Electronic Supplementary Material (ESI) for Natural Product Reports. This journal is © The Royal Society of Chemistry 2021

Supplementary information (SI)

Marine paralytic shellfish toxins: chemical properties, mode of action, newer analogues, and structure-toxicity relationship

Joana F. Leal, Maria L. S. Cristiano *a

Centre of Marine Sciences (CCMAR) and Department of Chemistry and Pharmacy, Faculty of Science and Technology –

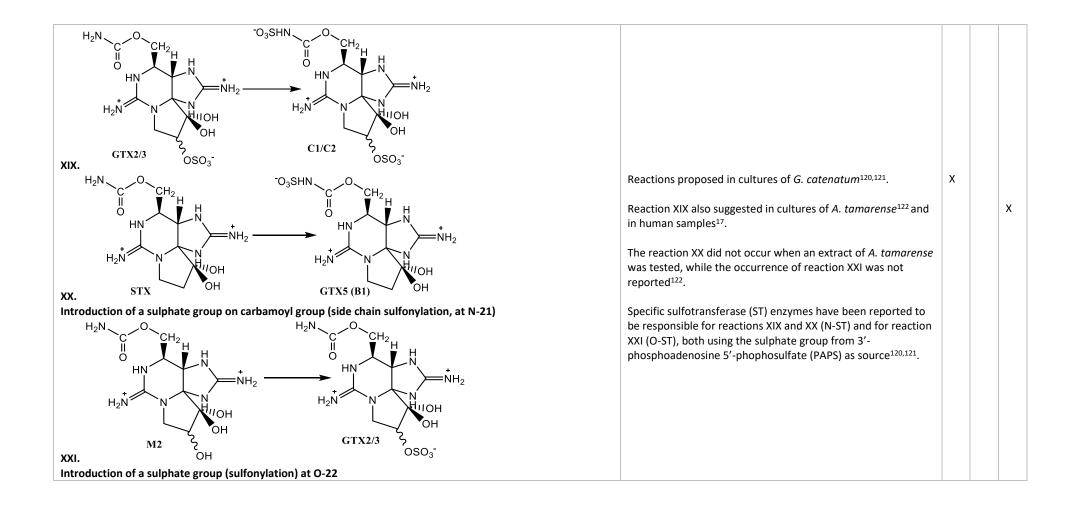
University of Algarve, Campus de Gambelas 8005-139 Faro, Portugal.

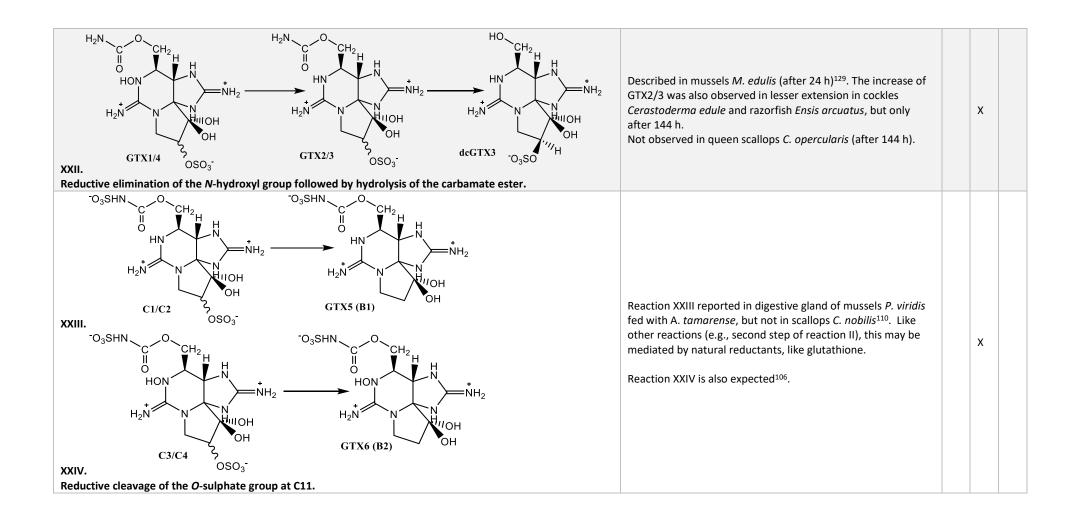
Table S1 – Bioconversion reactions reported in dinoflagellates, shellfish and/or humans (only STXs toxins produced by marine dinoflagellates were considered).

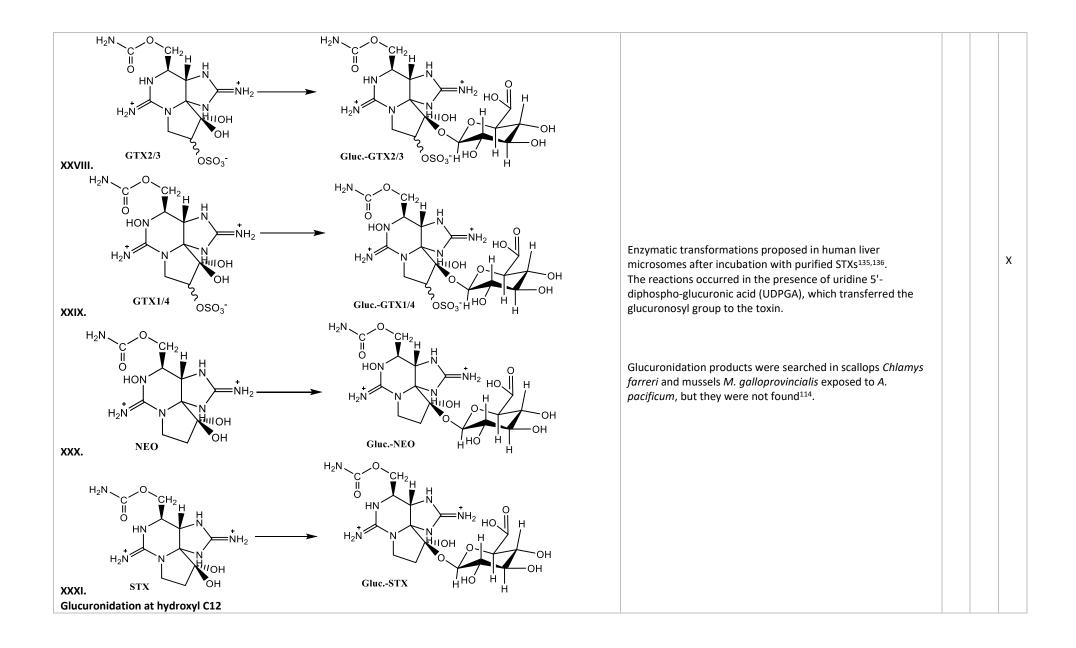
			ganisı	nisms	
Bioconversion reactions (metabolic transformations)	Observations	Dinoflagellates	Bivalves	Humans	
H ₂ N C CH ₂ H H H H H H H H H H H H H H H H H H H	Described in different parts of the scallops <i>Placopecten magellanicus</i> ¹²³ ; in digestive glands of scallop <i>Patinopecten yessoensis</i> contaminated with <i>A. tamarense</i> ¹²⁴ ; in butter clams fed with <i>A. catenella</i> ¹²⁵ ; in mussel <i>Perna viridis</i> contaminated with <i>A. minutum</i> (first part of reaction II) ¹²⁶ . The conversion GTX2/3 into STX was reported as involving bacteria isolated from intestines of a mussel <i>Mytilus edulis</i> ¹²⁷ . This reaction was first proposed in other marine species (crabs and snails), involving the bacteria <i>Vibrio</i> and <i>Pseudomonas</i> spp. isolated from their viscera (incubation ≥ 20h) ¹²⁸ . Reduction of the <i>O</i> -suphate group at C11 from GTX1/4 and GTX2/3 to NEO and STX, respectively, is thought to be mediated by glutathione ¹²⁴ . The conversion GTX2/3 into STX (part of reaction II) is proposed to occur also in humans (gut samples), based on the experiments performed by other authors ¹³⁴ .		X	x	
$\begin{array}{c} \text{O}_{3}\text{SHN} \\ \text{O} \\ \text{H} \\ \text{O} \\ \text{H}_{2}\text{N} \\ \text{O} \\ \text{H}_{2}\text{N} \\ \text{O} \\ \text{H}_{2}\text{N} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{H}_{2}\text{N} \\ \text{O} \\ $	Observed in littleneck clam <i>Protothaca staminea</i> , using purified toxins from <i>Gonyaulax</i> sp. ⁷¹ ; from <i>A. excavatum</i> and <i>A. minutum</i> ¹³⁰ ; incubated with a toxin mixture ¹³¹ . Also observed in clam <i>Spisula solidissima</i> fed with <i>Alexandrium</i> spp. ¹⁰¹ ; and (except reaction IV) in digestive glands of clams <i>Spisula solida</i> and <i>Scrobicularia plana</i> (in less extension) contaminated with <i>G. Catenatum</i> ¹¹¹ .		x		

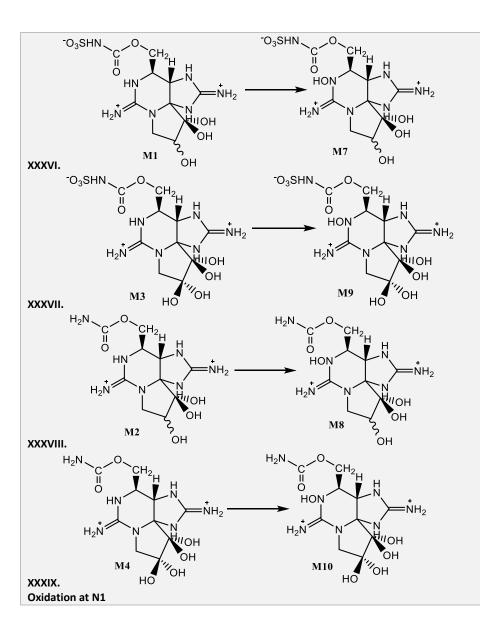
Not detected in butter clams *Saxidomus giganteus* and mussels *M. edulis*, contaminated with *Gonyaulax* sp.⁷¹; or in clams *M. arenaria* fed with *Alexandrium* spp.¹⁰¹ and incubated with a toxin mixture¹³¹.

Reaction IV was also described in adductor muscle of scallops *Chlamys nobilis* (higher extension) and in digestive gland of mussels *P. viridis* (lesser extension) fed with toxic *A. tamarense*¹¹⁰. Additionally, reaction VIII was observed after 24 h in mussels *M. edulis* (dcGTX3 prevailed over dcGTX2), but not observed in queen scallops *Chlamys opercularis*, after 144 h¹²⁹.


These reactions appear to be promoted by the enzymatic activity, namely by hydrolytic enzymes, the carbamoylases^{71,111,130}.


Reaction V was reported in post-mortem analysis of human tissues (liver, kidney, lung) ¹⁸ and human urine ¹³⁴.


Χ


H ₂ N C C C C C C C C C C C C C C C C C C C			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reported in short-necked clams <i>Tapes (Amygdala) japonica</i> , mussels <i>M. edulis</i> and oysters <i>Crassostrea gigas</i> contaminated with two strains of <i>A. tamarense</i> isolated from toxic planktons ¹⁰⁹ .		
TO ₃ SHN OCH ₂ HON HON HON HON HON HON HON HO	Reaction IX reported in the northern quahog (clam) <i>M. mercenaria</i> exposed in laboratory to cultured isolates of <i>Alexandrium</i> (<i>A. tamarense</i> and <i>A. fundyense</i>) ¹⁰⁵ , and in digestive glands of mussels <i>P. viridis</i> fed with <i>A. tamarense</i> ¹¹⁰ .	X	

XV. GTX5 (B1) TO ₃ SHN OHO H ₂ N H ₃ N H ₄ N	Suggested in clam <i>Tapes japonica</i> fed with <i>A. catenella</i> ¹¹⁶ . Reaction XV documented in blue mussels ¹³² . Hydrolysis of the <i>N</i> -sulfa group is proposed based on the above reactions (IX – X), in agreement with Oshima ¹⁰⁶ , who also proposed reaction XVI.		х	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Reaction XVII proposed in <i>A. tamarense</i> extracts ¹⁰⁶ , in <i>G. catenatum</i> ¹²⁰ . Both reactions also suggested in human samples ^{18,134-136} . These reactions in humans occurred in presence of nicotinamide adenine dinucleotide phosphate oxidase (NADPH) ^{135,136} .	X		x

Reactions XXXII, XXXIII, XXXVI, XXXVII described in mussels *M. edulis* fed with toxic *A. fundyense* culture³⁰. Additionally, reactions XL to XLIV were suggested.

The second step of reaction XXXII (hydroxylation of M1 into M3) was suggested in several bivalve species (mussels *M. galloprovincialis*, cookles *C. edule*, clams *Ruditapes decussatus* and *Donax trunculus*, and razor clams *Ensis* spp.) contaminated with *G. catenatum*¹¹². However, this author proposed another precursor to M1 (reaction XLV).

Χ