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Abstract

We present a combination of the well-established formal speci�cation languages Z
and CSP; our objective is to provide support for the speci�cation of both data and
behaviour aspects of concurrent systems, and a development technique. The resulting
language, Circus, distinguishes itself in that it is aimed at the calculational re�nement
of speci�cations to programs written in a language similar to occam and Handel-C. In
this paper, we present Circus, the rationale for its design, and a case study in its use.

1 Introduction

Of all formal methods, the Z speci�cation language [4, 24, 31] has been most widely
accepted in academia and industry. Recently, proposals have been made to integrate it
with a process algebra [15, 18, 21]; Fischer gives a survey of some of this research [11].
Such a combination has obvious advantages: Z is good at describing rich information
structures in a system's state, and process algebra is good at describing behavioural
patterns of communication and synchronisation. Several interesting languages have been
proposed, but very little has been accomplished in terms of understanding the formal
development of programs starting from such speci�cations.

Of all the process algebras, CSP [15, 21] is perhaps the most successful for industrial
application. Its key feature is that the language has been designed around the notion of
re�nement, making it suitable for the development of large-scale systems. Commercial
tools for analysis and simulation of CSP speci�cations are available [13, 12].

With the aim of proposing and formalising a re�nement calculus for concurrent pro-
grams, we have designed Circus. It combines Z and CSP, but it also includes speci�cation
constructs usually found in re�nement calculi [19, 2, 20] and Dijkstra's language of guarded
commands [9]. As a re�nement language, Circus is a uni�ed programming language, in
which we can write speci�cations, designs, and programs.

The development technique we want to provide is in the style of [19]. In particular, we
want to rely on ZRC, the re�nement calculus for Z presented in [6, 7]. Therefore, speci�-
cations in Circus are based largely on the use of Z constructs and speci�cation statements.
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These constructs can be combined with executable commands, like assignments, condi-
tionals, and loops. Reactive behaviour, including communication, parallelism, and choice,
is de�ned with the use of CSP constructs. All existing combinations of Z with a process
algebra model concurrent programs as communicating abstract data types, but we do not
insist on identifying events with operations that change the state. The result is a general
programming language adequate for developing concurrent programs.

In the next section we present Circus, giving its syntax, its well-formedness restrictions,
and the grounds for its design. Section 3 presents a case study in the use of Circus. Finally,
in Section 4 we present our conclusions, along with related and future work.

2 Circus

Like in a Z speci�cation, a Circus program is formed by a sequence of paragraphs; each
of these can either be a Z paragraph, a channel de�nition, a channel set de�nition, or
a process de�nition. Figure 1 presents part of the BNF description of the syntax of
Circus, omitting for brevity the syntax of channel set expressions, communications, and
guarded commands. We use CircusParagraph� to denote a list of 0 or more elements of
the syntactic category CircusParagraph; similarly for PParagraph�. The notation N+ is
used for a comma-separated list of identi�ers and similarly for Expression+. The syntactic
category N is that of the valid Z identi�ers. The categories called Paragraph, Schema-Exp,
Predicate, and Expression are, as expected, those of Z paragraphs, schema expressions,
predicates, and expressions; their de�nitions are standard and can be found in [24].

To explain the main constructs of Circus, we use a small example taken from [15]: we
de�ne a process that outputs the Fibonacci sequence.

2.1 Channels

A channel de�nition declares the channels to which the processes can refer: it gives the
name of each of the channels and the type of the values it can communicate. Our example
process outputs through a channel out that communicates natural numbers.

channel out : N

More than one channel can be declared in such a paragraph. When a channel is not used
to communicate values, but just as a synchronisation event, its declaration consists of
only its name: no type is de�ned. Finally, we can use a schema to declare channels. Such
a schema groups channel declarations, but does not have a predicate part. The notion of
type here is more general than that of the maximal type of Z; we need to make sure that
the values output on a channel belong to its declared type.

Sets of previously de�ned channels may be introduced in a chanset paragraph. We
give a name to the channel set and a channel-set expression that determines the members
of this set. The syntactic category CSExpression of channel set expressions contains the
empty set of channels fj jg, channel enumerations enclosed in fj and jg, and set expressions
formed by the usual set operators. These sets of channels are used in process expressions.
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Program ::= CircusParagraph�

CircusParagraph ::= Paragraph

j ChannelDe�nition j ChanSetDe�nition j ProcessDe�nition

ChannelDe�nition ::= channel CDeclaration

CDeclaration ::= SimpleCDeclaration j SimpleCDeclaration; CDeclaration
SimpleCDeclaration ::= N+ j N+ : Expression j Schema-Exp

ChanSetDe�nition ::= chanset N == CSExpression

ProcessDe�nition ::= process N b= Process

Process ::= begin PParagraph� � Action end j N
j Process; Process j Process 2 Process j Process u Process

j Process j[CSExpression ]j Process j Process jjj Process
j Process n CSExpression
j Declaration� Process j ProcessbExpression+c j Process[N+ := N+]
j Declaration � Process j Process(Expression+)
j [N+]Process j Process[Expression+]

PParagraph ::= Paragraph j N b= Action

Action ::= Schema-Exp j CSPActionExp j Command

CSPActionExp ::= Skip j Stop j Chaos
j Communication! Action j Predicate & Action

j Action; Action j Action 2 Action j Action u Action

j Action j[CSExpression ]j Action j Action jjj Action
j Action n CSExpression j �N � Action
j Declaration � Action j Action(Expression+)

Figure 1: Circus syntax

2.2 Processes

A process de�nition declares its name and gives a process speci�cation. The most basic
sort of process speci�cation is formed by a sequence of process paragraphs and a distin-
guished nameless action at the end delimited by begin and end. A process paragraph
can be a Z paragraph or an action de�nition; together, they de�ne the state and the
behaviour of the process. In Figure 2, we de�ne a Circus process that generates the Fi-
bonacci sequence. The internal state of the process is described in the schema FibState
to contain two natural numbers, x and y . The latter records the last value output, and
the former records the value output before the last.

The de�nitions that follow are action speci�cations. The behaviour of Fib is described
by the last, unnamed action; Fib behaves �rst as described by the action InitFib and then
as described by the action OutFib. We use the CSP sequential composition operator.

The action InitFib outputs the number 1 twice and then records this by initialising
the state components. It uses the pre�x operator of CSP twice to output 1 through out
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process Fib b= begin

FibState b= [ x ; y : N ]

InitFibState b= [FibState 0 j x 0 = y 0 = 1 ]
InitFib b= out !1 ! out !1 ! InitFibState

OutFibState b= [�FibState; next ! : N j next ! = y 0 = x + y ^ x 0 = y ]
OutFib b= �X � var next : N � OutFibState; out !next ! X

� InitFib; OutFib

end

Figure 2: A Fibonacci generator

and the schema InitFibState to initialise the state. This is a schema that follows the
standard style of Z of de�ning initialisation operations.

The action OutFib is de�ned recursively with the use of the CSP operator �. It
consists of a local variable de�nition, an operation on the state, an output on the out
channel, and a recursive call. The declaration of next is required so that it is in scope for
both the operation schema OutFibState and the outputting action out !next ! X .

The schema OutFibState actually de�nes the value of next !, which represents the value
of next in the state after the execution of OutFibState. The outputting action refers to
next , the value of this variable in the state before its execution. In pure Z, dash and
shriek decorations are used to refer to after-state and output variables, respectively. In
the above example, however, we can use either next ! or next 0 to refer to the after-state
value of next . Our choice has the purpose of emphasising the fact that next is a local
variable, and so not really part of the state of Fib, and its value is output in the next
action. In Circus, dashes and shrieks can be used interchangeably.

In summary, the action OutFib �rst behaves like OutFibState. This changes the
state: it records in y the next output value x + y and records in x the value of the
previously output value y . This action also initialises the value of next to be x + y .
Afterwards, OutFib outputs the value of next and then proceeds recursively.

It is possible to give a simpler de�nition to OutFib. As already explained, we de�ne
the output using the schema component next !; the following action outputs this value.
As a consequence, we have to bring next into scope, which we do using a local variable
declaration. This construction is very useful for implicit speci�cations, but here the output
is deterministic, so we can write the action as follows.

OutFibState b= [�FibState j y 0 = x + y ^ x 0 = y ]
OutFib b= �X � out !(x + y) ! OutFibState; X

In this case, the action OutFibState only changes the state. As for the action OutFib, it
�rst outputs the value x + y , then it changes the state, and �nally proceeds recursively.
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2.3 Process Expressions

A process de�nition like that of Fib is explicit, in that its de�nition uses Z and CSP
constructs to de�ne the state and the behaviour of the process. We can also use CSP
operators to de�ne processes in terms of others previously de�ned.

We can use sequence, internal and external choice, parallel, and interleaving operators.
For instance, we can de�ne a process FibTwice as follows.

FibTwice b= Fib jjj Fib

In this case we are using the interleave operator: communications in either process occur
independently, with no need for synchronisation.

The state of the resulting process includes all the components of the state of the
operand processes. In the above example, since both operands are Fib, the state of
FibTwice includes two copies of the components of FibState.

The behaviour of the resulting process is de�ned by composing the actions that de-
termine the behaviour of the operand processes using the operator applied. The process
FibTwice outputs the Fibonacci sequence through the channel out twice. The sequences
are merged arbitrarily, as the communications occur independently. Further examples of
the use of the above process operators are presented in the next section.

Our parallel operator is alphabetised: an extra argument determines the channels on
which the operand processes are required to synchronise (following [21], rather than [15]).
Communications through channels that are not listed occur independently.

We can also use hiding to de�ne a process. In this case, the state and behaviour
of the resulting process is exactly like that of the operand process, except only that
communications through the speci�ed channels are hidden from the environment.

A Circus operator not available in CSP is indexing. We can, for instance, de�ne a
process as i : T � P . It behaves like P , but uses di�erent channels. For each channel c
of P , we have a fresh channel c i , which must be a fresh channel name. It communicates
pairs: the �rst element, the index, is a value of type T , and the second is a value of the
type of c. The declarations of the channels c i are implicit. The index is a parameter;
correspondingly, we have an instantiation operation. If P is an indexed process, Pbec
behaves like P , but communicates, through all the channels, pairs whose �rst element is
the value of the expression e. The value of e is the value of the index.

The process i : f1; 2g�Fib outputs the pairs (i ; 1), (i ; 1), (i ; 2), (i ; 3), (i ; 5); : : : through
out i , where in each case i is 1 or 2. The instantiated process (i : f1; 2g�Fib)b1c outputs
only pairs with 1 as �rst element; similarly for (i : f1; 2g � Fib)b2c. The interleaving
(i : f1; 2g � Fib)b1c jjj (i : f1; 2g � Fib)b2c behaves in a similar way to FibTwice, but
each element of the output sequence is a pair whose �rst element identi�es the Fibonacci
generator that produced the second element.

We can declare an arbitrary number of indexes of arbitrary types with the indexing
operator. The communicated values are tuples whose last elements are the values origi-
nally communicated and the others are values for the indexes; the instantiation operation,
therefore, may take a list of indexes as argument. Partial instantiation is possible.
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In CSP, indexing is achieved by renaming. Channels do not have types: a communi-
cation of a value 2 through a channel c is regarded as an event c:2. To achieve the e�ect
of a channel c that can communicate natural numbers, we need the in�nite set of events
containing c:0, c:1, c:2, and so on. Indexing amounts to de�ning a process l :P , where l is
a label, or rather, a name. This renames all channels, resulting in a process that engages
in l :c when P engages in c. We can also apply an injective function f on event names to
a process P to obtain a process that uses channel f (c) in the same way that P uses c.

In Circus, channels have a name and a type, due to the need for strong typing in the
spirit of Z. Therefore, we have two operations: the �rst, indexing, changes the type of the
channels; the second is renaming. In the process P [old := new ], the communications of
P through channel old are done through the channel new , which is implicitly declared by
this operation, if it has not already been declared. Usually, indexing and renaming are
used in conjunction. An example is presented in the next section.

Parametrisation of processes is also available: parameters can be used in the process
speci�cation as values of their declared type. For example, we could de�ne Fib to have
parameters a; b : N, declared just before the process speci�cation. They could be used,
for instance, to initialise the state components x and y . In this case, the instantiated
process Fib(5; 8) outputs the Fibonacci sequence starting from its fourth element.

We can also de�ne generic processes; the mechanism is similar to that of a generic
schema in Z. In the process [X ]P , the name X is a generic parameter that can be used
as a type in the de�nition of P . Later references to P need to de�ne a value for this
parameter. It can be either inferred from the context or de�ned explicitly as in P [N].

2.4 Actions

As already explained, an explicit process de�nition contains both Z and CSP constructs.
Mainly, we have a Z speci�cation where some paragraphs are action de�nitions. There
is also a main action, which de�nes the behaviour of the process. As exempli�ed in
the de�nition of the Fib process, an action can be a schema, a CSP process, a guarded
command, or a combination of these constructs.

A schema expression de�ning an operation over the process state is an action. It
changes the state, but does not communicate any value.

The action Skip terminates immediately, without communicating any value or chang-
ing the state; the action Stop deadlocks, and Chaos diverges. The pre�xing operator is
standard, but can be associated with the guard construct. The action p & c?x ! A,
for instance, inputs a value through channel c, assigns it to the variable x , and then
behaves like the action A, if the condition p is true; otherwise, it blocks: the predicate is
an enabling condition. A guard may be associated with any kind of action.

In an action, all free variables have to be in scope; the state components are always in
scope, and input communications introduce further variables into scope. Input variables,
however, may not be used as the target of assignment statements.

We can also use the CSP operators of sequence, internal and external choice, paral-
lelism, interleaving, hiding, and recursion. We observe that CSP operators are used both
at the level of processes and at the level of actions. The operations that apply, however,
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are di�erent in each case. At the level of processes, we do not handle communications
and, for the sake of simplicity, we do not have recursive de�nitions. The usefulness and
the modelling of recursive processes is a topic for further research.

Like parametrised processes, parametrised actions declare variables that can be used
locally in their de�nition. Instantiations give �xed values to these parameters.

In the parallel composition A j[C ]j B , the user state is a�ected by both A and B . It
is the responsibility of the programmer to guarantee that no con
ict arises. As a general
policy, operations that modify the state should not be run in parallel with other operations
that also modify the state; this restriction is enforced by occam, for instance. We must
observe, however, that a Circus process, as opposed to an action, encapsulates its state.
Therefore, we can run processes in parallel without the need to worry about interference.

An action can also be de�ned using Dijkstra's guarded commands. An action can
be an assignment, possibly multiple, or a guarded alternation. For example, using an
assignment, the InitFib action of the process Fib can be de�ned as follows.

InitFib b= out !1 ! out !1 ! x ; y := 1; 1

As in the de�nition of OutFib, we can also use variable blocks. To support a calculational
approach to development, an action can also be a speci�cation statement in the style of
Morgan's re�nement calculus [19]. Finally, we can also declare logical constants.

The model of Circus is the Unifying Theory of Programming of Hoare & He [16]. We
do not present this model here, but it can be found in a companion paper [30].

3 Case study: a reactive bu�er

In this section, we give a speci�cation in Circus of a simple bounded reactive bu�er that
is used to store natural numbers. We go on to describe a possible implementation as a
ring of cells with a central controller and a cached head.

3.1 Abstract behaviour

As already explained, Circus speci�cations are sequences of paragraphs containing Z para-
graphs, channel de�nitions, channel set de�nitions, or process de�nitions. Typically,
standard Z paragraphs are used to de�ne given sets and global constants that are used in
several process de�nitions throughout a speci�cation.

The bu�er is bounded in its length: it may hold no more than maxbu� elements.

maxbu� : N1

It is sensible to require that it can hold at least one value.
Usually, the de�nition of a process is preceded by a declaration of channels.

channel input ; output : N

The process Bu�er has two channels: input and output .
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3.1.1 Process state

The state of a process is de�ned as in Z. For the Bu�er , there are two state compo-
nents: the contents of the bu�er and its size, a derived component.

process Bu�er b= begin

Bu�erState b= [ bu� : seqN; size : 0 : :maxbu� j size = #bu� � maxbu� ]

The size of the bu�er has to be less than or equal to maxbu� .

3.1.2 Process actions

In describing a Circus process, a series of actions is de�ned. For the Bu�er , there are
three actions: initialisation, input, and output. Initialisation sets the bu�er to empty.

Bu�erInit b= [Bu�erState 0 j bu� 0 = hi ^ size 0 = 0 ]

The input action is enabled if there is space in the bu�er for the new input; the corre-
sponding input operation on the state has this as its precondition. The new element is
appended to the bu�er's contents and the size is updated.

InputCmd
�Bu�erState
x? : N

size < maxbu�
bu� 0 = bu� a hx?i
size 0 = size + 1

Input b= size < maxbu� & input?x ! InputCmd

The action Input guarantees the precondition by being guarded.
The output action is enabled if there is something in the bu�er. The �rst element is

output; the others are retained in order; the size of the bu�er is suitably updated.

OutputCmd
�Bu�erState

size > 0
bu� 0 = tail bu�
size 0 = size � 1

Output b= size > 0 & output !(head bu� ) ! OutputCmd

The output is actually de�ned in the Output action.
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In every Circus process an unnamed action de�nes the externally-visible behaviour.

� Bu�erInit ; �X � (Input 2 Output); X
end

First, the bu�er is initialised, and then it loops o�ering to the environment the choice
to input and output. The guards of these actions guarantee that if the bu�er is full, the
input is blocked, and if it is empty, the output is blocked.

3.2 A cached-head ring bu�er

A well-known implementation of a fifo-bu�er uses a ring: a circular array, with two
indexes showing where the �rst and last elements reside. Our re�nement uses a ring of
cells, each implemented as a Circus process, and a central controller that keeps track of
the indexes of the �rst and last elements, o�ering the input and output services.

An interesting problem arises immediately: the bu�er must not refuse to output if it is
non-empty, so how should this be achieved? One way is to distribute control around the
ring, so that the cell owning the head of the bu�er is enabled for output, but the others
are disabled. The cost of this solution is the overhead of the protocol for distributed
control. Another solution is to cache the head of the ring in the controller, and distribute
only the tail of the bu�er around the ring. The resulting protocol is very simple.

3.2.1 Controller process

The process Controller speci�es the behaviour of the bu�er, but does not contain the
bu�er itself in its state, just the cache; the ring is speci�ed by another process. First,
there are two global declarations to de�ne the indexes of the ring cells. The maximum
size of the ring is one less than the size of the bu�er, as the head is cached.

maxring : N

maxring = maxbu� � 1

The indexes of the ring go from 0 to maxring � 1.

RingIndex == 0 : :maxring � 1

The channels read and write are used for communication with the ring cells.

channel read ;write : RingIndex � N

The values communicated through read and write are pairs, where the �rst element iden-
ti�es a cell, and the second element is the natural number actually communicated.

3.2.2 Controller state

The state of the controller contains the size of the bu�er, the size of the ring, the cache,
and two ring indexes, top and bot , keeping track of the index of the next available position
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and the index of the �rst value stored.

process Controller b= begin

ControllerState
size : 0 : :maxbu�
ringsize : 0 : :maxring
cache : N
top; bot : RingIndex

ringsize = maxf0; size � 1g
ringsize modmaxring = (top � bot)modmaxring

The size of the ring may be computed from the positions of the top and bot indexes: the
number of elements between the two indexes is (top�bot)modmaxring . Since this confuses
two values of the state (when the ring is full and when the ring is empty), it is necessary
to add the �rst equation that relates ringsize and size.

3.2.3 Controller actions

Initially, the bu�er is empty; we choose some suitable values for top and bot .

InitController b= [ControllerState 0 j size 0 = 0 ^ bot 0 = 0 ^ top 0 = 0 ]

The input action depends on whether the bu�er is empty or not. If it is empty, then
the input must be kept in the cache; if it is non-empty, then it must be passed on to
the appropriate ring cell; if it is full, then no input action is possible. When the input is
cached, the top and bot indexes do not change.

CacheInput
�ControllerState
x? : N

size = 0
size 0 = 1 ^ cache 0 = x?
bot 0 = bot ^ top 0 = top

When the input is passed on to the ring, the top index advances.

StoreInput
�ControllerState

size > 0
size 0 = size + 1 ^ cache 0 = cache
bot 0 = bot ^ top 0 = (top + 1)modmaxring

The input action is enabled when there is space in the bu�er; the subsequent behaviour
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depends on whether the bu�er is empty or not. If it is non-empty, the controller transmits
the input x to the cell at the top of the ring.

InputController b= size < maxbu� & input?x !
size = 0 & CacheInput
2

size > 0 & write:top!x ! StoreInput

We observe that there is not, for this action, a one-to-one correspondence between the
communication input?x and operations that change the state.

There is a similar case analysis for output: the output always comes from the cache,
which must be replaced if the ring is non-empty. In the case that the ring is empty, we
have size = 1; size is reset; nothing else changes.

NoNewCache b=
[�ControllerState j size = 1 ^ size 0 = 0 ^ bot 0 = bot ^ top 0 = top ]

If the ring is non-empty, then a new element (obtained from the ring) is stored in the
cache; bot must be advanced.

StoreNewCache
�ControllerState
x? : N

size > 1
size 0 = size � 1 ^ cache 0 = x?
bot 0 = (bot + 1)modmaxring ^ top 0 = top

So, the output action is enabled when the bu�er is non-empty. If the ring is non-empty,
the controller obtains the input x from the cell at the bot of the ring.

OutputController b= size > 0 & output !cache !
size > 1 & read :bot?x ! StoreNewCache
2

size = 1 & NoNewCache

Neither of the operation schemas describe the value communicated on output .

3.2.4 Controller behaviour

We conclude the description of the controller by describing its overall behaviour: after
being initialised, it repeatedly o�ers inputs and outputs.

� InitController ; �X � (InputController 2 OutputController); X

end

We have now to specify the ring.
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3.2.5 Ring cell process

Each cell has a rd and a wrt channel.

channel rd ;wrt : N

A cell contains one value.

process RingCell b= begin CellState b= [ val : N ]

There are just two actions on the ring cell state. The Read action is so simple that we do
not bother to de�ne a corresponding operation on the state: it merely outputs val .

Read b= rd !val ! Skip

The Write action updates val .

CellWrite b= [�CellState; x? : N j val 0 = x? ]

Write b= wrt?x : N ! CellWrite

The ring cell starts with a Write action; subsequently, it allows Read or Write actions.

� Write; �X � (Read 2Write); X

end

The ring itself is formed by composing the cells in parallel.

3.2.6 The cached-head ring bu�er's behaviour

Our �rst step is to assemble the ring. From RingCell , we de�ne an indexed process, with
indexes taken from the set of ring indexes.

process IRingCell b= (i : RingIndex � RingCell)[read ;write=rd i ;wrt i ]

The resulting indexed process operates on channels rd i and wrt i of type RingIndex�N.
We rename them to read and write, respectively. The behaviour of the indexed ring cell is
exactly the same as that of a ring cell, except that the communications rd !val and wrt?x
are replaced by read :i !val and write:i?x , respectively.

There is no interaction between the ring's cells, so the ring is constructed by inter-
leaving the indexed ring cells.

process Ring b= jjj i : RingIndex � IRingCellbic

Here we are using an iterated combination of IRingCellbic using interleaving. Ring is
de�ned as the interleaving of the processes IRingCellbvc, with v in RingIndex . Iterated
operators like this are available in Circus, but are omitted from Figure 1 for brevity.

Finally, the cached-head ring is composed by putting the controller and the ring in
parallel, interacting along the internal read and write channels.

process CRing b= (Controller j[ fj read ;write jg ]j Ring ) n fj read ;write jg

This completes our speci�cation.
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4 Conclusions

We have presented a uni�ed language of speci�cation, design, and programming that
combines Z and CSP, and is suitable for re�nement. Many approaches to the integration
of Z or one of its extensions with a process algebra have been presented elsewhere. Our
main objective is not to propose yet another language, but provide support for the formal
development of concurrent programs. Nevertheless, we believe the language presented
here has some interesting characteristics of its own.

In [11], Fischer surveys several integrations of Z with a process algebra. This work
considers the combinations of Z with CCS in [14, 26]; the combinations of Z with CSP
in [10, 22]; and the combination of Z with Object-Z [5] in [10]. Several issues involved in
the integration of Z with a process algebra are discussed.

Fischer di�erentiates two styles for combining Z and process algebra: syntactic and
semantic. In the former, the combination has a single syntax, with semantic de�nitions
lifted from the two languages. In the latter, the Z speci�cation is identi�ed with a process.

We adopt the �rst style: the model of Circus is the unifying theory of programming of
Hoare & He. All the other combinations of Z and CSP cited above adopt the semantic
approach. The syntactic approach provides a deeper integration of the notations; the
disadvantage is that we have to de�ne the semantics of both the Z and CSP constructs,
but we are already using an existing semantic model. As we express this model using Z,
we are able to use Z tools to analyse Circus speci�cations.

Another issue is the relation between CSP events and Z operations; Fischer identi�es
three possibilities. Firstly, there is the single event approach, in which there is a one-
to-one correspondence between operations and events; this leads to abstractions where
operations are atomic transactions. Re�nement to code must preserve this abstract atom-
icity. Secondly, there is the double event approach, where operations are divided into two
parts: a front-end involving input and a back-end involving output. This corresponds to a
natural way of using CSP, but a less natural way of using Z. Finally, there is the multiple
event approach, in which there is no �xed connection between operations and events.

In Circus, there is no identi�cation of operations with events: we adopt the multiple
event approach. Operations can be seen as occurring in the background between events.
We observe, however, that we can both adopt the abstract single event style of speci�-
cation, as in our abstract bu�er example, and consider programs where events and state
changes are not associated. For a re�nement language this is certainly more adequate.
Furthermore, we do not split the input and output of parameters of the Z operations.

In most state-based formalisms, an operation may be given a partial speci�cation, and
a meaning is given to what happens when the operation is activated outside its precon-
dition. There are two obvious choices: the operation waits, which is Fischer's blocking
semantics; or the operation aborts, Fischer's non-blocking semantics. In Z, operations are
given a non-blocking semantics; in Circus, operations have the usual semantics. Blocking is
speci�ed by guards in actions. Therefore, we can capture the enabling and the divergence
conditions of an operation, while maintaining the usual semantics of Z operations.

A further issue is related to the typing of inputs. The Z type system is very sim-
ple: types are maximal, and there are only four constructors (given set, powerset, cartesian
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product, and schema product); however, it is common practice to constrain components
to range over subsets of types. As inputs are non-blocking, then the activation of a Z
operation with an input outside its constraint leads to abort; in CSP, such an input is
blocked. In Circus, this is exactly what happens.

Finally, regarding the issue of re�nement, we observe that the major objective of
Circus is to provide a theory of re�nement and an associated calculus. Re�nement has
been studied for combinations of Object-Z and CSP [23], but nothing in the style of a
calculus has been proposed.

At the moment, we are working on a number of more substantial case studies on
the use of Circus. We are considering an IP-packet �lter �rewall [32], the steam boiler
control system [1, 3, 29, 28], a smart card system for electronic �nance [25], and a railway
signalling application [27].

The model of Circus is a Z speci�cation that can be analysed with almost no changes
using the Z/EVES theorem prover [17]. Analysing the model and its properties using
Z/EVES is in our research agenda. We are also building a tool that calculates the Z
speci�cation corresponding to a Circus program, for analysis using Z/EVES.

We are already considering the extension of Circus to include the operators of Timed
CSP [8]. The resulting language is expected to be adequate to the speci�cation of data,
behavioural, and timing aspects of real-time systems. We intend to de�ne its model by
extending the unifying theory of programming to cover aspects of time.

Our main goal, however, is the proposal and proof of re�nement laws for Circus.
We want data re�nement rules that allow, for instance, the proof that the process CRing
de�ned in section 3 re�nes the process Bu�er . We also want rules that allows the stepwise
re�nement of CRing to code.
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