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Abstract—Given a 0-dimensional polynomial system in a
polynomial ring over F2 having only F2-rational solutions, we
optimize the Border Basis Algorithm (BBA) for solving this
system by introducing a Boolean BBA. This algorithm is further
improved by optimizing the linear algebra steps. We discuss ways
to combine it with SAT solvers, optimized methods for performing
the combinatorial steps involved in the algorithm, and various
approaches to implement the linear algebra steps. Based on our
C++ implementation, we provide some timings to compare sparse
and dense representations of the coefficient matrices.

I. INTRODUCTION

Frequently, a cryptographic attack can be formulated as the
solution of a large polynomial system over F2 for which we
have important additional information: the input is sparse, the
system has only finitely many solutions, and all solutions are
defined over the field F2. Hence we may add the field equa-
tions x2

i + xi = 0 to the polynomial system without changing
the set of solutions. Viewed from a different perspective, we
are working in the ring F2[x1, . . . , xn]/⟨x2

1+x1, . . . , x
2
n+xn⟩

whose elements are represented by Boolean polynomials, i.e.,
polynomials with only squarefree terms in their support.

The usage of Gröbner bases for solving systems of Boolean
polynomials has received widespread attention (e.g., see [3],
[2], [18], [9]). Specialized algorithms have been imple-
mented in the package PolyBoRi (see [1]) and in Risa/Asir
(see [17]), and they achieved good timings. However, one
disadvantage of the Gröbner basis method in this context
is that the formation of S-polynomials leads to polynomials
of significantly larger degree than the current degree we
are working in. Furthermore, the S-polynomials have to be
reduced against the currently known part of the Gröbner bases.
This involves a potentially exponential number of reduction
steps, each of which reduces the sparsity of the input sig-
nificantly. The result is frequently a rapid increase in memory
consumption which breaks down the calculation. To overcome
this problem, it has been suggested to use Pommaret bases
which restrict the possible multiplications of leading terms
(see [7], [8]), but the overall performance was similar.

In this paper we suggest a more fundamental improvement:
using the border basis algorithm, we apply only linear syzygies
to the input polynomials. Thus, by carefully controlling the
size of the computational universe, i.e., the vector space in
which all linear algebra steps take place, and the sizes of the
supports of the intermediate polynomials, we keep the memory

consumption of the algorithm under control at the cost of a
somewhat slower progress.

One way to speed it up further is to input additional sparse
polynomials coming from the conflict clauses learned through
a parallel execution of a SAT-solver. This conversion has been
used for Gröbner basis methods (see [6], [19], [16]), and
also in the border basis setting it yields promising prospects.
Another way to achieve competitive running times is to
optimize the implementation. We describe improved methods
for performing the necessary combinatorial operations with
order ideals and monomial ideals to reduce their contribution
to the total running time of the algorithm. Moreover, we
look at different ways to implement terms, polynomials, and
coefficient matrices in the Boolean setting and examine how
they affect the performance.

The paper is organized as follows. After recalling the
definition of border bases and the border basis algorithm
(BBA), we construct in Section IV a version of this algorithm
which is tailored to systems of Boolean polynomials and call
it the Boolean BBA. In Section V we study improvements of
the critical linear algebra steps in the Boolean BBA, and in
Section VI we combine it with a SAT solver to get additional
input polynomials from learned conflict clauses. Next, Sec-
tion VII contains improvements and speed-ups related to the
implementation of the operations with order ideals necessary
for the Boolean BBA. Finally, in Section VIII we discuss the
implementation of the linear algebra steps of the algorithm
and provide some timings to compare the feasibility of sparse
and dense representations. Unless specifically stated otherwise,
we use the definitions and adhere to the notation introduced
in [13] and [14],

II. BORDER BASES

In the following we let K be a field and P = K[x1, . . . , xn]
a polynomial ring over K. An ideal I in P is called 0-dimen-
sional if P/I is a finite dimensional K-vector space. One of
the basic ideas of border bases is to find vector space bases
of P/I of the following form.

Definition 2.1: Let Tn = {xα1
1 · · ·xαn

n | αi ≥ 0} be the
monoid of terms in P . A finite subset O of Tn is called an
order ideal if t ∈ O and t′ | t imply t′ ∈ O. Given an order
ideal O, we call ∂O = (x1O ∪ · · · ∪ xnO) \ O the border
of O

For every term ordering σ, the set Oσ(I) = Tn \ LTσ(I)
is an order ideal. The following type of systems of generators



of I allow us to rewrite all polynomials in terms of an order
ideal O.

Definition 2.2: Let O = {t1, . . . , tµ} be an order ideal, and
let ∂O = {b1, . . . , bν} be its border.

(a) A set of polynomials G = {g1, . . . , gν} is called an
O-border prebasis if gj = bj −

∑µ
i=1 cij ti with

c1j , . . . , cµj ∈ K for j = 1, . . . , ν.
(b) An O-border prebasis G ⊂ I is called an O-border

basis of I if the residue classes O = {t̄1, . . . , t̄µ} in P/I
form a K-basis of P/I .

Note that the existence of an O-border prebasis G ⊂ I
implies that O generates the K-vector space P/I , and that an
O-border basis of I is automatically a system of generators
of the ideal I . One way of constructing an O-border basis is
to extend a Gröbner basis as follows.

Example 2.3: Let I be a 0-dimensional ideal in P . Choose a
term ordering σ, compute the reduced σ-Gröbner basis G of I ,
let Oσ(I) = Tn \ LTσ(I) = {t1, . . . , tµ}, and let ∂Oσ(I) =
{b1, . . . , bν}. Then the set G′ = {g1, . . . , gν}, where gj =
bj −NFG(bj) for j = 1, . . . , ν, is an Oσ(I)-border basis of I
which contains G (see [14], Prop. 6.4.18).

Not every border basis is constructed by extending a reduced
Gröbner basis, as the next example shows.

Example 2.4: Let K = Q, let P = K[x, y], and let I =
⟨x2 + xy + 1, y2 + 2xy + 1⟩. Then O = {1, x, y, xy} is an
order ideal and the residue classes of the terms in O form a
K-basis of P/I . Notice that this order ideal is not of the form
Tn \ LTσ(I) for any term ordering σ, since xy ∈ LTσ(I) for
both cases x >σ y and y >σ x. This order ideal and its border
∂O = {x2, x2y, y2x, y2} can be illustrated as follows.
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In this setting the set {x2 + xy + 1, x2y + x − y, xy2 −
x+2y, y2 +2xy+1} is an O-border basis of I which is not
constructed from a Gröbner basis as above.

Let us see an example of an order ideal O and an O-border
basis G which is not constructed from a Gröbner basis such
that the ideal I = ⟨G⟩ contains the field ideal.

Example 2.5: In the polynomial ring P = F2[w, x, y, z],
consider the ideal I = ⟨xz+ yz+1, yw+xw+1, ywz⟩+F
where F = ⟨w2+w, x2+x, y2+y, z2+z⟩ is the field ideal.
Then one can check that I has a border basis for the order
ideal O = {1, w, x, y, z, xw, xy, yz, zw}. This border basis is
not constructed from a Gröbner basis, since xz >σ yz and
yw >σ xw cannot hold simultaneously.

III. THE BORDER BASIS ALGORITHM

Based on suggestions in [15], the following algorithm for
computing a border basis of a 0-dimensional ideal I in
P = K[x1, . . . , xn] was introduced in [11]. For a list of
polynomials V , we let V + = V ∪x1V ∪· · ·∪xnV . Moreover,

for a set of terms S, we let ⟨S⟩OI be the order ideal spanned
by S, i.e., the set of all terms dividing one of the terms in S. A
finite set of polynomials is called LT-interreduced (with respect
to some term ordering) if they are monic and have pairwise
distinct leading terms.

Algorithm 3.1: (The Border Basis Algorithm (BBA))
Input: generators {f1, . . . , fs} of I and a term ordering σ
Output: the Oσ(I) border basis of I

1: Let U = ⟨Supp(f1) ∪ · · · ∪ Supp(fs)⟩OI.
2: Let V be an LT-interreduced basis of ⟨f1, . . . , fs⟩K .
3: repeat
4: repeat
5: Compute a set of polynomials W ′ such that V ∪W ′

is an LT-interreduced basis of ⟨V +⟩K .
6: repeat
7: W := {w ∈ W ′ | LTσ(w) ∈ U}
8: U ′ := ⟨

∪
w∈W Supp(w) \ U⟩OI

9: U := U ∪ U ′

10: until U ′ = ∅
11: V := V ∪W
12: until W = ∅
13: O := U \ ⟨LTσ(V )⟩
14: Let Uold := U and U := U+.
15: until ∂O ⊂ Uold

16: Apply FinalReduction(V,O) and return the result.
Here the algorithm FinalReduction is the one given

in [11], Prop, 17. Its purpose is to extract the desired border
basis from ⟨V ⟩K . The condition ∂O ⊂ U ensures that such a
border basis exists. The algorithm FinalReduction has a
low time complexity and will be ignored in the following.
Notice that we used already the Improved BBA of [11],
Prop. 21. Further improvements are suggested in [12].

The order ideal U in this algorithm is called the (com-
putational) universe. Since we are performing linear algebra
operations in the vector space ⟨U⟩K , our goal is to keep it as
small as possible at all times. The loop in steps (4) - (12) of
the algorithm computes the U -stable span of V .

IV. A BOOLEAN BB ALGORITHM

For the tasks described in the introduction, we now use
K = F2 and work in the ring of Boolean polynomials

R = F2[x1, . . . , xn]/⟨x2
1 + x1, . . . , x

2
n + xn⟩.

The elements of this ring will be represented by polynomi-
als whose support consists of squarefree terms. The set of
squarefree terms will be denoted by Sn. The ideal F =
⟨x2

1+x1, . . . , x
2
n+xn⟩ is called the field ideal, since it defines

the set of points in An with coordinates in the field F2.

Definition 4.1: Let S be a set of terms in Tn. Then the set
S sf = S ∩ Sn is called the squarefree part of S.

A border basis of an ideal I in P which contains the field
ideal F has the following shape.

Proposition 4.2: Let O be an order ideal in Tn, and let I
be an ideal in P which contains F and has an O-border basis.



(a) We have O ⊂ Sn and a disjoint union ∂O = (∂O) sf ∪
x1O1 ∪ · · · ∪ xnOn, where Oi is the set of all terms
in O divisible by xi.

(b) For i ∈ {1, . . . , n} and t ∈ Oi, the border basis element
corresponding to xi t is xi t+ t.

Proof: To prove (a), it suffices to note that a term of the form
x2
i t cannot be in O, since x2

i t+xit is in I . To prove (b), we
observe that the polynomial xi t + t is a multiple of x2

i + xi

and hence in I . This implies the claim. �
Consequently, while computing a border basis of an ideal

containing F , we can restrict everything to polynomials having
only squarefree terms in their supports. For t, t′ ∈ Sn, we let
t∗t′ be the product of t and t′ followed by reduction modulo F .
For a polynomial f ∈ P , the normal form NFF (f) is obtained
by replying each term in Supp(f) by its squarefree part. For a
list of polynomials V we let V (+) = V ∪x1 ∗V ∪· · ·∪xn ∗V .
Putting these facts into the BBA, we get the following Boolean
version.

Algorithm 4.3: (The Boolean BBA)
Input: generators {f1, . . . , fs} of I and a term ordering σ
Output: the part of an Oσ(I)-border basis of I corresponding
to (∂Oσ(I))

sf

1: Let U = ⟨Supp(NFF (f1)) ∪ · · · ∪ Supp(NFF (fs))⟩OI.
2: Let V be an LT-interreduced K-vector space basis of

⟨NFF (f1), . . . ,NFF (fs)⟩K .
3: repeat
4: repeat
5: Compute a set of polynomials W ′ such that V ∪W ′

is an LT-interreduced basis of ⟨V (+)⟩K .
6: repeat
7: W := {w ∈ W ′ | LTσ(w) ∈ U}
8: U ′ := ⟨

∪
w∈W Supp(w) \ U⟩OI

9: U := U ∪ U ′

10: until U ′ = ∅
11: V := V ∪W
12: until W = ∅
13: O := U \ LTσ(V )
14: Let Uold := U and U := U (+).
15: until ∂O sf ⊂ Uold

16: Apply FinalReduction(V,O) and return the result.
Notice that, during the course of this algorithm, we always

have U ⊂ Sn and V ⊂ ⟨Sn⟩. Since Tn contains
(
n+d−1

d

)
terms of degree d, while Sn contains

(
n
d

)
terms of degree d,

the universe and the resulting border basis will typically be
much smaller for the Boolean BBA in comparison to the BBA.

V. IMPROVEMENTS OF THE BOOLEAN BBA

The main work of the Boolean BBA is clearly done in
step (5) where an LT-interreduced basis of V has to be
extended to an LT-interreduced basis of V (+). The following
observations allow us to speed up this step. As before, we let
{f1, . . . , fs} be a set of polynomials in P = F2[x1, . . . , xn]
which generates a 0-dimensional ideal I containing the field
ideal. We may assume that the polynomials fi are in normal

form w.r.t. F , i.e., their support consists of squarefree terms.
By Sd we denote the set of squarefree terms of degree d in P ,
i.e. Sd = {xi1 · · ·xid | 1 ≤ i1 < · · · < id ≤ n}.

Proposition 5.1: In the above setting, let V0 be an LT-
interreduced basis of ⟨f1, . . . , fs⟩, and let Vi be the set V
after the stable span loop of Algorithm 4.3 has performed i
iterations. Then we have

Vi ⊆ V0 ∪ S1V0 ∪ · · · ∪ SiV0.

Proof: This follows by induction on i and by noting that, in
view of Algorithm 4.3, we have Vi = Vi−1 ∪W ⊆ Vi−1 ∪W ′

and ⟨W ′⟩K ⊆ ⟨V (+)
i−1 ⟩K . �

Notice that #Si =
(
n
i

)
. Thus it is not advisable to use

this proposition directly to find Vi. Instead, we can use this
structural insight to improve the calculation of W ′ in Step (5).
Let Wi and W ′

i be the values of the sets W and W ′ after the
i-th iteration of the stable span loop (steps (4) through (12)).
We write W ′

i = Wi ∪Bi and call Bi the unused polynomials
of round i.

Proposition 5.2: In the above setting, we have

Vi = Vi−1 ∪Wi−1 ⊆ Vi−1 ∪Bi−2 ∪W
(+)
i−2 = V

(+)
i−1

for all i ≥ 2. Hence W ′
i−1 can be computed by reducing the

elements of Bi−2 ∪W
(+)
i−2 against Vi−1.

Proof: This follows from V
(+)
i−1 = (Vi−2∪Wi−2)

(+) = V
(+)
i−2 ∪

W
(+)
i−2 = Vi−2∪W ′

i−2∪W
(+)
i−2 = Vi−1∪Bi−2∪W

(+)
i−2 and the

definition of W ′
i−1. �

Since the purpose of the stable span loop is to approximate
I ∩ ⟨U⟩K by enlarging V repeatedly until the process stabi-
lizes, the number of newly found polynomials Wi decreases
rapidly, and thus also the size of W (+)

i decreases rapidly. By
the proposition, this improves the computation of the basis
extension from Vi to V

(+)
i substantially. The calculation of

the sets Bi can be inserted into the innermost repeat loop of
Algorithm 4.3 as follows.

Algorithm 5.3: (U-Extension Algorithm)
Input: a set W ′ and the current universe U
Output: sets W , B such that W ′ = W ∪ B and an updated
universe U

1: Let W = ∅ and B := W ′.
2: repeat
3: A := {w ∈ B | LTσ(w) ∈ U}
4: Append A to W and remove it from B.
5: U ′ := ⟨

∪
w∈A Supp(w) \ U⟩OI

6: U := U ∪ U ′

7: until U ′ = ∅
8: Return the pair (W,B) and the order ideal U .
Now we can formulate the following improved version of

the stable span loop in Algorithm 4.3.

Algorithm 5.4: (Stable Span Algorithm)
Input: an index i ≥ 2, a set Vi−1, a pair of sets (Bi−2,Wi−1),
and the current universe U



Output: a set Vi, a pair of sets (Bi−1,Wi−1), and an updated
universe U

1: Compute an LT-interreduced basis extension W ′
i−1 for

⟨Vi−1⟩K ⊆ ⟨Vi−1 ∪Bi−2 ∪W
(+)
i−2 ⟩K .

2: Apply the U-extension Algorithm 5.3 to W ′
i−1 and U and

get a pair (Wi−1, Bi−1) and an updated universe U .
3: Let Vi := Vi−1 ∪Wi−1.
4: Return Vi, the pair (Wi−1, Bi−1), and U .
The straightforward task to insert this Stable Span Algo-

rithm correctly into Algorithm 4.3 is left to the reader.
Another reason why the sizes of the matrices involved

in the basis extension step can increase dramatically is the
enlargement U := U (+) in Step (14) of Algorithm 4.3.
It was already suggested in [12] that we can use much
smaller increases of the universe here if we make sure that
occasionally, e.g., after a certain number of rounds, we include
all of ∂U to make sure the algorithm terminates. For instance,
if we use the above Stable Span Algorithm 5.4, we can use
U := U ∪ ⟨LTσ(w) | w ∈ Bi−1⟩OI, where Bi−1 is the
last value of the set of unused polynomials in the stable
span iteration. Other strategies for enlarging the universe in
Step (14) are possible and await further testing.

VI. COMBINING THE BOOLEAN BBA AND SAT SOLVERS

For large polynomial systems over F2, one approach to
improve the performance of the Boolean BBA is to simultane-
ously run a SAT solver and to exchange intermediate results
between the two processes. Let us briefly discuss the two
directions for this exchange.

The input of the SAT solver are propositional logic clauses.
When the Boolean BBA discovers a new simple polynomial
f ∈ I in the ideal, we can convert it to a logical formula F in
CNF such that a tuple (a1, . . . , an) ∈ Fn

2 is a zero of f if and
only if it yields a satisfying assignment for the formula F .
Here “simple” means that we require a bound for the number
of terms in support of the polynomial, because otherwise
the conversion produces an exponentially large set of new
clauses or many new indeterminates. Efficient methods for this
conversion have been discussed for instance in [4] and [10].

For the purposes of optimizing the performance of the
Boolean BBA, the reverse conversion method is the crucial
one. Modern SAT solvers are able to produce large numbers
of conflict clauses in a short time. A clause {L1, . . . , Lm}
consists of literals Li, i.e., logical variables Xi or their nega-
tions ¬Xi. The corresponding formula F = L1∨L2∨· · ·∨Lm

is satisfied for the assignment (a1, . . . , an) ∈ Fn
2 if and

only if the polynomial f = ℓ1 · · · ℓm vanishes at the point
(a1, . . . , am), where ℓi = xi + 1 for Li = Xi and ℓi = xi

for Li = ¬Xi. As the degree of f equals the length of the
clause, short conflict clauses are the most useful. Moreover, to
get sparse polynomials, we prefer clauses with many negative
literals.

Both solvers are of different nature. Modern SAT solvers
are mainly based on DPLL (choosing the assignment for a
literal and possibly backtracking), while the BBA is based

on linear algebra elimination. Therefore their cooperation
seems to be promising. Let us see how the BBA can profit
from intermediate results of a SAT solver. Sometimes a SAT
solver finds out the assignment for one indeterminate. For the
BBA, this translates to a new polynomial in I of the form
xi + ai, where ai ∈ F2. Normally, the BBA will not use this
information very efficiently, as the following example shows.

Example 6.1: Suppose that we are computing the bor-
der basis of an ideal in F2[x1, x2, x3, x4] and that the
SAT solver provides us with the insight that x1 ∈ I .
Moreover, assume that we are currently trying to simplify
x1x2x3x4 + x1x2x3 + x3 = 0. We have to wait for the result
of two V (+) computations to eliminate x1x2x3, and then one
more to eliminate x1x2x3x4. However, a direct substitution
of x1 7→ 0 immediately shows x3 ∈ I , and by substituting
x3 7→ 0, we can simpify other polynomials.

Therefore, whenever the SAT solver discovers useful poly-
nomials in I , such as xi+ai or xi+xj , it is better to perform
the corresponding substitutions everywhere in the BBA and
thus reduce the number of variables involved in the system.
An experimental implementation of this SAT solver assisted
Boolean BBA indicates promising speed-ups.

VII. IMPLEMENTATION OF ORDER IDEAL OPERATIONS

To implement the Boolean BBA efficiently, we have to find
suitable data structures for squarefree terms, order ideals and
Boolean polynomials. We have implemented them in C++ as
separate classes. In the following we look at the problem
of implementing order ideals and the necessary order ideal
operations efficiently.

Remark 7.1: (Representation of Terms)
A squarefree term t = xα1

1 · · ·xαn
n can be implemented in

the dense representation via the bittuple α = (α1, . . . , αn).
The multiplication of terms t ∗ t′, i.e., multiplication and
subsequent reduction modulo F , can then be implemented
via OR of the bittuples. Specifically, multiplication of t by an
indeterminate xi results in checking if the bit αi is zero. If this
conditions evaluates to true, the bit αi is flipped. Similarly, a
term t with exponent vector α divides a term t′ with exponent
vector α′ if and only if (α AND α′) = α holds.

On the other hand, in practically relevant cases we may have
a bound on the maximal degree of the terms that are used at
some time during the computation. In this case we can use
a sparse representation: it suffices to store the indices of the
indeterminates appearing in the term. If the maximum degree
is d and we have n = 2k indeterminates, this representation
requires dk bits. In our setting, we usually have a large number
of indeterminates, while the maximum degree is typically
below 8. Thus we have dk ≪ 2k = n, and the sparse
representation is more memory efficient.

Example 7.2: Let t = x1x8 be a term in F2[x1, . . . , x10].
Then t is represented as (1, 0, 0, 0, 0, 0, 0, 1, 0, 0) in the dense
way and by (1, 8) in the sparse way.



For the term ordering, we chose DegLex, because it is
easily implementable and it reflects the fact that the Boolean
BBA is a degree-by-degree algorithm.

To implement order ideals (such as the universe U ) effi-
ciently, we represent them by cogenerators which are defined
as follows.

Definition 7.3: Let O be an order ideal in Tn. A set of
terms {t1, . . . , tk} ⊆ O is called a set of cogenerators of O
if every term in O divides one of the terms t1, . . . , tk. A set
of cogenerators {t1, . . . , tk} is called minimal if no term ti
divides tj with j ̸= i.

Clearly, an arbitrary set of cogenerators can be transformed
to a minimal one by removing multiples iteratively. Every
set of cogenerators contains a unique minimal one. We shall
represent order ideals by their unique minimal set of cogener-
ators. Thus, after every order ideal operation, we minimalize
the resulting set of cogenerators. Membership of a term in an
order ideal can be checked by testing if it divides one of the
cogenerators.

There are three steps in the Boolean BBA which require
operations with order ideals: in Step (13) we have to find
U \LTσ(V ), in Step (14) we calculate U (+), and in Step (15)
we check ∂O sf ⊆ Uold. Here the computation of U (+) is
straightforward, since it suffices to take the union of the sets
of cogenerators of U , x1U , . . . , xnU , and to minimalize. The
following proposition shows how we can calculate cogenera-
tors of an order ideal minus a monomial ideal. This can then
be applied to compute U \LTσ(V ), because in [11], Prop. 21
it is shown that this set is an order ideal, and hence equal to
U \ ⟨LTσ(V )⟩.

Proposition 7.4: Let U be an order ideal in Tn, let C be
a set of cogenerators of U , and let t ∈ U . Define the set
D = { t′

xi
| i ∈ {1, . . . , n}, t′ ∈ C, t divides t′, and xi

divides t′}. Then (C ∪D) \ ⟨t⟩ is a set of cogenerators of the
order ideal U \ ⟨t⟩.
Proof: Let u ∈ U \ ⟨t⟩. Then u divides a cogenerator t′ ∈ C.
If t′ is not a multiple of t, the claim is trivially true. If t′ is
a multiple of t, then u is a proper divisor of t′ and hence a
divisor of one of the terms t′

xi
in D. �

Notice that we can replace the condition that “xi divides
t′” in the definition of D by “xi divides t” if U ⊂ Sn. The
remaining task, namely checking whether ∂O sf is contained
in Uold in Step (15), is dealt with by the following proposition.

Proposition 7.5: Let U be an order ideal in Sn, let O be
an order ideal contained in U , let C be the minimal set of
cogenerators of O, and let D = x1 ∗ C ∪ · · · ∪ xn ∗ C. Then
we have ∂O sf ⊆ U if and only if D ⊆ U .

Proof: Clearly, the terms in D are contained in O or in ∂O sf ,
and therefore in U . Conversely, assume that D ⊆ U . Every
term t ∈ ∂O sf is of the form t = xit

′ with i ∈ {1, . . . , n}
and t′ ∈ O. Thus there exists a cogenerator u ∈ C such that
u = t′t′′ for some t′′ ∈ Sn. Now the claim follows from
t′′ t = xi ∗ u ∈ D ⊆ U and the fact that U is an order ideal.

�

Notice that it is more complicated to compute the border
of O itself. We have to multiply the cogenerators of O
by indeterminates and consider all factors of the resulting
squarefree terms. Since we do not need this method here, we
merely indicate it by an example.

Example 7.6: In S3 we consider O = {1, x1, x3, x1x3}.
By multiplying the cogenerator x1x3 with indeterminates, we
get one squarefree border term, namely x1x2x3. Now the
divisors of this term provide the squarefree border ∂O sf =
{x2, x3, x1x2, x2x3, x1x2x3}.

On the other hand, the test provided by the proposition
is easy to implement. Terms in the set D are produced by
sequentially flipping zeros to ones in the exponents of the
terms of C. Furthermore, in applications such as algebraic
attacks or algebraic fault attacks in cryptography, we end up
with a very small order ideal. Therefore the final computation
of the border is much less expensive than the computation of
the borders of the intermediate order ideals O.

VIII. C++ IMPLEMENTATION AND TIMINGS

After dealing with the combinatorial part of the Boolean
BBA, we now turn to the implementation of polynomials and
polynomial linear algebra. Clearly, this is the true core of
the algorithm and needs to be optimized most. A Boolean
polynomial can be implemented as a list of bittuples, each of
which represents a term.

An important aspect of our implementation is that, together
with the minimal set of cogenerators of the universe U , we
keep track of the support of all polynomials that are currently
used. The support and the cogenerators describes different
aspects of the algorithm. E.g., during the computation of V (+),
the support changes, since it is enlarged via multiplications
by indeterminates, but the cogenerators remain untouched. On
the other hand, in Steps (9) and (14), the universe is enlarged,
i.e., the cogenerators are changed, but the support remains the
same.

In the dense representation, the set of polynomials in V can
be represented by a coefficient matrix whose rows are lists of
bittuples, and whose columns are labeled with the terms in
the support. This is particularly useful, because the Boolean
BBA is at its core a linear algebra algorithm for which the
computation of the basis extension W ′ is the most demanding
task. This coefficient matrix has to be dynamic, because
we add new rows and new columns during the computation
of V (+). Moreover, when we add a new column, i.e., when we
introduce a new term, the resulting columns must be ordered
via the term ordering from the biggest to the smallest term.

Again we can choose between a sparse and a dense rep-
resentation of the matrix. The basis extension W ′ may be
found via standard Gaussian elimination (GE). This is a special
problem of computing a REF, because we need to know the
permutation of the rows (if some swapping has occurred), and
many pivot positions are known beforehand. In fact, we are
really computing a REF extension.



It has turned out that GE without swapping rows, and
optimized to minimize the writing all over the matrix, is the
most suitable among different variants of GE. We start with
a matrix Vold which is already in REF. Then we append new
rows. We reduce each of these rows by rows in Vold. At the
end we get either a new pivot and we enlarge Vold, or we get
a zero row which we cancel and we proceed to the next row.
Therefore we read only from Vold and write only in a single
row at each step.

We prefer choosing pivots coming from rows in V . Other-
wise, we could eliminate an row in V by a row in V (+)\V , and
thus obtain a bigger extension than necessary. If the matrix is
in the dense representation, addition of polynomials is nothing
but a XOR of two rows. On the other hand, when we use a
sparse representation, i.e., when only the non-zero position in
a row are remembered, addition of polynomials results in the
symmetric difference of two lists.

In the following table we measure some execution times
of our implementation of the Boolean BBA in C++ for both
sparse and dense representations of the coefficient matrices.
The timings were obtained on a personal laptop with a 2.6 GHz
Intel(R) Core(TM) i7-5600U CPU and with 16 GB RAM. The
program was compiled using the GNU GCC compiler with
the -02 optimization flag. For benchmarking, we use systems
of quadratic polynomial equations coming from the algebraic
attacks at Small Scale AES (cf. [5]). The number of rounds
is denoted by r, the number of rows of the state by a, the
number of columns of the state by b and the size of the word
by e. To these parameters we add the number of variables and
the number of equations.

Small scale AES BBA (dense) BBA (sparse)
# var # eq r a b e in seconds in seconds

20 36 1 1 1 4 0.04 0.01
36 60 1 1 2 4 1.60 0.14
36 68 2 1 1 4 1.17 0.27
40 72 1 2 1 4 12.76 0.21
52 100 3 1 1 4 27.15 7.03
64 112 2 1 2 4 240.23 35.03
68 132 4 1 1 4 953.44 17.94
72 120 1 2 2 4 422.61 4.56
72 136 2 2 1 4 >1500 299.72
84 164 5 1 1 4 >1500 148.92

100 196 6 1 1 4 >1500 439.10
116 228 7 1 1 4 >1500 1045.49

TABLE I
TIMINGS OF THE IMPLEMENTATION OF THE BOOLEAN BBA IN C++

These timings are not yet comparable to other algebraic
solvers, many of which profit from optimizations developed
over several decades. For instance, by introducing suitable
variants of the Buchberger criteria, we expect to improve them
significantly. Currently, they show the results of a first Boolean
BBA implementation based only on standard C++ libraries
(such as std::bitset, boost::dynamic_bitset, and
std::vector), basic profiling and a cache-friendly design.
Recall that 0/1 coefficients are stored in std::bitset and
boost::dynamic_bitset only as one bit (plus some bytes

in a header) in the memory, in contradiction to bool, which
is usually stored in one byte, because it must be addressable.
In fact, this size is platform dependent and can be larger.

From the table one can clearly see that sparse BBA out-
performs dense BBA. Dense representation turns out be very
effective when performing operations such as XOR of two
rows. On the other hand, accessing a coefficient is expensive,
because the bits are packed in the memory and therefore mask-
ing is required. Overall, sparse representation takes advantage
of sparse input (this is the case for algebraic attacks), and in
this context sparse linear algebra clearly outperforms dense
techniques. Time performance does not depend only on the
size of the input system, i.e., the number of polynomials and
the number of indeterminates, but the shape of the system.

To end of this section, we mention possible optimizations
of the linear algebra part. Firstly, the computation of the basis
extension, i.e., the REF extension, should be implemented in
a specialized algorithm rather than standard GE. Secondly,
during the elimination some parts of the coefficient matrix
are already very dense. Therefore a good strategy should
divide the matrix into sparse/dense blocks and deal with them
separately by using specialized libraries.

IX. CONCLUSION

When it is applied to 0-dimensional polynomial systems
over F2 having F2-rational solutions, the Border Basis Algo-
rithm (BBA) can be simplified and sped up tremendously. We
developed a Boolean BBA for such systems which reduces
the universe, i.e., the order ideal of terms in which all com-
putations take place, to a subset of the set of squarefree terms
which is kept as small as possible. The linear algebra steps
of the algorithm are optimized further by reusing some results
of previous iterations. The necessary combinatorial operations
on order ideals and monomial ideals are implemented in an
improved way such that they do not contribute significantly
to the running time anymore. A C++ implementation of the
resulting algorithm is applied to a family of examples from
cryptography, and it is used to compare the efficiency of dense
and sparse representations of the coefficient matrices involved
in the linear algebra steps. In particular, in combination with
SAT solvers, the new algorithm offers good prospects for
further improvements which allow tackling large polynomial
systems of the described type.
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algorithm to find proofs of unsatisfiability, in: Proc. STOC’96, ACM,
New York 1996, pp. 174-183.

[7] V. Gerdt and M. Zinin, A Pommaret division algorithm for comput-
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