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Abstract. Abduction is a form of inference that supports hypothetical
reasoning and has been applied to a number of domains, such as di-
agnosis, planning, protocol verification. Abductive Logic Programming
(ALP) is the integration of abduction in logic programming. Usually, the
operational semantics of an ALP language is defined as a proof proce-
dure.
The first implementations of ALP proof-procedures were based on the
meta-interpretation technique, which is flexible but limits the use of
the built-in predicates of logic programming systems. Another, more
recent, approach exploits theoretical results on the similarity between
abducibles and constraints. With this approach, which bears the ad-
vantage of an easy integration with built-in predicates and constraints,
Constraint Handling Rules has been the language of choice for the im-
plementation of abductive proof procedures. The first CHR-based imple-
mentation mapped integrity constraints directly to CHR rules, which is
an efficient solution, but prevents defined predicates from being in the
body of integrity constraints and does not allow a sound treatment of
negation by default.
In this paper, we describe the CHR-based implementation of the SCIFF
abductive proof-procedure, which follows a different approach. The SCIFF
implementation maps integrity constraints to CHR constraints, and the
transitions of the proof-procedure to CHR rules, making it possible to
treat default negation, while retaining the other advantages of CHR-
based implementations of ALP proof-procedures.

1 Introduction

According to the philosopher Peirce [1], abductive reasoning is one of the ba-
sic inferences a reasoning agent (and a human in particular) uses. It is a type
of hypothetical reasoning associated with finding explanations for a given evi-
dence. Its most classical application is diagnosis: we are given a symptom of a
patient, or a wrong behaviour of a machine, plus a set of rules explaining which
illnesses might cause the symptom/misbehaviour, and we have to guess the right



cause. Besides diagnosis, abductive reasoning has been applied to a number of
applications, like planning [2], protocol verification [3], etc.

Abductive Logic Programming (ALP) [4] is a language that embeds abduc-
tive reasoning into logic programming. In ALP, we have a set of predicates that
have no definition, and are called abducibles. The truth of such predicates cannot
be proven, but it can be assumed: the abductive derivation will provide in the
computed answer the set of abduced hypotheses, together with the binding (the
classical answer of Logic Programming languages). However, in typical applica-
tions, not all combinations of assumptions make sense: some illnesses are to be
excluded beforehand, depending e.g. on the sex of the patient. For this reason,
in ALP the user can typically define a set of rules, called Integrity Constraints,
that must be satisfied by the set of hypotheses. The operational semantics of
an ALP is typically defined as a proof-procedure. A number of proof-procedures
have been proposed in the past for performing abductive reasoning; they are
typically implemented as Prolog meta-interpreters [5–8].

A number of researchers have become interested in abductive reasoning be-
cause it deals in a simple and sound way with negation [9]. Literal not(a) is
rewritten as an integrity constraint a → false, and then handled appropriately
by the proof procedure. This type of negation is also called negation by default.

ALP has also been integrated with Constraint Logic Programming [6, 8, 10],
in order to use both abductive reasoning and constraint propagation.

Kowalski et al. [11] studied the theoretical similarities between constraints
and abducibles. Such similarity was later exploited for the implementation of
abductive proof-procedures where abducibles are mapped to CLP constraints.
For this purpose, a promising is Constraint Handling Rules (CHR) [12] a lan-
guage designed to implement new constraints and constraint solvers in a simple
and efficient way.

The first works on the implementation of abductive reasoning in CHR [13–16]
implemented directly the integrity constraints into CHR rules: in a sense, CHR
becomes also the language for writing integrity constraints. Thus, the user can
write rules such as

p ∧ q→ r,

where p and q are abducible predicates and r can be either an abducible or
a defined predicate. The interest of a CHR implementation is not only theo-
retical: thanks to the tight integration of CHR in the host language (which is
often Prolog), those proof-procedures can seamlessly access built-in constructs
and constraint solvers. This means that they have access to the innumerable li-
braries written in Prolog, and they can even recurse through external predicates:
the abductive program can invoke Prolog predicates, and also meta-predicates
(e.g., findall, minimize, . . . ), which can in their turn request the abduction
of atoms, etc. A proof-procedure written in CHR benefits immediately from all
the improvements of CHR engines, as recently happened with the Leuven CHR
implementation [17]. Finally, those ALP which do not exploit abduction (or use
abduction only in a limited subset of the application) do not suffer from the
meta-interpretation overhead, but run at full speed.
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However, a rule with a defined predicate in the antecedent is not allowed:
these languages sacrifice negation by default on the altar of efficiency, which is
a sensible thing to do in some applications, but it is not in others.

The SCIFF proof-procedure [18] was developed in 2003 with an alternative
CHR implementation, in which integrity constraints are first-class objects, and
the proof-procedure can actively reason about them. In particular, we map ab-
ducibles into CHR constraints and implement the transitions of the operational
semantics as CHR rules; in this way, the implementation follows very closely the
operational semantics. Thanks to the sound operational semantics, SCIFF has
a sound treatment of default (and also explicit) negation. Thanks to the CHR
implementation, SCIFF is smoothly integrated with a constraint solver. From a
language viewpoint, SCIFF has unique features that do not appear in other ab-
ductive proof-procedures: it handles universally quantified variables both in the
abducibles and in the integrity constraints; CLP constraints (treated as quan-
tifier restrictions [19]) can be imposed both on existentially and on universally
quantified variables.
SCIFF has been continuously developed and improved in the past few years,

and now it is smoothly integrated in graphical interfaces, semantic web applica-
tions; it is considerably faster, more robust, and provides more features.

In this paper, we show the implementation in CHR of the abductive proof-
procedure SCIFF, and we report about its recent improvements.

The rest of the paper is organised as follows. We first describe the SCIFF
abductive framework in Section 2. After some preliminaries on CHR (Section 3),
we present the implementation of SCIFF in CHR (Section 4). Discussion of
related work (Section 5) and conclusions (Section 6) follow.

2 An abductive framework

Abductive Logic Programming is a family of programming languages that inte-
grate abductive reasoning into logic programming. An ALP is a logic program,
consisting of a set of clauses, that can contain in the body some distinguished
predicates, belonging to a set A and called abducibles, (that will be shown in
the following in boldface). The aim is finding a set of abducibles ∆ ⊆ A that,
together with the knowledge base, is an explanation for a given known effect
(also called goal G):

KB ∪∆ |= G.

Also, ∆ should satisfy a set of logic formulae, called Integrity Constraints IC:

KB ∪∆ |= IC.

E.g., if a patient has a headache, a physician may consult a knowledge base

headache← flu.
headache←migraine.
headache←meningitis.
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and the abductive system will return one of the three explanations.
SCIFF [18] is a language in the ALP class. CLP [20] constraints can be

imposed on variables (which allows, for instance, to express that an event is
expected to happen in a given time interval). For example, we might have an
integrity constraint

flu→ temp(T ), T < 39

saying that the explanation flu is acceptable only if the temperature of the pa-
tient is less than 39oC. The computed answer includes in general three elements:
a substitution for the variables in the goal (as usual in Prolog), the constraint
store (as in CLP), and the set ∆ of abduced literals.
SCIFF was originally developed for the verification of interaction in multia-

gent systems [21, 22] and it is an extension of the IFF proof-procedure [7].

3 A brief introduction to Constraint Handling Rules

Constraint Handling Rules [12] (CHR for brevity hereafter) are essentially a
committed-choice language consisting of guarded rules that rewrite constraints
in a store into simpler ones until they are solved. CHR define both simplification
(replacing constraints by simpler constraints while preserving logical equiva-
lence) and propagation (adding new, logically redundant but computationally
useful, constraints) over user-defined constraints.

The main intended use for CHR is to write constraint solvers, or to extend
existing ones. However, the computational model of CHR presents features that
make it a useful tool for the implementation of the SCIFF proof-procedure.

There are three types of CHRs: simplification, propagation and simpagation.

Simplification CHRs. Simplification rules are of the form

H1, . . . ,Hi ⇐⇒ G1, . . . , Gj |B1, . . . , Bk (1)

with i > 0, j ≥ 0, k ≥ 0 and where the multi-head H1, . . . ,Hi is a nonempty
sequence of CHR constraints, the guard G1, . . . , Gj is a sequence of built-in con-
straints, and the body B1, . . . , Bk is a sequence of built-in and CHR constraints.

Declaratively, a simplification rule states that, if the guard is true, then the
left-hand-side and the right-hand-side are equivalent.

Operationally, when constraint instances H1, . . . ,Hi in the head are in the
store and the guardG1, . . . , Gj is true, they are replaced by constraintsB1, . . . , Bk

in the body.

Propagation CHRs. Propagation rules have the form

H1, . . . ,Hi =⇒ G1, . . . , Gj |B1, . . . , Bk (2)

where the symbols have the same meaning of those in the simplification rules
(1).

Declaratively, a propagation rule is an implication, provided that the guard
is true. Operationally, when the constraints in the head are in the store, and the
guard is true, the constraints in the body are added to the store.
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Simpagation CHRs. Simpagation rules have the form

H1, . . . ,Hl\Hl+1, . . . ,Hi ⇐⇒ G1, . . . , Gj |B1, . . . , Bk (3)

where l > 0 and the other symbols have the same meaning and constraints of
those of simplification CHRs (1).

Declaratively, the rule of Eq. (3) is equivalent to

H1, . . . ,Hl, Hl+1, . . . ,Hi ⇐⇒ G1, . . . , Gj |B1, . . . , Bk, H1, . . . ,Hl (4)

Operationally, when the constraints in the head are in the store and the guard is
true,H1, . . . ,Hl remain in the store, andHl+1, . . . ,Hi are replaced byB1, . . . , Bk.

For example, the constraint ≤ can be implemented in CHR by giving its base
properties, namely the following rules:

A ≤ A⇔ true (5)

A ≤ B,B ≤ A⇔ A = B (6)

A ≤ B,B ≤ C ⇒ A ≤ C (7)

where the symbol ’=’ stands for unification. The CHR engine rewrites the con-
straints in the store occurring as in the left-hand-side of the rules; for example,
if the constraints X ≤ Y , Y ≤ X are in the store, they are removed from
the store and the variables X and Y are unified, as prescribed by rule 6. Note
that on the left-hand-side of a CHR rule only constraints defined with CHR can
appear: while the right-hand-side can contain any Prolog predicate (including
CLP(FD) constraints, unifications, etc.), these elements cannot appear on the
left-hand-side.

4 Implementation of the SCIFF proof-procedure

One of the features obtained through a CHR implementation (avoiding meta-
interpretation) is that the resolvent of the proof is directly represented as the
Prolog resolvent. This allows us to exploit the Prolog stack for depth-first ex-
ploration of the tree of states. More importantly, this means that we extensively
reuse the Prolog machinery, and that built-in predicates in the host Prolog sys-
tem can be called from the user’s Abductive Logic Programs. We remark again
that this feature comes for free together with the CHR implementation, and
is not easily available in metainterpreter-based implementations of abductive
proof-procedures.

In the same way, the constraint store of the constrained abductive proof-
procedure3 is represented as the union of the CLP constraint stores. For the
implementation of the proof-procedure, we used the CLP(FD) and CLP(B) li-
braries, available both on SICStus [23] and SWI Prolog [24] We also have a

3 This constraint store, which contains CLP constraints over variables, should not be
confused with the CHR constraint store, which is used for the implementation of the
other data structures.
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CHR-based solver on finite and infinite domains, and we defined an ad-hoc solver
for reified unification. Recently, the interface between SCIFF and the constraint
solver has been re-engineered, and now it allows the developer to adopt any con-
straint solver that implements a given interface. In this way, the user can choose
for each application which solver he/she wants to use; moreover, new solvers
can be added with very limited effort. For example, the constraint solver on the
reals, CLP(R) [25] has been integrated into SCIFF: the new solver is based on
the simplex algorithm (plus branch-and-bound), which is very efficient for linear
constraints.

To the best of our knowledge, the other abductive proof-procedures imple-
mented in CHR map abducibles to CHR constraints. Integrity constraints, in-
stead, are often represented as CHR rules (typically, propagation rules) [13, 15].
Since a propagation CHR can have only CHR constraints in the multiple heads,
the corresponding abductive proof-procedure can contain only abducibles in the
precondition. This limitation forbids in the proof-procedure the implementation
of default negation, that was one of the main motivations behind Abductive
Logic Programming [9]. The operational semantics is then an extension of the
operational semantics of CHR.
SCIFF was developed following a different idea: we wanted increased flexibil-

ity in our language, while retaining the features that come for free with the CHR
implementation. We first defined the declarative and operational semantics of
SCIFF as extensions of the IFF [7]. The operational semantics is given through
a set of transitions that transform a state into another. The implementation,
which maps integrity constraints, as well as the other relevant data strutures, to
CHR constraints (rather than CHR rules) and transitions to CHR rules, follows
the operational semantics very closely.

In the following, we first show some examples of transitions; the interested
reader can find the complete list of transitions in a previous publication [18],
together with the proofs of soundness and completeness of the SCIFF proof-
procedure. We then describe the implementation of some transitions in Sec-
tion 4.2.

4.1 Examples of transitions

Given an abducible a(X) and an integrity constraint

a(Y ) ∧ p(Z) ∧ Y > Z → r(Z)

transition propagation generates the following implication (that we call Partially
Solved Integrity Constraint or PSIC for short):

X = Y ∧ p(Z) ∧ Y > Z → r(Z) (8)

Now, a transition case analysis generates two nodes of an OR-tree: in the first
we consider the case X = Y , so the previous implication is transformed into

p(Z) ∧X > Z → r(Z),
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in the second node, we consider the case that X 6= Y , and in this case the
implication (8) is already satisfied.

Suppose we choose the first node, and that the knowledge base contains the
definition of predicate p(Z), e.g., as a fact p(1). Transition unfolding generates
the following implication:

X > 1→ r(1)

Now, case analysis is again applied to the implication: in the first node we
consider the case X > 1, while in the second X ≤ 1. In the first case, the goal
r(1) is invoked.

These are just some examples of the transitions. SCIFF contains transi-
tions for handling correctly the various items (abducibles, expectations, hap-
pened events, CLP constraints, negation by default, explicit negation, etc.) in
the SCIFF language.

4.2 CHR implementation

The implementation of the transitions in CHR follows very closely the opera-
tional semantics. The various types of data are mapped to CHR constraints,
while the transitions are mapped into CHR rules. For example, abducibles are
represented as abd(X); this means that abducibles can be directly used in the
knowledge base, and CHR will take care of all the machinery necessary to abduce
a new literal and propagate its consequences. For example, the clause

g(X) : −a(X), b.

can be written as
g(X) :- abd(a(X)), b.

A (partially solved) integrity constraint

a(X) ∧ p(Y )→ r(Z) ∨ q(Z)

is mapped to the CHR constraint

psic([abd(a(X)),p(Y)],(r(Z);q(Z))).

As a first attempt, the propagation transition (together with case analysis)
can be implemented via the CHR rule

abd(X), psic([abd(Y)|Rest],Head)

==>

copy(psic([abd(Y)|Rest],Head),psic([abd(Y1)|Rest1],Head1)),

reif_unify(X,Y1,B),

(B#=1, psic(Rest1,Head1) ; B#=0).

(9)

where copy performs a renaming of an atom (which also considers the various
types of quantification in the SCIFF [18], as well as CLP constraints attached
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to the variables), #= is the finite domain equality constraint and reif_unify is
a CHR implementation of reified unification [26].

reif_unify is a CHR constraint that declaratively imposes that either B = 1
and the first two arguments unify, or B = 0 and the two atoms do not unify; in
logics, reif_unify(X,Y,B) is true iff

X = Y ↔ B = 1.

Note that some of the details are taken care of directly by CHR: if we have
a set of abducibles and a set of PSICs we do not have to remember explicitly
which PSICs have been tried with which abducibles (in order to avoid loops), as
CHR itself does this work.

Note also that propagation is attempted only with the first element of the
partially solved integrity constraint’s antecedent, but this does not impact on
what integrity constraints will be completely solved. For instance, given the
integrity constraint a,b → c, if b and a are abduced in sequence, b will not
be propagated as soon as it is abduced, but only after a has been abduced and
propagated, and the partially solved integrity constraint b→ c has been added
to the constraint store; in the end, c will be abduced anyway. In this way, we
ensure that each atom is propagated only once with each integrity constraint,
without a need to keep track of previous propagations.

A number of improvements can be done to rule (9). First of all, CHR uses
efficient indexing and hash tables to avoid checking all the possible pairs of CHR
constraints. Sadly, rule (9) does not exploit such features of CHR. Note that the
constraints in the antecedent of the propagation CHR do not share any variable,
thus the CHR engine has to try each possible pair of constraints of types abd

and psic, while, intuitively, one should try only those pairs whose arguments
may unify. A first idea would be to rewrite the transition as:

abd(X), psic([abd(X)|Rest],Head)

==> ...

which would use CHR hash tables much more efficiently, but it would propagate
only when the arguments are already ground or bound to the same term. This
would be a very lazy propagation, that does not exploit the reified unification
algorithm.

However, since abducibles are atoms, they always have a main functor, thus
the argument of abd is always a term, which can contain variables, but it cannot
be a variable itself. It is sensible to exploit the main functor for improving
the selection of candidates. We represent each abducible as a CHR constraint
with two arguments, where the first argument contains a ground term used to
improve the hashing: in the current implementation, it is a list containing the
main functor and its arity. The code for abducing an atom X is then:

abd(X) :- functor(X,F,A), abd([F,A],X).
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Now, the propagation transition can be implemented with the CHR propagation
rule:

abd(F,X), psic([abd(F,Y)|Rest],Head)

==>

fn_ok(X,Y) |

copy(psic([abd(Y)|Rest],Head),psic([abd(Y1)|Rest1],Head1)),

reif_unify(X,Y1,B),

(B#=1, psic(Rest1,Head1) ; B#=0).

(10)

i.e., only those pairs with identical first argument (i.e., abducibles that share the
same functor and arity) are tried. fn_ok is a predicate that checks if the two
arguments can possibly unify, and is also used for improving efficiency.

Many of the transitions of SCIFF open a choice point, as we can see from
the example of Eq. (10). However, in case reif_unify immediately yields 0
or 1, there is no point in opening a choice point. Otherwise, one could delay
the disjunction, in order to open choice points as late as possible, hoping that
other transitions might constrain the value of the B variable, possibly making it
ground. In other words, it would be more desirable to delay as much as possible
the non-deterministic transitions (those opening choice points), while expediting
the deterministic ones (those that do not open choice points). One reason is
that the deterministic may fail, and in this case the choice points opened by
nondeterministic choices would be useless.

In order to implement the delay mechanism, we defined a CHR constraint
’nondeterministic’ that holds, as argument, a non-deterministic goal. In the
previous example, the propagation transition is actually rewritten as

abd(F,X), psic([abd(F,Y)|Rest],Head)

==>

fn_ok(X,Y) |

copy(psic([abd(Y)|Rest],Head),psic([abd(RenY)|RenRest],RenHead)),

reif_unify(X,RenY,B),

(B == 1 -> psic(RenRest,RenHead) ;

B == 0 -> true ;

nondeterministic((B#=1, psic(RenRest,RenHead)) ; B#=0)).

i.e., we check if reified unification imposed a value on the boolean variable B, and
we open a choice point only in case it did not. The choice point is not actually
opened immediately, but it is declared in a CHR constraint.

Then, we defined a set of CHRs for dealing with nondeterministic con-
straints. We alternate a deterministic and a non-deterministic phase: initially, in
the derivation, only deterministic transitions can be activated. Later, when the
fixed point of the deterministic ones is reached, one non-deterministic transition
can be applied, and we return to the deterministic phase. In CHR:

switch2det @ phase(nondeterministic), nondeterministic(G) <=>

call(G),
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phase(deterministic).

switch2nondet @ phase(deterministic) <=> phase(nondeterministic).

where rule switch2nondet should be one of the last rules to be tried.

Transition Unfolding. Differently from HYPROLOG [15], integrity constraints
can involve literals built on defined predicates. This allows for a sound treatment
of default negation: a negative literal not(a) is converted into an implication
a → false. Given a PSIC whose body contains a literal of a predicate defined
in the KB, transition unfolding unfolds the literal:

psic([Atom|Rest],Head) <=>

is_defined_literal(Atom) |

findall(clause(Atom,Body),clause(Atom,Body),Clauses),

unfold(Clauses,psic([Atom|Rest],Head)).

unfold([],_).

unfold([clause(Atom,Body)|Clauses],psic([Atom1|Rest1],Head1)):-

ccopy(psic([Atom1,Rest1],Head1),psic([Atom2|Rest2],Head2)),

Atom = Atom2,

append(Body,Rest2,NewBody),

psic(NewBody,Head2),

unfold(Clauses,psic([Atom1|Rest1],Head1)).

This might pose problems of termination: if the unfolded predicate is recur-
sive, there exists an infinite branch in the derivation. For example, consider the
IC:

a(List),member(Term,List)→ b(Term) (11)

with the knowledge base:

member(X, [X|T ]).
member(X, [Y |T ]) : −member(X,T ).
g : −a([1, 2, 3]).

Intuitively, the goal g is true provided that we abduce a([1, 2, 3]) and b(1), b(2),
b(3). However, if we unfold predicate member in the IC (11) before the atom
a([1, 2, 3]) was abduced, the unfolding generates an infinite number of implica-
tions. For this reason, early versions of SCIFF delay the unfolding after the
other transitions, in the hope of binding some of the variables. In this particular
example, if member is unfolded only after a([1, 2, 3]) is abduced, the number of
implications generated is equal to the number of elements in the list L, which is
finite.

However, in other cases defined predicates provide just the value of a param-
eter, in this example, a deadline:

start(a, Ta) ∧ deadline(D)→ end(b, Tb) ∧ Tb ≤ Ta +D
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The knowledge base contains a simple fact deadline(5) stating that the deadline
is 5 time units. In this case, if the unfolding of deadline is postponed after
propagation of the start(a, Ta) event, it is repeated as many times as the number
of start atoms that will be abduced, which might be a big number. For this
reason, recent versions of SCIFF unfold eagerly the predicates defined only by
facts, and lazily the other predicates.

Results. The efficiency of SCIFF has greatly improved with respect to earlier
versions [27]. The following experiments were run on a 1.5GHz Pentium M 715
processor, 512MB RAM computer running SICStus 4.0.7.

Experiment SCIFF 2005 SCIFF 2011

Auction Protocol 2.27s 0.37s
Block World 45.0s 15.7s

AlLoWS Feeble conformance 84.4s 36.8s

AlLoWS non-conformant 3.7s 3.3s

The aim of these experiments is not to compete with other abductive proof-
procedures, but to show the improvements obtained taking into consideration the
features of CHR. The version 2011 features improved hashing, eager unfolding,
and other minor improvements. The experiments are real-life applications that
we developed in SCIFF: the proof of conformance of agents to an auction proto-
col, planning in the abductive event calculus, and AlLoWS [28], a system based
on SCIFF for the conformance verification of web services to choreographies.

4.3 SCIFF as a System

From a software engineering perspective, since its first prototypical implemen-
tation [27] SCIFF has been greatly improved, and it is now a fully fledged
development system (see Fig. 1). An integrated development environment for
SCIFF ALPs, implemented as an Eclipse plugin, is now available. Through a
RuleML parser, ALPs can be obtained dynamically from the web. Animations
of the output are possible through Scalable Vector Graphics (SVG), the W3C
standard for vector graphics and animations. A Graphical User Interface dis-
plays relevant information to the user [3]. Facts can be added dynamically from
a number of sources, including Linda blackboards, Apache log files, Jade Sniffer
Agent output.

5 Related work

The SCIFF abductive framework is derived from the IFF proof procedure [7],
which it extends in several directions: dynamic update of the knowledge base by
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Fig. 1. Architecture of the SCIFF system, illustrating some of the available inputs and
outputs.

happening events, confirmation and disconfirmation of hypotheses, hypotheses
with universally quantified variables, CLP constraints. Many other abductive
proof-procedures have been proposed in the past; the interested reader can refer
to the exhaustive survey by Kakas et al. [29].

Other proof-procedures deal with constraints; in particular we mention ACLP
[6] and the A-system [8], which are deeply focussed on efficiency issues.

Some conspicuous work has been done with the integration of the IFF proof-
procedure with constraints [11]. Endriss et al. [10] present an implementation
of an abductive proof-procedure that extends IFF [7] in two ways: by dealing
with constraint predicates and with non-allowed abductive logic programs. The
cited work, however, does not deal with confirmation and disconfirmation of
hypotheses and universally quantified variables in abducibles, as ours does.

All of these proof-procedures are implemented as Prolog meta-interpreters.
However, we believe that a CHR implementation has features that a meta-
interpreted version cannot have, as we explained in the introduction.

Abdennadher and Christiansen [13] and Christiansen and Dahl [30] propose
to exploit the CHR language to extend SICStus Prolog to support abduction
more efficiently than with metainterpretation-based solutions. They represent
abducibles as CHR constraints as we do, but they represent integrity constraints
directly as CHR propagation rules, using the built-in CHR matching mechanism
for propagation: this does not seem possible in our framework, in which we pose
no limitations on the type of literals that occur in the conditions of integrity
constraints. We also experimented with a similar implementation [14, 16], but
it proved insufficient for our needs, as we needed a sound treatment of default
negation and more flexibility in the quantification of variables.
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6 Conclusions and future work

In this paper, we have presented the implementation of an abductive proof-
procedure in CHR. We believe that the use of CHR in writing abductive proof-
procedures has several advantages, compared to traditional approaches based
on meta-interpretation. The first advantage is that SCIFF benefits immediately
from new implementations and improvements of CHR engines [31, 32, 17]. An-
other advantage is that the proof-procedure does not require meta-interpretation,
which lets the user invoke built-in Prolog (meta)predicates within an Abductive
Logic Program, without the need of contemplating explicitly their occurrence
in the meta-interpreter. Also, Prolog is an instance of ALP (that does not use
abduction): in SCIFF, a Prolog program that does not use abduction runs at
full speed, without the overhead of meta-interpretation.

An interesting extension of this work would be to integrate the two main
ideas for implementing abduction in CHR in a unique framework. Each of the
ideas have their own pros and cons: HYPROLOG, that implements integrity
constraints as CHR rules, has less overhead, while SCIFF, that maps integrity
constraints into CHR constraints, is able to deal with default negation and is
provably sound and complete. We are currently studying the idea of selecting
syntactically the integrity constraints in an ALP in a preprocessing phase, and
implementing each in the most efficient possible way, i.e., as CHR rules, when-
ever possible, or as CHR constraints when they contain defined predicates or
CLP(FD) constraints.

Concerning confirmation, there are many possible extensions of this work,
which we intend to pursue in the future. For instance, it would be worthwhile
to let the user impose the failure of a branch of the reasoning tree, regardless
of the confirmation or disconfirmation of the hypotheses made in the branch, in
order to explore branches that the user finds more promising. We also intend
to support a breadth-first exploration of the computation tree, as an alternative
to the depth-first exploration of the current implementation. Besides, we believe
that the formal framework would benefit from the introduction of a formalism
to express priorities among the possible alternative hypotheses, in a given state
of the computation.

Another direction of improvement could be towards better computational
performance, possibly exploiting alternative efficient CHR implementations, such
as the one proposed by Wolf [32].
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