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Abstract. Almost all current Prolog systems are based on the Warren
Abstract Machine (WAM), in which registers are used to pass procedure
arguments and store temporary variables. In this paper, we present a
stack machine for Prolog, named TOAM Jr., which departs from the
TOAM adopted in early versions of B-Prolog in that it employs no reg-
isters for arguments or temporary variables, and offers variable-size in-
structions for encoding procedure calls. TOAM Jr. is suitable for fast
bytecode interpretation: the use of coarse-grained instructions results in
more compact code and execution of fewer instructions than the use of
fine-grained instructions; and the omission of registers facilitates inter-
pretation of tagged operands and instruction merging. TOAM Jr. has
been employed in B-Prolog since Version 7.0. Benchmarking shows that
TOAM Jr. significantly enhances the speed of B-Prolog.

1 Introduction

Almost all current Prolog systems are based on the Warren Abstract Machine
(WAM) [1, 16] and its variants [5, 13]. The WAM was originally designed for
both software and hardware implementations. Procedure arguments are passed
through argument registers so that hardware registers can be exploited in native
compilers and hardware implementations. There are implementations that com-
pile programs into C or native code through a WAM-like intermediate language
[6, 14], but most popular and successful implementations only compile programs
into WAM bytecode which is then executed by an emulator. In an emulator-
based implementation, passing arguments through registers loses its advantage
since registers are simulated. In [18], Zhou proposed an abstract machine, called
Tree-Oriented Abstract Machine (TOAM), in which arguments are passed in
an old-fashioned way through stack frames. This scheme of passing arguments
through the stack, now common in virtual machines such as JVM [8] and MSIL
[7], had been adopted by Prolog interpreters [9, 17]. In the TOAM, registers are
retained to store temporary variables.

The WAM’s instruction set is very fine-grained in the sense that roughly each
symbol in the source program is mapped to one instruction. This fine-grainedness
is a big obstacle to fast interpretation due to the high dispatching cost commonly



seen in abstract machine emulators. Instruction specialization and merging are
two well-known techniques for reducing the overhead of interpretation for Prolog
[2, 5, 11]. In [10], a tool is proposed to support this endeavor.

This paper proposes an abstract machine, called TOAM Jr., which is based
on the TOAM but departs from it in that no argument registers are provided.
This means that even temporary variables are stored in stack frames. The omis-
sion of registers reduces the number of types of operands and thus makes the
interpretation of tagged operands less expensive. In addition, the elimination
of registers facilitates instruction specialization and merging. Another differ-
ence is that TOAM Jr. provides coarse-grained and variable-size instructions.
A flattened call with no structured argument is normally encoded in only one
instruction. In this way, a program requires fewer instructions to encode and
execute, and hence the dispatching cost can be reduced significantly. TOAM Jr.
has been employed in B-Prolog since Version 7.0. Benchmarking indicates that
TOAM Jr. helps enhance the speed by 59% on Windows and 89% on Linux.

The reader is assumed to know the basics of Prolog implementation as de-
scribed in [9]. The rest of the paper is structured as follows: Section 2 defines a
language called canonical-form Prolog which can be compiled straightforwardly
into TOAM Jr.. Section 3 introduces the TOAM memory architecture. Second
4 gives the definition of the base instruction set. Section 5 discusses instruc-
tion specialization and merging. Section 6 shows the experimental results, and
Section 7 concludes the paper.

2 Canonical-form Prolog

A canonical-form clause takes the following form:

Head :- Guard ChoiceOperator Body

where ChoiceOperator is either ’:’ (called a determinate choice operator) or ’?’
(called a nondeterminate choice operator), and the terms in the clause are flat-
tened to certain levels. The head is flattened such that all its arguments are
distinct variables. The Guard consists of only flattened inline tests. A matching

test to = tp in the guard is flattened such that to is a variable that has oc-
curred before in the clause and tp is a variable, a constant, or a structure or a
cons whose arguments are distinct new variables. In particular, a matching test
is called an identity test if both tp and to are variables. The body consists of
flattened unifications and calls. A unification in the body is flattened such that
one operand is a variable and the other is a variable, a constant, a list with no
compound elements, or a non-list structure with no compound arguments. A call
is flattened such that no argument is compound.

Consider the append procedure in Prolog:

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]):-append(Xs,Ys,Zs).
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This program is translated equivalently into the following canonical-form pro-
gram with no assumption of modes of arguments:

append(Xs,Ys,Zs):-var(Xs) :

append_aux(Xs,Ys,Zs).

append(Xs,Ys,Zs):-Xs=[] :

Ys=Zs.

append(Xs,Ys,Zs):-Xs=[X|Xs1] :

Zs=[X|Zs1],

append(Xs1,Ys,Zs1).

append_aux(Xs,Ys,Zs):-true ?

Xs=[],

Ys=Zs.

append_aux(Xs,Ys,Zs):-true :

Xs=[X|Xs1],

Zs=[X|Zs1],

append(Xs1,Ys,Zs1).

In general, modes of arguments, either declared by the user as required in
Mercury [14] or obtained by a program analyzer [3], can help generate more
compact and efficient canonical-form programs.

3 The Memory Architecture

Except for changes made to accommodate event handling and garbage collection
as to be detailed below, the basic architecture is the same as the TOAM [18]
employed in early versions of B-Prolog. This architecture has been extended to
support constraint propagation [19] and tabling [20].

3.1 Code and data areas

TOAM Jr. uses all the stacks and data areas used by the WAM. There is a data
area called code area that contains, besides instructions compiled from programs,
a symbol table that stores information about the atom, function, and procedure
symbols in the programs. There is one record for each symbol in the symbol
table which stores such information as the name, arity, type, and entry point if
the symbol is defined.

The control stack stores frames associated with procedure calls. Procedure
call arguments are passed through stack frames and only one frame is used for
each procedure call. Each time a procedure is invoked by a call, a frame is
placed on top of the control stack unless the frame currently at the top can be
reused. Frames for different types of procedures have different structures. For
standard Prolog, a frame is either determinate or nondeterminate. A nondeter-
minate frame is also called a choice point frame.

The heap stores terms created during execution. As in the original design of
the WAM, a block of memory is used for the control stack and the heap where
the stack grows downwards and the heap grows upwards. The trail stack stores
updates that must be undone upon backtracking. The use of a trail stack to
support backtracking is the major difference between Prolog abstract machines
and abstract machines for other languages such as Pascal, Lisp, and Java.

3.2 Term representation

A term is represented by a word containing a value and a tag. The tag distin-
guishes the type of the term. It may be REF denoting a reference, INT denoting
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an integer, ATM denoting an atom, STR denoting a structure, or LST denoting a
cons.1

The value of a term is an address except when the term is an integer (in this
case, the value represents the integer itself). The address points to a different
place depending on the type of the term. A free variable is represented by a self-
referencing pointer. A free variable stored on the stack is called a stack variable

and a free variable stored on the heap is called a heap variable. The operation
that looks for the value at the end of a reference chain is called dereference. The
address in an atom points to the record for the atom symbol in the symbol table.
The address in a structure f(t1, . . . , tn) points to a block of n + 1 consecutive
words in the heap where the first word points to the record for the functor f/n
in the symbol table, and the remaining n words store the n arguments of the
structure. The address in a cons [H |T ] points to a block of two consecutive
words in the heap where the first word stores the head H , and the second word
stores the tail T . As in Lisp implementations, this special representation for lists
benefits applications where lists are heavily used.

3.3 Registers

The following registers are used to represent the current machine status:
P: Current program pointer
TOP: Top of the control stack
AR: Current frame
H: Top of the heap
T: Top of the trail stack
B: Latest choice point frame
HB: H slot of the latest choice point frame, B->H

The HB register, which also exists in the WAM, is an alias for B->H. It is used
in checking whether or not a variable need to be trailed. When a free variable
is bound, if it is a heap variable older than HB or a stack variable older than B,
then it is trailed.

3.4 Stack frame structures

Frames for different types of procedures have different structures. A determinate
frame has the following structure:

A1..An: Arguments
AR: Pointer to the parent frame
CP: Continuation program pointer
BTM: Bottom of the frame
TOP: Top of the frame
Y1..Ym: Local variables

Where BTM points to the bottom of the frame, i.e., the slot for the first argument,
and TOP points to the top of the frame, i.e., the slot just next to that for the last

1 In B-Prolog and also our implementation, floats are represented as special structures.
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local variable. The TOP register points to the next available slot on the stack.
The BTM slot was not in the original design [18]. This slot was introduced for
support of garbage collection and event-driven action rules which require a new
type of frames called suspension frames [19]. The AR register points to the AR

slot of the current frame. Arguments and local variables are accessed through
offsets with respect to the AR slot. An argument or a local variable is denoted as
y(I) where I is the offset. Arguments have positive offsets and local variables
have negative offsets.

It is the caller’s job to place the arguments and fill in the AR and CP slots.
The callee fills in the BTM and TOP slots.

A choice point frame contains, besides the slots in a determinate frame, four
slots located between the TOP slot and local variables:

CPF: Backtracking program pointer
H: Top of the heap
T: Top of the trail
B: Parent choice point

The CPF slot stores the program pointer to continue with when the current
branch fails. The slot H points to the top of the heap and T points to the top of
the trail stack when the frame was allocated. When a variable is bound, it must
be trailed if it is older than B or HB. When execution backtracks to the latest
choice point frame, the bound variables trailed on the trail stack between T and
B->T are set back to free, the machine status registers H and T are restored, and
the program pointer register P is set to B->CPF.

The original TOAM presented in [18] had another type of frame, called non-

flat, for determinate programs that have non-flat or deep guards. This frame was
abandoned since it is difficult for the compiler to extract non-flat guards to take
advantage of this offering.

3.5 Assertions

The following assertions must always hold during execution:

1. No heap cell can reference a stack slot.
2. No older stack slot can reference a younger stack slot and no older heap

variable can reference a younger heap variable.
3. No slot in a frame can reference another slot in the same frame.

Assertions 1 and 2 are also enforced by the WAM. The third assertion is needed
to make dereference of the arguments of a last call unnecessary when the current
frame is reused. To enforce this assertion, when two terms being unified are
stack variables, the unification procedure globalizes them by creating a new heap
variable and letting both stack variables reference it.

4 The Base Instruction Set

Figure 1 gives TOAM Jr.’s base instruction set. An instruction with operands
is denoted as a Prolog structure whose functor denotes the name and whose
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Control:
allocate det(i1,i2)
allocate nondet(i1 ,i2)
return

fork(l)
cut

fail

Branch:
jmpn constant(y, lvar, lfail, a)
jmpn struct(y, lvar, lfail, f/n, y1, . . . , yn)
switch on cons(y, lnil, lvar, lfail, y1, y2)
hash(y, i, (val1, l1), . . . , (vali, li), lvar, lfail)

Unify:
unify constant(y, a)
unify value(y1, y2)
unify struct(y, f/n, z1, . . . , zn)
unify list(y, i, z1, . . . , zi, zi+1)

Move:
move struct(y, f/n, z1, . . . , zn)
move list(y, i, z1, . . . , zi, zi+1)

Call:
call(p/n, z1, . . . , zn)
last call(i, p/n, z1, . . . , zn)

Fig. 1. The TOAM Jr. base instruction set.

arguments denote the operands; and an instruction with no operand is denoted
as an atom. An operand is either a frame slot y, an integer literal i, a label l, a
constant a, a functor f/n, a procedure symbol p/n, or a tagged operand z. If an
instruction carries two or more operands of the same type, subscripts are used
to differentiate them. In the examples to be given below, the following notation
is used for tagged operands: v(i) denotes an uninitialized frame slot (i.e., a first-
occurrence variable) with offset i, u(i) denotes an initialized frame slot, and c(a)
denotes a constant a. An untagged frame slot is denoted as y(i) where i is the
offset. A singleton variable, also called a dummy variable in Prolog, is denoted
as v(0) if tagged and y(0) if untagged. Notice that tags used for operands have
nothing to do with those used for terms at runtime.

4.1 Control instructions

The first instruction in the compiled code of a procedure is an allocate instruction
which takes two operands: the arity and the size of the frame, counting out the
arguments. By the time an allocate instruction is executed, the arguments of
the current call should have been placed on top of the stack and the AR and CP

slots should have been set by the caller. An allocate instruction is responsible
for fixing the size of the current frame and saving status registers if necessary.
In the actual implementation, an allocate instruction also handles events and
interruption signals if there are any. For the sake of simplicity, these operations
are not included in the definition. Nevertheless, it is assumed that any procedure
can be interrupted and preempted by event handlers. Therefore, a runtime test
is needed to determine if the current frame can be deallocated or reused.

– The allocate det instruction starts the code of a determinate procedure.
It sets the BTM and TOP slots and updates the TOP register.

allocate det(arity,size){
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AR->BTM = AR+arity;

TOP = AR-size;

AR->TOP = TOP;

}

– The allocate nondet instruction starts the code of a nondeterminate pro-
cedure. In addition to fixing the size of the frame, it also saves the contents
of the status registers into the frame.

allocate nondet(arity,size){
allocate det(arity,size);

AR->B = B;

AR->H = H;

AR->T = T;

HB = H;

}

– The return instruction returns control to the caller, and deallocates the
frame if the current frame is the topmost one that is not pointed to by the
B register.

return(){
P = AR->CP;

if (B!=AR && AR->TOP==TOP) TOP = AR->BTM;

AR = AR->AR;

}

In the original TOAM, when the current frame is deallocated, the top of
the stack is set to be the top of the parent frame or the latest choice point
frame, whichever is younger. Nevertheless, with event handling this becomes
unsafe because the chain of active frames in the spaghetti stack are not in
chronological order [19]. For this reason, the top of the stack is set to be the
bottom of the current frame after the current frame is deallocated.

– The fork instruction resets the CPF slot of the current frame.

fork(addr){
AR->CPF = addr;

}

– The cut instruction discards the alternative branches of the current frame,
which must be a choice point frame.

– The fail instruction lets execution backtrack to the latest choice point
frame.

Example The following shows a canonical-form program and its compiled code:

% p:-true ? true.

% p:-true : true.

7



p/0: allocate_nondet(0,8)

fork l1

return

l1: cut

return

Since the procedure is nondeterminate and there is no local variable, the allo-
cated frame contains 8 slots reserved for saving the machine status.

4.2 Branch instructions

Unification calls in the guards of clauses in a procedure are encoded as branch

instructions. Each branch instruction takes a label to go to on failure of the test
lfail and also a label to go to when the tested operand is a variable lvar. The
jmpn struct instruction fetches the arguments of the tested structure into des-
ignated frame slots when the test is successful. The switch on cons instruction
moves control to the next instruction if the tested operand is a cons and to lnil

if it is an empty list. When the tested operand is a cons, the instruction also
fetches the head and tail of the cons into the designated frame slots. The hash

instruction determines the address of the next instruction based on the tested
operand and a hash table.

The following shows an example.

% p(F):-F=f(A),A=a : true.

p/1: allocate_det(1,4)

jmpn_struct(y(1),l_fail,l_fail,f/1,y(1))

jmpn_constant(y(1),l_fail,l_fail,a)

return

Notice that the argument slot with offset 1 allocated to the variable F is reused
for A. None of the branch instructions carries tagged operands.

4.3 Unify instructions

Recall that in canonical-form Prolog every unification call in the bodies takes
the form V = T where V is a variable and T is either a variable, a constant,
a list with no compound elements, or a compound term with no compound
arguments. A unify instruction encodes a unification call where neither V nor
T is a first-occurrence variable in the clause. For each type of T , there is a type
of unify instruction. The unify constant instruction is used if T is a constant;
unify value is used if T is a variable; unify list is used if T is a list, and
unify struct is used if T is a structure. The unify list(y, i, z1, . . . , zi, zi+1)
encodes the list [z1, . . . , zi|zi+1]. The unify struct and unify list instructions
have variable lengths and the operands for list elements or structure arguments
are all tagged. In a unify struct instruction, the number of tagged operands is
determined by the functor f/n; and in a unify list instruction the number is
given as a separate operand.
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A unify instruction for V = T unifies the term referenced by V with T if V
is not free. In WAM’s terminology, the unification is said to be in read mode
in this case. If V is a free variable, the instruction builds the term T and binds
V to the term. This mode is called write in the WAM. Since a unification is
encoded as only one instruction, there is no need to use a register for the mode.

Special care must be taken to ensure that no heap cell references a stack
slot. The unify list and unify struct instructions must dereference a tagged
operand if the operand is not a first-occurrence variable and globalize it if the
dereferenced term is a stack variable. This dereference operation, however, is not
as expensive as the general dereference operation since it stops walking the chain
once the content of a stack slot is found to be a reference to the heap.

The following shows an example.

% p(F):-true : F=f(L),L=[X,X,a].

p/1: allocate_det(1,4)

unify_struct(y(1),f/1,v(1))

unify_list(y(1),3,v(1),u(1),c(a),c([])

return

The argument slot with offset 1 allocated to the variable F is reused for L and
later also for X. Since L is a first-occurrence variable, it is encoded as the tagged
operand v(1). The variable X occurs twice in L=[X,X,a]. The first occurrence
is encoded as v(1) and the second one is encoded as u(1). The tagged operand
c(a) encodes the constant element a and the operand c([]) encodes the empty
tail of the list.

4.4 Move instructions

A move instruction is used to encode a unification V = T where V is a first-
occurrence variable in the clause. T is assumed to be a compound term. If T
is a constant or a variable, the unification can be performed at compile time
by substituting all occurrences of V for T in the clause. For this reason, only
move struct and move list instructions are needed.

4.5 Call instructions

A call instruction encodes a non-last call in the body of a clause.

call(p/n, z1, . . . , zn){
for each zi (i = 1, ..., n) do

*TOP-- = value of zi

parent ar = AR;

AR = TOP;

AR->AR = parent ar;

AR->CP = P;

P = entrypoint(p/n);
}
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After passing the arguments to the callee’s frame, the instruction also sets the
AR and CP slots of the frame, and lets the AR register point to the frame.

The value of each tagged operand zi is computed as follows. If it is v(k), then
the value is the address of the frame slot with offset k (it is initialized to be a
free variable) unless when k is 0, in which case the value is the content of the
TOP register. If it is u(k), then the value is the content of the frame slot with
offset k. Otherwise, the value is zi itself, which is a tagged constant.

A last call instruction encodes the last call in the body of a determinate
clause or a clause in a nondeterminate predicate that contains cuts. For a non-
determinate clause in a nondeterminate predicate that does not contain cuts,
the last call is encoded as a call instruction followed by a return instruction.
Unlike the call instruction which always allocates a new frame for the callee,
the last call instruction reuses the current frame if possible. The last call

instruction takes an integer, called layout bit vector, which tells what arguments
are misplaced and hence need to be rearranged into proper slots in the callee’s
frame when the current frame is reused. There is a bit for each argument and
the argument need to be rearranged if its bit is 1.2

last call(layout,p/n, z1, . . . , zn){
if (AR->TOP==TOP && B! =AR){ /* reuse */

for each argument zi(i = 1, . . . , n) do

if (zi is tagged u and its layout bit is 1)

copy zi to a temporary frame;

move AR->AR and AR->CP if necessary;

arg ptr = AR->BTM+1;

for each argument zi(i = 1, . . . , n) do

if (zi’s layout bit is 1)

*(arg ptr-i) = the value zi;

AR = AR+(AR->BTM)-n;

P = entrypoint(p/n);
} else

call(p/n, z1, . . . , zn);

}

The following steps are taken to reuse the current frame: Firstly, all the misplaced
arguments that are tagged u are copied out to a temporary frame. Because of the
enforcement of assertion 3 (Subsetion 3.5), it is unnecessary to fully dereference
stack slots but free variables in the frame must be globalized since otherwise
unrelated arguments may be wrongly aliased. Constants and first-occurrence
variables in the arguments are not touched in this step. Secondly, if the arity
of the current frame is different from the arity of the last call, the AR and CP

slots are moved. Thirdly, all misplaced arguments are moved into the frame for
the callee. For u-tagged arguments, the values in the temporary frame are used

2 In the actual implementation, an integer is used for the layout vector which has 28
bits for the value. If the last call has more than 28 arguments, then the last-call
optimization will be abandoned.
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instead of the old ones because the old values may have been overwritten by
other values. Finally, the AR register is reset to be AR+(AR->BTM)-n.

For example,

% p(X,Y,Z):-S=f(X,Y),q(S),r(Z,Y,X,W).

p/3: allocate_det(3,5)

move_struct(y(-1),f/2,u(3),u(2)) % S=f(X,Y)

call(q/1,u(-1)) % q(S)

last_call(0b1011,r/4,u(1),u(2),u(3),v(0))

The binary literal ’0b1101’ is the layout bit vector for the last call which indicates
that all the arguments except for the second one (Y) are misplaced. The variable
W is a singleton variable in the clause and is encoded as v(0).

4.6 Storage allocation

Each variable is allocated a frame slot and is accessed through the offset of the
slot. All singleton variables have offset 0. When an operand is tagged v, the offset
must be tested. If the offset is 0, then it is known to be a singleton variable.

Frame slots allocated to variables are reclaimed as early as possible such
that they can be reused for other variables. A variable is said to be inactive if it
is not accessible in both forward or backward execution. The storage allocated
to a variable can be reclaimed immediately after the call in which the variable
becomes inactive. Because of the existence of nondeterminate procedures, a vari-
able may still be active even after its last occurrence. For example, consider the
clause

a(U):-true : b(U,V),c(V,W),d(W).

The slot allocated to U can be reused after b(U,V) since the clause is deter-
minate, but the slot allocated to V cannot be reused even after c(V,W) if b is
nondeterminate.

5 Instruction Specialization and Merging

Instruction specialization and merging are two well-known important techniques
used in abstract machine implementations. The omission of registers can make
these techniques more effective. In this section, we discuss how some base in-
structions can be specialized and where instructions can be merged.

5.1 Instruction specialization

The variable length instructions that take tagged operands are targets for spe-
cialization. A variable length instruction is more expensive to interpret than a
fixed length instruction since the emulator need to fetch the number of operands
and iterate through the operands using a loop statement. A tagged operand is
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more expensive to interpret than an untagged one because its interpretation in-
volves the following overhead: (1) testing the tag; (2) untagging the operand if
it is a variable tagged u or v; and (3) testing if the offset is 0 if the operand is
an uninitialized variable tagged v. For an instruction of length up to n, Σn

i=13
n

specialized instructions can be created. Obviously, reckless introduction of spe-
cialized instructions will result in explosion of the emulator size and even per-
formance degradation depending on the platform.

A specialized instruction carries the number and the types of the operands
in its opcode. An instruction, named unify cons(y, z1, z2), is introduced to re-
place unify list that has two operands. For the call instruction, we introduce
specialized instructions in the form of call k u (k = 1, ..., 9) which carries k
initialized variables as operands in addition to the predicate symbol. We also
introduce specialized versions of the last call instruction that carry indexes of
misplaced arguments explicitly as operands. In general, a specialized instruction
for a last call takes the form last call k(i1, . . . , ik, p/n, z1, . . . , zn) where the
integers i1, . . . , ik are indexes of misplaced arguments that need to be rearranged.
The currently implemented abstract machine has three specialized instructions
(k = 0, 1, 2). Statistical data show that about 75% of last calls in the Aquarius
benchmark suite [12] have 2 or fewer misplaced arguments.

5.2 Instruction merging

The dispatching cost is considered one of the biggest sources of overhead in ab-
stract machine emulators. Even with fast dispatching techniques such as threaded
code, the overhead cannot be neglected. A widely used technique in abstract ma-
chine implementations for reducing the overhead is called instruction merging,
which amounts to combining several instructions into one. Although our instruc-
tions have large granularity, there are still opportunities for merging instructions.

It is often the case that a switch on cons or fork instruction is followed
by a unify instruction and a unify instruction is followed by a cut instruction.
So it makes sense to introduce merged instructions for these cases. We also
introduce merged unify instructions for combining unify instructions and return.
In addition, cut and fail are merged as well as cut and return.

When merging two instructions, we do not just combine the routines for the
original instructions to create the routine for the merged instruction. Sometimes
the merged instruction can be interpreted more efficiently. For example, consider
the merged instruction fork unify constant(l, y, a), which combines fork(l)
and unify constant(y, a). The alternative program pointer CPF is set to be l if
the unification succeeds. If the unification fails, however, execution can simply
jump to l because the machine status has not changed since the creation of
the frame. So the merged instruction not only saves the setting of CPF but also
replaces expensive backtracking with cheap jumping.

The same idea can be applied to merged instructions of unify and cut. Con-
sider the merged instruction unify constant cut(y, a). If y is a free variable,
then cut can be performed before y is bound to a. In this way, unnecessary
trailing of y can be avoided.
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Table 1. Comparison on CPU times.

program TOAM Jr. TOAM
Linux Windows

boyer 1 1.80 1.55

browse 1 1.89 1.63

chat parser 1 1.73 1.42

crypt 1 1.62 1.46

fast mu 1 2.08 1.59

flatten 1 2.45 2.28

meta qsort 1 1.84 1.64

mu 1 2.05 1.70

poly 10 1 1.79 1.61

prover 1 1.92 1.73

qsort 1 1.82 1.44

queens 8 1 1.96 1.21

query 1 1.56 1.34

reducer 1 1.85 1.70

sendmore 1 1.96 1.52

simple analyzer 1 2.33 1.88

tak 1 1.76 1.47

unify 1 2.08 1.73

zebra 1 1.32 1.25

Average 1 1.89 1.59

6 Experimental Results

TOAM Jr. has been employed in B-Prolog since Version 7.0. The implemented
machine has 18 basic instructions and over 300 specialized and merged instruc-
tions for Prolog. Table 1 compares TOAM Jr. (B-Prolog Version 7.1) with TOAM
(B-Prolog Version 6.9) on CPU time on a Windows XP machine (1.4 GHz Intel
Celeron and 1G RAM) and a Linux machine (3.8GHz CPU and 2G RAM) using
the Aquarius benchmark [12].

TOAM Jr. is on average 59% faster than TOAM on Windows and 89% faster
on Linux. It is unclear why there are more gains on Linux than on Windows. The
speedups are mainly attributed to specialized instructions, which would be more
difficult to have if registers were existent. For a base instruction with n tagged
variable operands, there are 2n possible specialized instructions. If registers were
allowed, then the number would be 4n.

Certain speed-ups are attributed to new changes made to the implement-
tion. For example, the garbage collector in Version 7.1 requires no initialization
of stack variables. This change alone contributes nearly 10% to the speed-up.
The result on the famous benchmark, named nreverse, is not included because
Version 7.1 adopts a specialized instruction for append which triples the speed
on the benchmark.
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As far as the Prolog part is concerned, the abstract machine of B-Prolog
had not changed until Version 7.0. B-Prolog used to be one of the fastest Prolog
systems [18], but during the last ten years its performance has been dragged down
by the introduction of new features such as garbage collection, event-handling
action rules, domain variables, and tabling. With TOAM Jr., B-Prolog is back
to be one of the fastest Prolog systems. There are experimental results available
elsewhere that compare B-Prolog with other Prolog systems (e.g. the logtalk
benchmark results available at http://logtalk.org/performance.html).

7 Discussion

Compiling a high-level language into an abstract or virtual machine has be-
come a popular implementation method, which has traditionally been adopted
by compilers for Lisp, Prolog, and recently made popular by implementations
of Java and Microsoft .NET. One of the biggest issues in designing an abstract
machine concerns whether to have procedure arguments passed through registers
or stack frames. Stack abstract machines are more common than register ma-
chines as exemplified by the Java Virtual Machine and Microsoft Intermediate
Language.

One of the biggest advantages of passing procedure arguments through stack
frames over through registers is that instructions for procedure calls need not
to take destinations of arguments explicitly as operands. This leads to more
compact bytecode and less interpretation overhead as well. For historical reasons,
most Prolog systems are based on the WAM, which is a register machine, except
for B-Prolog which is based on a stack machine called TOAM. Even TOAM
retains registers for temporary variables.

For Prolog, a register machine such as the WAM does have its merits even
when registers are simulated. Firstly, registers are represented as global variables
in C and the addresses of the variables can be computed at load time rather than
run time. Secondly, in some implementations a register never references a stack
slot, and hence when building a compound term on the heap the emulator need
not to dereference a component if it is stored in a register. In a highly specialized
abstract machine such as the one adopted in Quintus Prolog [11], the registers
an instruction manipulates can be encoded as part of the opcode rather than
taken explicitly as operands. In this way, if the emulator is implemented in an
assembly language to which hardware registers are directly available, abstract
machine registers can be mapped to native registers.

Nevertheless, using registers has more cons than pros for Prolog emulators.
Firstly, as mentioned above, instructions for procedural calls have to carry desti-
nation registers as operands which results in less compact code. Secondly, long-
lived data stored in registers have to be saved in stack frames and loaded later
when they are used. In Prolog, variables shared by multiple chunks3 or multiple
clauses are long-lived. According to the statistics reported by Zhou [18], passing

3 A chunk consists of a non-inline call preceded by inline calls. The head of a clause
belongs to the chunk of the first non-inline call in the body.
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arguments through registers only pays off when accessing register is five times
faster than accessing memory.4 In an abstract machine emulator where registers
are simulated, this is never the case even when the addresses of “registers” are
computed at load time. Finally, registers make it more expensive to interpret
tagged operands and harder to combine instructions because two more operand
types, namely, uninitialized and initialized register variables, have to be consid-
ered. An alternative approach to facilitating instruction merging is to store all
data in registers, as done in the BinWAM [15]. Nevertheless, this approach is
hardly competitive because of the necessity to create continuations as first-class
terms.

The need to rearrange arguments of last calls is considered a weakness of
the TOAM [4]. TOAM Jr. inherits the memory architecture of the TOAM as
well as this necessity. In the WAM, arguments need to be rearranged into proper
registers for first calls. It is easy to find program patterns that make one machine
arbitrarily worse than the other. Nevertheless, our investigation of a large num-
ber of programs shows that last calls have more to share with the heads than
first calls in most tail recursive procedures. The code generation for last calls
for TOAM Jr. is much simpler than that for the TOAM. The TOAM compiler
adopts a sophisticated algorithm for generating code for last calls. For a last
call, it builds a bipartite graph mapping the locations of arguments between the
current and new frames, and optimizes the number of move instructions needed
to rearrange the arguments.

Another design issue of abstract machines concerns the granularity of instruc-
tions. The WAM has a fine-grained instruction set in the sense that an instruction
roughly encodes a symbol in the source program. The TOAM follows the WAM
as far as granularity of instructions is concerned. There are Prolog machines that
provide more fine-grained instructions such as explicit dereference instructions
[13]. A fine-grained instruction set opens up more operations for optimization
in a native compiler, but hinders fast interpretation due to a high dispatching
cost. Instruction specialization and merging are two widely used techniques in
abstract machine emulators for reducing the cost for Prolog [2, 5, 11]. In terms of
granularity of instructions, TOAM Jr. resides between the WAM and a Prolog
interpreter [9] where terms are interpreted without being flattened. The use of
coarse-grained instructions reduces the code size and the number of executed
instructions for programs, leading to a reduced dispatching cost.

Nevertheless, the interpretation of a variable number of tagged operands
imposes certain overhead. After terms are flattened and registers are omitted,
the number of possible operand types is reduced to three (constants, uninitial-
ized variables and initialized variables). Because of the existence of only three
operand types, the cost of interpreting tagged operands is much smaller than
the dispatching cost. Also, the specialization of most frequently executed in-
structions makes interpretation of tagged operands unnecessary.

Currently our compiler basically performs no program analysis and uses no
information on modes of arguments or determinacy of procedure calls. Mode

4 That statistics did not take initialization of local stack variables into account.
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information [3] is useful for translating a program into a more compact and
efficient canonical form, and determinacy information is useful to help the storage
allocator detect the life spans of variables and allow variables to share frame slots.
It is a future task to introduce a program analyzer to infer and make use of these
kinds of useful information.

8 Conclusion

This paper has presented an abstract machine for Prolog, named TOAM Jr.,
which shares the memory architecture as the TOAM implemented in early ver-
sions of B-Prolog but differs from it in: (1) no registers are used for arguments
or temporary variables; and (2) coarse-grained instructions are used to encode
flattened calls. While there are virtual machines designed for other languages
such as JVM that provide no argument registers, no such a machine for Prolog
has been experimented with before.

TOAM Jr. has the following advantages: (1) the omission of registers fa-
cilitates interpretation of tagged operands, and instruction specialization and
merging; and (2) the use of coarse-grained instructions results in more compact
code and execution of fewer instructions, leading to a reduced dispatching cost.
Benchmarking shows that TOAM Jr. significantly improves the performance of
B-Prolog.
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11. Henrik Nässén, Mats Carlsson, and Konstantinos F. Sagonas. Instruction merging
and specialization in the SICStus Prolog virtual machine. In ACM PPDP, pages
49–60, 2001.

12. Peter Van Roy. Can Logic Programming Executes as Fast as Imperative Program-
ming? PhD thesis, Dept. of Computer Science, Univ. of California, Berkeley, Calif.,
December 1990.

13. Peter Van Roy. 1983–1993: The wonder years of sequential Prolog implementation.
Journal of Logic Programming, 19,20:385–441, 1994.

14. Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm
of Mercury, an efficient purely declarative logic programming language. Journal
of Logic Programming, 29(1-3):17–64, 1996.

15. P. Tarau and M. Boyer. Elementary Logic Programs. In P. Deransart and
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