [132], in which the
authors describe an offline novelty detector similarly
based on a time-varying GMM, which was tested using
sleep EEG data. Their novelty detector was based on
“growing” the mixture model over time using a process
similar to reinforcement learning. During learning, train-
ing data were presented at random and were either added
to regions that formed the basis of the Gaussian kernels in
the model or used to estimate the parameters of new
kernels. A variant of these regression-based techniques,
which detects anomalies in multivariate time-series data
generated by an Autoregressive Moving Average (ARMA)
model, was proposed in [133]. Here, a multivariate time-
series is transformed into a univariate time-series by linearly
combining the components that are obtained using a
projection pursuit technique, which maximises the kurtosis
coefficient of the time-series data. Univariate statistical tests
are then used for anomaly detection in each resulting
projection. Similar approaches have been applied in ARIMA
models [134], or have been used to detect anomalies by
analysing the Akaike Information Criterion during model-
fitting [135].

2.1.2. State-space models
State-space models are often used for novelty detection

in time-series data. These models assume that there is
some underlying hidden state that generates the observa-
tions, and that this hidden state evolves through time,
possibly as a function of the inputs. The two most common
state-space models used for novelty detection are the
Hidden Markov Model (HMM) and the Kalman filter.

HMMs include temporal dependence through the use
of a state-based representation updated at every time step.
While the features are directly observable, the underlying
system states are not, and hence they are called unobser-
vable, hidden, or latent states. The transitions between the
hidden states of the model are governed by a stochastic
process [33,4]. The “emission” probabilities of the obser-
vable events are determined by a set of probability
distributions associated with each state, which can be
thresholded to perform novelty detection [83]. HMM
parameters are typically learnt using a variant of the EM
algorithm. Novelty detection with HMMs may also be
achieved by constructing an “abnormal” state, a transition
into which implies abnormal system behaviour [136].

Yeung and Ding [83] use HMMs for detection of
intrusions based on shell command sequences within the
network security domain. Two different types of beha-
vioural models are presented: a dynamic modelling
approach based on HMMs and a static modelling approach
which is based on the frequency distributions of event
occurrences. In the former, the parameters of an HMM for
modelling normal system behaviour are estimated using
an EM algorithm for mixture density estimation. The
likelihood of an observation sequence, with respect to a
given trained HMM, is computed using either the “for-
ward” or “backward” algorithm. By comparing the like-
lihood of an observation sequence against a threshold
(chosen to be the minimum likelihood among all training
sequences), one can decide whether that sequence is
abnormal or not. In the second approach, the probability
distribution of normal behaviour of the system observed



1 The Well-Log data set contains measurements of nuclear magnetic
response while drilling a well.

2 The Dow Jones data set contains daily stock market indexes
(Industrial Average), that show how 30 large publicly owned companies
based in the United States have traded during standard trading sessions
on the stock market.

M.A.F. Pimentel et al. / Signal Processing 99 (2014) 215–249224
over a certain period of time is modelled using a simple
occurrence frequency distribution. The behaviour of the
test system being monitored is modelled in the same way.
An information-theoretic measure, cross-entropy, which is
related to the Kullback–Leibler measure, is used to quantify
separation between the two distributions (corresponding
to “training” and test sequences). The Kullback–Leibler
divergence is a statistical tool for estimating the difference
in information content between two distributions. By
checking whether the cross-entropy between the two
distributions is larger than a certain threshold, chosen to
be the maximum cross-entropy value computed between
the entire training set and each time-series in the training
set, one can decide whether the observed sequence should
be considered an intrusion with respect to the model.
Although the HMM is better suited for intrusion detection
based on Unix system calls, the static modelling approach
based on the information-theoretic technique outper-
formed the dynamic modelling approach across all experi-
ments. Other similar intrusion detection methods based
on HMMs have been proposed [77,84].

Ntalampiras et al. [75] explore HMMs for novelty
detection applied to acoustic surveillance of abnormal
situations, the goal being to help an authorised person
take the appropriate action for preventing life or property
loss. The HMM is a model commonly used in sound
recognition, as it takes into account the temporal evolution
of the audio signal. The framework was tested using a
dataset that contains recordings from a smart-home envir-
onment, an open public space, and an office corridor.

A related state-based approach to novelty detection in
time-series relies on Factorial Switching Kalman Filters [2].
A Kalman Filter can be seen as a generalisation of an
autoregressive process, describing an observed process in
terms of an evolving hidden state process. This may be
generalised to the Switched Kalman Filter (SKF) [137], in
which the evolving hidden process is dependent on a
switching variable (which also evolves through time). The
Factorial SKF (FSKF) is a dynamic extension of the SKF, in
which a cross-product of multiple factors is used rather
than a single variable. The FSKF allows the modelling of
multiple time-series by assuming that a continuous, hid-
den state is responsible for data generation, the effects of
which are observed through a noise process. An explicit
abnormal mode of behaviour is included within the model
which is used to identify departures from normality. This
method was applied to the monitoring of premature
infants in intensive care, and is described in [2,80]. The
method was later extended in [78], which used a dataset of
continuously observed physiological variables such as
heart rate and blood pressure. Lee and Roberts [72]
propose an online novelty detection framework using the
Kalman filter and EVT. A multivariate Gaussian probability
density over the target variables is obtained via a Kalman
filter, with an auto-regression state model. This was used
to model the dynamics of the state space and thereby
to detect changes in the underlying system, as well as
identify outliers in the observation sequence. EVT is then
used to define a threshold and obtain a novelty measure
on the univariate predictive distribution. Experiments
were conducted on three univariate data sets: an artificial
dataset, in addition to the Well-Log1 and Dow Jones2

datasets.
Also based on a dynamical model of time-series normal

data, the Multidimensional Probability Evolution method
[73,74] characterises normal data by using a non-linear
state-space model; i.e., the pdf within a multidimensional
state space is computed for each window of the time-
varying signal. The regions of state space visited during
normal behaviour are modelled, and departures from
these, that can correspond to both linear and non-linear
dynamical changes, are deemed abnormal. The performance
of this technique was illustrated using a synthetic signal,
in addition to electroencephalography (EEG) recordings to
identify epileptic seizures.

A task related to that of time-series novelty detection is
to determine whether a pattern discovered in the data
is significant. Assuming an underlying statistical model
for the data, one can estimate the expected number of
occurrences of a particular pattern in the data. If the
number of times a pattern actually occurs is significantly
different from this expected value, then it could be
indicative of unusual activity (and thus the pattern dis-
covered may be regarded as being significant). Further-
more, since the statistics governing the data generation
process are assumed to be known, it is possible to quantify
the extent of deviation from the expected value that
corresponds to a test pattern being classified as “signifi-
cant”. An application to the “frequent episode discovery
problem” in temporal data mining is presented in [69]. It is
shown that the number of sliding windows over the data
in which a given episode occurs at least once converges to
a Gaussian distribution with mean and variance that can
be determined from the parameters of an underlying
Bernoulli distribution (which are in turn estimated from
some training data). For a pre-defined confidence level,
upper and lower thresholds for the observed frequency of
an episode can be determined, which can be used to
decide whether an episode is over- or under-represented
in the data. These ideas are extended in [138] to the case of
determining significance for a set of frequent episodes, and
in [68] to the case of a Markov model assumption for the
data sequence.

Ihler et al. [70] consider the modelling of web click
data. The proposed method is based on a time-varying
Poisson process model that can account for anomalous
events. The normal behaviour in a time-series is assumed
to be generated by a non-stationary Poisson process while
the outliers are assumed to be generated by a homoge-
neous Poisson process. The transition between normal and
outlying behaviours is modelled using a Markov process.
Markov Chain Monte Carlo (MCMC) is used to estimate the
parameters of these processes. A test time-series is mod-
elled using this process and the time points for which the
outlying model is selected are considered as outliers.
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Both methods described above can be generalised to
Dynamic Bayesian Networks (DBNs), which are more
general state-space models [34]. DBNs generalise HMMs
and Kalman filter models by representing the hidden and
observed states in terms of state variables, which can have
complex interdependencies. A DBN is a directed probabil-
istic graphical model of a stochastic process, which
provides an easy way to specify these conditional inde-
pendencies. They can also be seen as an extension of
Bayesian networks to handle temporal models. A Bayesian
network estimates the probabilistic relationship among
variables of a dataset, in the form of a probabilistic
graphical model. In addition to DBNs, Bayesian networks
are sometimes termed naïve Bayesian networks or Bayesian
belief networks. Janakiram et al. [71] propose a classifica-
tion system based on a Bayesian belief network (BBN) to
detect any missing or anomalous data in wireless sensor
networks. Each node in the graph corresponds to a sensor,
and models sensor measurements from neighbouring
nodes in addition to its own. The authors then estimate
the probability of each observed attribute using the BBN
model. This model is suitable if some dependency exists
between sensor variables and between nodes. Its accuracy
depends on the number of neighbours that each node has.
The technique requires offline training, and regeneration
of a conditional probability table for each node if the
network topology changes. BBNs are also used to incorpo-
rate prior probabilities into a novelty detection framework.
Several variants based on naïve Bayes, which assumes
independence between the variables, have been proposed
for network intrusion detection [139,79] and for disease
outbreak detection [81,82].

More recently, Pinto et al. [76] have proposed novelty
threshold functions that operate on top of probabilistic
graphical models instantiated dynamically from sensed
semantic data in the context of room categorisation. By
using thresholds on the distributions defined by the graph
based solely on the conditional probability, as seen in [34], a
novelty system can be implemented. However, it may not
be suitable to perform novelty detection using graphs that
are dynamically generated. Pinto et al. [76] show that the
ratio between a conditional and unconditional probability
is a suitable detector for implementing a threshold when
samples are taken from dynamic distributions, under the
assumption that the probability of a sample being gener-
ated by a (novel) unknown class is constant across all graph
structures. This assumption may not be appropriate for
some graph structures; e.g., a graph where there is only
access to room-size information versus a graph where there
is more information concerning the properties of the room
available. The authors also show that correct estimation of
unconditional probability plays an important role, and that
unlabelled data can be used to construct an unconditional
pdf that can then be used to optimise the novelty threshold.
However, only synthetic data distributions were used to
evaluate the effectiveness of the approach.

2.2. Non-parametric approaches

Non-parametric approaches do not assume that the
structure of a model is fixed, i.e., the model grows in size as
necessary to fit the data and accommodate the complexity
of the data. The simplest non-parametric statistical tech-
nique is the use of histograms which graphically display
tabulated frequencies. The algorithm typically defines a
distance measure between a new test data point and
the histogram-based model of normality to determine if
it is an outlier or not [36]. For multivariate data, attribute-
wise histograms are constructed and an overall novelty
score for a test data point is obtained by aggregating the
novelty scores from each attribute. This has been applied
to network intrusion and web-based attack detection
[117,140–142].

2.2.1. Kernel density estimators
A non-parametric approach to probability density esti-

mation is the kernel density estimator [34]. In this
approach, the probability density function is estimated
using large numbers of kernels distributed over the data
space. The estimate of the probability density at each
location in data space relies on the data points that lie
within a localised neighbourhood of the kernel. The kernel
density estimator places a (typically Gaussian) kernel on
each data point and then sums the local contributions
from each kernel. This kernel density estimator is often
termed the Parzen windows estimator [143]. This method
has been used for novelty detection in applications such as
network intrusion detection [97], oil flow data [21], and for
mammographic image analysis [1]. In the Parzen Windows
estimator, an isotropic Gaussian kernel is centred on
each training point, with a single shared variance hyper-
parameter. Training the Parzen density estimator consists
of determining the variance of the kernels, which controls
the smoothness of the overall distribution. The fixed width
in each feature direction also means that the Parzen
density estimator is sensitive to the scaling of the data.
This problem is addressed in [21], in which the variance is
determined using a nearest-neighbour method.

Vincent and Bengio [96] propose an approach to
improve on this estimator, by using general covariance
matrices for individual components set according to
neighbourhoods local to each kernel. Not only are the
localisation of the data point and its neighbours used but
also their geometry, in order to try and infer the principal
characteristics of the local shape of the manifold (where
the density is concentrated), which can be summarised by
the covariance matrix of the Gaussian. Bengio et al. [87]
describe a non-local non-parametric density estimator
which builds upon previously proposed GMMs with reg-
ularised covariance matrices to take into account the local
shape of the manifold. The proposed approach builds upon
the Manifold Parzen density estimator [96] that associates
a regularised Gaussian with each training point, and upon
previous work on non-local estimators of the tangent
plane of a manifold [86]. The local covariance matrix
characterising the density in the immediate neighbour-
hood of a data point is learnt as a function of that data
point, with global parameters. Generalisation may then be
possible in regions with little or no training data, unlike
traditional, local, non-parametric models. The implicit
assumption is that there is some kind of regularity in the
shape of the density, such that learning about its shape in
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one region could be informative of the shape in another
region that is not adjacent. The proposed method was
tested in three types of experiments involving artificial
datasets and the USPS3 dataset, which showed that the
non-local estimator yielded improved density estimation
and reduced classification errors when compared to local
algorithms.

Erdogmus et al. [88] describe a multivariate density
estimation method that uses Parzen windows to estimate
marginal distributions from samples. The kernel size is
optimised to minimise the Kullback–Leibler divergence of
the true marginal distribution from the estimated mar-
ginal density. The estimated marginal densities are used to
transform the random variables to be Gaussian-distribu-
ted, whereby joint statistics can be simply determined by
sample covariance estimation. The proposed method was
shown to be more data efficient than Parzen windows
with a structured multidimensional kernel.

Subramaniam et al. [93] use kernel density estimators
in a framework that computes an approximation to multi-
dimensional data distributions in order to enable complex
applications in resource-constrained sensor networks. The
authors propose an online approximation of the data
distribution by considering the values in a sliding window.
The variance of the kernel for the values in the sliding
window is computed using a histogram along the time
axis. A network of nodes is considered, where the estima-
tor updates are propagated around the network such that
child nodes transmit updates to the parent nodes. Experi-
ments showed that this method can achieve high precision
for identifying outliers, but that it consumes a large
amount of memory space and may not find all outliers.

Tarassenko et al. [94,95] propose an approach to
patient monitoring based on novelty detection, in which
a multivariate, multimodal model of the distribution of
vital-sign data from “normal” high-risk patients is con-
structed using Parzen windows. Multivariate test data are
then compared with this model to give a novelty score,
and an alert is generated when the novelty score exceeds
the novelty threshold. This system was used for monitor-
ing patients in a clinical trial involving 336 patients [145],
and it was able to provide early warning of adverse
physiological events.

Ramezani et al. [92] consider the problem of novelty
detection in video streams, and use a method derived from
a kernel density estimator and an evolving clustering
approach, “e-Clustering”. In this method, the pdf of the
colour intensity of the image frames is approximated by a
Cauchy kernel. A recursive expression derived in [85,146]
is then used to update this estimation online. The recursive
density estimation clusters pixel colour intensities into
“background” and “foreground” (i.e., pixels for which
significant novelty is detected). The proposed approach
gradually updates the background model, and it was found
to be faster than the traditional kernel density estimate
for background subtraction. The approach can also be
extended to automatic object tracking when combined
3 The USPS (United States Postal Service) dataset contains hand-
written digit images, and comes from the UCI repository [144].
with Kalman filter or evolving Takagi-Sugeno fuzzy models
[92,85].

More recently, one-class classification using Gaussian
Processes (GPs) has been proposed [147,89–91], in which a
point-wise approach to novelty detection is also taken,
dividing the data space into regions with high support and
low support depending on whether or not those regions
are close to those occupied by normal training data, or not,
respectively. It is often assumed that the desired mapping
from inputs x to labels y can be modelled by y¼ f ðxÞþε
where f is an unknown latent function and ε is a noise
term. By choosing a proper GP prior, it is possible to derive
useful membership scores for one-class classification.
In [90], the authors use a mean of the prior with a smaller
value than the positive class labels (e.g., y¼1), such as
a zero mean. This restricts the space of probable latent
functions to functions with values gradually decreasing
when the inputs are far from training points. Because the
predictive probability is solely described by its first and
second order moments, the authors also investigate the
power of the predictive mean and variance as alternative
membership scores: the mean decreases for inputs distant
from the training data and can be directly utilised as a
novelty detection measure, while the predictive variance
increases which suggests that the negative variance value
can serve as an alternative criterion for novelty detection.
This latter concept is used in the context of clustering in
[91]. Kemmler et al. [90] explore an heuristic measure: the
predictive mean divided by the standard deviation, which
was proposed in [89] as a combined measure for describ-
ing the uncertainty of the estimation.

A related approach involves a class of methods which
are part of the well-established field of changepoint detec-
tion [148,149]. Here the problem setting is more specific,
the aim being (typically) to detect whether the generative
distribution of a sequence of observations has remained
stable or has undergone some abrupt change. This may
include not only detecting that a change has occurred but
also, if it has occurred, estimating the time at which the
change has occurred. Methods vary according to which
restrictions are placed on the pre- and post-change dis-
tributions and the degree of knowledge of potential
changes. Changepoint detection can also take place in a
batch or online setting. The basic approach to the retro-
spective problem is to find a test statistic appropriate for
testing the hypothesis that a change has occurred with
respect to the hypothesis that no change has occurred. This
statistic is usually based on a likelihood ratio, but other
approaches exist [149,150]. The online setting has the goal
of detecting a change as quickly as possible once it has
occurred. The most basic approach to this is also based on
likelihood ratios. The Cumulative Summation (CUSUM)
algorithm is generally used in statistical process control
to detect abrupt changes in the mean value of a stochastic
process [151]. Non-parametric CUSUM algorithms sequen-
tially accumulate data values that are higher than the
mean value observed under normal conditions. An anom-
aly is detected by comparing this CUSUM value to a
threshold, where the latter determines the sensitivity of
the detector and the detection delay. This approach has
been used in wireless sensor networks [152] and intrusion
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detection systems [151]. Bayesian approaches have also
been proposed for both offline and online changepoint
detection schemes [153]. The Bayesian framework incor-
porates prior knowledge about the distribution of the
change time. The decision function is then based on the
a posteriori probability of a change. Because it is often hard
in practice to elicit specific information about the distribu-
tion of the changepoint, it is common to assume that the
change time follows a geometric distribution, but finding
the parameter of this distribution requires a preliminary
estimation problem to be solved. There is a large body of
literature on the topic of changepoint detection, and the
interested reader is referred a book on this topic which has
recently been published [154].

2.2.2. Negative selection
Negative selection approaches have been widely used

for change detection and novelty detection [155,98,101,
102]. The nature of the negative selection algorithm [155] is
inspired by the properties of the immune system. The
human immune system has the ability to detect antigens;
i.e., anything which is not part of the human body (such as
viruses, bacteria, etc.). The task of the immune system is to
differentiate between antigens and the body itself, a
process known as self/non-self discrimination, which is
achieved when the antigen is “recognised” by a specific
antibody called a T-cell receptor. These T-cell receptors are
created by a random process of genetic rearrangements.
Those cells that successfully bind with self-cells (normal
cells) and thus incorrectly mark them for destruction, are
destroyed in the thymus gland. Only those cells that fail
to bind to self-cells are allowed to leave the thymus
gland and become antibodies in the immune system. This
process is called negative selection. In a similar way,
novelty detection has the fundamental objective of distin-
guishing between self (which corresponds to the normal
operation of the monitored system) and non-self (which
corresponds to novel data).

The negative selection algorithm was first used by
Forrest et al. [155] as a means of detecting unknown or
illegal strings for virus detection in computer systems. A
population of detectors is created to perform the function
of T-cells, which are simple, fixed-length binary strings. A
simple rule based on a distance measure is then used to
compare bits in two such strings and decide whether a
match has occurred. One major concern identified by the
authors is the matching threshold, which has to be data
specific for satisfactory system performance. Dasgupta and
Majumdar [98] extended the approach for use with multi-
dimensional data, where the dimensionality of the original
data is first reduced to two dimensions using principal
component analysis, and then binary encoded. The authors
conclude that the encoding of self and non-self sets using
binary strings results in a risk of destroying the semantic
value of relationships between data items. Later, the
authors propose a real-valued negative selection algorithm
[101]. The main feature of the latter is that the self/
non-self space corresponds to a subset of the original
n-dimensional data space. A detector (antibody) is defined
by a hypersphere; i.e., an n-dimensional vector that
corresponds to the centre of the sphere and a scalar value
that represents its radius. The matching rule is expressed
by a membership function, which is a function of the
detector-antigen Euclidean distance and the radius of the
detector. The algorithm tries to evolve a set of points
(antibodies or detectors) that covers the non-self space
using an iterative process that updates the position of the
detector. In order to detect if a detector matches a self
point, the algorithm uses a nearest-neighbour approach to
calculate a distance measure. A different approach is also
taken in which a multi-layer perceptron trained with back-
propagation is used for the detection problem. The system
was tested on network traffic data sets. Gómez et al. [100]
extended the negative characterisation approach to gen-
erate more flexible boundaries between self and non-self
space using fuzzy rules. Taylor and Corne [102] demon-
strate the feasibility of the above approaches in fault
detection in refrigeration systems. Esponda et al. [99]
describe a framework for outlier detection using this general
approach.

Surace and Worden [5] apply the negative selection
algorithm to more general feature sets, rather than the
windowed time-series data used in previous studies. The
authors consider Structural Health Monitoring (SHM) for
situations where the normal condition of a structure may
change due to time-varying environmental or operational
conditions. Data were simulated for an offshore platform
model with changing mass as a result of changing oil
storage requirements. The method was also applied to
the analysis of the structure of a transport aircraft, for
which the effective mass decreases due to a reduction in
fuel, simulated using a finite-element model. The negative
selection algorithm proved capable of distinguishing var-
ious damage conditions in structures induced by time-
varying oil storage and fuel use.

2.3. Method evaluation

Probabilistic approaches are mathematically well-
grounded and can effectively identify novel data if an
accurate estimate of the pdf is obtained. Also, after the
model has been constructed, only a minimal amount of
information is required to represent it, rather than requir-
ing the storage of the entire set of data used for training.
Probabilistic methods are also known to be “transparent”
methods, i.e., their outputs can be analysed using standard
numerical techniques. However, the performance of these
approaches is limited when the size of the training set is
very small, particularly in moderately high-dimensional
spaces. As the dimensionality increases, the data points
are spread through a larger volume in the data space. The
problem encountered when applying density methods
to sparsely populated training sets is that there is little
control over the inherent variability introduced by the
sparsity of the training data; i.e., the estimated quantiles
can differ substantially from the true quantiles of the
distribution. Different approaches have been proposed to
overcome the problems associated with increasing dimen-
sionality which both increase the processing time and
distort the data distribution. In many real-life scenarios, no
a priori knowledge of the data distributions is available,
and so parametric approaches may be problematic if the



Table 2
Examples of novelty detection methods using distance-based approaches.

Distance-based
approach

Section References

Nearest neighbour 3.1 Angiulli and Pizzuti [156], Bay and Schwabacher [157], Boriah et al. [158], Breunig et al. [159], Chandola et al. [160],
Chawla and Sun [161], Ghoting et al. [162,163], Hautamaki et al. [164], Jiang et al. [165], Kou et al. [166], Otey et al. [167],
Palshikar [168], Pokrajac et al. [169], Wu and Jermaine [170] and Zhang and Wang [171]

Clustering 3.2 Barbará et al. [172,173], Budalakoti et al. [174], Clifton et al. [175,176], Filippone et al. [177], He et al. [178],
Kim et al. [179], Srivastava and Zane-Ulman [180,181], Sun et al. [182], Syed et al. [183], Wang [184],
Yang and Wang [185], Yong et al. [186,187], Yu et al. [188] and Zhang et al. [189]
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data do not follow the assumed distribution. Thus, non-
parametric techniques are appealing since they make
fewer assumptions about the distribution characteristics.
Kernel functions, for example, generally scale reasonably
well for multivariate data and are not computationally
expensive.

3. Distance-based novelty detection

Distance-based methods, including clustering or nearest-
neighbour methods (Table 2), are another type of technique
that can be used for performing a task equivalent to that
of estimating the pdf of data. These methods rely on well-
defined distance metrics to compute the distance (similarity
measure) between two data points.

3.1. Nearest neighbour-based approaches

Nearest neighbour-based approaches are among the
most commonly used methods for novelty detection. The
k-nearest neighbour (k-NN) approach is based on the
assumption that normal data points have close neighbours
in the “normal” training set, while novel points are located
far from those points [164]. A point is declared as an
outlier if it is located far from its neighbours. Euclidean
distance is a popular choice for univariate and multivariate
continuous attributes, but other measures, such the
Mahalanobis distance, can be used. For categorical
attributes, a simple matching coefficient is often used,
although other more complex measures have been pro-
posed [158,160]. Several well-defined distance metrics to
compute the distance (or similarity measure) between two
data points can be used [33], which can broadly be divided
into distance-based methods, such as the distance to the
kth nearest neighbour [171], and local density-based
methods in which the distance to the average of the k
nearest neighbours is considered [164]. Many of these
algorithms are unable to deal with high-dimensional data
sets efficiently. A recent trend in high-dimensional outlier
detection is to use the evolutionary search method where
outliers are detected by searching for sparse subspaces.

The approach proposed in [156] considers a weighted
sum of the distances from the k nearest neighbours to each
data point, and classifies as outliers those points which
have the largest weighted sums. The k nearest neighbours
of each point are found by linearising the search space
using a Hilbert space curve. This work is built upon
previous techniques that prune the search space for
nearest neighbours [190]. The latter partition the data
space into a grid of hypercubes of fixed sizes. If a
hypercube contains many data points, such points are
likely to be normal. Conversely, if a test point lies in a
hypercube that contains very few examples, the test point
is likely to be an outlier. In [156], a high-dimensional data
set is mapped onto the interval ½0;1�n using Hilbert space-
filling curves. Each successive mapping improves the
estimate of the example0s outlier score in the original
high-dimensional space. In related works, [168] adapts the
technique proposed in [190] to continuous sequences, and
[166] incorporates spatial correlation between data. These
analyses are related to the very well established applica-
tion domain of Rough Sets, and indeed a formalisation of a
similar approach within the framework of Rough Sets has
been proposed in [165].

Zhang and Wang [171] describe the “HighDOD” method,
the High-Dimension Outlying Subspace Detection method, for
efficiently characterising the outlying subspaces of high-
dimensional data spaces. The novelty score of a point is
measured using the sum of distances between it and its
k nearest neighbours, as in [156]. Two heuristic pruning
strategies are proposed to perform fast pruning in the
search, and an efficient dynamic method with a sample-
based learning process is described. The dynamic subspace
search method begins the search in those subspaces that
have the highest total saving factor. The total saving factor of
a subspace is defined to be the combined savings obtained
by applying the two pruning strategies during the search
process. As the search proceeds, the total saving factor of
subspaces with different dimensions is updated and the set
of subspaces with the highest values are selected for
exploration in each subsequent step. The search process
terminates when all the subspaces have been evaluated or
pruned. Experiments were performed using both synthetic
and real high-dimensional data sets, ranging from 8 to 160
dimensions.

Different approaches were taken in [157,163], which
prune the search by ignoring data that cannot be consid-
ered to be outliers. Bay and Schwabacher [157] introduced
the distance-based outlier detection algorithm called
“ORCA”. The authors showed that for sufficiently rando-
mised data, a simple pruning step could result in the
average complexity of the nearest neighbour search being
approximately linear. After finding the nearest neighbours
for a point, a threshold based on the score of the weakest
outlier (i.e., the outlier that is closer to the point) found so
far is set for any new data point. Therefore points that
are close are discarded by the algorithm. To improve the
performance of ORCA, Ghoting et al. [163] proposed the
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Recursive Binning and Re-projection algorithm. In the first
of two phases, a divisive hierarchical clustering algorithm
is used to partition objects into bins or clusters. Objects in
the same bin are reorganised according to a projection
along their principal component. In the second phase, the
strategy of ORCA [157] is employed on the clustered data.
This pre-processing step allowed faster determination of
the closest nearest neighbours compared with ORCA. A
similar cluster-based pruning has been proposed in [191].
Wu and Jermaine [170] used a sampling algorithm to
improve the efficiency of detection of the nearest
neighbour-based technique. Rather than using the entire
dataset, the nearest neighbour of every data point is
computed only within a smaller sample of the dataset.
This reduces the complexity of the proposed method
according to the sample size chosen.

While most techniques discussed so far in this category
have been proposed to handle continuous attributes,
variants have been proposed to handle other data types.
Wei et al. [192] propose a hypergraph-based technique
called HOT, an efficient approach for detecting local out-
liers in categorical data. A hypergraph can be defined as a
generalised graph, consisting of a set of vertices and hyper-
edges. The authors use hyper-edges, which simply store
“frequent itemsets” (commonly used terms in association
rule mining) along with the data points (vertices) that
contain these frequent itemsets. First, all the frequent
itemsets are mined by using the Apriori algorithm [193].
Then, they are arranged in a hierarchy according to the
containment relationship. The hierarchy is visited using a
bottom-up strategy. Frequent itemsets I represent com-
mon attributes, while each attribute A not in I represents a
potential exceptional attribute. For each itemset I, the
histogram of frequencies associated with each attribute A
not in I is stored, and used to compute the deviation of
each value taken by A in the database. The objects
assuming a value for the attribute A whose deviation is
smaller than a defined threshold are returned as outliers.
Two advantages of this method are that (i) it alleviates the
problem of the curse of dimensionality in very large
databases, and (ii) it uses the connectivity property of
points to deal efficiently with missing values.

Otey et al. [167] and Ghoting et al. [162] propose a
distance measure for data containing a mix of categorical
and continuous attributes. The authors define links
between two points by taking into account the dependen-
cies between continuous and categorical attributes, where
the distances for categorical and continuous attributes are
considered separately. For categorical attributes, the dis-
tance between two points is defined to be the number
of attributes which take the same values; two points are
considered linked if they have at least one common
attribute-value pair. The number of attribute-value pairs
in common indicates the strength of the associated link
between these two points. For continuous attributes, a
covariance matrix is maintained to capture the dependen-
cies between the continuous values. In a mixed attribute
space, the dependence between the values with mixed
continuous and categorical attributes is captured by incre-
mental maintenance of the covariance matrix. Thus, a data
point can be considered to be an outlier if the expected
dependencies between categorical and continuous data
are violated by it. We note that the construction of the
covariance matrix implies an assumption that the data
share the same distribution, which may not hold for real-
life applications.

A density-based scheme for outlier detection has been
proposed in [159], in which a Local Outlier Factor (LOF) is
computed for each point. The LOF of a point is based on
the ratios of the local density of the area around the point
and the local densities of its neighbours. The size of the
neighbourhood of a point is determined by the area
containing a user-supplied minimum number of points.
The LOF takes high values for outliers, because it quantifies
how isolated the point is with regard to the density of its
neighbourhood. Note that LOF ranks points by only con-
sidering the neighbourhood density of the points, and so it
may miss potential outliers whose densities are close to
those of their neighbours.

A similar technique called LOCI (Local Correlation Inte-
gral) is presented in [194]. LOCI addresses the difficulty of
choosing values for the number of neighbours in the LOF
technique by using data-driven methods. The local neigh-
bourhood is defined such that each point has the same
radius of neighbourhood, instead having a fixed number
of neighbours. It uses the concept of a multi-granularity
deviation factor, to measure the relative deviation of a
point0s local neighbourhood density from the average local
neighbourhood density in its neighbourhood. A point can
then be declared as an outlier by comparing its factor with
a data-derived threshold value. The choice of an appro-
priate radius for the local neighbourhood becomes critical
for high-dimensional datasets.

A variant of LOF was proposed in [195]. The GridLOF
uses a simple grid-based technique to prune away some
non-outliers and then only computes the LOF values for
the remaining data. This avoids the computation of LOF for
all points. Tang et al. [196] present a variation of the LOF
that considers both the density of a test point in its
neighbourhood and the degree that the point is connected
to other points; it uses a connectivity-based outlier factor to
identify outliers. This factor is calculated using the ratio of
the average distance from the test point to its k-nearest
neighbours and the average distance from its k-nearest
neighbours to their own k-nearest neighbours. Points
that have the largest factors are declared as outliers. This
approach was found to be a more effective approach for
outlier detection, especially for sparse data sets, where
“non-outlier” patterns may have low densities.

Ren et al. [197] develop an efficient density-based
outlier detection approach based on a relative density
factor (RDF). This is another local density measurement
for determining the degree of being an outlier by con-
trasting the density between a point and that of its
neighbours. A P-Trees approach is used to efficiently prune
some non-outliers, and the remaining subset of the data is
then used to compute the RDF. Points with an RDF greater
than a pre-defined threshold are considered outliers.

Yu et al. [198] propose an outlier detection approach for
detecting “outliers” that may occur within the loci of
“normal” data, rather than being far from the “normal”
points in data space, for both categorical and numerical
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data. Similarity between points is measured by a similarity
graph, which is a weighted, connected, undirected graph.
A weight for a pair of points specifies the similarity
between them. A point can be considered to be an outlier
if its similarity relationship with its neighbours is lower
than the similarity relationships among its neighbours0

neighbourhood. This use of similarity graphs overcomes
the disadvantage of the traditional similarity measure
(which assumes that outliers are far away from the
“normal” points in data space) and can easily be applicable
for categorical as well as numerical data. Several other
variants of the LOF method have been proposed to handle
different data types [199] and applied for detecting spatial
outliers or anomalies in climate data [161,200], protein
sequences [201], network intrusion [202,164], and video
sensor data [169].
3.2. Clustering-based approaches

Clustering-based approaches to distance-based novelty
detection include methods such as the k-means clustering.
In this general type of methods, the “normal” class is
characterised by a small number of prototype points in the
data space. The minimum distance from a test point to the
nearest prototype is often used to quantify abnormality.
The methods use different approaches to obtain the
prototype locations. The k-means clustering algorithm is
perhaps the most popular method of clustering structured
data due to its simplicity of implementation [180,181]. Kim
et al. [179] use novelty detection to identify faulty wafers
in semiconductor manufacturing. Among other methods,
the authors employed the k-means clustering technique,
GMMs, Parzen windows, and other non-probabilistic
methods, such as one-class support vector machines and
reconstruction methods based on principal component
analysis. The k-means algorithm works by choosing k
random initial cluster centres, computing the distances
between these cluster centres and each point in the
training set, and then identifying those points that are
closest to each cluster centre. The corresponding cluster
centres are moved to the centroid of those nearest points
and the procedure is repeated. The algorithm converges
when the cluster centres do not move from one iteration
to the next. This procedure is often used as a pre-
processing procedure [95].

Among the prototype-based clustering algorithms, we
can identify many modifications of the k-means algorithm.
Popular fuzzy-clustering algorithms are the fuzzy versions
of the k-means algorithm with probabilistic and possibi-
listic descriptions of memberships: fuzzy c-means [203]
and possibilistic c-means [204], respectively. The latter
technique has recently been extended by Filippone et al.
[177]. In the proposed extension, positive semidefinite
kernels are used to map implicitly input patterns into a
high-dimensional space, in which the mapped data are
modelled by means of the possibilistic clustering algo-
rithm. Wang [184] presents a hybrid approach that incor-
porates two kernel-based clustering methods (using the
concepts of fuzzy and possibilistic c-means) for outlier
identification and market segmentation.
Different clustering-based techniques have been pro-
posed [188,178,205,182]. Yu et al. [188] propose an outlier
detection approach based on a wavelet transform, which
can be extended to detect outliers in datasets with
different densities. This approach uses wavelets to trans-
form the data and then find dense clusters in the trans-
formed space. He et al. [178] present a new definition of a
cluster-based local outlier, which takes into account both
the size of a point0s cluster and the distance between the
point and its closest cluster. Each point is associated with a
cluster-based local outlier factor, which is used to deter-
mine the likelihood of the point being an outlier. This
approach partitions the data into clusters using a squeezer
algorithm, which makes a single pass over the dataset and
produces initial clustering results. The outlier factor is then
computed for each point, and those points which have the
largest factors are considered outliers. This approach is
linearly scalable with respect to the number of data points
and was found to work well with large datasets. Another
technique that addressed computational efficiency was
proposed by Sun et al. [182], in which an efficient indexing
technique called CD-trees was used to partition data
into clusters. Those points belonging to sparse clusters
are declared anomalies.

Basu et al. [15] introduce a method for semisupervised
clustering that employs Hidden Random Markov Fields
(HMRFs) to use both labelled and unlabelled data in the
clustering process. The method can be used with a number
of distortion measures, including Bregman divergences
(such as the Kullback–Leibler divergence) and directional
measures. The authors propose an EM-based clustering
algorithm, HMRF-KMEANS that incorporates supervision
in the form of pairwise constraints at all stages of the
algorithm: initialisation, cluster assignment, and para-
meter estimation. The HMRF method led to improved
results when applied to realistic textual datasets, in
comparison to unsupervised clustering methods. The
algorithm discussed in [206] seeks to minimise class
differences between nearby points and maximise class
differences between distant points. It was applied to the
classification of representations of handwritten digits and
a synthetic control time-series. A similar approach was
applied to network intrusion detection tasks in [207],
combining factor analysis and the Mahalanobis distance
metric.

Clustering data that are represented by a sequence of
individual symbols was considered by Yang and Wang
[185], who describe a clustering algorithm called CLUSEQ
that produces a set of overlapped clusters, and which is
able to adjust automatically the number of clusters and
the boundary used to separate “normal” sequences from
outliers. The similarity measure uses the conditional
probability distribution derived from sequences, where a
variation of the suffix tree (the probabilistic suffix tree) is
used to estimate the distribution. The CLUSEQ algorithm
takes a training set of sequences and a set of tree para-
meters as input fromwhich it produces a set of clusters. An
iterative process is used in which, for each iteration, a set
of new clusters is generated from the set of unclustered
sequences to augment the current set of clusters, which is
followed by a sequential examination of every sequence to
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evaluate its similarity to each cluster and to update
its cluster membership. At the end of each iteration, a
consolidation procedure is invoked to merge heavily
overlapped clusters. Budalakoti et al. [174] propose a
different outlier detection approach that efficiently clus-
ters sequence data into groups and finds anomalous
sequences that deviate from normal behaviour. A fast
“normalised longest common subsequence” (nLCS) is used
as the similarity measure for comparing sequences.

Syed et al. [183] explore k-NN and clustering-based
novelty detection approaches to identify high-risk patients.
For many clinical conditions, patients experiencing adverse
outcomes comprise a small minority of the population.
When evaluated with demographic and comorbidity data
acquired from over 100,000 patients, the methods consid-
ered were able to identify patients at an elevated risk of
mortality and morbidity following surgical procedures.

Barbará et al. [173] suggest the use of a bootstrapping
technique that first separates normal data from outliers
using frequent itemset mining. Data are windowed
in time, and frequent itemsets then generated for each
window. All itemsets which exist in more than one
window are considered normal. Clusters were obtained
using COOLCAT, a clustering tool for categorical data
developed in [172]. This method was applied to intrusion
detection tasks.

Ertöz et al. [208] explore a clustering algorithm based
on a shared nearest-neighbour approach. This technique
first finds the nearest neighbours of each point and then
redefines the similarity between pairs of points in terms of
how many nearest neighbours the two points share. Using
this definition of similarity, the algorithm identifies “core
points” and then builds clusters around the core points.
The use of a shared nearest neighbour definition of
similarity alleviates problems with varying densities and
high dimensionality, and the use of core points handles
problems with shape and size of the distribution. The
number of clusters is automatically determined by the
location and distribution of core points. Another novel
aspect of the shared nearest neighbour clustering algo-
rithm is that the resulting clusters do not contain all
points, but contain only those points lying in regions of
relatively uniform density. The authors apply this algo-
rithm to the task of finding topics in collections of
documents, for which it out-performed the k-means
clustering method.

Zhang et al. [189] describe an unsupervised distance-
based technique to identify global outliers in query-
processing applications of sensor networks. The proposed
technique reduces the communication overhead of sensor
nodes using an aggregation tree. Each node in the tree
transmits data to its parent after collecting all data sent
from its children. The sink (also called the base station)
uses the information from its children to identify the most
likely outliers and “floods” these outliers for verification. If
any node finds that it has two kinds of data which
may modify the global result, it will send them to its
parent in an appropriate time interval. This procedure is
repeated until all nodes in the network agree on the
results produced by the sink node. This technique con-
siders only univariate data and the aggregation tree used
may not be stable due to the dynamic changes of the
network topology [12].

Clifton et al. [175,176] apply the k-means clustering algo-
rithm to condition monitoring of aerospace gas-turbine
engines. Novelty scores zðxÞ are defined to be the number of
standard deviations that a test point x lies from its closest
cluster centre, relative to the distribution of all clusters.

Yong et al. [187,186] consider novelty detection in
multiple-scene image sets. The framework starts with
wildlife video frame image segmentation, followed by
feature extraction and classification using the k-NN
method. The labelled image blocks are then used to
generate a co-occurrence matrix of object labels (called
the block label co-occurrence matrix, BLCM), which repre-
sents the semantic context within the scene. Principal
component analysis is used to perform dimensionality
reduction, resulting in models for scene categories. The
classification model is used to classify an image into scene
classes; if it does not belong to any scene class, the image
is classified as being “abnormal”. Yong et al. [186] assume
that in the BLCM feature space, for each scene type, there
is a dense cluster related to normal images, while novel
images are sparsely distributed around these clusters.
During training, the centroid of the BLCM for each image
group is calculated. The distances to the centroid for all
points in the same scene are computed, and a threshold
based on the mean and standard deviation of the distances
is determined. Test images are then assessed by calculating
their BLCM feature distance to the trained one-class
centres: if it is smaller than a defined threshold for that
class, the images are accepted by that one-class classifier,
otherwise they are rejected from that class. If the test
image is rejected by all classes, the image is classified as
being novel. This multiple one-class classification with a
distance thresholding algorithmwas compared with a pdf-
based one-class classifier [126] and a one-class support
vector machine [209]. The proposed algorithm was shown
to perform the most successfully at the task of detecting
novel wildlife scenes.

Zhou et al. [210] present a method for distributed novelty
detection on simulation mesh data. Large-scale simulation
datasets are typically located on multiple computers and
cannot be merged due to communication overhead and
computational inefficiency. The proposed method consists of
three steps. In the first step, local models from all distributed
data sources are built using clustering-based methods.
Novelty scores for test points are based on the distance to
the nearest cluster centre. In the second step, all local outliers
are collected from distributed sites and shared with each site,
and all local models are rebuilt. Finally, in the third step, the
local outliers0 novelty scores are computed using the ensem-
ble of the local models0 results from the previous step.
The ensemble methods consider both quality criteria of local
models acting on local points and diversity criteria4 of local
models acting on all local outliers to detect novelty in a
global view.

There are other variants of the methods described
above. Spinosa et al. [211] describe an online novelty and
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drift detection algorithm that uses standard clustering
methods to generate candidate clusters among examples
that are not explained by the currently known concepts.
Hassan et al. [212] propose a heuristic method based on a
clustering approach in wireless sensor networks. Idé et al.
[213] address the task of change-point analysis in corre-
lated multi-sensor systems. Their approach is based on
a neighbourhood preservation principle: if the system
is working normally, the neighbourhood graph for each
sensor is almost invariant with respect to fluctuations
arising from experimental conditions. With this notion of
a stochastic neighbourhood, the proposed method was
able to compute novelty scores for each sensor. Onuma
et al. [214] use clustering-based novelty detection for
recommender systems. The authors apply a graph-based
method to recommend items that are not in the user0s
current set of interests, but which lie in neighbouring
areas of interest. This ensures novelty, and provides variety
in the recommendations, which is seen favourably
by users.
3.3. Method evaluation

Distance-based approaches do not require a priori
knowledge of the data distribution and share some com-
mon assumptions with probabilistic approaches. Nearest
neighbour-based techniques, however, rely on the exis-
tence of suitable distance metrics to establish the similar-
ity between two data points, even in high-dimensional
data spaces. Furthermore, most of them only identify novel
data points globally and are not flexible enough to detect
local novelty in data sets that have diverse densities and
arbitrary shapes. Generally, in high-dimensional data sets
it is computationally expensive to calculate the distance
between data points and as a result these techniques lack
scalability. Clustering-based approaches are capable of
being used in incremental models, i.e., new data points
can be fed into the system and tested to identify novelty.
New techniques have been developed to optimise the
novelty detection process and reduce the time complexity
with respect to the size of data. However, these techniques
suffer from having to choose an appropriate value
of cluster width and are also susceptible to the curse of
dimensionality.
Table 3
Examples of novelty detection methods using reconstruction-based approaches

Reconstruction-based
approach

Section References

Neural networks 4.1
Multi-layer perceptron Augusteijn and Folkert [215] and Singh and
Hopfield networks Crook et al. [217]
Autoassociative

networks
Diaz and Hollmen [218], Hawkins et al. [219
Williams et al. [223]

Radial basis function Bishop [21], Jakubek and Strasser [224], Li e
Self-organising

networks
Albertini and de Mello [226], Barreto and A
Hristozov et al. [230], Kit et al. [231], Marsla

Subspace methods 4.2 Chen and Malin [236,237], Günter et al. [23
McBain and Timusk [242], Perera et al. [243
Toivola et al. [247] and Xiao et al. [248]
Probabilistic and distance-based approaches rely on
similar assumptions. They attempt to characterise the area
of the data space occupied by normal data, with test
data being assigned a novelty score based on some sort
of distance metric. Nearest-neighbour and clustering-
based techniques require a distance measure computation
between a pair of data points. These techniques, when
applied to novelty detection, assume that the distance
measure can discriminate between novel and normal data
points. Probabilistic techniques typically fit a probability
model to the given data and determine whether or not a
test data point comes from the same model by assuming
that normal data points occur in the so called “high
density regions” of the model. One of the main differences
between these two types of approach is the computational
complexity and scalability of the proposed techniques.
4. Reconstruction-based novelty detection

Reconstruction-based methods are often used in safety-
critical applications for regression or classification pur-
poses. They can autonomously model the underlying data,
and when test data are presented to the system, the
reconstruction error, defined to be the distance between
the test vector and the output of the system, can be related
to the novelty score. Neural networks and subspace-based
methods can be trained in this way (Table 3).

4.1. Neural network-based approaches

Several types of neural networks have been proposed
for novelty detection, a review of which can be found in
[27]. In this section, we will concentrate on more recent
methods that use neural networks.

Augusteijn and Folkert [215] investigate the ability
of the back-propagation neural network architecture (a
multi-layer perceptron, or MLP) to detect novel points.
One novelty detection approach uses a threshold on the
highest output value and declares a point to be novel if
this value remains below the threshold; a second approach
calculates the distance between the output and all
target points and classifies the test point as novel if the
minimum distance is found to exceed a predefined
.

Markou [216]

], Japkowicz [220], Manevitz and Yousef [221], Thompson et al. [222],

t al. [225] and Nairac et al. [110]
guayo [227], Deng and Kasabov [228], García-Rodríguez et al. [229],
nd et al. [232,233], Ramadas et al. [234] and Wu et al. [235]
8], Hoffmann [239], Lakhina et al. [240], Kassab and Alevandre [241],
], Ide and Kashima [244], Shyu et al. [245], Thottan and Ji [246],



M.A.F. Pimentel et al. / Signal Processing 99 (2014) 215–249 233
threshold. Both approaches were found to lead to a poor
ability to identify novel data. The authors have also
explored the applicability of the probabilistic neural net-
work, which contains as many nodes as there are points in
the training set, where the connections to these nodes are
weighted with the feature values of the training data.
Points belonging to the same category may first be
clustered, and the cluster centres may then be used as
initial connection weights. When presented with test data,
each output unit, which can incorporate a prior probability
and a cost of misclassification associated with the cate-
gory, calculates a quasi-probability of the data belonging to
that category. If the highest output value lies below a
predefined threshold then the pattern can be assumed to
belong to a class not represented by the network. This
method showed superior performance as an overall clas-
sifier when compared to the MLP and was able to identify
novel patterns.

Hawkins et al. [219] and Williams et al. [223] present
an outlier detection approach for large multivariate data-
sets based on the construction of a Replicator Neural
Network (RNN). The RNN is an MLP which has the same
number of input and output neurons (that correspond to
the features in the dataset), and three hidden layers. The
aim of the RNN is to reproduce the input points at the
output layer with the minimum reconstruction error, after
compression through the hidden layers (which contain
a smaller number of nodes than the input and output
layers). If a small number of input points are not recon-
structed well (they have large reconstruction errors), these
points can be considered as outliers. An outlier factor
based on the average reconstruction error is used as a
novelty score. These techniques have been used in several
investigations [218–223]. The auto-associative network
described in [222], also termed an autoenconder, computes
the bitwise difference between input and output to high-
light novel components of the input. Diaz and Hollmen
[218] also use an auto-associative neural network, where
the residual mean-square error is used to quantify novelty.
The method was used to detect outliers in vibration data
for fraud detection in synchronous mechanical units.

Haggett et al. [249] present a dynamic predictive
coding mechanism using a neural network model of
circuits in the retina proposed in [250]. This latter model
is a feed-forward network in which the connections may
be modifiable synapses (weights). These modifiable
weights are modulated according to an anti-Hebbian
learning rule which causes the modifiable synapses to
weaken when the activity at the pre-synaptic and post-
synaptic neurons are correlated, and to strengthen when
the activity is anti-correlated. Hosoya et al. [250] demon-
strate the operation of this network with a number of
artificially generated visual environments. This network is
used as the basis for the novelty detector proposed in
[249], which uses dynamic predictive coding. Three evolu-
tionary algorithms, including a genetic algorithm and the
Neuro-evolution of Augmenting Topologies (NEAT), are used
to optimise the structure of the network to improve its
performance using stimuli from a number of artificially
generated visual environments. The authors have demon-
strated that the optimised network evolved by NEAT
outperforms other evolutionary algorithms and genetic
algorithm approaches.

A novelty detection method applied to region-segmented
outdoor scenes in video sequences is proposed in [216,9].
Their approach uses a feature-selectionmechanism to encode
image regions, and an MLP acting as a classifier. The MLP is
used to reject any input not similar to the training data.
A rejection filter is used to classify test data as either known
or unknown. The known data points are classified by the
neural network into one of the known classes on the basis of
a “winner takes all” strategy. The rejected data points are
collected in a “bin” for further processing. Post-processing of
this filtered output has the goal of identifying clusters.
Clusters that represent novel data are manually labelled and
a new network is trained. This method reduces multi-class
classification into a number of binary classifications; i.e.,
a classification problem with 10 classes is decomposed into
a set of 10 binary problems. One neural network per class is
trained, where data are labelled as either belonging or not
belonging to the class. In this approach, the innovation is that
random rejects (data that were labelled as not belonging to
the class) are artificially generated. Although the performance
of this framework was demonstrated using video data, the
number of random rejects to be generated requires further
investigation.

Generalised radial basis functions (RBF) neural net-
works have also been proposed in several different appli-
cations for novelty detection [21,110,225]. In this case,
reverse connections from the output layer to the central
layer are added, similar to a self-organising Bayesian
classifier, which is capable of novelty detection. Each
neuron in the central layer has an associated Normal
distribution which is learned from the training data. Novel
points have low likelihood with respect to these distribu-
tions and hence result in low values at each output node.
In [110], a kernel is used to represent the distribution at
each neuron, such that the distance of a test point from
the nearest kernel centre can be determined and used
to detect novelty. Jakubek and Strasser [224] propose a
technique which uses neural networks with ellipsoid basis
functions for fault detection. The advantage of these
functions is that they can be fitted to the data with more
accuracy than radially symmetric RBFs. The distribution of
each cluster is represented by a kernel function. Results
from experiments showed that the proposed network uses
fewer basis functions than a RBF network of equivalent
accuracy.

Crook et al. [217] applied Hopfield Networks to detect
novelty in a mobile robot0s environment. A Hopfield net-
work uses binary threshold nodes with recurrent connec-
tions between them. A global energy function for the
network with symmetric connections is defined and used
to determine if a test point presented to the network is
novel or not. The value of the energy function is lower for
“normal” points and higher for novel points. It was demon-
strated that the method can be used to learn a model of an
environment during exploration by a robot and then detect
novel features in subsequently encountered environments.

Kohonen maps, also called Self-Organising Maps (SOMs),
can be used for novelty detection [251]. The SOM is a neural
network with a grid-like architecture that is primarily used
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as an unsupervised technique for identifying clusters in
a dataset and which, in effect, moves the position of the
nodes in the feature space to represent these identified
clusters. When normal data are used to train a SOM, it
creates a kernel-based representation of normality which
can be used for novelty detection. The Euclidean distance
between a test point and nodes in the SOM is evaluated, and
used to determine novelty. SOMs have been used to detect
network intrusions [252,234]. One important characteristic
of this type of neural network is that they are topology-
preserving; i.e., the network preserves neighbourhood rela-
tionships between the data by mapping neighbouring inputs
onto neighbouring nodes in the map. The “Kohonen SOM” is
a static SOM with a fixed structure: the grid size and the
number of nodes have to be determined a priori. This results
in a significant limitation on the final mapping as it is
unlikely that the most appropriate structure is known
beforehand. Several SOM variations, known as dynamic
SOMs, and other neural network-based approaches, known
as growing networks, have been introduced in the past to
overcome these shortcomings. The latter include the “grow-
ing cell structures” model, the “incremental grid-growing”
model, the “growing neural gas”, the “growing SOM” and
the “evolving SOM” [253–256,228,232].

Marsland et al. [232] propose a self-organising network
that Grows When Required (GWR). In this method, each
node is associated with a subset of the input space, and
the network is initialised with a small number of nodes
randomly located in the input space, and which are
unconnected. At each training iteration, a new input is
presented to the network, and existing nodes are either
(i) moved or removed to better represent the distribution
of the training data (the adaptation process), or (ii) new
nodes and connections are added to the network (the
growing process). A new node is added when the “activity”
of the best matching node (the node that best matches the
input) is not sufficiently high. The activity of nodes is
calculated using the Euclidean distance between the
weights for the node and the input. Novelty detection
can be performed by describing how often a node has fired
before (i.e., how often it has been the “winning” node
when presented with input data). This network was
applied to different tasks, including robot sonar scans,
medical diagnosis, and machine fault detection. This
method was also successfully applied in real-time auto-
mated visual inspection using mobile robots [10], in which
colour statistics are used to encode visual features. In
[233], the GWR network is combined with habituation
networks. This method is based on learning to ignore
previously encountered “normal” data, so that novel inputs
are given more weight in the analysis, and become easier
to detect. This is achieved using the GWR network with
the addition of synapses connecting each node in the
network to an output node. The algorithm was demon-
strated with the task of mobile robot inspection of corridor
environments, using inputs from sonar sensors and images
from a camera mounted on the robot.

A different approach applied to data from a camera
carried by a robot is taken by Kit et al. [231], who use
growing neural gas [256] to detect changes. The model
uses a growing neural gas network constructed using
image data and any available spatial data. Growing neural
gas is an unsupervised incremental clustering algorithm.
Given some input distribution in the feature space, the
method creates a network of nodes, where each node has a
position in the feature space. It is an adaptive algorithm in
the sense that if the input distribution slowly changes over
time, the network is able to adapt by moving the nodes to
cover the new distribution. The closest node to a test point
is found, an error distance between the two can be
determined, and the error compared to a threshold to
determine novelty.

García-Rodríguez et al. [229] address the ability of self-
organising neural network models to manage real-time
applications, using a modified learning algorithm for a
growing neural gas network. The modification proposed
aims to satisfy real-time temporal constraints in the
adaptation of the network. The proposed learning algo-
rithm can add multiple neurons per iteration, the number
of which is controlled dynamically. The authors concluded
that the use of a large number of neurons made it difficult
to obtain a representation of the distribution of training
data with good accuracy in real-time.

Albertini and de Mello [226] propose a network that
integrates features from SOM, GWR, and adaptive reso-
nance theory networks. When an input is presented, the
network searches through categories stored for a match. If
no match is found, then the input is considered to be
novel. A ligand-based virtual screening method based on
using SOMs for novelty detection is described in [230]. Wu
et al. [235] present a case study in which an online fault
learning method based on SOM techniques was adopted
for use with mechanical maintenance systems.

Barreto and Aguayo [227] evaluate the performance of
different static and temporal SOM-based algorithms for
identifying anomalous patterns in time series. The meth-
odology consists of computing decision thresholds from
the distribution of quantisation errors produced by normal
training data, which are then used for classifying incoming
data samples. Results from the experiments conducted
show that temporal variants of the SOM are more suitable
to deal with time-series data than static competitive
neural networks.
4.2. Subspace-based approaches

A different type of reconstruction-based novelty detec-
tion (termed spectral methods in [24]) uses a combination
of attributes to best describe the variability in the training
data. These methods assume that data can be projected or
embedded into a lower dimensional subspace in which
“normal” data can be better distinguished from “abnor-
mal” data. Principal Components Analysis (PCA) is a
technique for performing an orthogonal basis transforma-
tion of the data into a lower-dimensional subspace. The
number of features needed for effective data representa-
tion can thus be reduced. This technique can be used for
novelty detection by constructing a model of the distribu-
tion of training data in the transformed space [257, ch. 10].
The first few principal components of a dataset correspond
to vectors in the data space that account for most of the
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variance of the data. The last few principal components
can be used to find features that are not apparent with
respect to the original variables. Dutta et al. [13] describe
an outlier detection algorithm that uses approximate prin-
cipal components. The last principal component enables
identification of points which deviate significantly from the
“correlation structure” of the data. Thus, a normal point that
exhibits similar correlation structure to that of the training
data will have a low value for such projections, and an
outlier that deviates from the correlation structure will have
a large value. This approach was applied to novelty detec-
tion in astronomy catalogues.

Shyu et al. [245] propose a novelty detection approach
based on PCA, which can be seen as a robust estimator of
the correlation matrix of normal data. Two functions of
principal components to identify outliers are sequentially
executed. The first function uses the major principal
components to detect extreme points with large variances
and covariances depending on the subset of original
attributes. The second function, as in [13], uses the minor
principal components to further identify the remainder of
the outliers, which have different correlation structures
from normal data. Experiments with network intrusion
data indicated that the proposed scheme performed better
than techniques based on clustering approaches, and that
it can work in an unsupervised manner. Other authors
have applied this PCA-based technique to network intru-
sion detection [240,246] and to the detection of anomalies
in spacecraft components [258].

Hoffmann [239] explores kernel PCA in the context of
the novelty detection task. Kernel PCA [259] extends the
standard PCA to non-linear data distributions by mapping
points into a higher-dimensional feature space before
performing PCA. In this feature space, using a kernel, the
originally linear operations of PCA are performed with a
non-linear mapping (the “kernel trick”). This method has
been applied to astronomical data for the prediction of
stellar populations in space [14]. In [239], a principal-
component subspace in an infinite-dimensional feature
space describes the distribution of training data, and the
reconstruction error of a test point with respect to this
subspace is used as a measure of novelty. A strategy to
improve the convergence of the kernel algorithm for
iterative kernel PCA is described in [238]. Novelty detec-
tion with kernel PCA achieved better classification of
novelty when applied to hand-written-digit and breast
cancer databases, compared with a one-class support
vector machine and a Parzen window density estimator.
Kernel PCA is not robust to outliers in the “normal”
training set due to the properties of the L2 norm used in
the optimisation part of the training procedure [248].
Kwak [260] proposes a PCA method based on the L1 norm.
Xiao et al. [248] extend this work to L1 norm-based kernel
PCA. The proposed method was applied to novelty detec-
tion, and benefited from the robustness of the L1 norm to
outliers.

Perera et al. [243] have developed a novelty detection
method based on a recursive dynamic PCA approach for gas
sensor array applications. Their method is based on a sliding
window-based variance analysis algorithm. Under normal
conditions, a certain variance distribution characterises
sensor signals; however, in the presence of a new source
of variance, the associated PCA decomposition changes.
Sensor drift and other effects may be taken into account
because the model is adaptive, and is updated in a recursive
manner with minimal computational effort. The technique
was applied to signals from oil vapour leakages in air
compressors.

Further examples of reconstruction-based novelty detec-
tion with graph-based data have been proposed in recent
years [261–263,244]. Ide and Kashima [244] approach the
problem of Web-based systems as a weighted graph, using
eigenvectors of adjacency matrices (that represent the
activities of all of the services) from a time-series of graphs
to detect novelty. At each time point, the principal compo-
nent of the matrix is chosen as the activity vector for the
given graph (which is represented as an adjacency matrix
for a given time). The “normal” time-dependencies of the
data are captured using the principal left-singular vector of
the matrix which contains these time-series activity vectors
as column vectors. For a new test graph, the angle between
its activity vector (the principal component vector for the
test adjacency matrix) and the principal-left singular vector
obtained from previous graphs is computed and used to
calculate a novelty score for the test graph. If the angle
changes by more than some threshold, an abnormality is
declared to be present. In a similar approach, Sun et al.
[263] perform Compact Matrix Decomposition on the adja-
cency matrix of each graph on a sequence of graphs. An
approximate version of the original matrix is constructed
from the decompositions, and a time-series of approxima-
tion (or residual) errors between the original matrix and the
approximation matrix is then determined and used to
detect abnormalities.

Kassab and Alexandre [241] introduce an Incremental
data-driven Learning of Novelty Detector Filter (ILoNDF) for
one-class classification with application to high-dimen-
sional noisy data. The novelty detection filter is imple-
mented with a recurrent network of neuron-like adaptive
elements. It consists of n fully connected neurons, where n
is the dimensionality of the input vectors, such that all
neurons are both input and output neurons. The weights
associated with the feedback connections provide the
variable internal state of the network, and are updated
after presentation of an input vector using an anti-Hebbian
learning rule. The network continuously integrates infor-
mation relating to the distribution of the training data and
their co-occurrence dependencies. Because it operates
online without repeated training, the proposed method
does not require extensive computational resources.
Experiments conducted involving text categorisation
tasks showed that ILoNDF tends to be more robust, is less
affected by initial settings, and outperforms methods
such as auto-associative neural networks and PCA-based
models.

Chatzigiannakis et al. [264] present an approach that
fuses data gathered from different nodes in a distributed
wireless sensor network. An offline analysis step creates a
model of normality; testing is then performed in real-time.
PCA is used to identify test data that are considered
“normal”, where anomalies tend to result in large
variations in the PCA residual. This procedure can be
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computationally intense, and so a sliding window is used,
with the principal components being re-estimated only
when the deviation in one or more correlation coefficients
(of all the monitored metrics) exceeds a threshold. The
approach was demonstrated using meteorological data
collected from a distributed set of sensor nodes.

Chen et al. [236,237] introduce the community anomaly
detection system (CADS), an unsupervised algorithm for
detecting computer access threats based on the access logs
of collaborative environments. Collaborative system users
tend to form community structures based on the subjects
accessed (e.g., patients0 records are typically viewed by
healthcare providers). CADS is a “hybrid” method that
consists of two schemes: it uses singular value decom-
position to infer communities from relational networks of
users, and k-NN to establish sets of nearest neighbours.
The latter is used as a model to determine if users have
deviated from the behaviour of existing communities. In
[237], CADS is extended to MetaCADS to account for the
semantics of subjects (e.g., patient diagnoses). The frame-
work was empirically evaluated using three months of
access logs from the electronic health record system of a
large medical centre. When the number of “illicit” users is
small, MetaCADS was shown to be the best-performing
model of those considered, but as the number of illicit users
grows, the original CADS algorithm was most effective.

Lämsä and Raiko [265] demonstrate how non-linear factor
analysis (NFA), as a neural network-based method, can be
used for separating structural changes from environmental
and operational variation, and thereafter also for damage
detection. Here, the relationships between the observations
are described in terms of a few underlying but unobservable
factors. The goal is to eliminate the adverse effects of these
underlying factors from the observations resulting in new
variables that can be used in damage detection. NFA is based
on the assumption that the underlying factors are indepen-
dent and normally distributed, which is typically not the
case. A non-linear mapping from hidden factors to observa-
tions is modelled by a two-layer MLP. This method was
applied to vibration data, and it was shown that damage
detection via elimination of environmental and operational
effects from damage features is feasible.

McBain and Timusk [242] propose a feature reduction
technique for novelty detection. The method is similar to
multiple discriminant analysis in that it attempts to find
a subspace that maximises the difference between the
average distance of the “normal” class and the average
distance of the “abnormal” class. The effect of the reduced
subspace on classification was shown to be better than
that obtained from other dimensionality-reduction
methods (such as PCA and kernel PCA), for machinery
monitoring data.

Timusk et al. [266] describe a strategy for vibration-
based online detection of faults in machinery. A selection
of seven different types of novelty detection algorithms
were implemented and compared, including a similar PCA-
based approach to those described previously, probabilistic
methods (such as a single Gaussian distribution density
estimator), and clustering methods (such as k-NN and
k-means). Results showed that the PCA-based approach
was the best-performing fault detector.
In [247], three dimensionality-reduction approaches
are assessed for novelty detection: the non-linear Curvi-
linear Component Analysis (CCA), classical PCA, and a
computationally inexpensive Random Projections algo-
rithm. As with Kohonen0s SOM, the CCA aims to reproduce
the topology of the original data in a projection subspace,
but without fixing the configuration of the topology. It
is an adaptive algorithm for non-linear dimensionality
reduction, which minimises a cost function based on
inter-point distances in both input and output space. Since
the topology cannot be entirely reproduced in the projec-
tion subspace, which has a lower dimension than the
original subspace, the local topology is favoured to the
detriment of the global topology. Random Projections is a
computationally inexpensive method of linear dimension-
ality reduction. It embeds a set of points from the original
space in a randomly selected subspace whose dimension-
ality is logarithmic with respect to the dimension of
the original space, such that pairwise distances between
points before and after projection change only by a small
factor. Four classification approaches were evaluated:
three based on probabilistic models, such as the GMM,
and one based on a nearest-neighbour method. Experi-
ments showed that CCA was the best projection method
for the novelty detectors assessed in this work. The
authors mention that this agrees with expected results,
since the CCA method should be more powerful due to its
non-linear nature. Nevertheless, PCA was able to compete
for datasets of lower dimensionality, when using a nearest-
neighbour classifier.
4.3. Method evaluation

Reconstruction-based approaches belong to a very flex-
ible class of methods that are trained to model the under-
lying data distribution without a priori assumptions on the
properties of the data. Neural networks require the optimi-
sation of a pre-defined number of parameters that define
the structure of the model, and their performance may be
very sensitive to these model parameters. They may there-
fore be very difficult to train in high-dimensional spaces.
Moreover, networks that use constructive algorithms, in
which the structure of the model is allowed to grow, suffer
from the additional problem of having to select the most
effective training method to enable the integration of new
units into the existing model structure, and an appropriate
stopping criterion (for when to stop adding new units).
With subspace-based approaches, appropriate values must
be selected for the parameters which control the mapping
to a lower-dimensional space. It is difficult to determine
which are the key attributes and it is computationally
expensive to estimate the correlation matrix of normal
patterns accurately.
5. Domain-based novelty detection

Domain-based methods require a boundary to be created
based on the structure of the training dataset. These methods
are typically insensitive to the specific sampling and density
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of the target class, because they describe the target class
boundary, or the domain, and not the class density. Class
membership of unknown data is then determined by their
location with respect to the boundary. As with two-class
SVMs, novelty detection SVMs (most commonly termed
“one-class SVMs” in the literature) determine the location
of the novelty boundary using only those data that lie closest
to it (in the transformed space); i.e., the support vectors. All
other data from the training set (those that are not support
vectors) are not considered when setting the novelty bound-
ary. Hence, the distribution of data in the training set is not
considered which is seen as “not solving a more general
problem than is necessary” [209,267].

SVMs are a popular technique for forming decision
boundaries that separate data into different classes. The
original SVM is a network that is ideally suited for binary
pattern classification of data that are linearly separable.
The SVM uses a hyperplane that maximises the separating
margin between two classes. The training points that lie
near the boundary defining this separating margin are
called support vectors. Since the introduction of the origi-
nal idea, several modifications and improvements have
been made. The Robust Support Vector Machines (RSVMs)
algorithm [268,269] addresses the over-fitting problem
introduced by noise in the training dataset. In this approach,
an averaging technique (in the form of class centre) is
incorporated into the standard SVM, which makes the
decision surface smoother, controlling the amount of reg-
ularisation automatically. The number of support vectors of
RSVMs is often fewer than that of standard SVMs, which
leads to a faster execution speed. Experiments using system
intrusion detection data showed that RSVMs can provide a
reasonable ability to detect intrusions in the presence of
noise. Nevertheless, it does not address the fundamental
issue of the unbalanced nature between “normal” and
“abnormal” training examples as typically exists for novelty
detection applications.

Li et al. [270] propose an algorithm for online novelty
detection with kernels in a Reproducing Kernel Hilbert
Space. The technique differs from the original SVM for-
mulation, in that training data are processed sequentially,
and the Lagrangian dual equation is solved by maximising
a quadratic equation in a given interval. The proposed
approach has a simple update procedure with a much
lower computational cost than with the equivalent proce-
dure for conventional SVMs.

Diehl et al. [8] have implemented a real-time novelty
detection mechanism for video surveillance. Their method
is based on the extraction of monochromatic spatial
features in image sequences to represent moving objects.
Table 4
Examples of novelty detection methods using domain-based approaches.

Domain-based approach Section References

Support vector data
description

5.1 Campbell and Bennett [272], Le et al. [273
Wu and Ye [278] and Xiao et al. [279]

One-class support vector
machine

5.2 Clifton et al. [280,281,3], Evangelista et al.
Heller et al. [286], Lazarevic et al. [287], Lee
Rabaoui et al. [291], Schölkopf et al. [209]
A classifier based on a generalised SVM was trained offline
with models of people and cars, and was later used to reject
previously unseen moving objects, such as bicycles, vans,
and trucks. The sequences of training images are processed
to derive class labels for training the sequence classifier.
Each training image sequence has a corresponding class
label distribution which is simply the relative frequencies of
each class label in the class label sequence. Using these class
label distributions, a logistic linear classifier is constructed to
partition the class label distribution space. Image sequences
assigned to the same class are ranked based on class
likelihood. This likelihood monotonically increases with
increasing novelty in the sequence, which allows the user
to focus on those examples that cause the greatest uncer-
tainty of classification for the classifier.

SVMs have been used for novelty detection in two
related approaches [271,209,267]. The idea of the one-class
SVM approach proposed by Schölkopf et al. [209] is to
define the novelty boundary in the feature space corre-
sponding to a kernel, by separating the transformed
training data from the origin in the feature space, with
maximum margin. This approach requires fixing a priori
the percentage of positive data allowed to fall outside the
description of the “normal” class. This makes the one-class
SVM more tolerant to outliers in the “normal” training
data. However, setting this parameter strongly influences
the performance of this approach (as discussed in [271]).
Another approach, the support vector data description
(SVDD) method, proposed by Tax and Duin [267], defines
the novelty boundary as being the hypersphere with
minimum volume that encloses all (or most) of the
“normal” training data. The SVDD automatically optimises
the model parameters by using artificially generated
unlabelled data uniformly distributed in a hypersphere
around the “normal” class. This causes the method to
struggle with applications involving high-dimensional
spaces. Novelty is assessed by determining if a test point
lies within the hypersphere. In order to address the
problem that the transformed data are not spherically
distributed, Campbell and Bennett [272] use different
kernels with linear programming optimisation methods,
rather than the quadratic programming approaches typi-
cally used with SVMs. Other approaches to novelty detec-
tion have recently been proposed which are based on the
use of either the SVDD or the one-class SVM (Table 4).

5.1. Support vector data description approaches

Some extensions to the SVDD approach have recently been
proposed to improve the margins of the hyperspherically
,274], Liu et al. [275,276], Peng and Xu [277], Tax and Duin [267],

[282], Gardner et al. [283], Hardoon et al. [284], Hayton et al. [285],
and Cho [288], Ma and Perkins [289,290], Manevitz and Yousef [271],
and Zhuang and Dai [292]
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shaped novelty boundary. The first extension is proposed in
[278], where the authors present a “small sphere and large
margin” approach that surrounds the normal data with a
hypersphere such that the margin from any outliers to the
hypersphere is maximised. A further extension of the method
is proposed by Le et al. [273], whose method aims to
maximise (i) the margin between the surface of the hyper-
sphere and abnormal data, and (ii) the margin between that
surface and the normal data, while the volume of the hyper-
sphere is minimised.

Xiao et al. [279] propose to use a number of hyper-
spheres to describe the normal data set. However, the
method is heuristic and no demonstration that the multi-
hypersphere approach can provide a better description of
the data is provided. In [274], a more detailed multi-
hypersphere approach to SVDD is described, in which a
set of hyperspheres with different centres and radii is
considered. The optimisation problem for this approach is
solved by introducing slack variables and applying an
iterative algorithm that consists of two alternative steps:
one that calculates radii, centres of hyperspheres, and
slack variables, and another that determines the hyper-
sphere membership of each data point. Experimental
results over 28 data sets showed that the multi-
hypersphere SVDD performed better than the original
SVDD in all cases. In [275], a fast SVDD method to improve
the speed of the algorithm is proposed. The original SVDD
centre is spanned by the images of support vectors in the
feature space. Unlike traditional methods which try to
compress a kernel expansion into one with fewer terms,
the proposed fast SVDD directly finds the pre-image
of a feature vector, and then uses a simple relationship
between this feature vector and the SVDD centre to update
the position of the centre. The decision function in this
case contains only one kernel term, and thus the decision
boundary of the fast SVDD is only spherical in the original
space. Hence, the run-time complexity of the fast SVDD
decision function is no longer linear in the support vectors,
but is a constant, independent of the size of the training
set. Results obtained from experiments using several real-
world data sets (including a critical fabrication process for
thin-film transistor liquid crystal display manufacturing
[276]) are encouraging. Peng and Xu [277] also address the
speed of the algorithm by proposing an efficient SVDD. The
authors argue that in the fast SVDD, using a Gaussian
kernel, the decision hypersphere being a sphere in the
input space is not suitable for many real applications. The
efficient SVDD first finds critical points using the kernel
fuzzy c-means cluster technique [293] and then uses
the images of these points to re-express the centre of the
SVDD. The resulting decision function is linear in the
number of clusters. Computational comparisons with
one-class SVM, SVDD and fast SVDD in terms of prediction
performance and learning time have shown that the
proposed efficient SVDD achieves a faster test speed.

5.2. One-class support vector machine approaches

Gardner et al. [283] apply a one-class SVM to the
detection of seizures in patients. The intracranial EEG
time-series is mapped into corresponding sequences of
novelty scores by classifying short-time, energy-based
statistics computed from one-second windows of data.
The model is trained using epochs of normal EEG. Epochs
containing seizure activity exhibit changes in the distribu-
tion in feature space that increase the empirical outlier
fraction, allowing seizure events to be detected.

Ma and Perkins [290] extend the one-class SVM
approach for temporal sequences. The method unfolds
time-series into a phase space using a time-delay embed-
ding process, and projects all the vectors from a phase
space to a subspace, thereby avoiding the bias created by
extremely large or extremely small values. The one-class
SVM is then applied to the projected data in the subspace.
A different approach for online novelty detection in
temporal sequences is presented by the same authors
[289]. The latter algorithm is based on support vector
regression (SVR), in which a linear regression function is
constructed in the high-dimensional feature space of the
kernel. Although it has good generalisation properties and
can handle high-dimensional data efficiently, the SVR
training algorithm requires retraining whenever a new
sample is observed, which is not efficient for an online
algorithm. An incremental SVR training algorithm is pro-
posed to perform efficient updating of the model when-
ever a sample is added to or removed from the training set.
To perform novelty detection, the authors define a match-
ing function to determine how well a test sequence
matches the normal model.

Roth [294,295] propose the one-class kernel Fisher
discriminant classifier to overcome the “main conceptual
shortcoming” of one-class SVM classifiers, which is that
the expected fraction of outliers has to be specified in
advance. The method relates kernelised one-class classifi-
cation and Gaussian density estimation in the induced
feature space. With respect to classification, the proposed
model inherits the simple complexity control mechanism
obtained by using regularisation techniques. The relation
to Gaussian density estimation makes it possible to for-
malise the notion of novel objects by quantifying devia-
tions from the Gaussian model. The parameters of the
model are selected using a likelihood-based cross-valida-
tion procedure.

Hayton et al. [285] describe static and dynamic novelty
detection methods for jet engine health monitoring. The
one-class SVM for static novelty detection proposed
in [209] is used to construct a model of normality to
characterise the distribution of energy across the vibration
spectra acquired from a three-shaft engine. A Kalman filter
is then used as a linear dynamic model, with changes in
test data identified using the normalised squared innova-
tions of the Kalman filter. Both static and dynamic models
were shown to perform well in detecting anomalous
behaviour in jet engine vibration spectra.

Sotiris et al. [296] link SVM classifiers to Bayesian linear
models to model the posterior class probability of test
data. A PCA decomposition of the multivariate training
data is performed, which defines a number of orthonormal
subspaces, which can be used to estimate the joint class
probability. A kernel density estimator is then computed
for the projected data in two of the subspaces to estimate
the likelihood of the “normal” class, from which the
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“abnormal” class is estimated. An SVM classifier is con-
structed and a logistic distribution finally used to map
SVM outputs onto posterior probabilities.

Clifton et al. [280,281] investigate the use of a one-class
SVM using multivariate combustion data for the prediction
of combustion instability. Wavelet analysis is used for
feature extraction, from which detail coefficients are used
as two-dimensional features. Novelty scores computed
using the one-class SVM approach are obtained from each
of the input time-series, and different classifier combina-
tion strategies are studied.

Heller et al. [286] consider an intrusion detection
systemwhich monitors accesses to the Microsoft Windows
Registry using Registry Anomaly Detection (RAD). During
normal computer activity, a certain set of registry keys are
typically accessed by Windows programs. A one-class SVM
is compared with a probabilistic algorithm which uses a
Dirichlet-based hierarchical prior to smooth the distribu-
tion and account for the likelihoods of unobserved ele-
ments in sparse datasets by adjusting their probability
mass based on the number of examples seen during
training. The probabilistic algorithm was able to discrimi-
nate accurately between “normal” and “abnormal” exam-
ples. The authors suggest that a more effective selection of
the SVM kernel should be used.

Lee and Cho [288] compare the performance of a one-
class SVM with that of an auto-associative neural network,
and results obtained from the analysis of six benchmark
datasets show that the former performs consistently better
than the latter. The one-class SVM has been used for
novelty detection in: functional magnetic resonance ima-
ging data [284]; audio recordings [291]; text data [292];
medical data to identify patient deterioration in vital signs
[3]; and network intrusion detection [287].

Evangelista et al. [282] illustrate the impact of high
dimensionality on kernel methods and, specifically, on the
one-class SVM. It is shown that variance contributed by
meaningless noisy variables confounds learning methods.
The authors propose a framework to overcome this pro-
blem, which involves exploring subspaces of the data,
training a separate model for each subspace, and then
fusing the decision variables produced by the test data for
each subspace using fuzzy logic aggregators. Experiments
conducted using synthetic data sets showed that learning in
the subspaces of high-dimensional data typically outperforms
learning in the high-dimensional data space as a whole.

Munoz and Moguerza [297] apply the one-class neigh-
bour machine to the problem of estimating high-density
regions for the distribution of “normal” training data in the
data space. This method is a block-based procedure that
provides a binary decision function indicating whether or
not a point is a member of a minimum volume set defined
around the “normal” data. The algorithm replaces the task
of estimating the density at each point by using a simpler
measure that asymptotically preserves the order induced
by the pdf. Numerical experiments showed that the
proposed method performed consistently better than the
one-class SVM in estimating minimum volume sets.

Li [298] performs novelty detection by constructing
a closed decision surface around the “normal” training
data through the derivation of surface normal vectors and
identification of extreme data. Surface normal vectors are
used to determine whether a point is extreme or not; i.e., a
novel point is detected if it is located outside the region
formed by the closed data surface. Experimental results
demonstrated that the proposed method performs with
high accuracy in detecting the novel class as well as
identifying known classes. The performance of the pro-
posed method, however, was not compared with that of
other current approaches.

Sofman et al. [11] present an anytime novelty detection
algorithm that deals with noisy and redundant high-
dimensional feature spaces. A supervised dimensionality-
reduction technique, multiple discriminant analysis, is
used which causes the projected data to form clusters that
are as compact as possible for within-class data, while
being as far away as possible from cluster centres corre-
sponding to other classes. The algorithm determines the
influence of all previously seen novel data on a test point;
if the accumulated influences exceed a novelty threshold,
then the test point is identified as being novel, and is used
for novelty prediction with subsequently observed test
points. “Normal” data are not stored as they are assumed
to have minimal impact on future novelty detection. This
method was validated using data acquired by two mobile
robots, and it was shown that the algorithm was able to
identify all major unique objects (vegetation, barrels, fence,
etc.) with a relatively small number of false positives.

5.3. Method evaluation

Domain-based approaches determine the location of
the novelty boundary using only those data that lie closest
to it and do not rely on the properties of the distribution of
data in the training set. A drawback of these methods
is the complexity associated with the computation of
the kernel functions. Although some extensions have been
proposed to overcome this problem, the choice of the
appropriate kernel function may also be problematic.
Additionally, it is not easy to select values for the para-
meters which control the size of the boundary region.

6. Information-theoretic novelty detection

Information theoretic methods compute the informa-
tion content of a dataset using measures such as entropy,
relative entropy, etc. These methods assume that novelty
significantly alters the information content of the other-
wise “normal” dataset. Typically, metrics are calculated
using the whole dataset and then that subset of points
whose elimination from the dataset induces the biggest
difference in the metric is found. This subset is then
assumed to consist of novel data.

He et al. [299,300] present a local-search heuristic
approach, which involves entropy analysis, to identify
outliers in categorical data. Entropy in information theory
is a measure of the uncertainty associated with a random
variable, and the authors use an entropy function to
measure the degree of disorder of the remaining dataset
after removal of high-entropy points. A point is considered
to be an outlier if the entropy of the dataset decreases after
its removal, compared with the entropy of the dataset
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after removal of all previous outlier candidates. This
procedure is repeated until k outliers are identified.
Experimental results showed that this approach scales
well with the size of the training sets.

Ando [301] considers the task of identifying clusters of
“atypical” objects which strongly contrast from the bulk of
the data in terms of their distribution, using an information
bottleneck measure. The latter is derived from rate distor-
tion theory and is used for unsupervised problems using
two criteria associated with lossy data compression: rate
and distortion. The former refers to the level of compres-
sion measured by the mutual information, while the latter
refers to the disruption caused by compression. The algo-
rithm was evaluated using a text classification task, and
was shown to outperform a related method called Breg-
man Bubble Clustering, which is an extension of one-class
clustering for multiple clusters.

Keogh et al. [302] propose parameter-free methods for
data mining tasks (including clustering, anomaly detection
and classification) based on compression theory. Sub-
sequences of a given sequence of continuous observations
are defined using a sliding window. Each sub-sequence
is then compared with the entire sequence using a
compression-based dissimilarity method, the Kolmogorov
complexity, which is a measure of the computational
resources needed to specify an object (i.e., it is a measure
of randomness of strings based on their information
content). This metric cannot be computed in the general
case, and so the size of the compressed file that contains
the string is used to approximate the measure. Empirical
tests with time-series datasets showed that the approach
is competitive with respect to others, such as the SVM,
for anomaly detection tasks. Keogh et al. [303] propose a
related technique (called HOT SAX) to solve the same
problem for continuous time-series. Sub-sequences are
extracted as before and then the Euclidean distance of
each sub-sequence to its closest non-overlapping sub-
sequences is calculated. This distance is then used as a
novelty score for the sub-sequences. A similar approach is
also applied to the domain of medical data in [304], in
which the problem of finding the sequence that is least
similar to all other sequences is addressed. The authors
propose the use of the Haar wavelet transformation [305].

Gamon [306] investigates feature sets derived from a
graph representation of sentences and sets of sentences
using the information-theoretic metric of Kullback–Leibler
divergence. The author shows that a highly connected
graph produced using sentence-level term distances and
pointwise mutual information can serve as a source to
extract features for novelty detection.

Filippone and Sanguinetti [307] propose a new method
to control the false-positive rate in novelty detection. Their
method estimates the information content of the training
set including and excluding the test point; the two result-
ing distributions are compared by computing the
Kullback–Leibler divergence. The rationale for doing this
is that this method explicitly takes into account the size of
the training set in establishing a threshold for novelty. The
method was shown to perform well in univariate and
multivariate Gaussian cases, as well as in the mixture of
Gaussians case, but it is not clear whether it can be
extended to non-parametric methods. More recently, the
same authors [308] have considered the online identifica-
tion of event-based novelty in stationary linear autore-
gressive models with Gaussian noise. The authors use a
perturbative approximation to the information-theoretic
measure introduced previously in [307,309] for indepen-
dent and identical distributed data. Again, they consider
the Kullback–Leibler divergence between the estimates of
the distributions of the stochastic term obtained before
and after the test point arrives. This procedure yields a
modified F-test, which more accurately incorporates the
variability introduced by finite sample size effects.

Itti and Baldi [310] propose a Bayesian definition of
surprise to capture subjective aspects of sensory informa-
tion. “Surprise” measures how data affect an observer, in
terms of differences between posterior and prior beliefs
about the world, i.e., only data observations which sub-
stantially affect the observer0s beliefs yield surprise. This
difference or mismatch between expectations of the obser-
ver and the consequent perception of reality is calculated
using the Kullback–Leibler divergence, which evaluates
the statistics of visual attributes in specific scene types, or
descriptions and layout of the scene.
6.1. Method evaluation

Information-theoretic approaches to novelty detection
typically do not make any assumptions about the under-
lying distribution of the data. They require a measure that
is sensitive enough to detect the effects of novel points in
the dataset. The main drawback with this type of techni-
ques is the selection of the information-theoretic measure.
Typically, these measures can detect the presence of novel
data points only if there is a significantly large number of
novel data points present in the dataset. Thus, the perfor-
mance of such techniques is very dependent on the choice
of the information-theoretic measure. These techniques
are also computationally expensive, although approxima-
tions have been proposed to deal with this problem.
Finally, it may be difficult to associate a novelty score with
a test point using an information theoretic-based method.
7. Application domains

Novelty detection has many practical real-life applica-
tions in different domains, and it is of crucial importance
in applications that involve large datasets acquired from
critical systems. These include the detection of faults
in complex industrial systems, of structural damage, and
of failure in electronic security systems. The main areas of
application can be broadly categorised in six main
domains, as shown in Table 5. Other domains of applica-
tion not mentioned in the table include speech recogni-
tion, mobile robotics, astronomical data analysis and
environmental monitoring. In the next sections we briefly
discuss several applications of novelty detection, including
the concept of novel data and the importance of novelty
detection in each domain.



Table 5
Examples of novelty detection methods in the six main application domains covered in this review.

Application domain Method (category) References

1 2 3 4 5

Electronic IT security ✓ ✓ ✓ ✓ ✓ Helali [42], Heller et al. [286], Jyothsna et al. [7], Lakhina et al. [240],
Peng et al. [151] and Yeung and Ding [83]

Healthcare informatics, medical diagnostics ✓ ✓ ✓ ✓ Clifton et al. [3], Lin et al. [304], Quinn and Williams [2], Solberg and Lahit [45]
and Tarassenko et al. [94,95]

Industrial monitoring and damage detection ✓ ✓ ✓ ✓ Clifton et al. [175,176], Lämsä and Raiko [265], Surace and Worden [5]
and Tarassenko et al. [4]

Image processing, video surveillance ✓ ✓ ✓ ✓ Pokrajac et al. [169], Ramezani et al. [92], Singh and Markou [216,9]
and Yong et al. [186,187]

Text mining ✓ ✓ ✓ ✓ ✓ Ando [301], Basu et al. [15], Ertöz et al. [208], Manevitz and Yousef [221],
Zhang et al. [124] and Zhuang and Dai [292]

Sensor networks ✓ ✓ ✓ Chatzigiannakis et al. [264], Hassan et al. [212], Janakiram et al. [71],
Phuong et al. [152], Subramaniam et al. [93] and Zhang et al. [12]
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7.1. Electronic IT security

Novelty detection has generated much research in the
field of electronic IT security systems, in which the goals
include network intrusion detection and fraud detection.
The former refers to the detection of malicious activity in a
computer-related system. Frequent attacks on computer
systems may result in systems being disabled, or even
completely collapsing. The identification of such intrusions
could help the discovery of malicious programs in the
operating system and also detect unauthorised access to
computer network systems. Intrusions may be associated
with behaviours different from that of normal users.

Fraud detection involves the identification of criminal
activities that occur in insurance claims, credit card pur-
chases, mobile phone usage, and financial transactions,
among others. The purchasing behaviour of people who
steal credit cards (for example) is usually different from
that of the owners of the cards. The identification of
such changes in credit card use may prevent a subsequent
period of fraud activity. The data used for constructing
novelty detection models typically comprise several fea-
tures, such as user ID, amount of money spent, time
between consecutive card transactions, purchase records,
and geographic location.

7.2. Healthcare informatics/medical diagnostics
and monitoring

Healthcare informatics and medical diagnostics are an
important domain of application of novelty detection
approaches. Patient records with unusual symptoms or
test results may indicate potential health problems for that
patient. Ideally, the identification of unusual data should
be able to discriminate between instrumentation or
recording errors and clinically relevant changes in the
condition of the patient, so that timely medical interven-
tion may occur in the latter case. The data typically consist
of records that have several types of features: patient
age, weight, vital signs (such as heart rate), physiological
signals (such as the electrocardiogram), blood test results,
and medical image data.
7.3. Industrial monitoring and damage detection

Industrial assets deteriorate over time due to usage and
normal wear. Such deterioration has to be identified early
to prevent further escalation and losses, and for optimising
machine performance while reducing maintenance and
repair costs. High-value machinery is usually instrumen-
ted with sensors that are dedicated to monitoring their
operation (including structural defects). The data collected
by these sensors typically include temperature, pressure,
and vibration amplitude.

7.4. Image processing/video surveillance

Novelty detection has been extensively applied to
recognising novel objects in images and video streams.
Specifically, extracting novel data from video streams is
gaining attention because of the availability of large
amounts of video data, and because of the lack of auto-
mated methods for extracting important details from such
media. Detecting novel events in security or surveillance
applications, in which there are particularly large streams
of seemingly unimportant video data, is a very important
task.

7.5. Text mining

The novelty detection problem applied to text data
seeks an automatic means of detecting novel topics, new
interesting events, or new stories in a given collection of
documents or news articles. The data are typically very
high-dimensional and very sparse, and comprise simple
bag-of-word features and features derived from sophisti-
cated linguistic representations.

7.6. Sensor networks

Sensor networks usually consist of a large number of
small, low-cost sensor nodes distributed over a large area
with one or more “sink” nodes gathering readings from
sensor nodes. The sensor nodes are integrated with sen-
sing, processing, and wireless communication capabilities.
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Each node is equipped with a wireless radio transceiver, a
small microcontroller, a power source, and multi-type
sensors for recording temperature, pressure, sound and
vibration. Novelty detection is applied to sensor networks
to capture sensor faults and/or malicious attacks on the
network.

8. Conclusion

The main goal of novelty detection is to construct
classifiers when only one class is well-sampled and well-
characterised by the training data. Novelty detection is an
important learning paradigm and has drawn significant
attention within the research community, as shown by the
increasing number of publications in this field.

We have presented a review of the current state-of-the-
art in novelty detection. We observe that a precise defini-
tion of novelty detection is difficult to achieve, nor is it
possible to suggest what an “optimal” method of novelty
detection would be. The variety of methods employed is a
consequence of the wide variety of practical and theore-
tical considerations that arise from novelty detection in
real-world datasets, such as the availability of training
data, the type of data (including its dimension, continuity,
and format), and application domain investigated. It is
perhaps because of this great variety of considerations that
there is no single universally applicable novelty detection
algorithm.

There are several promising directions for further
research in novelty detection, which are mainly associated
with the open challenges that need to be tackled for the
effective operation of the approach in growing domains of
applicability. We observe that novelty detection algorithms
can broadly be divided into five different categories,
depending mainly on the assumptions made about the
nature of the training data. Each category of methods
discussed in this paper has its own strengths and weak-
nesses, and faces different challenges for complex datasets.
Distance-based methods, which include nearest-neighbour
and clustering-based approaches, require the definition of
an appropriate distance measure for the given data, but
are unable to deal with high-dimensional data efficiently,
because distance measures in high dimensions are not able
to differentiate between normal and abnormal data points.
Also, such methods are typically heuristic and require
manual selection of parameters, removing the possibility
of using them for automatic construction of a model of
normality (though approaches have been suggested for
parameter selection using semi-automated techniques).
Reconstruction-based methods are very flexible and typi-
cally address high-dimensionality problems, with no a priori
assumptions about the properties of the data distribution.
However, they require the optimisation of a pre-defined
number of parameters that define the structure of the
model, and may also be very sensitive to these model
parameters. Furthermore, when constructive algorithms
are used (in which the structure of the model is allowed
to grow), two important problems arise: the selection of the
most effective training method to enable the integration
of new units into the existing structure, and a stopping
criterion for when to stop adding new units.
Domain-based methods determine the location of the
novelty boundary using only those data that lie closest to
it, and do not make any assumption about data distribu-
tion. By focusing on the decision boundary, these methods
are often influenced by outliers in the training set and they
also depend on the choice of a suitable scaling for the
features. In contrast, probabilistic methods make use
of the distribution of the training data to determine the
location of the novelty boundary. They are transparent
methods, meaning that their outputs can be analysed
using standard numerical techniques. However, the per-
formance of such methods is limited when the size of the
training set is very small. In general, the problem encoun-
tered when applying density methods to sparsely popu-
lated training sets, is that there is little control over
the inherent variability introduced by the sparsity of the
training data; i.e., the estimated quantiles can differ sub-
stantially from the true quantiles of the distribution.
Information-theoretic methods require a measure that is
sensitive enough to detect the effects of novel points in
the dataset. Although they do not make any assumptions
about the underlying distribution of the data, the perfor-
mance of such methods is highly dependent on the choice
of the information theoretic measure, and it may be
difficult to associate a novelty score with a test point using
an information theoretic-based method.

The computational complexity of these methods is also
an important aspect. Generally, probabilistic, reconstruc-
tion-based, and domain-based methods have lengthy
training phases, but with rapid testing. For many applica-
tions, this is not a problem as models can be trained
offline, while testing is required to be in real time. On the
other hand, distance-based and information theoretic-
based methods, in general, are computationally expensive
in the test phase, which may be an important limitation in
real-world settings.
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