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Abstract
Most methods for object class segmentation are formu-

lated as a labelling problem over a single choice of quanti-
sation of an image space - pixels, segments or group of seg-
ments. It is well known that each quantisation has its fair
share of pros and cons; and the existence of a common op-
timal quantisation level suitable for all object categories is
highly unlikely. Motivated by this observation, we propose
a hierarchical random field model, that allows integration
of features computed at different levels of the quantisation
hierarchy. MAP inference in this model can be performed
efficiently using powerful graph cut based move making al-
gorithms. Our framework generalises much of the previous
work based on pixels or segments. We evaluate its efficiency
on some of the most challenging data-sets for object class
segmentation, and show it obtains state-of-the-art results.

1. Introduction
Object class based image segmentation is one of the most

challenging and important problems in computer vision. It
aims to assign an object label to each pixel of a given image;
and can be seen as a generalisation of the object recognition
and localisation tasks. Over the last few years many dif-
ferent methods have been proposed for this problem, which
can be broadly categorised on the basis of their choice of
the quantisation (partitioning) of the image space1. Some
methods are formulated in terms of pixels [26] (representing
the finest quantisation), others used segments [1, 10, 32],
groups of segments [19], or intersections of multiple seg-
mentations [18], while some have gone to the extreme of
looking at the whole image in order to reason about ob-
ject segmentation [17]. We present a model together with
an efficient optimisation technique that contains the above
mentioned previous methods as special cases, thus allowing
for the use of holistic models that integrate the strengths of
these different approaches.
Pixel vs Segments Each choice of image quantisation
comes with its share of advantages and disadvantages. Pix-
els might be considered the most obvious choice of quan-
tisation. However, pixels by themselves contain a lim-

1We use the phrase “quantise the image” as opposed to “segment the
image” in order to emphasise that a ‘quantum’ of the image space need not
just be a collection of pixels. It could represent a sub-pixel division of the
image space.

ited amount of information. The colour and intensity of a
lone pixel is often not enough to determine its correct ob-
ject label. Ren and Malik’s [20] remark that ‘pixels are not
natural entities; they are merely a consequence of the dis-
crete representation of images’ captures some of problems
of pixel-based representation.

The last few years have seen a proliferation of unsuper-
vised segmentation methods [5, 8, 24], that perform an ini-
tial a priori segmentation of the image, applied to object
segmentation [1, 10, 32, 11, 22, 32], and elsewhere [13, 27].
These rely upon an initial quantisation over the image space,
typically based upon a segmentation of pixels based upon
spatial location and colour/texture distribution.

Based upon the assumption that the quantisation is cor-
rect a segment based conditional random field (CRF) is de-
fined over the image, and inference is performed to estimate
the dominant label of each segment. This quantisation of
the image allows the computation of powerful region-based
features which are partially invariant to scale [31].

Use of Multiple Quantisations Segment based meth-
ods work under the assumption that some segments share
boundaries with objects in the image. This is not always
the case, and this assumption may result in dramatic er-
rors in the labelling (see figure 1). A number of techniques
have been proposed to overcome errors in the image quan-
tisation. Rabinovich et al. [19] suggested finding the most
stable segmentation from a large collection of multiple seg-
mentations in the hope that these would be more consistent
with object boundaries. Larlus and Juri [17] proposed an
approach to the problem driven by object detection. In their
algorithm, rectangular regions are detected using a bag-of-
words model based upon affine invariant features. These
rectangles are refined using graph cuts to extract bound-
aries in a grab-cut [21] like approach. Such approaches
face difficulty in dealing with cluttered images, in which
multiple object classes intersect. Pantofaru et al. [18] ob-
served that although segments may not be consistent with
object boundaries, the segmentation map formed by taking
the intersections of multiple segmentations often is. They
proposed finding the most probable labelling of intersec-
tions of segments based upon the features of their parent
segments. This scheme effectively reduces the image quan-
tisation level. It results in more consistent segments but with
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Figure 1. Effect of image quantisation on object segmentation. (a) Original image. (b)-(d) Object class segmentations with different image
quantisations. (b), (c) and (d) use three different unsupervised segmentations of the image, in this case mean-shift with different choices
of kernel, to divide the image into segments. Each segment is assigned the label of the dominant object present in it. It can be seen that
quantisation (b) is the best for tree, road, and car. However, quantisation (d) is better for the left person and the sign board.

a loss in the information content/discriminative power asso-
ciated with each segment.

Another interesting method, and one closely related to
ours was proposed by Kohli et al. [15]. By formulating the
labelling problem as a CRF defined over pixels, they were
able to recover from misleading segments which spanned
multiple object classes. Further, they were able to encour-
aged individual pixels within a single segment to share the
same label, by defining higher order potentials (functions
defined over cliques of size greater than 2) that penalised
inconsistent labellings of segment.Their method can be un-
derstood as a relaxation of the hard constraint of previous
methods, that the image labelling must follow the quanti-
sation of the image space, to a softer constraint in which a
penalty is paid for non-conformance.

Given the dependence of previous methods on the image
partitioning (quantisation), the key question to be asked is:
What is the correct quantisation of an image and how can
we find it? This is a difficult question to answer. As we
explore the quantisation hierarchy from coarse to fine, we
observe that while larger segments are perceptually more
meaningful and easier to label correctly, they are less likely
to lie inside a single object. Indeed pragmatically, it appears
that the finding of an ideal quantisation may not be possible,
and that segmentation of different objects in the image may
require different quantisations (see figure 1).

In this paper we propose a novel hierarchical CRF for-
mulation of object class segmentation that allows us to
unify multiple disparate quantisations of the image space,
avoiding the need to make a decision of which is most ap-
propriate. It allows for the integration of features derived
from different quantisation levels (pixel, segment, and seg-
ment union/intersection). We will demonstrate how many
of the state-of-the-art methods based on different fixed im-
age quantisations can be seen as special cases of our model.

Inferring the Maximum a Posteriori solution in this
framework involves the minimisation of a higher order
function defined over several thousand random variables,
as explained in section 2. We show that the solutions of
such difficult function minimisation problems can be effi-
ciently computed using graph-cut [3] based move-making
algorithms. However, the contribution of this paper is not
limited to the application of the novel hierarchical CRF

framework to object class segmentation. We also propose
new sophisticated potentials defined over the different lev-
els of the quantisation hierarchy, and evaluate the efficacy
of our framework on some of the most challenging data-sets
for object class segmentation, and show that it outperforms
state of the art methods based on individual image quanti-
sation levels. We believe this is because: (i) Our methods
generalise these previous methods allowing them to be rep-
resented as particular parameter choices of our hierarchical
model. (ii) We go beyond these models by being able to use
multiple hierarchies of segmentation simultaneously. (iii)
In contrast to many previous methods that do not define any
sort of cost function, or likelihood, we cleanly formulate the
CRF energy of our model and show it can be minimised.
Hierarchical Models and Context The use of context
has been well documented for object recognition and seg-
mentation. It is particularly useful in overcoming ambigui-
ties caused by limited evidence: this often occurs in object
recognition where we frequently encounter objects at small
scales or low resolution images [14]. Classical Markov and
Conditional Random Field models exploit context in a lo-
cal manner by encouraging adjacent pixels or segments to
take the same label. To encode context at different scales
Zhu et al. [33] introduced the hierarchical image model
(HIM) built of rectangular regions with parent-child de-
pendencies. This model captures large-distance dependen-
cies and is solved efficiently using dynamic programming.
However, it supports neither multiple hierarchies, nor de-
pendencies between variables at the same level. To encode
semantic context and to combine top-down and bottom-up
approaches Tu et al. [30] proposed a framework with which
they showed that the use of object specific knowledge helps
to disambiguate low-level segmentation cues.

Our hierarchical CRF model uses a novel formulation
that allows context to be incorporated at multiple levels of
multiple quantisation, something not previously possible.
As we will explain in section 4 it leads to improved seg-
mentation results, while keeping the inference tractable.
2. Random Fields for Labelling Problems

This section introduces the pixel-based CRF used for for-
mulating the object class segmentation problem. This for-
mulation contains one discrete random variable per image
pixel, each of which may take a value from the set of labels



L = {l1, l2, . . . , lk}. We use X = {X1, X2, . . . , XN} to
denote the set of random variables corresponding to the im-
age pixels i ∈ V = {1, 2, . . . , N}. The neighbourhood sys-
temN of the random field is defined by the setsNi,∀i ∈ V ,
where Ni denotes the set of all neighbours of the variable
Xi. A clique c is a set of random variables Xc which are
conditionally dependent on each other. Any possible as-
signment of labels to the random variables will be called a
labelling (denoted by x) which takes values from L = LN .

The posterior distribution Pr(x|D) over the labellings
of the CRF is a Gibbs distribution and can be written as:
Pr(x|D) = 1

Z exp(−
∑

c∈C ψc(xc)), where Z is a normal-
ising constant called the partition function, and C is the set
of all cliques [16]. The term ψc(xc) is known as the poten-
tial function of the clique c ⊂ V where xc = {xi : i ∈ c}.
The corresponding Gibbs energy is given by

E(x) = − log Pr(x|D)− logZ =
∑
c∈C

ψc(xc). (1)

The most probable or Maximum a Posteriori (MAP) la-
belling x∗ of the random field is defined as

x∗ = arg maxx∈L Pr(x|D) = arg minx∈LE(x). (2)

Pairwise CRFs Most pixel labelling problem in vision
are formulated as a pairwise CRF whose energy can be writ-
ten as the sum of unary and pairwise potentials as

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψij(xi, xj). (3)

The unary potentials ψi(xi) of the CRF are defined as the
negative log likelihood of variable Xi taking label xi, while
the pairwise potential encode a smoothness prior which en-
courages neighbouring pixels in the image to take the same
label, resulting in a shrinkage bias [15].

The pairwise CRF formulation suffers from a number of
problems stemming from its inability to express high-level
dependencies between pixels. Despite these limitations, it
is widely used and very effective. Shotton et al. [26] applied
the pairwise CRF to the object class segmentation problem.
They defined the unary likelihoods potentials using the re-
sult of a boosted classifier over a region about each pixel,
that they called TextonBoost and were able to obtain good
results.
The Robust PN model The pairwise CRF formulation
of [26] was extended by [15] with the incorporation of ro-
bust higher order potentials defined over segments. Their
formulation was based upon the observation that pixels ly-
ing within the same segment are more likely to take the
same label. The energy of the higher order CRF proposed
by [15] was of the form

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Nl

ψij(xi, xj) +
∑
c∈S

ψh
c (xc),

(4)

where S is a set of cliques (or segments), and ψc are higher
order potentials defined over them. Their higher order po-
tentials took the form of Robust PN model defined as

ψh
c (xc) = min

l∈L
(γmax

c , γl
c + kl

cN
l
c), (5)

satisfying γl
c ≤ γmax

c ,∀l ∈ L, where N l
c =

∑
i∈c δ(xi 6= l)

is the number of inconsistent pixels with the label l.
The potential takes cost γl

c if all pixels in the segment
take the label l. Each inconsistent pixel is penalised with a
cost kl

c. The maximum cost of the potential is truncated to
γmax

c . By setting γl
c = 0 ∀l ∈ L this potential penalises in-

consistent segments and thus encourages label consistency
in segments. The weighted version of this potential is

ψh
c (xc) = min

l∈L
(γmax

c , γl
c +

∑
i∈c

wik
l
cδ(xi 6= l)), (6)

where wi is the weight of the variable xi.
This framework enabled the integration of multiple

quantisations of the image space in a principled manner.
However unlike our work, their choice of potential was in-
dependent of the choice of label and only encouraged pixels
within the same segment to take the same label. Similarly,
their model is unable to encode the conditional dependen-
cies between segments. These potentials greatly increase
the expressiveness of our model, as detailed in section 3.
PN -Based Hierarchical CRFs As shown in [23], the
higher-order PN potentials of (6) are equivalent to the min-
imisation of a pairwise graph defined over the same clique
Xc and a single auxiliary variable yc, that takes values from
an extended label set LE = L ∪ {LF }. The cost function
over Xc ∪ {yc}takes the form

ψp
c (xc, yc) = φc(yc) +

∑
i∈c

φc(yc, xi). (7)

where the unary potential over Y , φc(yc) associates the cost
γl

c with yc taking a label in L, and γmax
c with yc taking the

free labelLF . The pairwise potentials φc(yc, xi) are defined

φc(yc, xi) =

{
0 if yc = LF or yc = xi

wik
l
c otherwise, where l = xi.

(8)

Then
ψh

c (xc) = min
y
ψp

c (xc, yc). (9)

By ensuring that the pairwise edges between the auxiliary
variable and its children satisfy the constraint

∑
i wik

l
c ≥

2φc(l),∀l ∈ L, we can guarantee that the labels of these
auxiliary variable carry a clear semantic meaning. If this
constraint is satisfied an auxiliary variable may takes state
l ∈ L in a minimal cost labelling, if and only if, the
weighted majority of its child nodes take state l. State LF



Figure 2. Existing models as special cases of our hierarchical model. The lowest layer of the image represents the pixel layer, the middle
layer potentials defined over super-pixels or segments, and the third layer represents our hierarchical terms. (a) shows the relationships
permitted in a pixel-based CRF with Robust PN potentials. (b) shows relationships contained within a super-pixel-based CRF (the directed
edges indicate the one way dependence between the labellings of pixels and super-pixels). (c) Our hierarchical CRF. See section 3.

indicates a heterogeneous labelling of a segment in which
no label holds a significant majority. We now extend the
model to include pairwise dependencies between auxiliary
variables

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Nl

ψij(xi, xj)

+ min
y

(∑
c∈S

ψp
c (x, yc) +

∑
c,d∈S

ψcd(yc, yd)
)
. (10)

These pairwise terms can be understood as encouraging
consistency between neighbouring cliques. This frame-
work can be further generalised to a hierarchical model [23]
where the connection between layers take the form of (7)
and the weights φc(yc, x) are proportional to the number of
the pixels in the “base layer” belonging to the clique c.

The energy of our new hierarchical model is of the form

E(0)(x) =
∑

i∈S(0)

ψi(x
(0)
i ) +

∑
ij∈N (0)

ψij(x(0)
i , x

(0)
j )

+ min
x(1)

E(1)(x(0),x(1)), (11)

where E(1)(x(0),x(1)) is recursively defined as:
E(n)(x(n−1),x(n))

=
∑

c∈S(n)

ψp
c (x(n−1)

c , x(n)
c ) +

∑
cd∈N (n)

ψcd(x(n)
c , x

(n)
d )

+ min
x(n+1)

E(n+1)(x(n),x(n+1)). (12)

Where x(0) refers to the state of the base level, and x(n)|n ≥
1 the state of auxiliary variables. Under certain reasonable
conditions [23], the auxiliary variables retain their semantic
interpretation and this energy can be solved with graph-cut
based move making algorithms [4].
3. Relation to Previous Models

In this section, we draw comparisons with the current
state of the art models for object segmentation [10, 18, 19,
32] and show that at certain choices of the parameters of our
model, these methods fall out as special cases (illustrated in
figure 2). Thus, our method not only generalise the standard
pairwise CRF formulations over pixels, but also the previous
work based on super-pixels and (as we shall see) provides a
global optimisation framework allowing us to combine fea-
tures at different quantisation levels.

We will now show that our model is a generalisation of
two classes of pre-existing model: (i) CRFs based upon dis-
joint segments [1, 10, 32] (see section 1 and figure 2(b)),
and (ii) CRFs based upon the intersection of segments [18].
energy of this model is given in (10), and further assume
that there are no unary or pairwise potentials defined over
individual pixels.
Equivalence to CRFs based on Segments In this case,
c ∈ S are disjoint (non-overlapping)2. To insure that
yc 6= LF ,∀c ∈ C, we assign a high value to γmax

c ,∀c ∈ C.
As only the potential ψp(xc, yc) acts upon xi : i ∈ c, all
pixels in c will take the same label. In this case, the opti-
mal labelling will always be segment consistent (i.e. the la-
belling of pixels within any segment is homogeneous) and
the potential ψp

c (xc, yc) can now be considered as a unary
potential over the auxiliary (segment) variable yc. This al-
lows us to rewrite (10) as:

E(y) =
∑
c∈S

ψc(yc) +
∑

cd∈N (1)

ψcd(yc, yd) (13)

which is exactly the same as the cost associated with the
pairwise CRF defined over segments with ψc(yc = l) =
γl

c as the unary cost and ψcd as the pairwise cost for each
segment. In this case, our model becomes equivalent to the
pairwise CRF models defined over segments [1, 10, 19, 32].
Equivalence to Models of Segment Intersections The
model is defined as above, but allowed to contain multiple
overlapping segmentations. If we set wik

l
c = γmax

c , ∀i ∈
V, l ∈ L, c ∈ S, then yc 6= LF only if xi = yc,∀i ∈ c. In
this case, only the potentials

∑
c3i ψ

p
c (xc, yc) act on xi.

Consider a pair of pixels i, j that lie in the same intersec-
tion of segments i.e. {c ∈ S : c 3 i} = {c ∈ S : c 3 j}.
Then, in a minimal labelling, either ∃yc = xi, and hence
xj = yc = xi, or ∀c 3 i : yc = LF . In the second case
there are no constraints acting on xi or xj , and a minimal
cost labelling can be chosen such that xi = xj .

Consequentially, there is always a minimal cost labelling
consistent with respect to the intersection of segments, in
this sense our model is equivalent to that proposed in [18].
4. Hierarchical CRF for Object Segmentation

Having described the definition and intuition behind the
PN -based hierarchical CRF framework, in this section we

2This is equivalent to the case where only one particular quantisation
of the image space is considered.



describe the set of potentials we use in the object-class
segmentation problem. This set includes unary potentials
for both pixels and segments, pairwise potentials between
pixels and between segments and connective potentials be-
tween pixels and their containing segments.

Robustness to Misleading Segmentations As discussed
before, the quantisation of image space obtained using un-
supervised segmentation algorithms may be misleading -
segments may contain multiple object classes. Assigning
the same label to all pixels of such segments will result in an
incorrect labelling. This problem can be overcome by using
segment quality measures proposed by [19, 20] which can
be used to distinguish the good segments from misleading
ones. These measures can be seamlessly integrated in our
hierarchical framework by modulating the strength of the
potentials defined over segments. Formally, this is achieved
by modifying the potentials ψh

c (xc, yc) according to a qual-
ity sensitive measure Q(c) for any segment c.

In the previous section we decomposed the energy (12)
into a set of potentials ψc(xc). In this section we will de-
compose them further, writing ψc(xc) = λcξc(xc), where
ξc is a feature based potential over c and λc its weight. Ini-
tially we will discuss the learning of potentials ξc(xc), and
later discuss the learning of the weights λc

Potentials for Object Class Segmentation For our appli-
cation we used potentials defined over a three levels hierar-
chy. We refer to elements of each layer as pixels, segments
and super-segments respectively.

The unary potentials at the pixel level are computed us-
ing a boosted dense feature classifier (described below),
while the pairwise terms ψij(·) take the form of the clas-
sical contrast sensitive potentials. These encourage neigh-
bouring pixels in the image (having a similar colour) to take
the same label. We refer the reader to [2, 21, 26] for details.

Unsupervised segments are initially found using multi-
ple applications of a fine scale mean-shift algorithm [5].
The pixels contained within such a segment, are typically of
uniform colour, and often belong to the same object class.
Consequentially, they contain little novel local information,
but are strong predictors of consistency. As such, the unary
potentials we learn at this level are uniform, due to the lack
of unique features, however as they are strongly indicative
of local consistency, the penalty associated with breaking
them is high. To encourage neighbouring segments with
similar texture to take the same label, we used pairwise po-
tentials based on the Euclidean distance of normalised his-
tograms of colour (ξcd(yc, yd)) between corresponding aux-
iliary variables.

“Super-segments” are based upon a coarse mean-shift
segmentation, performed over the result of the previous
segmentations. These super-segments contain significantly
more internal information than their smaller children. To
take advantage of this, we propose unary segment potential

based on the histograms of features (described below). This
potential can be also be used in the segment-based CRF ap-
proaches as a unary potential.
Unary Potentials from Dense Features This unary po-
tential is derived from TextonBoost [26], and allows us
to perform texture based segmentation, at the pixel level,
within the same framework. The features used for con-
structing these potentials are computed on every pixel of
the image which is why we call them dense. TextonBoost
estimates the probability of a pixel taking a certain label
by boosting weak classifiers based on a set of shape filter
responses. The shape filters are defined by a [texton t, rect-
angular region r] pair and their feature response v[t,r](i)
for given point i is the number of textons t in the region
r placed relative to the point i. Corresponding weak classi-
fiers are comparisons of shape filter response to thresholds.
The most discriminative shape filters are found using multi-
class Gentle Ada-Boost [29].

We observed that textons were unable to discriminate be-
tween some classes of similar textures. This motivated us
to extend the TextonBoost framework by boosting classifiers
defined on multiple dense features (such as colour, textons,
histograms of oriented gradients (HOG) [6], and pixel loca-
tion) together. The dense-feature shape filters are defined
by triplets [feature type f , feature cluster t, rectangular re-
gion r] and their feature response vf

[t,r](i) for given point
i is the number of features of type f belonging to cluster
t in the region r placed relative to the point i. The pool
of weak classifiers contains a comparisons of responses of
dense-feature shape filters against a set of thresholds θ. See
[26] for further details of the procedure. Our results show
that the boosting of multiple features together results in a
significant improvement of the performance (note the im-
provement from the 72% of [26] to 81% of our similar
pixel-based CRF in figure 4). Further improvements were
achieved using exponentially instead of linearly growing
thresholds and Gaussian instead of uniform distribution of
rectangles around the point. The potential is incorporated
into the framework in the standard way as a negative log
likelihood.
Histogram-based Segment Unary Potentials We now
explain the unary potential defined over segments and
super-segments. For many classification and recognition
problems, the distributions of dense feature responses are
more discriminative than any feature alone. For instance,
the sky can be either ‘black’ (night) or ‘blue’ (day), but is
never ‘half-black’ and ‘half-blue’. This consistency in the
colour of object instances can be used as a region based
feature for improving object segmentation results. The
unary potential of an auxiliary variable representing a seg-
ment is learnt (using the normalised histograms of multi-
ple clustered dense features) using multi-class Gentle Ada-
Boost [29], where the pool of weak classifiers is a set of



Original Image Pixel-based CRF Segment-based CRF Hierarchical CRF Ground Truth

Figure 3. Qualitative, results on the MSRC-21 data set, comparing non-hierarchical(i.e. pairwise models) approaches defined over pixels
(similar to TextonBoost [26]) or segments (similar to [32, 18, 22] described in section 3) against our hierarchical model. Regions marked
black in the hand-labelled ground truth image are unlabelled.
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[25] 72 67 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18
[26] 72 58 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 07
[1] 70 55 68 94 84 37 55 68 52 71 47 52 85 69 54 05 85 21 66 16 49 44 32
[32] 75 62 63 98 89 66 54 86 63 71 83 71 79 71 38 23 88 23 88 33 34 43 32

Pixel-based CRF 81 72 73 92 85 75 78 92 75 76 86 79 87 96 95 31 81 34 84 53 61 60 15
Robust PN CRF 83 73 74 92 86 75 83 94 75 83 86 85 84 95 94 30 86 35 87 53 73 63 16

Segment-based CRF 75 60 64 95 78 53 86 99 71 75 70 71 52 72 81 20 58 20 89 26 42 40 05
Hierarchical CRF 86 75 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 09

Figure 4. Quantitative results on the MSRC data set. The table shows % pixel accuracy Nii/
P

j Nij for different object classes. ‘Global’

refers to the overall error
P

i∈L NiiP
i,j∈L Nij

, while ‘average’ is
P

i∈L
Nii

|L|
P

j∈L Nij
. Nij refers to the number of pixels of label i labelled j.

triplets [f, t, θ]. Here f is the normalised histogram of the
feature set, t is the cluster index, and θ a threshold. Aside
from a larger set of features being considered, the selection
and learning procedure is identical to [26].

The segment potential is incorporated into the energy us-
ing Robust PN potentials (5) with parameters

γl
c = λs|c|min(−Hl(c) +K,αh), (14)

where Hl(c) is the response given by the Ada-boost clas-
sifier to clique c taking label l, αh a truncation threshold
γmax

c = |c|(λp + λsα
h), and K = log

∑
l′∈L e

Hl′ (c) a nor-
malising constant.

For our experiments, the cost of pixel labels differing
from an associated segment label was set to kl

c = (γmax
c −

γl
c)/0.1|c|. This means that up to 10% of the pixels can take

a label different to the segment label without the segment
variable changing its state to free.
Model Details For both dense unary and histogram-based
segment potentials 4 dense features were used - colour with

128 clusters, location with 144 clusters, texton and HOG
descriptor [6] with 150 clusters. 5000 weak classifiers were
used in the boosting process.

Learning Weights for Hierarchical CRFs Having learnt
potentials ξc(xc) as described earlier, the problem remains
of how to assign appropriate weights λc. This weighting,
and the training of hierarchical models in general is not an
easy problem and there is a wide body of literature deal-
ing with it [12, 11, 28]. The approach we take to learn
these weights uses a coarse to fine, layer-based, local search
scheme over a validation set

We first introduce additional notation: V(i) will refer
to the variables contained in the ith layer of the hierarchy,
while x(i) is the labelling of V(i) associated with a MAP es-
timate over the truncated hierarchical CRF consisting of the
random variables v′ = {v ∈ V(k) : k ≥ i}. Given the
validation data we can determine a dominant label Lc for
each segment c, such that LF = l when

∑
i∈l ∆(xi = l) =

0.5|c|, if there is no such dominant label, we set Lc = LF .



Figure 5. Qualitative results on the VOC-2008 data set. Successful segmentations (top 3 rows) and standard failure cases (bottom) -
from left to right, context error, detection failure and misclassification.

We note that at a given level of the hierarchy, the label
of a clique x(i)

c must correspond to the dominant label of
of this clique in the ground truth (or LF ) for its containing
pixels to be correctly labelled. Based on this observation,
we propose a simple heuristic which we optimise for each
layer.

At each layer, we seek to minimise the discrepancy be-
tween the dominant ground truth label of a clique LC , and
the value x(i)

c of the MAP estimate. Formally, we choose
parameters λ to minimise

C(x(i)) =
∑

c∈V(i)

∆(x(i)
c 6= Lc ∧ Lc 6= LF ). (15)

We optimise (15) layer by layer. The full method is given
in algorithm 1, where we use λ(i)

1 to refer the weighting of
unary potentials in the ith layer, for λ(i)

2 the weight of the
pairwise terms and λ(i+1)

h a scalar modifier of all terms in
the (i+ 1)th layer or greater. Θ is an arbitrary constant that
controls the precision of the final assignment of λ.

for i from n down to 1 do
Let s1, s2, sh, d1, d2, dh = 1;
while s1, s2 or sh ≥ Θ do

for t ∈ {1, 2, h} do
λ
′(i)
t ← λ

(i)
t + dtst;

Perform MAP estimate of xi using λ′t instead of
λt;
if C(xi) has decreased then

λt ← λ′t

else
st ← st/2, dt ← −dt

Algorithm 1: Weight Learning Scheme.

An alternative and elegant approach to this is that of [9]
which we intend to investigate in future work.

5. Experiments
We evaluated our framework on two data sets: PASCAL

VOC 2008 [7] and MSRC-21 [26].

Generation of multiple nested segmentations Normally
generation of multiple segmentations is performed by vary-
ing the parameters controlling unsupervised segmentation
methods [5, 8, 24]. In our experiments, we used mean-
shift [5] to generate each set of nested segmentations with
both fine and coarse mean-shift kernels. Firstly, a fine ker-
nel based mean shift is applied to create the finest segmenta-
tion and then a coarse kernel based mean-shift is performed
over the previous result. Multiple nested segmentations can
be obtained by varying parameters of both kernels.

MSRC-21 The MSRC segmentation data set contains 591
images of resolution 320× 213 pixels, accompanied with a
hand labelled object segmentation of 21 object classes. Pix-
els on the boundaries of objects are not labelled in these
segmentations. The division into training, validation and
test sets occupied 45% 10% and 45% the images. Meth-
ods are typically compared using global criteria or average-
per-class criteria (see figure 4 for details). For these experi-
ments, the hierarchy was composed of 3 pairs of nested seg-
mentations. The parameters of the mean-shift kernels were
arbitrarily chosen as (6, 5), (12, 10); (6, 7.5), (12, 15); and
(6, 9), (12, 18). The first value refers to the planar distance
between points, and the second refers to the distance in the
LUV colour space.

PASCAL VOC 2008 This data set was used for the PAS-
CAL Visual Object Category segmentation contest 2008. It
is especially challenging given the presence of significant
background clutter, illumination effects and occlusions. It
contains 511 training, 512 validation and 512 segmented
test images of 20 foreground and 1 background classes.
The organisers also provided 10, 057 images for which only
the bounding boxes of the objects present in the image are
marked. We did not use these additional images for training
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Figure 6. Quantitative analysis of VOC2008 results [7] based upon performance criteria (
P

i∈L Nii

|L|(−Nii+
P

j∈L Nij+Nji)
). Note that all other

methods used classification and detection priors trained over a much larger data set that included unsegmented images.

our framework. For this data set we used a two-level hier-
archy. The methods are evaluated using average-per-class
criteria [7] that penalises the performance of classes i and j
given a mislabelling of i as j (see figure 6). Note that it is
not equivalent to the percentage of pixels correctly labelled.
Quantitative and Qualitative Results Comparisons of
our performances against other methods is given in figures
4 and 6. The results on the MSRC data set clearly show
that our hierarchical CRF framework outperforms all exist-
ing pixel and segment-based methods. Similar results were
obtained on the VOC2008 data set, where the only compara-
ble methods used classification and detection priors trained
over a much larger set of images.
6. Conclusions and Future Work

We have presented a generalisation of many previous
super-pixel based methods within a principled CRF frame-
work. Our approach enabled the integration of features and
contextual priors defined over multiple image quantisations
in one optimisation framework that supports efficient MAP
estimation using graph cut based move making algorithms.
In order to do this, we have examined the use of auxiliary
variables in CRFs which have been relatively neglected in
computer vision over the past twenty years.

The flexibility and generality of our framework allowed
us to propose and use novel pixel and segment based poten-
tial functions and achieve state-of-the-art results on some
of the most challenging data sets for object class segmen-
tation. We believe that the use of the hierarchical CRF will
yield similar improvements for other labelling problems.
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PASCAL2 Network of Excellence. Professor Torr is in re-
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