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Background

Machine learning (ML) approaches are a crucial component ofmodern data analysis in
many fields including epidemiology and medicine. Nonlinear MLmethods often achieve
accurate predictions, for instance in personalizedmedicine, as they are capable of
modeling complex relationships between features and the target. Problematically,
MLmodels and their predictions can be biased by confounding information present in
the features. To remove this spurious signal, researchers often employ featurewise
linear confound regression (CR).While this is considered a standard approach for
dealing with confounding, possible pitfalls of using CR in ML pipelines are not fully
understood.

Results

We provide new evidence that, contrary to general expectations, linear confound
regression can increase the risk of confounding when combined with nonlinear ML
approaches. Using a simple framework that uses the target as a confound, we show
that information leaked via CR can increase null ormoderate effects to near-perfect
prediction. By shuffling the features we provide evidence that this increase is indeed
due to confound-leakage and not due to revealing of information. We then demonstrate
the danger of confound-leakage in a real-world clinical application where the accuracy
of predicting attention deficit hyperactivity disorder is overestimated using speech-
derived features when using depression as a confound.

Conclusions

Mishandling or even amplifying confounding effects when building MLmodels due to
confound-leakage, as shown, can lead to untrustworthy, biased, and unfair predictions.
Our expose of the confound-leakage pitfall and provided guidelines for dealing with it
can help createmore robust and trustworthy MLmodels.
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Machine learning (ML) approaches are a crucial component of modern data analysis in many fields including epidemiology and
medicine. Nonlinear ML methods often achieve accurate predictions, for instance in personalized medicine, as they are capable of
modeling complex relationships between features and the target. Problematically, ML models and their predictions can be biased
by confounding information present in the features. To remove this spurious signal, researchers often employ featurewise linear
confound regression (CR). While this is considered a standard approach for dealing with confounding, possible pitfalls of using CR
in ML pipelines are not fully understood.

We provide new evidence that, contrary to general expectations, linear confound regression can increase the risk of confounding
when combined with nonlinear ML approaches. Using a simple framework that uses the target as a confound, we show that
information leaked via CR can increase null or moderate effects to near-perfect prediction. By shuffling the features we provide
evidence that this increase is indeed due to confound-leakage and not due to revealing of information. We then demonstrate the
danger of confound-leakage in a real-world clinical application where the accuracy of predicting attention deficit hyperactivity
disorder is overestimated using speech-derived features when using depression as a confound.

Mishandling or even amplifying confounding effects when building ML models due to confound-leakage, as shown, can lead to
untrustworthy, biased, and unfair predictions. Our expose of the confound-leakage pitfall and provided guidelines for dealing with
it can help create more robust and trustworthy ML models.
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Key Points

- Confound removal is essential for building insightful and trustworthy ML models

- Confound removal can increase performance when combined with nonlinear ML

- This can be due to confound information leaking into the features

- Possible reasons are skewed feature distributions and feature of limited precision

+ Confound removal should be applied with utmost care in combination with nonlinear ML

Machine learning (ML) approaches have revolutionized biomedi-
cal data analysis by providing powerful tools, especially nonlinear
models, that can model complex feature-target relationships (1, 2].
However, the very power these nonlinear models bring to data anal-
ysis also lead to new challenges. Specifically, as we will detail, when
a standard confound removal approach is paired with nonlinear
models, new and surprising issues arise as the unintended is dis-
covered and misinterpreted as a true effect.

Imagine building a diagnostic classifier for attention deficit hy-
peractivity disorder (ADHD) based on speech patterns. This will be
a useful clinical tool aiding objective diagnosis [3]. However, like
most disorders, ADHD has comorbidity, for instance with depres-
sion. Ideally, an ADHD diagnostic classifier should only rely upon
characteristics of ADHD and ignore that of depression. This is an
example of confounding, where it is desirable that the confound
depression is disregarded by the classifier. Another example of con-
founding is the effect of ageing and neurodegenerative diseases
on the brain. In a study to build a neuroimaging-based diagnostic
classifier, the non-pathological ageing signal is confounding [4].
Confounding is ubiquitous and further examples include batch ef-
fects in genomics [5, 6, 7], scanner effects in neuroimaging [8],
patient and process information in radiographs [9], and group dif-
ferences like naturally different brain sizes in investigation of brain-
size-independent sex differences [10, 11]. Ignoring confounding
effects in an ML application can render predictions untrustworthy
and insights questionable [12] as this information can be exploited
by learning algorithms [13] leading to spurious feature-target re-
lationships [14], e.g., classification based on depression instead of
ADHD or age instead of neuronal pathology. The benefits of big data
in ML applications are obvious, especially when modeling weak re-
lationships, but big data also leads to an increased risk of inducing
confounded models [4, 15, 16, 11]. Confounding, thus, is a crucial
concern and if not properly treated can threaten real-world appli-
cability of ML.

When confounding masks the true feature-target relationship,
its removal can clean the signal of interest leading to higher gen-
eralizability, e.g. removal of batch effects in genomics [7]. On the
other hand, when confounding introduces artefactual relationships
the same procedure can reduce prediction accuracy [17, 18]. In ei-
ther case, removing or adjusting for confounding effects is crucial
for obtaining unbiased results, as otherwise a ML model might
mostly rely on confounds, rendering signals of interest redundant.
Two methods for treating confounding are commonly employed in
data analysis with the goal of building an accurate ML model that
is not biased by the confounding information. Data can be strati-
fied based on the confounding variables, but it may introduce con-
founding information [19], falsely increase test-set performance
by removing harder to classify data points [20], and can result in ex-
cessive data loss. As confounds share variation -usually presumed
linear variance- with both the target and the features, another

common method is confound regression (CR) which removes the
confounding variance, also called confounded signal, from each
feature separately using a linear regression model (20, 4]. The re-
sulting residualized features are considered confound-free and are
used for subsequent analysis. CR has become the default method
to counter confounding in observational studies, including in ML
applications [20, 21, 16]. Typically, a two-step CR-ML workflow
is constructed while avoiding risks associated with typical data-
leakage by applying CR in a cross-validation-consistent manner
[20, 22]. It is important to note that, we use a practitioner-oriented
operational definition of confounds as a set of variables suspected to
share an unwanted effect with both the features and target, which
does not imply causality as in more formal definitions [23].

A CR-ML workflow typically attenuates prediction performance
as it removes variance from the features that is informative of the
target. If an increase in performance is observed after CR, it can be
explained by either (1) information-reveal: CR reveals information
that was masked by confounding or (2) confound-leakage: leak-
age of confounding information into the features. In the case of
information-reveal, CR could suppress linear confounding or noise
in turn enhancing the underlying (non-)linear signal and mak-
ing learning easier for a suitable ML algorithm [13]. This would
be a positive effect similar to removing simple shortcuts in the
data [24, 25]. If this is the case then the resulting CR-ML work-
flow would be a valuable for modeling non-linear relationships.
Alternatively, as CR is a univariate operation applied to each fea-
ture, multivariate confounding (across features) could be revealed,
which could help prediction albeit undesirably. On the other hand,
confound-leakage would be an even more worrisome outcome as
it would leak confounding information into the features instead
of removing it. Confound-leakage would be detrimental to the va-
lidity and interpretability of the ensuing CR-ML workflow and in
some cases could lead to dangerous outcomes. CR has been reported
to induce biases into statistical workflows, albeit not incorporat-
ing ML, leading to incorrectly inflated group differences inference
in combined batch effects removal and group difference analysis
[26]. It is important to note that CR is not without other pitfalls,
for instance it might fail to completely remove confounding infor-
mation [21, 27]. Still, CR is considered the de facto method, and
therefore analyzing the hitherto unknown pitfall of leaking con-
founding information through CR is helpful. Furthermore, there
were speculations of confound-leakage in ML workflows [18], it
has not yet been systematically shown, analyzed nor explained.

To disentangle the two possible explanations of performance
increase after CR, we systematically analyzed the two-step CR-ML
workflow. For analysis purposes and to gain detailed knowledge,
we propose a framework that uses the target as a confound (TaCo),
in which we use a single confound that is the target. As a confound
needs to share variation with both the target and the feature, any
possible confound must share all confounded signal with the target.
Hence, the target can be seen as a “superconfound” subsuming all
possible confounding effects. Although it is unlikely to encounter a
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confound equal to the target in real applications, TaCo provides a
framework for systematic evaluation. It should be noted that real
confounds will fall on the continuum from weak (low confounded
signal) to strong (TaCo) depending on their degree of similarity
with the target. Indeed, as we show, the TaCo framework reveals
strong effects where the prediction accuracy is boosted from moder-
ate to perfect as well as weaker effects for confounds weakly corre-
lated with the target. A previous work has used TaCo for evaluating
the validity and reliability of confound adjustment methods [21].
To this end, we performed extensive empirical analyses on sev-
eral benchmark datasets providing strong evidence for confound-
leakage. First, we showcase confound-leakage in a walk-through
analyses. Then using the TaCo framework we systematically an-
swer whether the improvement in prediction performance after CR
is due to leakage. For this, we used benchmark datasets as well as
several conceptually simple simulations covering both classification
and regression problems. Finally, with a clinically-relevant task of
ADHD diagnosis using speech-related features with depression as a
confound, we demonstrate misleading impact of confound-leakage.

The goal of this section is to introduce readers to our analysis ap-
proach with intuitive examples. We show one exemplary case of
TaCo removal for a binary classification task and a CR scenario with
aweaker confound in a regression task. In both cases, we randomly
split the data into 70% train and 30% test parts. The CR and predic-
tion models were learned on the training data and the results are
reported on the test split. We will show that, confound-leakage can
be concluded if performance using shuffled features after CR (X¢g).

TaCo removal for binary classification

We analyzed the "bank investment" data to predict whether a cus-
tomer will subscribe to term deposit given their financial and socio-
economic information. We used a decision tree (DT) with limited
maximum depth of two for visualization ease. This example is
meant to demonstrate key aspects of our proposed analyses (Fig. 1).

TaCo removal showed a much higher area under the curve for
the receiver operating characteristic curve (AUCROC) of 0.98 com-
pared to the baseline AUCROC of 0.75 without CR. Still, the TaCo
removed features were highly similar to the original features (me-
dian Pearson’s correlation: 0.99, Fig. 1a-b). The two ensuing DTs
were, however, completely different and relied on different features.
Notably, these drastic differences were induced by minute feature
alterations after CR that are hardly detectable by humans but are
effectively captured by DT (Fig. 1 c-d). Such performance increase
can be either due to revealed information or confound-leakage.
Therefore, we sought to gain evidence to distinguish between these
two scenarios using two complementary measurements: 1) de-
stroying the relationship between features and target, and 2) use of
confound-predicted features.

To destroy the feature-target relation we shuffled each fea-
ture before CR (X) to create Xy and repeated the analysis. As
there should be no predictive information in the shuffled features,
the only explanation for above chance-level performance is CR
leaking information into the confound-removed features Xy, i.e.
confound-leakage. We applied the shuffling procedure to a train-
test split in this walk through analysis. But it should be noted
that when combined with a (nested) cross-validation and Bayesian
ROPE approach, this procedure can be used to compare models
similarly as a permutation test (see section Shuffling the features
and permutation testing). We observed chance-level performance
without CR (AUCROC = 0.48) for the shuffled features. How-
ever, a performance increase after TaCo removal was observed
(AUCROC = 0.99). This analysis shows that performance increase

after TaCo removal with shuffled features indicate the possibility
of confound-leakage.

Confound removal for regression

As an example of a weaker confound on a regression task, we sim-
ulated a binary confound and then sampled a feature from dif-
ferent distributions for each confound value (confound equal to
0 or 1). Then we added the confound to a normally distributed
target (M = o0 and SD = 0.50,Fig. 1 e-f). This creates a clear
confounding situation, where the confound affects both the fea-
ture ( Point-biserial correlation = 0.71, p < 0.01) and the tar-
get (Point-biserial correlation = 0.71, p < 0.01) and thus leads
to a spurious relationship between the feature and the target
(Pearson’s correlation = 0.51, p < 0.01). Following the same pro-
cedure as in the previous example, we observed increased perfor-
mance after CR using a DT with limited depth of two (R? using
X = 0.29, Xcg = 0.42). As in this simulated data only a spurious
relation (via confound) exists between the feature and target, it
is safe to assume that an increased performance after CR is due
to confound-leakage. Furthermore, we found a probable mecha-
nism behind this confound-leakage to be the distribution of the
features conditioned on the confound. More precisely, CR shifts the
feature values for confound = 1 in between most feature values for
the confound = o (Fig. 1 e). This leaks the confounding informa-
tion into the feature instead of removing it (Fig. 1 f). The shuffled
features, however, were not sensitive to confound-leakage (X = 0
,X = —0.01), which is expected considering the probable cause for
such leakage depends on the joint distribution of the confound and
the feature. When shuffling the features within each confound cat-
egory to preserve the joint distribution, we observed an increase
in performance after CR (M = 0.29 before to M = 0.42). This result
indicates that shuffling the features might not be always sensitive
to confound-leakage. We, nevertheless, use independently shuffled
features in our analysis for practicality, particularly in the context
of continuous or multiple confounding factors.

TaCo removal increases performance of nonlinear methods

Our systematic and CV-consistent analysis comprised comparison
between TaCo removal pipelines and no-CR pipelines on 10 UC
Irvine (UCI) datasets . TaCo removal led to a meaningful increase
in out-of-sample scoring using all tested non-linear models, RF
(7/10 datasets), DT (8/10) SVM with RBF kernel (5/10) and MLP
(7/10) (Fig. 2, Supplementary Fig. S1). This suggests that confound-
leakage is a risk associated with the usage of a CR-ML pipeline
with non-linear ML models. Furthermore, this suggests that the
DT-based algorithms (DT and RF) are most susceptible to showing
increased performance.

CR using weaker confounds also increases performance

As the target is the strongest possible confound, TaCo represents an
extreme case. To test whether the potential leakage we found with
TaCo extends to CR in general, using the UCI datasets we simulated
confounds related to the target at different strengths measured by
Pearson’s correlation ranging 0.2 — 0.8. Depending on the dataset,
different amounts of correlated confounds led to leakage after CR.
We observed potential confound-leakage for 5 of the 10 datasets
with at least one of the confound-target strengths. As expected, a
higher target-confound correlation led to more leakage, i.e., higher
performance after CR (Fig. 2 C).

Increased performance after TaCo removal is due to confound-leakage
As described in the walk-through analysis (see TaCo removal for
binary classification), we measure the performance after first shuf-
fling the features to evaluate whether the increased performance
after TaCo removal/CR is due to information reveal or confound-



leakage. After shuffling the features, both pipelines, no-CR and
TaCo removal, should perform close to chance-level if the improved
performance is due to revealed information. Indeed, the no-CR
pipeline performed close to the chance level, while TaCo removal
pipeline increased the performance (Fig. 2 TaCo CR Shuffled). As
there should be no predictive information in the shuffled features,
above chance-level performance could only be obtained if the CR
leaks information. Thus this result provides strong evidence in-
favor of the confound-leakage.

For the simulated weaker confounds these results were less
strong, still we found 5/10 datasets where X, 9/10 where X
performed above chance-level.

Possible mechanisms for confound-leakage

As a multitude of mechanisms could lead to confound-leakage, ex-
haustively identifying all possible mechanisms is out of the scope of
this paper. Rather we want to highlight two possible mechanisms
leading to confound-leakage inspired by the walk-through anal-
yses: 1) Confound-leakage due to continuous features deviating
from normal distributions (see Confound removal for regression)
2) Confound-leakage due to unbalanced features of limited preci-
sion (see TaCo removal for binary classification). Both mechanisms
could be summarized under the umbrella of (small) differences of
the conditional distributions of features given the confound inside
of CV-folds.

As DT-based models are very popular ML algorithms [28] and
seem to be most susceptible to the described problems (see TaCo
removal increases performance of nonlinear methods) we will focus
on them in our simulations to decrease the complexity of our results.
Furthermore, we will use a DT whenever there is only one features
and RF when there are multiple features.

Confound-leakage due to deviation from normal distributions
Consider simulating a standard normal feature not informative of a
binary target. Then consider adding a smaller distribution around
opposing extreme values separately for each class of a binary target
(Fig. 3 a). The resulting feature only differs systematically w.r.t.
the classes at the extreme values. As CR with a binary confound
is equivalent to subtracting the mean for each confounding group
from the respective feature, this operation is now biased towards
the extreme parts of the feature distribution. Consequently, X
exposes confounding information in terms of decrease in the over-
lap of the feature distributions conditioned on the confound (Fig.
3 a-b). In other words, confounding information leaked via CR
in turn increasing the prediction performance (AUROC from 0.51
before to 0.58 after TaCo removal). To show that the increased per-
formance is not only due to better prediction of extreme values, we
also tested the same model on a test set without the extreme values.
The results were in line with previous observations, as the AUROC
improved from 0.48 before to 0.57 after CR.

We also observed higher performance after similar decreased
overlap due to TaCo removal in a simplified version of the '""house
pricing" UCI benchmark dataset (3 c-d), providing real world evi-
dence for this phenomena.

Lastly, we investigated whether such effects could also occur
when randomly sampling non-normal distributed features instead
of carefully constructing the features conditioned on the confound.
To this end, we sampled an increasing number of features (1 to 100)
either using a random normal or skewed (x2, df = 3) distribution
independent of a normally distributed target.

Using RF, we observed increased performance after TaCo re-
moval with skewed features but not with normally distributed
features, e.g. R of M = 0.23 with SD = 0.06 compared to R? of
M = —0.04 with SD = 0.04, respectively with 100 features. Impor-
tantly, this effect increased with the number of features ( Fig 5).
To further illustrate this point, we performed another simulation
depicting a typical confounding situation. Here, we sampled an
increasing number of features (1 to 100) with different x2 distri-

bution given a binary confound (df = 3 (4) and scale= 0.5 (1) for
confound= 0 (1)). The target was sampled from a normal distribu-
tion (M = 0, SD = 0.2) and the confound was added to it. Analysis
of this data shows an increased performance after confound re-
moval from M = —0.52 (SD = 0.02)toM = —0.50 (SD = 0.03)
using one feature and from M = —0.02 (SD = 0.01) to M = 0.18
(SD = 0.01) using 100 features. These results demonstrate that
the effect of confound-leakage increases with increasing number
of features. These simulations show that skewed features, and by
extension potentially other non-normal distributed features, can
lead to confound-leakage. Interestingly, another consequence of
non-normal distributions is insufficient removal of confounding
information [21].

Confound-leakage due to limited precision features
A similar effect was observed with binary features, where unbal-
anced feature distributions conditioned on the confound led to leak-
age. Using simulations first we confirmed that a binary feature
perfectly balanced in respect to the TaCo did not lead to confound-
leakage (AUCROC of M = 0.50, SD = 0). Then, we repeated similar
simulations but now we swapped two randomly selected distinct
values of the feature within each CV-fold, preserving the marginal
distribution of the feature but slightly changing its distribution con-
ditional on the confound. This can be seen as adding a small amount
of noise to the feature. Still, such a simple manipulation led to dras-
tic leakage after TaCo removal with perfect AUCROC (M = 1.00,
SD = 0.00), compared to AUCROC without CR (M = 0.52, SD = 0).
To further demonstrate this effect, we analyzed a simple demon-
strative classification task using DT and two binary features derived
from the UCI "heart dataset'" representing the resting electrocar-
diographic (Restecg) results. Without CR the DT had 117 nodes and
achieved a moderate AUCROC (M = 0.74, SD = 0.06). In stark con-
trast, after TaCo removal, the DT was extremely simple with only
five nodes and achieved near-perfect AUROC (M = 0.99, SD = 0.01)
(Fig. 3 E). Tellingly, this DT was able to make accurate predictions
based on numerically minute differences in feature values. The
reason for this becomes apparent when remembering that CR with
abinary confound is equivalent to subtracting the mean of the cor-
responding confounding group from the respective feature. When
applied to a binary feature, this results in four distinct values for
aresidual feature (Fig 3 E). When taken together with the results
on the benchmark UCI data (see Analyses of benchmark data), we
can see that such minute differences can be exploited by models
such as DTs, RFs and MLPs but likely not by linear models. It is
important to note, that leakage through minute differences was
not only observed for binary features, but also other features with a
limited precision (values containing only integer or with limited
fractional parts). To demonstrate this, we predicted a random con-
tinuous target using either a normally distributed feature or the
same feature rounded to the first digit. The original non-rounded
feature performed at chance level both before (R> : M = —1.10,
SD = 0.06) and after TaCo removal (R> : M = —1.03, SD = 0.07),
while after rounding it lead to an improvement from M = —0.08
(SD = 0.01) toM = 0.70 (SD = 0.16) after TaCo removal. Features
with limited precision, i.e. with no or rounded fractional part, are
common, for instance, age in years, questionnaires in psychology
and social sciences, and transcriptomic data.

ADHD is a common psychiatric disorder that is currently diagnosed
based on symptomatology but objective computerized diagnosis
is desirable [29]. Ideally a predictive model for diagnosing ADHD
should not be biased by co-morbid conditions, e.g. depression [30].
To this end, comorbidity can be treated as a confound. However,
a confound-leakage affected model, albeit with appealing perfor-
mance, could lead to misleading diagnosis and treatment. To high-



light the danger of confound-leakage on this clinically relevant task,
we analyzed a dataset with speech-derived features with the task
to distinguish individuals with ADHD from controls. Our version
of the dataset is a balanced subsample of the dataset described by
Polier et. al. [3].

The baseline RF model without CR provided mean AUROC (M =
0.71, SD = 0.02). We then removed four confounds commonly
considered for this task, age, sex, education level, and depression
score (Beck’s depression inventory, BDI), via featurewise CR in a
CV-consistent manner. This resulted in a much higher AUCROC
(M = 0.86, SD = 0.02). This model would be very attractive for real-
world application if its performance is true—i.e. not impacted by
leakage. However, as we have shown with our analyses confound-
leakage can lead to such performance improvement. If confound-
leakage is indeed driving the performance then this model could
misclassify individuals as having ADHD because of confounding
effects, e.g. their sex or depression, leading to misdiagnosis and
wrong therapeutic interventions. To disentangle the effect of each
confound, we looked at the performance after CR for each confound
separately. Performing CR with BDI led to a high AUCROC with
original features after CR (M = 0.91, SD = 0.01), shuffled features
(M = 0.84, SD = 0.01). This result revealed that BDI is driving the
potential leakage, owing to its strong relation to the target (Point-
biserial correlation, r = 0.61, p < 0.01). Furthermore, a permutation
test also led to the same conclusion (see Methods and Supplemen-
tary Fig. S2) Training CR models only on healthy individuals can
be helpful in clinical applications [4]. We investigated this variant
of CR and again the AUCROC increased for original features after
CR M = 0.83 (SD = 0.02) and an increase with shuffled features
from M = 0.51(SD = 0.05) to M = 0.79 (SD = 0.02), suggesting
that confound leakage is also a concern for variants of CR. Lastly,
we wanted to evaluate why we observe confound-leakage on this
dataset. The limited precision of features cannot be the reason here
as all features are continuous. Therefore, we hypothesized that
the confound leaked due to some features deviating from normal
distributions. To this end we first compared the feature impor-
tance between the RF after CR and using the original features. Here,
we observed the RFs’ 10 most important features were completely
different (Fig. 4 c-d), indicating that the two RF models rely on
different relationships in the data. Next we visualized the distribu-
tions of the two most important features of the RF after CR for both
models. This visualization (Fig. 4 e-f) clearly shows that CR has
shifted the distributions due to deviations from normal distribu-
tions leaking information in their joint distribution. Furthermore,
we trained new DTs using only these two features before or after
CR. This led to an increase of AUCROC from 0.61 to 0.70 after CR
only using these features. These analyses clearly demonstrate that
real-world applications could suffer from confound-leakage and
users should exercise care when implementing and validating a
CR-ML workflow.

Here, we exposed a hitherto unexplained pitfall in CR-ML work-
flows that use featurewise linear confound removal—a method pop-
ular in epidemiological and clinical applications. Specifically, we
have shown this method can counter-intuitively introduce con-
founding, which can be exploited by some non-linear ML algo-
rithms. Thus in addition to the already known pitfalls of resid-
ual confounding [21], our results show that CR may actually intro-
duce confounding-information. We provide evidence of confound-
leakage using a range of systematic controlled experiments on
real and simulated data comprising both classification and regres-
sion tasks. First, to establish confound-leakage as opposed to
information-reveal (of possibly nonlinear information) as the rea-
son behind increased performance after CR, we proposed the TaCo
framework, i.e., using the target as “superconfound”. This ex-

treme case of confounding allowed us to establish the existence,
the extent, and possible mechanisms of confound-leakage. Specifi-
cally, by comparing the without CR baseline performance with CR
after feature shuffling (5(CR) this framework can identify confound-
leakage as the cause of increased predictive performance. We then
extended the same framework to the more realistic scenario of
weaker confounds showing that also there confound-leakage can
occur.

To identify risk factors of confound-leakage, we performed
several analyses. First, we demonstrated a mechanism by which
confound-leakage can occur: differences of the conditional distri-
butions of features given the confound. In the case of continuous
features, non-normal distributions (e.g., skewed distributions) and
in the case of discrete features, frequency imbalances can cause
leakage, although other mechanisms could exist. Additionally, we
show that features of limited precision (e.g., age in years and counts)
also showed susceptibility due to this mechanism. Lastly, our re-
sults showed that the risk of confound-leakage increases with the
number of features, which is especially problematic in the era of
“big data”, where tens of thousands of features are a norm.

Still we would like to highlight that we do not claim to have found
all possible ways confound-leakage can happen. For instance, it is
possible that other modeling approaches, even linear ones, could be
susceptible to confound-leakage although we did not find evidence
for it in our analyses. Nonetheless, confound-leakage can bias the
data and may negatively impact subsequent statistical analysis [21].

It is important to note that although similar, confound-leakage
is not equal to collider-bias. Colliders are variables causally influ-
enced by both the features and target [19]. Both collider-bias and
confound-leakage describe situations where variable adjustment
can lead to spurious relationships between features and target. How-
ever, the collider bias assumes that the removed variable has to be
caused by both the features and the target which is not shared by
confound-leakage. One cannot exclude the possibility of collider
removal using CR for many of our experiments as our operational
definition of confounds does not include any assumption of causal-
ity. Still, we observe confound-leakage through CR for at least one
causally defined confound (see walk-through analysis) and vari-
ables showing relationship only with the target. Such associations
are not covered by the causal relationships described by a collider.
In other words, the mechanisms of confound-leakage can lead to
leaked information due to any variable related to the target and not
only colliders or causal confounds.

Taken together, our extensive results show that the commonly
used data types and settings of non-linear ML pipelines are sus-
ceptible to confound-leakage when using featurewise linear CR.
Therefore, this method should be applied with care, and the ensuing
models should be closely inspected, especially in critical decision
domains. We concretely demonstrated this using an application
scenario from precision medicine by building models for diagno-
sis of ADHD. We found that the attempt to control for comorbidity
with depression using CR lead to confound-leakage. As many disor-
ders often exhibit severe comorbidity, e.g., AHDH and depression
as we demonstrated here but also neurodegenerative disorders are
strongly confounded by ageing-related factors [31] as well as comor-
bidity in mental disorders [32, 33], the issue of confound-leakage
should be carefully assessed in all such applications. We recom-
mend the following best practices when applying CR together with
non-linear ML algorithms:

1) Assess confounding strength: Check the confounds’ relation
to each feature and the target. In general, confounds strongly re-
lated to the target pose a greater danger of leaking predictive infor-
mation. Here, we used a straightforward approach of measuring the
correlations between the confound and target/feature. Other meth-
ods can be employed, e.g., proposed by Spisak [27]. Furthermore,
measuring how dependent the predictions of a model are on the
confound by permutation testing [34, 35] or the approach proposed
by Dinga et al. [21] can be helpful To gain additional information,



the reader might be interested in methods to estimate the variance
in the target explained by ML predictions that confounds cannot
explain [21, 27].

2) Compare performance with and without CR: If the perfor-
mance increases after CR, one should investigate the reason behind
the increase.

3) Gain evidence against or in favor of the confound-leakage:
The procedure of shuffling the features followed by CR as we de-
fined in the TaCo framework can provide clues regarding confound-
leakage. Our shuffling approach can be seen as a single iteration of
permutation testing. As our experiments suggest this is sufficient
to obtain an indication of confound-leakage. However, a permu-
tation test based null distribution can quantify the variability and
provide additional information. It is important to note, however,
that while this can provide evidence for confound-leakage, we are
not aware of a procedure to definitively exclude confound-leakage
as an explanation.

4) Carefully choose alternatives: If confound-leakage seems
probable then consider alternative confound adjustment meth-
ods. Stratification [20, 36] is commonly in conventional machine-
learning or unlearning of confounding effects [37] which is com-
mon in deep learning and further general approaches that promote
fairness [12, 38]. Note however, that these procedures may also
entail pitfalls. Hence, we caution researchers to exercise care when
applying any confound adjustment protocol and to carefully con-
sider limitations of the modeling approach used.

Important societal questions involving health and economic policy
can be informed by applying powerful nonlinear ML models to large
datasets. To draw appropriate conclusions, confounds must be re-
moved without introducing new issues that cloud the results. In
the present study, we performed extensive numerical experiments
to gather evidence for confound-leakage. Using feature shuffling
and predictions due to confound predicted features as proposed
here, investigators can get an initial indication of whether their
pipeline and data are susceptible to confound-leakage. We high-
lighted the conditions most likely to lead to leakage. Although we
made progress on understanding these issues, there is no full-proof
method for detecting and eliminating leakage. We hope our results
prompt others to push further, perhaps expanding on the standard
definition we adopted for confounds by introducing causal analyses.
We hope our and allied efforts inform both researchers and practi-
tioners who incorporate ML models into their data analyses. As a
starting point, we suggest following the guidelines we provide to
mitigate against confound-leakage.

We analyzed several ML benchmark datasets from diverse domains
to draw generalizable conclusions. To ensure reproducibility, most
datasets come from the openly accessible UCI repository [39]. We
included five classification tasks and five regression tasks with
different sample sizes and numbers of features. All classification
problems were binary or were binarized, and class labels were bal-
anced to exclude biases due to class imbalance [40].

We also used one clinical dataset, a balanced subsample of the
ADHD speech dataset described by von Polier et al. [3] includes
126 individuals with 6016 speech-related features, the binary tar-
get describing ADHD status (ADHD or control) and contains four
confounds: gender, education level, age and, depression score mea-
sured using the Beck’s depression inventory (BDI). For more infor-
mation on the datasets see Supplementary Table S1.

Confound removal was performed following the standard way of
using linear regression models. Following the common practice,
we applied CR to all the features. Specifically, for each feature, a
linear regression model was fit with the feature as the dependent
variable and the confounds as independent variables. The residuals
of these models, i.e., original feature minus the fitted values were
used as confound-free features (Xcp = X — X). This procedure was
performed in a CV-consistent fashion, i.e., the confound removal
models were fitted on the training folds and applied to the training
and test folds [20, 22].

The TaCo framework allows systematic analysis of confound re-
moval effects. Confounding is a three-way relationship between
features, confounds and the target. This means that a confound
needs to share variance with both the feature and the target. Mea-
suring or simulating such relationships can be hard especially if
linear univariate relationships cannot be assumed. Furthermore, ef-
fects of confound removal should increase with the actual strength
of the confound. The target itself explains all the shared variance
and thus it is the strongest possible confound. Therefore, using the
target as a confound, i.e. TaCo, measures the most possible extent
of confounding. In addition, using the TaCo simplifies the analysis
to a two-way relationship. Lastly, the TaCo approach is applicable
to any dataset and can help to measure the strongest possible extent
of confound-leakage even without knowing the confounds.

To study the effect of CR on both linear and nonlinear ML algo-
rithms, we employed a variety of algorithms: linear/logistic re-
gression (LR), linear kernel Support-vector machine (linear SVM),
Radial Basis Function kernel Support-vector machine (RBF SVM),
decision tree (DT), random forest (RF), and multilayer percep-
tron (MLP) with a single hidden layer (relu). Additionally, we used
dummy models to evaluate chance-level performance.

In the preprocessing steps, we normalized the continuous fea-
tures and continuous confounds to have a mean of zero and unit
variance, again in a CV-consistent fashion. Any categorical features
were one-hot encoded following standard practice.

We compared the performance of ML pipelines with and without

CR. To this end, we computed the out-of-sample Area under the

Curve for ROC (AUCROC) for classification and predictive R? from

scikit-learn [41] for regression problems in a 10 times repeated

5-fold nested CV. We employed the Bayesian ROPE approach [42]

to determine whether the results for a given dataset and algorithm

with and without CR were meaningfully higher, lower or not mean-
ingfully different.

In this study we used the Bayesian ROPE [42] approach to qualify dif-
ferences between K-fold cross-validation results coming from two
models. This approach uses the Bayesian framework to compute
probabilities of the metric falling into a defined region of practical
equivalence or of one ML pipeline scoring higher than the other.
This is achieved by defining a region of equivalence (here we used
0.05). Consequently, the Bayesian ROPE approach allows us to make
probabilistic statements regarding whether and if so which of the
ML pipelines score higher. We summarize these differences using



the following symbols = (highest probability of pipelines scoring
practically equivalent), < (highest probability of right pipeline scor-
ing higher), > (highest probability of left pipeline scoring higher).
Other possibilities such as the significance test correcting for the
dependency structure in K-fold CV [43] or permutation testing by
shuffling the target or features can be employed when suitable.

Shuffling the features while keeping the confounds and target in-
tact destroys the feature-target and feature-confound relationships
while preserving the confound-target relationship. Therefore, after
feature shuffling any confound adjustment method cannot reveal
the feature-target relationship, but it can still leak information.
In other words, any performance above the chance level after CR
on shuffled features is an indication of confound-leakage. Feature
shuffling is also used in other approaches such as permutation test-
ing (see section Bayesian ROPE) to test effectiveness of confound
adjustment methods [21]. Permutation testing can be computa-
tionally expensive and, like other frequentist tests, it cannot ac-
cept the null hypothesis to establish equivalence. We, therefore,
adopted a computationally feasible methodology. We shuffle the
features, perform repeated nested cross-validation and then apply
the Bayesian ROPE. For completeness, we show that both permuta-
tion testing and the Bayesian ROPE detect confound leakage in the
clinical dataset. In some cases feature shuffling approaches might
need further consideration, for instance shuffling features within
confound categories to preserve their joint distribution (see walk-
through analysis), and the possibility of suppression and leakage
happening simultaneously. Nevertheless, they serve as a useful tool
for detecting confound leakage as shown in this work.

- Project name: Confound-leakage

- Projecthome page: ‘https://github.com/juaml/ConfoundLeakage

- Operating system(s): GNU/Linux

- Programming language Python 3.10.8 [43]

- Other requirements: scikit-learn 0.24.2, baycomp 1.0.2, mat-
plotlib 3.5.1, seaborn 0.11.2, dtreeviz 1.3.5, numpy 1.22.3, pandas
1.2.5

- License: GNU Affero General Public License v3.0

All 10 UCI benchmark datasets can be access freely at the UCI ma-
chine learning reporsitory [39]. Together with our simulated data
(availabl under https://github.com/juaml/ConfoundLeakage) , the
UCI benchmark datasets compose our minimal data sets to repro-
duce our key findings. Additionally, we analyzed one real-world
clinical datase ([3]). This sensitive data is available from PeakPro-
filing GmbH with certain restrictions. Restrictions apply to the
availability of the data, which were used under licence for this study.
Please contact Jorg Langner the co-founder and CTO of PeakProfil-
ing GmbH with requests.

- ADHD: Attention Deficit Hyperactivity Disorder

- AUCROC: Receiver Operating Characteristic Curve
- BDI: Beck’s Depression Inventory

- CR: Confound Regression

+ CV: Cross-Validation

- DT: Decision Tree

+ ML: Machine Learning

- MLP: Multilayer perceptron

- RBF: Radial Basis Function

- RF: Random Forest

+ SVM: Support Vector Machine
+ TaCo: Target as a Confound
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Figure 1. A walk-through analysis demonstrating our analysis pipeline and
confound-leakage using DT. The results shown here are on the 30% test split. For
the binary classification walk-through using the bank investment dataset, a subset
of the features used are shown before CR (a) and after CR (b). Induced DT's and their
performance before (c) or after CR (d). The DT after CR (d) is based on minute differ-
ences in only two features and still performs nearly perfectly and better compared to
the DT on raw data (c). The regression analysis walk-through using simulated data
is depicted as feature-target relationships with the dotted line showing the predicted
values (e,f). The non-normal distribution of the feature conditioned on the confound
leaks information usable by the DT. Here, CR removes the linear relationship, as
intended, but introduces a stronger non-linear one by shifting the distribution of
XcR given confound = 0 in-between the two peaks of Xy given confound = 1 (f).

Figure 2. Performance on the UCI benchmark datasets when using raw vs CR fea-
tures (a) and raw vs the predicted features given the confound/TaCo/X (b). The two
columns correspond to: 1) TaCo removal with four ML algorithms (LR, DT, RF, MLP),
and 2) CR with simulated confound with different correlation to the target (range
0.2-0.8) with RF. (a,b) show performance using the original features while (c,d)
show the performance on shuffled features. To check whether a difference between
the performance of two models is meaningful, we used the Bayesian ROPE approach
to identify what is most probable: performance being higher before removal (<),
being higher after removal (>) or equivalent (=) (see the Methods section for de-
tails). When using a linear model (LR) TaCo removal leads to reduction in prediction
performance, as expected. In contrast, nonlinear models lead to a higher perfor-
mance for all datasets. This increase could be either explained by confound removal
revealing information already in the data (suppression) or confound removal leaking
information into the features (confound-leakage). Shuffling the features destroys
association between features and the target, therefore subsequent performance
increase after TaCo removal indicates the possibility of confound-leakage (c,d). The
simulated confounds show that an increase after CR is also possible for confounds
weakly related to the target (b,d) and one dataset (Blood) shows strong evidence of
confound-leakage.

Figure 3. Two mechanisms for confound-leakage. First mechanism where non-
normal distributions get shifted apart through CR. (a,b) show this using a simulation
with extreme values on opposing sides for one feature conditioned on the TaCo. (c,d)
show a simplified version (binary target for visualization purposes) of the house
price UCI benchmark dataset. Here, the distributions of the feature conditional on
the TaCo are different (c); a narrow distribution (TaCo = 1) and a distribution with
two peaks (TaCo = 0). TaCo removal shifts the narrow distribution in-between
the two peaks (d), leaking information usable by non-linear ML algorithms. The
second mechanism, leakage through minute differences in the feature after CR, is
highlighted through the visualization of the DT trained on the heart dataset after
CR (e). Distribution plots visualize the data at each decision node. The decision
boundary is shown as a dotted line. For decision nodes before leaf nodes, the side
of the decision node leading into a prediction is colored to represent the predicted
label as diagnosed (green) or not (purple). The minute differences in the two used
features that perfectly separate the data into the two classes can be seen.

Figure 4. The real-world ADHD speech dataset. The performance when using
different confounds (a-b), most important features of RF when using BDI as con-
found (c-d) and visualization of confound-leakage due to deviation from normal
distributions (e-f). a shows the performance of a RF predicting ADHD vs healthy
controls using the original features. To check whether a difference is meaningful we
used the Bayesian ROPE approach to identify what is most probable: performance
being higher before removal (<), being higher after removal (>) or equivalent (=)
(see method section). An increased performance can be observed when using all
confounds, BDI as a confound or the TaCo. The same pattern appears when the
features were shuffled (b). This shows that the increase in performance is due to
confound-leakage and BDI is a driving factor for this leakage as it leaks information
when used as a confound. c-d visualize the 10 most important features for both
using X and X, as features. The feature ranking is shown as white label on top of
each cell. The most important features are different for X and X¢g. Furthermore, the
most important features of one model ranked as very unimportant in the other. e-f
show decision boundaries of DT trained on the two most important features after
CR. The background colors indicate the prediction of the model, the points show the
true target value and the x-axis the two most important features. The distribution
of each feature conditioned on the target is shown as the density plots. One can see
that CR leaks information by cleanly separating the blue and red points.

Figure 5. Prediction performance of a RF trained with (blue) or without (red) con-
found removal on an increasing number of features. Each feature was either sampled
from a random standard normal distribution (M = 0, std=1), a random x? distribu-
tion with df = 3 or a x2 distribution with a df = 3, scale= 0.5 or df = 4, scale= 1 for
the confound being equal to 0 and 1 respectively. a) The RF trained on the normally
distributed features did not achieve performance above the chance level (R?> < 0)
irrespective of confound removal. b-c) When training the RF on either of the x?2
distributed features, confound removal resulted in above chance level performance
(R? > 0). This effect increased with an increasing number of features and can only
be explained by confound removal leaking information into the features.
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Re: Manuscript Revision for GigaScience GIGA-D-23-00004
Dear Dr. Scott Edmunds, dear Dr. Hans Zauner

| am writing to submit the revised version of our manuscript titled “Confound-leakage: Confound
Removal in Machine Learning Leads to Leakage” for consideration for publication in GigaScience. We
would like to express our gratitude for the valuable feedback provided by the reviewers, which has
greatly contributed to improving the quality and rigor of our work.

In response to the reviewers' comments, we have made extensive revisions to the manuscript,
incorporating additional analyses and simulations to strengthen our findings. We believe that these
revisions have significantly enhanced the original manuscript and have addressed the concerns
raised by the reviewers in a comprehensive manner, making it more valuable to the readers of
GigaScience.

Specifically, we have conducted a series of additional experiments and simulations to further
investigate the issue of "confound leakage". These analyses have allowed us to explore the impact of
confound leakage and provide more robust evidence for the validity of our main findings.
Importantly, while we have refined our methodology and provided additional evidence, the core
message regarding the potential confound leakage remains consistent with our original submission.
The code used for the additional analyses has also been deposited in the GitHub repository
(https://github.com/juaml/ConfoundLeakage). We believe that our study contributes significantly to
the existing literature and advances the understanding of data leakage in machine learning
applications.

Below is a summary of the key changes we have made in response to the reviewers' comments:

1. Expanded Methodology: We have added two new sections in the manuscript to describe the
analyses methods: “The Bayesian ROPE for model comparison” and “Target as a Confound
(TaCo)”. These sub sections provide a detailed explanation of the methods employed,
ensuring transparency and reproducibility.

2. Revised figures and a new figure: We have revised the figures that present the results of the
additional analyses and simulations. These visual aids enhance the clarity and accessibility of
our findings, allowing readers to better understand the impact of confound leakage. We
have also added Figure 5, that shows the impact of an increasing number of features.

3. Discussion of implications: In the revised manuscript, we have further elaborated on the
implications of the potential confound leakage. We have also discussed the limitations
associated with this issue and provided suggestions for future research to minimize such
effects.

I+
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Forschungszentrum

Thank you once again for the opportunity to revise and resubmit our manuscript. We appreciate the
time and effort invested by the reviewers in providing constructive comments, which have
undoubtedly improved the quality of our work. We look forward to your favorable consideration of
our manuscript for publication in GigaScience.

Should you require any additional information or have any further queries, please do not hesitate to
contact me. Thank you for your attention, and we remain at your disposal.

Sincerely,

Sami Hamdan Kaustubh R. Patil, PhD

PhD-student Research Group Leader

Institute of Neuroscience and Medicine, Applied Machine Learning

Brain & Behaviour (INM-7) Institute of Neuroscience and Medicine,
Research Centre Jilich, Germany Brain & Behaviour (INM-7)

Email: s.hamdan@fz-juelich.de Research Centre Jilich, Germany

E-Mail: k.patil@fz-juelich.de
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Dear reviewers and GigaScience Editors,

Thank you very much for your feedback, review and the opportunity to revise our
manuscript. In the following we first summarize our efforts to improve the manuscript and
then provide a point-by-point response to all the comments. For this reason, we will always
first display the reviewers’ comment in blue color and our response in black color. Quotes
from the manuscript and any changes are shown in triple quotes (*"” “™). Additional text is
shown in green color and deleted text is shown striked through in red color.

Summary:

We thank both reviewers for their insightful feedback. We have addressed all the comments
and this has led to an improved manuscript. We performed several additional analyses and
sanity checks such as permutation testing and training confound removal models only on
controls. We have removed our claims about use of X_hat, added new visualizations and
extended the methods section making our findings more accessible. Our main claim that
confound leakage can happen and adversely impact machine learning outcomes did not
change. In fact, the additional extensive analyses including permutation testing and an
analysis of the most important features in the clinical dataset substantiate our claims.
Furthermore, these analyses highlight the impact of confound-leakage on real world data.
In sum, we are very grateful for the reviewers feedback and the editors initiative that helped
us improve our work.

Reviewer 1:

We thank Dr. Richard Dinga for the encouraging words and for the detailed comments. We
have performed several sanity checks and other analyses to address the comments raised.
The code used for those has been made available in the project’'s GitHub repository:
https://github.com/juaml/ConfoundLeakage/blob/main/extra/check auc/CheckAUC.pdf.

Reviewer (R.) 1 Comment (C.) 1:

Confound leakage due to implementation of performance measures: One of the main pieces of
evidence for the "confound leakage" in the paper is that after shuffling features that there should be
no relationship between features and the outcome, but after applying confound regression (CR), ML
models can predict the outcome with above-chance performance. In my opinion, the explanation
authors provide makes sense, and the data do produce this behavior. However, This is a tricky
problem, and | might be wrong here, but I think that this bias only happens because performance
measures implemented in scikit-learn (and other libraries, | am sure as well) always report
above-chance performance, so AUC will never be < 0.5 and R2 < 0 (i.e., if model predictions would
result to AUC = 0.98 or 0.02, scikit-learn will in both cases report 0.98). The bias, as described in the
paper, does happen, but half the time, it's positive and half the time negative, and in the long run, it
will average to 0. (See also my next point).

To elaborate, after feature shuffling, there should be no relationship between the features and
outcome or features and confounds, so there should be no way to learn something in the training set
that would translate to above-chance predictions on the test set. Confound removal will create a
confound-dependent bias and hence a spurious signal in training set that a model will learn. However,
in the test set, this bias will randomly half the time be in the opposite direction. So in the test set, the
confound removal induced bias will half the time lead to significantly spuriously above chance and half
the time below chance prediction performance. This does not mean that using different AUC
implementations would solve the problem or that the problem is less severe, as described in the

L]


https://www.editorialmanager.com/giga/download.aspx?id=154908&guid=95490248-49d8-4c39-b768-95613c8ea1d5&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=154908&guid=95490248-49d8-4c39-b768-95613c8ea1d5&scheme=1

paper. Results in each test set will still be biased (positively or negatively), with possibly severe
consequences for the validity of the results. This should be explored and explained in the paper, and
the recommendations should be changed accordingly.

Response R.1 C.1:
We address this comment in two parts.

A. Performance measure implementation in scikit-learn is correct

The reviewer argues that scikit-learn implementation AUC and R2 measures always report
above-chance performance, which seems to be something happening in different ML
libraries. We were not aware of this pitfall in ML libraries and want to thank the reviewer for
raising this concern. However, as we show this is not the case in the scikit-learn version that
we are using. We used scikit-learn (version>=0.24.2) and worked with simulated data as
nicely provided by the reviewer in the next comment (see below, R.1 C.2). We generated
100 simulated datasets each using a different random seed. Then we computed the AUC in
both R and Python in the same way as done by the reviewer, i.e we calculated the AUC of
the original feature X and y and confound removed feature X_CR and y. Again, following the
reviewer's example this was done without fitting a predictive model.

Lo AUC behaves similary using MLmetrics or sklearn.metrics

I R
[ Python

0.8 1

0.6 1

¢

AUC

0.4 1

0.2 4

0.0

T T
AUC(X.Y) AUC(Xcr.Y)
With or Without Confound Removed Features

Both R and Python behave in the correct way as shown in the plot above. Specifically, they
showed chance-level performance when using the original feature X (left hand side) but a
bimodal distribution centered around 0.75 and 0.25 when using the confound removed
feature X_CR. Note that both R and Python show below chance-level AUC. Thus our results,
i.e. increased test performance after CR, can not be due to incorrect implementation of AUC
in scikit-learn.

Along similar lines, we would like to note that scikit-learn's implementation of R2 (r2_score
function) returns the coefficient of determination and not the squared correlation. As the
documentation says (and we have confirmed it) “Best possible [R2] score is 1.0 and it can be
negative (because the model can be arbitrarily worse).” Further details can be found in the
scikit-learn documentation:
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html.



or check directly in the source code starting here:
https://github.com/scikit-learn/scikit-learn/blob/364c77e047ca08a95862becf40a04fe9d4cd2c
98/sklearn/metrics/_regression.py#L927

B. Confound-dependent bias in the test set is not random

The second part of the comment raises the possibility that confound-dependent bias
introduced after confound removal in the training set would lead to random behavior in the
test set—i.e. sometimes lower and sometimes higher than chance-level performance. The
concern here is that if a particular implementation always returns above chance performance
then such randomness would be seen as high performance instead of averaging out to
chance level.

As we have shown above the scikit-learn implementation we used does indeed return both
below and above chance-level performance and hence we believe that this concern is not
applicable. The concern regarding behavior on the test set is addressed in the next comment
for brevity reasons.

Reviewer (R.) 1 Comment (C.) 2:

Confound regression in linear models: | think the problems of CR, as described in this paper, will also
be present in linear models, thus making the findings more impactful, and it should be added to the
paper. Here is an example with categorical data, if you excuse R code:

“rwe

set.seed(1)

n <- 1000

df <- data.frame("x" = rep(c(0,1), n),

"y" =rbinom(n, 1, 0.25))

df$x_cr <- resid(Im(x~y, data=df))

library(MLmetrics)

MLmetrics::AUC(df$x_cr, df$y)

MLmetrics::AUC(df$x, df$y)

Here | do not fit any model, and | do not bother with the test set, but the AUC of a linear model fitted
on x or x_cr (feature x, after the confound removal) will be the same as the AUC of x or x_cr variables
themself. Also, notice that with different seeds, AUC will sometimes be 0.25 and sometimes 0.75,
although scikit-learn would report 0.75, following the previous point.

Basically, the confound regression applied to a binary variable will shift the variable slightly with
respect to the confound/target, thus increasing the number of unique values of the variable and
creating a correlation between the variable and the outcome. Since the shift is random, the correlation
will also be random, sometimes positive and sometimes negative. Also, in [1], we describe situations
where linear models can learn confounding information from the data after confound cleaning,
especially robust linear models, and | suspect similar issues can also lead to biases described in this
manuscript.

Response R.1 C.2:

Thank you very much for this detailed comment and for providing a R code snippet which
helped us understand your concern.

It is unclear to us why the AUC given a feature and target (as computed by the reviewer)
should be the same when using a prediction model. To investigate this, using the same 100
datasets generated above, we fitted a logistic regression model with either X or X_CR as a
feature. As can be seen in the plot below, the AUC of predicted values (indicated as y_hat) is



close to the chance level for both X and X_CR (blue and orange leftmost boxplots). Then we
fitted decision tree maodels to the same data and while the AUC on the original feature
stayed at the chance level, that of the confound removed feature was much higher
(rightmost boxplot, mean close to 1).

No Increase in AUC when actually predicting y
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Here, you can see the AUC of either X and X_CR or predicted y (y_hat) given either the raw
(X) or confound removed (X_CR) features. As you can see the previously described effect is
not anymore visible when using the predicted y for AUC computation. Overall, the linear
model (logistic regression) did not learn the confound-dependent bias and performed at the
chance level (orange plot above) while a nonlinear model (decision tree) managed to learn
the confound-dependent signal resulting in high AUC (rightmost boxplot above). Also note
that the performance after model fitting does not fluctuate between below and above chance
level values as it does when using the original feature (see the response to R.1 C.1 above).
Furthermore, we would like to note that [1] discusses confounding left in the data after
confound removal while we investigate introduction of confounding effects through CR. The
analysis performed here uses all the data, i.e. no separate train and test sets, to align with
the reviewer’s line of thought but in the manuscript we exclusively perform predictions on
hold-out data.

We agree with the reviewer that an effect if found in linear models would increase the impact
of the finding but given the correct behavior of scikit-learn and chance-level performance
when using a linear prediction model we find no evidence for this. However, we cannot rule



out that in some cases linear models might learn confound-dependent biases. To highlight
this we have added the following sentences to the manuscript (section: Discussion page 5):
which is especially problematic in the era of “big data”, where tens of thousands of features
are a norm.

Still we would like to highlight that we do not claim to have found all possible ways
confound-leakage can happen. For instance, it is possible that other modeling approaches,
even linear ones, could be susceptible to confound-leakage although we did not find
evidence for it in our analyses. Nonetheless, confound-leakage can bias the data and may
negatively impact subsequent statistical analysis [21].

It is important to note that although similar, confound-leakage is not equal to collider-bias.
Colliders are variables causally influenced by both the features and target [19].

R.1C.3:

Permutation test: The biases caused by confound regression (positive and negative, or just positive)
should also be presented in the permutation distribution, so using a permutation test will not change
the bias of the results, but the results will at least not be statistically significant, so it can guard in
some way against this problem. Also, an inspection of the permutation distribution might warn
researchers about possible problems as described in the paper, e.g., if the distribution is not centered
at 0 or is bimodal, it might suggest the "confound leakage." Although the permutation test is not
always computationally feasible, I think it should be discussed in the paper. Another way how a
permutation test can help is by using stratified shuffling, where shuffling is performed only within
confound categories.

Response R. 1 C. 3:
Thank you very much for this important remark.

Our goal in this paper was to investigate confound leakage where predictions using features
after CR are using confounding information instead of actual signal within the features. Thus
if the features are shuffled before CR there should be no information available to learn in the
features apart from any leakage during CR. Following this logic, we show that shuffled
features together with Bayesian ROPE can indeed detect confound leakage in various
settings. As you note, permutation testing can also be used to detect confound leakage, with
just positive bias as discussed above, and potentially provide additional information.

To address your suggestion we have taken the following actions:
A. We describe the Bayesian ROPE approach and the rationale behind using it in more
detail.
B. We performed a permutation test on the clinically relevant dataset which also shows
confound leakage.
C. We have added more details on permutation testing together with stratified shuffling.

We use the Bayesian ROPE approach which is a computationally more efficient method.
Furthermore, it allows statements of equivalence which typically cannot be obtained in
frequentist approaches. To make this clearer we added the following subsection to Methods
about why we chose the Bayesian ROPE approach:



W

The Bayesian ROPE for model comparison

In this study we used the Bayesian ROPE [42] approach to qualify differences between
K-fold cross-validation results coming from two models. This approach uses the Bayesian
framework to compute probabilities of the metric falling into a defined region of practical
equivalence or of one ML pipeline scoring higher than the other. This is achieved by defining
a region of equivalence (here we used 0.05). Consequently, the Bayesian ROPE approach
allows us to make probabilistic statements regarding whether and if so which of the ML
pipelines score higher. We summarize these differences using the following symbols =
(highest probability of pipelines scoring practically equivalent), < (highest probability of right
pipeline scoring higher), > (highest probability of left pipeline scoring higher). Other
possibilities such as the significance test correcting for the dependency structure in K-fold
CV [43] or permutation testing by shuffling the target or features can be employed when
suitable.

We do agree with the reviewer that permutation testing can provide additional information
but it comes at an additional computational cost. To clarify this we have added the following
sentence to the Discussion (page 6):

3) Gain evidence against or in favor of the confound-leakage:

The procedure of shuffling the features followed by CR as we defined in the TaCo framework
can provide clues regarding confound-leakage.

Our shuffling approach can be seen as a single iteration of permutation testing. As our
experiments suggest this is sufficient to obtain an indication of confound-leakage. However,
a permutation test based null distribution can quantify the variability and provide additional
information.

We have also added the following to results section (Walk-through analysis, page 3) to
further highlight this:

wnn

To destroy the feature-target relationship we shuffled each feature before CR (X) to create
XCR and repeated the analysis. As there should be no predictive information in the shuffled
features, the only explanation for above chance-level performance is CR leaking information
into the confound-removed features X_CR, i.e. confound-leakage. We applied the shuffling
procedure to a train-test split in this walk through analysis. But it should be noted that when
combined with a (nested) cross-validation and Bayesian ROPE approach, this procedure
can be used to compare models similarly as a permutation test (see section Shuffling the
features and permutation testing). We observed chance-level performance without CR (
AUCROC = 0.52) for the shuffled features.

We were also happy to perform a permutation test on the clinically relevant dataset. The
result is shown below and has been added as the new Supplementary Fig. S2.



Permutation Test Reveals Confound-Leakage
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Figure S2: We performed permutation testing with 1000 iterations. After shuffling the
features, a significantly lower performance was observed compared to the original features
X. No significant difference between raw and shuffled features was observed when using the
X_CR features. This result is in line with the leakage hypothesis as the higher accuracy after
shuffling and CR indicates leaking target-related confounding information into the features.

This result revealed that BDI is driving the potential leakage, owing to its strong relation to
the target (Point-biserial correlation, r = 0.61, p < 0.01). Furthermore, a permutation test also
led to the same conclusion (see Methods and Supplementary Fig. S2)

Regarding stratified shuffling, again we agree that it can be a valuable approach, however, it
could be difficult to implement with multiple confounds where it is hard to define clear
categories (e.g. continuous variables). Furthermore, it is important to note that both
approaches (Bayesian ROPE and permutation testing) should be used with care. Both will
not be able to differentiate between leakage and the real signal present in the feature. Of
course, in this case the performance of shuffled X _CR should still be higher than the chance
level. For this reason we agree that inspecting the permutation distribution can be helpful. To
address these and additional remarks, we have added the following subsection to the
Methods section:

Feature shuffling approach

Shuffling the features while keeping the confounds and target intact destroys the
feature-target and feature-confound relationships while preserving the confound-target



relationship. Therefore, after feature shuffling any confound adjustment method cannot
reveal the feature-target relationship, but it can still leak information. In other words, any
performance above the chance level after CR on shuffled features is an indication of
confound-leakage. Feature shuffling is also used in other approaches such as permutation
testing (see section Bayesian ROPE) to test effectiveness of confound adjustment methods
[21]. Permutation testing can be computationally expensive and, like other frequentist tests,
it cannot accept the null hypothesis to establish equivalence. We, therefore, adopted a
computationally feasible methodology. We shuffle the features, perform repeated nested
cross-validation and then apply the Bayesian ROPE. For completeness, we show that both
permutation testing and the Bayesian ROPE detect confound leakage in the clinical dataset.
In some cases feature shuffling approaches might need further consideration, for instance
shuffling features within confound categories to preserve their joint distribution (see
walk-through analysis), and the possibility of suppression and leakage happening
simultaneously. Nevertheless, they serve as a useful tool for detecting confound leakage as
shown in this work.

R.1C.4:

Analysis of confound predicted features: | do not understand the usage of features predicted by the
confound as an analysis step. As far as | understand it, these are just a deterministic function of the
confound, so | do not see any additional information that could be obtained by examining the
confounded predicted features and their relationship to the outcome instead of confounds themself.

Response R.1C. 4:

Thank you very much for this insightful comment.

Indeed our claims regarding the use of confound predicted features (X_hat) were too strong.
The idea we wanted to explore was to investigate the variance explained by the confounds
that is removed from the feature. When there is an increase in performance after CR, the
two possibilities are either suppression or leakage. In case of suppression, X_hat has to be
either noise or a weak association on which the previous prediction given X was based
upon. Therefore, we proposed that X_hat should not be more predictive than X itself in case
of suppression/revealed information. But as the reviewer mentions, X_hat is a linear
combination of the confounds. Thus, we agree with the reviewer that for TaCo it is not
beneficial to look at X _hat. Therefore, we have removed all claims about X _hat from the
manuscript and only rely on shuffled features to indicate confound-leakage.

To address this comment we have modified the following sentences:

Section: Walk-through analysis (page 3):

W




Section: “CR using weaker confounds also increases performance”, page 4

Section: “Confound-leakage poses danger in clinical applications”, page 5

To disentangle the effect of each confound, we looked at the performance after CR for each
confound separately.

Performing CR with BDI led to a high AUCROC with original features after CR (M = 0.91, SD

= 0.01), shuffled features (M = 0.84, SD = 0.01) ane-2X-(M=0-84-SB=0-61)-

Section: “Discussion”, page 5

Specifically, by comparing the without CR baseline performance with CR after feature

shuffling ( XCR) and-features-aspredicted-by-the-econfound {2}, this framework can identify

confound-leakage as the cause of increased predictive performance.

Section: “Discussion”, page 6

wnn




Furthermore we removed the method section where we explain X_hat as measurement:

W

Lastly, we relied on X _hat for the second walk-through analysis (result section page 3) which
we have now adjusted accordingly to not include X_hat as evidence:

Confound removal for regression

As an example of a weaker confound on a regression task, we simulated a binary confound
and then sampled a feature from different distributions for each confound value (confound
equal to 0 or 1).

Then we added the confound to a normally distributed target (M = 0 and SD = 0.50 , Fig. 1
e-f). This creates a clear confounding situation, where the confound affects both

the feature ( Point-biserial correlation = 0.71, p < 0.01) and the target (Point-biserial
correlation = 0.71, p < 0.01) and thus leads to a spurious relationship between the feature
and the target ( Pearson’s correlation = 0.51 , p < 0.01).

Following the same procedure as in the previous example, we observed increased
performance after CR using a DT with limited depth of two (R2 using X = 0.29 , XCR = 0.42).
As in this simulated data only a spurious relation (via confound) exists between the feature
and target, it is safe to assume that an increased performance after CR is due to
confound-leakage.-Stilk; i =0

©X=0-58-Furthermore, we found a probable mechanism behind this confound-leakage to
be the distribution of the features conditioned on the confound. More precisely, CR shifts the
feature values for confound = 1 in between most feature values for the confound = 0 (Fig. 1
e). This leaks the confounding information into the feature instead of removing it (Fig. 1 f).
The shuffled features, however, were not sensitive to confound-leakage (X =0, XCR =
—0.01), which is expected considering the probable cause for such leakage depends on the
joint distribution of the confound and the feature. When shuffling the features within each
confound category to preserve the joint distribution, we observed an increase in performance
after CR (M=0.29 before to M=0.42). This result indicates that shuffling the features might
not be always sensitive to confound-leakage. We, nevertheless, use independently shuffled
features in our analysis for practicality, particularly in the context of continuous or multiple
confounding factors.

wn



We have removed all the X_hat from the plots as well. See end of this document for an
overview of all figures.

R.1C.5.:

References: | think that our paper [1] should be referred to more extensively. We did not describe the
problems described in this manuscript, but our findings are relevant to his paper and will also interest
readers. Specifically:

Response R. 1 C. 5:

Thank you very much for your comment. The paper [1] is indeed of interest and shows
several relevant analyses. However, there is a key difference between the problems
described in [1] and our work. While [1] deals with measuring residual confounding after
removal, we address the introduction of confounding through confound removal. This is why
we are hesitant to make too many direct connections between these two different questions.
Still, we understand that one could discuss the relevance of your paper more. Below we
address each sub comment separately.

Subcomment a. We have extensively discussed the pitfalls of confound removal. This should be
mentioned in the introduction and discussion when discussing the confound removal. Consider
discussing these pitfalls in a few sentences. In light of our paper, instead of framing confound
regression as something that is expected to work, it should be framed as something that was already
reported to be problematic.

Response a:

Thank you for your remark. We have added the following sentences to highlight that CR is
already seen as problematic due the pitfall of leaving residual confounding information after
removal.

- Introduction (page 2).

It is important to note that CR is not without other pitfalls, for instance it might fail to
completely remove confounding information [21, 27]. Still, CR is considered the de facto
method, and therefore analyzing the hitherto unknown pitfall of leaking confounding
information through CR is helpful. Furthermore, there were speculations of Altheugh-arecent
study-has-speedlated confound-leakage in ML workflows [18], it has not yet been
systematically shown, analyzed nor explained.
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- Discussion (page 5):

Specifically, we have shown this method can counter-intuitively introduce confounding, which
can be exploited by some non-linear ML algorithms.

Thus in addition to the already known pitfalls of residual confounding [21], our results show
that CR may actually introduce confounding-information.

Subcomment b:



The explanations in the section "confound-leakage due to deviation from normal distributions,"
including figures 1e and 1f, is related to our explanations of why confound removal does not
sufficiently clean data from confounding information, and | think this should be mentioned.

Response b:

We have added the following sentence to the Results (page 4) in response to this request:
These simulations show that skewed features, and by extension potentially other non-normal
distributed features, can lead to confound-leakage. Interestingly, another consequence of
non-normal distributions is insufficient removal of confounding information [21].

Subcomment c:
Using a target as a confound to test the validity/reliability of confound removal was also done in our
paper, and | think it should be mentioned.

Response c:

We have modified the text in response to this request (Introduction, page 3):

Indeed, as we show, the TaCo framework reveals strong effects where the prediction
accuracy is boosted from moderate to perfect as well as weaker effects for confounds
weakly correlated with the target. A previous work has used TaCo for evaluating the validity
and reliability of confound adjustment methods [21].

Subcomment d:

The method to deal with confounding presented in our paper will guard against the dangers of
confound regression described in this manuscript. Our method is based on estimating what variance
in the outcome can be explained using ML predictions that confounds cannot explain, so in the target
as confound situation, this will be 0, thus the dangers of confounded results should be avoided. This
should be discussed more in the recommendation section. Also, statements like "we made progress
on understanding these issues, there is no full-proof method for detecting and eliminating leakage,”
and "we are not aware of a procedure to definitively exclude confound-leakage as an explanation.”
etc. should be modified since | believe that our method, although not perfect, is a candidate solution
for this problem and it would of interest to readers to offer them a solution, of course with caveats.
Another solution not discussed in the manuscript would be the permutation test mentioned in point 3.

Response d:
Thank you very much for your comment. In fact, we have already mentioned your work as
well as permutation testing in the Discussion (page 6).
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Other methods can be employed, e.g., proposed by Spisak [27]. Furthermore, measuring
how dependent the predictions of a model are on the confound by permutation testing [34,
35] or the approach proposed by Dinga et al. [21] can be helpful.

To further emphasize the importance the methods mentioned by you we have added them to
the next recommendation section:



To gain additional information, the reader might be interested in methods to estimate the
variance in the target explained by ML predictions that confounds cannot explain [21, 27].

W

We think it is important to not make claims of any full-proof methods. As mentioned in the
new section mentioned in Response R. 1 C. 3, comparing models trained in different
scenarios can be problematic as similar performance can be achieved by relying on different
types of information both present in the data, e.g. a combination of suppression and leakage.
As the reviewer has pointed out that their method is not without caveats, we do not feel
comfortable to claim that any of the discussed candidates are full-proof.

R.1C.é6:

High-dimensional data are more susceptible to confound leakage: | am not entirely sure this claim is
correct. For me, intuitively, it is not. | can imagine that biases created within individual features by
confound removal might average out to O in high-dimensional data in the test set. | think it would be
worth performing a controlled simulation to support this claim.

Response R. 1 C. 6:

Thank you very much for your feedback.

We had already included a controlled simulation to support this claim in the manuscript, but
we agree that it was not featured prominently enough. To address this we have now moved
an adjusted version of the former Supplementary Fig. 2 into the manuscript as Fig. 5 and
added a new simulation to further support this claim (Results, page 4).

Lastly, we investigated whether such effects could also occur when randomly sampling non-normal
distributed features instead of carefully constructing the features conditioned on the confound. To this
end, we sampled an increasing number of features (1 to 100) either using a random normal or skewed
(x2, df = 3) distribution independent of a normally distributed target.

Using RF, we observed increased performance after TaCo removal with skewed features but not with
normally distributed features, e.g. R2 of M = 0.23 with SD = 0.06 compared

to R2 of M = -0.04 with SD = 0.04, respectively with 100 features. Importantly, this effect increased

with the number of features (Suppltementary-Hg—S2-Fig 5).
To further illustrate this point, we performed another simulation depicting a typical

confounding situation. Here, we sampled an increasing number of features (1 to 100) with
different x2 distribution given a binary confound (df=3 (4) and scale=0.5 (1) for confound=0
(1)). The target was sampled from a normal distribution (M=0, SD=0.2) and the confound
was added to it. Analysis of this data shows an increased performance after confound
removal from M=-0.52 (SD=0.02) to M=-0.50 (SD=0.03) using one feature and from M=-0.02
(SD=0.01) to M=0.18 (SD=0.01) using 100 features. These results demonstrate that the
effect of confound-leakage increases with increasing number of features.

Minor

7. 1 think the methods used need a little more explanation, and the structure could be a little improved.
Although what "target as confound" does is, in a way, self-evident, the procedure and motivation for it



can be explained a bit more. Also, now the whole explanation is at the end of the introduction section,
but it should be elsewhere.

Thank you very much for this excellent point. We agree that a more detailed methods
section will improve the structure and readability. We still would like to keep the explanation
of TaCo in the introduction to guide readers through the paper.

We have added the following subsection to the Methods:

W

Target as a Confound (TaCo)

The TaCo framework allows systematic analysis of confound removal effects. Confounding is
a three-way relationship between features, confounds and the target. This means that a
confound needs to share variance with both the feature and the target. Measuring or
simulating such relationships can be hard especially if linear univariate relationships cannot
be assumed. Furthermore, effects of confound removal should increase with the actual
strength of the confound. The target itself explains all the shared variance and thus it is the
strongest possible confound. Therefore, using the target as a confound, i.e. TaCo, measures
the most possible extent of confounding. In addition, using the TaCo simplifies the analysis
to a two-way relationship. Lastly, the TaCo approach is applicable to any dataset and can
help to measure the strongest possible extent of confound-leakage even without knowing the
confounds.

8. possible bug: | suspect that in your walkthrough analysis, X_train_shuffled variable is not
shuffled since you are calling X_train_shuffled = pd.DataFrame(zscore.transform(X_train),
columns=col_names|[:-1])

and not X_train_shuffled =
pd.DataFrame(np.random.permutation(zscore.transform(X_train)), columns=col_names[:-1])
as in other variables. But | am not an expert on the workings of the code. Nevertheless, it
won't change anything about the paper. The biases described by the authors will still be
present.

Thank you very much for looking at the code and finding this bug!

Indeed, this was a bug that we have fixed. As you said, it makes no difference for the
interpretation of our results. The following values changed in a non fundamental way due to
this bug-fix (Walk-through analysis, page 3):
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We observed chance-level performance without CR ( AUCROC = 8-520.48) for the shuffled
features. However, a performance increase after TaCo removal was observed ( AUCROC =
©:980.99). This analysis shows that performance increase after TaCo removal with shuffled
features indicate the possibility of confound-leakage.



Reviewer 2 (R.2.):

The manuscript overrides the common perception that linear regression can help remove confounding
effect in machine learning analysis. Experiments showed that in certain scenarios linear regression
can inject confounding effects that can be picked up by non-linear machine learning models, e.g., by
achieving higher prediction accuracy even when using shuffled features. Two hypotheses are given
why such phenomenon can happen.

| think some part of the analysis resolved my long-lasting confusion in my own studies. Interesting
observations overall, but there are three major concerns that | hope the authors can respond to:

We thank you for your encouraging words.

R.2C. 1.

While linear regression is a standard way to remove confounding effects, how to construct that
regression can vary from case to case. In the scenario where the confounder is highly correlated with
the label, people sometimes incorporate both label and confounder as covariates, or apply linear
regression only in the control group. The idea is that you need to disentangle variance in the feature
explained by the label from the variance explained by the confound. Again, feature, label, and
confound have three-way dependencies by definition and failure to discuss this aspect can be
misleading.

Thank you very much for your insightful comment.

First, indeed, adding the confounders as covariates to the model is a common approach in
statistical analysis which can shed light on how much variance is explained by the
confounder. However, the focus of this work is building ML models that do not use
confounding information, i.e. they are confound-free. Therefore such ML set-ups do not
include confounds as features. To clarify our focus, we have added the following text to the
Introduction (page 2):

Two methods for treating confounding are commonly employed in data analysis with the goal
of building an accurate ML model that is not biased by the confounding information.

W

Second, we thank you for mentioning the possibility of training confound removal models
only on the control group. We have incorporated this set-up into the manuscript by repeating
our analysis for the clinically relevant ADHD dataset while training CR only on the healthy
group and then removing their variance from the data as described by you and Dukart et al.
[2]. The results confirm our previous statements as we observe the same pattern of increase
in accuracy due to confound leakage as using standard CR. To highlight this point we added
the following sentences to the Results (subsection: “Confound-leakage poses danger in
clinical applications”, page 5):

Training CR models only on healthy individuals can be helpful in clinical applications [4]. We
investigated this variant of CR and again the AUCROC increased for original features after
CR M=0.83 (SD=0.02) and an increase with shuffled features from M=0.51 (SD=0.05) to
M=0.79 (SD=0.02), suggesting that confound leakage is also a concern for variants of CR.



Also thank you very much for the remark that readers should always consider the actual
problem to be a three-way depency. This complexity is one of our key motivations of using
TaCo and therefore very important for this paper. Therefore we highlight this in our new
method section:

W

Target as a Confound (TaCo)

The TaCo framework allows systematic analysis of confound removal effects. Confounding is
a three-way relationship between features, confounds and the target. This means that a
confound needs to share variance with both the feature and the target. Measuring or
simulating such relationships can be hard especially if linear univariate relationships cannot
be assumed. Furthermore, effects of confound removal should increase with the actual
strength of the confound. The target itself explains all the shared variance and thus it is the
strongest possible confound. Therefore, using the target as a confound, i.e. TaCo, measures
the most possible extent of confounding. In addition, using the TaCo simplifies the analysis
to a two-way relationship. Lastly, the TaCo approach is applicable to any dataset and can
help to measure the strongest possible extent of confound-leakage even without knowing the
confounds.
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R.2C.2.

| generally do not agree with the claim that "\hat{X} can only be at most as predictive as X",
especially in the TaCo setting. Using label as the super confound, we are basically trying to
explicitly preserve label-related component in the feature and discard information irrelevant
to the label. This actually makes the classification simpler, which does not indicate
confounder-leakage. If authors agree with my view, | would suggest changing their
interpretation of this part of the results or removing them.

Thank you very much for your remark.

Your feedback and the comment 4 from Reviewer 1 have led us to rethink the interpretation
of X_hat. We acknowledge that we overinterpreted its usefulness and have now removed it
from the manuscript as it does not provide more evidence than just predicting the target from
the confound. We now only rely on the shuffling approach which we have also extended for
clinically relevant dataset to include a permutation test.

To address this comment we have modified the following sentences:

Section: Walk-through analysis (page 3):

W



Section: “CR using weaker confounds also increases performance”, page 4

Section: “Confound-leakage poses danger in clinical applications”, page 5

To disentangle the effect of each confound, we looked at the performance after CR for each
confound separately.

Performing CR with BDI led to a high AUCROC with original features after CR (M = 0.91, SD

= 0.01), shuffled features (M = 0.84, SD = 0.01) ane-2X-(M=0-84-SB=0-61)-

Section: “Discussion”, page 5

Specifically, by comparing the without CR baseline performance with CR after feature

shuffling ( XCR) and-features-aspredicted-by-the-econfound {2}, this framework can identify

confound-leakage as the cause of increased predictive performance.

Section: “Discussion”, page 6

wnn




Furthermore we removed the method section where we explain X_hat as measurement:
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Lastly, we relied on X _hat for the second walk-through analysis (result section page 3) which
we have now adjusted accordingly to not include X_hat as evidence:

Confound removal for regression

As an example of a weaker confound on a regression task, we simulated a binary confound
and then sampled a feature from different distributions for each confound value (confound
equal to 0 or 1).

Then we added the confound to a normally distributed target (M = 0 and SD = 0.50 , Fig. 1
e-f). This creates a clear confounding situation, where the confound affects both

the feature ( Point-biserial correlation = 0.71, p < 0.01) and the target (Point-biserial
correlation = 0.71, p < 0.01) and thus leads to a spurious relationship between the feature
and the target ( Pearson’s correlation = 0.51 , p < 0.01).

Following the same procedure as in the previous example, we observed increased
performance after CR using a DT with limited depth of two (R2 using X = 0.29 , XCR = 0.42).
As in this simulated data only a spurious relation (via confound) exists between the feature
and target, it is safe to assume that an increased performance after CR is due to
confound-leakage.-Stilk; i =0

©X=0-58-Furthermore, we found a probable mechanism behind this confound-leakage to
be the distribution of the features conditioned on the confound. More precisely, CR shifts the
feature values for confound = 1 in between most feature values for the confound = 0 (Fig. 1
e). This leaks the confounding information into the feature instead of removing it (Fig. 1 f).
The shuffled features, however, were not sensitive to confound-leakage (X =0, XCR =
—0.01), which is expected considering the probable cause for such leakage depends on the
joint distribution of the confound and the feature. When shuffling the features within each
confound category to preserve the joint distribution, we observed an increase in performance
after CR (M=0.29 before to M=0.42). This result indicates that shuffling the features might
not be always sensitive to confound-leakage. We, nevertheless, use independently shuffled
features in our analysis for practicality, particularly in the context of continuous or multiple
confounding factors.
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We have removed all the X_hat from the plots as well. See end of this document for an
overview of all figures.

R.2C. 3.

Most of the analyses were based on simulation. Most of the interpretation was based on accuracy
scores. What is more interesting is the mechanism why it happens in real applications. The authors
have two hypotheses, which | believe are not that hard to test on the real data set. One can look at
features that drive the X_CR classification but not the raw classification, and then look at how their
distribution changes with respect to confounders. One can probably visualize the distribution shift over
multi-dimensional features using certain dimension reduction techniques. With those results, the
manuscript will become more valid.

Thank you very much for this important point. We agree that it is very interesting to look into
the real world data and check whether our clinical data has confound-leakage due to
deviation from normal distributions. To this end, we followed your advice and looked into the
feature importance and visualized the most important features with and without confound
removal.

We have added four new panels to Fig. 4 (shown below) showing feature importance
differences before and after CR and how the two most important features lead to leakage.
Furthermore, we added the following text to the Results section (page 5):

Lastly, we wanted to evaluate why we observe confound-leakage on this dataset. The limited
precision of features cannot be the reason here as all features are continuous. Therefore, we
hypothesized that the confound leaked due to some features deviating from normal
distributions. To this end we first compared the feature importance between the RF after CR
and using the original features. Here, we observed the RFs’ 10 most important features were
completely different (Fig. 4 c-d), indicating that the two RF models rely on different
relationships in the data. Next we visualized the distributions of the two most important
features of the RF after CR for both models. This visualization (Fig. 4 e-f) clearly shows that
CR has shifted the distributions due to deviations from normal distributions leaking
information in their joint distribution. Furthermore, we trained new DTs using only these two
features before or after CR. This led to an increase of AUCROC from 0.61 to 0.70 after CR
only using these features.

These analyses clearly demonstrate that real-world applications could suffer from
confound-leakage and users should exercise care when implementing and validating a
CR-ML workflow.
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We did not use a dimensionality reduction to not complicate our methods. We have modified
figure 4 (shown below) to include the ten most important features before and after CR.
Notably, the two models highlight different features. Next we also visualized the two most
important features after CR and show that one can indeed observe a shift of distributions



leaking information through CR.
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We would like to note that simulations allow us to control relationships between features,
confounds and target, which is needed to really show the extent of confound-leakage and
elucidate its possible mechanisms.

Minor: figure captions are generally terse. Axis labels are confusing, e.g., Figure 1c,d. In figure 2, why
are there two rows of r2 and two rows of AUC? What do you mean by those four rows of 'score'? Do

they belong to the right column? Do < and > indicate statistical significance? People often use *, ** to

indicate p<0.05, p<0.005, because the direction is obvious from the plots already.

Thank you very much for highlighting the problem that our statistical analyses are not
communicated clear enough. We have updated the figures and have added more details to
the methods section to address your comments.

The statistical tests we employed are not frequentist null hypothesis testing. Instead we used
the Bayesian ROPE approach for the following reasons:
e Assumption of no difference in performance metrics (scores) rarely makes sense in
ML settings.



e Significance cannot compute the probabilities of interest: Probability of one pipeline
scoring higher than the other one.
e Significance tests are highly dependent on the sample size.

More details can be found in the paper that introduced this approach [3].

We added the following section to our methods to communicate this to the reader:

The Bayesian ROPE for model comparison

In this study we used the Bayesian ROPE [42] approach to qualify differences between
K-fold cross-validation results coming from two models. This approach uses the Bayesian
framework to compute probabilities of the metric falling into a defined region of practical
equivalence or of one ML pipeline scoring higher than the other. This is achieved by defining
a region of equivalence (here we used 0.05). Consequently, the Bayesian ROPE approach
allows us to make probabilistic statements regarding whether and if so which of the ML
pipelines score higher. We summarize these differences using the following symbols =
(highest probability of pipelines scoring practically equivalent), < (highest probability of right
pipeline scoring higher), > (highest probability of left pipeline scoring higher). Other
possibilities such as the significance test correcting for the dependency structure in K-fold
CV [43] or permutation testing by shuffling the target or features can be employed when
suitable.*™

We have adjusted the figure captions as shown below by providing additional information
making them more self sufficient.
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Figure 2. Performance on the UCI benchmark datasets when using raw vs CR features (a)
and raw vs the predicted features given the confound/TaCo/2%-(b). The two columns
correspond to: 1) TaCo removal with four ML algorithms (LR, DT, RF, MLP), and 2) CR with
simulated confound with different correlation to the target (range 0.2-0.8) with RF. (a,b) show
performance using the original features while (c,d) show the performance on shuffled
features.

To check whether a difference between the performance of two models is meaningful, we
used the Bayesian ROPE approach to identify what is most probable: performance being
higher before removal (<), being higher after removal (>) or equivalent (=) (see the Methods
section for details).

When using a linear model (LR) TaCo removal leads to reduction in prediction performance,
as expected. In contrast, nonlinear models lead to a higher performance for all datasets.
This increase could be either explained by confound removal revealing information already
in the data (suppression) or confound removal leaking information into the features
(confound-leakage). Shuffling the features destroys association between features and the
target, therefore subsequent performance increase after TaCo removal indicates the

possibility of confound-leakage (c,d). Additionalhy;the-higherperfermance-of-2X{a:b)

raw-features><-The simulated confounds show that an increase after CR is also possible for
confounds weakly related to the target (b,d) and one dataset (Blood) shows strong evidence
of confound-leakage.
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Figure 4. Summary-ofthe-performanee-ontThe real-world ADHD speech dataset. The

performance when using different confounds (a-b), most important features of RF when
using BDI as confound (c-d) and visualization of confound-leakage due to deviation from
normal distributions (e-f).

a shows the performance of a RF predicting ADHD vs healthy controls using the original
features. To check whether a difference is meaningful we used the Bayesian ROPE
approach to identify what is most probable: performance being higher before removal (<),
being higher after removal (>) or equivalent (=) (see method section). An increased
performance can be observed when using all confounds, BDI as a confound or the TaCo.
The same pattern appears when the features were shuffled (b). This shows that the increase
in performance is due to confound-leakage and BDI is a driving factor for this leakage as it
leaks information when used as a confound. c-d visualize the 10 most important features for
both using X and X_CR as features. The feature ranking is shown as white label on top of
each cell. The most important features are different for X and X_CR. Furthermore, the most
important features of one model ranked as very unimportant in the other. e-f show decision
boundaries of DT trained on the two most important features after CR. The background
colors indicate the prediction of the model, the points show the true target value and the
x-axis the two most important features. The distribution of each feature conditioned on the
target is shown as the density plots. One can see that CR leaks information by cleanly
separating the blue and red points.
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Fig. 5. Prediction performance of a RF trained with (blue) or without (red) confound removal
on an increasing number of features. Each feature was either sampled from a random
standard normal distribution (mean=0, std=1), a random X2 distribution with df = 3 or a x2
distribution with a df=3, scale=0.5 or df=4, scale=1 for the confound being equal to 0 and 1
respectively. a) The RF trained on the normally distributed features did not achieve
performance above the chance level (R2 < 0) irrespective of confound removal. b-c) When
training the RF on either of the x2 distributed features, confound removal resulted in above
chance level performance (R2 > 0). This effect increased with an increasing number of
features and can only be explained by confound removal leaking information into the

features.



Permutation Test Reveals Confound-Leakage
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Fig. S2. We performed permutation testing with 1000 iterations. After shuffling the features,
a significantly lower performance was observed compared to the original features X. No
significant difference between raw and shuffled features was observed when using the X_CR
features. This result is in line with the leakage hypothesis as the higher accuracy after
shuffling and CR indicates leaking target-related confounding information into the features.
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