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Abstract

Background

Machine learning (ML) approaches are a crucial component of modern data analysis in many fields including epidemiology andmedicine. Nonlinear ML methods often achieve accurate predictions, for instance in personalized medicine, as they are capable ofmodeling complex relationships between features and the target. Problematically, ML models and their predictions can be biasedby confounding information present in the features. To remove this spurious signal, researchers often employ featurewise linearconfound regression (CR). While this is considered a standard approach for dealing with confounding, possible pitfalls of using CRin ML pipelines are not fully understood.
Results

We provide new evidence that, contrary to general expectations, linear confound regression can increase the risk of confoundingwhen combined with nonlinear ML approaches. Using a simple framework that uses the target as a confound, we show thatinformation leaked via CR can increase null or moderate effects to near-perfect prediction. By shuffling the features we provideevidence that this increase is indeed due to confound-leakage and not due to revealing of information. We then demonstrate thedanger of confound-leakage in a real-world clinical application where the accuracy of predicting attention deficit hyperactivitydisorder is overestimated using speech-derived features when using depression as a confound.
Conclusions

Mishandling or even amplifying confounding effects when building ML models due to confound-leakage, as shown, can lead tountrustworthy, biased, and unfair predictions. Our expose of the confound-leakage pitfall and provided guidelines for dealing withit can help create more robust and trustworthy ML models.
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Key Points

• Confound removal is essential for building insightful and trustworthy ML models• Confound removal can increase performance when combined with nonlinear ML• This can be due to confound information leaking into the features• Possible reasons are skewed feature distributions and feature of limited precision• Confound removal should be applied with utmost care in combination with nonlinear ML

Introduction

Machine learning (ML) approaches have revolutionized biomedi-cal data analysis by providing powerful tools, especially nonlinearmodels, that can model complex feature-target relationships [1, 2].However, the very power these nonlinear models bring to data anal-ysis also lead to new challenges. Specifically, as we will detail, whena standard confound removal approach is paired with nonlinearmodels, new and surprising issues arise as the unintended is dis-covered and misinterpreted as a true effect.
Imagine building a diagnostic classifier for attention deficit hy-peractivity disorder (ADHD) based on speech patterns. This will bea useful clinical tool aiding objective diagnosis [3]. However, likemost disorders, ADHD has comorbidity, for instance with depres-sion. Ideally, an ADHD diagnostic classifier should only rely uponcharacteristics of ADHD and ignore that of depression. This is anexample of confounding, where it is desirable that the confounddepression is disregarded by the classifier. Another example of con-founding is the effect of ageing and neurodegenerative diseaseson the brain. In a study to build a neuroimaging-based diagnosticclassifier, the non-pathological ageing signal is confounding [4].Confounding is ubiquitous and further examples include batch ef-fects in genomics [5, 6, 7], scanner effects in neuroimaging [8],patient and process information in radiographs [9], and group dif-ferences like naturally different brain sizes in investigation of brain-size-independent sex differences [10, 11]. Ignoring confoundingeffects in an ML application can render predictions untrustworthyand insights questionable [12] as this information can be exploitedby learning algorithms [13] leading to spurious feature-target re-lationships [14], e.g., classification based on depression instead ofADHD or age instead of neuronal pathology. The benefits of big datain ML applications are obvious, especially when modeling weak re-lationships, but big data also leads to an increased risk of inducingconfounded models [4, 15, 16, 11]. Confounding, thus, is a crucialconcern and if not properly treated can threaten real-world appli-cability of ML.
When confounding masks the true feature-target relationship,its removal can clean the signal of interest leading to higher gen-eralizability, e.g. removal of batch effects in genomics [7]. On theother hand, when confounding introduces artefactual relationshipsthe same procedure can reduce prediction accuracy [17, 18]. In ei-ther case, removing or adjusting for confounding effects is crucialfor obtaining unbiased results, as otherwise a ML model mightmostly rely on confounds, rendering signals of interest redundant.Two methods for treating confounding are commonly employed indata analysis with the goal of building an accurate ML model thatis not biased by the confounding information. Data can be strati-fied based on the confounding variables, but it may introduce con-founding information [19], falsely increase test-set performanceby removing harder to classify data points [20], and can result in ex-cessive data loss. As confounds share variation -usually presumedlinear variance- with both the target and the features, another

common method is confound regression (CR) which removes theconfounding variance, also called confounded signal, from eachfeature separately using a linear regression model [20, 4]. The re-sulting residualized features are considered confound-free and areused for subsequent analysis. CR has become the default methodto counter confounding in observational studies, including in MLapplications [20, 21, 16]. Typically, a two-step CR-ML workflowis constructed while avoiding risks associated with typical data-leakage by applying CR in a cross-validation-consistent manner[20, 22]. It is important to note that, we use a practitioner-orientedoperational definition of confounds as a set of variables suspected toshare an unwanted effect with both the features and target, whichdoes not imply causality as in more formal definitions [23].
A CR-ML workflow typically attenuates prediction performanceas it removes variance from the features that is informative of thetarget. If an increase in performance is observed after CR, it can beexplained by either (1) information-reveal: CR reveals informationthat was masked by confounding or (2) confound-leakage: leak-age of confounding information into the features. In the case ofinformation-reveal, CR could suppress linear confounding or noisein turn enhancing the underlying (non-)linear signal and mak-ing learning easier for a suitable ML algorithm [13]. This wouldbe a positive effect similar to removing simple shortcuts in thedata [24, 25]. If this is the case then the resulting CR-ML work-flow would be a valuable for modeling non-linear relationships.Alternatively, as CR is a univariate operation applied to each fea-ture, multivariate confounding (across features) could be revealed,which could help prediction albeit undesirably. On the other hand,confound-leakage would be an even more worrisome outcome asit would leak confounding information into the features insteadof removing it. Confound-leakage would be detrimental to the va-lidity and interpretability of the ensuing CR-ML workflow and insome cases could lead to dangerous outcomes. CR has been reportedto induce biases into statistical workflows, albeit not incorporat-ing ML, leading to incorrectly inflated group differences inferencein combined batch effects removal and group difference analysis[26]. It is important to note that CR is not without other pitfalls,for instance it might fail to completely remove confounding infor-mation [21, 27]. Still, CR is considered the de facto method, andtherefore analyzing the hitherto unknown pitfall of leaking con-founding information through CR is helpful. Furthermore, therewere speculations of confound-leakage in ML workflows [18], ithas not yet been systematically shown, analyzed nor explained.
To disentangle the two possible explanations of performanceincrease after CR, we systematically analyzed the two-step CR-MLworkflow. For analysis purposes and to gain detailed knowledge,we propose a framework that uses the target as a confound (TaCo),in which we use a single confound that is the target. As a confoundneeds to share variation with both the target and the feature, anypossible confound must share all confounded signal with the target.Hence, the target can be seen as a “superconfound” subsuming allpossible confounding effects. Although it is unlikely to encounter a
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confound equal to the target in real applications, TaCo provides aframework for systematic evaluation. It should be noted that realconfounds will fall on the continuum from weak (low confoundedsignal) to strong (TaCo) depending on their degree of similaritywith the target. Indeed, as we show, the TaCo framework revealsstrong effects where the prediction accuracy is boosted from moder-ate to perfect as well as weaker effects for confounds weakly corre-lated with the target. A previous work has used TaCo for evaluatingthe validity and reliability of confound adjustment methods [21].To this end, we performed extensive empirical analyses on sev-eral benchmark datasets providing strong evidence for confound-leakage. First, we showcase confound-leakage in a walk-throughanalyses. Then using the TaCo framework we systematically an-swer whether the improvement in prediction performance after CRis due to leakage. For this, we used benchmark datasets as well asseveral conceptually simple simulations covering both classificationand regression problems. Finally, with a clinically-relevant task ofADHD diagnosis using speech-related features with depression as aconfound, we demonstrate misleading impact of confound-leakage.

Results

Walk-through analysis

The goal of this section is to introduce readers to our analysis ap-proach with intuitive examples. We show one exemplary case ofTaCo removal for a binary classification task and a CR scenario witha weaker confound in a regression task. In both cases, we randomlysplit the data into 70% train and 30% test parts. The CR and predic-tion models were learned on the training data and the results arereported on the test split. We will show that, confound-leakage canbe concluded if performance using shuffled features after CR (X̃CR).
TaCo removal for binary classificationWe analyzed the "bank investment" data to predict whether a cus-tomer will subscribe to term deposit given their financial and socio-economic information. We used a decision tree (DT) with limitedmaximum depth of two for visualization ease. This example ismeant to demonstrate key aspects of our proposed analyses (Fig. 1).TaCo removal showed a much higher area under the curve forthe receiver operating characteristic curve (AUCROC) of 0.98 com-pared to the baseline AUCROC of 0.75 without CR. Still, the TaCoremoved features were highly similar to the original features (me-dian Pearson’s correlation: 0.99, Fig. 1 a-b). The two ensuing DTswere, however, completely different and relied on different features.Notably, these drastic differences were induced by minute featurealterations after CR that are hardly detectable by humans but areeffectively captured by DT (Fig. 1 c-d). Such performance increasecan be either due to revealed information or confound-leakage.Therefore, we sought to gain evidence to distinguish between thesetwo scenarios using two complementary measurements: 1) de-stroying the relationship between features and target, and 2) use ofconfound-predicted features.To destroy the feature-target relation we shuffled each fea-ture before CR (X̃) to create X̃CR and repeated the analysis. Asthere should be no predictive information in the shuffled features,the only explanation for above chance-level performance is CRleaking information into the confound-removed features XCR, i.e.confound-leakage. We applied the shuffling procedure to a train-test split in this walk through analysis. But it should be notedthat when combined with a (nested) cross-validation and BayesianROPE approach, this procedure can be used to compare modelssimilarly as a permutation test (see section Shuffling the featuresand permutation testing). We observed chance-level performancewithout CR (AUCROC = 0.48) for the shuffled features. How-ever, a performance increase after TaCo removal was observed(AUCROC = 0.99). This analysis shows that performance increase

after TaCo removal with shuffled features indicate the possibilityof confound-leakage.
Confound removal for regressionAs an example of a weaker confound on a regression task, we sim-ulated a binary confound and then sampled a feature from dif-ferent distributions for each confound value (confound equal to0 or 1). Then we added the confound to a normally distributedtarget (M = 0 and SD = 0.50,Fig. 1 e-f). This creates a clearconfounding situation, where the confound affects both the fea-ture ( Point-biserial correlation = 0.71, p < 0.01) and the tar-get (Point-biserial correlation = 0.71, p < 0.01) and thus leadsto a spurious relationship between the feature and the target(Pearson’s correlation = 0.51, p < 0.01). Following the same pro-cedure as in the previous example, we observed increased perfor-mance after CR using a DT with limited depth of two (R2 using
X = 0.29, XCR = 0.42). As in this simulated data only a spuriousrelation (via confound) exists between the feature and target, itis safe to assume that an increased performance after CR is dueto confound-leakage. Furthermore, we found a probable mecha-nism behind this confound-leakage to be the distribution of thefeatures conditioned on the confound. More precisely, CR shifts thefeature values for confound = 1 in between most feature values forthe confound = 0 (Fig. 1 e). This leaks the confounding informa-tion into the feature instead of removing it (Fig. 1 f). The shuffledfeatures, however, were not sensitive to confound-leakage (X = 0,X̃ = –0.01), which is expected considering the probable cause forsuch leakage depends on the joint distribution of the confound andthe feature. When shuffling the features within each confound cat-egory to preserve the joint distribution, we observed an increasein performance after CR (M = 0.29 before toM = 0.42). This resultindicates that shuffling the features might not be always sensitiveto confound-leakage. We, nevertheless, use independently shuffledfeatures in our analysis for practicality, particularly in the contextof continuous or multiple confounding factors.
Analyses of benchmark data

TaCo removal increases performance of nonlinear methodsOur systematic and CV-consistent analysis comprised comparisonbetween TaCo removal pipelines and no-CR pipelines on 10 UCIrvine (UCI) datasets . TaCo removal led to a meaningful increasein out-of-sample scoring using all tested non-linear models, RF(7/10 datasets), DT (8/10) SVM with RBF kernel (5/10) and MLP(7/10) (Fig. 2, Supplementary Fig. S1). This suggests that confound-leakage is a risk associated with the usage of a CR-ML pipelinewith non-linear ML models. Furthermore, this suggests that theDT-based algorithms (DT and RF) are most susceptible to showingincreased performance.
CR using weaker confounds also increases performanceAs the target is the strongest possible confound, TaCo represents anextreme case. To test whether the potential leakage we found withTaCo extends to CR in general, using the UCI datasets we simulatedconfounds related to the target at different strengths measured byPearson’s correlation ranging 0.2 – 0.8. Depending on the dataset,different amounts of correlated confounds led to leakage after CR.We observed potential confound-leakage for 5 of the 10 datasetswith at least one of the confound-target strengths. As expected, ahigher target-confound correlation led to more leakage, i.e., higherperformance after CR (Fig. 2 C).
Increased performance after TaCo removal is due to confound-leakageAs described in the walk-through analysis (see TaCo removal forbinary classification), we measure the performance after first shuf-fling the features to evaluate whether the increased performanceafter TaCo removal/CR is due to information reveal or confound-
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leakage. After shuffling the features, both pipelines, no-CR andTaCo removal, should perform close to chance-level if the improvedperformance is due to revealed information. Indeed, the no-CRpipeline performed close to the chance level, while TaCo removalpipeline increased the performance (Fig. 2 TaCo CR Shuffled). Asthere should be no predictive information in the shuffled features,above chance-level performance could only be obtained if the CRleaks information. Thus this result provides strong evidence in-favor of the confound-leakage.For the simulated weaker confounds these results were lessstrong, still we found 5/10 datasets where XCR, 9/10 where X̃CRperformed above chance-level.
Possible mechanisms for confound-leakageAs a multitude of mechanisms could lead to confound-leakage, ex-haustively identifying all possible mechanisms is out of the scope ofthis paper. Rather we want to highlight two possible mechanismsleading to confound-leakage inspired by the walk-through anal-yses: 1) Confound-leakage due to continuous features deviatingfrom normal distributions (see Confound removal for regression)2) Confound-leakage due to unbalanced features of limited preci-sion (see TaCo removal for binary classification). Both mechanismscould be summarized under the umbrella of (small) differences ofthe conditional distributions of features given the confound insideof CV-folds.As DT-based models are very popular ML algorithms [28] andseem to be most susceptible to the described problems (see TaCoremoval increases performance of nonlinear methods) we will focuson them in our simulations to decrease the complexity of our results.Furthermore, we will use a DT whenever there is only one featuresand RF when there are multiple features.
Confound-leakage due to deviation from normal distributionsConsider simulating a standard normal feature not informative of abinary target. Then consider adding a smaller distribution aroundopposing extreme values separately for each class of a binary target(Fig. 3 a). The resulting feature only differs systematically w.r.t.the classes at the extreme values. As CR with a binary confoundis equivalent to subtracting the mean for each confounding groupfrom the respective feature, this operation is now biased towardsthe extreme parts of the feature distribution. Consequently, XCRexposes confounding information in terms of decrease in the over-lap of the feature distributions conditioned on the confound (Fig.3 a-b). In other words, confounding information leaked via CRin turn increasing the prediction performance (AUROC from 0.51before to 0.58 after TaCo removal). To show that the increased per-formance is not only due to better prediction of extreme values, wealso tested the same model on a test set without the extreme values.The results were in line with previous observations, as the AUROCimproved from 0.48 before to 0.57 after CR.We also observed higher performance after similar decreasedoverlap due to TaCo removal in a simplified version of the "housepricing" UCI benchmark dataset (3 c-d), providing real world evi-dence for this phenomena.Lastly, we investigated whether such effects could also occurwhen randomly sampling non-normal distributed features insteadof carefully constructing the features conditioned on the confound.To this end, we sampled an increasing number of features (1 to 100)either using a random normal or skewed (χ2, df = 3) distributionindependent of a normally distributed target.Using RF, we observed increased performance after TaCo re-moval with skewed features but not with normally distributedfeatures, e.g. R2 of M = 0.23 with SD = 0.06 compared to R2 of
M = –0.04 with SD = 0.04, respectively with 100 features. Impor-tantly, this effect increased with the number of features ( Fig 5).To further illustrate this point, we performed another simulationdepicting a typical confounding situation. Here, we sampled anincreasing number of features (1 to 100) with different χ2 distri-

bution given a binary confound (df = 3 (4) and scale= 0.5 (1) forconfound= 0 (1)). The target was sampled from a normal distribu-tion (M = 0, SD = 0.2) and the confound was added to it. Analysisof this data shows an increased performance after confound re-moval from M = –0.52 (SD = 0.02) to M = –0.50 (SD = 0.03)using one feature and from M = –0.02 (SD = 0.01) to M = 0.18(SD = 0.01) using 100 features. These results demonstrate thatthe effect of confound-leakage increases with increasing numberof features. These simulations show that skewed features, and byextension potentially other non-normal distributed features, canlead to confound-leakage. Interestingly, another consequence ofnon-normal distributions is insufficient removal of confoundinginformation [21].
Confound-leakage due to limited precision features
A similar effect was observed with binary features, where unbal-anced feature distributions conditioned on the confound led to leak-age. Using simulations first we confirmed that a binary featureperfectly balanced in respect to the TaCo did not lead to confound-leakage (AUCROC ofM = 0.50, SD = 0). Then, we repeated similarsimulations but now we swapped two randomly selected distinctvalues of the feature within each CV-fold, preserving the marginaldistribution of the feature but slightly changing its distribution con-ditional on the confound. This can be seen as adding a small amountof noise to the feature. Still, such a simple manipulation led to dras-tic leakage after TaCo removal with perfect AUCROC (M = 1.00,
SD = 0.00), compared to AUCROC without CR (M = 0.52, SD = 0).

To further demonstrate this effect, we analyzed a simple demon-strative classification task using DT and two binary features derivedfrom the UCI "heart dataset" representing the resting electrocar-diographic (Restecg) results. Without CR the DT had 117 nodes andachieved a moderate AUCROC (M = 0.74, SD = 0.06). In stark con-trast, after TaCo removal, the DT was extremely simple with onlyfive nodes and achieved near-perfect AUROC (M = 0.99, SD = 0.01)(Fig. 3 E). Tellingly, this DT was able to make accurate predictionsbased on numerically minute differences in feature values. Thereason for this becomes apparent when remembering that CR witha binary confound is equivalent to subtracting the mean of the cor-responding confounding group from the respective feature. Whenapplied to a binary feature, this results in four distinct values fora residual feature (Fig 3 E). When taken together with the resultson the benchmark UCI data (see Analyses of benchmark data), wecan see that such minute differences can be exploited by modelssuch as DTs, RFs and MLPs but likely not by linear models. It isimportant to note, that leakage through minute differences wasnot only observed for binary features, but also other features with alimited precision (values containing only integer or with limitedfractional parts). To demonstrate this, we predicted a random con-tinuous target using either a normally distributed feature or thesame feature rounded to the first digit. The original non-roundedfeature performed at chance level both before (R2 : M = –1.10,
SD = 0.06) and after TaCo removal (R2 : M = –1.03, SD = 0.07),while after rounding it lead to an improvement fromM = –0.08(SD = 0.01) toM = 0.70 (SD = 0.16) after TaCo removal. Featureswith limited precision, i.e. with no or rounded fractional part, arecommon, for instance, age in years, questionnaires in psychologyand social sciences, and transcriptomic data.

Confound-leakage poses danger in clinical applications

ADHD is a common psychiatric disorder that is currently diagnosedbased on symptomatology but objective computerized diagnosisis desirable [29]. Ideally a predictive model for diagnosing ADHDshould not be biased by co-morbid conditions, e.g. depression [30].To this end, comorbidity can be treated as a confound. However,a confound-leakage affected model, albeit with appealing perfor-mance, could lead to misleading diagnosis and treatment. To high-
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light the danger of confound-leakage on this clinically relevant task,we analyzed a dataset with speech-derived features with the taskto distinguish individuals with ADHD from controls. Our versionof the dataset is a balanced subsample of the dataset described byPolier et. al. [3].
The baseline RF model without CR provided mean AUROC (M =0.71, SD = 0.02). We then removed four confounds commonlyconsidered for this task, age, sex, education level, and depressionscore (Beck’s depression inventory, BDI), via featurewise CR in aCV-consistent manner. This resulted in a much higher AUCROC(M = 0.86, SD = 0.02). This model would be very attractive for real-world application if its performance is true–i.e. not impacted byleakage. However, as we have shown with our analyses confound-leakage can lead to such performance improvement. If confound-leakage is indeed driving the performance then this model couldmisclassify individuals as having ADHD because of confoundingeffects, e.g. their sex or depression, leading to misdiagnosis andwrong therapeutic interventions. To disentangle the effect of eachconfound, we looked at the performance after CR for each confoundseparately. Performing CR with BDI led to a high AUCROC withoriginal features after CR (M = 0.91, SD = 0.01), shuffled features(M = 0.84, SD = 0.01). This result revealed that BDI is driving thepotential leakage, owing to its strong relation to the target (Point-biserial correlation, r = 0.61, p < 0.01). Furthermore, a permutationtest also led to the same conclusion (see Methods and Supplemen-tary Fig. S2) Training CR models only on healthy individuals canbe helpful in clinical applications [4]. We investigated this variantof CR and again the AUCROC increased for original features afterCR M = 0.83 (SD = 0.02) and an increase with shuffled featuresfrom M = 0.51 (SD = 0.05) to M = 0.79 (SD = 0.02), suggestingthat confound leakage is also a concern for variants of CR. Lastly,we wanted to evaluate why we observe confound-leakage on thisdataset. The limited precision of features cannot be the reason hereas all features are continuous. Therefore, we hypothesized thatthe confound leaked due to some features deviating from normaldistributions. To this end we first compared the feature impor-tance between the RF after CR and using the original features. Here,we observed the RFs’ 10 most important features were completelydifferent (Fig. 4 c-d), indicating that the two RF models rely ondifferent relationships in the data. Next we visualized the distribu-tions of the two most important features of the RF after CR for bothmodels. This visualization (Fig. 4 e-f) clearly shows that CR hasshifted the distributions due to deviations from normal distribu-tions leaking information in their joint distribution. Furthermore,we trained new DTs using only these two features before or afterCR. This led to an increase of AUCROC from 0.61 to 0.70 after CRonly using these features. These analyses clearly demonstrate thatreal-world applications could suffer from confound-leakage andusers should exercise care when implementing and validating aCR-ML workflow.

Discussion

Here, we exposed a hitherto unexplained pitfall in CR-ML work-flows that use featurewise linear confound removal–a method pop-ular in epidemiological and clinical applications. Specifically, wehave shown this method can counter-intuitively introduce con-founding, which can be exploited by some non-linear ML algo-rithms. Thus in addition to the already known pitfalls of resid-ual confounding [21], our results show that CR may actually intro-duce confounding-information. We provide evidence of confound-leakage using a range of systematic controlled experiments onreal and simulated data comprising both classification and regres-sion tasks. First, to establish confound-leakage as opposed toinformation-reveal (of possibly nonlinear information) as the rea-son behind increased performance after CR, we proposed the TaCoframework, i.e., using the target as “superconfound”. This ex-

treme case of confounding allowed us to establish the existence,the extent, and possible mechanisms of confound-leakage. Specifi-cally, by comparing the without CR baseline performance with CRafter feature shuffling (X̃CR) this framework can identify confound-leakage as the cause of increased predictive performance. We thenextended the same framework to the more realistic scenario ofweaker confounds showing that also there confound-leakage canoccur.To identify risk factors of confound-leakage, we performedseveral analyses. First, we demonstrated a mechanism by whichconfound-leakage can occur: differences of the conditional distri-butions of features given the confound. In the case of continuousfeatures, non-normal distributions (e.g., skewed distributions) andin the case of discrete features, frequency imbalances can causeleakage, although other mechanisms could exist. Additionally, weshow that features of limited precision (e.g., age in years and counts)also showed susceptibility due to this mechanism. Lastly, our re-sults showed that the risk of confound-leakage increases with thenumber of features, which is especially problematic in the era of“big data”, where tens of thousands of features are a norm.Still we would like to highlight that we do not claim to have foundall possible ways confound-leakage can happen. For instance, it ispossible that other modeling approaches, even linear ones, could besusceptible to confound-leakage although we did not find evidencefor it in our analyses. Nonetheless, confound-leakage can bias thedata and may negatively impact subsequent statistical analysis [21].It is important to note that although similar, confound-leakageis not equal to collider-bias. Colliders are variables causally influ-enced by both the features and target [19]. Both collider-bias andconfound-leakage describe situations where variable adjustmentcan lead to spurious relationships between features and target. How-ever, the collider bias assumes that the removed variable has to becaused by both the features and the target which is not shared byconfound-leakage. One cannot exclude the possibility of colliderremoval using CR for many of our experiments as our operationaldefinition of confounds does not include any assumption of causal-ity. Still, we observe confound-leakage through CR for at least onecausally defined confound (see walk-through analysis) and vari-ables showing relationship only with the target. Such associationsare not covered by the causal relationships described by a collider.In other words, the mechanisms of confound-leakage can lead toleaked information due to any variable related to the target and notonly colliders or causal confounds.Taken together, our extensive results show that the commonlyused data types and settings of non-linear ML pipelines are sus-ceptible to confound-leakage when using featurewise linear CR.Therefore, this method should be applied with care, and the ensuingmodels should be closely inspected, especially in critical decisiondomains. We concretely demonstrated this using an applicationscenario from precision medicine by building models for diagno-sis of ADHD. We found that the attempt to control for comorbiditywith depression using CR lead to confound-leakage. As many disor-ders often exhibit severe comorbidity, e.g., AHDH and depressionas we demonstrated here but also neurodegenerative disorders arestrongly confounded by ageing-related factors [31] as well as comor-bidity in mental disorders [32, 33], the issue of confound-leakageshould be carefully assessed in all such applications. We recom-mend the following best practices when applying CR together withnon-linear ML algorithms:1) Assess confounding strength: Check the confounds’ relationto each feature and the target. In general, confounds strongly re-lated to the target pose a greater danger of leaking predictive infor-mation. Here, we used a straightforward approach of measuring thecorrelations between the confound and target/feature. Other meth-ods can be employed, e.g., proposed by Spisak [27]. Furthermore,measuring how dependent the predictions of a model are on theconfound by permutation testing [34, 35] or the approach proposedby Dinga et al. [21] can be helpful.To gain additional information,
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the reader might be interested in methods to estimate the variancein the target explained by ML predictions that confounds cannotexplain [21, 27].
2) Compare performance with and without CR: If the perfor-mance increases after CR, one should investigate the reason behindthe increase.
3) Gain evidence against or in favor of the confound-leakage:The procedure of shuffling the features followed by CR as we de-fined in the TaCo framework can provide clues regarding confound-leakage. Our shuffling approach can be seen as a single iteration ofpermutation testing. As our experiments suggest this is sufficientto obtain an indication of confound-leakage. However, a permu-tation test based null distribution can quantify the variability andprovide additional information. It is important to note, however,that while this can provide evidence for confound-leakage, we arenot aware of a procedure to definitively exclude confound-leakageas an explanation.
4) Carefully choose alternatives: If confound-leakage seemsprobable then consider alternative confound adjustment meth-ods. Stratification [20, 36] is commonly in conventional machine-learning or unlearning of confounding effects [37] which is com-mon in deep learning and further general approaches that promotefairness [12, 38]. Note however, that these procedures may alsoentail pitfalls. Hence, we caution researchers to exercise care whenapplying any confound adjustment protocol and to carefully con-sider limitations of the modeling approach used.

Conclusions and Future Directions

Important societal questions involving health and economic policycan be informed by applying powerful nonlinear ML models to largedatasets. To draw appropriate conclusions, confounds must be re-moved without introducing new issues that cloud the results. Inthe present study, we performed extensive numerical experimentsto gather evidence for confound-leakage. Using feature shufflingand predictions due to confound predicted features as proposedhere, investigators can get an initial indication of whether theirpipeline and data are susceptible to confound-leakage. We high-lighted the conditions most likely to lead to leakage. Although wemade progress on understanding these issues, there is no full-proofmethod for detecting and eliminating leakage. We hope our resultsprompt others to push further, perhaps expanding on the standarddefinition we adopted for confounds by introducing causal analyses.We hope our and allied efforts inform both researchers and practi-tioners who incorporate ML models into their data analyses. As astarting point, we suggest following the guidelines we provide tomitigate against confound-leakage.

Methods

Data

We analyzed several ML benchmark datasets from diverse domainsto draw generalizable conclusions. To ensure reproducibility, mostdatasets come from the openly accessible UCI repository [39]. Weincluded five classification tasks and five regression tasks withdifferent sample sizes and numbers of features. All classificationproblems were binary or were binarized, and class labels were bal-anced to exclude biases due to class imbalance [40].
We also used one clinical dataset, a balanced subsample of theADHD speech dataset described by von Polier et al. [3] includes126 individuals with 6016 speech-related features, the binary tar-get describing ADHD status (ADHD or control) and contains fourconfounds: gender, education level, age and, depression score mea-sured using the Beck’s depression inventory (BDI). For more infor-mation on the datasets see Supplementary Table S1.

Confound removal

Confound removal was performed following the standard way ofusing linear regression models. Following the common practice,we applied CR to all the features. Specifically, for each feature, alinear regression model was fit with the feature as the dependentvariable and the confounds as independent variables. The residualsof these models, i.e., original feature minus the fitted values wereused as confound-free features (XCR = X – X̂). This procedure wasperformed in a CV-consistent fashion, i.e., the confound removalmodels were fitted on the training folds and applied to the trainingand test folds [20, 22].
Target as a Confound (TaCo)

The TaCo framework allows systematic analysis of confound re-moval effects. Confounding is a three-way relationship betweenfeatures, confounds and the target. This means that a confoundneeds to share variance with both the feature and the target. Mea-suring or simulating such relationships can be hard especially iflinear univariate relationships cannot be assumed. Furthermore, ef-fects of confound removal should increase with the actual strengthof the confound. The target itself explains all the shared varianceand thus it is the strongest possible confound. Therefore, using thetarget as a confound, i.e. TaCo, measures the most possible extentof confounding. In addition, using the TaCo simplifies the analysisto a two-way relationship. Lastly, the TaCo approach is applicableto any dataset and can help to measure the strongest possible extentof confound-leakage even without knowing the confounds.
Machine Learning Pipeline

To study the effect of CR on both linear and nonlinear ML algo-rithms, we employed a variety of algorithms: linear/logistic re-gression (LR), linear kernel Support-vector machine (linear SVM),Radial Basis Function kernel Support-vector machine (RBF SVM),decision tree (DT), random forest (RF), and multilayer percep-tron (MLP) with a single hidden layer (relu). Additionally, we useddummy models to evaluate chance-level performance.In the preprocessing steps, we normalized the continuous fea-tures and continuous confounds to have a mean of zero and unitvariance, again in a CV-consistent fashion. Any categorical featureswere one-hot encoded following standard practice.
Evaluation

We compared the performance of ML pipelines with and withoutCR. To this end, we computed the out-of-sample Area under theCurve for ROC (AUCROC) for classification and predictive R2 fromscikit-learn [41] for regression problems in a 10 times repeated5-fold nested CV. We employed the Bayesian ROPE approach [42]to determine whether the results for a given dataset and algorithmwith and without CR were meaningfully higher, lower or not mean-ingfully different.
The Bayesian ROPE for model comparison

In this study we used the Bayesian ROPE [42] approach to qualify dif-ferences between K-fold cross-validation results coming from twomodels. This approach uses the Bayesian framework to computeprobabilities of the metric falling into a defined region of practicalequivalence or of one ML pipeline scoring higher than the other.This is achieved by defining a region of equivalence (here we used0.05). Consequently, the Bayesian ROPE approach allows us to makeprobabilistic statements regarding whether and if so which of theML pipelines score higher. We summarize these differences using
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the following symbols = (highest probability of pipelines scoringpractically equivalent), < (highest probability of right pipeline scor-ing higher), > (highest probability of left pipeline scoring higher).Other possibilities such as the significance test correcting for thedependency structure in K-fold CV [43] or permutation testing byshuffling the target or features can be employed when suitable.
Feature shuffling approach

Shuffling the features while keeping the confounds and target in-tact destroys the feature-target and feature-confound relationshipswhile preserving the confound-target relationship. Therefore, afterfeature shuffling any confound adjustment method cannot revealthe feature-target relationship, but it can still leak information.In other words, any performance above the chance level after CRon shuffled features is an indication of confound-leakage. Featureshuffling is also used in other approaches such as permutation test-ing (see section Bayesian ROPE) to test effectiveness of confoundadjustment methods [21]. Permutation testing can be computa-tionally expensive and, like other frequentist tests, it cannot ac-cept the null hypothesis to establish equivalence. We, therefore,adopted a computationally feasible methodology. We shuffle thefeatures, perform repeated nested cross-validation and then applythe Bayesian ROPE. For completeness, we show that both permuta-tion testing and the Bayesian ROPE detect confound leakage in theclinical dataset. In some cases feature shuffling approaches mightneed further consideration, for instance shuffling features withinconfound categories to preserve their joint distribution (see walk-through analysis), and the possibility of suppression and leakagehappening simultaneously. Nevertheless, they serve as a useful toolfor detecting confound leakage as shown in this work.

Availability of source code and requirements

• Project name: Confound-leakage• Project home page: ‘https://github.com/juaml/ConfoundLeakage‘• Operating system(s): GNU/Linux• Programming language Python 3.10.8 [43]• Other requirements: scikit-learn 0.24.2, baycomp 1.0.2, mat-plotlib 3.5.1, seaborn 0.11.2, dtreeviz 1.3.5, numpy 1.22.3, pandas1.2.5• License: GNU Affero General Public License v3.0

Availability of supporting data and materials

All 10 UCI benchmark datasets can be access freely at the UCI ma-chine learning reporsitory [39]. Together with our simulated data(availabl under https://github.com/juaml/ConfoundLeakage) , theUCI benchmark datasets compose our minimal data sets to repro-duce our key findings. Additionally, we analyzed one real-worldclinical datase ([3]). This sensitive data is available from PeakPro-filing GmbH with certain restrictions. Restrictions apply to theavailability of the data, which were used under licence for this study.Please contact Jörg Langner the co-founder and CTO of PeakProfil-ing GmbH with requests.
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Figure 1. A walk-through analysis demonstrating our analysis pipeline and
confound-leakage using DT. The results shown here are on the 30% test split. For
the binary classification walk-through using the bank investment dataset, a subset
of the features used are shown before CR (a) and after CR (b). Induced DTs and their
performance before (c) or after CR (d). The DT after CR (d) is based on minute differ-
ences in only two features and still performs nearly perfectly and better compared to
the DT on raw data (c). The regression analysis walk-through using simulated data
is depicted as feature-target relationships with the dotted line showing the predicted
values (e,f). The non-normal distribution of the feature conditioned on the confound
leaks information usable by the DT. Here, CR removes the linear relationship, as
intended, but introduces a stronger non-linear one by shifting the distribution of
XCR given confound = 0 in-between the two peaks of XCR given confound = 1 (f).

Figure 2. Performance on the UCI benchmark datasets when using raw vs CR fea-
tures (a) and raw vs the predicted features given the confound/TaCo/X̂ (b). The two
columns correspond to: 1) TaCo removal with four ML algorithms (LR, DT, RF, MLP),
and 2) CR with simulated confound with different correlation to the target (range
0.2-0.8) with RF. (a,b) show performance using the original features while (c,d)
show the performance on shuffled features. To check whether a difference between
the performance of two models is meaningful, we used the Bayesian ROPE approach
to identify what is most probable: performance being higher before removal (<),
being higher after removal (>) or equivalent (=) (see the Methods section for de-
tails). When using a linear model (LR) TaCo removal leads to reduction in prediction
performance, as expected. In contrast, nonlinear models lead to a higher perfor-
mance for all datasets. This increase could be either explained by confound removal
revealing information already in the data (suppression) or confound removal leaking
information into the features (confound-leakage). Shuffling the features destroys
association between features and the target, therefore subsequent performance
increase after TaCo removal indicates the possibility of confound-leakage (c,d). The
simulated confounds show that an increase after CR is also possible for confounds
weakly related to the target (b,d) and one dataset (Blood) shows strong evidence of
confound-leakage.

Figure 3. Two mechanisms for confound-leakage. First mechanism where non-
normal distributions get shifted apart through CR. (a,b) show this using a simulation
with extreme values on opposing sides for one feature conditioned on the TaCo. (c,d)
show a simplified version (binary target for visualization purposes) of the house
price UCI benchmark dataset. Here, the distributions of the feature conditional on
the TaCo are different (c); a narrow distribution (TaCo = 1) and a distribution with
two peaks (TaCo = 0). TaCo removal shifts the narrow distribution in-between
the two peaks (d), leaking information usable by non-linear ML algorithms. The
second mechanism, leakage through minute differences in the feature after CR, is
highlighted through the visualization of the DT trained on the heart dataset after
CR (e). Distribution plots visualize the data at each decision node. The decision
boundary is shown as a dotted line. For decision nodes before leaf nodes, the side
of the decision node leading into a prediction is colored to represent the predicted
label as diagnosed (green) or not (purple). The minute differences in the two used
features that perfectly separate the data into the two classes can be seen.

Figure 4. The real-world ADHD speech dataset. The performance when using
different confounds (a-b), most important features of RF when using BDI as con-
found (c-d) and visualization of confound-leakage due to deviation from normal
distributions (e-f). a shows the performance of a RF predicting ADHD vs healthy
controls using the original features. To check whether a difference is meaningful we
used the Bayesian ROPE approach to identify what is most probable: performance
being higher before removal (<), being higher after removal (>) or equivalent (=)
(see method section). An increased performance can be observed when using all
confounds, BDI as a confound or the TaCo. The same pattern appears when the
features were shuffled (b). This shows that the increase in performance is due to
confound-leakage and BDI is a driving factor for this leakage as it leaks information
when used as a confound. c-d visualize the 10 most important features for both
using X and XCR as features. The feature ranking is shown as white label on top of
each cell. The most important features are different for X and XCR . Furthermore, the
most important features of one model ranked as very unimportant in the other. e-f
show decision boundaries of DT trained on the two most important features after
CR. The background colors indicate the prediction of the model, the points show the
true target value and the x-axis the two most important features. The distribution
of each feature conditioned on the target is shown as the density plots. One can see
that CR leaks information by cleanly separating the blue and red points.

Figure 5. Prediction performance of a RF trained with (blue) or without (red) con-
found removal on an increasing number of features. Each feature was either sampled
from a random standard normal distribution (M = 0, std=1), a random χ2 distribu-
tion with df = 3 or a χ2 distribution with a df = 3, scale= 0.5 or df = 4, scale= 1 for
the confound being equal to 0 and 1 respectively. a) The RF trained on the normally
distributed features did not achieve performance above the chance level (R2 < 0)
irrespective of confound removal. b-c) When training the RF on either of the χ2
distributed features, confound removal resulted in above chance level performance
(R2 > 0). This effect increased with an increasing number of features and can only
be explained by confound removal leaking information into the features.
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31.05.2023 

Re: Manuscript Revision for GigaScience GIGA-D-23-00004 

 

Dear Dr. Scott Edmunds, dear Dr. Hans Zauner 

 

I am writing to submit the revised version of our manuscript titled “Confound-leakage: Confound 
Removal in Machine Learning Leads to Leakage” for consideration for publication in GigaScience. We 
would like to express our gratitude for the valuable feedback provided by the reviewers, which has 
greatly contributed to improving the quality and rigor of our work. 

 

In response to the reviewers' comments, we have made extensive revisions to the manuscript, 
incorporating additional analyses and simulations to strengthen our findings. We believe that these 
revisions have significantly enhanced the original manuscript and have addressed the concerns 
raised by the reviewers in a comprehensive manner, making it more valuable to the readers of 
GigaScience.  

 

Specifically, we have conducted a series of additional experiments and simulations to further 
investigate the issue of "confound leakage". These analyses have allowed us to explore the impact of 
confound leakage and provide more robust evidence for the validity of our main findings. 
Importantly, while we have refined our methodology and provided additional evidence, the core 
message regarding the potential confound leakage remains consistent with our original submission.  
The code used for the additional analyses has also been deposited in the GitHub repository 
(https://github.com/juaml/ConfoundLeakage). We believe that our study contributes significantly to 
the existing literature and advances the understanding of data leakage in machine learning 
applications. 

 

Below is a summary of the key changes we have made in response to the reviewers' comments: 

1. Expanded Methodology: We have added two new sections in the manuscript to describe the 
analyses methods: “The Bayesian ROPE for model comparison” and “Target as a Confound 
(TaCo)”. These sub sections provide a detailed explanation of the methods employed, 
ensuring transparency and reproducibility. 

2. Revised figures and a new figure: We have revised the figures that present the results of the 
additional analyses and simulations. These visual aids enhance the clarity and accessibility of 
our findings, allowing readers to better understand the impact of confound leakage. We 
have also added Figure 5, that shows the impact of an increasing number of features. 

3. Discussion of implications: In the revised manuscript, we have further elaborated on the 
implications of the potential confound leakage. We have also discussed the limitations 
associated with this issue and provided suggestions for future research to minimize such 
effects. 

Personal Cover Click here to access/download;Personal
Cover;Pitfalls_of_Confound_Regression_Cover_Letter_Revisio

https://github.com/juaml/ConfoundLeakage
https://www.editorialmanager.com/giga/download.aspx?id=154837&guid=28c39b91-b58b-41a1-b677-e7df116ffb4a&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=154837&guid=28c39b91-b58b-41a1-b677-e7df116ffb4a&scheme=1


  
Thank you once again for the opportunity to revise and resubmit our manuscript. We appreciate the 
time and effort invested by the reviewers in providing constructive comments, which have 
undoubtedly improved the quality of our work. We look forward to your favorable consideration of 
our manuscript for publication in GigaScience. 

 

Should you require any additional information or have any further queries, please do not hesitate to 
contact me. Thank you for your attention, and we remain at your disposal. 

 

Sincerely, 

Sami Hamdan 
PhD-student 
Institute of Neuroscience and Medicine, 
Brain & Behaviour (INM-7) 
Research Centre Jülich, Germany 
Email: s.hamdan@fz-juelich.de  

Kaustubh R. Patil, PhD 
Research Group Leader 
Applied Machine Learning 
Institute of Neuroscience and Medicine, 
Brain & Behaviour (INM-7) 
Research Centre Jülich, Germany 
E-Mail: k.patil@fz-juelich.de 
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 Dear reviewers and GigaScience Editors, 

 Thank you very much for your feedback, review and the opportunity to revise our 
 manuscript. In the following we first summarize our efforts to improve the manuscript and 
 then provide a point-by-point response to all the comments. For this reason, we will always 
 first display the reviewers’ comment in blue color and our response in black color. Quotes 
 from the manuscript and any changes are shown in triple quotes (“”” “””). Additional text is 
 shown in green color and deleted text is shown striked through in red color. 

 Summary: 
 We thank both reviewers for their insightful feedback. We have addressed all the comments 
 and this has led to an improved manuscript. We performed several additional analyses and 
 sanity checks such as permutation testing and training confound removal models only on 
 controls. We have removed our claims about use of X_hat, added new visualizations and 
 extended the methods section making our findings more accessible. Our main claim that 
 confound leakage can happen and adversely impact machine learning outcomes did not 
 change. In fact, the additional extensive analyses including permutation testing and an 
 analysis of the most important features in the clinical dataset substantiate our claims. 
 Furthermore, these analyses highlight the impact of confound-leakage on real world data. 
 In sum, we are very grateful for the reviewers feedback and the editors initiative that helped 
 us improve our work. 

 Reviewer 1: 

 We thank Dr. Richard Dinga for the encouraging words and for the detailed comments. We 
 have performed several sanity checks and other analyses to address the comments raised. 
 The code used for those has been made available in the project’s GitHub repository: 
 https://github.com/juaml/ConfoundLeakage/blob/main/extra/check_auc/CheckAUC.pdf. 

 Reviewer (R.) 1 Comment (C.) 1: 
 Confound leakage due to implementation of performance measures: One of the main pieces of 
 evidence for the "confound leakage" in the paper is that after shuffling features that there should be 
 no relationship between features and the outcome, but after applying confound regression (CR), ML 
 models can predict the outcome with above-chance performance. In my opinion, the explanation 
 authors provide makes sense, and the data do produce this behavior. However, This is a tricky 
 problem, and I might be wrong here, but I think that this bias only happens because performance 
 measures implemented in scikit-learn (and other libraries, I am sure as well) always report 
 above-chance performance, so AUC will never be < 0.5 and R2 < 0 (i.e., if model predictions would 
 result to AUC = 0.98 or 0.02, scikit-learn will in both cases report 0.98). The bias, as described in the 
 paper, does happen, but half the time, it's positive and half the time negative, and in the long run, it 
 will average to 0. (See also my next point). 
 To elaborate, after feature shuffling, there should be no relationship between the features and 
 outcome or features and confounds, so there should be no way to learn something in the training set 
 that would translate to above-chance predictions on the test set. Confound removal will create a 
 confound-dependent bias and hence a spurious signal in training set that a model will learn. However, 
 in the test set, this bias will randomly half the time be in the opposite direction. So in the test set, the 
 confound removal induced bias will half the time lead to significantly spuriously above chance and half 
 the time below chance prediction performance. This does not mean that using different AUC 
 implementations would solve the problem or that the problem is less severe, as described in the 
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 paper. Results in each test set will still be biased (positively or negatively), with possibly severe 
 consequences for the validity of the results. This should be explored and explained in the paper, and 
 the recommendations should be changed accordingly. 

 Response R.1 C.1: 
 We address this comment in two parts. 

 A. Performance measure implementation in scikit-learn is correct 
 The reviewer argues that scikit-learn implementation AUC and R2 measures always report 
 above-chance performance, which seems to be something happening in different ML 
 libraries. We were not aware of this pitfall in ML libraries and want to thank the reviewer for 
 raising this concern. However, as we show this is not the case in the scikit-learn version that 
 we are using. We used scikit-learn (version>=0.24.2) and worked with simulated data as 
 nicely provided by the reviewer in the next comment (see below, R.1 C.2). We generated 
 100 simulated datasets each using a different random seed. Then we computed the AUC in 
 both R and Python in the same way as done by the reviewer, i.e we calculated the AUC of 
 the original feature X and y and confound removed feature X_CR and y. Again, following the 
 reviewer’s example this was done without fitting a predictive model. 

 Both R and Python behave in the correct way as shown in the plot above. Specifically, they 
 showed chance-level performance when using the original feature X (left hand side) but a 
 bimodal distribution centered around 0.75 and 0.25 when using the confound removed 
 feature X_CR. Note that both R and Python show below chance-level AUC. Thus our results, 
 i.e. increased test performance after CR, can not be due to incorrect implementation of AUC 
 in scikit-learn. 
 Along similar lines, we would like to note that scikit-learn's implementation of R2 (r2_score 
 function) returns the coefficient of determination and not the squared correlation. As the 
 documentation says (and we have confirmed it) “Best possible [R2] score is 1.0 and it can be 
 negative (because the model can be arbitrarily worse).” Further details can be found in the 
 scikit-learn documentation: 
 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html. 



 or check directly in the source code starting here: 
 https://github.com/scikit-learn/scikit-learn/blob/364c77e047ca08a95862becf40a04fe9d4cd2c 
 98/sklearn/metrics/_regression.py#L927 

 B. Confound-dependent bias in the test set is not random 
 The second part of the comment raises the possibility that confound-dependent bias 
 introduced after confound removal in the training set would lead to random behavior in the 
 test set–i.e. sometimes lower and sometimes higher than chance-level performance. The 
 concern here is that if a particular implementation always returns above chance performance 
 then such randomness would be seen as high performance instead of averaging out to 
 chance level. 
 As we have shown above the scikit-learn implementation we used does indeed return both 
 below and above chance-level performance and hence we believe that this concern is not 
 applicable. The concern regarding behavior on the test set is addressed in the next comment 
 for brevity reasons. 

 Reviewer (R.) 1 Comment (C.) 2: 
 Confound regression in linear models: I think the problems of CR, as described in this paper, will also 
 be present in linear models, thus making the findings more impactful, and it should be added to the 
 paper. Here is an example with categorical data, if you excuse R code: 
 ̀``rwe 
 set.seed(1) 
 n <- 1000 
 df <- data.frame("x" = rep(c(0,1), n), 
 "y" = rbinom(n, 1, 0.25)) 
 df$x_cr <- resid(lm(x~y, data=df)) 
 library(MLmetrics) 
 MLmetrics::AUC(df$x_cr, df$y) 
 MLmetrics::AUC(df$x, df$y) 
 ̀`` 
 Here I do not fit any model, and I do not bother with the test set, but the AUC of a linear model fitted 
 on x or x_cr (feature x, after the confound removal) will be the same as the AUC of x or x_cr variables 
 themself. Also, notice that with different seeds, AUC will sometimes be 0.25 and sometimes 0.75, 
 although scikit-learn would report 0.75, following the previous point. 
 Basically, the confound regression applied to a binary variable will shift the variable slightly with 
 respect to the confound/target, thus increasing the number of unique values of the variable and 
 creating a correlation between the variable and the outcome. Since the shift is random, the correlation 
 will also be random, sometimes positive and sometimes negative. Also, in [1], we describe situations 
 where linear models can learn confounding information from the data after confound cleaning, 
 especially robust linear models, and I suspect similar issues can also lead to biases described in this 
 manuscript. 

 Response R.1 C.2: 
 Thank you very much for this detailed comment and for providing a R code snippet which 
 helped us understand your concern. 
 It is unclear to us why the AUC given a feature and target (as computed by the reviewer) 
 should be the same when using a prediction model. To investigate this, using the same 100 
 datasets generated above, we fitted a logistic regression model with either X or X_CR as a 
 feature. As can be seen in the plot below, the AUC of predicted values (indicated as y_hat) is 



 close to the chance level for both X and X_CR (blue and orange leftmost boxplots). Then we 
 fitted decision tree models to the same data and while the AUC on the original feature 
 stayed at the chance level, that of the confound removed feature was much higher 
 (rightmost boxplot, mean close to 1). 

 Here, you can see the AUC of either X and X_CR or predicted y (y_hat) given either the raw 
 (X) or confound removed (X_CR) features. As you can see the previously described effect is 
 not anymore visible when using the predicted y for AUC computation. Overall, the linear 
 model (logistic regression) did not learn the confound-dependent bias and performed at the 
 chance level (orange plot above) while a nonlinear model (decision tree) managed to learn 
 the confound-dependent signal resulting in high AUC (rightmost boxplot above). Also note 
 that the performance after model fitting does not fluctuate between below and above chance 
 level values as it does when using the original feature (see the response to R.1 C.1 above). 
 Furthermore, we would like to note that [1] discusses confounding left in the data after 
 confound removal while we investigate introduction of confounding effects through CR. The 
 analysis performed here uses all the data, i.e. no separate train and test sets, to align with 
 the reviewer’s line of thought but in the manuscript we exclusively perform predictions on 
 hold-out data. 
 We agree with the reviewer that an effect if found in linear models would increase the impact 
 of the finding but given the correct behavior of scikit-learn and chance-level performance 
 when using a linear prediction model we find no evidence for this. However, we cannot rule 



 out that in some cases linear models might learn confound-dependent biases. To highlight 
 this we have added the following sentences to the manuscript (section: Discussion page 5): 
 “”” 
 which is especially problematic in the era of “big data”, where tens of thousands of features 
 are a norm. 
 Still we would like to highlight that we do not claim to have found all possible ways 
 confound-leakage can happen. For instance, it is possible that other modeling approaches, 
 even linear ones, could be susceptible to confound-leakage although we did not find 
 evidence for it in our analyses. Nonetheless, confound-leakage can bias the data and may 
 negatively impact subsequent statistical analysis [21]. 
 It is important to note that although similar, confound-leakage is not equal to collider-bias. 
 Colliders are variables causally influenced by both the features and target [19]. 
 “”” 

 R. 1 C. 3: 
 Permutation test: The biases caused by confound regression (positive and negative, or just positive) 
 should also be presented in the permutation distribution, so using a permutation test will not change 
 the bias of the results, but the results will at least not be statistically significant, so it can guard in 
 some way against this problem. Also, an inspection of the permutation distribution might warn 
 researchers about possible problems as described in the paper, e.g., if the distribution is not centered 
 at 0 or is bimodal, it might suggest the "confound leakage." Although the permutation test is not 
 always computationally feasible, I think it should be discussed in the paper. Another way how a 
 permutation test can help is by using stratified shuffling, where shuffling is performed only within 
 confound categories. 

 Response R. 1 C. 3: 
 Thank you very much for this important remark. 

 Our goal in this paper was to investigate confound leakage where predictions using features 
 after CR are using confounding information instead of actual signal within the features. Thus 
 if the features are shuffled before CR there should be no information available to learn in the 
 features apart from any leakage during CR. Following this logic, we show that shuffled 
 features together with Bayesian ROPE can indeed detect confound leakage in various 
 settings. As you note, permutation testing can also be used to detect confound leakage, with 
 just positive bias as discussed above, and potentially provide additional information. 

 To address your suggestion we have taken the following actions: 
 A.  We describe the Bayesian ROPE approach and the rationale behind using it in more 

 detail. 
 B.  We performed a permutation test on the clinically relevant dataset which also shows 

 confound leakage. 
 C.  We have added more details on permutation testing together with stratified shuffling. 

 We use the Bayesian ROPE approach which is a computationally more efficient method. 
 Furthermore, it allows statements of equivalence which typically cannot be obtained in 
 frequentist approaches. To make this clearer we added the following subsection to Methods 
 about why we chose the Bayesian ROPE approach: 



 “”” 
 The Bayesian ROPE for model comparison 
 In this study we used the Bayesian ROPE [42] approach to qualify differences between 
 K-fold cross-validation results coming from two models. This approach uses the Bayesian 
 framework to compute probabilities of the metric falling into a defined region of practical 
 equivalence or of one ML pipeline scoring higher than the other. This is achieved by defining 
 a region of equivalence (here we used 0.05). Consequently, the Bayesian ROPE approach 
 allows us to make probabilistic statements regarding whether and if so which of the ML 
 pipelines score higher. We summarize these differences using the following symbols = 
 (highest probability of pipelines scoring practically equivalent), < (highest probability of right 
 pipeline scoring higher), > (highest probability of left pipeline scoring higher). Other 
 possibilities such as the significance test correcting for the dependency structure in K-fold 
 CV [43] or permutation testing by shuffling the target or features can be employed when 
 suitable. 
 “”” 

 We do agree with the reviewer that permutation testing can provide additional information 
 but it comes at an additional computational cost. To clarify this we have added the following 
 sentence to the Discussion (page 6): 

 “”” 
 3) Gain evidence against or in favor of the confound-leakage: 
 The procedure of shuffling the features followed by CR as we defined in the TaCo framework 
 can provide clues regarding confound-leakage. 
 Our shuffling approach can be seen as a single iteration of permutation testing. As our 
 experiments suggest this is sufficient to obtain an indication of confound-leakage. However, 
 a permutation test based null distribution can quantify the variability and provide additional 
 information. 
 “”” 

 We have also added the following to  results section (Walk-through analysis, page 3) to 
 further highlight this: 

 “”” 
 To destroy  the  feature-target relationship we shuffled  each feature before CR (̃X) to create 
 ̃XCR and repeated the analysis. As there should be no predictive information in the shuffled 
 features, the only explanation for above chance-level performance is CR leaking information 
 into the confound-removed features X_CR, i.e. confound-leakage.  We applied the shuffling 
 procedure to a train-test split in this walk through analysis. But it should be noted that when 
 combined with a (nested) cross-validation and Bayesian ROPE approach, this procedure 
 can be used to compare models similarly as a permutation test (see section Shuffling the 
 features and permutation testing).  We observed chance-level  performance without CR ( 
 AUCROC = 0.52) for the shuffled features. 
 “”” 
 We were also happy to perform a permutation test on the clinically relevant dataset. The 
 result is shown below and has been added as the new Supplementary Fig. S2. 



 Figure S2: We performed permutation testing with 1000 iterations. After shuffling the 
 features, a significantly lower performance was observed compared to the original features 
 X. No significant difference between raw and shuffled features was observed when using the 
 X_CR features. This result is in line with the leakage hypothesis as the higher accuracy after 
 shuffling and CR indicates leaking target-related confounding information into the features. 

 ‘’’ 
 This result revealed that BDI is driving the potential leakage, owing to its strong relation to 
 the target (Point-biserial correlation, r = 0.61, p < 0.01).  Furthermore, a permutation test also 
 led to the same conclusion (see Methods and Supplementary Fig. S2) 
 ‘’’ 

 Regarding stratified shuffling, again we agree that it can be a valuable approach, however, it 
 could be difficult to implement with multiple confounds where it is hard to define clear 
 categories (e.g. continuous variables). Furthermore, it is important to note that both 
 approaches (Bayesian ROPE and permutation testing) should be used with care. Both will 
 not be able to differentiate between leakage and the real signal present in the feature. Of 
 course, in this case the performance of shuffled X_CR should still be higher than the chance 
 level. For this reason we agree that inspecting the permutation distribution can be helpful. To 
 address these and additional remarks, we have added the following subsection to the 
 Methods section: 
 “”” 
 Feature shuffling approach 

 Shuffling the features while keeping the confounds and target intact destroys the 
 feature-target and feature-confound relationships while preserving the confound-target 



 relationship. Therefore, after feature shuffling any confound adjustment method cannot 
 reveal the feature-target relationship, but it can still leak information. In other words, any 
 performance above the chance level after CR on shuffled features is an indication of 
 confound-leakage. Feature shuffling is also used in other approaches such as permutation 
 testing (see section Bayesian ROPE) to test effectiveness of confound adjustment methods 
 [21]. Permutation testing can be computationally expensive and, like other frequentist tests, 
 it cannot accept the null hypothesis to establish equivalence. We, therefore, adopted a 
 computationally feasible methodology. We shuffle the features, perform repeated nested 
 cross-validation and then apply the Bayesian ROPE. For completeness, we show that both 
 permutation testing and the Bayesian ROPE detect confound leakage in the clinical dataset. 
 In some cases feature shuffling approaches might need further consideration, for instance 
 shuffling features within confound categories to preserve their joint distribution (see 
 walk-through analysis), and the possibility of suppression and leakage happening 
 simultaneously. Nevertheless, they serve as a useful tool for detecting confound leakage as 
 shown in this work. 

 “”” 

 R. 1 C. 4: 
 Analysis of confound predicted features: I do not understand the usage of features predicted by the 
 confound as an analysis step. As far as I understand it, these are just a deterministic function of the 
 confound, so I do not see any additional information that could be obtained by examining the 
 confounded predicted features and their relationship to the outcome instead of confounds themself  . 

 Response R. 1 C. 4: 
 Thank you very much for this insightful comment. 
 Indeed our claims regarding the use of confound predicted features (X_hat) were too strong. 
 The idea we wanted to explore was to investigate the variance explained by the confounds 
 that is removed from the feature. When there is an increase in performance after CR, the 
 two possibilities are either suppression or leakage. In case of suppression, X_hat has to be 
 either noise or a weak association on which the previous prediction given X was based 
 upon. Therefore, we proposed that X_hat should not be more predictive than X itself in case 
 of suppression/revealed information. But as the reviewer mentions, X_hat is a linear 
 combination of the confounds. Thus, we agree with the reviewer that for TaCo it is not 
 beneficial to look at X_hat. Therefore, we have removed all claims about X_hat from the 
 manuscript and only rely on shuffled features to indicate confound-leakage. 

 To address this comment we have modified the following sentences: 

 Section: Walk-through analysis (page 3): 
 “”” 
 and more importantly confound-predicted-features (^X) is higher than the baseline 
 performance using original features (X). 
 “”” 



 “”” 
 Nevertheless, it can be argued that confound-leakage on the shuffled features, does not 
 necessarily imply leakage for the non-shuffled features. Therefore, we used 
 confound-predicted features  ̂  X to gain direct evidence  for confound-leakage using the 
 non-shuffled features. In case of information-reveal, an increase in prediction performance 
 after CR is due to removal of noise or weakly informative variance such as linear shortcuts. 
 This means that the confound-predicted features  ̂  X  can only be predicting this weakly/ not 
 informative variance in fact meaning that  ̂  X can only  be at most as predictive as X. In other 
 words, higher accuracy when using  ̂  X than X provides  evidence of confound-leakage. In 
 this walk-through example  ̂  X ( AUCROC = 1.00 ) achieved  higher prediction score than X ( 
 AUCROC = 0.75 ) providing direct evidence of confound-leakage. Together shuffling the 
 features and  ̂  X-based prediction clearly demonstrate  that the prediction boost is due to 
 confound-leakage rather than information-reveal. 
 “”” 

 Section: “CR using weaker confounds also increases performance”, page 4 
 “”” 
 Inline with these results, ^X was also able to predict the target better than X (Fig. , 
 Supplementary Fig. S1) 
 … 
 and 3/10 where ^X had performed better than X 
 “”” 

 Section: “Confound-leakage poses danger in clinical applications”, page 5 
 “”” 
 To disentangle the effect of each confound, we looked at the performance after CR for each 
 confound separately. 
 Performing CR with BDI led to a high AUCROC with original features after CR (M = 0.91, SD 
 = 0.01), shuffled features (M = 0.84, SD = 0.01)  and  ̂ X (M = 0.84, SD = 0.01). 
 “”” 

 Section: “Discussion”, page 5 
 “”” 
 Specifically, by comparing the without CR baseline performance with CR after feature 
 shuffling ( ̃XCR)  and features as predicted by the  confound (^X)  , this framework can identify 
 confound-leakage as the cause of increased predictive performance. 
 “”” 

 Section: “Discussion”, page 6 
 “”” 
 For more direct evidence, the predictive performance of the confound predicted features (^X) 
 can be assessed. 
 “”” 



 Furthermore we removed the method section where we explain X_hat as measurement: 
 “”” 
 Predictability of ^X 

 Whenever CR lead to an increase in performance this can only have one of two reasons: 
 either 1) revealing information present in the features, or 2) leaking confounding information. 
 To reveal information in the features the CR has to suppress variance in the features 
 which make learning generalizable features-target relationship harder. For example, 
 unrelated noise or linear shortcuts could be suppressed. In other words, suppression works 
 by removing less predictable variance in the data. This means that ^X has to be less 
 predictive of the target than X in the resulting CR-ML workflow. If one finds contrasting 
 evidence, an especially highly predictive ^X, this is strong direct evidence for 
 confound-leakage through CR 
 “”” 

 Lastly, we relied on X_hat for the second walk-through analysis (result section page 3) which 
 we have now adjusted accordingly to not include X_hat as evidence: 

 “”” 
 Confound removal for regression 
 As an example of a weaker confound on a regression task, we simulated a binary confound 
 and then sampled a feature from different distributions for each confound value (confound 
 equal to 0 or 1). 
 Then we added the confound to a normally distributed target (M = 0 and SD = 0.50 , Fig. 1 
 e-f). This creates a clear confounding situation, where the confound affects both 
 the feature ( Point-biserial correlation = 0.71, p < 0.01) and the target (Point-biserial 
 correlation = 0.71, p < 0.01 ) and thus leads to a spurious relationship between the feature 
 and the target ( Pearson’s correlation = 0.51 , p < 0.01). 
 Following the same procedure as in the previous example, we observed increased 
 performance after CR using a DT with limited depth of two (R2 using X = 0.29 , XCR = 0.42). 
 As in this simulated data only a spurious relation (via confound) exists between the feature 
 and target, it is safe to assume that an increased performance after CR is due to 
 confound-leakage.  Still, shuffled features were not  sensitive to confound-leakage ( ̃X = 0 , 
 ̃XCR = –0.01). On the other hand, ^X-based predictions clearly indicate confound-leakage 
 (^X = 0.51).  Furthermore, we found a probable mechanism  behind this confound-leakage to 
 be the distribution of the features conditioned on the confound. More precisely, CR shifts the 
 feature values for confound = 1 in between most feature values for the confound = 0 (Fig. 1 
 e). This leaks the confounding information into the feature instead of removing it (Fig. 1 f). 
 The shuffled features, however, were not sensitive to confound-leakage ( ̃X = 0 , ̃XCR = 
 –0.01), which is expected considering the probable cause for such leakage depends on the 
 joint distribution of the confound and the feature. When shuffling the features within each 
 confound category to preserve the joint distribution, we observed an increase in performance 
 after CR (M=0.29 before to M=0.42). This result indicates that shuffling the features might 
 not be always sensitive to confound-leakage. We, nevertheless, use independently shuffled 
 features in our analysis for practicality, particularly in the context of continuous or multiple 
 confounding factors. 
 “”” 



 We have removed all the X_hat from the plots as well. See end of this document for an 
 overview of all figures. 

 R. 1 C.  5.: 
 References: I think that our paper [1] should be referred to more extensively. We did not describe the 
 problems described in this manuscript, but our findings are relevant to his paper and will also interest 
 readers. Specifically: 

 Response R. 1 C. 5: 
 Thank you very much for your comment. The paper [1] is indeed of interest and shows 
 several relevant analyses. However, there is a key difference between the problems 
 described in [1] and our work. While [1] deals with measuring residual confounding after 
 removal, we address the introduction of confounding through confound removal. This is why 
 we are hesitant to make too many direct connections between these two different questions. 
 Still, we understand that one could discuss the relevance of your paper more. Below we 
 address each sub comment separately. 

 Subcomment  a.  We have extensively discussed the pitfalls  of confound removal. This should be 
 mentioned in the introduction and discussion when discussing the confound removal. Consider 
 discussing these pitfalls in a few sentences. In light of our paper, instead of framing confound 
 regression as something that is expected to work, it should be framed as something that was already 
 reported to be problematic. 

 Response a: 
 Thank you for your remark. We have added the following sentences to highlight that CR is 
 already seen as problematic due the pitfall of leaving residual confounding information after 
 removal. 

 -  Introduction (page 2)  : 
 “”” 
 It is important to note that CR is not without other pitfalls, for instance it might fail to 
 completely remove confounding information [21, 27]. Still, CR is considered the de facto 
 method, and therefore analyzing the hitherto unknown pitfall of leaking confounding 
 information through CR is helpful. Furthermore, there were speculations of  Although a recent 
 study has speculated  confound-leakage in ML workflows  [18], it has not yet been 
 systematically shown, analyzed nor explained. 
 “”” 

 - Discussion (page 5): 
 “”” 
 Specifically, we have shown this method can counter-intuitively introduce confounding, which 
 can be exploited by some non-linear ML algorithms. 
 Thus in addition to the already known pitfalls of residual confounding [21], our results show 
 that CR may actually introduce confounding-information. 
 “”” 

 Subcomment b: 



 The explanations in the section "confound-leakage due to deviation from normal distributions," 
 including figures 1e and 1f, is related to our explanations of why confound removal does not 
 sufficiently clean data from confounding information, and I think this should be mentioned. 

 Response b: 
 We have added the following sentence to the Results (page 4) in response to this request: 
 “”” 
 These simulations show that skewed features, and by extension potentially other non-normal 
 distributed features, can lead to confound-leakage.  Interestingly, another consequence of 
 non-normal distributions is insufficient removal of confounding information [21]. 
 “”” 

 Subcomment c: 
 Using a target as a confound to test the validity/reliability of confound removal was also done in our 
 paper, and I think it should be mentioned. 

 Response c: 
 We have modified the text in response to this request (Introduction, page 3): 
 “”” 
 Indeed, as we show, the TaCo framework reveals strong effects where the prediction 
 accuracy is boosted from moderate to perfect as well as weaker effects for confounds 
 weakly correlated with the target.  A previous work  has used TaCo for evaluating the validity 
 and reliability of confound adjustment methods [21]. 
 “”” 

 Subcomment d: 
 The method to deal with confounding presented in our paper will guard against the dangers of 
 confound regression described in this manuscript. Our method is based on estimating what variance 
 in the outcome can be explained using ML predictions that confounds cannot explain, so in the target 
 as confound situation, this will be 0, thus the dangers of confounded results should be avoided. This 
 should be discussed more in the recommendation section. Also, statements like "we made progress 
 on understanding these issues, there is no full-proof method for detecting and eliminating leakage," 
 and "we are not aware of a procedure to definitively exclude confound-leakage as an explanation." 
 etc. should be modified since I believe that our method, although not perfect, is a candidate solution 
 for this problem and it would of interest to readers to offer them a solution, of course with caveats. 
 Another solution not discussed in the manuscript would be the permutation test mentioned in point 3. 

 Response d: 
 Thank you very much for your comment. In fact, we have already mentioned your work as 
 well as permutation testing in the Discussion (page 6). 

 “”” 
 Other methods can be employed, e.g., proposed by Spisak [27]. Furthermore, measuring 
 how dependent the predictions of a model are on the confound by permutation testing [34, 
 35] or the approach proposed by Dinga et al. [21] can be helpful. 
 “”” 

 To further emphasize the importance the methods mentioned by you we have added them to 
 the next recommendation section: 
 “”” 



 To gain additional information, the reader might be interested in methods to estimate the 
 variance in the target explained by ML predictions that confounds cannot explain [21, 27]. 
 “”” 

 We think it is important to not make claims of any full-proof methods. As mentioned in the 
 new section mentioned in  Response R. 1 C. 3  , comparing  models trained in different 
 scenarios can be problematic as similar performance can be achieved by relying on different 
 types of information both present in the data, e.g. a combination of suppression and leakage. 
 As the reviewer has pointed out that their method is not without caveats, we do not feel 
 comfortable to claim that any of the discussed candidates are full-proof. 

 R. 1 C.  6: 
 High-dimensional data are more susceptible to confound leakage: I am not entirely sure this claim is 
 correct. For me, intuitively, it is not. I can imagine that biases created within individual features by 
 confound removal might average out to 0 in high-dimensional data in the test set. I think it would be 
 worth performing a controlled simulation to support this claim. 

 Response R. 1 C. 6: 
 Thank you very much for your feedback. 
 We had already included a controlled simulation to support this claim in the manuscript, but 
 we agree that it was not featured prominently enough. To address this we have now moved 
 an adjusted version of the former Supplementary Fig. 2 into the manuscript as Fig. 5 and 
 added a new simulation to further support this claim (Results, page 4). 

 “”” 
 Lastly, we investigated whether such effects could also occur when randomly sampling non-normal 
 distributed features instead of carefully constructing the features conditioned on the confound. To this 
 end, we sampled an increasing number of features (1 to 100) either using a random normal or skewed 
 (  χ  2, df = 3) distribution independent of a normally  distributed target. 
 Using RF, we observed increased performance after TaCo removal with skewed features but not with 
 normally distributed features, e.g. R2 of M = 0.23 with SD = 0.06 compared 
 to R2 of M = –0.04 with SD = 0.04, respectively with 100 features. Importantly, this effect increased 
 with the number of features (  Supplementary Fig. S2  Fig 5  ). 
 To further illustrate this point, we performed another simulation depicting a typical 
 confounding situation. Here, we sampled an increasing number of features (1 to 100) with 
 different χ2 distribution given a binary confound (df=3 (4) and scale=0.5 (1) for confound=0 
 (1)). The target was sampled from a normal distribution (M=0, SD=0.2) and the confound 
 was added to it. Analysis of this data shows an increased performance after confound 
 removal from M=-0.52 (SD=0.02) to M=-0.50 (SD=0.03) using one feature and from M=-0.02 
 (SD=0.01) to M=0.18 (SD=0.01) using 100 features. These results demonstrate that the 
 effect of confound-leakage increases with increasing number of features. 
 “”” 

 Minor 

 7. I think the methods used need a little more explanation, and the structure could be a little improved. 
 Although what "target as confound" does is, in a way, self-evident, the procedure and motivation for it 



 can be explained a bit more. Also, now the whole explanation is at the end of the introduction section, 
 but it should be elsewhere. 

 Thank you very much for this excellent point. We agree that a more detailed methods 
 section will improve the structure and readability. We still would like to keep the explanation 
 of TaCo in the introduction to guide readers through the paper. 
 We have added the following subsection to the Methods: 

 “”” 
 Target as a Confound (TaCo) 

 The TaCo framework allows systematic analysis of confound removal effects. Confounding is 
 a three-way relationship between features, confounds and the target. This means that a 
 confound needs to share variance with both the feature and the target. Measuring or 
 simulating such relationships can be hard especially if linear univariate relationships cannot 
 be assumed. Furthermore, effects of confound removal should increase with the actual 
 strength of the confound. The target itself explains all the shared variance and thus it is the 
 strongest possible confound. Therefore, using the target as a confound, i.e. TaCo, measures 
 the most possible extent of confounding. In addition, using the TaCo simplifies the analysis 
 to a two-way relationship. Lastly, the TaCo approach is applicable to any dataset and can 
 help to measure the strongest possible extent of confound-leakage even without knowing the 
 confounds. 
 “”” 

 8. possible bug: I suspect that in your walkthrough analysis, X_train_shuffled variable is not 
 shuffled since you are calling X_train_shuffled = pd.DataFrame(zscore.transform(X_train), 
 columns=col_names[:-1]) 
 and not   X_train_shuffled = 
 pd.DataFrame(np.random.permutation(zscore.transform(X_train)), columns=col_names[:-1]) 
 as in other variables. But I am not an expert on the workings of the code. Nevertheless, it 
 won't change anything about the paper. The biases described by the authors will still be 
 present. 

 Thank you very much for looking at the code and finding this bug! 
 Indeed, this was a bug that we have fixed. As you said, it makes no difference for the 
 interpretation of our results. The following values changed in a non fundamental way due to 
 this bug-fix (Walk-through analysis, page 3): 

 “”” 
 We observed chance-level performance without CR ( AUCROC =  0.52  0.48  ) for the shuffled 
 features. However, a performance increase after TaCo removal was observed ( AUCROC = 
 0.98  0.99  ). This analysis shows that performance increase  after TaCo removal with shuffled 
 features indicate the possibility of confound-leakage. 
 “”” 



 Reviewer 2 (R.2.)  : 
 The manuscript overrides the common perception that linear regression can help remove confounding 
 effect in machine learning analysis. Experiments showed that in certain scenarios linear regression 
 can inject confounding effects that can be picked up by non-linear machine learning models, e.g., by 
 achieving higher prediction accuracy even when using shuffled features. Two hypotheses are given 
 why such phenomenon can happen. 

 I think some part of the analysis resolved my long-lasting confusion in my own studies. Interesting 
 observations overall, but there are three major concerns that I hope the authors can respond to: 

 We thank you for your encouraging words. 

 R. 2 C. 1. 
 While linear regression is a standard way to remove confounding effects, how to construct that 
 regression can vary from case to case. In the scenario where the confounder is highly correlated with 
 the label, people sometimes incorporate both label and confounder as covariates, or apply linear 
 regression only in the control group. The idea is that you need to disentangle variance in the feature 
 explained by the label from the variance explained by the confound. Again, feature, label, and 
 confound have three-way dependencies by definition and failure to discuss this aspect can be 
 misleading. 

 Thank you very much for your insightful comment. 
 First, indeed, adding the confounders as covariates to the model is a common approach in 
 statistical analysis which can shed light on how much variance is explained by the 
 confounder. However, the focus of this work is building ML models that do not use 
 confounding information, i.e. they are confound-free. Therefore such ML set-ups do not 
 include confounds as features. To clarify our focus, we have added the following text to the 
 Introduction (page 2): 

 “”” 
 Two methods for treating confounding are commonly employed in data analysis  with the goal 
 of building an accurate ML model that is not biased by the confounding information  . 
 “”” 

 Second, we thank you for mentioning the possibility of training confound removal models 
 only on the control group. We have incorporated this set-up into the manuscript by repeating 
 our analysis for the clinically relevant ADHD dataset while training CR only on the healthy 
 group and then removing their variance from the data as described by you and Dukart et al. 
 [2]. The results confirm our previous statements as we observe the same pattern of increase 
 in accuracy due to confound leakage as using standard CR. To highlight this point we added 
 the following sentences to the Results (subsection: “Confound-leakage poses danger in 
 clinical applications”, page 5): 

 “”” 
 Training CR models only on healthy individuals can be helpful in clinical applications [4]. We 
 investigated this variant of CR and again the AUCROC increased for original features after 
 CR M=0.83 (SD=0.02) and an increase with shuffled features from M=0.51 (SD=0.05) to 
 M=0.79 (SD=0.02), suggesting that confound leakage is also a concern for variants of CR. 
 “”” 



 Also thank you very much for the remark that readers should always consider the actual 
 problem to be a three-way depency. This complexity is one of our key motivations of using 
 TaCo and therefore very important for this paper. Therefore we highlight this in our new 
 method section: 

 “”” 
 Target as a Confound (TaCo) 

 The TaCo framework allows systematic analysis of confound removal effects. Confounding is 
 a three-way relationship between features, confounds and the target. This means that a 
 confound needs to share variance with both the feature and the target. Measuring or 
 simulating such relationships can be hard especially if linear univariate relationships cannot 
 be assumed. Furthermore, effects of confound removal should increase with the actual 
 strength of the confound. The target itself explains all the shared variance and thus it is the 
 strongest possible confound. Therefore, using the target as a confound, i.e. TaCo, measures 
 the most possible extent of confounding. In addition, using the TaCo simplifies the analysis 
 to a two-way relationship. Lastly, the TaCo approach is applicable to any dataset and can 
 help to measure the strongest possible extent of confound-leakage even without knowing the 
 confounds. 
 “”” 

 R. 2 C. 2. 
 I generally do not agree with the claim that "\hat{X} can only be at most as predictive as X", 
 especially in the TaCo setting. Using label as the super confound, we are basically trying to 
 explicitly preserve label-related component in the feature and discard information irrelevant 
 to the label. This actually makes the classification simpler, which does not indicate 
 confounder-leakage. If authors agree with my view, I would suggest changing their 
 interpretation of this part of the results or removing them. 

 Thank you very much for your remark. 
 Your feedback and the comment 4 from Reviewer 1 have led us to rethink the interpretation 
 of X_hat. We acknowledge that we overinterpreted its usefulness and have now removed it 
 from the manuscript as it does not provide more evidence than just predicting the target from 
 the confound. We now only rely on the shuffling approach which we have also extended for 
 clinically relevant dataset to include a permutation test. 

 To address this comment we have modified the following sentences: 

 Section: Walk-through analysis (page 3): 
 “”” 
 and more importantly confound-predicted-features (^X) is higher than the baseline 
 performance using original features (X). 
 “”” 



 “”” 
 Nevertheless, it can be argued that confound-leakage on the shuffled features, does not 
 necessarily imply leakage for the non-shuffled features. Therefore, we used 
 confound-predicted features  ̂  X to gain direct evidence  for confound-leakage using the 
 non-shuffled features. In case of information-reveal, an increase in prediction performance 
 after CR is due to removal of noise or weakly informative variance such as linear shortcuts. 
 This means that the confound-predicted features  ̂  X  can only be predicting this weakly/ not 
 informative variance in fact meaning that  ̂  X can only  be at most as predictive as X. In other 
 words, higher accuracy when using  ̂  X than X provides  evidence of confound-leakage. In 
 this walk-through example  ̂  X ( AUCROC = 1.00 ) achieved  higher prediction score than X ( 
 AUCROC = 0.75 ) providing direct evidence of confound-leakage. Together shuffling the 
 features and  ̂  X-based prediction clearly demonstrate  that the prediction boost is due to 
 confound-leakage rather than information-reveal. 
 “”” 

 Section: “CR using weaker confounds also increases performance”, page 4 
 “”” 
 Inline with these results, ^X was also able to predict the target better than X (Fig. , 
 Supplementary Fig. S1) 
 … 
 and 3/10 where ^X had performed better than X 
 “”” 

 Section: “Confound-leakage poses danger in clinical applications”, page 5 
 “”” 
 To disentangle the effect of each confound, we looked at the performance after CR for each 
 confound separately. 
 Performing CR with BDI led to a high AUCROC with original features after CR (M = 0.91, SD 
 = 0.01), shuffled features (M = 0.84, SD = 0.01)  and  ̂ X (M = 0.84, SD = 0.01). 
 “”” 

 Section: “Discussion”, page 5 
 “”” 
 Specifically, by comparing the without CR baseline performance with CR after feature 
 shuffling ( ̃XCR)  and features as predicted by the  confound (^X)  , this framework can identify 
 confound-leakage as the cause of increased predictive performance. 
 “”” 

 Section: “Discussion”, page 6 
 “”” 
 For more direct evidence, the predictive performance of the confound predicted features (^X) 
 can be assessed. 
 “”” 



 Furthermore we removed the method section where we explain X_hat as measurement: 
 “”” 
 Predictability of ^X 

 Whenever CR lead to an increase in performance this can only have one of two reasons: 
 either 1) revealing information present in the features, or 2) leaking confounding information. 
 To reveal information in the features the CR has to suppress variance in the features 
 which make learning generalizable features-target relationship harder. For example, 
 unrelated noise or linear shortcuts could be suppressed. In other words, suppression works 
 by removing less predictable variance in the data. This means that ^X has to be less 
 predictive of the target than X in the resulting CR-ML workflow. If one finds contrasting 
 evidence, an especially highly predictive ^X, this is strong direct evidence for 
 confound-leakage through CR 
 “”” 

 Lastly, we relied on X_hat for the second walk-through analysis (result section page 3) which 
 we have now adjusted accordingly to not include X_hat as evidence: 

 “”” 
 Confound removal for regression 
 As an example of a weaker confound on a regression task, we simulated a binary confound 
 and then sampled a feature from different distributions for each confound value (confound 
 equal to 0 or 1). 
 Then we added the confound to a normally distributed target (M = 0 and SD = 0.50 , Fig. 1 
 e-f). This creates a clear confounding situation, where the confound affects both 
 the feature ( Point-biserial correlation = 0.71, p < 0.01) and the target (Point-biserial 
 correlation = 0.71, p < 0.01 ) and thus leads to a spurious relationship between the feature 
 and the target ( Pearson’s correlation = 0.51 , p < 0.01). 
 Following the same procedure as in the previous example, we observed increased 
 performance after CR using a DT with limited depth of two (R2 using X = 0.29 , XCR = 0.42). 
 As in this simulated data only a spurious relation (via confound) exists between the feature 
 and target, it is safe to assume that an increased performance after CR is due to 
 confound-leakage.  Still, shuffled features were not  sensitive to confound-leakage ( ̃X = 0 , 
 ̃XCR = –0.01). On the other hand, ^X-based predictions clearly indicate confound-leakage 
 (^X = 0.51).  Furthermore, we found a probable mechanism  behind this confound-leakage to 
 be the distribution of the features conditioned on the confound. More precisely, CR shifts the 
 feature values for confound = 1 in between most feature values for the confound = 0 (Fig. 1 
 e). This leaks the confounding information into the feature instead of removing it (Fig. 1 f). 
 The shuffled features, however, were not sensitive to confound-leakage ( ̃X = 0 , ̃XCR = 
 –0.01), which is expected considering the probable cause for such leakage depends on the 
 joint distribution of the confound and the feature. When shuffling the features within each 
 confound category to preserve the joint distribution, we observed an increase in performance 
 after CR (M=0.29 before to M=0.42). This result indicates that shuffling the features might 
 not be always sensitive to confound-leakage. We, nevertheless, use independently shuffled 
 features in our analysis for practicality, particularly in the context of continuous or multiple 
 confounding factors. 
 “”” 



 We have removed all the X_hat from the plots as well. See end of this document for an 
 overview of all figures. 

 R. 2 C. 3. 
 Most of the analyses were based on simulation. Most of the interpretation was based on accuracy 
 scores. What is more interesting is the mechanism why it happens in real applications. The authors 
 have two hypotheses, which I believe are not that hard to test on the real data set. One can look at 
 features that drive the X_CR classification but not the raw classification, and then look at how their 
 distribution changes with respect to confounders. One can probably visualize the distribution shift over 
 multi-dimensional features using certain dimension reduction techniques. With those results, the 
 manuscript will become more valid. 

 Thank you very much for this important point. We agree that it is very interesting to look into 
 the real world data and check whether our clinical data has confound-leakage due to 
 deviation from normal distributions. To this end, we followed your advice and looked into the 
 feature importance and visualized the most important features with and without confound 
 removal. 
 We have added four new panels to Fig. 4 (shown below) showing feature importance 
 differences before and after CR and how the two most important features lead to leakage. 
 Furthermore, we added the following text to the Results section (page 5): 

 “”” 
 Lastly, we wanted to evaluate why we observe confound-leakage on this dataset. The limited 
 precision of features cannot be the reason here as all features are continuous. Therefore, we 
 hypothesized that the confound leaked due to some features deviating from normal 
 distributions. To this end we first compared the feature importance between the RF after CR 
 and using the original features. Here, we observed the RFs’ 10 most important features were 
 completely different (Fig. 4 c-d), indicating that the two RF models rely on different 
 relationships in the data. Next we visualized the distributions of the two most important 
 features of the RF after CR for both models. This visualization (Fig. 4 e-f) clearly shows that 
 CR has shifted the distributions due to deviations from normal distributions leaking 
 information in their joint distribution. Furthermore, we trained new DTs using only these two 
 features before or after CR. This led to an increase of AUCROC from 0.61 to 0.70 after CR 
 only using these features. 
 These analyses clearly demonstrate that real-world applications could suffer from 
 confound-leakage and users should exercise care when implementing and validating a 
 CR-ML workflow. 
 “”” 

 We did not use a dimensionality reduction to not complicate our methods. We have modified 
 figure 4 (shown below) to include the ten most important features before and after CR. 
 Notably, the two models highlight different features. Next we also visualized the two most 
 important features after CR and show that one can indeed observe a shift of distributions 



 leaking information through CR. 

 We would like to note that simulations allow us to control relationships between features, 
 confounds and target, which is needed to really show the extent of confound-leakage and 
 elucidate its possible mechanisms. 

 Minor: figure captions are generally terse. Axis labels are confusing, e.g., Figure 1c,d. In figure 2, why 
 are there two rows of r2 and two rows of AUC?  What do you mean by those four rows of 'score'? Do 
 they belong to the right column? Do < and > indicate statistical significance? People often use *, ** to 
 indicate p<0.05, p<0.005, because the direction is obvious from the plots already. 

 Thank you very much for highlighting the problem that our statistical analyses are not 
 communicated clear enough. We have updated the figures and have added more details to 
 the methods section to address your comments. 

 The statistical tests we employed are not frequentist null hypothesis testing. Instead we used 
 the Bayesian ROPE approach for the following reasons: 

 ●  Assumption of no difference in performance metrics (scores) rarely makes sense in 
 ML settings. 



 ●  Significance cannot compute the probabilities of interest: Probability of one pipeline 
 scoring higher than the other one. 

 ●  Significance tests are highly dependent on the sample size. 

 More details can be found in the paper that introduced this approach [3]. 

 We added the following section to our methods to communicate this to the reader: 
 “”” 
 The Bayesian ROPE for model comparison 
 In this study we used the Bayesian ROPE [42] approach to qualify differences between 
 K-fold cross-validation results coming from two models. This approach uses the Bayesian 
 framework to compute probabilities of the metric falling into a defined region of practical 
 equivalence or of one ML pipeline scoring higher than the other. This is achieved by defining 
 a region of equivalence (here we used 0.05). Consequently, the Bayesian ROPE approach 
 allows us to make probabilistic statements regarding whether and if so which of the ML 
 pipelines score higher. We summarize these differences using the following symbols = 
 (highest probability of pipelines scoring practically equivalent), < (highest probability of right 
 pipeline scoring higher), > (highest probability of left pipeline scoring higher). Other 
 possibilities such as the significance test correcting for the dependency structure in K-fold 
 CV [43] or permutation testing by shuffling the target or features can be employed when 
 suitable.  “”” 

 We have adjusted the figure captions as shown below by providing additional information 
 making them more self sufficient. 



 Adjusted Figures Overview 



 “”” 
 Figure 2. Performance on the UCI benchmark datasets when using raw vs CR features (a) 
 and raw vs the predicted features given the confound/TaCo/  ̂ X  (b). The two columns 
 correspond to: 1) TaCo removal with four ML algorithms (LR, DT, RF, MLP), and 2) CR with 
 simulated confound with different correlation to the target (range 0.2-0.8) with RF. (a,b) show 
 performance using the original features while (c,d) show the performance on shuffled 
 features. 
 To check whether a difference between the performance of two models is meaningful, we 
 used the Bayesian ROPE approach to identify what is most probable: performance being 
 higher before removal (<), being higher after removal (>) or equivalent (=) (see the Methods 
 section for details). 
 When using a linear model (LR) TaCo removal leads to reduction in prediction performance, 
 as expected. In contrast, nonlinear models lead to a higher performance for all datasets. 
 This increase could be either explained by confound removal revealing information already 
 in the data (suppression) or confound removal leaking information into the features 
 (confound-leakage). Shuffling the features destroys association between features and the 
 target, therefore subsequent performance increase after TaCo removal indicates the 
 possibility of confound-leakage (c,d).  Additionally,  the higher performance of ^X (a,b) 
 compared to X does not support suppression as explanation as suppression assumes that 
 confound-removal removes noise or other at most weakly predictive variance from the 
 features. In this case, the variance removed feature ^X should be less predictive than the 
 raw features X.  The simulated confounds show that  an increase after CR is also possible for 
 confounds weakly related to the target (b,d) and one dataset (Blood) shows strong evidence 
 of confound-leakage. 
 “”” 





 “”” 
 Figure 4.  Summary of the performance on t  The real-world  ADHD speech dataset.  The 
 performance when using different confounds (a-b), most important features of RF when 
 using BDI as confound (c-d) and visualization of confound-leakage due to deviation from 
 normal distributions (e-f). 
 Note that the features used were always the same. 
 Increased performance, for both original and shuffled( features, can be seen when 
 using the TaCo and when BDI was used as a confound. This suggests that BDI is 
 driving the performance increase 
 a shows the performance of a RF predicting ADHD vs healthy controls using the original 
 features. To check whether a difference is meaningful we used the Bayesian ROPE 
 approach to identify what is most probable: performance being higher before removal (<), 
 being higher after removal (>) or equivalent (=) (see method section). An increased 
 performance can be observed when using all confounds, BDI as a confound or the TaCo. 
 The same pattern appears when the features were shuffled (b). This shows that the increase 
 in performance is due to confound-leakage and BDI is a driving factor for this leakage as it 
 leaks information when used as a confound. c-d visualize the 10 most important features for 
 both using X and X_CR as features. The feature ranking is shown as white label on top of 
 each cell. The most important features are different for X and X_CR. Furthermore, the most 
 important features of one model ranked as very unimportant in the other. e-f show decision 
 boundaries of DT trained on the two most important features after CR. The background 
 colors indicate the prediction of the model, the points show the true target value and the 
 x-axis the two most important features. The distribution of each feature conditioned on the 
 target is shown as the density plots. One can see that CR leaks information by cleanly 
 separating the blue and red points. 
 “”” 



 Fig. 5. Prediction performance of a RF trained with (blue) or without (red) confound removal 
 on an increasing number of features. Each feature was either sampled from a random 
 standard normal distribution (mean=0, std=1), a random χ2 distribution with df = 3 or a χ2 
 distribution with a df=3, scale=0.5 or df=4, scale=1 for the confound being equal to 0 and 1 
 respectively. a) The RF trained on the normally distributed features did not achieve 
 performance above the chance level (R2 < 0) irrespective of confound removal. b-c) When 
 training the RF on either of the χ2 distributed features, confound removal resulted in above 
 chance level performance (R2 > 0). This effect increased with an increasing number of 
 features and can only be explained by confound removal leaking information into the 
 features. 



 Fig. S2.  We performed permutation testing with 1000  iterations. After shuffling the features, 
 a significantly lower performance was observed compared to the original features X. No 
 significant difference between raw and shuffled features was observed when using the X_CR 
 features. This result is in line with the leakage hypothesis as the higher accuracy after 
 shuffling and CR indicates leaking target-related confounding information into the features. 
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