
Linköping Studies in Science and Technology
Thesis No. 948

Identification, Diagnosis, and Control
of a Flexible Robot Arm

Måns Östring

REGLERTEKNIK

AUTOMATIC CONTROL

LINKÖPING

Division of Automatic Control
Department of Electrical Engineering

Linköpings universitet, SE–581 83 Linköping, Sweden
WWW: http://www.control.isy.liu.se

E-mail: mans@isy.liu.se

Linköping 2002

Identification, Diagnosis, and Control
of a Flexible Robot Arm

c© 2002 Måns Östring

Department of Electrical Engineering,

Linköpings universitet,

SE–581 83 Linköping,

Sweden.

ISBN 91-7373-356-3
ISSN 0280-7971

LiU-TEK-LIC-2002:21

Printed by UniTryck, Linköping, Sweden 2002

To .. (fill in your name)

Abstract

The most important factors in manufacturing are quality, cost, and productivity.
The trend is towards lighter robots with increased mechanical flexibilities, and
therefore there is a need to include the flexibilities in the robot models to obtain
good performance of the robot.

The core theme in this thesis is modeling and identification of the physical param-
eters of an ABB IRB 1400 industrial robot. The approximation made is that the
robot arm can be described using a finite number of masses connected by springs
and dampers. It has been found that a three-mass model gives a reasonably good
description of the robot when moving around axis one. The physical parameters of
this model are identified using off-line and on-line algorithms. The algorithms are
based on prediction error methods. For the off-line identification the MATLABTM

System Identification Toolbox is used. For the on-line identification the algorithm
used is a modified version of a recursive prediction error method to cope with
continuous time models.

The models are then used in diagnosis and control. Two ways of doing diagno-
sis using on-line identification are investigated. Estimating some of the physical
parameters of the robot arm recursively makes it possible to monitor important
aspects of the system such as friction and load.

LQG control of the flexible robot arm is also studied with the aim of good distur-
bance rejection. Aspects that have been studied are unstable regulators and the
use of accelerometers.

i

Acknowledgments

First of all I would like to thank my supervisor Professor Svante Gunnarsson,
without whom I would never have finished this thesis and Dr. Mikael Norrlöf for
being my co-supervisor.

Then I would like to express my gratitude to Professor Lennart Ljung for drafting
me to the group, and, of course, to the whole group for creating the atmosphere
that makes it “endurable to work when the research is going slow”. I especially
thank Ulla, our secretary, for all the help, and for being the glue that holds the
whole group together.

This work was supported by VINNOVA’s center of excellence ISIS (Information
Systems for Industrial Control and Supervision), which is gratefully acknowledged.
The work in this thesis would not have been possible without the support from
ABB. I would especially like to thank “my industrial supervisor” Dr. Torgny
Brog̊ardh and also Stig Moberg. Thank you for all the fruitful discussions when I
have been visiting you in Väster̊as.

Of my colleges I would especially like to thank Johan Löfberg for all the discussions
and questions you have to put up with. Then also Anna Hagenblad and Fredrik
Tjärnström that also have been “terrorized by my questions and/or opinions”.
They have also given valuable help from reading early versions of parts of the
thesis.

Extra credit goes also to the computer support group for keeping the computers
happy and for all the interesting discussions, and also to Erik Frisk for answering
my most troublesome LATEX questions.

Finally, I would like to thank my family for all the help and support.

iii

Contents

1 Introduction 1
1.1 Thesis outline . 2
1.2 Contributions . 3

2 Robotics 5
2.1 ABB industrial robot family . 6

2.2 The robot system . 7

2.3 The manipulator, IRB 1400 . 8

2.4 The controller, S4C . 10

2.5 The controller software . 11
2.6 The control system . 13

3 Physical modeling 15

3.1 Modeling with Lagrangians . 16

3.2 Modeling the movement around axis one 17

3.2.1 Rigid model . 18

3.2.2 Two-mass flexible model . 19

v

vi Contents

3.2.3 Three-mass flexible model . 20
3.3 Mathematical and modeling tools . 21

3.3.1 Physical modeling using MathModelica 22

4 Identification methods 27
4.1 Model structures . 27
4.2 Computing the estimate . 29

4.3 Non-parametric frequency domain identification 31

4.3.1 The empirical transfer function estimate (ETFE) 31

4.3.2 Spectral estimation (SPA) . 31

4.3.3 Non-parametric estimation during closed loop 32

4.4 Data collected in closed loop . 32

4.4.1 The system is included in the model class 33

4.4.2 The system is not included in the model class 35

4.4.3 Variance of the estimated model 36

5 Off-line identification 37
5.1 Data collection and pre-processing 39

5.2 Black-box models . 40
5.3 Physically parameterized models . 42

5.3.1 Two-mass flexible model . 42
5.3.2 Three-mass flexible model . 48
5.3.3 Sensitivity of the initial parameter values 49

5.4 Validation . 52
5.5 Summary . 52

6 Recursive identification 55
6.1 The robot system . 56

6.2 The recursive identification algorithm 57

6.3 Forming the predictor and its gradient 59

6.3.1 Forming the predictor and its gradient in continuous time . . 59

6.3.2 Forming the predictor and its gradient using numerical dif-
ferentiation . 61

6.4 Some properties of the gradient . 63

6.5 Identification of nominal model . 64
6.6 Recursive identification experiments 65

6.6.1 Identified parameters . 65

Contents vii

6.6.2 Design variables . 66

6.6.3 Results . 67
6.7 Summary . 69

7 Diagnosis 71

7.1 Basic concepts . 72

7.2 The industrial robot application . 75

7.3 Parameter estimation methods for fault diagnosis 75

7.4 Two ways of doing fault diagnosis based on parameter estimation . . 77

7.4.1 The classical approach . 77

7.4.2 An approach based on hypothesis test and decision structure 78

7.5 Results . 78
7.5.1 The classical approach . 79

7.5.2 The approach based on hypothesis tests and decision structure 83

7.6 Summary . 86

8 LQG control for disturbance rejection 87

8.1 System description . 88

8.2 Control . 89
8.3 Example . 91

8.4 Regulator stability . 92

8.5 Input saturation . 94

8.6 Robustness . 98
8.7 LQG control using acceleration feedback 99

8.8 Summary . 102

9 Conclusions 103
9.1 Summary . 103

9.2 Further work . 104

Notation 107

Bibliography 111

1
Introduction

During the past decades industrial robots have become a very important factor in
the manufacturing industry. Robots are applied to new areas each day. To be able
to go into new markets the robots often require better performance or lower price.
In order to meet these demands the physical robot structures are built lighter and
weaker. Therefore the demands on the accuracy of the robot models, used in the
controllers, are growing. Good models are also needed for model based diagnosis
of robots. The development rate of new industrial robots is high. This means that
there is a need for an automated way of building mathematical models, and also
of estimating the parameters in the mathematical models.

To motivate diagnosis of industrial robots two visions for the future can be:

The first vision includes a diagnosis system for each robot in a production
system. There is also a superior diagnosis system that communicates with
each robot. This system decides optimal times for maintenance stops in the
plant. For a car manufacturing line with several hundred robots there is a
large amount of money to be saved by doing plant stops for maintenance only
when needed, and also knowing which parts that should be replaced.

The second vision is that the robot gives an alarm when, for example, the

1

2 Introduction

operator has given incorrect load parameters. The robot then suggests that
the parameters should be reestimated, and if the operator agrees the load
parameters are estimated, and the performance of the robot is improved.

This thesis studies a part of the visions using flexible arm models with a focus on
identification, diagnosis and control. The cornerstone is the building of physical
models, which can be used for control and diagnosis, and particularly the estimation
of the physical parameter values in the models using both off-line estimates and
on-line estimates.

A fundamental property in robot control and diagnosis is that the amount of sensors
is limited. Usually the only variable that is measured is the position of the motors
of the robot arm. This means that a model is needed to compensate for the
flexibilities in the robot arm, and to estimate the position of the tool. This is done
via mathematical models. If the tool is changed, or any other physical aspect of the
arm is changed, and the properties of the model are not changed accordingly, the
mathematical model is not valid any more. As a result of this the estimate of the
arm position is becoming worse, and the performance of the robot will deteriorate.
To prevent this from happening this thesis also deals with how to detect and isolate
when some physical aspects of the robot arm are changed.

1.1 Thesis outline

The thesis is organized as follows:

Chapter 2 gives an introduction to the robotics area in general, and ABB robots
and the robot used in this thesis in particular.

In Chapter 3 the modeling of a flexible robot arm is studied. Models representing
different approximations of a flexible arm are used. The robot arm has a gear box,
which has a flexibility. This suggest that the flexible arm may be approximated
with two masses and a spring and damper pair. In further investigations a three
mass model is used with good results.

In Chapter 4 a short introduction to system identification using prediction error
methods is given.

The identification, using prediction error methods, of the robot arm from real data
is shown in Chapter 5, both for physical models and for black-box models. The off-
line identification is utilized in recursive identification and in diagnosis (Chapters 6
and 7) to estimate nominal parameter values.

A recursive counterpart of the identification is given in Chapter 6.

1.2 Contributions 3

Diagnosis of the robot is studied in Chapter 7. Three chosen faults, that can be
explained by parameter changes, are studied using the algorithms and models from
the previous chapters.

In Chapter 8 LQG control for obtaining good disturbance rejection properties is
studied. The model used in the design of the regulator can, for example, be acquired
using off-line identification (Chapter 5).

Finally in Chapter 9 some conclusions and pointers to future work are discussed.

1.2 Contributions

The main contributions of the thesis are the following:

• The procedure to derive the user defined state space model for system identi-
fication using the graphical modeling environment MathModelica and Math-
ematica in Chapter 3.

• The off-line physical parameter identification applied to an industrial robot
in Chapter 5.

• The recursive counterpart of the physical parameter identification in Chap-
ter 6.

• The fault diagnosis procedure based on parameter faults in Chapter 7.

• The discussion about the stability and disturbance rejection of a robot arm
controller when only the motor position is measured in Chapter 8.

Parts of the results in this thesis have been previously presented at different con-
ferences:

Östring, M., Gunnarsson, S., and Norrlöf, M. (2001b). Closed loop identifi-
cation of the physical parameters of an industrial robot. In Proceedings of
the 32nd International Symposium on Robotics, ISR, Seoul, Korea.

Gunnarsson, S. and Östring, M. (2001). On regulator stability in control of
flexible mechanical systems. In Proceedings of the 32nd International Sym-
posium on Robotics, ISR, Seoul, Korea.

To appear at conferences:

Norrlöf, M., Tjärnström, F., Östring, M., and Aberger, M. (2002). Modeling
and identification of a mechanical industrial manipulator. In Proceedings. of
the 15th IFAC Congress, Barcelona, Spain

4 Introduction

Östring, M., Tjärnström, F., and Norrlöf, M. (2002b). Modeling of indus-
trial robot for identification, monitoring, and control. In Proceedings of the
International Symposium on Advanced Control of Industrial Processes, Ku-
mamoto, Japan

Östring, M. and Gunnarsson, S. (2002). Recursive identification of physical
parameters in a flexible robot arm. In Proceedings of the 4th Asian Control
Conference, ASCC, Singapore, Singapore

An extension to the work in Chapter 5 will be published as a journal paper:

Östring, M., Gunnarsson, S., and Norrlöf, M. (2002a). Identification of an in-
dustrial robot during one axis movements. Accepted for publication in Control
Engineering Practice

2
Robotics

What is a robot? One way to answer that question is to describe what robots are
used for. They are utilized for automation in a way that humans have specified.
They are built to serve people. This picture of the robot as a nice machine serving
humans is, however, not shared by everyone. There are several examples of evil
robots in literature and movies, like the T800 and the improved T1000 in the
Terminator movies. To make robots behave more nicely the writer Isaac Asimov
postulated “The three laws of robotics” that the robot should obey (Asimov, 1950).

1. A robot may not injure a human being or, through inaction, allow a human
being come to harm.

2. A robot must obey orders given it by human beings except where such orders
would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Law.

There is no general definition of what a robot is, but there exist typical character-
istic features for robots. They should be flexible and programmable in contrast to
automated machines which are made for certain tasks, for example, to screw a cap

5

6 Robotics

on a bottle. There is a wide range of robot types spanning from underwater ves-
sels controlled by computer programs to robots trying to mimic humans, so called
humanoids.

This thesis focuses on robots with a computer controlled mechanical arm, so called
industrial robots. Industrial robots are in general used in a wide variety of ap-
plications. These include arc welding, spot welding, material handling, gluing,
grinding, polishing, painting, and much more. The broad spectrum of applications
puts strong demands on the robots in, for example, programmability and perfor-
mance. One definition of this type of robots is made by the Robot Institute of
America, RIA (Spong and Vidyasagar, 1989).

RIA: “A robot is a reprogrammable multi functional manipulator designed to move
material, parts, tools, or specialized devices through variable programmed motions
for the performance of a variety of tasks.”

One of the origins of this type of robot is given by a patent from 1954 where
a 5-axes manipulator for flexible assembly was described, although is was never
implemented. Another milestone appeared in 1969 when General Motors ordered
26 robots from Unimation for spot welding (Bolmsjö, 1992). From this time on
robots have become a significant part of the manufacturing industry. Another
important step was when fully electrical robots were introduced by ASEA (now
ABB) in 1973, the IRB 6 (IRB stands for Industrial RoBot). This resulted in
more accurate control which made it possible to use robots in many new areas, for
example, arc welding.

2.1 ABB industrial robot family

In the experiments in this thesis a robot from ABB is used. We will therefore look
at the family of robots manufactured by ABB and what parts they contain. In
this work the manipulator ABB IRB 1400 is used. To control the manipulator a
controller, version S4C, is used (ABB Flexible Automation, 1997a). Apart form
the hardware there is also a lot of software involved.

The software in the controller is only a small part of the software used when
manufacturing with robots. ABB has a concept of “Industrial IT . . . the next
way of thinking” (Secher, 2001). It is claimed that this way of thinking reduces the
production time from supplier of the parts, manufacturing the goods to the delivery
to the customers. This is done by “real-time” information and delivery. Everyone
know everything at all time. With this new way of manufacturing it is claimed that
everyone will benefit from lower costs and faster delivery. The focus is on software

2.2 The robot system 7

allowing easy configuration and information exchange. For the robot community
this means, among other things, producing general controllers that operate in a
“plug and play” fashion.

The robot family of ABB includes small robots, like the IRB 140, which has a height
of 109 cm when the arm is aligned vertically. The family spans to the biggest IRB
7600 which has a capacity of lifting 500 kg, and has an installed motor power of
87 kW. The IRB 1400 used in this work is one of the smaller robots in the ABB
robot family.

(a) IRB 140 (b) IRB 7600

Figure 2.1 The smallest and the biggest manipulators from ABB, IRB 140

and IRB 7600.

2.2 The robot system

The robot system consists of a controller cabinet, a teach pendant and the ma-
nipulator. In the cabinet there are driver units for the motors and computers for
the control, see Figure 2.2 for a picture of the controller, S4C. The cabinet also
contains connections to the environment, like I/O ports and a network interface.
The teach pendant is used when programming or manually moving the robot. A

8 Robotics

Figure 2.2 The controller, S4C.

Figure 2.3 The teach pendant used for programming or manually moving

the robot.

picture of the teach pendant can be seen in Figure 2.3. The manipulator IRB 1400
is the mechanical arm carrying out the desired tasks. It is shown in Figure 2.4. In
addition, an industrial robot application comprises conveyor belts and fences built
up to support the robot, and make it safe. In this work we will only study the core
of the robot system. We will therefore look at the controller and manipulator more
closely in the following sections.

2.3 The manipulator, IRB 1400

The manipulator has six degrees of freedom. The structure and the joints can be
seen in Figure 2.4. The size of the manipulator is given by Figure 2.5. The motors

2.3 The manipulator, IRB 1400 9

Figure 2.4 The manipulator IRB 1400.

of joint one, two and three are placed at the bottom of the manipulator. This is
possible because the movement of joint three is controlled by a beam translating
the movement at the bottom up to axis three. The motors of joint four, five and
six are placed on the back of the upper arm, see Figure 2.4. The motor torque is
transmitted via a transmission in the upper arm. The motors are placed in this
way to get as much inertia as possible near the center of the robot. Therefore it
is possible to have smaller motors compared to if the motors were placed at the
actual joints. One needs less torque to give the same acceleration, and one can also
make the structure lighter. There are also balancing springs parallel to axis two.
These springs are used to balance the robot and decrease the load on the motor
for joint two.

The manipulator is also equipped with brakes. The brakes are used when the robot
is not running to prevent the robot from falling to the ground. They are also used
for emergency stop.

10 Robotics

balancing
springs

Figure 2.5 The IRB 1400 manipulator.

2.4 The controller, S4C

The main parts of the controller are the cabinet with the contained hardware and
the teach pendant. In the cabinet the main processor that runs the most part of the
software is a Motorola 68060 processor. For the low level control, a DSP (Digital
Signal Processor) from Texas Instrument is used. The processors are placed at
different boards. There are also other types of boards that can be inserted to
increase the functionality. The system used in this work has a memory board with
16Mb of memory, and an optional board for Ethernet communication. Inside the
cabinet there is also a possibility to connect digital or analog I/O for controlling
tasks in the surroundings. The control system is also prepared for communication
with, for example, a PLC (Programmable Logic Controller) through standard bus
interface.

The cabinet also contains drive units for the motors. The standard configuration
includes drive units for four to six motors depending on the number of degrees of
freedom (DOF) of the robot. Degrees Of Freedom is the number of independent
motions an object can perform in relation to a coordinate system. In our case this
means six. There is also a possibility to connect up to twelve motors controlled

2.5 The controller software 11

by one cabinet. This is, for example, useful for controlling simpler robots holding
the workpiece as the case in many arc welding applications where there is a 2-DOF
robot for moving and turning the object.

A disk drive is also a part of the cabinet. It can be used to load or store programs
from diskettes.

As said previously the controller, S4C, also includes a teach pendant shown in
Figure 2.3. On the teach pendant there is a 3-DOF joystick. It can be used
in several modes. In one mode it is possible to position the tool in a Cartesian
coordinate system corresponding to the base frame. The base frame is a Cartesian
coordinate system fixed to the ground. In another mode the tool can be reoriented.
It is also possible to move individual axes of the robot and external axes.

The teach pendant also has a display and a keyboard. They can be used to program
the robot in conjunction with moving the robot. The display also shows what the
robot is doing, and displays error messages. It can also be used as user interface
by an application. For example, it can display a custom made menu where the
operator can choose what the robot should do next.

2.5 The controller software

There are a lot of different softwares involved when programming and running
the robot. First of all the control system needs to be booted and the programs
loaded. This is done using floppy disks or Ethernet. Ethernet is used because of
the connection with MATLABTM and the existing test environment which demands
it. When booting the system, the system first connects to a BOOT-server, then
files are downloaded via a FTP-server. For further communication and transfer of
files an NFS-server is used. Network File System (NFS) is used for sharing files
across a network, see (IETF Secretariat, 2001) for more information.

The programming language for the commercial system is called RAPIDTM (ABB
Flexible Automation, 1997b; Nilsson, 1996). This is used for controlling the robot
using simple instructions like:

Example 2.1 Simple RAPIDTM example

A RAPIDTM instruction can look like

moveL p2,v100,fine,tool0

which moves the robot from the current position and orientation of the tool,
with the speed v100 to the point and orientation p2. The point and orientation

12 Robotics

p2 can be set with the use of the teach pendant. Just move to the position and
orient the tool in the desired way with the joystick on the teach pendant.

In Example 2.1 a linear path in Cartesian coordinates is specified. The movements
in Cartesian coordinates are converted to movements around each joint. This must
be done in consideration with limitations such as acceleration constraints.

In RAPIDTM it is also possible to do more complex instructions, for example, loops,
control structures, write to the display of the teach pendant or read input from the
teach pendant etc..

Another programming language is used in the test environment, which has test-
ing and evaluation functionally built in. This language looks very much like the
RAPIDTM language, but only the core components for the motion control is in-
cluded to make it easy to build. For example, components having to do with the
teach pendant is excluded. On the other hand it is more flexible and easier to
extend. These features are utilized together with MATLABTM (Matlab, 2001) in
the experiments in Chapters 5 and 6.

MATLABTM is used on a terminal which communicates through Ethernet with the
controller, see Figure 2.6. With the use of the test language we can log signals

Figure 2.6 The manipulator connected to the controller which is connected

to the terminal (PC) via Ethernet.

using the “Data-logger”. We can also affect signals with the “Data-input” module
for doing ILC, see Norrlöf (2000), or system identification as in this thesis.

The interface between MATLABTM and the controller is mainly built by M. Norrlöf
(Norrlöf, 1998). It makes it possible to control and affect signals from MATLABTM.
The synchronization between MATLABTM and the controller is made with sema-
phores. These semaphores are actual files on an NFS-server where both the robot

2.6 The control system 13

and the terminal PC read and write. It is also via this NFS-server the logged data
and the applied signals are transfered.

2.6 The control system

Here a typical control structure for controlling robots similar to what is presented
in Spong and Vidyasagar (1989) is given. More detailed information about the
control blocks can be found in Spong and Vidyasagar (1989). A schematic view of
the system is shown by Figure 2.7. It contains the two blocks Ff and F represent-

-
++

r(t)
F

Ff

y(t)

Figure 2.7 An example of a robot controlled by feedforward and feedback

controllers.

ing the actual controller, and the third block is the robot. The feedforward part
of the controller, Ff , is used for most of the control of the system. It is feeding
forward a computed torque to the motors of the robot as well as doing decoupling
and linearization of the system. There is a high demand on accurate models of
the system to get a good feedforward part in the controller. Since there are al-
ways disturbances and modeling errors the control system has a feedback part, F .
The input to the system is the motor reference which is calculated from the arm
reference.

14 Robotics

3
Physical modeling

The most important factors in manufacturing are quality, cost and productivity.
When robots are used to meet these demands it is important to have good models
of the robots in the controllers for fast and accurate control. To reduce the cost, the
robots are built to be lighter, and this results in weaker structures. It is therefore
a need for flexible robot models instead of rigid models to keep the same quality
and performance of the robot.

Here direct identification of physical parameters of flexible robots are particularly
interesting. A flexible robot arm can be described by a partial differential equation.
However it is found that a linear model gives good results, see, for example, Spong
and Vidyasagar (1989). The focus is therefore on linear approximations of the
flexible robot arm.

This chapter begins with a brief introduction to modeling using Lagrangians. Then
the models of a two-mass approximation and a three-mass approximation of a single
link manipulator are derived, and state space equations are presented. The use of
modeling tools with focus on Mathematica and Modelica will also be addressed.

15

16 Physical modeling

3.1 Modeling with Lagrangians

There are two common ways of deriving a dynamic model of a robot. One is with
the use of the so called Euler-Lagrange equations, and the other is the Newton-
Euler formulation. The Euler-Lagrange equations will be discussed in this section.
The material in this section is partly collected from Spong and Vidyasagar (1989);
Norrlöf (1999).

The Euler-Lagrange equations are based on differential equations subject to holo-
nomic constraints, i.e. constraints that equal zero. This can be, for example, two
masses connected by a bar. If the position of the two particles are p1 and p2

respectively, the constraint becomes

|p1 − p2| − l = 0 (3.1)

where l is the length of the bar. More formally let r1 . . . rk be coordinates. Then
a constraint is called holonomic if it is in the form

fi(r1, . . . , rk) = 0 i = 1, . . . , j (3.2)

A system subject to j holonomic constraints have in general j fewer degrees of
freedom than the unconstrained system.

It is often possible to give the coordinates of the system in another set of coordi-
nates called generalized coordinates (ϕj), which are independent. These generalized
coordinates are then used in the Euler-Lagrange equation

∂

∂t

∂L

∂ϕ̇j
− ∂L

∂ϕj
= τj (3.3)

where L = K − V is called the Lagrangian, where K is the kinetic energy, and V

is the potential energy.

Example 3.1 Modeling a stiff robot arm with gear box

u, ϕm

ϕa

Jm

Ja

fm

r

The robot arm is affected by a torque u. The arm and gear box are stiff (no
flexibilities). The movement is perpendicular to the gravitation, and therefore

3.2 Modeling the movement around axis one 17

the potential energy is always zero. The Lagrangian L becomes

K =
1
2
Jmϕ̇

2
m +

1
2
Jaϕ̇

2
a (3.4)

V = 0 (3.5)

L = K − V (3.6)

The Euler-Lagrange equation (3.3) gives (using r · ϕm = ϕa)

(Jm + r2Ja)ϕ̈m − 0 = τ (3.7)

where τ = u− fmϕ̇m comes from the input torque, u, and the torque from the
friction fmϕ̇m. The differential equation for the system can thus be written

(Jm + r2Ja)ϕ̈m + fmϕ̇m = u (3.8)

In general the resulting model can often be written as

D(ϕ)ϕ̈+ C(ϕ, ϕ̇)ϕ̇+ g(ϕ) = τ (3.9)

where D(ϕ) is the inertia matrix, τ is the motor torque, g(ϕ) represents the grav-
ity, and C(ϕ, ϕ̇)ϕ̇ represents the coriolis and centrifugal forces. More information
about how to calculate the inertia matrix can, for example, be found in Spong and
Vidyasagar (1989). The equations for a model of the IRB 1400 used in this thesis
can be found in Norrlöf (1999). The models presented in this chapter are simple,
and the Euler-Lagrange notation is not necessary for the derivation.

3.2 Modeling the movement around axis one

The work is restricted to movement around axis one, see Figure 2.4. The model
explains how the electrical motor torque affects the angle of the arm. The derivation
of the models are based on the following assumptions: The fast controllers of the
electrical motors are neglected, and the torque reference to the motors is viewed
as the actual torque applied to the system. It is also assumed that only viscous
friction exists. The backlash in the gear box is assumed to be neglectable, and the
spring is assumed to have linear stiffness.

The robot arm can be modeled with different levels of approximation. A first
approximation can be to assume that the robot arm is a rigid structure. A rigid
model is investigated in Section 3.2.1. In robots having gear boxes this is a rough
approximation. Modeling the gear box as a spring coupling two masses gives a
more accurate model, see Section 3.2.2. If the robot is moving fast the robot arm

18 Physical modeling

cannot be assumed to be stiff. This makes it reasonable to assume a three-mass
model. In Section 3.2.3 the model has one more mass and spring in addition to the
two-mass flexible model. This makes it a three-mass flexible model. The notations
regarding the physical modeling of the robot arm can be seen in Table 3.1.

Symbol Explanation

ϕm motor angle
ϕg, ϕa, ϕp arm angles
fm friction coefficient of the motor
kg, ka, kp spring constants
dg, da, dp damping coefficients in the springs
Jm moment of inertia of the motor
Jg, Ja, Jp moments of inertia of the arm
τ motor torque
r gear box ratio (1

118 for axis one of IRB 1400)

Table 3.1 Notations.

3.2.1 Rigid model

This model, which will be denoted rigid model, has two masses, one represents
the motor and the other the arm. They have a stiff gear box connection which
makes it possible to see them as only one mass. Even though this model can be
expressed with one moment of inertia we use two (Jm and Ja). This makes it
easier to compare with models containing flexibilities. Often Jm is given by prior
knowledge. Then it is necessary to see how the two masses are connected via the
gear box. The viscous friction at the motor is denoted fm. This model can be seen
in Figure 3.1. The equation of the rigid model is (see Example 3.1)

(Jm + r2Ja)ϕ̈m + fmϕ̇m = τ (3.10)

τ, ϕm

ϕa

Jm

Ja

fm

r

Figure 3.1 Rigid model of the robot arm.

The inertia of the arm is multiplied, due to the gears, with the square of the gear
ratio. The ratio of the gear box for the robot used in this thesis is r ≈ 1/118.
Sometimes this modified arm inertia is used in the robot community instead of Ja,
that is J̃a = r2Ja.

3.2 Modeling the movement around axis one 19

3.2.2 Two-mass flexible model

τ, ϕm

ϕa

Jm

Ja

fm

ka, da

r

Figure 3.2 Two-mass flexible model of the robot arm.

The model is illustrated in Figure 3.2, using the same notation as in the rigid
model with the addition of the spring constant ka, and the damping coefficient of
the spring da. The equations for the two-mass flexible model are

Jmϕ̈m + fmϕ̇m + r · da(rϕ̇m − ϕ̇a) + r · ka(rϕm − ϕa) = τ (3.11)

Jaϕ̈a − da(rϕ̇m − ϕ̇a) − ka(rϕm − ϕa) = 0 (3.12)

These equations can be transformed into state space form. As will be pointed out
in Section 5.2 it will turn out practical to use y = ϕ̇m as output signal. This
also means that three state variables can be used instead of four, which would be
the case if ϕm was used as output. The four state model is used for control in
Chapter 8. With ϕ̇m as output and τ as input (u) the model can be written in
state space form as

x(t) =

rϕm(t) − ϕa(t)

ϕ̇m(t)
ϕ̇a(t)

 (3.13a)

ẋ(t) = Ax(t) +Bu(t) (3.13b)

y(t) = Cx(t) (3.13c)

A =

0 r −1
− r·ka

Jm
− fm+r2da

Jm

r·da

Jm
ka

Ja

r·da

Ja
− da

Ja

 (3.13d)

B =

 0

1
Jm

0

 C =

(
0 1 0

)
(3.13e)

Using Laplace transformation and L{ϕm(t)} = Φm(s) the relation between torque
and motor velocity can be written as

sΦm(s) = Gτmv
(s)τ(s)

Gτmv
(s) = Jas2+das+ka

s3JaJm+s2(Jafm+da(Jm+r2Ja))+s(ka(Jm+r2Ja)+dafm)+kafm
(3.14)

20 Physical modeling

If it is assumed that the effect of the damping coefficient, da, is negligible the
transfer function becomes

Gτmv
(s) ≈ Jas

2 + ka

s3JaJm + s2Jafm + s · ka(Jm + r2Ja) + kafm
(3.15)

We can also get a transfer function from Laplace transforming (3.12). With
L{ϕa(t)} = Φa(s), the relationship from motor angle to arm angle is

Φa(s) =
(sda + ka)r

Jas2 + das+ ka
Φm(s) = Ga(s)Φm(s) (3.16)

Note that the poles of this transfer function appears as zeros of the transfer function
between the torque and motor velocity in (3.14). The Laplace transformation of
(3.11) gives

Φm(s) =
1

s2Jm + s(r2da + fm) + kar2
(r(sda + ka)Φa(s) + τ(s)) (3.17)

= Gm(s)(G1(s)Φa(s) + τ(s))

With Ga from (3.16) and Gm and G1 from (3.17) we can build the block diagram
in Figure 3.3.

τ

G1

Gm Ga

ϕm

ϕa

Figure 3.3 Block diagram of the two-mass flexible model.

3.2.3 Three-mass flexible model

The model is illustrated in Figure 3.4. Denote the mass after the gear box (the
middle mass) with subscript g. The equations are

Jmϕ̈m + fmϕ̇m + r · dg(rϕ̇m − ϕ̇g) + r · kg(rϕm − ϕg) = τ

Jgϕ̈g − dg(rϕ̇m − ϕ̇g) − kg(rϕm − ϕg) + da(ϕ̇g − ϕ̇a) + ka(ϕg − ϕa) = 0

Jaϕ̈a − da(ϕ̇g − ϕ̇a) − ka(ϕg − ϕa) = 0

(3.18)

3.3 Mathematical and modeling tools 21

τ, ϕm

ϕaϕg

Jm

Jg Ja

fm

kg, dg ka, da

r

Figure 3.4 Three-mass flexible model of the robot arm.

In state space notation (3.18) gives

x(t) =

rϕm(t) − ϕg(t)
ϕg(t) − ϕa(t)

ϕ̇m(t)
ϕ̇g(t)
ϕ̇a(t)

 (3.19a)

ẋ(t) = Ax(t) +Bu(t) (3.19b)

y(t) = Cx(t) (3.19c)

A =

0 0 r −1 0
0 0 0 1 −1

− r·kg

Jm
0 − r2dg+fm

Jm

r·dg

Jm
0

kg

Jg
−ka

Jg

rdg

Jg
−dg+da

Jg

da

Jg

0 ka

Ja
0 da

Ja
− da

Ja

(3.19d)

B =
(
0 0 1

Jm
0 0

)T

(3.19e)

C =
(
0 0 1 0 0

)
(3.19f)

3.3 Mathematical and modeling tools

The more complex the model is the bigger the need is for mathematical and model-
ing tools. In Chapter 5 MATLABTM and the System Identification Toolbox (SITB)
are used for identifying parameters of the models. In the modeling work the lan-
guage Modelica can be used.

Modelica is a standardized modeling language (Otter and Elmqvist, 2001; Tiller,
2001), but it does not include simulation or analysis capabilities. For that pur-
pose MathModelica and Dymola have been built, see Jirstrand (2000) and Dymola

22 Physical modeling

(2002) respectively. MathModelica is an add-on to Mathematica (Wolfram, 1999),
and can therefore use the vast capabilities of Mathematica in analysis and manip-
ulation. MathModelica has a graphical editor, which is an extension to Microsoft
software Visio for diagram design. In the graphical editor it is possible to choose
components from the standard libraries, and then connect them. One can also en-
ter parameter values for different components. MathModelica has also simulation
capabilities. It uses the Dymola engine to simulate the models. The graphical
representation of the models can be converted to textual models in a Mathemat-
ica notebook. The notebook can be used for documenting and storing but also
for model analysis, transfer function computations, etc. More information about
modeling robot arms using MathModelica can be found in Östring et al. (2002b);
Norrlöf et al. (2002).

3.3.1 Physical modeling using MathModelica

As said in Section 3.2, the robot arm can be approximated with several coupled
masses. The more masses the more complex the model becomes. Even a three-
mass model is fairly large, see (3.19). It is therefore useful to have a tool helping
with the modeling.

Figure 3.5 The Modelica model of three- and four-mass models. The ex-

tension from the three-mass model to the four-mass model is

shown as a dashed connection.

In Figure 3.5 the MathModelica implementation of a three-mass and a four-mass
model is shown. This section describes the generation of the equations for the three-
mass model from the graphical representation. The four-mass model is generated
in a similar way.

From the graphical description of the system in Figure 3.5 it is possible to make
a simulation using the MathModelica environment. This gives a simulated model

3.3 Mathematical and modeling tools 23

with 6 continuous states. By directly taking the states from the Modelica model,
using the MathModelica command GetFlatStateVariables[ThreeMM], a total of 9
states are found. The difference in the number of states comes from the fact that
the different sub-models are modeled individually, and when they are intercon-
nected it is possible to reduce the total number of states. In Mathematica, using
MathModelica, the equations describing the three-mass system can be found with
the command, GetFlatEquations[ThreeMM]. It results in 55 equations. Many are
trivial, e.g. saying that the angular velocity on one edge of a component equals the
angular velocity of the connecting edge of the next component.

The trivial equations can be removed in Mathematica using Eliminate[eqs,list]

where eqs are the equations coming from the Modelica description, and list is
a list of the variables that should be eliminated. The result from this step is
that the number of equations are reduced from 55 to 6. In the current version of
MathModelica the list of variables to eliminate must be found by hand.

After this step it is also necessary to find and replace some state variables that
can be expressed as functions of other state variables. For the three-mass model
this includes the spring damper components where the relative angular position
between the two connections becomes a state variable. These two variables are
replaced by ϕmr − ϕg and ϕg − ϕa, respectively.

The next step is to introduce the state variables, x1 to x5. For the three-mass
model described here they are given by

x1 = ϕmr − ϕg, x2 = ϕg − ϕa,

x3 = ϕ̇m, x4 = ϕ̇g, x5 = ϕ̇a

(3.20)

For Mathematica to be able to solve the equations it is also necessary to include
the time derivative of the state variables among the equations added to the 6
equations found above. This step is done with the command Join[list1,list2] in
Mathematica. Solve[eqs,{x1’,x2’,x3’,x4’,x5’}] finally gives the state equations
for the three-mass model in a closed form.

24 Physical modeling

The state space description of the three-mass model from Mathematica becomes

A =

0 0 r −1 0
0 0 0 1 −1

−kgr
Jm

0 − fm+dgr2

Jm

dgr
Jm

0
kg

Jg
−ka

Jg

dgr
Jg

−dg+da

Jg

da

Jg

0 ka

Ja
0 da

Ja
− da

Ja

B =
(
0 0 1

Jm
0 0

)T

(3.21)

C =
(
0 0 1 0 0

)
Output from this model is the angular velocity of the motor. If the angular position
is chosen as output the number of states becomes 6 since an extra integrator has
to be added. This is equal to the simulation model in MathModelica.

An advantage using MathModelica is that it is very easy to extend a model. Here
a four-mass model with the extra parallel mass according to Figure 3.5 is shown.
In addition to parameters and variables in of the three-mass model, the additional
parameters are Jp, kp, and dp, and the additional variable is ϕp. The state space
model from Mathematica becomes

A =

0 0 0 r −1 0 0
0 0 0 0 1 −1 0
0 0 0 0 1 0 −1

−kgr
Jm

0 0 − fm+dgr2

Jm

dgr
Jm

0 0
kg

Jg
−ka

Jg
− kp

Jg

dgr
Jg

−dg+da+dp

Jg

da

Jg

dp

Jg

0 ka

Ja
0 0 da

Ja
− da

Ja
0

0 0 kp

Jp
0 dp

Jp
0 − dp

Jp

B =
(
0 0 0 1

Jm
0 0 0

)T

(3.22)

C =
(
0 0 0 1 0 0 0

)
where the states are chosen as

x1 = ϕmr − ϕg, x2 = ϕg − ϕa,

x3 = ϕg − ϕp, x4 = ϕ̇m,

x5 = ϕ̇g, x6 = ϕ̇a, x7 = ϕ̇p

(3.23)

Here ϕ̇m is chosen as output. With the angular position as output, ϕm, the number
of states becomes 8.

The models in (3.21) and (3.22) are symbolically represented in Mathematica, and
this makes it very easy to reparameterize and scale the parameters. After this step

3.3 Mathematical and modeling tools 25

the model description is saved in a text file. This file can then be transformed,
using a simple MATLABTM program, into an m-file (MATLABTM executable file)
that can be used directly by the System Identification Toolbox (SITB). Using these
tools the modeling to identification process becomes straight-forward and almost
automatic.

26 Physical modeling

4
Identification methods

Estimating models from measured data is what identification is all about. This
chapter deals with basic principles regarding prediction error identification methods
in general and using data collected in closed loop in particular.

First some model structures are presented in Section 4.1. In Section 4.2 different
ways of computing the estimate are discussed. Non-parametric methods are dis-
cussed in Section 4.3, and aspects related to closed loop data are treated in Section
4.4. The material presented in this chapter is standard, and could be skipped by
readers who are familiar with the topics. The fundamentals of this subject are
presented in, for example, Ljung and Glad (1994). A more detailed treatment of
the topics can be found in Ljung (1999) and in Söderström and Stoica (1989).

4.1 Model structures

The kind of systems which are studied here are usually linear time-invariant. A
vector of parameters is adjusted so that the model mimics the real system. A set
of models specified by certain parameters is called a model class. It includes both

27

28 Identification methods

a model of the input-output dynamics as well as the noise.

Consider the following model structure given in discrete time and parameterized
by θ

y(t) = G(q, θ)u(t) +H(q, θ)e(t) (4.1)

The model G(q, θ) will be called the system model and H(q, θ) the noise model.
The shift operator is denoted by q, qu(t) = u(t + 1). The noise model is driven
by white noise e(t). To identify the parameters, θ, in this model structure, usually
some criterion function is minimized

θ̂ = arg min
θ
VN (θ, ZN) (4.2)

where ZN denotes the data set. The criterion function is often called loss function.
The criterion function (4.2) is usually formed using the one-step-ahead predictor
of y(t) given measurements up to time t− 1. Equation (4.1) can be rewritten as

H−1(q, θ)y(t) = H−1(q, θ)G(q, θ)u(t) + e(t) (4.3)

and
y(t) = H−1(q, θ)G(q, θ)u(t) + (1 −H−1(q, θ))y(t) + e(t) (4.4)

White noise cannot be predicted, and by removing e(t) the predictor can be written
as

ŷ(t, θ) = H−1(q, θ)G(q, θ)u(t) + (1 −H−1(q, θ))y(t) (4.5)

Note that the predictor only depends on old outputs y(t− 1), y(t− 2), · · · since H
is assumed to be monic. A common criterion function is

VN (θ) =
1
N

N∑
t=1

ε2(t, θ) =
1
N

N∑
t=1

(y(t) − ŷ(t, θ))2 (4.6)

In general it is possible to use any arbitrary positive, scalar-valued function l(ε) as
measure

VN (θ) =
1
N

N∑
t=1

l(ε(t, θ)) (4.7)

Other norms than l(ε) = ε2 might be useful, for example, for robustness against
outliers (Ljung, 1999).

In most cases it is convenient and sufficient to use some standard model structure.
In black-box modeling with prediction error methods the following general model
structure is often used

A(q)y(t) =
B(q)
F (q)

u(t) +
C(q)
D(q)

e(t) (4.8)

4.2 Computing the estimate 29

where
A(q) = 1 + a1q

−1 + · · · + ana
q−na (4.9)

and similarly for the C-, D-, and F -polynomials, while

B(q) = b1q
−1 + b2q

−2 + · · · + bnb
q−nb (4.10)

Some common model structures that are special cases of (4.8) are shown in Table
4.1.

Polynomials used Name of the model structure

B FIR (finite impulse response)
A, B ARX
A, B, C ARMAX
B, F OE (output error)
B, C, D, F BJ (Box-Jenkins)

Table 4.1 Some common model structures.

Another way of parameterizing the models is to use physical parameters. This
is natural when physical modeling is used. It is often called grey-box models.
Physical modeling will benefit from using a model structure that is adjusted to the
system. In some situations the value of the physical parameters is the objective,
for example, when monitoring a physical parameter. Compared to the black-box
models the physical models are almost always in continuous time. The parameters
in the physical models can appear quite complicated in the model. Sometimes it is
possible to make a variable change to get a less complex model to identify. These
kinds of models are frequently used in this thesis and are described in more detail
in Chapters 3, 5, and 6.

4.2 Computing the estimate

If an FIR or an ARX model is used together with a quadratic criterion function
the estimate is found using standard least squares method. As seen in Table 4.1
the ARX model structure has the following parameterization

G(q, θ) =
B(q, θ)
A(q, θ)

(4.11)

H(q, θ) =
1

A(q, θ)
(4.12)

30 Identification methods

The simplicity of this model structure is revealed by that the one-step-ahead pre-
dictor can be written as

ŷ(t, θ) = ϕ(t)θ (4.13)

ϕ(t) = [−y(t− 1) · · · − y(t− na) u(t− nk) · · ·u(t− nk − nb + 1)]T (4.14)

θ = [a1 · · · ana
b1 · · · bnb

] (4.15)

where nk is the number of delays in the system. This means that this model
structure gives a predictor which is linear in parameters, and the problem of finding
the solution to Equation (4.6) is solved using standard least squares

θ̂ = arg min
θ
VN (θ) =

[
1
N

N∑
t=1

ϕ(t)ϕ(t)T

]−1

1
N

N∑
t=1

ϕ(t)y(t) (4.16)

which is usually computed using QR-factorization (see again Ljung, 1999)

For other parameterizations and criteria a numerical search scheme is applied to
find the estimate. A standard choice is to use a search routine of the form

θ̂(i+1) = θ̂(i) − µ(i)[R(i)]−1V ′
N (θ̂(i), ZN) (4.17)

where V ′
N (θ̂(i), ZN) denotes the gradient of the criterion function VN (θ̂(i), ZN) with

respect to θ, R(i) is a matrix that modifies the search direction, and µ(i) is a scaling
factor which determines the step length.

The criterion function

VN (θ) =
1
N

N∑
t=1

1
2
ε2(t, θ) =

1
N

N∑
t=1

1
2
(y(t) − ŷ(t, θ))2 (4.18)

gives

V ′
N (θ) =

1
N

N∑
t=1

ψ(t, θ)ε(t, θ) (4.19)

where ψ(t, θ) denotes the negative gradient of the prediction error

ψT (t, θ) = − d

dθ
ε(t, θ) =

d

dθ
ŷ(t, θ) (4.20)

Common choices of R(i) are the Hessian V ′′(θ) or approximations of V ′′(θ). One
approximation of the Hessian is

R(i) =
1
N

N∑
t=1

ψ(t, θ)ψT (t, θ) (4.21)

which gives the Gauss-Newton method. To get rid of problems related to R(i) being
close to singular a term λI can be added. This way of doing regularization is called
the Levenberg-Marquardt procedure.

4.3 Non-parametric frequency domain identification 31

4.3 Non-parametric frequency domain identifica-
tion

Non-parametric means that the transfer function is estimated without using a cer-
tain model set described by a number of parameters. Instead the value of the
transfer function is estimated at each frequency. The estimate is very crude, and
in order to be useful it has to be smoothed to reduce the variance. A parameter
that determines the smoothing is chosen. The smoothing operation is achieved by
weighting nearby frequencies.

4.3.1 The empirical transfer function estimate (ETFE)

To begin with the Fourier transform of the input and the output is

UN (ω) =
1√
N

N∑
t=1

u(t)e−iωt (4.22)

YN (ω) =
1√
N

N∑
t=1

y(t)e−iωt (4.23)

The empirical transfer function estimate (ETFE) is defined as

ˆ̂
GN (eiω) =

YN (ω)
UN (ω)

(4.24)

The frequency response is estimated as the ratio of the output and the input Fourier
transforms. It is possible to show that the variance of the estimate does not ap-
proach zero as the number of data tends to infinity (see Ljung, 1999). A weighting
function is then used to smooth the estimate

ĜN (eiω) =
∑

k αk(ω) ˆ̂
GN (eiωk)∑

k αk(ω)
(4.25)

This smoothing operation reduces the variance but introduces a bias. The width
of this smoothing function is a parameter that is specified by the user.

4.3.2 Spectral estimation (SPA)

Using the Fourier transform above the periodogram ˆ̂ΦN (ω) is defined as

ˆ̂Φu(ω) = |UN (ω)|2 (4.26)

32 Identification methods

and similarly for ˆ̂Φyu(ω)

ˆ̂Φyu(ω) = YN (ω)ŪN (ω) (4.27)

To do the spectral estimation of the transfer function first the periodogram is
smoothed to get an estimate of the spectrum. Then the estimate of the transfer
function (SPA) is found using the smoothed estimates Φ̂u and Φ̂yu as

Ĝ(eiω) =
Φ̂yu(ω)
Φ̂u(ω)

(4.28)

4.3.3 Non-parametric estimation during closed loop

Let the data come from a closed loop system

y(t) = G0(q)u(t) + v(t)

u(t) = r(t) − Fy(q)y(t)
(4.29)

where Fy(q) denotes the controller, and G0(q) denotes the true system. When
doing empirical transfer function estimate or a spectral estimation in closed loop
there will be a bias in the estimates. The estimates of the spectra are affected by
the feedback. Let the spectral estimate be denoted Ĝ(eiω), then the estimate tends
to (Ljung, 1999)

Ĝ(eiω) =
G0(eiω)Φr(ω) − Fy(e−iω)Φv(ω)

Φr(ω) + |Fy(eiω)|2Φv(ω)
(4.30)

as the number of data goes to infinity and where Φr and Φv denotes the spectrum
of r(t) and v(t). If there is no noise in the system the estimate will tend to the
true system. On the other hand if the noise dominates over the reference signal
the estimate of the system will tend to the inverse of the controller.

4.4 Data collected in closed loop

In the problem studied in this thesis the data collection from the flexible robot is
performed during feedback. The main problem with closed loop identification is
that the data contain less information about the open loop system. This is because
the purpose of the feedback is to make the closed loop system less sensitive to
changes in the open loop system.

There are three main approaches to closed loop identification (Ljung, 1999); Indi-
rect approach, Joint input-output approach, and Direct approach.

4.4 Data collected in closed loop 33

Indirect approach. Initially the closed loop transfer function is identified. The
open loop transfer function is then calculated using the known controller, which
should be linear in order to be able to use a linear model when estimating the
closed loop transfer function. This is not possible in the application here because
the controller is not known.

Joint input-output approach. In this approach the controller is estimated.
This is difficult if the controller is nonlinear or time variant.

Direct approach. The open loop system is identified using measurements of the
input and output ignoring the feedback. It is straightforward to apply a basic
prediction error method if we bare in mind some properties from closed loop iden-
tification. We have chosen the direct approach here. Prediction error methods are
also well investigated, and there are several software packages available.

In the following sections different aspects of prediction error methods applied to
closed loop data are studied. Section 4.4.1 shows the requirements for consistency.
The bias contribution is studied in Section 4.4.2, and the variance of the estimates
is discussed in Section 4.4.3.

For the interested reader the subject of closed loop identification is more thoroughly
treated in, for example, Forssell (1999).

4.4.1 The system is included in the model class

First some notations and background will be introduced. To start with the differ-
ence between two models is studied. Is it possible to separate two different models
when applied to a certain input signal? Instead of looking at the system and noise
model it is possible to only consider the predictor filters, Wy(q) and Wu(q) in

ŷ(t, θ) = H−1(q, θ)G(q, θ)u(t) + (1 −H−1(q, θ))y(t)

= Wu(q, θ)u(t) +Wy(q, θ)y(t)
(4.31)

Let the two models be denoted by subscript 1 and 2, and study the difference
between them

Wu,1 −Wu,2 = ∆Wu (4.32)

Wy,1 −Wy,2 = ∆Wy (4.33)

A data set is informative enough (see Ljung, 1999) with respect to the model set if

Ē[∆Wuu(t) + ∆Wyy(t)]2 = 0 (4.34)

34 Identification methods

implies that Wu,1(eiω) ≡ Wu,2(eiω) and Wy,1(eiω) ≡ Wy,2(eiω) for almost all fre-
quencies. The symbol Ē is defined as

Ēf(t) = lim
N→∞

1
N

N∑
t=1

Ef(t) (4.35)

A signal is called persistently exciting if the spectrum of the signal is different from
zero for almost all frequencies.

In Ljung (1999) the following main result is presented: Prediction error methods
will consistently estimate the system, regardless if the data have been collected
under feedback or not if:

1. The data are informative.

2. The model set contains the true system.

Closed loop experiments are informative with respect to the model class of all
linear systems if and only if the reference signal is persistently exciting, that is the
spectrum should include energy for almost all frequencies. Except from having a
good data set we need a good model set. It is, in all real applications, impossible to
have a model set that contains the true system, but it is important that we are as
close as possible. Note that open loop data give unbiased estimates if OE-models
are used. This is not true for closed loop data.

We are now ready to take a closer look at the system subject to feedback. Let the
true system be written as

y(t) = G0(q)u(t) +H0(q)e(t) (4.36)

where G0 and H0 denote the true system. Let it be subject to feedback using a
linear controller Fy(q). The input and output signals are driven by the reference
signal r(t) and the white noise e(t)

y(t) = G0(q)S0(q)r(t) + S0(q)H0(q)e(t) (4.37)

u(t) = S0(q)r(t) − Fy(q)S0(q)H0(q)e(t) (4.38)

where
S0(q) =

1
1 + Fy(q)G0(q)

(4.39)

The condition (4.34) can be written

0 = Ē

∣∣∣∣∣[∆Wy ∆Wu]

[
y

u

]∣∣∣∣∣
2

= Ē

∣∣∣∣∣[∆Wy ∆Wu]

[
G0 S0

1 −FyS0

][
S0r

H0e

]∣∣∣∣∣
2

(4.40)

4.4 Data collected in closed loop 35

The determinant of the second matrix is −G0FyS0 −S0 = −1, thus it is invertible.
In the last matrixH0e(t) is persistently exciting. If S0r(t) is that too, the conclusion
is that ∆Wy = 0 and ∆Wu = 0. S0r(t) is persistently exciting if r(t) is. S0 can
only cancel a finite number of frequencies.

Let the model be of order m and included in the model class. Let r(t) only be
persistently exciting of some order k � m. It can typically consist of a large
number of sinusoids. Then S0(q) can only cancel a finite number of sinusoids. In
(4.37) it can be seen that G0 can be uniquely identified if the number of sinusoids
is large enough, because it is possible to uniquely identify a system if the input
consists of a number of sinusoids, if the number is greater than the order of the
system.

Hence the conclusion is that it is possible to use a reference signal consisting of
a sum of sinusoids for closed loop identification if the number of sinusoids is high
enough.

4.4.2 The system is not included in the model class

When the system is not included in the model class the model will be biased. The
bias will be discussed below, using the theory from Ljung (1999).

All the calculations in this section are carried out under the assumption that the
number of data tends to infinity. Let G0 and H0 denote the true system, and let
the model structure be given by

y(t) = G(q, θ)u(t) +H(q, θ)e(t)

Because of the closed loop the input spectrum Φu can be split into two parts
originating from the reference r and the noise e (variance λ0):

Φu(ω) = Φr
u(ω) + Φe

u(ω)

The bias in the parameter estimates can be seen in

[Ĝ, Ĥ] = arg min
θ

∫ π

−π

|G0(eiω) +B(eiω, θ)

−G(eiω, θ)|2 Φu(ω)
|H(eiω, θ)|2 dω + λ0

∫ π

−π

|H0(eiω) −H(eiω, θ)|2
|H(eiω, θ)|2

Φr
u(ω)

Φu(ω)
dω

(4.43)

where the bias term B is

|B(eiω, θ)|2 =
λ0

Φu(ω)
Φe

u(ω)
Φu(ω)

|H0(eiω) −H(eiω, θ)|2

The bias term B is small if

36 Identification methods

1. |H0(eiω) −H(eiω, θ)| is small

2. Φe
u(ω)/Φu(ω) is small

3. λ0/Φu(ω) is small

for all ω that are important for the model.

These conditions implies that is is preferable to have a good noise model, weak
feedback and low noise level. In the application in this thesis the two last ones
are not possible to affect directly. There is feedback, and there is also noise. Thus
it is preferable to make a good noise model to get an unbiased estimate of G0.
We should therefore have a flexible, preferably, independently parameterized noise
model. If we have an independently parameterized noise and system model the
second term in (4.43) does not affect the bias of Ĝ. This also suggests that the
best way to estimate a low order model is to first estimate a high order model
so that the true system is approximately included in the model set, and then to
perform model reduction (Tjärnström, 2002).

4.4.3 Variance of the estimated model

The results in this section are asymptotic in the number of data points N and
model order n. The variance of the calculated model is (see Ljung, 1999)

Cov Ĝ(eiω) =
n

N

Φv(ω)
Φr

u(ω)

where
Φv(ω) = |H0(eiω)|2Φe(ω)

It can be seen that the part of the input that originates from the feedback signal
has no influence on the variance of the estimate. The part of the feedback signal
that originates from the reference signal can be written

Φr
u(ω) = |S0(eiω)|2Φr(ω)

S0(eiω) =
1

1 + Fy(eiω)G0(eiω)
(4.47)

For those ω where S0(eiω) is small the estimate of the system gets a high variance.

5
Off-line identification

System identification is an established modeling tool in engineering, and numer-
ous successful applications have been reported. The theory is well developed for
linear time invariant systems, see, for example, Ljung (1999) or Söderström and
Stoica (1989), and there are powerful software tools available, like, for example, the
System Identification Toolbox for MATLABTM (Ljung, 2000). Industrial robots rep-
resent an interesting challenge for system identification methods, and an overview
of identification in robotics can be found in Kozlowski (1989).

One application area for system identification within robotics is identification of
the parameters in the kinematic description of the robot, while a second area deals
with the problem of identifying the parameters in the dynamical model of the robot
and is often divided into rigid body and flexible body dynamics. A third area is to
determine the parameters on the joint level including friction, motor characteristics,
etc. Recent results from the last two areas can be found in, for example, Wang
et al. (1996), Grotjahn et al. (2001) and Gautier and Poignet (2001). In these
papers it is assumed that the robot is rigid.

In the work to be presented here the goal is to study identification of robots includ-
ing flexibilities, and also to identify the stiffnesses and dampings for the mechan-

37

38 Off-line identification

ical flexibilities. This topic has been addressed in, for example, Dépincé (1998),
ElMaraghy et al. (1994), Nissing and Polzer (2000), Albu-Schäffer and Hirzinger
(2001), Berglund and Hovland (2000), Hovland et al. (2001), Johansson et al.
(2000), Pham et al. (2001) and Östring et al. (2001b). The problem considered
in Berglund and Hovland (2000) and Hovland et al. (2001) is closely related to
the work reported below, but the proposed solution is based of frequency domain
identification in combination with the solution of an eigenvalue problem. In Jo-
hansson et al. (2000) time domain identification methods of black-box type are
applied, which means that no physical parameters are obtained directly from the
identification. The work presented in Albu-Schäffer and Hirzinger (2001) deals with
identification of a lightweight robot with seven degrees of freedom, and the results
involve identification of joint elasticity and damping parameters. These are found
by applying external excitation on one axis at a time. Also in Pham et al. (2001)
the identification experiments are carried out by moving one axis at a time. The
sought physical parameters are obtained as nonlinear functions of the estimates
obtained using a model structure that is linear in the parameters.

In the work presented in this chapter, which is an extension to the work reported
in Östring et al. (2001b), the aim is to apply a method where inertial parameters
as well as parameters describing the flexibility can be identified directly in the time
domain. This is done by utilizing a user-defined model structure in the System
Identification Toolbox.

The presented work is carried out under some simplifying conditions. First, only
movements around axis one are considered. Second, all experiments are carried
out with the other axes in one position. Third, only a linear model structure is
considered, which means that, for example, only viscous friction is included in the
model. It should be noted that although the model is linear for fixed parameters,
it is not linear in the parameters. The simplifying assumptions can be motivated in
different ways. First, the presented work can be seen as a feasibility study carried
out in order to see whether this is a possible approach or not, and to try to reach
as far as possible with linear models. In a number of the references cited above the
identification experiments are carried out on one axis at a time, which indicates
that this assumption is rather common. The importance of the restriction that the
identification is carried out in only one operating point is related to the intended
use of the model. There are at least two possible uses of the identified model. The
first is to use the model for control design on joint level, and the second is to use
the model for diagnosis purposes. In both cases two ways to extend the approach
can be considered. One way is to identify linear time-invariant models in a number
of operating points, and use gain scheduling in the control or diagnosis functions.
A second alternative is to move to a nonlinear model where nonlinearity due to

5.1 Data collection and pre-processing 39

variations in operating point is captured. These extensions are left for future work.

A detailed description of the robot used in the experiments can be found in Chapter
2. The robot is a commercial robot, and this means, among other things, that is not
possible to alter the controller in any major way or even find out exactly how the
controller works. The robot system is depicted in Figure 5.1. It is only possible to
directly affect the reference signal, ϕref , in this setup, not the torque, u, generated
by the electrical motor.

ϕref

Controller Robot
u ϕm

Figure 5.1 Block diagram of the control system.

We measure the reference signal, the torque reference from the controller, and the
angle of the robot arm with a sampling interval of 0.5 msec. An electrical motor
and a gear box drive the movement of the joint. The motor itself contains an inner
fast controller loop for control of the motor torque. The goal is to identify a model
of the robot by measuring the input signal (the torque reference) and the output
signal (measured motor angle).

This chapter is organized as follows: Before the identification experiments in Sec-
tion 5.2 and 5.3, the data collection is described in Section 5.1. In Section 5.4
another data set is used to look at the quality of the models, and in Section 5.5 a
summary is given.

5.1 Data collection and pre-processing

The initial robot pose is with all motors in sync. This means that the robot looks
like an L turned upside down, see Figure 5.2. As said previously, only the motor
at the base of the robot is moving. The data are acquired with a special interface
between the robot control system, S4C and MATLABTM, (see Norrlöf, 2000).

The system is under feedback. This means that it is straight forward to excite
the system by applying a reference signal. It is especially important that this
signal is exciting enough since the feedback may reduce the signal energy at certain
frequencies, see (4.47). The reference signal, that is chosen, is a chirp signal covering
0.5-30Hz with constant amplitude, see Dépincé (1998) for another example using a

40 Off-line identification

Figure 5.2 The manipulator IRB 1400.

chirp. The signal spans from high frequencies to low frequencies. This signal is used
because it is easy to see which amplitudes at which frequencies that are excited. It
is possible to make a rough amplitude Bode plot by just looking at the signals. It
is also easy to see how the robot and the controller alter the reference signal to the
torque reference, which is used as the input signal to the robot. An alternative way
of choosing the reference signal is to use optimization of some excitation measure.
In, for example, Swevers et al. (1997), a finite sum of sinusoids is proposed as input
signal.

The sample rate is chosen to be the same as the sample rate of the controller. Then,
before the identification, the data are re-sampled to the desired sample rate. We
know the approximate frequencies of the peaks in the Bode plot, and this gives us
an approximate sample rate. Then we test empirically to get as good sample rate
as possible. This results in a down-sampling with a factor of ten from the original
sample rate of 2000 Hz before the identification. The desired sample rate is related
to the bandwidth of the system. A rule of thumb is to choose the sample rate as
10 times the bandwidth of interest for the modeling (Ljung and Glad, 1994, page
268). As a final step in the pre-processing the sample means are removed.

5.2 Black-box models

Section 4.4 indicates that a black-box model that has a flexible and independently
parameterized noise model is preferred. In this section we have therefore chosen
Box-Jenkins models as the model structure to work with. Box-Jenkins models can

5.2 Black-box models 41

be represented, see Chapter 4, by

y(t) =
B(q)
F (q)

u(t) +
C(q)
D(q)

e(t)

where B, C, D and F are parameterized polynomials. u(t) is the input, and e(t)
is the noise. We can choose the orders of the polynomials and the time delay
of the input signal. These are often denoted as five numbers in a vector, N =
[nb nc nd nf nk]. The first four numbers represent the orders of the polynomials
of the system and the noise model, and the last number represents the time delay.

The following algorithm is used: First create the angular velocity from the angle by
differentiation. Since the measurement noise is fairly small a reasonable estimate
of the motor velocity is obtained. This is practical because of the physical nature
of the robot includes an integrator, see the physical models in Chapter 3. Then
resample with a factor of n=10 (including the low-pass anti alias filter), and remove
the mean. Identify with Box-Jenkins N = [3 3 3 3 1] and N = [5 5 5 5 1]. This is
done in MATLABTM code using SITB, (see Ljung, 2000).

The Bode plots of the Box-Jenkins models are shown in Figure 5.3. The model
with N = [3 3 3 3 1] corresponds to a two-mass flexible model and is called bj3, that
is it has the same number of poles. The model with N = [5 5 5 5 1] corresponds to
a three-mass flexible model (see Section 3.2.3) and is called bj5. The additional
resonance peak of bj5 can be seen in Figure 5.3. A comparison is given in Table

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

A
m

pl
itu

de

10
1

10
2

10
3

−200

−100

0

100

P
ha

se
 (

de
gr

ee
s)

ωn1

ωn2

ωp1

ωp2

Figure 5.3 Bode plots of the Box-Jenkins models bj3 (black) and bj5

(grey). They are plotted with 99% confidence intervals. ωn1

and ωn2 denote the notches and ωp1 and ωp2 denote the peaks

in the Bode plot.

42 Off-line identification

5.1. The fit is calculated by simulation on the estimation data set. The value of
the fit becomes negative when the bj3 model and the entire data set is used in the
simulation. The fit is defined as

fit% = (1 −
∑

(y(t) − ŷ(t))2∑
(y(t) − ȳ)2

) ∗ 100 (5.2)

A negative fit means that the error is bigger than the output or that the model
is worse than guessing ŷ(t) = ȳ(t). The negative fit of bj3 is a result from that
the third order model cannot describe the high frequencies very well. Table 5.1
shows that the fit becomes better if the first 999 data points are not used, which
correspond to the high frequency part of the input signal.

loss fit 1000:2300 ωn1 ωp1 ωn2 ωp2

bj3 0.20 -12% 78.7% 107 x x x

bj5 0.11 78.4% 71.2% 107 156 185 232

Table 5.1 Fit and frequency comparison of two Box-Jenkins models. The

value of the loss function is denoted loss and the fit is simulated

fit on the estimation data set. 1000:2300 denotes the simulated

fit using the last 1301 data points of the data set, which corre-

sponds to the low frequency part of the data. The frequencies

ωi is defined in Figure 5.3

5.3 Physically parameterized models

This section describes experiences from identification of physical models. The
identification is carried out using SITB in MATLABTM, which uses prediction error
minimization and a search algorithm of the type (4.17). A two-mass flexible model
is identified in Section 5.3.1. In Section 5.3.2 a three-mass flexible model is identi-
fied. The domain of attraction regarding the initial parameter values is studied in
Section 5.3.3.

5.3.1 Two-mass flexible model

The models can be described by the following equations with x(t) as states, u(t)
as the input signal and e(t) as white noise

ẋ(t) = A(θ)x(t) +B(θ)u(t) +K(θ)e(t)

y(t) = C(θ)x(t) + e(t)
(5.3)

5.3 Physically parameterized models 43

A(θ), B(θ) and C(θ) are matrices parameterized by the physical parameters θ =
[Jm Ja fm k d] as described in (3.13). K is a column vector which can be included
if the noise should be modeled. If the noise is not modeled it will be denoted by
K = 0. The physical model and the noise model will always share poles if a noise
model is used, K 6= 0.

First we look at which physical parameters that are reasonable to estimate from
input/output data. To answer this question we examine how the Bode plot changes
when the different parameters in the physical model change. The state space model
with three states given in (3.13) is used. Figure 5.4 shows changes of ±20% in the
parameter values. The nominal values of the parameters can be seen in Table 5.2.

Jm Ja fm k d

9 · 10−4 12 0.1 1.5 · 105 70

Table 5.2 Nominal values of the parameters.

We have the following comments of the Bode plots in Figure 5.4:

1. fm only affects the low frequency region. Therefore it may be difficult to get
a good estimate of fm from the input signal described in Section 5.1. We
may need a dedicated experiment to estimate fm.

2. The variation of the damping coefficient, d, does not make any evident
changes of the Bode plot. Thus, d could be hard to estimate. We can distin-
guish a small change in the height of the peaks and depth of the notches.

3. k and Ja have similar but opposite effects on the Bode plot. However, the ra-
tio has a significant influence on the place of the notch. This is also illustrated
in (5.4).

The angular frequency of the notch in the Bode plot of the physically parameterized
model corresponds to the zero in (3.14). It can be calculated by

ωn1 = Im

{
− d

2Ja
±
√

(
d

2Ja
)2 − k

Ja

}
≈
√

k

Ja
= 112 rad/s (5.4)

It says that the stiffer the spring is the higher the frequency will be. The depth of
the notch is only dependent of d/(2Ja). The smaller this value is the deeper the
notch becomes.

44 Off-line identification

Frequency (rad/sec)

P
ha

se
 (

de
g)

; M
ag

ni
tu

de
 (

dB
)

+− 20% at parameter Jm

−10

0

10

20

10
1

10
2

−200

−150

−100

−50

0

50

Frequency (rad/sec)
P

ha
se

 (
de

g)
; M

ag
ni

tu
de

 (
dB

)

+− 20% at parameter Ja

−10

0

10

20

10
1

10
2

−200

−150

−100

−50

0

50

Frequency (rad/sec)

P
ha

se
 (

de
g)

; M
ag

ni
tu

de
 (

dB
)

+− 20% at parameter k

−10

0

10

20

10
1

10
2

−200

−150

−100

−50

0

50

Frequency (rad/sec)

P
ha

se
 (

de
g)

; M
ag

ni
tu

de
 (

dB
)

+− 20% at parameter d

−10

0

10

20

10
1

10
2

−200

−150

−100

−50

0

50

Frequency (rad/sec)

P
ha

se
 (

de
g)

; M
ag

ni
tu

de
 (

dB
)

+− 20% at parameter fm

−10

0

10

20

10
1

10
2

−200

−150

−100

−50

0

50

Figure 5.4 Changes of ±20% in parameter values.

5.3 Physically parameterized models 45

Two-mass flexible model identification

Four cases will be investigated corresponding to identification both with and with-
out damping coefficient, d and noise model, K. The identified models of the four
combinations are shown in Figure 5.5. Note that the notch moves to the left when

10
1

10
2

10
0

10
2

A
m

pl
itu

de

10
1

10
2

10
3

−500

−400

−300

−200

−100

0

100

P
ha

se
 (

de
gr

ee
s)

Figure 5.5 Bode plots of physically parameterized models. Solid: K = 0,
d = 0. Dotted: K = 0, d 6= 0. Dash dotted: K 6= 0, d = 0.
Dashed: All parameters free (K 6= 0, d 6= 0).

the noise model is included in the identification. Table 5.3 shows the frequencies
of the notch and the peak. The loss and the simulated fit on the estimation data
are also tabulated. The table shows that the loss is drastically decreased when a

specification loss fit 500: 2300 1000: 2300 ωn1 ωp1 n

p1 K = 0 d = 0 6.21 48.2% 63.7% 69.2% 114 155 4
p2 K = 0 d 6= 0 5.91 49.4% 64.8% 64.3% 115 157 5
p3 K 6= 0 d = 0 0.329 37.9% 53.3% 66.0% 103 1911 7
p4 K 6= 0 d 6= 0 0.327 38.2% 52.0% 67.4% 103 1971 8

Table 5.3 Comparison between four physically parameterized models. The

fit is simulated fit on the estimation data set. n is the number

of estimated parameters. The frequencies ωi is defined in Figure

5.3. 1 These peaks are barely discernible.

46 Off-line identification

noise model is included (K 6= 0), but the simulated fit becomes worse. The loss
is defined as the sum of the square of the residuals obtained when the output is
compared to the one-step-ahead prediction. Without noise model the prediction
is formed entirely using the input signal, i.e, as a simulation of the model. With
a model including a noise model the prediction is based on both previous outputs
and inputs. It is therefore natural that the loss is drastically decreased when the
noise model is included. An example can be that a model which has the predictor
equal to the previous output will give a small loss, but is useless for simulation.
It also can be seen how the poles are moved to be adjusted to the noise model.
A comparison of the physical parameters of the model can be seen in Table 5.4.
Note the big difference in Jm if the noise is modeled compared to not modeling the

Jm (10−4) Ja fm (10−2) k (105) d

p1 8.58 10.9 6.30 1.40 0
p2 9.05 11.4 7.55 1.50 -74.4
p3 2.54 8.6 8.26 0.92 0
p4 2.57 8.5 7.81 0.91 41.0

Table 5.4 Physical parameters of four different models. p1 with K = 0,
d = 0, p2 with K = 0, d 6= 0, p3 with K 6= 0, d = 0 and p4 with

all parameters free (K 6= 0, d 6= 0).

noise.

It is a difficult task to choose which one of these models that is the best. We have
chosen p2 because it has the best simulated fit. Its Bode plot, with confidence
intervals, can be seen in Figure 5.6. In Figure 5.7 the Bode plots of the black-box
models, bj3 and bj5, and the physically parameterized model, p2 are compared.

Some remarks about the identification of the two-mass flexible model:

• The estimates of the parameters are sensitive to different initial parameter
values. This is further studied in Section 5.3.3.

• Normalizing the parameters does not make any significant change to the
model, although this is recommended for good numerical properties.

• Two different parameterizations has been tried. One using the physical pa-
rameters and the other is defined in (5.5). Using the totally changed pa-
rameterization (5.5) improves the convergence area, that is the parameter
identification is less sensitive to initial values of the parameters. However,

5.3 Physically parameterized models 47

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

A
m

pl
itu

de

10
1

10
2

10
3

−500

−400

−300

−200

−100

0
P

ha
se

 (
de

gr
ee

s)

Figure 5.6 Bode plot of the physically parameterized model p2, where

K = 0, plotted with 99% confidence interval.

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

A
m

pl
itu

de

10
1

10
2

10
3

−500

−400

−300

−200

−100

0

100

P
ha

se
 (

de
gr

ee
s)

Figure 5.7 Bode plots of the black-box models bj3 (dotted), bj5 (dashed)

and the physically parameterized model p2 (solid).

any exhaustive evaluation has not been done. For the two-mass model a
totally changed parameterization is used:

Jm = 1/θ3
Ja = θ1/(θ2θ3)

fm = θ5/θ3 − r2θ1θ4/(θ2θ3)

k = θ1/θ3

d = θ1θ4/(θ2θ3)

(5.5)

48 Off-line identification

which gives an A-matrix where most of the parameters appear by themselves:

A =

 0 r −1
rθ1 θ5 rθ1θ4/θ2
θ2 rθ4 −θ4

 (5.6)

• Often the damping coefficient becomes negative. A possible explanation of
this is that the 3 state model tries to resemble the 5 state model (which is
a more accurate model class). Because of the two peaks in the five state
model the second peak becomes higher and narrower, and this corresponds
to a negative d. Another possible explanation is that there exist unmodeled
non-linearities that are best approximated with a negative d. Although a
negative d is not physical, as long as the friction fm is high enough the model
is stable and can be used for simulation. One can specify that the damper
should be positive but this will give a slightly worse model.

5.3.2 Three-mass flexible model

The models can be described by the following equations with x(t) as states, u(t)
as the input signal and e(t) as white noise

ẋ(t) = A(θ)x(t) +B(θ)u(t) +K(θ)e(t)

y(t) = C(θ)x(t) + e(t) (5.7)

A(θ), B(θ) and C(θ) are matrices parameterized by the physical parameters θ =
[Jm Jg Ja fm kg ka dg da] as described in (3.19). K is now a five by one matrix
which is included when the noise is modeled.

Four cases will be investigated; with and without damping coefficients, dg and da,
and with and without noise model, K. The Bode plots of the identified models of
the four combinations are shown in Figure 5.8. They are all very close to each other.
A comparison of the fits can be seen in Table 5.6, and in Table 5.5 the frequencies
of the notches and peaks are compared. In Table 5.7 the physical parameters are
shown.

The values in Table 5.6 show that the models give almost equal fit on the last part
of the data. This is because all the models describe the low frequency range fairly
well, but they differ if we look at the entire data set, where p6 has the best fit. It
is also good if as few parameters as possible are used, and thus p6 is decided to
be the “best” model. Its Bode plot, with confidence region, is depicted in Figure
5.9, and in Figure 5.10 it is compared with the black-box models. The Bode plot
of the physically parameterized model is close to the Bode plot of the black-box

5.3 Physically parameterized models 49

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

A
m

pl
itu

de

10
1

10
2

10
3

−500

−400

−300

−200

−100

0

100

P
ha

se
 (

de
gr

ee
s)

Figure 5.8 Bode plot of physically parameterized three-mass flexible mod-

els. Solid: K = 0, d = 0. Dotted K = 0. Dash dotted: d = 0.
Dashed: All parameters free.

ωn1 ωp1 ωn2 ωp2

p5 107.4 160 183 210

p6 107.3 157 183 209

p7 104.6 163 181 211

p8 105.0 157 184 224

Table 5.5 Frequency comparison between four physically parameterized

three-mass flexible models. The unit of the notches and peaks

is [rad/s].

model bj5. Both models have the same number of poles. One difference is that the
black-box model has a noise model, whereas the physically parameterized model
has not.

5.3.3 Sensitivity of the initial parameter values

It is important to investigate how sensitive the identification procedure is to vari-
ations in the initial parameter values. As a measure we look at how much it is
possible to vary the initial value of the parameters one at a time. First the initial
value is changed for one parameter, and the initial values of the other parameters
are set to the values from the original identification. Then all the parameters are
identified. As a criterion that the identification was successful the loss function is
compared to the loss function of the original identification. If the new loss function

50 Off-line identification

specification loss fit 1000:2300 n

p5 K = 0 d = 0 2.30 62.0% 74.5% 6

p6 K = 0 d 6= 0 1.56 73.4% 70.6% 8

p7 K 6= 0 d = 0 0.184 58.5% 75.7% 11

p8 K 6= 0 d 6= 0 0.153 70.9% 70.1% 13

Table 5.6 Comparison between four physically parameterized models. The

fit is simulated fit on the estimation data set. n is the number

of estimated parameters.

Jm (10−4) Jg Ja fm (10−2)

p5 4.37 10.1 1.62 4.62

p6 4.56 9.92 1.72 3.55

p7 3.34 9.51 1.36 4.63

p8 3.39 9.41 2.11 3.17

kg (105) ka (105) dg da

p5 1.50 0.419 0 0

p6 1.50 0.446 -62 20

p7 1.29 0.357 0 0

p8 1.46 0.506 -39 30

Table 5.7 Physical parameter comparison between four physically param-

eterized three-mass flexible models.

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

A
m

pl
itu

de

10
1

10
2

10
3

−500

−400

−300

−200

−100

0

P
ha

se
 (

de
gr

ee
s)

Figure 5.9 Bode plot of the physically parameterized three-mass flexible

model p6, where K = 0, plotted with 99% confidence interval.

5.3 Physically parameterized models 51

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

A
m

pl
itu

de

10
1

10
2

10
3

−500

−400

−300

−200

−100

0

100

P
ha

se
 (

de
gr

ee
s)

Figure 5.10 Bode plot of the black-box models bj3 (dotted) and bj5

(dashed). The physically parameterized three-mass flexible

model p6 (solid) is also shown.

is less than 5% above the original loss function the identification is successful. This
defines a region shown in Table 5.8, where the initial value of each parameter has
an upper and a lower limit, which are calculated using interval halving.

Jm Jg Ja fm

upper limit 12200% 253% 585% 10300%

lower limit 40% 68% 52% 32%

kg ka dg da

upper limit 319% 586% 254% 1770%

lower limit 76% 59% -1530% -211%

Table 5.8 Domain of attraction of initial values of the parameters, when

varying the initial value of one parameter at a time.

To investigate what happens when all initial parameters are changed at the same
time Monte-Carlo simulations (identifications) are made. The region is defined by
taking 20% of the upper limit and lower limit defined by Table 5.8. From this
region 1000 identification experiments were made with random initial parameter
values. 649 of these identifications were successful, and 351 got more than 5%
above the previous loss function. How to find good initial parameter values to the
identification algorithm is an ongoing research area see, for example, Xie and Ljung
(2002).

52 Off-line identification

5.4 Validation

To check the quality of the models another data set is used. This data set consists
of a large number of superimposed sinusoids spanning approximately the same
frequencies as the previously used input signal when doing the identification. This
frequency range is interesting when doing control for example. A simulated fit can
be seen in Figure 5.11. The values of the fit are 51.5% for bj5 and 37.8% for p6

300 350 400 450
−5

−4

−3

−2

−1

0

1

2

3

4

Figure 5.11 Simulated validation fit of the black-box model bj5 (dotted),

the physically parameterized model p6 (dash dotted) and the

output (solid) is shown.

when using (5.2). Note that the physical model has fewer parameters than the
black-box model, not counting the noise model. Further cross validation can be
found in Östring et al. (2001a).

5.5 Summary

Identification of the dynamics of an ABB IRB 1400 when moving around axis
one has been carried out. Discrete time black-box models of Box-Jenkins type as
well as well as continuous time physically parameterized models have been tried.
Models of order three and and five have been evaluated. One main observation has
been that a fifth order model gives a significantly better description of the robot
dynamics than a third order model. For the physically parameterized models this
implies that a model consisting of three masses gives gives a better description
than a two-mass model. The data used for the identification have been collected
while the robot is subject to feedback control. Theoretically this implies that a

5.5 Summary 53

disturbance description should be included in the model. The identification results
do however indicate that a physically parameterized model without disturbance
model gives a reasonably good description of the real system. It should be noted
that the results presented have been obtained using one data set.

Both black-box models and physically parameterized models can be used for con-
trol. Control using a physically parameterized model is further discussed in Chap-
ter 8. Another area where models are used is diagnosis. In diagnosis it is often
important to monitor physical aspects of the system. In this thesis off-line identifi-
cation of physically parameterized models are used as nominal models for diagnosis
purposes in Chapter 7.

54 Off-line identification

6
Recursive identification

Off-line identification of physical parameters in continuous time models can be car-
ried out using commercially available software. See, for example, Ljung (2000). In
off-line identification a batch of data is used, and typically a criterion function is
minimized with respect to the parameter values, see Chapter 5. This is a compu-
tationally cumbersome procedure, and the estimates are acquired after a certain
time. Recursive identification of the parameter estimates is therefore needed in
several areas (Ljung and Söderström, 1983), for example, in adaptive control or
monitoring tasks. Recursive identification of parameters in a discrete time model
of black-box type is also an established area (Ljung, 1999; Ljung and Söderström,
1983). The topic of this chapter, i.e., to recursively estimate the physical parame-
ters in continuous time models, has however received less attention. This topic is
important in cases like fault isolation and fault identification where the main task
is to identify the continuous time parameter values as fast as possible after a fault
has occurred. It is in this context the recursive identification of physical parameter
values comes in. While the problem under consideration is general the attention in
this chapter is concentrated to the simplified description of a flexible robot arm.

Continuous time in RLS algorithms is treated in, for example, Huarng and Yeh

55

56 Recursive identification

(1992) where the model is discrete but the algorithm is in continuous time. In this
chapter the reversed is studied; the model is in continuous time while the algorithm
is in discrete time. The model used in the identification experiments in this chapter
is a three-mass model of a robot arm. This model of the robot arm was introduced
in Section 3.2.3.

Section 6.1 gives a short description of the model. In Section 6.2 the recursive
identification procedure is discussed, and in Section 6.3 different ways of forming the
predictor and its gradient are discussed. The nominal model used in the recursive
identification experiments is presented in Section 6.5. Then in Section 6.6 the
experiments are shown. A summary is given in Section 6.7.

6.1 The robot system

The dynamics of the robot system (see Figure 5.2) when moving around axis one
will be approximated by a model consisting of three masses connected via springs
and dampers as shown in Figure 6.1. In Chapter 5 models with two and three
masses were compared, and it was found that models with three masses gave con-
siderably better results. Therefore this chapter is restricted to three-mass models.
The input is the torque τ generated by the electrical motor, while the output is
the motor angle ϕm. The angles of the other masses, ϕg and ϕa respectively, are
not measurable (see Section 3.2.3 for details).

τ, ϕm

ϕaϕg

Jm

Jg Ja

fm

kg, dg ka, da

r

Figure 6.1 Three-mass flexible model.

The model is written in state space notation using u(t) = τ(t) as input and y(t) =
ϕ̇m(t) as output

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) + e(t)
(6.1)

where the matrices A, B and C are defined in (3.19), and e(t) denotes the measure-
ment noise. In the robot control system the motor angle ϕm is the only available
output signal, but since the measurement noise is fairly small a reasonable estimate
of the motor velocity is easily obtained. Therefore the motor velocity is used as
output signal in the model above.

6.2 The recursive identification algorithm 57

6.2 The recursive identification algorithm

The identification will be carried out using a recursive prediction error (RPEM)
algorithm (Ljung and Söderström, 1983).

θ̂(t) = θ̂(t− 1) + P (t|t)ψ(t)ε(t) (6.2)

where ε(t) denotes the prediction error

ε(t) = y(t) − ŷ(t, θ̂(t− 1)) (6.3)

and ŷ(t, θ̂(t−1)) is the prediction of the output. P (t|t) is a symmetric (covariance)
matrix, and ψ(t) denotes the gradient of the prediction error with respect to the
unknown parameters. When designing an appropriate update algorithm for the
matrix P (t|t) there are two main issues that have to be taken into account. First,
when identifying parameters that are subject to change it is important that the
algorithm maintains its tracking ability. Second, it is important to prevent P (t|t)
from growing during periods of poor excitation. These issues can be dealt with in
different ways, and the aim here is to point out some possible solutions. The update
of P is therefore carried out in three steps. The first step, sometimes denoted the
measurement update (Anderson and Moore, 1979; Parkum, 1992), is given by

P (t|t) = P (t|t− 1) − P (t|t− 1)ψ(t)ψT (t)P (t|t− 1)
1 + ψT (t)P (t|t− 1)ψ(t)

(6.4)

This updating of P corresponds to the updating the information matrix R(t|t) =
P−1(t|t) according to

R(t|t) = R(t|t− 1) + ψT (t)ψ(t) (6.5)

In the next step, here denoted the time update, the tracking ability is ensured,
and in this chapter two alternatives will be considered. The first alternative is the
classical forgetting factor approach, which corresponds to the updating

P̄ (t+ 1|t) =
1
λ
P (t|t) (6.6)

where 0 < λ ≤ 1 denotes the forgetting factor. The second alternative is the
Kalman filter approach(Anderson and Moore, 1979), where

P̄ (t+ 1|t) = P (t|t) +R1 (6.7)

and R1 is a symmetric positive definite matrix. In the third step the aim is to ensure
that P does not grow without bounds when the excitation is poor. This problem is
equivalent to the problem that the information matrix tends to a singular matrix.
The standard method for handling this problem is to use regularization

R(t+ 1|t) = R̄(t+ 1|t) + µ · I (6.8)

58 Recursive identification

where µ is a positive scalar. Using the matrix inversion lemma this corresponds to

P (t+ 1|t) = P̄ (t+ 1|t)(I + µP̄ (t+ 1|t))−1 (6.9)

i.e., the regularization of the information matrix corresponds to a normalization
of the covariance matrix. See also Gunnarsson (1996). The design parameters are
hence λ and R1 for the tracking properties and µ for the regularization. Different
aspects of the choice of these parameters will be discussed in connection to the
experiments later in this chapter.

In the experiments later in this chapter the excitation is good, and regularization
is not needed. To summarize the first algorithm without the normalization (setting
µ = 0 in (6.9)), (6.4), (6.6) and (6.9) are combined using the notation P (t) = P (t|t)

P (t) =
1
λ

[
P (t− 1) − P (t− 1)ψ(t)ψT (t)P (t− 1)

λ+ ψT (t)P (t− 1)ψ(t)

]
(6.10)

From (6.2), P (t|t)ψ(t) can also be written as

K(t) =
P (t− 1)ψ(t)

λ+ ψT (t)P (t− 1)ψ(t)
(6.11)

which also can be used in (6.10). The algorithm based on forgetting factor, λ,
is

Algorithm 6.1 (RPEM using forgetting factor)

ε(t) =y(t) − ŷ(t, θ̂(t− 1)) (6.12)

P (t) =
1
λ

[
P (t− 1) − P (t− 1)ψ(t)ψT (t)P (t− 1)

λ+ ψT (t)P (t− 1)ψ(t)

]
(6.13)

K(t) =
P (t− 1)ψ(t)

λ+ ψT (t)P (t− 1)ψ(t)
(6.14)

θ̂(t) =θ̂(t− 1) +K(t)ε(t) (6.15)

The second alternative is inspired by the Kalman filter approach (see (6.7)) and
based upon the assumption that the parameters are time-varying like a random
walk:

θ(t+ 1) = θ(t) + v(t) (6.16)

where Ee2(t) = R2 and Ev(t)vT (t) = R1. For the algorithm properties it is only the
relation between R1 and R2 that is important. Therefore R2 can be normalized to
1. Note that if R2 is set to one P (t) is not the covariance of θ̃ = θ− θ̂(t). To get the
covariance P (t) must be scaled withR2. To summarize this second alternative, after

6.3 Forming the predictor and its gradient 59

some calculations using (6.2), (6.4), and (6.7) and denoting P (t) = R2P (t|t − 1)
the following algorithm is acquired and also found in text books (e.g., Ljung, 1999;
Gustafsson, 2000):

Algorithm 6.2 (RPEM based on Kalman filter)

ε(t) =y(t) − ŷ(t, θ̂(t− 1)) (6.17)

P (t) =P (t− 1) − P (t− 1)ψ(t)ψT (t)P (t− 1)
R2 + ψT (t)P (t− 1)ψ(t)

+R1 (6.18)

K(t) =
P (t− 1)ψ(t)

R2 + ψT (t)P (t− 1)ψ(t)
(6.19)

θ̂(t) =θ̂(t− 1) +K(t)ε(t) (6.20)

6.3 Forming the predictor and its gradient

A key point when applying the RPEM algorithms above is how to determine ŷ(t, θ)
and ψ(t) for the continuous time model when only discrete time data are available.
The continuous time state space model in (6.1) can be converted to discrete time
using standard methods assuming zero order hold of the input. However, the
resulting matrices of the discrete time state space model are complicated functions
of the physical parameters, and this makes the differentiation complicated. Another
way is to transform the continuous time model to discrete time approximately with,
for example, Euler’s approximation.

Here two other ways of calculating the predictor, and its gradient are investigated.
The first approach taken here is to carry out the operations in the reversed order,
i.e., to do the differentiation using the continuous time model, and in a second
step convert the expression for the gradient to discrete time. This is presented in
Section 6.3.1. The second approach is to transform the continuous time model to
discrete time, and then calculate the gradient using numerical differentiation. This
is presented in Section 6.3.2.

6.3.1 Forming the predictor and its gradient in continuous
time

Consider a linear state space model for which the predictor is

ẋ(t, θ) = A(θ)x(t, θ) +B(θ)u(t)

ŷ(t, θ) = C(θ)x(t, θ)
(6.21)

60 Recursive identification

The predictor is chosen in this way because off-line identification experiments give
good results using OE models. The gradient of the prediction with respect to a
scalar parameter is given by, see, for exmaple, Ljung and Glad (1994),

ψ(i)(t) =
d

dθ(i)
ŷ(t, θ) = C(θ)z(t) + C̄(i)(θ)x(t, θ) (6.22)

where θ(i) denotes the ith component of θ and

z(i)(t) =
d

dθ(i)
x(t, θ) C̄(i)(θ) =

d

dθ(i)
C(θ) (6.23)

The time derivative of z(i)(t) is obtained from

d

dt
z(i)(t) =

d

dθ(i)
ẋ(t, θ) = A(θ)z(i)(t) + Ā(i)(θ)x(t, θ) + B̄(i)(θ)u(t) (6.24)

where
Ā(i)(θ) =

d

dθ(i)
A(θ) B̄(i)(θ) =

d

dθ(i)
B(θ) (6.25)

Introducing the extended state vector

X(t) = (z(i)(t) x(t))T (6.26)

the state space description for the prediction, and the gradient is given by

Ẋ(t) =

(
A(θ) Ā(i)(θ)

0 A(θ)

)
X(t) +

(
B̄(i)(θ)
B(θ)

)
u(t)

(
ψ(t)
ŷ(t)

)
=

(
C(θ) C̄(i)(θ)

0 C(θ)

)
X(t)

(6.27)

Equations (6.23) and (6.25) are repeated for each parameter that should be iden-
tified. This means that for each parameter that is identified the state space model
in (6.27) is extended with n more states. Depending on which parameter that is
of interest the matrices Ā(i)(θ), B̄(i)(θ) and C̄(i)(θ) will have different properties.
Considering, for example, identification of fm in (6.27) one gets

Ā(i)(θ) =

0 0 0 0 0
0 0 0 0 0
0 0 − 1

Jm
0 0

0 0 0 0 0
0 0 0 0 0

 B̄(i)(θ) = 0 C̄(i)(θ) = 0 (6.28)

Then (6.27) is transformed to discrete time using the current estimate θ̂(t) and
assuming zero order hold.

6.3 Forming the predictor and its gradient 61

6.3.2 Forming the predictor and its gradient using numerical
differentiation

An alternative to Section 6.3.1 is to calculate the discrete time model, G(q, θ),
from the continuous time counterpart numerically each time it is needed, and then
perform numerical differentiation. The state space model is transformed to its
discrete time counterpart in each sampling point, using the current parameter
estimate, θ̂(t). Let the continuous time state space model be given by

ẋ(t) = Ac(θ)x(t) +Bc(θ)u(t)

y(t) = Cc(θ)x(t)
(6.29)

The identification will be carried out using sampled data. Assuming zero order
hold the model is given in discrete time by the state space model

x((k + 1)T) = F (θ)x(kT) +G(θ)u(kT)

y(kT) = H(θ)x(kT)
(6.30)

where

F (θ) = eAc(θ)T , G(θ) =
∫ T

0

eAc(θ)tBc(θ) dt, H(θ) = Cc(θ) (6.31)

are solved numerically for the current value of θ̂(t) in every sample.

The model can be seen as an output error (OE) like model structure, and the
predictor can be written

ŷ(t, θ(t− 1)) = −a1ŷ(t− 1, θ(t− 1)) − . . .− ana
ŷ(t− na, θ(t− 1))

+b1u(t− 1) + . . .+ bnb
u(t− nb)

(6.32)

To be able to search for the optimum the gradient of ŷ(t, θ) w.r.t θ must be cal-
culated or estimated in order to find a search direction. Therefore a numerical
approximation of the gradient ψT (t, θ) = d/dθ(ŷ(t, θ)) is used

ψ(i)(t, θ(i)) =
ŷ(t, θ(i)(t− 1) + ∆/2) − ŷ(t, θ(i)(t− 1) − ∆/2)

∆
(6.33)

where ∆ is a design variable.

Evaluation

In off-line identification experiments OE-models give good results. Therefore it
would be preferable that the recursive identification algorithm also uses OE like
models. Simulations have shown that the way of computing the predictor and its

62 Recursive identification

gradient in Section 6.3.2 sometimes diverges for the OE like model. On the other
hand, forming the predictor and its gradient according to Section 6.3.1, which also
uses an OE like model, gives good results. Therefore the method in Section 6.3.1
is chosen for the recursive identification experiments later in this chapter.

Here we try to indicate why the OE like structure has problems in Section 6.3.2
using numerical differentiation when computing the predictor and its gradient.
Start with the OE model

y(t, θ) =
B(q, θ)
A(q, θ)

u(t) + e(t) (6.34)

The predictor becomes

ŷ(t, θ) = (1 −A(q, θ))ŷ(t, θ) +B(q, θ)u(t) (6.35)

The calculation of ψ(t) is studied

ψT (t) =
d

dθ
ŷ(t, θ) (6.36)

This derivative is calculated using a difference approximation

ψ(i)(t) ≈ ŷ(t, θ(i) + ∆/2) − ŷ(t, θ(i) − ∆/2)
∆

(6.37)

This becomes, using the OE like model structure

ψ(t) ≈
[
B(q, θ(i) + ∆/2) −B(q, θ(i) − ∆/2

]
u(t)

∆

+
(1 −A(q, θ(i) + ∆/2))ŷ(t, θ(i) + ∆/2)

∆

− (1 −A(q, θ(i) − ∆/2))ŷ(t, θ(i) − ∆/2)
∆

(6.38)

The last terms include

[ŷ(t− 1, θ(i) + ∆/2) ŷ(t− 2, θ(i) + ∆/2) · · · ŷ(t− n, θ(i) + ∆/2)] (6.39)

and

[ŷ(t− 1, θ(i) − ∆/2) ŷ(t− 2, θ(i) − ∆/2) · · · ŷ(t− n, θ(i) − ∆/2)] (6.40)

The problem is that these terms are not available. To get them the system must
be simulated from t = 0. Therefore both these must be approximated using

[ŷ(t− 1, θ(t− 1)) ŷ(t− 2, θ(t− 2)) · · · ŷ(t− n, θ(t− n))] (6.41)

This approximation may give a bad estimate of ψ. To get a better estimate of ψ it
is possible to simulate a few steps back in time. Below the problem of using these
approximations is shown in an example.

6.4 Some properties of the gradient 63

Example 6.1 ψ(t) calculation

The system (a first order system, A(q, θ) = 1 − αq−1 and B = θ)

y(t) =
θ

1 − αq−1
u(t) + e(t), (6.42)

where θ is the gain, has the predictor

ŷ(t, θ) = θu(t) + αŷ(t− 1, θ) (6.43)

The gradient with respect to θ is

ψ(t, θ) = u(t) + αψ(t− 1, θ) (6.44)

This is compared to using the difference approximation given by (6.38). Then
the gradient becomes instead

ψ(t) =
∆u(t)

∆
= u(t) (6.45)

which is not the same as (6.44).

6.4 Some properties of the gradient

An important property when identifying physical parameters is that the charac-
ter of the gradient ψ(t) depends on which particular parameter that is identified.
Consider the transfer operator of the model converted to discrete time

y(t) = G(q, θ)u(t) + e(t) (6.46)

where e(t) is white noise, since, as mentioned above, an output error structure is
considered. The prediction is hence given by

ŷ(t, θ) = G(q, θ)u(t) (6.47)

The gradient of the prediction with respect to a scalar θ(i) can be expressed as

ψ(t) = Gθ(i)(q, θ)u(t) (6.48)

where Gθ(i)(q, θ) is the derivative of the transfer operator G(q, θ) with respect to
θ(i). The variance of ψ(t) will have a big influence on the properties of the estimates,
and it can be expressed

Ē[ψ2(t)] =
1
2π

∫ π/T

−π/T

∣∣Gθ(i)(eiωT , θ)
∣∣2 Φu(ω)dω (6.49)

The magnitude of the variance hence depends on the character of the input spec-
trum and the properties of the transfer function Gθ(i)(q, θ). This will be illustrated
in a the recursive identification experiments below.

64 Recursive identification

6.5 Identification of nominal model

First, off-line identification is used to get the parameter values of the model. The
acquired parameter values are used as nominal values in the recursive algorithm.
Then some of the parameters are recursively estimated.

The determination of the nominal model is done by identifying a physically param-
eterized model as described in Chapter 5. The external excitation that is added to
the reference signal of the robot control system is a sum of sinusoids in the range
0 − 60π rad/s. The signal is created by setting the discrete Fourier transform of
the reference signal to one with random phase between 0 − 60π rad/s, and then
transforming the Fourier transform to time domain, i.e, the following frequencies
are excited

2πk
12

rad/s, k = 1, . . . , 360 (6.50)

This is very similar to filtered white noise, but a difference is that equal energy in the
specified frequency points is acquired. This type of signals is further investigated in
Pintelon and Schoukens (2001); Norrlöf et al. (2002). The system used for collecting
data from the robot is further described in Norrlöf (2000). The sampling frequency
of the data is 200 Hz. Since the system is operating in closed loop the applied
torque signal will be affected by the feedback. The properties of the torque signal
are shown in Figure 6.2, and it is seen that the input energy is low below 70 rad/s
with peaks around 95, 125 and 185 rad/s.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

rad/s

Figure 6.2 FFT of the torque signal.

The System Identification Toolbox in MATLABTM Ljung (2000) is used in the off-

6.6 Recursive identification experiments 65

line identification. For comparison a very high order ARX model is shown together
with the acquired model in Figure 6.3. This is used because a high order ARX
model is capable of approximating any linear system arbitrary well (Ljung, 1999,
page 336). As seen in the figure the three-mass model is a reasonable approximation

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

A
m

pl
itu

de
From u1 to y1

10
1

10
2

10
3

−400

−200

0

200

P
ha

se
 (

de
gr

ee
s)

Frequency (rad/s)

Figure 6.3 Bode plot of the physical model (solid) and a high order ARX

model (dotted).

of the system. The acquired parameter values from the off-line identification will
be used as nominal parameter values in the recursive identification below.

6.6 Recursive identification experiments

In this section the recursive identification experiments are presented. Before the
results in Section 6.6.3 are given a discussion on which parameters that should
be recursively identified is provided in Section 6.6.1, and the design variables are
studied in Section 6.6.2.

6.6.1 Identified parameters

The choice of which parameters that should be identified recursively originates from
which parameter values that are likely to change over time. An example could be a
worn gear box, which indicates an increase in fm. In these experiments the interest
has been concentrated on the three parameters kT , J−1

a , and fm, where kT denotes

66 Recursive identification

the static gain in the system. Why these parameters are chosen is further discussed
in Chapter 7. To give an indication of that the particular parameter to be identified
will have influence on the algorithm behavior the squared amplitude curve of the
transfer operators Gθ(i)(q, θ) is studied. Figure 6.4 shows

∣∣Gθ(i)(eiωT , θ)
∣∣2 for the

three parameters considered here where the parameter values are set to the nominal
parameter values from the off-line identification. This figure together with (6.49)
and Figure 6.2 indicate that the variance of ψ(t) will be highest for fm, less for
J−1

a and lowest for kT .

0 20 40 60 80 100 120 140 160 180 200
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

rad/s

Figure 6.4 Plot of
∣∣Gθ(i)(eiωT , θ)

∣∣2 for the three parameters. Solid line:

kT . Dashed line: J−1
a . Dash-dotted line: fm.

6.6.2 Design variables

The recursive identification will be carried out using both the forgetting factor
and the covariance matrix modification versions of the RPEM algorithm. The
design parameters to choose are the initial values of θ and P respectively and also
the forgetting factor λ and the matrix R1. The choices of λ and R1 are trade
offs between tracking ability of the algorithm and the variance of the parameter
estimates. In this application λ = 0.995 has been found to be an appropriate value.
Since the input can be chosen almost freely it can be designed to give sufficient
excitation to avoid windup problems for the matrix P . Hence the regularization
parameter can be put to zero in these experiments.

The choice of P (0) can be made from different viewpoints. In case the algorithm is

6.6 Recursive identification experiments 67

going to be used with some kind of change detection it is realistic to assume that
P (0) can be chosen to give a fast convergence after sudden changes in the true
parameters. Without change detection the tracking properties will be determined
by the current values of P , which depend on the choice of λ and the properties of the
input signal via ψ(t). Assuming ψ(t) to be quasi-stationary, see Ljung (1999), and
λ to be close to one the matrix P can in steady state, see Ljung and Gunnarsson
(1990), be approximated by P given by

P = (1 − λ)Q−1 (6.51)

and
PQP = R1R2 (6.52)

respectively, where

Q = lim
N→∞

1
N

N∑
t=1

ψ(t)ψT (t) (6.53)

As discussed above the variance of the components of ψ(t) will be of different mag-
nitude, and hence also the elements of P will be of different magnitude. This will
then give different tracking and variance properties of the different parameter esti-
mates. Using forgetting factor there is only one design variable available to affect
the trade off between tracking and variance. Using the covariance modification the
matrix R1 offers more freedom for dealing with this problem.

The aim here is to show the algorithm properties without any change detection
involved. In order to select an initial value of P that represents the steady state
behavior the update equation for P is first run using the nominal parameter values
in the computation of ψ(t). The mean value of the diagonal elements in P are then
used to form the initial value P (0) in the actual identification. The initial value of
the parameters in θ is set to 20% above the nominal values of the parameters to
see how well the parameters adapt.

6.6.3 Results

The parameter adaptation for the forgetting factor case is shown in Figure 6.5, and
it can be seen that all parameters converge to their nominal values. The conver-
gence rate is approximately the same for the estimates of J−1

a and fm respectively,
while it is somewhat higher for the estimate of kT . In Figure 6.6 the diagonal
elements of P are shown. The big difference in magnitude is caused by the big
difference in the magnitude of the elements in ψ(t), see Figure 6.4.

An identification experiment is also carried out where the covariance matrix mod-
ification is used. The aim in this experiment is only to illustrate that this freedom

68 Recursive identification

0 1000 2000
0

0.5

1

1.5

kT

0 1000 2000
0

0.5

1

1.5

Jainv

0 1000 2000
0

0.02

0.04

0.06

0.08

0.1

fm

Figure 6.5 Parameter estimates using forgetting factor.

0 1000 2000
10

−5

10
−4

10
−3

10
−2

Figure 6.6 Diagonal elements of P . Solid: P11. Dashed: P22. Dotted:

P33.

is available. How to use it in a suitable way is left for further work. Assume, for
example, that it is desired that the diagonal elements of P are of the same order
of magnitude. Due to the difference in magnitude in the elements of ψ(t) it is then
necessary to let the elements of R1 be of different magnitude. In the experiments
the choice

R1 = ρ

5 0 0

0 50 0
0 0 500

 (6.54)

is used, where ρ = 10−8. Figures 6.7 and 6.8 show the results from this experiment.
Figure 6.8 shows that the diagonal elements of P now have the same magnitude.
The changes in algorithm properties are illustrated in Figure 6.7. The convergence
rate for kT is slower, and the variance is lower than for the forgetting factor case.
The variance of the estimate of fm is much higher due to the increase in the
corresponding element in P . The results indicate that it is possible to handle the

6.7 Summary 69

tracking and variance trade off more or less individually for the different parameters
by suitable choices of the elements in R1.

0 1000 2000
0

0.5

1

1.5

kT

0 1000 2000
0

0.5

1

1.5

Jainv

0 1000 2000
0

0.05

0.1

fm

Figure 6.7 Parameter estimates using covariance matrix modification.

0 500 1000 1500 2000
10

−5

10
−4

10
−3

Figure 6.8 Diagonal elements of P . Solid: P11. Dashed: P22. Dotted:

P33.

In these experiments the excitation could be chosen almost freely. In practice it can
not be expected that the input signal is sufficiently exciting all the time during real
operation. How to deal with this problem using, for example, the regularization
procedure presented above is left for further work.

6.7 Summary

Recursive identification of the dynamics of an ABB IRB 1400 when moving around
axis one has been carried out. The model structure is continuous time, physically
parameterized, and based on a three-mass approximation of the true dynamics. In

70 Recursive identification

the first stage an off-line identification is carried out in order to obtain nominal
values of the physical parameters. In the second stage some of the parameters
are identified recursively using a second data set recorded from the robot system.
A recursive prediction error minimization algorithm is used. The gradient of the
predictor is obtained by first differentiating the continuous time model with respect
to the unknown parameters, and then converting the problem to discrete time.
Both the forgetting factor and the covariance matrix modification approaches for
achieving tracking capability are tried. The results indicate that the covariance
matrix modification (Kalman filter) approach offers a greater freedom to deal with
the tracking ability and disturbance rejection trade off.

Areas where recursive identification is used are, for example, adaptive control and
diagnosis. In this thesis diagnosis is further discussed in Chapter 7, where recursive
estimation of physical parameters are used as a monitoring tool.

7
Diagnosis

There are several reasons for applying diagnosis tools to a system. Some of those
reasons are listed below:

• Safety. Faults can affect the safety of the system. A good example is an
aircraft where it is extremely important to detect minor faults before they
grow so big that the aircraft may malfunction.

• Maintenance. In many cases the diagnosis system is helpful when it comes
to maintenance. It can be useful in pointing out parts which should be
replaced. It is important to reduce the number of maintenance stops of a
plant. Sometimes a diagnosis system can also help to decide the time when
the plant should be stopped for maintenance.

• Machine protection. In order to protect a machine against further damage
diagnosis can be applied to detect parts that probably will fail soon, and thus
protect the machine from further damage by doing a controlled stop.

• Performance. Often a diagnosis system can detect faults which are not fatal
for the intended task, but affects the performance of the system.

71

72 Diagnosis

There are of course many more examples where diagnosis can be used. Here diagno-
sis methods will be applied to an industrial robot using the models and algorithms
from previous chapters with mainly the performance and the maintenance as ob-
jectives.

First the basic concepts are introduced in Section 7.1. Then the focus will be
more on the industrial robot application, and the possible faults are discussed in
Section 7.2. In Section 7.3 fault detection based on parameter estimation is studied.
Two ways of doing fault detection using parameter estimation are further studied
in Section 7.4, and the results are shown for two of these methods in Section 7.5
using real data. In Section 7.6 a summary is given.

7.1 Basic concepts

This section presents some of the basic concepts in the area of diagnosis. The ter-
minology is becoming more unified, but there are still many different terminologies
originating from different approaches. Here the following will be used:

• Fault
Some characteristic property that deviates from normal or usual behavior.

• Fault detection
To determine if a fault has occurred. Sometimes this also includes to deter-
mine the time of the fault. Here it will only be used to determine if a fault
has occurred.

• Fault isolation
To determine which component that is faulty.

• Fault identification
To determine important properties of the fault, for example, the magnitude
of the fault.

• Fault diagnosis
Here there are three major views. One view is that fault detection and isola-
tion is referred to as diagnosis (Gustafsson, 2000). Another view is that fault
diagnosis includes both isolation and identification (Gertler, 1998). There are
also authors who use fault diagnosis for all three properties; detection, isola-
tion, and identification. When it is important the words detection, isolation,
and identification are used instead of diagnosis to make the distinction clear.

• Diagnosis
A diagnosis system produces diagnoses. A diagnosis is a possible explanation

7.1 Basic concepts 73

of which faults or faulty components that can explain the behavior of the
system.

• FDI
An acronym for Fault Detection and Isolation.

• Residual
Signal used in the diagnosis system. It is used for different things in different
areas, and it is usually determined by the context. Often it is some signal
that is close to zero in the fault free case and differs significantly from zero if
a fault has occurred. Other words for similar signals are test variable or test
quantity.

Another fundamental concept in the area of diagnosis is redundancy. Redundancy
means that it is possible to calculate a variable or signal in at least two different
ways. These signals can then be compared, and if they differ there is a fault in
the system. Redundancy can be obtained by using redundant sensors (physical
redundancy), or by looking at a plant behavior and compare it to what is expected
from the basis of a mathematical model (analytical redundancy).

Different methods apply to different kinds of faults. Therefore one usually distin-
guishes between different types of faults. A fault can belong to several categories:

• Additive faults
These are faults modeled by unknown inputs to the system. In a fault free
case these inputs are normally zero, but in case of a fault the inputs cause a
change in the plant outputs. Typical examples of this type of faults are leaks
in pipes or bias in a sensor.

• Multiplicative faults
These are faults that can be modeled by a change in some of the parameters
in the model of the system. These parameter changes affect the outputs of
the system depending on the size of the inputs.

• Abrupt changes
A fault can appear abruptly. A parameter or signal changes from one value
to another at one time instant.

• Incipient changes
This is when a fault appears gradually. Typically this happens when machin-
ery gets worn leading to deteriorating performance of the machine.

• Intermittent changes
Faults that appear and then disappear repeatedly.

The circumstances under which the diagnosis system is working are also important.
Active diagnosis is distinguished from passive diagnosis. In active diagnosis a

74 Diagnosis

dedicated experiment is performed to detect and isolate the fault. It is therefore
possible to choose the input signals so that as many faults as possible can be
observed. This in contrast to passive diagnosis when the diagnosis system is run
during normal operation of the plant. This usually means that the algorithm must
be run on-line, and that it is not possible to chose the input signal. In some cases
the data are collected from normal operation, but the diagnosis algorithm is run
off-line.

Robustness is also an important issue in fault diagnosis. In a real system there
are different operating points, the measurements may be noisy, and the models
are always subject to modeling errors (Frank and Ding, 1997). It will be further
investigated later in this chapter when the fault detection algorithms are presented.

Fault diagnosis is a large area. An introduction to the subject can be found in
Isermann (1997). In the literature there has been a wide interest in fault diagnosis
over the last two decades. The early work was surveyed by Isermann (1984) and in
the book of Patton et al. (1989). A later survey was made by Isermann and Ballé
(1997). The model-based fault detection methods can be categorized in several
somewhat overlapping approaches:

1. Parity equations approach (Gertler, 1998). This is rearranged input and out-
put relations, subject to a linear transformation. The freedom of choosing
the transformation can be used for disturbance decoupling and fault isola-
tion. Disturbance decoupling means that the disturbance does not affect the
residual or test variable.

2. Diagnostic observers (Frank and Ding, 1997). An observer is constructed for
monitoring the plant.

3. Parameter estimation (Isermann, 1997). Parameter estimation methods are
used to estimate parameters which describe certain faults. Parameter esti-
mation is a central part of system identification which is throughly described
in Ljung (1999); Söderström and Stoica (1989); Unbehauen and Rao (1987).

These are all methods related to the area of control. There are several other meth-
ods originating from other areas such as multivariate statistics, neural networks,
geometric distance, fuzzy logic and signal processing such as band-pass filters and
FFT methods. There are also knowledge-based methods and methods from the AI
perspective. In Chiang et al. (2001) several of these methods are described.

7.2 The industrial robot application 75

7.2 The industrial robot application

In this thesis an industrial ABB robot is studied. The robot is described in detail
in Chapter 2. To begin with it is important to look at which faults that are likely
to happen:

• Error in the torque constant, which is a static gain in the inner control loop
of the motor current.

• Torque disturbance on the motor side. This can, for example, originate from
increased friction in the bearings or revolution dependent ripple.

• Torque disturbance in the gear box caused by increased friction, bigger back-
lash, or torque pulsations from the gears.

• Torque disturbance on the arm side. This can be caused by collisions, loose
cables, or torques from tools. It can also originate from errors in the load
parameters when the operator has not given the correct load parameters for
the tool or workpiece.

• Additive disturbance on the measured motor position. This disturbance can
originate from bad cables, electrical disturbance from the power line or a
faulty resolver.

Here the focus is on the faults that can be described by a parameter change. In
the following three faults have been chosen. These are

1. Incorrect torque constant. This results in a change in parameter kT .

2. Increased viscous friction in the motor. This affects the parameter fm.

3. Incorrect load parameters. The affected parameter is the inertia of the arm,
Ja.

Parameter estimation methods will be applied to detect and isolate these faults
in this chapter. The primary concern is the isolation of the faults, since this is
important in this application.

7.3 Parameter estimation methods for fault diag-
nosis

Early work within parameter estimation methods for fault detection and isolation
was surveyed by Isermann (1984). In Gertler (1998) a semi-batch algorithm is
suggested for on-line parameter estimation (ordinary sliding window), which can

76 Diagnosis

be made semi-recursive. Gertler (1998) uses black-box discrete time models for
the estimation and then calculates the physical counterpart of the parameters in
a second step via iterations. This approach has difficulties handling the problem
of only estimating some of the continuous time parameters. This is often the case
when only a few of the physical parameters are monitored. One way of dealing
with this problem is direct identification of continuous time models. In Dixon
et al. (2000) parameter estimation methods are used for decoupling of parameters
in a two arm robot when estimating a free swinging joint and locked joint faults.
Other examples using parameter estimation for fault diagnosis can be found in
Moseler and Iserman (1998) and Broussard and Trahan (1991).

Often the diagnosis system produces residuals sensitive to different faults. A check
if the residual differs significantly from zero is made in a second step. It is important
that the residual or the check is insensitive to noise and different excitations of the
system. To change the residual or the check according to these objectives is called
robustification.

Robustification

Common for all diagnosis algorithms using parameter estimation is the need for
some kind of robustification against noise and different input signals. To make the
algorithms robust often adaptive thresholds based on variance of the residual are
used to determine if the residual differs significantly from zero. An equivalent way
of doing this is to scale the residual and have a constant threshold, which is called
normalization. More information on robustness issues can be found in Chen and
Patton (1999).

Another way of making the algorithms more robust is the use of the CUSUM
algorithm (Gustafsson, 2000). This replaces the usual threshold. Let the residual
be denoted θi(t). The CUSUM algorithm can be written as

g(t) = g(t− 1) + θi(t) − ν

g(t) = 0, if g(t) < 0

g(t) = 0, and ta = t and alarm if g(t) > h

(7.1)

The drift variable ν can be based on an adaptive threshold, and the threshold h

is a measure of how long time the threshold ν must be violated. Note that if the
residual can be negative another CUSUM test must be run in parallel using −θi(t)
as input. A successful example using a CUSUM test can be found in Bøgh (1995).

There are other more or less ad hoc methods that can be adopted, for example,
the alarm is only generated if the residual is greater than the threshold for more

7.4 Two ways of doing fault diagnosis based on parameter estimation 77

than ten of the last 20 samples.

7.4 Two ways of doing fault diagnosis based on
parameter estimation

In this section two methods of fault detection and isolation using parameter esti-
mation methods are studied.

7.4.1 The classical approach

In this approach the process parameters are monitored. Much of the work in this
area is inspired by Isermann (1984). It is also close to the validation methods in the
identification area (Ljung, 1999; Söderström and Stoica, 1989). The test variable
used is the deviation of parameter values from the nominal parameter values

Ti(t) = θ̂i(t) − θ0,i (7.2)

where the nominal parameter value θ0,i is estimated from fault free data. One
test variable is used for each possible fault. If the test variable is larger than a
threshold, an alarm is generated. The parameter vector θi(t) can be estimated using
a recursive estimation algorithm estimating only the possible fault parameters.

Robustification can be achieved using an adaptive threshold. A common choice
is to scale the threshold using an estimate of the standard deviation at each time
point. ∣∣∣θ̂i(t) − θ0,i

∣∣∣ < 3σi(t) (7.3)

If this is violated an alarm (detection) is generated. The test variable that exceeds
the threshold indicates which parameter that is faulty. Fault identification is also
achieved if the algorithm is run for some more time. An estimate of the standard
deviation can either come from the recursive estimation algorithm or be estimated
from θ̂i(t).

Instead of σi(t) in (7.3) it is possible to include the variance of the parameter
estimated using non faulty data. Then (7.3) becomes∣∣∣θ̂i(t) − θ0,i

∣∣∣ < 3
√
σi(t)2 + σ2

0,i (7.4)

where σ0,i is the standard deviation of θ0,i

For even more robustification the CUSUM algorithm (7.1) can be used together
with the adaptive threshold by setting ν in the CUSUM algorithm to ν = 3σi(t).

78 Diagnosis

7.4.2 An approach based on hypothesis test and decision
structure

This approach is described in Nyberg (1999). In this approach several separate
identifications according to different hypotheses are performed. There is a no fault
hypothesis called NF and a fault hypothesis called Fi, where i stands for the specific
fault i. The test quantities are defined as

NF: T0 =
N∑

t=1

(y(t) − ŷ(t, θ0))2 (7.5)

Fi: Ti = min
θi

N∑
t=1

(y(t) − ŷ(t, θi))2 (7.6)

When a test quantity exceeds its threshold the hypothesis representing the test
quantity is rejected. These test quantities are only valid for one fault at a time,
but the method can be extended to multiple faults as well. To evaluate these
test quantities a decision structure can be used. Below is an example of three
parameters explaining one fault each.

T0 T1 T2 T3

F1 X 0 X X
F2 X X 0 X
F3 X X X 0
NF 0 0 0 0

The interpretation of a 0 is that the test quantity in that column is not affected
by a fault in that row. An X means that the test quantity may be affected when
a fault in that row is present, i.e., that the value of the test quantity is above the
threshold. Typically for very small parameter faults the threshold is not violated,
and therefore the X is needed. When adding other methods for other types of
faults it is important to have this kind of decision structure based on some influence
structure to make it easier to make the correct decisions.

7.5 Results

The experiments begin with investigating the classical approach with several differ-
ent ways of estimating the adaptive threshold and ways of filtering the parameter
estimates in order to get a more robust fault detection and isolation algorithm.
Then the approach based on hypothesis tests is studied.

7.5 Results 79

The objective is to detect and isolate as small faults as possible, and at the same
time get few false alarms and reduce the missed detection rate as far as possible.
This is of course dependent on the size of the parameter faults. It will also be
seen that different faults have different difficulties when it comes to detection and
isolation, depending on how they influence the system.

In the test setup parameter faults are simulated using real data. This is done by
changing the initial values of the parameters in the recursive estimation algorithm,
and then look at how the algorithm estimates the parameter values.

The nominal parameters are estimated using the off-line identification procedure
described in Chapter 5. In the diagnosis algorithm, using RPEM, only those pa-
rameters that correspond to faults are estimated. All other parameter values are
set to the nominal values acquired from the off-line algorithm. As initial value
these nominal parameter values are chosen for the fault free parameters. To simu-
late a fault the initial value of the faulty parameter is changed. In the plots in this
section only the deviations from these initial values are shown, and if the recursive
parameter estimate is clearly separated from zero there is a fault. In this way it is
possible to simulate faults using real data that are abrupt (step-like) at time t = 0.
Note that the off-line identification of the nominal parameters and the diagnosis
experiment is run on two different data sets covering the same spectrum.

7.5.1 The classical approach

An experiment, using classical approach described in Section 7.4.1, is shown in
Figure 7.1. In this experiment the input is chosen to excite all the parameters in
the model. This is the same type of input as used in Chapter 6. In the first row a
20% fault in kT is simulated. Together with the estimate of the parameter θ̂(t) an
adaptive threshold is shown. The threshold is chosen as

hi(t) = 3σ̂i(t) (7.7)

which is an estimate of the standard deviation calculated from P (t) in the recursive
algorithm (6.10)

σ̂i(t) =
√
λ0P (i,i)(t) (7.8)

where λ0 is the variance of the noise. In these experiments this is estimated to
approximately 1. It can be estimated recursively using the innovations or be seen
as a design parameter. The corresponding test variable is

Ti(t) = θ̂i(t) − θi,0 (7.9)

where θi,0 is the nominal parameter value of that parameter. (Note: To be more
accurate the adaptive threshold should be modified with the variance of the nominal

80 Diagnosis

parameter value from the off-line algorithm,
√
σ̂i(t)2 + σ2

i,0. Here σi,0 is so small
that it is approximated with zero.) The diagnosis algorithm clearly detects the

0 5 10
−0.5

0

0.5
kT

0 5 10
−0.05

0

0.05
Jainv

0 5 10
−0.01

0

0.01

0.02
fm

0 5 10
−0.2

0

0.2

0 5 10

0

0 5 10
−0.02

0

0.02

0 5 10
−0.2

0

0.2

0 5 10
−0.02

0

0.02

0.04

0 5 10
−0.02

0

0.02

0.04

0 5 10
−0.2

0

0.2

0 5 10
−0.05

0

0.05

0 5 10
−0.01

0

0.01

0.02

Figure 7.1 Fault detection and isolation based on recursive parameter es-

timation. The deviation from the nominal parameter estimates

(solid) and the adaptive threshold (dashed) based on σ̂i(t) is

shown. In the first row there is a 20% change in kT , in the

second row 20% change in J−1
a and in the third row a 20%

change in fm. In the last row there is no fault present.

faults which are the upper diagonal plots in Figure 7.1. On the other hand there are
also other parameters that signal alarms with the current threshold. This indicates
several faults at the same time which is not the case. In the last row there are also
two false alarms. There is therefore a need for further robustification.

7.5 Results 81

Robustification using a new estimate of σ̂i(t)

To make the algorithm more robust a way of estimating the variance σ̂(t) and
a smoothed estimate of the parameter estimates θ̄(t) is tested. The smoothed
estimate of θ̂(t) is calculated as

θ̄(t) =
1∑t

k=1 λ
t−k

t∑
k=1

λt−kθ̂(k) (7.10)

If it is assumed that the algorithm has run for a long time it is possible to look at

θ̄(t) =
1∑t

k=−∞ λt−k

t∑
k=−∞

λt−kθ̂(k) = (1 − λ)
t∑

k=−∞
λt−kθ̂(k) (7.11)

which can be implemented in a recursive way

θ̄(t) = λθ̄(t− 1) + (1 − λ)θ̂(t) (7.12)

In the same manner it is possible to estimate the variance recursively

σ̂2
i (t) = λσ̂2

i (t− 1) + (1 − λ)(θ̂i(t) − θ̄i(t))2 (7.13)

and use the smoothed estimate in the test variable

Ti(t) = θ̄i(t) − θi,0 (7.14)

and the estimated σ̂i(t) in the adaptive threshold. The results are shown in Fig-
ure 7.2. When these are used there are no missed detections and the fault isolation
is correct after some time. In the last row there is no fault and no fault detected
(no false alarms).

Robustification using a CUSUM test

A CUSUM test is applied using the parameter estimates. In order to make the
threshold adaptive, ν is chosen to vary with time. The design parameters in (7.1)
are chosen as

ν(t) = α1σ̂i(t) (7.15)

σ̂i(t) =
√
λ0P (i,i)(t) (7.16)

h = α2θ0,i (7.17)

First the test variable g(t) is only allowed to have a positive drift if the parameter
value is more then α1σ̂i(t). Then the threshold should be dependent on the size of

82 Diagnosis

0 5 10
−0.5

0

0.5
kT

0 5 10
−0.05

0

0.05
Jainv

0 5 10
−0.01

0

0.01

0.02
fm

0 5 10
−0.5

0

0.5

0 5 10

0

0 5 10
−0.02

0

0.02

0.04

0 5 10
−0.1

0

0.1

0 5 10
−0.02

0

0.02

0.04

0 5 10
−0.02

0

0.02

0.04

0 5 10
−0.2

0

0.2

0 5 10
−0.05

0

0.05

0 5 10
−0.01

0

0.01

0.02

Figure 7.2 Parameter based fault detection and isolation. Solid lines: De-

viation from nominal parameter estimates using the RPEM

algorithm, θ̂i(t) and the smoothed estimate of the parameter,

θ̄i(t). Dashed: Adaptive threshold h(t) = 3σ̂i(t) using (7.12).
In the first row there is a 20% change in kT , in the second row

20% change in J−1
a and in the third row a 20% change in fm.

In the last row there is no fault present.

the parameter, and it is therefore chosen to be proportional to the nominal value
of the parameter. In the experiment the design parameters are chosen as α1 = 3
and α2 = 20. Figure 7.3 shows the CUSUM test variable without resetting it when
an alarm is present.

One drawback when using more robustification algorithms is that more design pa-
rameters must be chosen. Not only the forgetting factor of the recursive estimation

7.5 Results 83

0 5 10
0

50

100

150

kT

0 5 10
0

10

20

Jainv

0 5 10
0

0.5

1

1.5
fm

0 5 10
0

10

20

0 5 10
0

100

200

300

0 5 10
0

0.5

1

1.5

0 5 10
0

10

20

0 5 10
0

10

20

0 5 10
0

5

10

15

0 5 10
0

10

20

0 5 10
0

10

20

0 5 10
0

0.5

1

1.5

Figure 7.3 A CUSUM test applied to parameters estimates in Figure 7.1.

The test variable, g(t), (solid) is shown together with the con-

stant threshold (dashed). The first row has a fault in kT , the

second a fault in J−1
a and the third a fault in fm. In the last

row there is no fault present.

algorithm, but also the drift ν(t) and threshold h. This must be done for every
fault and every time point. Here a suggestion is to select the time dependency
of the design parameters according to (7.15) and (7.17), leaving only a few scalar
design parameters to be tuned.

7.5.2 The approach based on hypothesis tests and decision
structure

In this example fault detection based on hypothesis tests and decision structure
is investigated, see Section 7.4.2. The input to the system is the same as in the
previous experiments. Here the intention is to make the algorithm recursive and
use recursive parameter estimation. In order to make the algorithm recursive the

84 Diagnosis

sums are changed to

NF: TNF (t) =
t∑

k=1

(y(k) − ŷ(k, θ0))2 (7.18)

Fi: Ti(t) =
t∑

k=1

(y(k) − ŷ(k, θ̂i(k)))2 (7.19)

where θ̂i(t) is acquired using a recursive estimation of only one parameter. These
test variables are then normalized using a recursive estimate of θ̂(t), which denotes
the recursive estimation of all the possible fault parameters. The normalization is
then calculated as

NF: TNF (t) =
∑t

k=1(y(k) − ŷ(k, θ0))2∑t
k=1(y(k) − ŷ(k, θ̂(k)))2

(7.20)

Fi: Ti(t) =
∑t

k=1(y(k) − ŷ(k, θ̂i(k)))2∑t
k=1(y(k) − ŷ(k, θ̂(k)))2

(7.21)

By using the hypothesis thinking the test variables were defined. Then the test
variables were modified to be used on-line (recursive) and also normalized. A
decision structure according to the hypothesis tests is used to make the correct
decisions. The decision structure is chosen as

TNF TkT
TJ−1

a
Tfm

F1 X 0 X X
F2 X X 0 X
F3 X X X 0
NF 0 X X X

where the last row has got additional X:s compared to the one in Section 7.4.2,
because of the recursive parameter estimation and the normalization. This means
that when the test variable for no fault, TNF , is zero the mode no fault is always
included in the diagnosis statement. This also assumes that there is only one fault
at a time. The results are shown in Figure 7.4. The threshold has been chosen to
one, which is a natural choice after normalization. In the first few seconds there
is a transient behavior. If the algorithm is used on line the time window is chosen
to a constant, not as here where the widow size is equal to the time. This setup
should only be used for evaluation. From the test variable TJa−1 in the second
row, it can be seen that the window size must be rather large to make the correct
decision.

7.5 Results 85

0 5 10
0.9

1

1.1

T
NF

0 5 10
0.9

1

1.1

T
kT

0 5 10
0.9

1

1.1

T
Jainv

0 5 10
0.9

1

1.1

T
fm

0 5 10

1

1.5

2

2.5

0 5 10

1

1.5

2

2.5

0 5 10

1

1.5

2

2.5

0 5 10

1

1.5

2

2.5

0 5 10
0.9

1

1.1

0 5 10
0.9

1

1.1

0 5 10
0.9

1

1.1

0 5 10
0.9

1

1.1

0 5 10
0.9

1

1.1

0 5 10
0.9

1

1.1

0 5 10
0.9

1

1.1

0 5 10
0.9

1

1.1

Figure 7.4 Fault detection and isolation based on (7.20) and (7.21). The

first row has a fault in kT , the second a fault in J−1
a and the

third a fault in fm. In the last row there is no fault present.

After five seconds the following test variables are violating the thresholds

TNF TkT
TJ−1

a
Tfm

S

FkT
1 0 1 1 {FkT

}
FJa−1 1 1 0 1 {FJ−1

a
}

Ffm
1 1 1 0 {Ffm

}
NF 0 1 1 0 {NF, fm}

86 Diagnosis

where S is the diagnosis statement acquired using the decision structure previously
defined. From the first row the hypotheses that there is no fault, the parameter
J−1

a is faulty or the parameter fm is faulty can all be rejected, leaving only kT as
a possible fault explanation, which is correct. The same is true for the second and
third row. In the last row using the current threshold it is not possible to separate
the no fault hypothesis from a fault in fm.

7.6 Summary

Diagnosis of three different parametric faults have been carried out using data from
an ABB IRB 1400. The diagnosis was based on recursive identification of relevant
parameters in a continuous time physically parameterized three-mass model. In a
first stage a nominal model was obtained using off-line identification. These pa-
rameter values were used to represent the fault free case. In the next stage the
estimates from the recursive identification algorithm where used to form differ-
ent test quantities. For robustification smoothed parameter estimates, adaptive
thresholds, and CUSUM tests were tried.

In order to compare the methods the preconditions must be more equal. Our
experience is that the test variables used in the hypothesis based approach need a
longer time horizon before a correct decision is made, but the hypothesis way of
thinking can be a good way of dealing with the results from the classical approach.
The approach will probably perform better for off-line or batch wise evaluation.
One novel suggestion is to use the parameter estimate at time t and evaluate for a
batch of data.

In this chapter we have chosen the input. It is desirable to run the algorithm during
a normal robot movement. This is left for future work. The fault detection and
isolation does not take into account the correlations between the variables, and
ways of using that information would be interesting to study. We have shown two
conceptually different ways of doing fault detection and isolation. It is possible to
take different parts form these algorithms and form a new way of doing diagnosis
based on parameter estimation. An example is to use the threshold in (7.13)
together with the parameter estimate and a CUSUM test. Then deal with the
results using a decision structure, which is good if other diagnosis methods are
added. This is left for further studies.

8
LQG control for disturbance

rejection

Control of robot arms is often considered to be a typical servo problem, where
the main task is to make the tool follow a given trajectory. It is, however, also
important to have good rejection of load disturbances acting on the system, and
this is particularly important for robots containing flexibilities. The aim of this
chapter is to investigate what LQG control can offer for obtaining good disturbance
rejection properties. This choice of control method is a logical second step after
conventional PID-control since the controlled variable (arm angle) is different from
the measured variable (motor angle). It is then natural to use a control method
that utilizes an observer to estimate the controlled variable. The discussion in this
chapter is originally based on Östring (1998). It is further treated in Östring and
Gunnarsson (1999); Gunnarsson and Östring (2001).

This chapter is organized as follows. In Section 8.1 the system to be studied is pre-
sented briefly. Section 8.2 contains a formulation of the control problem, and some
relevant transfer functions are derived. This section also contains a brief summary
of the LQG design method. In Section 8.3 a numerical example is presented, where
it is illustrated that good disturbance rejection properties can be obtained, but that
these properties are achieved using an unstable regulator. The following sections

87

88 LQG control for disturbance rejection

treat various aspects of the use of unstable regulators, concerning, for example,
handling of input saturation and robustness. In Section 8.7 the use of feedback
from arm acceleration is studied, and it is illustrated that good disturbance rejec-
tion properties can be obtained also using a stable regulator, and in Section 8.8 a
summary is given.

8.1 System description

The study in this chapter will be based on the two-mass model, introduced in
Chapter 3, shown in Figure 8.1.

τ, ϕm

ϕa

Jm

Ja

fm

fa

k, d
r

Figure 8.1 Two-mass model.

Compared to the model in Section 3.2.2 here a slightly different setup of state
variables is used

x1 = ϕm x2 = ϕ̇m x3 = ϕa x4 = ϕ̇a (8.1)

where ϕm denotes the angle of the first mass, and ϕa is the angle of the second
mass. The gear box ratio r is set to 1, which can be achieved by scaling the arm
inertia. There are also additional disturbances added. Let w(t) and v(t) represent
load disturbances acting on the first and second mass respectively. Then the state
space model is described by

ẋ(t) = Ax(t) +Bu(t) +Bww(t) +Bvv(t) (8.2)

y(t) = Cx(t) (8.3)

where u denotes the applied torque, y = ϕm, and

A =

0 1 0 0
− k

Jm
−d+fm

Jm

k
Jm

d
Jm

0 0 0 1
k
Ja

d
Ja

− k
Ja

−d+fa

Ja

 (8.4)

B =

0
1

Jm

0
0

 Bw =

0
1

Jm

0
0

 Bv =

0
0
0
1

Ja

 (8.5)

8.2 Control 89

C = (1 0 0 0) (8.6)

The parameters Jm and Ja denote the moment of inertia of each mass while fm

and fa denote the viscous friction coefficient of each mass. Finally k and d denote
the stiffness and damping between the two masses.

An important point in the first part of this chapter is the assumption that only ϕm

is available. The main goal is of course to control ϕa in an appropriate way but the
feedback has to be based on measurements of ϕm. This differs from the majority
of publications dealing with flexible systems where normally ϕa is available. These
assumptions are made in order to describe the typical situation in robot control
where the motor angle is measured while the arm angle is the controlled variable.

An obvious extension is to consider the use of additional sensors, and in Section 8.7
the use of feedback from an accelerometer measuring the arm angular acceleration
is studied.

8.2 Control

Consider now the two-mass model controlled by the two degrees of freedom regu-
lator as shown in Figure 8.2.

-

∑ ∑ ∑∑
W

V

Φr ΦaΦm

Fy

Fr
U

Ga

G1

Gv

Gm

Figure 8.2 Two-mass model controlled by a two degrees of freedom regu-

lator.

There are a number of different transfer functions of interest when investigating
the properties of the closed loop system, namely from r, w and v to ϕm and ϕa.
The relationship between the input signals and the motor angle is

Φm(s) = Grm(s)Φr(s) +GwmW (s) +Gvm(s)V (s) (8.7)

90 LQG control for disturbance rejection

where

Grm(s) =
Fr(s)Gum(s)

1 + Fy(s)Gum(s)
Gvm(s) = Ga(s)Gum(s)S(s) (8.8)

Gwm(s) = Gum(s)S(s) (8.9)

S(s) =
1

1 + Fy(s)Gum(s)
(8.10)

and Gum(s) in the transfer function from u to ϕm (see (8.28) for details). Using

Φa(s) = Ga(s)(Φm(s) +Gv(s)V (s)) (8.11)

gives
Φa(s) = Gra(s)Φr(s) +GwaW (s) +Gva(s)V (s) (8.12)

where
Gra(s) = Grm(s)Ga(s) Gwa(s) = Ga(s)Gum(s)S(s) (8.13)

and
Gva(s) = Ga(s)(Gvm(s) +Gv(s)) (8.14)

The servo properties captured in Gra(s) are determined by both Fr(s) and Fy(s),
and they can, in principle, be chosen arbitrarily by choosing Fr(s) in an appropriate
way. There are of course practical limitations, like input power limitations and
model uncertainty, that have to be taken into account. The load disturbance
rejection properties, captured in S(s), are entirely determined by Fy(s).

The aim here is to give a brief summary of design of LQG regulators. A thor-
ough presentation can be found in, for example, Friedland (1986). The system is
controlled using feedback from estimated states

u(t) = −Lx̂(t) + l0r(t) (8.15)

where the state estimate is obtained from the Kalman filter

˙̂x(t) = Ax̂(t) +Bu(t) +K(y(t) − Cx̂(t)) (8.16)

The gain vector L is chosen by minimizing the integral∫ ∞

0

xT (t)Q1x(t) + uT (t)Q2u(t)dt (8.17)

whereQ1 andQ2 are appropriately chosen weight matrices. The gain in the Kalman
filter is obtained by minimizing the covariance matrix of the estimation error x̃(t) =
x(t) − x̂(t). The state disturbances are then modeled as stochastic processes with
covariance matrix R1. It is also assumed that the measured signal y(t) is affected
by a stochastic measurement disturbance e(t) with covariance matrix R2.

8.3 Example 91

The feedback given by equation (8.15) with the state estimate generated by (8.16)
can be described using transfer functions as

U(s) = Fr(s)R(s) − Fy(s)Y (s) (8.18)

where the transfer functions Fr(s) and Fy(s) are given by (l0 = 1)

Fr(s) = 1 − L(sI −A+BL+KC)−1B (8.19)

and
Fy(s) = L(sI −A+BL+KC)−1K (8.20)

Furthermore
GC(s) = C(sI −A+BL)−1B (8.21)

and
S(s) = 1 −GC(s)L(sI −A+KC)−1K (8.22)

It is seen that the choice of L determines the servo properties, while the disturbance
rejection properties are determined by both L and K. Given that L has been fixed
by the servo requirements the disturbance rejection properties are determined by
K. The order of the transfer functions Fr(s) and Fy(s) resulting from the LQG
design are the same as the system itself, but it is of course possible to include an
additional pre-filter on the reference signal.

A common requirement in the control system design is to have integral action, and
there are alternative ways to obtain this property. One method is to introduce the
integral of the control error as an extra state in the model, while another method is
to extend the model with an extra state representing a constant load disturbance.
Both cases lead to an extended state space model described by matrices Ā, B̄ and
C̄ that are used in the LQG-design. Further aspects of the integral action will be
discussed below.

8.3 Example

In this section two different LQG regulators will be designed. The designs will be
carried out for the numerical values of the two-mass model given in Table 8.1. The
difference in order of magnitude compared to the identified values in Section 5.3.1
is due to the scaling of the inertias with the gear box ratio and that this is a larger
robot.

The aim of the LQG-design is to show two qualitatively different regulators, where
one regulator is stable and one is unstable. The regulators will be obtained by

92 LQG control for disturbance rejection

Jm 0.0043 Ja 0.0762
fm 0.02 fa 0.005
k 43 d 0.05

Table 8.1 Parameter values.

using the same feedback gain L and varying the state estimator gain K. The gain
vector L is determined by minimizing the criterion (8.17) using the design variables

Q1 = diag(100 1 0 0 0) Q2 = 1

The state estimator gains are obtained by computing the Kalman filter gain in the
two cases

(i) R1 = diag(0 0 0 0 1) R2 = 10−6

and
(ii) R1 = diag(0 0 0 0 1) R2 = 10−8

respectively. In order to obtain a regulator with integral action an extra state
x5 is introduced in the model. This state represents a constant load disturbance
acting on the second mass. Case (i) gives a stable regulator, while case (ii) gives
an unstable one, where Fy(s) has two poles in the right half plane. To illustrate
the difference in performance a simulation experiment is carried out where step
disturbances in both w(t), acting on the first mass, and v(t), acting on the second
mass, are applied. The disturbances have unit amplitude, and they are applied at
t = 0 and t = 1 seconds respectively. The angle of the second mass ϕa(t) is shown
in Figure 8.3(a), and the figure shows that the unstable regulator gives considerably
better rejection of the disturbances. The control signal in the two cases are also
shown in Figure 8.3(b).

8.4 Regulator stability

It is well known that conventional linear control design methods may result in
regulators whose transfer functions are unstable, i.e., the situation that Fy(s) has
poles in the right half plane. One situation when this happens is when the poles
and the zeros of the system to be controlled are located on the positive real axis
in a particular pattern. In such a situation it is necessary to use an unstable
regulator in order to achieve a stable closed loop system (see, e.g., Youla et al.,
1974). Another situation, which is the one that will be considered here, is when
unstable regulators appear also when open loop stable systems are considered.
Examples of this situation can be found in Hagander and Bernhardsson (1990),

8.4 Regulator stability 93

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Sec

(a) Response in ϕa(t) to step disturbances in w(t) and v(t).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−3

−2.5

−2

−1.5

−1

−0.5

0

Sec

(b) Control signal in step disturbance simulations.

Figure 8.3 Step disturbances in w(t) and v(t). Solid: Stable regulator,

case (i). Dashed: Unstable regulator, case (ii).

94 LQG control for disturbance rejection

Hippe and Wurmthaler (1999), Wallenborg and Åström (1988), Gunnarsson and
Östring (1999). In the example above the regulator became unstable when the
performance requirements were increased, and it will now be indicated that this is
a general property.

Let the requirements on the closed loop system from reference signal to ϕa be spec-
ified by a complementary sensitivity function Ta(s) that has a certain bandwidth.
This implies a desired complementary sensitivity function to ϕm given by

Tm(s) = Ta(s)G−1
a (s) (8.26)

where Ga is the transfer function from ϕm to ϕa. This implies that, provided that
G−1

um(s) is stable, the regulator shall be chosen as

Fy(s) =
Tm(s)

1 − Tm(s)
G−1

um(s) (8.27)

Here Gum(s) is the transfer function from input torque to ϕm, i.e.,

Gum(s) =
Gm(s)

1 −Gm(s)Ga(s)G1(s)
(8.28)

The regulator Fy(s) is stable if the denominator 1−Tm(s) does not have any zeros
in the right half plane. This is ensured if Tm(iω) does not encircle the point +1 in
the complex plane, or, equivalently, if Ta(iω)G−1

a (iω) does not encircle this point.
For the numerical example given by Table 8.1 the Bode diagram of Ga(s) is shown
in Figure 8.4. From the figure it is found that the gain of G−1

a (s) increases for ω
above the resonance peak of Ga(s). This implies that when the bandwidth of Ta(s)
is chosen too large the gain of Ta(iω)G−1

a (iω) will be greater than one for a large
region. Therefore it is a risk that the point +1 will be encircled. Figure 8.5 shows
an example where Ta(s) is a third order system with a bandwidth of approximately
50 rad/s. The Nyquist curve encircles +1 which implies that an unstable regulator
is necessary in order to obtain the desired bandwidth.

8.5 Input saturation

An important aspect of the occurrence of unstable regulators is the interaction with
nonlinearities in general and input saturation in particular. This is an important
aspect since all control systems in reality are subject to input limitations. This topic
will be discussed in the situation when the control system is based on feedback from
estimated states. The system contains an input nonlinearity which means that the
applied control signal is given as

u(t) = f(ū(t)) (8.29)

8.5 Input saturation 95

Frequency (rad/sec)

P
ha

se
 (

de
g)

; M
ag

ni
tu

de
 (

dB
)

Bode Diagrams

−60

−40

−20

0

20

10
−1

10
0

10
1

10
2

10
3

−150

−100

−50

0

Figure 8.4 Bode diagram of Ga(s).

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 8.5 Nyquist diagram of Ta(iω)G−1
a (iω).

where ū(t) denotes the computed control signal. Using the computed control sig-
nal ū(t) in the state estimator implies that the effects of the saturation shall be
investigated using the the Nyquist curve of Fy(s)G(s), where G(s) is the transfer
function of the system. This can be done by, for example, applying the describing

96 LQG control for disturbance rejection

function method (see, e.g., Cook, 1986). The describing function of a saturation is

Yf (C) =

{
2
π (arcsin 1

C + 1
C

√
1 − 1

C2) C > 1

1 C ≤ 1
(8.30)

which implies that −1/Yf (C) is the line from −1 towards −∞. The Nyquist
curves of the loop gain are given in Figure 8.6, and it is obvious that there will
be an intersection between the Nyquist curve and −1/Yf (C) slightly to the left of
−1. This indicates that there is a problem with oscillations, and this is verified in
simulations. It is worth noticing that also for the stable case the Nyquist curve
intersects the negative real axis.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 8.6 High frequency part of the Nyquist curves Fy(iω)G(iω). Solid:

Stable regulator, case (i). Dashed: Unstable regulator, case

(ii).

There are a large number of publications dealing with the problem of integrator
windup. A survey of different approaches is given in Edwards and Postlethwaite
(1996). The method that will be studied here, which is described in more detail
in Åström and Wittenmark (1984), is to use the applied control signal in the state
estimator. The system is given by Equations (8.2) and (8.3) while the input is
generated by

ū = −L̄ẑ (8.31)

where ẑ is the estimate of the extended state vector and generated by

˙̂z = Āẑ + B̄u+ K̄(y − C̄ẑ) (8.32)

8.5 Input saturation 97

Using Laplace transforms the computed input is given by

Ū(s) = −L̄(sI − Ā+ K̄C̄)−1[B̄ + K̄C(sI −A)−1B]U(s) (8.33)

Since the introduced disturbance state is observable but uncontrollable the transfer
function of the original and extended systems will be the same. The expression
C(sI − A)−1B in the equation above can hence be replaced by C̄(sI − Ā)−1B̄. It
is then straightforward to show that

Ū(s) = −G0(s)U(s) (8.34)

where
G0(s) = L̄(sI − Ā)−1B̄ (8.35)

In the derivation of (8.35) it is also assumed that the eigenvalues of Ā − K̄C̄

are strictly in the left half plane. The describing function method shall hence be
applied using the Nyquist curve of G0(s) where L̄ is the state feedback gain vector
obtained using the extended state space model. It should be noted that G0(s) does
not depend on the properties of the state estimator, i.e., whether Fy(s) is stable
or not. Figure 8.7 shows the Nyquist curve of G0 for the gain vector L̄ obtained
above.

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Figure 8.7 Nyquist curve of G0(iω).

The intersections between the Nyquist curve and −1/Yf (C) are no longer present.
It should be remembered that the describing function method is an approximate
method, and that it cannot be used to prove stability of the nonlinear system.
However, it gives an indication of the system behavior. The observation is also

98 LQG control for disturbance rejection

supported by simulation results. The conclusion will therefore be that the use of
unstable regulators will require a properly designed anti-windup method (see, e.g.,
Edwards and Postlethwaite, 1996).

8.6 Robustness

A further interesting aspect of the use of unstable regulators is to investigate how
the robustness properties of the control system are affected. This aspect can be
studied by looking, in a Nyquist diagram, at the distance between the Nyquist curve
of the open loop system and the point −1. Figure 8.6 shows the Nyquist curves of
Fy(iω)G(iω) for the stable and unstable cases respectively. Since the loop gain has
poles in the right half plane the Nyquist criterion implies that the Nyquist curve
has to encircle the point −1 sufficiently many times. In this particular example
Fy(s) has two unstable poles, and hence the Nyquist curve encircles −1 twice.

A more general observation of the effects of using an unstable regulator can be
made using Bode’s integral theorem, see, for example, Maciejowski (1989). The
theorem states that for a control system where Fy(s)G(s) has the poles p1, . . . pM

in the right half plane and for high frequencies decays like 1/sp where p ≥ 2 the
sensitivity function

S(s) =
1

1 + Fy(s)G(s)
(8.36)

satisfies the relationship

∫ ∞

0

log | S(iω) | dω = π

M∑
i=1

Re(pi) (8.37)

The connection between this result and the observation in the Nyquist diagram
above becomes clear by noting that the distance between the Nyquist curve and
−1 is the same as the inverse of the sensitivity function, i.e.,

| 1 + Fy(iω)G(iω) |= 1
| S(iω) | (8.38)

When the loop gain has unstable poles, i.e., the right hand side of equation (8.37)
is larger than zero, the interval where | S(iω) |> 1 will be comparatively larger.
Hence the interval where the distance from the Nyquist curve to −1 is less than
one will also be larger. Furthermore the maximum value of the sensitivity function
will be inversely proportional to the minimum distance. All these properties are
illustrated in Figure 8.8, which shows the absolute value of the sensitivity functions
in the stable and unstable cases. The frequency range, in the unstable case, where

8.7 LQG control using acceleration feedback 99

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

rad/s

Figure 8.8 Sensitivity function. Solid: Stable regulator, case (i). Dashed:

Unstable regulator, case (ii).

the absolute value of the sensitivity function is around two corresponds to the
frequency range in Figure 8.6 where the distance to −1 is around one half.

The conclusion of this section hence is that an unstable regulator implies a Nyquist
curve that is close to −1 for a large frequency interval. This implies that it is
necessary to have a very accurate model in order to succeed with the regulator
design.

8.7 LQG control using acceleration feedback

In the discussion above only the motor angle ϕm(t) has been used in the control
system while the requirements concerning response speed and damping are formu-
lated for the arm angle ϕa(t). Absolute measurement of the arm angle in industrial
practice is rather difficult while the use of accelerometers is more realistic. In this
section it shall be investigated if there are any benefits by using the arm angle
acceleration ϕ̈a(t) in the control system.

Recall the state space representation of the two-mass model

ẋ(t) = Ax(t) +Bu(t) +Bww(t) +Bvv(t) (8.39)

where the matrices A, B, Bw and Bv are given in (8.4) and (8.5). Let now y(t)

100 LQG control for disturbance rejection

denote a column vector containing the two measured signals, i.e.,

y(t) =

(
ϕm(t)
ϕ̈a(t)

)
(8.40)

The measured signals are then related to the states according to

y(t) = Cx(t) (8.41)

where

C =

(
1 0 0 0

k/Ja d/Ja −k/Ja −(d+ fa)/Ja

)
(8.42)

The LQG method can be applied directly to this model with two measured signals
with appropriate choice of covariance matrices in the Kalman filter design. Also
here it is of interest to incorporate integral action such that zero steady state error
in motor position is obtained when constant disturbances are acting on the system.
Therefore the method with an extra state representing load disturbance is applied
also in this case.

In the simulations shown below the following design variables were chosen as

Q1 = diag(100 1 0 0 0) Q2 = 1

and
R1 = diag(0 0 0 0 1) R2 = diag(10−8 10−1)

respectively. The LQG control was evaluated by applying step signals in w(t) and
v(t).

Figure 8.9(a) shows the response in arm and motor angle to a step in w(t) and
v(t), i.e., the disturbance acting on the motor side and on the arm side. The figure
shows that the peak value of the arm angle has been reduced by approximately
20 % while the settling time is about the same. The peak value of the arm angle
has been reduced substantially, approximately by a factor three. Also the settling
time has been slightly reduced. In Figure 8.9(b) the input (torque) signal u(t) is
also shown in the two cases. Note that the regulator using acceleration feedback
is stable. This implies that the sensitivity function can be lower than in the case
with the unstable regulator according to (8.37). Figure 8.10 shows the sensitivity
function with and without the acceleration feedback.

8.7 LQG control using acceleration feedback 101

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

(a) Response in ϕa(t) to a step in w(t) and v(t).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−3

−2.5

−2

−1.5

−1

−0.5

0

(b) Applied torque u(t) caused by a step in w(t) and v(t).

Figure 8.9 A step in w(t) and v(t). Bold solid: With acc feedback (stable

regulator). Dashed: Without acc feedback (unstable regula-

tor). Solid: Without acc feedback (stable regulator).

102 LQG control for disturbance rejection

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Figure 8.10 Sensitivity function. Solid: With acc feedback (stable regula-

tor). Dashed: Without acc feedback (unstable regulator)

8.8 Summary

LQG control of a two-mass approximation of a flexible robot are has been evaluated
with respect to the ability to reduce the influence of load disturbances on the second
mass. In a first stage only measurements of the angle of the first mass (motor)
were used. A main observation was that when the performance requirements were
increased too much the resulting regulator became unstable. Different aspects of
this phenomenon were investigated, with special attention to robustness and ability
to cope with input saturation. In the second stage the angular acceleration of the
second mass was included in the LQG regulator. Including this signal it was found
that good disturbance rejection properties could be obtained while the stability of
the regulator was maintained.

9
Conclusions

In this chapter a summary and a reflection of the results and conclusions in the
thesis are given. Some parts that will need further work are also pointed out.

9.1 Summary

This thesis is a small step towards the future vision that was painted in the intro-
duction, where a diagnosis system is monitoring each robot in a big plant, and the
robot can diagnose and estimate faults in model parameters by itself.

The focus of the thesis is on the robot application although most of the methods
used can be applied to other systems as well. The identification of the physical
parameters is a general method that works for most mechanical systems and many
other systems too. The same is true for the recursive counterpart and the diagnosis.
The only severe limitation is that the faults, that are being detected, isolated, and
identified, must be described by parameter changes.

The thesis shows that it is possible to estimate the physical parameters of a flexible
arm structure using only measurements from the motor side. It also shows that

103

104 Conclusions

the estimation can be made recursive. The flexible models can then be used in the
isolation and detection of faults modeled using parameter changes.

In the last part of the thesis, limitations on disturbance rejection using LQG con-
trol of a flexible mechanical system is studied. The conclusion is that there is a
fundamental limitation on the performance of the controller if it has to be stable.
Another conclusion is that an improved disturbance rejection can be acquired if an
additional accelerometer sensor is used.

9.2 Further work

The models in the modeling chapter can be extended. A first step can be to include
nonlinearities such as the Coloumb friction. If this is modeled and identified it is
possible to compensate for the Coloumb friction previous to the identification of
the linear parts of model. The next step can be to look at backlash and nonlinear
springs. It is also possible to look at static nonlinearities of the inputs and outputs
so called Hammerstein and Wiener models (Hagenblad, 1999). Another are that
needs further research is how to find good initial values of the physical parameters
in the off-line identification. This is especially important when many masses are
used in the model.

In the recursive identification the estimation of time varying parameters can be
improved by changing the adaption and/or running multiple estimators at the same
time according to different hypothesis of, for example, change time. There exist
also algorithms which use time varying design parameters to keep the information
content approximately constant, that is varying the forgetting. This would also be
an interesting subject for further research.

The diagnosis algorithms do not take the correlation between parameters into ac-
count. How to use this information can be a topic for further research. In the
diagnosis part it would be interesting to use data originating from actual faults
introduced in the system. In many cases this means to change some of the physics
on-line, which may be difficult. Other faults and other fault models, perhaps de-
scribed by signal faults, would also be interesting to study. The area of model
based fault diagnosis is wide, and there are other methods that can be tested and
evaluated. Dealing with under modeling is also an area that is left for further work,
see for example Juričić and Žele (2002).

An interesting area for further research is to extend the models to more than one
link, especially for the on-line algorithms. This includes areas such as modeling of
the coupling between different links and dealing with known time varying inertias.

9.2 Further work 105

The work in this thesis is made with one of the smallest ABB robots, ABB IRB
1400. It would be interesting to study robots using other types of mechanical
structures. An example would be to study larger robots where the flexibilities
are causing more control related trouble, especially when dealing with large loads
where the flexibilities are more prominent.

106 Conclusions

Notation

Abbreviations and acronyms

ARX Auto-Regressive with eXogenous Input.
BJ Box-Jenkins model.
BOOT-server Software for booting computers over the network.
CUSUM Cumulative sum algorithm.
DOF Degrees Of Freedom.
DSP Digital Signal Processor.
ETFE Empirical Transfer Function Estimate.
FDI Fault Detection and Isolation.
FFT Fast Fourier Transform.
FIR Finite Impulse Response model.
FTP File Transfer Protocol.
ILC Iterative Learning Control.
IRB Industrial RoBot.
ISIS Information Systems for Industrial Control and Supervision
LQG Linear Quadratic Gaussian.
MATLABTM Software for technical computing.

107

108 Notation

NFS Network File System.
OE Output Error model.
RAPID Programming language for ABB Robots.
RIA Robot Institute of America.
RPEM Recursive Prediction Error Methods.
SITB MATLABTM System Identification ToolBox, (Ljung, 2000)

Symbols

αk(ω) Weighting function.
ε(t) Prediction error y(t) − ŷ(t, θ).
e(t) Noise variable (usually white).
Ĝ(eiω) Estimate of the transfer function.
G(q, θ) Model of the system parameterized by θ.
Gθ(i)(q, θ) Derivative of G(q, θ) w.r.t. θ(i).
G0(q) True system.
H(q, θ) Noise model parameterized by θ.
H0(q) True noise model.
hi(t) Adaptive threshold for the ith fault.
λ Forgetting factor.
λ0 Variance of the noise.
σ̂i(t) Estimated standard deviation of the ith parameter.
ψ(t) Negative gradient of the prediction error ε(t).
θ Parameter vector.
θ(i) The ith parameter in the parameter vector θ.
Ti(t) Test variable for the ith fault.
u(t) The input to the system.
UN (ω) Discrete Fourier transform of u(t).
VN (θ) Loss function or criterion function.
v(t), w(t) Disturbance variable at time t (usually filtered white noise).
y(t) The output from the system.
ŷ(t, θ) One-step-ahead predictor.
ȳ(t) The mean of y(t).
Yf (C) Describing function.
YN (ω) Discrete Fourier transform of y(t).
ZN Data set y(1), u(1), ..., y(N), u(N).
Φu(ω) Spectrum of u(t).
Φyu(ω) The cross spectrum.

Notation 109

Operators

q−1 Delay operator, q−1u(t) = u(t− 1).
Ex Expectation of the random variable x.
Ēf(t) limN→∞ 1

N

∑N
t=1Ef(t).

Model symbols

ϕm motor angle.
ϕg, ϕa, ϕp arm angles.
fm friction coefficient of the motor.
kg, ka, kp spring constants.
dg, da, dp damping coefficients in the springs.
Jm moment of inertia of the motor.
Jg, Ja, Jp moments of inertia of the arm.
τ motor torque.
r gear box ratio (1

118 for axis one of IRB 1400).
kT static gain.

110 Notation

Bibliography

ABB Flexible Automation (1997a). Product manual, BaseWare OS 3.0. ABB
Robotics Products AB, Väster̊as, Sweden. Article number: 3HAC 0808-1.

ABB Flexible Automation (1997b). User’s Guide, BaseWare OS 3.0. ABB
Robotics Products AB, Väster̊as, Sweden. Article number: 3HAC 0930-1.

Albu-Schäffer, A. and Hirzinger, G. (2001). Parameter identification and passivity
based joint control for a 7DOF torque controlled light weight robot. In Interna-
tional Conference on Robotics & Autmation, Seoul, Korea.

Anderson, B. and Moore, J. (1979). Optimal Filtering. Prentice Hall, Englewood
Cliffs, New Jersey, USA.

Asimov, I. (1950). I, Robot. Bantam Books.

Åström, K. J. and Wittenmark, B. (1984). Computer Controlled Systems: Theory
and Design. Prentice-Hall, Englewood Cliffs, New Jersey.

Berglund, E. and Hovland, G. E. (2000). Automatic elasticity tuning of indus-
trial robot manipuators. In IEEE Conference on Decision and Control, Sydney,
Australia.

111

112 Bibliography

Bøgh, S. (1995). Multiple hypothesis-testing approach to FDI for the industrial
actuator benchmark. Control Engineering Practice, 3(12):1763–1768.

Bolmsjö, G. S. (1992). Industriell robotteknik. Studentlitteratur, Sweden.

Broussard, K. and Trahan, R. (1991). Automatic control system failure detection
via parameter identification techniques. In IEEE Proceedings of Southeastcon,
volume 1, pages 176–180.

Chen, J. and Patton, R. (1999). Robust model-based fault diagnosis for dynamic
systems. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Chiang, L., Russell, E., and Braatz, R. (2001). Fault Detection and Diagnosis in
Industrial Systems. Springer-Verlag.

Cook, P. (1986). Nonlinear Dynamical Systems. Prentice-Hall International (UK)
Ltd, London.

Dixon, W. E., Walker, I., Dawson, D. M., and Hartranft, J. P. (2000). Fault
detection for robot manipulators with parametric uncertainty: A prediction error
based approach. IEEE Transactions on Robotics and Automation, 16:689–699.

Dépincé, P. (1998). Parameter identification of flexible robots. IEEE Proceedings
on Robotics and Automation, pages 1116–1121.

Dymola (2002). Dynasim AB. http://www.dynasim.se.

Edwards, C. and Postlethwaite, I. (1996). Anti-windup and bumpless tranfer
schemes. In UKACC International Conference on CONTROL’96, pages 394–
399.

ElMaraghy, W. H., ElMaraghy, H. A., Zaki, A., and Massoud, A. (1994). A study
on the design and control of robot manipulators with flexibilities. In Fourth
IFAC Symposium on Robot Control, pages 495–501.

Forssell, U. (1999). Closed-loop Identification: Methods, Theory, and Applications.
PhD thesis, Linköpings universitet. Linköping Studies in Science and Technology.
Thesis No 566.

Frank, P. and Ding, X. (1997). Survey of robust residual generation and evaluation
methods in observer-based fault detection systems. Journal of Process Control,
7(6):403–424.

Friedland, B. (1986). Control system design. An introduction to state space meth-
ods. McGraw-Hill, New York, USA.

Bibliography 113

Gautier, M. and Poignet, P. (2001). Extended kalman filtering and weighted least
squares dynamic identification of robot. Control Engineering Practice, 9:1361–
1372.

Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems. Marcel
Dekker, Inc, 270 Modison Avenue, New York, USA.

Grotjahn, M., Daemi, M., and Heimann, B. (2001). Friction and rigid body iden-
tification of robot dynamics. International Journal of Solids and Structures,
38:1889–1902.

Gunnarsson, S. (1996). Combining tracking and regularization in recursive least
squares identification. In Proceedings of the 35th IEEE Conference on Decision
and Control, pages 2551–2552, Kobe, Japan.

Gunnarsson, S. and Östring, M. (1999). On LQG control of a flexible servo. Techni-
cal Report LiTH-ISY-R-2140, Department of Electrical Engineering, Linköpings
universitet, S-581 83 Linköping, Sweden.

Gunnarsson, S. and Östring, M. (2001). On regulator stability in control of flexible
mechanical systems. In Proceedings of the 32nd International Symposium on
Robotics, ISR, Seoul, Korea.

Gustafsson, F. (2000). Adaptive Filtering and Change Detection. John Wiley &
Sons, LTD.

Hagander, P. and Bernhardsson, B. (1990). On the notion of strong stabilization.
IEEE Transactions on Automatic Control, 35:927–92.

Hagenblad, A. (1999). Aspects of the identification of wiener models. Licenti-
ate thesis LIU-TEK-LIC-1999:51 Linköping Studies in Science and Technology.
Licentiate Thesis no. 793, Department of Electrical Engineering, Linköpings uni-
versitet, SE-581 83 Linköping, Sweden.

Hippe, P. and Wurmthaler, C. (1999). Systematic closed-loop design in the precense
of input saturations. Automatica, 35:689–695.

Hovland, G., Berglund, E., and Hanssen, S. (2001). Identification of coupled elastic
dynamics using inverse eigenvalue theory. In Proceedings of the 32nd Interna-
tional Symposium on Robotics, ISR, pages 1392–1397, Seoul, Korea.

Huarng, K. and Yeh, C. (1992). Continous-time recursive least-squares algorithms.
IEEE Transaction on circuits and systems II: Analog and digital signal process-
ing, 39(10):741–745.

114 Bibliography

IETF Secretariat (2001). Network file system (NFS). http://www.nfsv4.org.

Isermann, R. (1984). Process fault detection based on modeling and estimation
methods – a survey. Automatica, 20(4):387.

Isermann, R. (1997). Supervision, fault-detection and fault-diagnosis methods –
an introduction. Control Engineering Practice, 5(5):639–652.

Isermann, R. and Ballé, P. (1997). Trends in the application of model-based fault
detection and diagnosis of technical processes. Control Engineering Practice,
5(5):709–719.

Jirstrand, M. (2000). Mathmodelica – a full system simulation tool. In Product
Models 2000, The 6th Conference on Product Models, Global Product Develop-
ment, Linköping, Sweden.

Johansson, R., Robertsson, A., Nilsson, K., and Verhaegen, M. (2000). State-space
system identification of robot manipulator dynamics. Mechatronics, 10:403–418.

Juričić, D. and Žele, M. (2002). Robust detection of sensor faults by means of a
statistical test. Automatica, 38:737–742.

Kozlowski, K. (1989). Modelling and Identification in Robotics. Springer-Verlag.

Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall, Upper
Saddle River, New Jersey, USA, 2:nd edition.

Ljung, L. (2000). System Identification Toolbox – User’s Guide. The MathWorks,
Inc., Sherborn, MA. USA.

Ljung, L. and Glad, S. T. (1994). Modeling of Dynamic Systems. Prentice Hall,
Englewood Cliffs, New Jersey, USA.

Ljung, L. and Gunnarsson, S. (1990). Adaption and tracking in system identifica-
tion – a survey. Automatica, 26(1):7–21.

Ljung, L. and Söderström, T. (1983). Theory and Practice of Recursive Identifica-
tion. The MIT Press.

Maciejowski, J. (1989). Multivariable Feedback Design. Addison-Wesley Publishing
Company, Reading, MA, USA.

Matlab (2001). Using Matlab, Version 6.1. The MathWorks Inc.

Moseler, O. and Iserman, R. (1998). Model-based fault detection for a brushless DC
motor using parameter estimation. In Proceedings of the 24th annual conference
of the IEEE Industrial Electronics Society (EICON), volume 4, pages 1956–1960.

Bibliography 115

Nilsson, K. (1996). Industrial Robot Programming. PhD thesis, Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden.

Nissing, D. and Polzer, J. (2000). Parameter identification of a substitution model
for a flexible link. In Proceedings of the American Control Conference.

Norrlöf, M. (1998). On analysis and implementation of iterative learning contol. Li-
centiate thesis LIU-TEK-LIC-1998:62 Linköping Studies in Science and Technol-
ogy. Licentiate Thesis No 727, Department of Electrical Engineering, Linköpings
universitet, SE-581 83 Linköping, Sweden.

Norrlöf, M. (1999). Modeling of industrial robots. Technical Report LiTH-ISY-R-
2208, Department of Electrical Engineering, Linköpings universitet, SE-581 83
Linköping, Sweden.

Norrlöf, M. (2000). Iterative Learning Control: Analysis, Design, and Experiments.
PhD thesis, Linköpings universitet, Linköping, Sweden. Linköping Studies in
Science and Technology. Dissertations No. 653.

Norrlöf, M., Tjärnström, F., Östring, M., and Aberger, M. (2002). Modeling and
identification of a mechanical industrial manipulator. In Proceedings. of the 15th
IFAC Congress, Barcelona, Spain.

Nyberg, M. (1999). Model Based Fault Diagnosis: Methods, Theory, and Automo-
tive Engine Applications. PhD thesis, Linköpings universitet, Linköping, Sweden.
Linköping Studies in Science and Technology. Dissertations No. 591.

Östring, M. (1998). Dämpningar av svängningar i robotservon. Reg nr: Lith-isy-
ex-1948, Department of Electrical Engineering, Linköpings universitet, SE-581
83 Linköping, Sweden.

Östring, M. and Gunnarsson, S. (1999). LQG control of a flexible servo. In Sec-
ond conference on Computer Science and Systems Engineering in Linköping,
CCSSE99, pages 125–132, Linköping, Sweden.

Östring, M. and Gunnarsson, S. (2002). Recursive identification of physical param-
eters in a flexible robot arm. In Proceedings of the 4th Asian Control Conference,
ASCC, Singapore, Singapore.

Östring, M., Gunnarsson, S., and Norrlöf, M. (2001a). Closed loop identification
of an industrial robot containing flexibilities. Technical Report LiTH-ISY-R-
2398, Department of Electrical Engineering, Linköpings universitet, SE-581 83
Linköping, Sweden.

116 Bibliography

Östring, M., Gunnarsson, S., and Norrlöf, M. (2001b). Closed loop identification
of the physical parameters of an industrial robot. In Proceedings of the 32nd
International Symposium on Robotics, ISR, Seoul, Korea.

Östring, M., Gunnarsson, S., and Norrlöf, M. (2002a). Identification of an in-
dustrial robot during one axis movements. Accepted for publication in Control
Engineering Practice.

Östring, M., Tjärnström, F., and Norrlöf, M. (2002b). Modeling of industrial robot
for identification, monitoring, and control. In Proceedings of the International
Symposium on Advanced Control of Industrial Processes, Kumamoto, Japan.

Otter, M. and Elmqvist, H. (2001). Modelica, language, libraries, tools, workshop
and EU-project RealSim. http://www.modelica.org.

Parkum, J. E. (1992). Recursive Identification of Time-Varying Systems. PhD
thesis, The Technical University of Denmark, Lyngby, Denmark.

Patton, R., Frank, P., and Clark, R. (1989). Faul Diagnosis in Dynamic Systems,
Theory and Application. Prentice Hall, Englewood Cliffs, New Jersey, USA.

Pham, M. T., Gautier, M., and Poignet, P. (2001). Identification of joint stiffness
with bandpass filtering. In International Conference on Robotics & Autmation,
Seoul, Korea.

Pintelon, R. and Schoukens, J. (2001). System Identification: A Frequency Domain
Approach. IEEE Press, Piscataway, New Jersey, USA.

Söderström, T. and Stoica, P. (1989). System Identification. Prentice Hall, Engle-
wood Cliffs, New Jersey, USA.

Secher, J. (2001). Paradigm shift in robot based automation through Industrial
IT. In Proceedings of the 32nd International Symposium on Robotics, ISR, pages
705–707, Seoul, Korea.

Spong, M. W. and Vidyasagar, M. (1989). Robot Dynamics and Control. John
Wiley & Sons.

Swevers, J., Ganseman, C., Tükel, D. B., Schutter, J. D., and Brussel, H. V. (1997).
Optimal robot excitation and identification. IEEE Transactions on Robotics and
Automation, 13(5):730–740.

Tiller, M. (2001). Introduction to Physical Modeling with Modelica. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands.

Bibliography 117

Tjärnström, F. (2002). Variance Expressions and Model Reduction in System Iden-
tification. PhD thesis, Linköpings universitet, Linköping, Sweden. Linköping
Studies in Science and Technology. Dissertations No. 730.

Unbehauen, H. and Rao, G. (1987). Identification of Continuous Systems. North-
Holland, Amsterdam, The Netherlands.

Wallenborg, A. and Åström, K. (1988). Limit cycle oscillations in high perfor-
mance robot drives. In CONTROL’88. International Conference on Control,
1988, pages 444–449.

Wang, Q., Bi, Q., and Zou, B. (1996). Parameter identification of continuous-
time mechanical systems without sensing accelerations. Computers in Industry,
82:207–217.

Wolfram, S. (1999). The Mathematica Book. Cambridge University Press.

Xie, L. L. and Ljung, L. (2002). Estimate physical parameters by black-box mod-
eling. In Proceedings of the Chinese Control Conference.

Youla, D., Bongiorno, J., and Jabr, H. (1974). Single-loop feeback stabilization of
linear dynamical plants. Automatica, 10:159–173.

