Uptake, Translocation, and Transformation of Metal-based Nanoparticles in

Plants: Recent Advances and Methodological Challenges

Jitao Lv^a, Peter Christie^a, Shuzhen Zhang^{a, b*}

^a State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

^b University of the Chinese Academy of Sciences, Beijing, 100049, China

List of Acronyms:

Light microscope (LM), Fluorescence microscope (FM), Confocal laser scanning microscopy (CLSM), Scanning electron microscopy (SEM), (high resolution) transmission electron microscopy ((HR)TEM), Energy dispersive spectrum (EDS), Scan transmission electron microscopy (STEM), Inductively coupled plasma optical emission spectrometer (ICP-OES), Inductively coupled plasma mass spectrometry (ICP-MS), Single-particle ICP-MS (SP-ICP-MS), Laser ablation ICP-MS (LA-ICP-MS), Multicollector ICP-MS (MC-ICP-MS), Micro-X-ray fluorescence microscopy (µ-XRF), Micro-X-ray absorption near edge structure (µ-XANES), Micro-proton induced X-ray emission (µ-PIXE), X-ray absorption spectroscopy (XAS), Scan transmission X-ray microscopy (STXM), Synchrotron Fourier transform infrared microspectroscopy (SR-FTIR), X-ray computed nanotomography (nano-CT), Nano secondary ion mass spectrometry (nano-SIMS), Confocal Raman mapping (CRM), Hyperspectral microscopy (HSI)

NPs	Plants	Size/nm	Exposure concentration	Exposure media and time	Analytical methods	Uptake and translocation, transformation ^{ref}
GA-Ag	Ryegrass	6, 25	1- 40 mg/L	Hydroponic, 5- 7d	LM, ICP-OES, μ-XRF, μ-XANES	AgNPs adsorb to plant root surfaces, that oxidative dissolution leads to the insertion of Ag across the cell membrane, and that once internalized Ag can be translocated between tissues. Silver is oxidized within plant tissues. ¹
PVP-Ag GA-Ag	P. diversifolius, E. densa	12, 50		Microcosm, 90d	AF4-ICP-MS, XANES	In the presence of plant, 25% of the Ag present as an oxidized form resembling Ag- cysteine. ²
Bare Ag	Wheat	10	0-5 mg/kg	Sand, 14d	TEM	Ag NPs were observed in shoots of plants. ³
Ag	Arabidopsis	20, 40, 80	67-535 mg/L	Hydroponic, 28d	TEM, STEM, CLSM	AgNPs accumulated in: border cells, root cap, columella and columella initials. NPs were apoplastically transported in the cell wall and found in plasmodesmata. ⁴
PEG-Ag C-Ag	Poplars, Arabidopsis	5, 10, 25	0.1-100 mg/L	Hydroponic, 42d	ICP-MS	Arabidopsis accumulated silver primarily in leaves, whereas poplars accumulated silver at similar concentrations in leaves and stems. 5
Ag ₂ S	Cucumber, wheat	20-25	10 mg/L	Hydroponic, 7d	SP-ICP-MS, XANES, μ- XRF	Plants take up Ag ₂ S NPs without a marked selectivity in regard to particle size and without substantial transformation during translocation from roots to shoots. ⁶
(-, +) Au	Arabidopsis	12	10 mg/L	Agar, 10d	Nano-CT, HSI	(-) NPs were able to translocate into the apoplast, (+) NPs produced higher mucilage which prevented NPs translocation into the root tissue. ⁷
CA-, CYS-, TGA- Au	Rice, tomato	8-12	500 ug/L	Hydroponic, 1d	ICP-MS, HRTEM	Negatively charged CYS-AuNPs were more efficiently absorbed in roots and transferred to shoots. CYS ligand probably facilitated the endocytosis of AuNPs and increased the internalization of NPs in plants. ⁸
Au	Arabidopsis, alfalfa	7-108	25-100 mg/L	Agar, 8d	TEM	5-100 nm NPs are not directly accumulated by plants. Au NPs were only observed in plants exposed to ionic gold in solution. ⁹

NPs	Plants	Size/nm	Exposure	Exposure media	Analytical methods	Uptake and translocation, transformation ^{ref}	
1113			concentration	and time	Analytical methods		
	A. caroliniana			TT 1 .	TEM, SEM, STEM	Absorption of AuNPs through root uptake was size and species dependent. 4-nm and 18-	
Au	M. simulans	4, 18	250 mg/L	Hydroponic,		nm AuNPs were absorbed by A. caroliniana, whereas only 4-nm AuNPs were absorbed by	
	Egeria densa			Id		M. simulans. Egeria densa did not absorb AuNPs of either size. ¹⁰	
T-Au	Tomoto mboot	10 20 50	20	Hydroponic,	LA-ICP-MS, µ-XRF	All AuNPs were bioaccumulated in tobacco, but no bioaccumulation of AuNPs was	
C-Au	Tomato, wheat	10, 30, 30	30 mg/L	3-7d		observed for any treatment in wheat. 11	
C Au	Townste	2 5 1 9	49.76 ma/I	Hydroponic,	SEM, HRTEM, EDS,	Au NPs entered plants through the roots and moved into the vasculature. The uptake was	
C-Au	Tomato	5.5, 18	48, 70 mg/L	12d	μ-XANES, μ-XRF	size selective, 3.5 nm NPs were detected in plants but 18 nm NPs not. ¹²	
		2	16	Hydroponic,	oponic, LA-ICP-MS 0d	Surface charge greatly affected the AuNP uptake into plant tissues. (+) AuNPs preferential	
(+,0,-) Au	Rice		1.0,			accumulated in roots but (-) AuNPs were preferential to translocation from roots to	
			0.14 mg/L 5d, 90d	5d, 90d		shoots. ¹³	
PVP-Au	Tomato	40	0.2, 5 mg/L	Hydroponic, 4d	SP-ICP-MS	Tomato can uptake AuNPs as intact particles without alternating the AuNP properties. ¹⁴	
Bare Au	Poplar	15, 25, 50	250-500 μg/L	Hydroponic, 6d	ICP-MS, TEM	AuNPs were observed in the cytoplasm and various organelles of root and leaf cells.15	

Table S1 Literature summary of Ag NPs and Au NPs uptake and translocation, transformation in plants (Continued)

NPs	Plant	Size/nm	Exposure concentration	Exposure media and time	Analytical methods	Uptake and translocation, transformation ^{ref}
ARS-TiO ₂	Arabidopsis	2.8	1 μM	Hydroponic, 24h	FM, μ-XRF	TiO_2 NPs capable of passing the cell walls of plant cells, and capable of penetrating deeper into the plant tissues, beyond the surface cell layers. ¹⁶
TiO ₂	Wheat, Arabidopsis	12	100 mg/L	Hydroponic, 7d	SEM, μ-XRF, XANES	TiO_2 NPs were transferred from the exposure suspension to vegetal tissues.Ti is still in the TiO_2 chemical form inside plants. 17
TiO ₂ ZnO	Wheat	20 40	4307.5 mg/kg 214.5 mg/kg	Soil, 6m	SEM, TEM	TiO ₂ NPs were retained in the soil for long periods and primarily adhered to root cell walls. ZnO NPs dissolved in the soil, thereby enhancing the uptake of toxic Zn by wheat. ¹⁸
TiO ₂	Cucumber	27	100-4000 mg/L	Hydroponic, 15d	μ-XRF, μ-XANES	${\rm TiO}_2$ NPs were not biotransformed inside plant, and were transported from the roots to the leaf trichomes. ¹⁹
TiO ₂	Rice	19-37	5, 50 mg/L	Hydroponic, 3d	STEM-EDS, SP-ICP-MS, ICP-OES	TiO_2 NPs penetrated into the plant root and resulted in Ti accumulation in above ground tissues. ²⁰
TiO ₂	Wheat	14-655	100 mg/L	Hydroponic, 7d	μ-XRF, μ-XANES μ-PIXE, TEM	Below 36 nm, NPs accumulate in roots and distribute through whole plant tissues without dissolution or transformation; 36-140 nm, NPs are accumulated in wheat root parenchyma but do not reach the stele and consequently do not translocate to the shoot; above 140 nm, NPs are no longer accumulated in wheat roots. ²¹
ZnO	Ryegrass	20	10-1000 mg/L	Hydroponic, 12d	SEM, TEM, ICP-MS	ZnO NPs were observed present in apoplast and protoplast of the root endodermis and stele. Little (if any) ZnO nanoparticles could translocate up in the ryegrass in this study. ²²
ZnO	Maize	30	0-100 mg/L	Hydroponic, 7d	ICP-OES,TEM, FM, μ-XRF, XAS	ZnO NPs were observed in the cortex, root tip cells, vascular, and primary root-lateral root junction. No ZnO nanoparticle was observed to translocate to shoots. Zn accumulated in plant mainly as the form of Zn phosphate similar to Zn ion exposure. ²³
ZnO CeO ₂	Soybean	8 7	500-4000 mg/L	Hydroponic, 5d	XANES	CeO_2 NPs were presented in roots, whereas ZnO NPs were not present, Zn appeared coordinated in the same manner as Zn-nitrate or Zn-acetate. ²⁴
ZnO	Phaseolus	40	100, 1000 mg/L	Hydroponic, 2d	μ-XRF, XANES	Phaseolus takes up Zn bound to both citrate and malate, while entire NPs were only absorbed when roots were injured. ²⁵

Table S2 Literature summary of	f metallic oxide NPs uptake and	translocation, transformation in	plants
	1	,	1

NPs	Plant	Size/nm	Exposure concentration	Exposure media and time	Analytical methods		Uptake and translocation, transformation
7n0	Valuat magavita	10	500 4000 mg/I	Hydroponic,	ICP-OES,	μ-	ZnO NPs were not present in mesquite tissues, Zn was found resembe to the spectra of $Zn(NO_3)_2$. Zn
ZIIO	vervet mesquite	10	500-4000 llig/L	15d	XRF, XANES		was presented in the vascular system of roots and leaves in ZnO NP treated plants. 26,27
ZnO	Maize		100-800 mg/kg	Soil 30d	ICP-OFS CLSM		ZnO NPs aggregates penetrated the root epidermis and cortex through the apoplastic pathway and
ZhO	Walle		100-000 IIIg/Kg	501, 504	101-015, CE5M		passed the endodermis through the symplastic pathway. ²⁸
7nO		10	500 mg/kg		ICD MS YPE		No presence of ZnO NPs within plant tissues, Zn presented in plant in a form resembling Zn-citrat. Ce
CeO.	Soybean	8	1000 mg/kg	Soil, 48d	XANES	μ-	remained mostly as CeO_2 NPs within the plant, a small percentage of CeO_2 NPs was biotransformed to
		8	1000 mg/kg		AANLO		Ce(III). ²⁹
7n O	Cownea	20-30	500 mg/kg	Soil 28d	U-YRE YAES		No upward translocation of ZnO NPs from roots to shoots was observed. Zn were similar in stem and
ZIIO	Cowpea	20-30	500 mg/kg	501, 200	μ-Λιά, Λία σ		leaf tissues regardless of Zn-treatments, with Zn mainly bound to citrate, histidine, and phytate. ³⁰
CuO	Maize	20-40	100 mg I /1	Hydroponic,	ICP-MS, TEM,		CuO NPs were transported from roots to shoots via xylem and could translocate from shoots back to
euo	Walle	20 40		15d	EDS		roots via phloem. During this translocation, CuO NPs could be reduced from Cu (II) to Cu (I). $^{\rm 31}$
CuO	Rice	40 100 mg	100 mg/L	Hydroponic 14d	μ-XRF, μ-XANES,		CuO NPs were transported from the roots to the leaves, and that Cu (II) combined with cysteine,
euo	Ricc		100 mg/L	Tryatopolite, The	XANES, STXM		citrate, and phosphate ligands and was even reduced to Cu (I).32
CuO	Elsholtzia	sholtzia 43 lendens.	100-1000 mg/L	Hydroponic,	ICP-MS, HRTEM,		Accumulated Cu species existed predominantly as CuO NPs in the plant tissues. CuO NPs-like
euo	splendens.		100-1000 mg/L	14d	EDS, XANES		deposits were found in the root cells and leaf cells. ³³
CuO	W 71	<50	500 4	0 1 1 4 1			Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was
ZnO	wheat	<100	500 mg/kg	Sand, 14d	ICP-MS, XANES		detected in the shoots of NP-challenged plants. ³⁴
		14, 50,		Hydroponic,			Significant uptake of SiO ₂ NPs (14, 50, and 200 nm) into the root system of A, thaliana was observed,
SiO ₂	Arabidopsis	200	250, 1000 mg/L	TEM, ICP-0	TEM, ICP-OES	OES	and the contents of uptake were size-dependent. ³⁵
	- •·	• •					
Fe ₃ O ₄	Pumpkin	20	500mg/L	Hydroponic, 20d	VSM		Magnetite NPs can absorb, translocate, and accumulate the particles in the plant tissues. ³⁰
γ-Fe2O3	Maize	21	20-100mg/L	Hydroponic, 14d	TEM. CLSM		NPs could enter roots and migrate apoplastically from the epidermis to the endodermis and the
,	1111120	21		ing aropointe, i tu	i Lin, CLOM		vacuole. But most of NPs existed around the epidermis and did not transport from roots to shoots. ³⁷

Table S2 Literature summary of metallic oxide NPs uptake and translocation, transformation in plants (Continued)

ND-	Direct	S*	Exposure	Exposure media	Analytical methods	The fail is and for a failer from the
NPS	Plant	Size/nm	concentration	and time		Uptake and translocation, transformation
CeO ₂	Alfalfa, maize, cucumber, tomato	7	500-4000 mg/L	Hydroponic, 6-9d	ICP-OES, XAS	CeO ₂ were found within root tissues of the four plant species without transformation. ³⁸
¹⁴¹ CeO ₂	Cucumber	7, 22	2-200 mg/L	Hydroponic, 7d	Autoradiography, TEM	Only very limited amounts of CeO ₂ NPs could be transferred from the roots to shoots. However, once they have entered into the vascular cylinder, NPs could move smoothly to the end of the vascular bundle along with water flow. ³⁹
CeO ₂	Tomato	20	0.1–10 mg/L	Hydroponic, 70d	ICP-MS	CeO_2 NPs were taken up by tomato roots and translocated to shoots and edible tissues. In particular, substantially higher Ce concentrations were detected in the fruits. ⁴⁰
CeO ₂	Cucumber	7	2000 mg/L	Hydroponic, 21d	ICP-MS, STXM, XANES, TEM, EDS	CeO ₂ NPs were likely dissolved and reducing to Ce(III) by root exudates. Ce(III) ions were precipitated on the root surfaces and in intercellular spaces with phosphate, or form complexes with carboxyl compounds during translocation to the shoots. ⁴¹
CeO ₂	Cucumber	25	20-2000 mg/L	Hydroponic, 7d	STXM, XANES, TEM, EDS	Root surfaces are the sites, and the physicochemical interaction between the NPs and root exudates at the nanobio interface is the necessary condition for the transformation of CeO_2 NPs in plant systems. ⁴²
CeO ₂	Cucumber	25	200, 2000 mg/L	Hydroponic, 3d	ICP-MS, μ-XRF, μ-XANES	About 15% of Ce was reduced from Ce(IV) to Ce(III) in the roots). Ce was transported as a mixture of Ce(IV) and Ce(III) from roots to shoots through xylem, while it was transported almost only in the form of CeO ₂ from shoots back to roots through phloem. ⁴³
(+,0,-)CeO ₂	Wheat	4nm	20 mg/L	Hydroponic, 34h	ICP-MS, µ-XRF, XANES	A 15–20% reduction from Ce(IV) to Ce(III) was observed in both roots and leaves, independent of NP surface charge. (+) CeO ₂ NPs exposed plants had lower Ce leaf concentrations. ⁴⁴

Table S3 Literature summary of rare-earth oxides NPs uptake and translocation, transformation in plants

NDa	Plant	Size/nm	Exposure	Exposure media	Analytical mothods	Uptake and translocation, transformation
141.5			concentration	and time	Analytical methods	
CeO ₂	Tell fessore		1-50 mg/kg		Soil XANES nan upta	Soil properties controlled Ce uptake. The clay fraction enhanced the retention of the \mbox{CeO}_2
	all fescue, 3.9 tomato	3.9		Soil, 8d		nanoparticles and hence reduced Ce uptake, whereas the organic matter content enhanced Ce
						uptake. ⁴⁵
NI O	Cucumber	15	0.32-2000 mg/L	Hydroponic, 14d	ICP-MS, TEM, EDS,	In the intercellular regions of the roots, Yb ₂ O ₃ NPs and YbCl ₃ were all transformed to YbPO ₄ . ⁴⁰
1 0 ₂ O ₃					STXM, NEXAFS	
	Cucumber	22	2-2000 mg/L	Hydroponic, 5d TEM, EDS, STXM La ₂ O ₃ NPs and LaCl ₃ were both transform intercellular regions of the cucumber roots. ⁴⁷	$La_2O_3\ NPs$ and $LaCl_3\ were both\ transformed\ to\ needle-like\ LaPO4\ nanoclusters\ in\ the$	
La ₂ O ₃					TEM, EDS, STXM	intercellular regions of the cucumber roots. 47

Table S3 Literature summary of rare-earth oxides NPs uptake and translocation, transformation in plants (Continued)

References

- L. Y. Yin, Y. W. Cheng, B. Espinasse, B. P. Colman, M. Auffan, M. Wiesner, J. Rose, J. Liu and E. S. Bernhardt, *Environ. Sci. Technol.*, 2011, 45, 2360-2367.
- 2 A. J. Bone, B. P. Colman, A. P. Gondikas, K. M. Newton, K. H. Harrold, R. M. Cory, J. M. Unrine, S. J. Klaine, C. W. Matson and R. T. Di Giulio, *Environ. Sci. Technol.*, 2012, 46, 6925-6933.
- 3 C. O. Dimkpa, J. E. McLean, N. Martineau, D. W. Britt, R. Haverkamp and A. J. Anderson, *Environ. Sci. Technol.*, 2013, 47, 1082-1090.
- J. Geisler-Lee, Q. Wang, Y. Yao, W. Zhang, M. Geisler, K. Li, Y. Huang, Y.
 Chen, A. Kolmakov and X. Ma, *Nanotoxicology*, 2013, 7, 323-337.
- 5 J. Wang, Y. Koo, A. Alexander, Y. Yang, S. Westerhof, Q. B. Zhang, J. L. Schnoor, V. L. Colvin, J. Braam and P. J. J. Alvarez, *Environ. Sci. Technol.*, 2013, 47, 5442-5449.
- P. Wang, E. Lombi, S. K. Sun, K. G. Scheckel, A. Malysheva, B. A. McKenna, N. W. Menzies, F. J. Zhao and P. M. Kopittke, *Environ.-Sci. Nano*, 2017, 4, 448-460.
- A. Avellan, F. Schwab, A. Masion, P. Chaurand, D. Borschneck, V. Vidal, J. Rose,
 C. Santaella and C. Levard, *Environ. Sci. Technol.*, 2017, 51, 8682-8691.
- 8 H. Li, X. Ye, X. Guo, Z. Geng and G. Wang, J Hazard Mater, 2016, 314, 188-196.
- 9 A. F. Taylor, E. L. Rylott, C. W. Anderson and N. C. Bruce, *PLoS One*, 2014, 9, e93793.
- 10 J. B. Glenn, S. A. White and S. J. Klaine, Environ. Toxicol. Chem., 2012, 31,

194-201.

- J. D. Judy, J. M. Unrine, W. Rao, S. Wirick and P. M. Bertsch, *Environ. Sci. Technol.*, 2012, 46, 8467-8474.
- T. Sabo-Attwood, J. M. Unrine, J. W. Stone, C. J. Murphy, S. Ghoshroy, D. Blom, P. M. Bertsch and L. A. Newman, *Nanotoxicology*, 2012, 6, 353-360.
- 13 J. Koelmel, T. Leland, H. H. Wang, D. Amarasiriwardena and B. S. Xing, *Environ. Pollut.*, 2013, **174**, 222-228.
- 14 Y. B. Dan, W. L. Zhang, R. M. Xue, X. M. Ma, C. Stephan and H. L. Shi, *Environ. Sci. Technol.*, 2015, 49, 3007-3014.
- 15 G. S. Zhai, K. S. Walters, D. W. Peate, P. J. J. Alvarez and J. L. Schnoor, *Environ. Sci. Tech. Let.*, 2014, 1, 146-151.
- J. Kurepa, T. Paunesku, S. Vogt, H. Arora, B. M. Rabatic, J. J. Lu, M. B. Wanzer,G. E. Woloschak and J. A. Smalle, *Nano Lett.*, 2010, 10, 2296-2302.
- 17 C Larue, H Khodja, N Herlin-Boime, F Brisset, AM Flank, B Fayard, S Chaillou and M. Carrière, J. Phy. Conf. Ser., 2011, 304.
- 18 W. C. Du, Y. Y. Sun, R. Ji, J. G. Zhu, J. C. Wu and H. Y. Guo, J. Environ. Monitor., 2011, 13, 822-828.
- 19 A. D. Servin, H. Castillo-Michel, J. A. Hernandez-Viezcas, B. C. Diaz, J. R. Peralta-Videa and J. L. Gardea-Torresdey, *Environ. Sci. Technol.*, 2012, 46, 7637-7643.
- Y. Deng, E. J. Petersen, K. E. Challis, S. A. Rabb, R. D. Holbrook, J. F. Ranville,
 B. C. Nelson and B. Xing, *Environ. Sci. Technol.*, 2017, 51, 10615-10623.

- C. Larue, J. Laurette, N. Herlin-Boime, H. Khodja, B. Fayard, A. M. Flank, F.
 Brisset and M. Carriere, *Sci . Total. Environ.*, 2012, 431, 197-208.
- 22 D. H. Lin and B. S. Xing, Environ. Sci. Technol., 2008, 42, 5580-5585.
- 23 J. T. Lv, S. Z. Zhang, L. Luo, J. Zhang, K. Yang and P. Christie, *Environ.-Sci. Nano*, 2015, **2**, 68-77.
- M. L. Lopez-Moreno, G. de la Rosa, J. A. Hernandez-Viezcas, H. Castillo-Michel, C. E. Botez, J. R. Peralta-Videa and J. L. Gardea-Torresdey, *Environ. Sci. Technol.*, 2010, 44, 7315-7320.
- T. N. M. da Cruz, S. M. Savassa, M. H. F. Gomes, E. S. Rodrigues, N. M. Duran,
 E. de Almeida, A. P. Martinelli and H. W. P. de Carvalho, *Environ.-Sci. Nano*,
 2017, 4, 2367-2376.
- 26 J. A. Hernandez-Viezcas, H. Castillo-Michel, A. D. Servin, J. R. Peralta-Videa and J. L. Gardea-Torresdey, *Chem. Eng. J.*, 2011, **170**, 346-352.
- 27 M. Kumari, S. S. Khan, S. Pakrashi, A. Mukherjee and N. Chandrasekaran, J. Hazard Mater., 2011, 190, 613-621.
- 28 L. J. Zhao, J. R. Peralta-Videa, M. H. Ren, A. Varela-Ramirez, C. Q. Li, J. A. Hernandez-Viezcas, R. J. Aguilera and J. L. Gardea-Torresdey, *Chem. Eng. J.*, 2012, **184**, 1-8.
- J. A. Hernandez-Viezcas, H. Castillo-Michel, J. C. Andrews, M. Cotte, C. Rico, J.
 R. Peralta-Videa, Y. Ge, J. H. Priester, P. A. Holden and J. L. Gardea-Torresdey, ACS Nano, 2013, 7, 1415-1423.
- 30 P. Wang, N. W. Menzies, E. Lombi, B. A. McKenna, B. Johannessen, C. J.

Glover, P. Kappen and P. M. Kopittke, *Environ. Sci. Technol.*, 2013, 47, 13822-13830.

- 31 Z. Wang, X. Xie, J. Zhao, X. Liu, W. Feng, J. C. White and B. Xing, *Environ. Sci. Technol.*, 2012, 46, 4434-4441.
- 32 C. Peng, D. Duan, C. Xu, Y. Chen, L. Sun, H. Zhang, X. Yuan, L. Zheng, Y. Yang, J. Yang, X. Zhen, Y. Chen and J. Shi, *Environ. Pollut.*, 2015, **197**, 99-107.
- 33 C. Peng, C. Xu, Q. Liu, L. Sun, Y. Luo and J. Shi, *Environ. Sci. Technol.*, 2017, 51, 4907-4917.
- 34 C. O. Dimkpa, J. E. McLean, D. E. Latta, E. Manangon, D. W. Britt, W. P. Johnson, M. I. Boyanov and A. J. Anderson, *J. Nanopart Res.*, 2012, 14.
- 35 Danielle L. Slomberg and M. H. Schoenfisch, 2012.
- 36 H. Zhu, J. Han, J. Q. Xiao and Y. Jin, J. Environ. Monitor., 2008, 10, 713-717.
- J. Li, J. Hu, C. Ma, Y. Wang, C. Wu, J. Huang and B. Xing, *Chemosphere*, 2016, 159, 326-334.
- 38 M. L. Lopez-Moreno, G. de la Rosa, J. A. Hernandez-Viezcas, J. R. Peralta-Videa and J. L. Gardea-Torresdey, J. Agr. Food Chem., 2010, 58, 3689-3693.
- 39 Z. Y. Zhang, X. He, H. F. Zhang, Y. H. Ma, P. Zhang, Y. Y. Ding and Y. L. Zhao, *Metallomics*, 2011, 3, 816-822.
- 40 Q. Wang, X. M. Ma, W. Zhang, H. C. Pei and Y. S. Chen, *Metallomics*, 2012, 4, 1105-1112.
- 41 P. Zhang, Y. H. Ma, Z. Y. Zhang, X. He, J. Zhang, Z. Guo, R. Z. Tai, Y. L. Zhao

and Z. F. Chai, ACS Nano, 2012, 6, 9943-9950.

- Y. H. Ma, P. Zhang, Z. Y. Zhang, X. He, J. Z. Zhang, Y. Y. Ding, J. Zhang, L. R. Zheng, Z. Guo, L. J. Zhang, Z. F. Chai and Y. L. Zhao, *Environ. Sci. Technol.*, 2015, 49, 10667-10674.
- Y. Ma, X. He, P. Zhang, Z. Zhang, Y. Ding, J. Zhang, G. Wang, C. Xie, W. Luo,
 J. Zhang, L. Zheng, Z. Chai and K. Yang, *Environ. Sci. Technol.*, 2017, 51, 5215-5221.
- E. Spielman-Sun, E. Lombi, E. Donner, D. Howard, J. M. Unrine and G. V.
 Lowry, *Environ. Sci. Technol.*, 2017, 51, 7361-7368.
- C. Layet, M. Auffan, C. Santaella, C. Chevassus-Rosset, M. Montes, P. Ortet, M. Barakat, B. Collin, S. Legros, M. N. Bravin, B. Angeletti, I. Kieffer, O. Proux, J. L. Hazemann and E. Doelsch, *Environ. Sci. Technol.*, 2017, 51, 9756-9764.
- P. Zhang, Y. H. Ma, Z. Y. Zhang, X. He, Z. Guo, R. Z. Tai, Y. Y. Ding, Y. L.
 Zhao and Z. F. Chai, *Environ. Sci. Technol.*, 2012, 46, 1834-1841.
- Y. H. Ma, X. He, P. Zhang, Z. Y. Zhang, Z. Guo, R. Z. Tai, Z. J. Xu, L. J. Zhang,
 Y. Y. Ding, Y. L. Zhao and Z. F. Chai, *Nanotoxicology*, 2011, 5, 743-753.