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Abstract—We study price competition among primaries in a
Cognitive Radio Network (CRN) with multiple primaries and
secondaries located in a large region. In every slot, each primary
has unused bandwidth with some probability, which may be
different for different primaries. Also, there may be a random
number of secondaries. A primary can lease out its unused
bandwidth to a secondary in exchange for a fee. Each primary
tries to attract secondaries by setting a lower price for its
bandwidth than the other primaries. Radio spectrum has the
distinctive feature that transmissions at neighboring locations
on the same channel interfere with each other, whereas the
same channel can be used at far-off locations without mutual
interference. So in the above price competition scenario, each
primary must jointly select a set of mutually non-interfering
locations within the region (which corresponds to an independent
set in the conflict graph representing the region) at which to
offer bandwidth and the price at each location. In this paper,
we analyze this price competition scenario as a game and seek
a Nash Equilibrium (NE). For the game at a single location, we
explicitly compute a NE and prove its uniqueness. Also, for the
game at multiple locations, we identify a class of conflict graphs,
which we refer to as mean valid graphs, such that the conflict
graphs of a large number of topologies that commonly arise in
practice are mean valid. We explicitly compute a NE in mean
valid graphs and show that it is unique in the class of NE with
symmetric independent set selection strategies of the primaries.

I. INTRODUCTION

The emerging cognitive radio technology [1] promises effi-
cient usage of the available radio spectrum. In cognitive radio
networks (CRNs), there are two types of spectrum users: (i)
primary users who lease portions (channels or bands) of the
spectrum directly from the regulator, and (ii) secondary users
who lease channels from primaries and can use a channel when
it is not in use by the primary. Time is slotted, and in every slot,
each primary has unused bandwidth with some probability,
which it would like to sell to secondaries. Now, secondaries
buy bandwidth from the primaries that offer it at a low price,
which results in price competition among the primaries. If a
primary quotes a low price, it will attract buyers, but will
earn lower profit per sale. This is a common feature of an
oligopoly [7], in which multiple firms sell a common good to
a pool of buyers. Price competition in an oligopoly is naturally
modeled using game theory [2], and has been extensively
studied in economics using, for example, the classic Bertrand
game [7] and its variants.

However, a CRN has several distinguishing features, which
makes the price competition very different from oligopolies
encountered in economics. First, in every slot, each primary
may or may not have unused bandwidth available. Second,
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the number of secondaries will be random and not known
apriori as each secondary may be a local spectrum provider or
even a user shopping for spectrum in a futuristic scenario, e.g.,
users at airports, hotspots, etc. Thus, each primary who has
unused bandwidth is uncertain about the number of primaries
from whom it will face competition as well as the demand for
bandwidth; it may only have access to imperfect information
such as statistical distributions about either. A low price
will result in unnecessarily low revenues in the event that
very few other primaries have unused bandwidth or several
secondaries are shopping for bandwidth, because even with
a higher price the primary’s bandwidth would have been
bought, and vice versa. Third, spectrum is a commodity that
allows spatial reuse: the same band can be simultaneously
used at far-off locations without interference; on the other
hand, simultaneous transmissions at neighboring locations on
the same band interfere with each other. Thus, spatial reuse
provides an opportunity to primaries to increase their profit
by selling the same band to secondaries at different locations,
which they can utilize subject to satisfying the interference
constraints. So when multiple primaries own bandwidth in a
large region, each needs to decide on a set of non-interfering
locations in the region, which corresponds to an independent
set in the conflict graph representing the region, at which to
offer bandwidth. This is another source of strategic interaction
among the primaries– each primary would like to select a
maximum-sized independent set to offer bandwidth at; but if
a lot of primaries offer bandwidth at the same locations, there
is intense competition at those locations. So a primary would
have benefited by instead offering bandwidth at a smaller
independent set and charging high prices at those locations.

Pricing related issues have been extensively studied
in the context of wired networks and the Internet;
see [12] for an overview. Price competition among spec-
trum providers in wireless networks has been studied
in [13], [14], [15], [16], [17], [18]. Specifically, Niyato et. al.
analyze price competition among multiple primaries in CRNs
[17], [18]. However, neither uncertain bandwidth availability,
nor spatial reuse is modeled in any of the above papers. Also,
most of these papers do not explicitly find a Nash Equilibrium
(NE) (exceptions are [14], [17]). Our model incorporates
both uncertain bandwidth availability and spatial reuse, which
makes the problem challenging; despite this, we are able to
explicitly compute a NE. Zhou et. al. [19] have designed
double auction based spectrum trades in which an auctioneer
chooses an allocation taking into account spatial reuse and
bids. However, in the price competition model we consider,
each primary independently sells bandwidth, and hence a
central entity such as an auctioneer is not required. In the
economics literature, the Bertrand game [7] and several of its
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variants [8], [9], [10], [11], [20] have been used to study price
competition. Osborne et al [8] consider price competition in a
duopoly, when the capacity of each firm is constrained. Chawla
et al. [20] consider price competition in networks where each
seller owns a capacity-constrained link, and decides the price
for using it; the consumers choose paths they would use in
the networks based on the prices declared and pay the sellers
accordingly. The capacities in both cases are deterministic,
whereas the availability of bandwidth is random in our model.

The closest to our work are [10], [11], which analyze price
competition where each seller may be inactive with some
probability, as also our prior work [22], [25], [26] in which we
analyzed price competition in a CRN. The above body of work
however suffers from the limitation that they either consider
(i) only the symmetric model where the bandwidth availability
probability of each seller is the same [10], [11], [22], [26]
or (ii) primaries and secondaries located at a single location
[10], [11], [25] (i.e., no spatial reuse) 1. In addition, the results
in [10], [11] are restricted to the case of one buyer, and [25]
assumes a fixed, and apriori known number of secondaries,
whereas a CRN is likely to have an unknown and random
number of secondaries, which we consider in this paper. Char-
acterizing the Nash Equilibrium (NE) in either asymmetric
games (i.e., when different primaries have different bandwidth
availability probabilities in our context) or in games over
graphs (i.e., in presence of spatial reuse in our context) is
usually quite challenging, and the combination of the above
often turns out to be analytically untractable. This is the space
where we seek to contribute in this paper.

We consider price competition in a CRN with multiple
primaries and multiple secondaries, where each primary has
available bandwidth in a slot with a certain probability, which
may be different for different primaries. Also, the number of
secondaries may be random and unknown to the primaries,
with only their distribution being known. First, we analyze
the case of primaries and secondaries in a single location
(Section III). Since prices can take real values, the strategy
sets of players are continuous. In addition, the utilities of the
primaries are not continuous functions of their actions. Thus,
classical results, including those for concave and potential
games, do not establish the existence and uniqueness of NE
in the resulting game, and there is no standard algorithm for
finding a NE. Nevertheless, we are able to explicitly compute
a NE and show that it is unique in the class of all NE, even
allowing for player strategies that are arbitrary mixtures of
continuous and discrete probability distributions (Section III).

We subsequently model the scenario where each primary
owns bandwidth across multiple locations using a conflict
graph in which there is an edge between each pair of mutually
interfering locations (Section II-A). Each primary must simul-
taneously select a set of mutually non-interfering locations
(independent set) at which to offer bandwidth and the prices
at those locations. We focus on a class of conflict graphs that
we refer to as mean valid graphs. As we show in Section IV-B,
it turns out that the conflict graphs of a large number of

1In [22], the asymmetric case is considered only for a toy model with two
primaries and one secondary; [25] largely focuses on a single location game,
except for a limited analysis of spatial reuse in the setting of a linear conflict
graph.

topologies that arise in practice are mean valid. We show that
a mean valid graph has a unique NE in the class of NE with
symmetric independent set selection strategies of the primaries
(Section IV-C). Also, this NE has a simple form and the NE
strategies can be explicitly computed by solving a system of
equations that we provide. Finally, we prove that in the limit
as the numbers of primaries and secondaries go to infinity,
the NE structure exhibits interesting threshold behavior: in
particular, the efficiency of this NE, which is the ratio of the
aggregate revenue of all the primaries under the NE and the
maximum possible aggregate revenue, changes from 1 to 0
as the average bandwidth availability increases relative to the
average bandwidth demand at each location.

We defer all the proofs until the Appendix.

II. MODEL AND OBJECTIVE

A. Model
Suppose there are n ≥ 2 primaries, each of whom owns a

channel throughout a large region which is a geographically
well-separated or separately administered area, such as a state
or a country 2. The channels owned by the primaries are all
orthogonal to each other. Time is divided into slots of equal
duration. In every slot, each primary independently either uses
its channel throughout the region to satisfy its own subscriber
demand, or does not use it anywhere in the region. A typical
scenario where this happens is when primaries broadcast the
same signal over the entire region, e.g., if they are television
broadcasters. For i ∈ {1, . . . , n}, let qi ∈ (0, 1) be the
probability that primary i does not use its channel in a slot
(to satisfy its subscriber demand). Without loss of generality,
we assume that:

q1 ≥ q2 ≥ . . . ≥ qn. (1)

Now, the region contains smaller parts, which we refer to as
locations. For example, the large region may be a state, and
the locations may be towns within it.

Each secondary may be a local spectrum provider or even
a user seeking to lease spectrum bands to transmit data on
an on-demand basis at a location. In practice, the number
of secondaries seeking to buy bandwidth may be random
and unequal at different locations and also apriori unknown
to the primaries, due to user mobility, varying bandwidth
requirements of the secondaries, etc. Thus, the number of
secondaries seeking to buy bandwidth (henceforth referred to
as the number of secondaries for simplicity) at a location
v is Kv , where Kv is a random variable with probability
mass function (p.m.f.) Pr(Kv = k) = γk. Also, the random
variables Kv at different nodes v may be correlated. The
primaries apriori know only the γks, but not the values of
Kv for any given location v. We will make some technical
assumptions on the p.m.f. {γk}: (i)

∑n−1
k=0 γk > 0 (i.e., the

total number of primaries exceeds the number of secondaries
with positive probability, but not necessarily probability 1) (ii)
if γ0 > 0, then γ1 > 0 (if the event that no secondary requires
bandwidth has positive probability, then the event that only 1
secondary requires bandwidth also has positive probability).
A large class of probability mass functions, including those

2We assume that all the primaries own bandwidth in the same region.
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generated from the most common scenario, where each local
provider or user from a given pool requires bandwidth with
a positive probability independent of others, satisfy both the
above assumptions.

A primary who has unused bandwidth in a slot can lease
it out to secondaries at a subset of the locations, provided
this subset satisfies the spatial reuse constraints, which we
describe next. The overall region can be represented by an
undirected graph [6] G = (V,E), where V is the set of nodes
and E is the set of edges, called the conflict graph, in which
each node represents a location, and there is an edge between
two nodes iff transmissions at the corresponding locations
interfere with each other. Note that graphs have been widely
used to model ad hoc networks, wherein wireless devices
are modeled as nodes in an undirected graph, with mutually
interfering nodes being connected by an edge (e.g., see [23]).
However, the concept of spatial reuse in our paper is more
closely related to the corresponding notion in cellular net-
works, where cells are represented by nodes in an undirected
graph, with interfering cells corresponding to neighbors in the
graph [24]. Recall that an independent set [6] (I.S.) in a graph
is a set of nodes such that there is no edge between any pair of
nodes in the set. Now, a primary who is not using its channel
must offer it at a set of mutually non-interfering locations, or
equivalently, at an I.S. of nodes; otherwise secondaries3 will
not be able to successfully transmit simultaneously using the
bandwidth they purchase, owing to mutual interference.

A primary i who offers bandwidth at an I.S. I , must also
determine for each node v ∈ I , the access fee, pi,v , to be
charged to a secondary if the latter leases the bandwidth at
node v. A primary incurs a cost of c ≥ 0 per slot per node
for leasing out bandwidth. This cost may arise, for example, if
the secondary uses its infrastructure to access the Internet. We
assume that pi,v ≤ ν for each primary i and each node v, for
some constant ν > c. This upper bound ν may arise as follows.
(1) The spectrum regulator may impose this upper bound to
ensure that primaries do not excessively overprice bandwidth
even when competition is limited owing to bandwidth scarcity
or high demands from secondaries, or when the primaries
collude. (2) Alternatively, the valuation of each secondary for
1 unit of bandwidth may be ν, and no secondary will buy
bandwidth at a price that exceeds its valuation. We assume
that the primaries know this upper limit ν.

Secondaries buy bandwidth from the primaries that offer
the lowest price. More precisely, in a given slot, let Zv be
the number of primaries who offer unused bandwidth at node
v. Then, since there are Kv secondaries at the node, the
bandwidth of the min(Zv,Kv) primaries that offer the lowest
prices is bought (ties are resolved at random) at the node.

If primary i has unused bandwidth, then the utility or payoff
of primary i is defined to be its net revenue 4. Also, we
consider an additive utility function, which is natural in the
context of monetary profits. So the utility of a primary i who

3Note that secondaries usually purchase bandwidth for communication (and
not television broadcasts). Thus, two secondaries can not use the same band
simultaneously at interfering locations.

4If instead, the utility were defined to be primary i’s net revenue, uncondi-
tional on whether it has unused bandwidth or not, then the expected utilities
of primary i in the game analysis would all be scaled by qi.

offers bandwidth at an I.S. I and sets a price of pi,v at node
v ∈ I is given by

∑
(pi,v − c), where the summation is over

the nodes v ∈ I at which primary i’s bandwidth is bought.
(The utility is 0 if bandwidth is not bought at any node).

Thus, each primary must jointly select an I.S. at which
to offer bandwidth, and the prices to set at the nodes in it.
Both the I.S. and price selection may be random. Thus, a
strategy, say ψi, of a primary i provides a probability mass
function (p.m.f.) for selection among the I.S., and the price
distribution it uses at each node (both selections contingent
on having unused bandwidth). Note that we allow a primary
to use different (and arbitrary) price distributions for different
nodes (and therefore allow, but do not require, the selection of
different prices at different nodes), and arbitrary p.m.f. (i.e.,
discrete distributions) for selection among the different I.S.
The vector (ψ1, . . . , ψn) of strategies of the primaries is called
a strategy profile [7]. Let ψ−i = (ψ1, . . . , ψi−1, ψi+1, . . . , ψn)
denote the vector of strategies of primaries other than i. Let
E{ui(ψi, ψ−i)} denote the expected utility of primary i when
it adopts strategy ψi and the other primaries adopt ψ−i.

B. Nash Equilibrium
We use the Nash Equilibrium solution concept, which has

been extensively used in game theory in general and wireless
network applications in particular to predict the outcome of a
game.

Definition 1 (Nash Equilibrium (NE)): A Nash equilibrium
(NE) is a strategy profile such that no player can improve its
expected utility by unilaterally deviating from its strategy [7].
Thus, (ψ∗

1 , . . . , ψ
∗
n) is a NE if for each primary i:

E{ui(ψ∗
i , ψ

∗
−i)} ≥ E{ui(ψ̃i, ψ

∗
−i)}, ∀ ψ̃i (2)

Equation (2) says that when players other than i play ψ∗
−i,

ψ∗
i maximizes i’s expected utility; ψ∗

i is said to be its best
response [7] to ψ∗

−i.
Note that the existence of a NE is not apriori clear even

in the simplest possible setting of a single location, far less
the uniqueness and characterization of NE strategy profiles.
This is because the prices can take real values and hence the
strategy sets of players are not finite. In addition, the utilities of
the primaries are not continuous functions of their actions. For
example, consider the game in which there is a single location
v, n = 2 primaries and Kv = 1 secondary with probability 1.
If primary 1 has unused bandwidth, its expected utility is p1,v − c if p1,v < p2,v

(p1,v − c)/2 if p1,v = p2,v
(1− q2)(p1,v − c) if p1,v > p2,v.

which is a discontinuous function of the prices. Thus, classical
results, including those for concave and potential games, do
not establish the existence of NE in the resulting game, and
there is no standard algorithm for finding a NE.

III. SINGLE LOCATION

In this section, we analyze price competition when all the
primaries and secondaries are present in a single location.
Let the (random) number of secondaries at this location be
denoted as K. Since there is only one location, there are no
spatial reuse constraints, and the strategy of a primary i is
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a distribution function (d.f.) 5 ψi(.), which it uses to select
the price pi. For convenience, we define the pseudo-price of
primary i ∈ {1, . . . , n}, p′i, as the price it selects if it has
unused bandwidth and p′i = ν +1 otherwise 6. Also, let ϕi(.)
be the d.f. of p′i. For c ≤ x ≤ ν, p′i ≤ x for a primary
i iff it has unused bandwidth and sets a price pi ≤ x. So
ϕi(x) = qiP (pi ≤ x) = qiψi(x). Thus, ψi(.) and ϕi(.)
differ only by a constant factor on [c, ν] and we use them
interchangeably wherever applicable.

A. Necessary Conditions for a NE
Consider a NE under which the d.f. of the price (respec-

tively, pseudo-price) of primary i is ψi(.) (respectively, ϕi(.)).
In Theorem 1 below, we show that the NE strategies must have
a particular structure. Before stating Theorem 1, we describe
some basic properties of the NE strategies.

Property 1: ϕ2(.), . . . , ϕn(.) are continuous on [c, ν]. ϕ1(.)
is continuous at every x ∈ [c, ν), has a jump 7 of size q1 − q2
at ν if q1 > q2 and is continuous at ν if q1 = q2.

Thus, there does not exist a pure strategy NE (one in which
every primary selects a single price with probability (w.p.) 1).

Now, let ui,max be the expected payoff that primary i gets
in the NE and Li be the lower endpoint of the support set 8

of ψi(.), i.e.:
Li = inf{x : ψi(x) > 0}. (3)

Also, let wi be the probability of the event that at least K
primaries among {1, . . . , n}\i have unused bandwidth. Let r
be the probability that K ≥ 1. Note that r = 1 − γ0, and wi

can be easily computed using the p.m.f {γk} and the fact that
each primary j independently has unused bandwidth w.p. qj .

Property 2: L1 = . . . Ln = p̃, where p̃ = c+ (ν−c)(1−w1)
r .

Also, ui,max = (p̃− c)r, i = 1, . . . , n.
Thus, the lower endpoints of the support sets of the d.f.s

ψ1(.), . . . , ψn(.) of all the primaries are the same.
Theorem 1: The following are necessary conditions for

strategies ϕ1(.), . . . , ϕn(.) to constitute a NE:
1) ϕ1(.), . . . , ϕn(.) satisfy Property 1 and Property 2.
2) There exist numbers Rj , j = 1, . . . , n + 1, and a function
{ϕ(x) : x ∈ [p̃, ν)} such that

p̃ = Rn+1 < Rn ≤ Rn−1 ≤ . . . ≤ R1 ≤ ν, (4)

ϕ1(x) = . . . = ϕj(x) = ϕ(x), p̃ ≤ x < Rj , j ∈ {1, . . . , n},
(5)

and ϕj(Rj) = qj , j = 1, . . . , n. (6)

Also, every point in [p̃, Rj) is a best response for primary j and
it plays every sub-interval in [p̃, Rj) with positive probability.
Finally, R1 = R2 = ν.

Theorem 1 says that all n primaries play prices in the range
[p̃, Rn), the d.f. ϕn(.) of primary n stops increasing at Rn, the
remaining primaries 1, . . . , n− 1 also play prices in the range
[Rn, Rn−1), the d.f. ϕn−1(.) of primary n−1 stops increasing

5Recall that the d.f. of a random variable X is the function f(x) = P (X ≤
x), x ∈ R, where R denotes the set of real numbers.

6The choice ν+1 is arbitrary. Any other choice greater than ν also works.
7A d.f. f(x) is said to have a jump (discontinuity) of size b > 0 at x = a

if f(a)− f(a−) = b, where f(a−) = limx↑a f(x).
8The support set of a d.f. is the smallest closed set such that its complement

has probability zero under the d.f.

at Rn−1, and so on. Also, primary 1’s d.f. ϕ1(.) has a jump of
height q1 − q2 at ν if q1 > q2. Fig. 1 illustrates the structure.

Fig. 1. The figure shows the structure of a NE described in Theorem 1.
The horizontal axis shows prices in the range x ∈ [p̃, ν] and the vertical axis
shows the functions ϕ(.) and ϕ1(.), . . . , ϕn(.).

B. Explicit Computation, Uniqueness and Sufficiency
By Theorem 1, for each i ∈ {1, . . . , n}:

ϕi(x) =

{
ϕ(x), p̃ ≤ x < Ri

qi, x ≥ Ri
(7)

So the candidate NE strategies ϕ1(.), . . . , ϕn(.) are completely
determined once p̃, R1, . . . , Rn and the function ϕ(.) are
specified. Also, Property 2 provides the value of p̃, and
R1 = R2 = ν by Theorem 1. First, we will show that
there also exist unique R3, . . . , Rn and ϕ(.) satisfying (4),
(5), and (6) and will compute them. Then, we will show that
the resulting strategies given by (7) indeed constitute a NE
(sufficiency).

Let p′−i be the K’th smallest pseudo-price out of the
pseudo-prices, {p′l : l ∈ {1, . . . , n}, l ̸= i}, of the primaries
other than i (with p′−i = 0 if K = 0 and p′−i = ν + 2 if
K > n − 1 ). Also, let F−i(x) denote the d.f. of p′−i. Since
there are K secondaries, if primary 1 has unused bandwidth
and sets p1 = x ∈ [p̃, ν), its bandwidth is bought iff 9 p′−1 > x,
which happens w.p. 1−F−1(x). Note that primary 1’s payoff
is (x − c) if its bandwidth is bought and 0 otherwise. So,
letting E{ui(x, ψ−i)} denote the expected payoff of primary
i if it sets a price x and the other primaries use the strategy
profile ψ−i, we have:

E{u1(x, ψ−1)} = (x− c)(1−F−1(x)) = (p̃− c)r, x ∈ [p̃, ν)
(8)

where the second equality follows from the facts that each
x ∈ [p̃, ν) is a best response for primary 1 by Theorem 1, and
u1,max = (p̃− c)r by Property 2. By (8), we get:

F−1(x) = g(x), x ∈ [p̃, ν). (9)

where, g(x) =
x− c− (p̃− c)r

x− c
, x ∈ [p̃, ν). (10)

Next, we calculate Ri, i = 3, . . . , n and ϕ(.) using (9).

9By Property 1, no primary has a jump at any x ∈ [p̃, ν). So P (p′−1 =
x) = 0.
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1) Computation of Ri, i = 3, . . . , n: For 0 ≤ y ≤ 1, let
fi(y) be the probability of K or more successes out of n −
1 independent Bernoulli events, (i − 1) of which have the
same success probability y and the remaining (n − i) have
success probabilities qi+1, . . . , qn. An expression for fi(y) can
be easily computed.

Now, to compute Ri, i ∈ {3, . . . , n}, we note that by (7)
and (4), ϕj(Ri) = qi, j = 2, . . . , i, and ϕj(Ri) = qj , j =
i+1, . . . , n. So from the preceding paragraph, with the events
{p′j ≤ Ri}, j = 2, . . . , n as the n − 1 Bernoulli events, and
by the definition of F−1(.), we get:

F−1(Ri) = fi(qi). (11)

By (9) and (11):
g(Ri) = fi(qi). (12)

By (10) and (12), Ri is unique and is given by:

Ri = c+
(p̃− c)r

1− fi(qi)
. (13)

2) Computation of ϕ(.): Now we compute the function
{ϕ(.) : x ∈ [p̃, ν)} by separately computing it for each interval
[Ri+1, Ri), i ∈ {2, . . . , n}. If Ri+1 = Ri, then note that the
interval [Ri+1, Ri) is empty. Now suppose Ri+1 < Ri. For
x ∈ [Ri+1, Ri), by (7) and (4):

ϕj(x) = qj , j = i+ 1, . . . , n (14)

and ϕ1(x) = . . . = ϕi(x) = ϕ(x). (15)

By definition of the function fi(.), with the events {p′j ≤
x}, j = 2, . . . , n as the n − 1 Bernoulli events, by definition
of F−1(x) and using P{p′j ≤ x} = ϕj(x), (14) and (15):

F−1(x) = fi(ϕ(x)), Ri+1 ≤ x < Ri. (16)

By (9) and (16):

fi(ϕ(x)) = g(x), Ri+1 ≤ x < Ri. (17)

Lemma 1: For each x, (17) has a unique solution ϕ(x). The
function ϕ(.) is strictly increasing and continuous on [p̃, ν).
For i ∈ {2, . . . , n}, ϕ(Ri) = qi. Also, ϕ(p̃) = 0.

Thus, there is a unique function ϕ(.), and by (7), unique
ϕi(.), i = 1, . . . , n that satisfy the conditions in Theorem 1.

3) Sufficiency:
Theorem 2: The pseudo-price d.f.s ϕi(.), i = 1, . . . , n in

(7), with R1 = R2 = ν, Ri, i = 3, . . . , n given by (13),
and ϕ(.) being the solution of (17), constitute the unique NE.
The corresponding price d.f.s are ψi(x) =

1
qi
ϕi(x), x ∈ [c, ν],

i = 1, . . . , n.
Thus, in the price competition game at a single location,

there is a unique NE that can be computed explicitly. This
NE fetches equal expected payoffs for each primary, which by
Property 2 is given by:

(p̃− c)r = (ν − c)(1− w1). (18)

IV. MULTIPLE LOCATIONS

We now study the existence, computation and uniqueness
of NE in the presence of spatial reuse. Recall that a strategy
of a primary now consists of a p.m.f. over I.S. and price
distributions at individual nodes. Our first observation is that
in general, there may be multiple NE in this case. For
example, consider the simple setup with two nodes v1 and
v2 connected by an edge, two primaries and one secondary
with probability 1 at each node. It can be easily verified
that both of the following strategy profiles constitute NEs:
primary 1 offers bandwidth at node v1 (respectively, v2) if it
has unused bandwidth and primary 2 at node v2 (respectively,
v1) if it has unused bandwidth, and both primaries set the
maximum possible price of ν. The results in games with
multiple locations may therefore fundamentally differ from
those for a single location.

Note that obtaining the structure of NE in games over graphs
is usually extremely challenging. As a result, in many prob-
lems of practical importance (e.g., base station deployment
games [21]), such characterizations have been done only in
small graphs with a few nodes. In spite of this, we will
establish the existence of a NE and explicitly compute it for
a fairly general class of graphs that we refer to as mean valid
graphs. In addition, we will also prove its uniqueness in the
class of NEs in which all primaries choose the I.S. they would
offer bandwidth at with identical probability mass functions.

A. A Separation Result

We start by providing a separation framework from which
the price distributions at individual nodes follow once the I.S.
selection p.m.f.s are determined. Let I be the set of all I.S. in
G. For convenience, we assume that the empty I.S. I∅ ∈ I and
we allow a primary to offer bandwidth at I∅, i.e. to not offer
bandwidth at any node, with some probability. Consider a NE
under which, if primary i has unused bandwidth, it selects I.S.
I ∈ I w.p. βi(I), where

∑
I∈I βi(I) = 1. The probability,

say αi
v , with which primary i offers bandwidth at a node v ∈ V

equals the sum of the probabilities associated with all the I.S.
that contain the node:

αi
v =

∑
I∈I :v∈I

βi(I). (19)

Now, considering that primary i has unused bandwidth w.p.
qi, it offers it at node v w.p. qiαi

v . The price selection problem
at each node v is now equivalent to that for the single
location case, the difference being that primary i offers unused
bandwidth w.p. qiαi

v , instead of qi, at node v. Thus:
Lemma 2: Suppose under a NE primary i ∈ {1, . . . , n}

selects node v w.p. αi
v if it has unused bandwidth. Then under

that NE the price distribution of primary i at node v is the d.f.
ψi(.) in Section III, with q1α1

v, . . . , qnα
n
v in place of q1, . . . , qn

respectively all through.
Thus, the strategy profile of the primaries in an NE is
completely specified once the I.S. selection p.m.f.s {βi(I) :
I ∈ I , i ∈ {1, . . . , n}} (which will in turn provide the αi

vs
via (19)) are obtained.
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B. Mean Valid Graphs
We now introduce mean valid graphs, which model the

conflict graphs of several topologies that commonly arise in
practice. In the next section, we show that these graphs have a
NE, which can be explicitly computed and has a simple form;
this NE will also turn out to be unique in a large class of
strategy profiles.

1) Definition:
Definition 2 (Valid Distribution): An assignment {αv : v ∈

V } of probabilities to the nodes is said to be a valid distribu-
tion if there exists a probability distribution {β(I) : I ∈ I }
such that for each v ∈ V , αv =

∑
I∈I :v∈I β(I).

Definition 3 (Mean Valid Graph): We refer to a graph G =
(V,E) as mean valid if:

1) Its vertex set can be partitioned into d disjoint maxi-
mal 10 I.S. for some integer d ≥ 2: V = I1∪I2∪. . .∪Id,
where Ij , j ∈ {1, . . . , d}, is a maximal I.S. and
Ij ∩ Im = ∅, j ̸= m.
Let |Ij | =Mj , Ij = {aj,l : l = 1, . . . ,Mj} and:

M1 ≥M2 ≥ . . . ≥Md. (20)

2) For every valid distribution 11 in which a primary who
has unused bandwidth offers it at node aj,l w.p. αj,l,
j = 1, . . . , d, l = 1, . . . ,Mj ,

d∑
j=1

αj ≤ 1, where αj =

∑Mj

l=1 αj,l

Mj
, j ∈ {1, . . . , d}.

(21)
The first condition in Definition 3 says that G is a d-

partite graph 12 and has the additional property that each of
I1, . . . , Id is a maximal I.S.. Next, let {αj,l : j = 1, . . . , d; l =
1, . . . ,Mj} be an arbitrary valid distribution. Consider the
distribution α′

j,l = αj , with αj as in (21), i.e. for each
j and l = 1, . . . ,Mj , α′

j,l is set equal to the mean of
αj,m,m = 1, . . . ,Mj . If (21) is true, then this distribution
of means is a valid distribution because it corresponds to
the I.S. distribution {β(Ij) = αj , j = 1, . . . , d;β(I∅) =

1 −
∑d

j=1 αj ;β(I) = 0, I ̸= I1, . . . , Id, I∅}. Thus, Condition
2 in Definition 3 says that in G, the distribution of means
corresponding to every valid distribution is valid– a fact that
we extensively use in the proofs of the characterization of a
NE in Section IV-C.

2) Examples: Technical as Definition 3 may seem, it turns
out that several conflict graphs that commonly arise in practice
are mean valid. For example, consider the following graphs:

1) Let Gm denote a graph that is a linear arrangement of
m ≥ 2 nodes as shown in part (a) of Fig. 2, with an edge
between each pair of adjacent nodes. As an example,
this would be the conflict graph for locations along a
highway or a row of roadside shops.

2) We consider two types of m×m grid graphs, denoted by
Gm,m (see part (b) of Fig. 2) and Hm,m (see part (a) of

10Recall that an I.S. I is said to be maximal if for each node v /∈ I , I∪{v}
is not an I.S. [6].

11Note that we write αj,l in place of αaj,l to simplify the notation.
12Recall that a graph G = (V,E) is said to be d-partite if V can be

partitioned into d disjoint I.S. I1, . . . , Id [6]. For example, when d = 2, G
is a bipartite graph.

Fig. 3). In both these graphs, m2 nodes (locations) are
arranged in a square grid. In Gm,m, there is an edge only
between each pair of adjacent nodes in the same row
or column. In Hm,m, in addition to these edges, there
are also edges between nodes that are neighbors along
a diagonal as shown in part (a) of Fig. 3. For example,
Gm,m or Hm,m may represent a shopping complex, with
the nodes corresponding to the locations of shops with
WiFi Access Points (AP) for Internet access. Depending
on the proximity of the shops to each other and the
transmission ranges of the APs, the conflict graph could
be Gm,m or Hm,m. Hm,m is also the conflict graph of a
cellular network with square cells as shown in part (b)
of Fig. 3.

3) Let Tm,m,m be a three-dimensional grid graph (see
Fig. 4), which may, for example, be the conflict graph
for offices in a corporate building or rooms in a hotel.

4) The conflict graph (Fig. 6) of a cellular network with
hexagonal cells (Fig. 5).

5) Consider a clique 13 of size e, where e ≥ 1 is any integer.
This is the conflict graph for any set of e locations that
are close to each other.

All of the above are mean valid graphs:
Theorem 3: The following graphs are mean valid, with d,

the number of disjoint maximal I.S., indicated in each case:
1) a clique of size e ≥ 1 (d = e),
2) a line graph Gm (d = 2),
3) a two-dimensional grid graph Gm,m (d = 2),
4) a two-dimensional grid graph Hm,m (d = 4),
5) a three-dimensional grid graph Tm,m,m (d = 8).
6) a cellular network with hexagonal cells (d = 3)14.

Fig. 2. Part (a) shows a linear graph, Gm, with m = 8 and part (b) shows
a grid graph, Gm,m, with m = 5. Both graphs are mean valid with d = 2
and I1 and I2 being disjoint maximal I.S. (in the notation of Definition 3),
where the darkened and un-darkened nodes constitute I1 and I2 respectively.

C. Existence and computation of a NE in Mean Valid Graphs
Let G be a mean valid graph with d disjoint maximal I.S.

I1, . . . , Id. We start by considering a class of simple strategy
profiles. Every primary selects I.S. Ij with probability tj where

13Recall that a clique or a complete graph of size e is a graph with e nodes
and an edge between every pair of nodes [6].

14This holds under the following assumption that eliminates problems
arising due to boundary effects: There are an even number of rows of nodes,
each containing 3δ nodes, for some integer δ ≥ 1.
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Fig. 3. Part (a) shows a grid graph Hm,m with m = 7. It is mean valid
with d = 4 and the disjoint maximal I.S. I1, . . . , I4 (in the notation of
Definition 3), where the nodes labelled j, j ∈ {1, 2, 3, 4}, constitute I.S.
Ij . Part (b) shows a tiling of a plane with squares, e.g. cells in a cellular
network. Transmissions at neighboring cells interfere with each other. The
corresponding conflict graph is H6,6.

Fig. 4. Part (a) shows a three-dimensional grid graph Tm,m,m for m = 5.
It consists of periodic repetitions of the graph shown in part (b). Tm,m,m is
mean valid with d = 8 and disjoint maximal I.S. I1, . . . , I8 (in the notation
of Definition 3). In part (b), the node labels show the I.S. the nodes are in,
i.e. a node with the label j is part of the I.S. Ij , j ∈ {1, . . . , 8}.

Fig. 5. The figure shows a tiling of a plane with hexagons, e.g. cells in a
cellular network. Transmissions at neighboring cells interfere with each other.

{tj : j = 1, . . . , d} represents a p.m.f., i.e,
∑d

j=1 tj = 1
and tj ≥ 0 for each j. Interestingly enough, it turns out that
a NE strategy profile belongs in this class, and furthermore,
the corresponding p.m.f {tj : j = 1, . . . , d} constitutes the
unique solution of a set of equations that we provide, and can

Fig. 6. The figure shows the conflict graph of a hexagonal tiling of a plane,
which is mean valid with d = 3. Both the solid and dotted edges are part of the
graph. The nodes labelled j, j ∈ {1, 2, 3}, are in I.S. Ij . There are four rows
of nodes. The figure also shows the construction of the graph from cliques
of size 3 each, shown by the solid edges. The dotted edges are added later.
Note that no edge is between two nodes in the same I.S., so the hypothesis
of Lemma 17 is satisfied.

therefore be explicitly computed by solving them.
We first evaluate the expected payoff of a primary under an

NE in the above class. We introduce some notations towards
that end. Since primary i has unused bandwidth w.p. qi and
offers it at node v ∈ Ij w.p. tj , it offers bandwidth at node
v ∈ Ij w.p. qitj . Analogous to the wjs that we introduced
in Section III-A, we introduce wi(tj) that represents the
probability that Kv or more out of primaries {1, . . . , n}\i
offer bandwidth at a given node v ∈ Ij under the above I.S.
p.m.f. {tj : j = 1, . . . , d}. Under this p.m.f, by Lemma 2,
and similar to (18) in the single location case, the primaries
choose the price at each node in Ij as per the single-node NE
strategy with q1tj , . . . , qntj in place of q1, . . . , qn respectively
throughout, and each primary obtains an expected payoff of
W (tj) at that node, where

W (x) = (1− w1(x))(ν − c).

Now, for simplicity, we normalize ν − c = 1. Then:

W (x) = (1− w1(x)). (22)

Since I.S. Ij has Mj nodes, each primary receives a total
expected payoff of MjW (tj) if it chooses Ij .

We now state the main result of this section, which estab-
lishes the existence of a NE and also shows how it can be
explicitly computed.

Theorem 4: In a mean valid graph, the following strat-
egy profile constitutes a NE: each primary who has unused
bandwidth selects I.S. Ij , j ∈ {1, . . . , d}, w.p. tj , where
(t1, . . . , td) is the unique distribution satisfying the following
conditions. There exists an integer d′ such that 1 ≤ d′ ≤ d
and15

tj = 0 if j > d′, and (23)

M1W (t1) = . . . =Md′W (td′) > Md′+1r. (24)

Also, t1 ≥ t2 . . . ≥ td.
We first explain the result: (23) states that under the above

NE, each primary selects with positive probability only some
or all I.S. out of the I.S. I1, I2, . . . , Id. Since the total number
of I.S. is exponential in the number of nodes in most graphs,
it is surprising that an NE exists in which primaries offer

15For notational simplicity, let Mj = 0 if j > d.
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bandwidth at only a small number of I.S. with positive
probability. In addition, note that among I1, . . . , Id, primaries
do not select Id′+1, . . . Id. Recall that by (20), I1, . . . , Id are
in decreasing order of size. So primaries do not choose I.S.
smaller than a certain size (out of I1, . . . , Id). Similarly, the
fact that t1 ≥ t2 . . . ≥ td is consistent with the intuition
that primaries offer bandwidth at the larger I.S. with a larger
probability. Next, since ν − c = 1 and at each location, there
exists at least one secondary w.p. r, whenever a primary offers
bandwidth at a location, its expected payoff at that location is
r or less. Thus, by (20), if it would have selected an I.S. in
Id′+1, . . . Id, it would have earned a payoff of at most Md′+1r.
As discussed above, a primary earns an expected payoff of
MjW (tj) if it selects Ij . Thus, (24) states that a primary earns
equal expected payoffs by choosing I.S. in I1, I2, . . . , Id′ and
this payoff exceeds the maximum payoff it could have earned
by selecting an I.S. in Id′+1, . . . Id– hence it never opts for
the latter choice. Interestingly, although different primaries
have different bandwidth availability probabilities, there exists
at least one NE where all use the same I.S. selection p.m.f.
They will however use different price distributions at the same
node: primary i selects the d.f. ψi(.) in Section III, with
q1tj , . . . , qntj in place of q1, . . . , qn throughout at each node
in Ij (Lemma 2).

The above theorem implies that every mean valid graph has
a NE, which can be explicitly computed by solving the system
of equations (23) and (24). Note that this is a system of non-
linear equations in the variables t1, . . . , td and d′. It can be
solved using a standard solver for non-linear equations (e.g.,
fsolve in Matlab) in combination with a search procedure to
find d′. We now illustrate this NE using an example.

Example: Suppose there are n = 2 primaries with probabil-
ities of having unused bandwidth q1 and q2, where q1 ≥ q2,
and Kv = 1 secondary w.p. 1 at every node v. Consider a
grid graph Hm,m, which was introduced in Section IV-B2,
with m = 7 (see part (a) of Fig. 3). By part 4 of Theorem 3,
this is a mean valid graph and, in the notation of Definition 3,
d = 4, the I.S. I1, I2, I3 and I4 are as shown in part (a) of
Fig. 3, and M1 = 16, M2 = M3 = 12, M4 = 9. In the
NE characterized in Theorem 4, it turns out that d′, t1, t2, t3
and t4 are independent 16 of q1, and their values for different
q2 ∈ (0, 1) are as follows:

1) For 0 < q2 <
1
4 , d′ = 1, t1 = 1, t2 = t3 = t4 = 0.

2) For 1
4 ≤ q2 <

15
16 , d′ = 3, t1 = 1

11

(
3 + 2

q2

)
, t2 = t3 =

1
11

(
4− 1

q2

)
t4 = 0.

3) For 15
16 ≤ q2 < 1, d′ = 4, t1 = 1

49

(
9 + 13

q2

)
, t2 = t3 =

1
49

(
1
q2

+ 12
)
t4 = 1

49

(
16− 15

q2

)
.

Note that t1 ≥ t2 ≥ t3 ≥ t4 for each value of q2, consistent
with Theorem 4. In fact, for all q2, t2 = t3, which is because
I2 and I3 are of the same size. Fig. 7 plots t1, t2 and t4 versus
q2. For small q2, primaries offer bandwidth at the largest I.S.
I1 with probability 1; but as q2 increases, the competition at

16This, in fact, holds in general because d′, t1, . . . , td are the solution of
(23) and (24), which contain terms in the function W (α) = 1−w1(α) and
w1(.) is independent of q1 by definition. However, the price distributions in
the NE do depend on q1.

I1 increases, inducing the primaries to shift probability mass
from I1 to the other I.S. So t1 decreases in q2. However, note
that for all values of q2, t1 ≥ t2 ≥ t4 and t4 is very small
(less than 0.02).
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Fig. 7. The figure shows the NE probabilities t1, t2 and t4 for the example
in Section IV-C.

Finally, at the beginning of this section we showed that
a system with multiple locations may have multiple NE. In
fact, the example chosen was one where the conflict graph is
linear, and is therefore mean valid by part 2 of Theorem 3.
Nevertheless, the NE in Theorem 4 turns out to be the unique
one in a large class of strategy profiles– the class S in which
every primary uses the same distribution (p.m.f.) to select the
independent set at which to offer bandwidth.

Lemma 3: The NE characterized in Theorem 4 is unique in
class S.

Note that in a strategy profile in class S, primaries may
choose I.S. other than I1, . . . , Id. The above lemma rules out
the choice of any such I.S. under an NE.

D. Threshold behavior

We first define the efficiency, η, of a NE as η =
RNE
ROPT

, where
RNE is the expected sum of payoffs of the n primaries at the
NE and ROPT is the maximum possible (optimal) expected
sum of payoffs, attained when all primaries jointly select
the independent sets and prices to maximize their aggregate
revenue. Clearly, η ≤ 1 quantifies the loss in aggregate revenue
incurred owing to lack of cooperation among primaries. Also,
since the above NE is unique (overall for the single location
game and in class S for multiple locations), η quantifies
fundamental limits on the performance of NE in the respective
categories.

Let limn→∞
∑n

i=1
qn
n = q for some q ∈ (0, 1). Here, q

represents the “average” bandwidth availability probability of
the primaries. For simplicity, we assume that each secondary
from a given pool independently seeks bandwidth, and let kn
be the expected number of secondaries at any given location17.
Then, the NE structure exhibits interesting threshold behavior
as n → ∞; in particular, η switches from 1 to 0 depending
on the relations between nq (availability) and kn (demand).

Lemma 4: Let 18 qn = q1+...+qn
n and let p̃j denote the

common lower endpoint of the price distributions of the

17We allow (but do not require) the number (rather statistics) of the
secondaries to scale with increase in n.

18For simplicity, we state this lemma under the assumption that
M1, . . . ,Md are distinct. In the Appendix, we provide the lemma with this
assumption relaxed.
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primaries who have unused bandwidth in the NE at nodes
in I.S. Ij (if they select I.S. Ij).

1) If there exists an ϵ > 0 such that for all large n, q <
kn/(n − 1) − ϵ, then η → 1 as n → ∞. Also, for all
large n, d′ = 1, t1 = 1, t2 = t3 = . . . td = 0, p̃1 → ν.

2) Let l < d. If there exists an ϵ > 0 such that for all large
n, lkn/(n − 1) + ϵ < q < (l + 1)kn/(n − 1) − ϵ, then
for all large n, d′ ≥ l + 1, and tjqn → kn/(n− 1) for
all j ≤ l.

3) If there exists an ϵ > 0 such that for all large n, q >
knd/(n − 1) + ϵ, then η → 0 as n → ∞. Also, for all
large n, d′ = d and p̃j → c, j = 1, . . . , d.

Intuitively, if availability is less than demand, then owing to
limited competition, primaries with available bandwidth select
only the maximum-sized I.S. among I1, . . . , Id, and choose
prices in a neighborhood of ν. Thus, η → 1, since no other
strategy can enhance any primary’s payoff. As availability in-
creases, under NE, primaries diversify their choices among the
I.S. I1, . . . , Id and are more likely to select low prices as well
(the lower limits of the price distributions hover around c once
availability exceeds demand), thereby drastically reducing the
efficiency of the NE.

V. NUMERICAL STUDIES

In this section, we describe numerical computations that
are directed towards assessing the impact of price competi-
tion among the primaries on the aggregate revenue of the
primaries and the affordability of spectrum for the secondaries.
We consider the specific case of a grid graph Hm,m (see
Section IV-B2). By part 4 of Theorem 3, this is a mean valid
graph and, in the notation of Definition 3, d = 4 and the I.S.
I1, I2, I3 and I4 are as shown in part (a) of Fig. 3. Throughout,
we use the parameter values ν = 1 and c = 0, and a constant
number of secondaries k at each node. Also, q1, . . . , qn are
uniformly spaced in [qL, qH ] for some parameters qL and qH .
Let q = qL+qH

2 be the mean bandwidth availability probability
of the primaries.

In Hm,m, the NE is of the form in Theorem 4 and the
plot on the left in Fig. 8 reveals, as expected, that price
competition significantly reduces the aggregate revenue of the
primaries under this NE relative to OPT, the optimal scheme in
which the primaries collaborate to attain ROPT, the maximum
aggregate revenue of the primaries (Note that under OPT,
the I.S. I1, . . . , I4 are selected in order of size and all the
primaries always select the highest price ν). Also, overall, the
efficiency (η) decreases as q increases since the competition
increases. The plot on the right in Fig. 8 shows that the trends
are similar for a larger topology (larger m). The plot on the
left in Fig. 9 shows that η improves as k increases. This is
because, for small values of k, demand for bandwidth is scarce
at each node. Under the NE, bandwidth is wasted at several
nodes since k+1 or more primaries offer bandwidth at those
nodes, resulting in a shortage of bandwidth at other nodes.
On the other hand, since all primaries cooperate in OPT, it
judiciously supplies bandwidth precisely where it is needed.
So OPT outperforms the NE by a large margin for small values
of k. For large values of k, the demand is high and so is the
tolerable margin of error in assigning the primaries to I.S.; and

hence the performance of the NE improves relative to OPT.
The plot on the right in Fig. 9 shows that η increases as m
increases, which is because the four I.S. I1, . . . , I4 become
closer to each other in size as m increases and hence the loss
in revenue resulting from choosing a smaller I.S. is lower.

Fig. 10 shows that under price competition, the expected
price per unit of bandwidth is lower at the nodes in the larger
I.S. This is because primaries prefer larger I.S. and hence the
competition is more intense there, driving down the prices.
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Fig. 8. Both figures plot the aggregate revenues of the primaries, RNE and
ROPT , under the NE and OPT respectively, and the efficiency of the NE,
η = RNE

ROPT
, versus q. In both figures, n = 10, k = 5 and qH − qL = 0.2

are used. Also, m = 15 (respectively, m = 25) for the figure on the left
(respectively, right). η is scaled by a factor of 500 (respectively, 1000) in the
figure on the left (respectively, right) in order to show it on the same figure
as the other plots.
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Fig. 9. The figure on the left (respectively, right) plots the efficiency η of
the NE versus k (respectively, m). For both figures, n = 10, qL = 0 and
qH = 1 are used. Also, m = 15 for the figure on the left and k = 5 for the
figure on the right.
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Fig. 10. The figure shows the mean price of bandwidth, given that it is
offered, at a (fixed) node in each of I1, I2 and I4 under the NE vs q. Note
that since |I3| = |I2|, the mean price of bandwidth at nodes in I3 is the
same as that at nodes in I2. The parameter values used are m = 15, n = 8
and k = 3. Also, qH − qL = 0.2.
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APPENDIX

A. Proofs of results in Section III-A

We first prove a series of lemmas and then deduce Proper-
ties 1 and 2 and Theorem 1 from them.

Lemma 5: For i = 1, . . . , n, ψi(.) is continuous, except
possibly at v. Also, at most one primary has a jump at v.

Proof: Suppose ψi(.) has a jump at a point x0, c < x0 <
v. Then for some ϵ > 0, no primary j ̸= i chooses a price
in [x0, x0 + ϵ] because it can get a strictly higher payoff by
choosing a price just below x0 instead. This in turn implies
that primary i gets a strictly higher payoff at the price x0 + ϵ
than at x0. So x0 is not a best response for primary i, which
contradicts the assumption that ψi(.) has a jump at x0. Thus,
ψi(.) is continuous at all x < v.

Now, suppose primary i has a jump at v. Then a primary
j ̸= i gets a higher payoff at a price just below v than at v.
So v is not a best response for primary j and it plays it with
0 probability. Thus, at most one primary has a jump at v.

Lemma 6: For every ϵ > 0, there exist primaries m and j,
m ̸= j, such that ψm(v − ϵ) < 1 and ψj(v − ϵ) < 1.
That is, at least two primaries play prices just below v with
positive probability.

Proof: Suppose not. Fix i and let:

y = inf{x : ψl(x) = 1 ∀l ̸= i}. (25)

By definition of y, ψl(x) = 1 ∀l ̸= i and x > y. Also, since
ψl(.) is a distribution function, it is right continuous [5]. So

ψl(y) = 1 ∀l ̸= i. (26)

Suppose y < v. By (26):

P{pl ∈ (y, v]} = 0, ∀l ̸= i. (27)

So every price pi ∈ (y, v) is dominated by pi = v. Hence:

P{pi ∈ (y, v)} = 0 (28)

By (27) and (28):

P{pj ∈ (y, v)} = 0, j = 1, . . . , n. (29)

By (25), ∀ϵ > 0, ψl(y−ϵ) < 1 for at least one primary l ̸= i;
otherwise the infimum in the RHS of (25) would be less than
y. So this primary l plays prices just below y with positive
probability. Now, if primary l sets a price pl < v, it gets a
payoff equal to the revenue, (pl−c), if bandwidth is sold, times
the probability that bandwidth is sold. Also, by Lemma 5,
ψj(.), j = 1, . . . , n are continuous at all prices below v. So by
(29), a price pl just below v yields a higher payoff than a price
just below y. This is because, pl−c is lower by approximately
v − y for pl just below y than for pl just below v, but by
(29) and continuity of ψj(.), j = 1, . . . , n, the probability that
bandwidth is sold for a price pl just below y can be made
arbitrarily close to the probability that bandwidth is sold for
a price pl just below v. This contradicts the assumption that
primary l plays prices just below y with positive probability.

Thus, y in (25) equals v and hence at least one primary
j ̸= i plays prices just below v with positive probability. The
above arguments with j in place of i imply that at least one
primary other than j plays prices just below v with positive
probability. Thus, at least two primaries in {1, . . . , n} play
prices just below v with positive probability.

Let ui,max and Li be as defined in Section III-A.
Lemma 7: For i = 1, . . . , n, Li is a best response for

primary i.
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Proof: By (3), either primary i has a jump at Li or
plays prices arbitrarily close to Li and above it with positive
probability.
Case (i): If primary i has a jump at Li, then Li is a best
response for i because in a NE, no primary plays a price other
than a best response with positive probability.
Case (ii): If primary i does not have a jump at Li, then by
(3), ψi(Li) = 0. Since every primary selects a price in [c, v],
ψi(v) = 1. So Li < v. So by Lemma 5, no primary among
{1, . . . , n}\i has a jump at Li. Hence, primary i’s payoff at a
price above Li and close enough to it is arbitrarily close to its
payoff at Li. But since primary i does not have a jump at Li,
by (3), it plays prices just above Li with positive probability
and they are best responses for him. So Li is also a best
response for primary i.

Lemma 8: For some c < p̃ < v, L1 = . . . Ln = p̃. Also,
ui,max = (p̃− c)r, i = 1, . . . , n.
That is, the lower endpoint of the support set of the price
distribution of every primary is the same.

Proof: Let Lmin = min{Lm : m = 1, . . . , n}, and
Smin = {m : Lm = Lmin} be the set of primaries with
the lowest endpoint. Let

kmin = min
k

{k : γk > 0}.

Thus, kmin is the minimum number of secondaries at a
location. Note that kmin will be 0 if γ0 > 0, and kmin > 0
otherwise. First, we show by contradiction that:

|Smin| ≥ kmin + 1. (30)

Clearly, the above holds if kmin = 0. We therefore show that it
holds even otherwise. Suppose |Smin| ≤ kmin. If Lmin = v,
then all primaries play the price v w.p. 1, which does not
constitute a NE by Lemma 5. So Lmin < v and again by
Lemma 5, no primary has a jump at Lmin. Also, by Lemma 7,
Lmin is a best response for the primaries in Smin. Let L̂ =
min{Lm : m /∈ Smin} be the second lowest endpoint. Now,
a primary m ∈ Smin who has unused bandwidth can get a
higher payoff at a price just below L̂ than at Lmin because
in both cases, since |Smin| ≤ kmin, primary m’s bandwidth is
sold w.p. 1; however, it gets a higher revenue at a price just
below L̂ than at Lmin. This contradicts the fact that Lmin is
a best response for primary m. Thus, (30) must hold.

Now, suppose Li < Lj for some i, j. By Lemma 7, Lj is
a best response for primary j. Now, the expected payoff that
primary j gets for pj = Lj is strictly less than the expected
payoff that primary i would get if it set pi to be just below Lj .
This is because, if primaries i or j set a price of approximately
Lj , then they see the same price distribution functions of the
primaries other than i and j. But primary j may be undercut
by primary i, since Li < Lj , whereas primary i may not be
undercut by primary j. Also, by (30), primary j’s expected
payoff is strictly lowered due to this undercutting by primary
i. (Note that if kmin > 0, undercutting by primary i would
not lower primary j’s probability of winning, and thereby the
expected payoff, if a total of ≤ kmin−1 primaries played prices
below Lj with positive probability. This possibility is ruled out
by (30). If kmin = 0, γ0 > 0. If in addition γ1 = 0, and Smin =
1, it is possible that only 1 primary (i.e., i) plays prices below

Lj with positive probability. In this case, note that whenever
at least 1 secondary is available, at least 2 secondaries are
available (as γ1 = 0), and hence undercutting by primary i
does not lower primary j’s probability of winning, and thereby
the expected payoff. This possibility is ruled out by assumption
(ii) on {γk} in Section II-A since γ1 > 0 if γ0 > 0.) Hence,
ui,max > uj,max.

Now, by Lemma 7, Li is a best response for primary i. If
primary j were to play price Li, then it would get a payoff
of ui,max. This is because, when primary i plays price Li,
it gets payoff ui,max. Since Lj > Li, primary i is, w.p. 1,
not undercut by primary j. If primary j were to set the price
Li, then w.p. 1, it would not be undercut by primary i. Also,
the price distributions of the primaries other than i and j are
exactly the same from the viewpoints of primaries i and j.
Thus, primary j can strictly increase its payoff from uj,max

to ui,max by playing price Li, which contradicts the fact that
Lj is a best response for him.

Thus, Li < Lj is not possible. By symmetry, Li > Lj is
not possible. So Li = Lj . Let L1 = . . . = Ln = p̃.

If p̃ = v, then every primary plays the price v w.p. 1, which
does not constitute a NE. So p̃ < v. So by Lemma 5, no
primary has a jump at p̃. Thus, since the lower endpoint of
the support set of every primary is p̃, by (3), a price of p̃ is
a best response for every primary i. Since no primary sets a
price lower than p̃, a price of p̃ fetches a payoff of p̃ − c if
K ≥ 1 and a payoff of 0 if K = 0. So ui,max = (p̃−c)P (K ≥
1) = (p̃− c)r, i = 1, . . . , n.

Let wi be as defined in Section III-A. Using (1), it can be
easily shown that:

w1 ≤ w2 ≤ . . . ≤ wn. (31)

Lemma 9: p̃ = c+ (1−w1)(v−c)
r .

Proof: If primary 1 sets the price p1 = v, then it gets
an expected payoff of at least (v − c)(1 − w1) because its
bandwidth is sold at least in the event that k − 1 or fewer
primaries out of 2, . . . , n have unused bandwidth. So u1,max ≥
(v − c)(1 − w1). Since u1,max = (p̃ − c)r by Lemma 8, we
get:

p̃ ≥ c+
(1− w1)(v − c)

r
. (32)

Now, by Lemma 6, at least two primaries, say m and j, play
prices just below v with positive probability. By Lemma 5, at
most one of them has a jump at v. So assume, WLOG, that
no primary other than j has a jump at v. Then a price of
pj = v is a best response for primary j and fetches a payoff
of uj,max = (v − c)(1 − wj) ≤ (v − c)(1 − w1), where the
inequality follows from (31). Since uj,max = (p̃ − c)r by
Lemma 8, we get:

p̃ ≤ c+
(1− w1)(v − c)

r
. (33)

The result follows from (32) and (33).
Lemma 10: Let p̃ ≤ a < b ≤ v. Then at least two primaries

play prices in (a, b) with positive probability.
Proof: If b = v, then the claim is true by Lemma 6. If

a = p̃, then the claim is true by Lemma 5 and Lemma 8,
since p̃ < v is the lower endpoint of the support set of all
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primaries and no primary has a jump at p̃; hence all primaries
play prices just above p̃ with positive probability.

Now, fix any a, b such that p̃ < a < b < v. Let:

a = inf{x ≤ a : ψj(x) = ψj(a) ∀j = 1, . . . , n} (34)

By Lemma 8, a > p̃. Also, by definition of a, P{pj ∈
[a, a]} = 0 ∀j = 1, . . . , n.

By definition of a, at least one primary, say primary i, plays
prices just below a with positive probability. (If not, then the
infimum in (34) would be less than a.) This implies that at
least one primary j ̸= i plays prices in (a, b) with positive
probability. (If not, then pi = b would yield a strictly higher
payoff to primary i than prices just below a.) Now, if primary
j is the only primary among primaries {1, . . . , n} who play
prices in (a, b) with positive probability, then pj = b yields a
strictly higher payoff than pj ∈ (a, b), which is a contradiction.
So at least two primaries play prices in (a, b) with positive
probability. But P{pl ∈ [a, a]} = 0 ∀l = 1, . . . , n by
definition of a. Hence, at least two primaries play prices in
(a, b) with positive probability.

Let F−i(x) be as defined in Section III-B.
Lemma 11: For a fixed x ∈ (p̃, v], and primaries i and j, (i)

F−i(x) = F−j(x) iff ϕi(x) = ϕj(x), (ii) F−i(x) < F−j(x)
iff ϕi(x) > ϕj(x).

Proof: Let p′(l) be the l’th smallest out of the pseudo-
prices of the primaries other than i and j. Let F−i,k(x) be
the probability that p′−i ≤ x given that K = k. Clearly,
F−i,0(x) = 1 since x > p̃ ≥ 0, and F−i,k(x) = 0 if k > n−1.
We evaluate F−i,k(x) for 1 ≤ k ≤ n − 1. Conditioning on
the event {p′j ≤ x} and using the fact that {p′l : l ̸= i} are
independent, we get:

F−i,k(x)

= P{k′th smallest of {p′l : l ̸= i} ≤ x}
= P{p′j ≤ x}P{p′(k−1) ≤ x}+ P{p′j > x}P{p′(k) ≤ x}
= ϕj(x)P{p′(k−1) ≤ x}+ (1− ϕj(x))P{p′(k) ≤ x}
= ϕj(x)[P{p′(k−1) ≤ x} − P{p′(k) ≤ x}]

+P{p′(k) ≤ x} (35)

Similarly,

F−j,k(x) = ϕi(x)[P{p′(k−1) ≤ x}−P{p′(k) ≤ x}]+P{p′(k) ≤ x}
(36)

By (35) and (36):

F−i,k(x)− F−j,k(x)

= (ϕj(x)− ϕi(x))[P{p′(k−1) ≤ x} − P{p′(k) ≤ x}]
= (ϕj(x)− ϕi(x))αk (37)

where αk = P{p′(k−1) ≤ x} − P{p′(k) ≤ x}. Thus,

F−i(x)− F−j(x) = (ϕj(x)− ϕi(x))
n−1∑
k=1

αkγk.

We will next show that αk > 0 for 1 ≤ k ≤ n − 1. Both
parts of the result will then follow from the above.

Note that αk equals the probability that exactly (k− 1) out
of the pseudo-prices of the primaries other than i and j are

≤ x. Since x > p̃, all primaries play prices in (p̃, x) with
positive probability by Lemma 8. So:

ϕl(x) = P{p′l ≤ x} > 0, l = 1, . . . , n. (38)

Also,
ϕl(x) ≤ ϕl(v) = ql < 1, l = 1, . . . , n. (39)

By (38) and (39):

0 < ϕl(x) < 1, l = 1, . . . , n. (40)

Also, since 1 ≤ k ≤ n− 1, we have:

0 ≤ k − 1 ≤ n− 2. (41)

Since αk equals the probability of exactly k − 1 successes
out of n − 2 independent Bernoulli events that have success
probabilities {ϕl(x) : l = 1, . . . , n, l ̸= i, j}, αk > 0 by (40)
and (41). This completes the proof.

Lemma 12: (i) ϕ2(.), . . . , ϕn(.) are continuous at v. (ii)
ϕ1(.) is continuous at v if q1 = q2 and has a jump of size
at most q1 − q2 at v if q1 > q2. Also,

ϕ1(v−) ≥ q2. (42)

Proof: If no primary i > 1 has a jump at v, then primary
1 gets a payoff of (v − c)(1−w1), which equals (p̃− c)r by
Lemma 9, for a price p1 just below v in the limit as p1 → v−.
So if a primary i ≥ 2 has a jump at v, primary 1 can get a
payoff strictly greater than (p̃ − c)r by playing a price close
enough to v. This contradicts the fact that u1,max = (p̃− c)r
(see Lemma 8). Thus, no primary i ≥ 2 has a jump at v and
ϕ2(.), . . . , ϕn(.) are continuous.

First, suppose q1 = q2. If primary 1 has a jump at v, then
similar to the preceding paragraph, primary 2 can get a payoff
strictly greater than (p̃− c)r by playing a price just below v,
which contradicts the fact that u2,max = (p̃− c)r. So ψ1(.) is
continuous.

Now suppose q1 > q2. First, suppose primary 1 has a jump
of size exactly q1− q2 at v. Then if primary 2 sets a price just
below v, then the probability of being undercut by primary
j ∈ {3, . . . , n} is approximately qj . Also, since primary 1
has a jump of size q1 − q2 at v, the probability of being
undercut by primary 1 is approximately q1 − (q1 − q2) = q2.
So at a price just below v, primary 2 sees the same set of
probabilities of being undercut by primaries other than itself
as primary 1 would see if it set a price just below v. Hence,
by the first paragraph of this proof, primary 2 gets a payoff
of approximately (p̃− c)r at a price just below v.

Hence, if primary 1 has a jump of size, not equal to, but
greater than q1 − q2 at v, primary 2 gets a payoff of strictly
greater than (p̃− c)r at a price just below v. This contradicts
the fact that u2,max = (p̃− c)r.

Thus, primary 1 has a jump of at most size q1 − q2 at v.
So ϕ1(v) − ϕ1(v−) ≤ q1 − q2. This, along with ϕ1(v) = q1,
gives (42).

Lemma 13: If p̃ ≤ x < y < v and ψi(x) = ψi(y) for some
primary i, then ψi(v−) = ψi(x).

Thus, if x ≥ p̃ is the left endpoint of an interval of constancy
of ψi(.) for some i, then to the right of x, the interval of
constancy extends at least until v (there may be a jump at v).
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Proof: Suppose not, i.e.:

ψi(v−) > ψi(x). (43)

Let:
y = sup{z ≥ x : ψi(z) = ψi(x)} (44)

By (43), (44) and the fact that ψi(.) is continuous below v
(by Lemma 5), we get y < v. So again by Lemma 5, no
primary among {1, . . . , n}\i has a jump at y. Also, primary i
uses prices just above y with positive probability (if not, the
supremum in the RHS of (44) would be > y). So y is a best
response for primary i and hence:

E{ui(y, ψ−i)} = (y − c)(1− F−i(y)) = ui,max = (p̃− c)r.
(45)

where the last equality follows from Lemma 8.
Now, by Lemma 10, there exists a primary j ̸= i who plays

prices just below y with positive probability. Since no primary
among {1, . . . , n}\j has a jump at y, y is a best response for
primary j. Hence:

E{uj(y, ψ−j)} = (y − c)(1− Fj(y)) = uj,max = (p̃− c)r.
(46)

By (45) and (46), F−i(y) = F−j(y). So by Lemma 11:

ϕi(y) = ϕj(y). (47)

But since primary j plays prices just below y with positive
probability, there exists ϵ > 0 such that x < y − ϵ and y − ϵ
is a best response for primary j. So

ϕj(y − ϵ) < ϕj(y). (48)

But by (44) and the continuity of ϕi(.) at y:

ϕi(y) = ϕi(y − ϵ). (49)

By (47), (48) and (49), ϕi(y−ϵ) > ϕj(y−ϵ). So by Lemma 11:

F−j(y − ϵ) > F−i(y − ϵ)

This implies:

(p̃− c)r = E{uj(y − ϵ, ψ−j)}
= (y − ϵ− c)(1− F−j(y − ϵ))

< (y − ϵ− c)(1− F−i(y − ϵ))

= E{ui(y − ϵ, ψ−i)}

which contradicts the fact that every primary gets a payoff of
(p̃− c)r at a best response in the NE.

Lemma 14: Part 2 of Theorem 1 holds.
Proof: We prove the result by induction. Let:

Rn = inf{x ≥ p̃ : ∃ y > x and i s.t. ϕi(y) = ϕi(x)} (50)

Note that Rn is the smallest value ≥ p̃ that is the left endpoint
of an interval of constancy for some ϕi(.). For this i, ϕi(Rn) =
ϕi(y) for some y > Rn

19. We must have Rn > p̃. This is
because, if Rn = p̃, then ϕi(y) = ϕi(p̃). But ϕi(p̃) = 0, since
p̃ is the lower endpoint of the support set of ϕi(.) by Lemma 8.
So ϕi(y) = 0, which implies that the lower endpoint of the

19Note that ϕi(.) is a distribution function and hence is right continuous [5].
So ϕi(Rn+) = ϕi(Rn).

support set of ϕi(.) is ≥ y > p̃. This contradicts Lemma 8.
Thus, Rn > p̃.

Now, by definition of Rn, all primaries play every sub-
interval in [p̃, Rn) with positive probability and hence every
price x ∈ [p̃, Rn) is a best response for every primary. So
similar to the derivation of (8), for j ∈ {1, . . . , n} and x ∈
[p̃, Rn), E{uj(x, ψ−j)} = (x − c)(1 − F−j(x)) = (p̃ − c)r.
Hence, F−1(x) = . . . = F−n(x) and by Lemma 11,

ϕ1(x) = . . . = ϕn(x) = ϕ(x) (say), p̃ ≤ x < Rn. (51)

which proves (5) for j = n.
Case (i): Suppose Rn = v. Then ϕl(Rn) = ql, l = 1, . . . , n
(since ψl(v) = 1), which proves (6).
Case (ii): Now suppose Rn < v. Then ϕj(.), j = 1, . . . , n are
continuous at Rn by Lemma 5. So by (51):

ϕ1(Rn) = ϕ2(Rn) = . . . = ϕn(Rn). (52)

Since Rn is the left endpoint of an interval of constancy of
ϕi(.), by Lemma 13:

ϕi(Rn) = ϕi(v−) = ϕn(Rn) ≤ qn (53)

where the second equality follows from (52).
Now, suppose i = 1. Then by (42) and (53):

ϕi(Rn) ≥ q2. (54)

By (53), (54) and (1), q2 = q3 = . . . = qn = ϕi(Rn).
Also, by (52), ϕj(Rn) = qj , j = 2, . . . , n. So ψj(Rn) = 1,
j = 2, . . . , n. This implies, since Rn < v by assumption, that
at most one primary (primary 1) plays prices in the interval
(Rn, v) with positive probability, which contradicts Lemma 6.
Thus, i ̸= 1.

So by Lemma 12, ϕi(.) is continuous at v and ϕi(v−) =
ϕi(v) = qi. So by (53):

ϕi(Rn) = qi. (55)

By (52) and (55), ϕn(Rn) = qi. If qi > qn, then ϕn(Rn) > qn,
which is a contradiction because ϕn(Rn) = qnψn(Rn) ≤ qn.
So qi ≤ qn. Also, since qi ≥ qn by (1), qi = qn. So:

ϕn(Rn) = qn. (56)

which proves (6) for j = n.
Now, as induction hypothesis, suppose there exist thresh-

olds:
p̃ < Rn ≤ Rn−1 ≤ . . . ≤ Ri+1 ≤ v

such that for each j ∈ {i+ 1, . . . , n}, ϕj(Rj) = qj ,

ϕ1(x) = . . . = ϕj(x) = ϕ(x), p̃ ≤ x < Rj , (57)

and each of primaries 1, . . . , j plays every sub-interval in
[p̃, Rj) with positive probability.

First, suppose Ri+1 < v. Let:

Ri = inf{x ≥ Ri+1 : ∃ y > x and j ∈ {1, . . . , i}
s.t. ϕj(y) = ϕj(x)}.

If Ri = Ri+1, then clearly by (57):

ϕ1(x) = . . . = ϕi(x) = ϕ(x), p̃ ≤ x < Ri (58)
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which proves (5) for j = i. Also, similar to (56), it can be
shown that ϕi(Ri) = qi, which proves (6) for j = i and
completes the inductive step. Now suppose Ri > Ri+1. Then
similar to the proof of (51), it can be shown that:

ϕ1(x) = . . . = ϕi(x) = ϕ(x), Ri+1 ≤ x < Ri. (59)

By (57) and (59):

ϕ1(x) = . . . = ϕi(x) = ϕ(x), p̃ ≤ x < Ri.

which proves (5) for j = i. Also, similar to the proof of (56),
it can be shown that ϕi(Ri) = qi, which proves (6) for j = i.
This completes the induction.

If Ri+1 = v, then the induction is completed by simply
setting R1 = . . . = Ri = v.

It remains to show that R1 = R2 = v. If R1 < v, then no
primary plays a price in (R1, v), which contradicts Lemma 6.
So R1 = v. If R2 < v, then only primary 1 plays prices
in (R2, v) with positive probability, which again contradicts
Lemma 6. So R2 = v.

Lemma 15: If q1 > q2, then ϕ1(.) has a jump of size q1−q2
at v.

Proof: By Lemma 14, ϕ1(x) = ϕ2(x) for all x < R2 = v.
So:

ϕ1(v−) = ϕ2(v−)

= ϕ2(v) (since ϕ2(.) is continuous by Lemma 12)
= q2

Also, ϕ1(v) = q1ψ1(v) = q1. So ϕ1(v)− ϕ1(v−) = q1 − q2.

Finally, (i) Property 1 follows from Lemmas 5, 12 and 15;
(ii) Property 2 follows from Lemmas 8 and 9; (iii) Theorem 1
follows from Properties 1 and 2 and Lemma 14.

B. Proofs of results in Section III-B
We verify that with Ri as in (13), Ri ≥ Ri+1 as required by

(4) in Theorem 1. Recall from Section III-B1 that fi(qi) is the
probability of K or more successes out of n− 1 independent
Bernoulli events, i − 1 with success probability qi and n − i
with qi+1, . . . , qn. Also, fi+1(qi+1) is the probability of K
or more successes out of n − 1 Bernoulli events, i − 1 with
success probability qi+1 and n − i with qi+1, . . . , qn. Since
qi ≥ qi+1 by (1), it is easy to check that fi(qi) ≥ fi+1(qi+1).
So by (13), Ri ≥ Ri+1, which is consistent with (4).

Proof of Lemma 1: First, let fi(.) be as defined in
Section III-B1. To compute fi(y), for i ∈ {2, . . . , n}, let
fi,k(y) be the conditional probability given K = k, of K
or more successes out of n− 1 independent Bernoulli events,
(i − 1) of which have the same success probability y and
the remaining (n− i) have success probabilities qi+1, . . . , qn.
Clearly,

fi(y) =
∑
k

fi,k(y)γk.

Again, fi,0(y) = 1 and fi,k(y) = 0 if k > n− 1.
Consider 1 ≤ k ≤ n − 1. For l ∈ {0, . . . , n − i}, let

vil(qi+1, . . . , qn) be the probability of exactly l successes out
of n−i independent Bernoulli trials with success probabilities
qi+1, . . . , qn. Conditioning on the number of successes, say l,

out of the n− i trials with success probabilities qi+1, . . . , qn,
we get:

fi,k(y) =

n−i∑
l=k

vil(qi+1, . . . , qn)

+

min(k−1,n−i)∑
l=0

vil(qi+1, . . . , qn)hk(y), (60)

where hk(y) =
∑i−1

m=k−l

(
i− 1
m

)
ym(1 − y)i−1−m. Now,

for l satisfying:
1 ≤ k − l ≤ i− 1, (61)

hk(y) is a strictly increasing function of y [3]. Also, it can
be checked that l = min(k − 1, n − i), which is one of the
indices in the expression in (60), satisfies (61). So fi,k(y) is
a strictly increasing function of y. Also, note that fi,k(.) is a
continuous function. Thus, fi(y) is a strictly increasing and
continuous function of y as well (since by assumptions on
{γk} γk > 0 for some k between 1 and n− 1).

Now, it can be checked from the definition of the function
fi(.) that:

fi(qi+1) = fi+1(qi+1). (62)

Also, replacing i with i+ 1 in (12), we get:

fi+1(qi+1) = g(Ri+1). (63)

By (62) and (63), we get:

fi(qi+1) = g(Ri+1). (64)

Now, as shown above, fi(y) is a continuous and strictly
increasing function of y. So fi(.) is invertible. By (17), ϕ(.)
is unique and is given by:

ϕ(x) = f−1
i (g(x)), Ri+1 ≤ x < Ri. (65)

Also, by (64) and (12), fi(qi+1) = g(Ri+1) and fi(qi) =
g(Ri). So fi(.) is a continuous one-to-one map from the
compact set [qi+1, qi] onto [g(Ri+1), g(Ri)], and hence f−1

i (.)
is continuous (see Theorem 4.17 in [4]). Also, g(x) in (10) is
continuous for all x ∈ [p̃, v) since x ≥ p̃ > c. So from (65),
ϕ(.) is a continuous function on [Ri+1, Ri], since it is the
composition of continuous functions f−1

i and g (see Theorem
4.7 in [4]). Also, as shown above, fi(.) is strictly increasing;
so f−1

i (.) is strictly increasing. Also, using x ≥ p̃ > c, it
can be checked from (10) that g′(x) > 0; so g(.) is strictly
increasing. By (65), ϕ(.) is the composition of the strictly
increasing functions f−1

i (.) and g(.) and hence is strictly
increasing on [Ri+1, Ri]. Also, by (5), (6), (12) and (65),
ϕ(Ri) = f−1

i (g(Ri)) = qi.
Thus, the function ϕ(.) is strictly increasing and continuous

within each individual interval [Ri+1, Ri]; also, ϕ(Ri) = qi,
i = 2, . . . , n, and hence ϕ(.) is continuous at the endpoints
Ri, i = 2, . . . , n of these intervals. So ϕ(.) is strictly increasing
and continuous on [p̃, v).

It remains to show that ϕ(p̃) = 0. By definition of the
function fi(.), fn(0) = 1− r. As shown above, fn(.) is one-
to-one. So f−1

n (1 − r) = 0. Also, by (10), g(p̃) = 1 − r and
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by (4), Rn+1 = p̃. Putting i = n and x = Rn+1 = p̃ in (65),
we get ϕ(p̃) = f−1

n (g(p̃)) = f−1
n (1− r) = 0.

Proof of Theorem 2: By Lemma 1 and equation (7), the
functions ϕi(.), i = 1, . . . , n computed in Section III-B are
continuous and non-decreasing on [p̃, v]; also, ϕi(p̃) = 0 and
ϕi(v) = qi. This is consistent with the fact that ϕi(.) is the
d.f. of the pseudo-price p′i and hence should be non-decreasing
and right continuous [5], and ϕi(v) = qiψi(v) = qi (see the
beginning of Section III).

Now, we have shown in Sections III-A and III-B that (7) is
a necessary condition for the functions ϕi(.), i = 1, . . . , n to
constitute a NE. We now show sufficiency. Suppose for each
i ∈ {1, . . . , n}, primary i uses the strategy ϕi(.) in (7). Similar
to the derivation of (8), the expected payoff that primary i gets
at a price x ∈ [p̃, v) is:

E{ui(x, ψ−i)} = (x− c)(1− F−i(x)). (66)

Now, for x ∈ [p̃, Ri), by (4) and (7), ϕi(x) = ϕ1(x) = ϕ(x),
and hence by Lemma 11, F−i(x) = F−1(x). Also note that
ϕ(.) is the solution of (8), (16) and (17). By (8), (66) and the
fact that F−i(x) = F−1(x), for primary i, prices x ∈ [p̃, Ri)
fetch an expected payoff of (p̃− c)r.

Now let x ∈ [Ri, v). Note that Ri ≤ x < v = R1. So
by (7), ϕi(x) = qi and ϕ1(x) = ϕ(x) ≥ ϕ(Ri) = qi. So
ϕ1(x) ≥ ϕi(x). Hence, by Lemma 11, F−1(x) ≤ F−i(x),
which by (8) and (66) implies E{ui(x, ψ−i)} ≤ (p̃− c)r.

Finally, note that a price below p̃ fetches a payoff of less
than (p̃− c)r for primary i. So each price in [p̃, Ri) is a best
response for primary i; also, by (7), it randomizes over prices
only in this range under ϕi(.). So ϕi(.) is a best response.
Thus, the functions ϕi(.), i = 1, . . . , n constitute a NE.

C. Proof of Theorem 3
We first outline the proof in Section C1 and then provide

the details in Section C2.
1) Proof Outline: We first state a property of mean valid

graphs for later use.
Lemma 16: Let G = (V,E) be a graph that satisfies

Condition 1 in Definition 3. Suppose I ∈ I contains mj(I)
nodes from Ij , j = 1, . . . , d. G is mean valid if and only if:

d∑
j=1

mj(I)

Mj
≤ 1 ∀I ∈ I (67)

Proof: Suppose G is mean valid. Fix an I ∈ I . Let

1I(aj,l) =

{
1, if aj,l ∈ I
0, else

Consider a distribution {αj,l : j = 1, . . . , d; l = 1, . . . ,Mj}
in which bandwidth is offered at node aj,l ∈ Ij w.p. αj,l =
1I(aj,l). This is a valid distribution because it corresponds to
the distribution {β(I) = 1, β(I ′) = 0∀I ′ ∈ I , I ′ ̸= I}. Also,

Mj∑
l=1

αj,l =

Mj∑
l=1

1I(aj,l) = mj(I), j = 1, . . . , d (68)

Let αj be given by (21). Since the graph is mean valid, (21)
holds. Substituting

∑Mj

l=1 αj,l = mj(I) from (68) into (21),
we get (67).

To prove the converse, suppose (67) holds. Let {αj,l : j =
1, . . . , d; l = 1, . . . ,Mj} be a valid distribution. By definition,
there exists a distribution {β(I) : I ∈ I } such that:

αj,l =
∑

I∈I :aj,l∈I

β(I) (69)

which can be written as:

αj,l =
∑
I∈I

β(I)1I(aj,l) (70)

Now,
d∑

j=1

(∑Mj

l=1 αj,l

Mj

)

=
d∑

j=1

1

Mj


Mj∑
l=1

∑
I∈I

β(I)1I(aj,l)

 (by (70))

=
∑
I∈I

β(I)


d∑

j=1

∑Mj

l=1 1I(aj,l)

Mj


=

∑
I∈I

β(I)


d∑

j=1

mj(I)

Mj

 (since
Mj∑
l=1

1I(aj,l) = mj(I))

≤ 1 (by (67))

So (21) holds and hence G is mean valid.
We now outline the proof of Theorem 3. The proof of part 1

of Theorem 3 is straightforward: let {v1, . . . , ve} be the nodes
of the clique. Ij = {vj}, j = 1, . . . , e are disjoint maximal I.S.
whose union is V . Also, these are the only I.S. in the graph;
so (67) holds and the clique is mean valid by Lemma 16.

Next, we state some lemmas, which we prove in Section C2,
and use to prove the other parts of Theorem 3.

Lemma 17: Let G = (V,E) be a mean valid graph, where
V = I1 ∪ . . . ∪ Id and I1, . . . , Id are disjoint maximal I.S.
Let E′ ⊇ E be any set such that no edge in E′ is between
two nodes in the same I.S. Ij , j ∈ {1, . . . , d}. Then the graph
G′ = (V,E′) is mean valid.

Thus, if a graph G is mean valid, then the graph G′ obtained
by adding edges in any fashion to G, while ensuring that Ij ,
j = 1, . . . , d continue to be I.S. in G′, is a mean valid graph
as well.

Lemma 18: Suppose for each i = 1, . . . , N , Gi = (V i, Ei)
is a mean valid graph, where V i = Ii1 ∪ . . . ∪ Iid, Ii1, . . . , I

i
d

are disjoint maximal I.S., and |Iij | = M i
j , j = 1, . . . , d. Let

Mi = (M i
1, . . . ,M

i
d). If

Mi = ciM
0, i = 1, . . . , N (71)

for some vector M0 = (M0
1 , . . . ,M

0
d ) and positive scalars

c1, . . . , cN , then G = (∪N
i=1V

i,∪N
i=1E

i) is mean valid.
Lemma 18 says that if Gi, i = 1, . . . , N are mean valid

graphs, then their union G is a mean valid graph as well pro-
vided each of Gi, i = 1, . . . , N contains (i) the same number,
d, of disjoint maximal I.S., and (ii) the same proportion of
nodes in the d I.S. Ii1, . . . , I

i
d. Since the union graph G is

a disconnected graph with N components, Lemma 18 is not
useful by itself to prove that a graph is mean valid. But it can
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be effectively used in conjunction with Lemma 17 to combine
a set of N mean valid graphs into a new connected mean
valid graph by (i) first considering their union, which is a
disconnected graph, (ii) and then adding some edges to it to
make it connected.

A useful special case is when each of these N graphs Gi is a
clique of size d (which is mean valid by Part 1 of Theorem 3)
with vertex set V i = {vi1, . . . , vid}. Note that these graphs
satisfy the hypothesis of Lemma 18 with Iij = {vij}, M i

j = 1,
∀i, j, M0 = (1, . . . , 1) and ci = 1 ∀i. This special case can
be used to prove the mean validity of several of the graphs
mentioned in Theorem 3, as we explain below.

For an integer m ≥ 1, let me (respectively, mo) denote the
greatest even (respectively, odd) integer less than or equal to
m.

We now prove part 2 of Theorem 3. Consider a linear
graph Gm with node set {v1, v2, . . . , vm} as shown in part
(a) of Fig. 2. First, let m be even– say m = 2N . For
i = 1, . . . , N , let Gi be the clique of size 2 with the node set
V i = {v2i−1, v2i} and the edge between the two nodes. In the
notation of Lemma 18, let Ii1 = {v2i−1} and Ii2 = {v2i}. By
Lemma 18, G = G1∪G2∪. . .∪GN is a mean valid graph with
d = 2 and the disjoint maximal I.S. I1 = {v1, v3, v5, . . . vmo}
and I2 = {v2, v4, v6, . . . , vme}. We can obtain Gm by adding
the edges (v2, v3), (v4, v5), . . . , (v2N−2, v2N−1) to G as
illustrated in part (a) of Fig. 11. Note that no edge is between
two nodes in the same I.S. Ij , j ∈ {1, 2}; so the hypothesis of
Lemma 17 is satisfied. Hence, Gm is mean valid by Lemma 17.
The proof of the fact that Gm is also mean valid for m odd is
deferred until Section C2.

Now, we prove part 3 of Theorem 3. Consider Gm,m, where
m may be odd or even. Let vij be the node in the i’th row
and j’th column i, j ∈ {1, . . . ,m}(see part (b) of Fig. 2). We
start with a line graph Gm2 , which is mean valid by part 2 of
Theorem 3, and add some edges to obtain Gm,m as shown in
Fig. 12. Specifically, let Gm2 be the line graph with the set
of nodes {v1,1, v1,2, . . . , v1,m, v2,m, v2,m−1, . . . , v2,1, v3,1,
v3,2, . . . , v3,m, v4,m, v4,m−1, . . .} and an edge between each
pair of consecutive nodes in this order. Gm2 is mean valid
with d = 2, and the disjoint maximal I.S. I1 = {v11, v13,
. . . , v1,mo , v22, v24, . . . , v2,me , v31, v33, . . . , v3,mo , . . .} and
I2 = {v12, v14, . . . , v1,me , v21, v23, . . . , v2,mo , v32, v34, . . . ,
v3,me , . . . }. Gm,m can be obtained from Gm2 by adding the
remaining edges shown dotted in Fig. 12. Note that no edge
is between the same I.S. Ij , j = 1, 2. So Gm,m is mean valid
by Lemma 17.

Next, we prove part 4 of Theorem 3. Consider Hm,m (see
part (a) of Fig. 3). As in Gm,m, let vij be the node in the
i’th row and j’th column. Let d = 4, I1 = {v11, v13, v15,
. . . , v1,mo , v31, v33, v35, . . . , v3,mo , . . . }, I2 = {v12, v14, v16,
. . . , v1,me , v32, v34, v36, . . . , v3,me , . . . }, I3 = {v21, v23, v25,
. . . , v2,mo , v41, v43, v45, . . . , v4,mo , . . . } and I4 = {v22, v24,
v26, . . . , v2,me , v42, v44, v46, . . . , v4,me , . . . } (see part (b) of
Fig. 11). Note that I1, I2, I3 and I4 are disjoint maximal I.S.
For i, j ∈ {1, . . . ,m− 1}, let Ci,j be the clique consisting of
the nodes {vi,j , vi,j+1, vi+1,j , vi+1,j+1} and the edges among
them (see Fig. 13). First, let m be even. The proof that Hm,m

is mean valid is similar to the above proof of mean validity
of Gm with m even: we can obtain Hm,m by considering the

union of the cliques Ci,j , i, j ∈ {1, 3, 5, . . . ,m−1}, which is a
mean valid graph by Lemma 18, and then adding the remaining
edges as illustrated in part (b) of Fig. 11. Note that no edge is
between two nodes in the same I.S. Ij , j ∈ {1, 2, 3, 4}; so the
hypothesis of Lemma 17 is satisfied. Hence, Hm,m is mean
valid by Lemma 17. The proof of the fact that Hm,m is also
mean valid for m odd is deferred until Section C2.

The proof of part 5 of Theorem 3 is similar to that of
part 4: we outline the differences. For i, j, l ∈ {1, . . . ,m},
let vijl be the node in the i’th row, j’th column and l’th
level (in the direction normal to the plane of the paper). The
node set of Tm,m,m can be partitioned into 8 disjoint maximal
I.S. I1, . . . , I8 similar to I1, . . . , I4 for Hm,m (see Fig. 4).
Also, cliques Cijl, i, j, l ∈ {1, . . . ,m − 1} of size 8 each
can be defined similar to the cliques Cij for Hm,m. For m
even, we can obtain Tm,m,m by considering the union of the
cliques Cijl, i, j, l ∈ {1, 3, 5, . . . ,m− 1} and then adding the
remaining edges. The fact that Tm,m,m is mean valid then
follows from Lemmas 18 and 17. The proof of the fact that
Tm,m,m is also mean valid for m odd is outlined in Section C2.

Fig. 11. Part (a) (respectively, part (b)) shows the construction of G6
(respectively, H4,4) from 3 (respectively, 4) cliques of size 2 (respectively,
4) each. The solid edges constitute the cliques G1, G2, G3 (respectively,
C1,1, C1,3, C3,1 and C3,3) and the dotted edges are those that are added
later. The numbers next to the nodes shows the I.S. they are in, i.e., a node
labeled j is in I.S. Ij , where j ∈ {1, 2} (respectively, j ∈ {1, 2, 3, 4}). Note
that no edge is between two nodes in the same I.S. Ij ; so the hypothesis of
Lemma 17 is satisfied.

Fig. 12. The figure shows the construction of the grid graph Gm,m from the
line graph Gm2 for m = 4. The solid edges constitute Gm2 and the dotted
edges are later added to obtain Gm,m. The un-darkened and darkened nodes
constitute I1 and I2 respectively in both Gm2 and Gm,m. Note that no edge
is between a node in I1 and a node in I2, so the hypothesis of Lemma 17 is
satisfied.
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We now prove part 6 of Theorem 3. Consider a cellular
network as shown in Fig. 5, whose conflict graph is shown in
Fig. 6. The nodes in the graph can be partitioned into three
disjoint maximal I.S. I1, I2 and I3 as shown in Fig. 6. We
consider this conflict graph with the following assumption,
which eliminates problems arising due to boundary effects.

Assumption 1: There are an even number of rows of nodes,
each containing 3δ nodes, for some integer δ ≥ 1.
Under this assumption, as illustrated in Fig. 6, the graph can
be obtained by considering the union of rη disjoint cliques
of size 3 each, which is a mean valid graph by Lemma 18,
and then adding some edges. Note that no edge is between
two nodes in the same I.S. Ij , j ∈ {1, 2, 3} (see Fig. 6); so
the hypothesis of Lemma 17 is satisfied. Hence, the graph is
mean valid by Lemma 17.

Note that the above proof goes through if the graph can be
partitioned into cliques of size 3 even if Assumption 1 is not
satisfied. If the graph cannot be partitioned into cliques of size
3, then the analysis is more complicated because of boundary
effects. We omit this analysis for brevity.

2) Details of Proofs: We now provide the details of the
proofs in Section C1.

Proof of Lemma 17: Since no edge in E′ is between two
nodes in the same I.S. Ij , it follows that in G′, I1, . . . , Id are
disjoint maximal I.S. whose union is V . Using the notation
in Definition 3, let {αj,l : j = 1, . . . , d; l = 1, . . . ,Mj} be a
valid distribution in G′. We will show that (21) holds. Then
it will follow from Definition 3 that G′ is mean valid.

Let IG′ (respectively, IG) be the set of I.S. in G′ (respec-
tively, G). Since E ⊂ E′, each I.S. in G′ is an I.S. in G as
well, i.e. IG′ ⊂ IG.

Now, since the distribution {αj,l} is valid in G′, by def-
inition, there exists a distribution {β′(I) : I ∈ IG′} such
that

αv =
∑

I∈IG′ :v∈I

β′(I) ∀v ∈ V. (72)

Define a distribution on IG as follows:

β(I) =

{
β′(I) if I ∈ IG′

0 if I ∈ IG \ IG′
(73)

By (72) and (73):

αv =
∑

I∈IG:v∈I

β(I) ∀v ∈ V. (74)

So by definition, {αi,j} is a valid distribution in G as well.
Since G is mean valid, (21) holds, which completes the proof.

Proof of Lemma 18: First, note that {(I1j ∪. . .∪INj ) : j =
1, . . . , d} are disjoint maximal I.S. in G; so the first condition
in Definition 3 is satisfied.

Let {αi
j,l : j = 1, . . . , d; l = 1, . . . ,M i

j} be a valid
distribution in Gi. Since Gi is mean valid:

d∑
j=1

∑Mi
j

l=1 α
i
j,l

M i
j

 ≤ 1, i = 1, . . . , N (75)

Now, it is given that:

M i
j = ciM

0
j , i = 1, . . . , N ; j = 1, . . . , d (76)

Adding (76) over i = 1, . . . , N :

M0
j (c1 + . . .+ cN ) =M1

j + . . .+MN
j , j = 1, . . . , d (77)

Multiplying (75) by ci, using (76) and adding over i =
1, . . . , N , we get:

N∑
i=1

d∑
j=1

∑Mi
j

l=1 α
i
j,l

M0
j

 ≤ c1 + . . .+ cN

Dividing both sides by c1 + . . .+ cN and using (77):

d∑
j=1

 ∑N
i=1

∑Mi
j

l=1 α
i
j,l

M1
j + . . .+MN

j

 ≤ 1

So G satisfies the second condition in Definition 3 as well and
hence is mean valid.

Proof of part 2 of Theorem 3: First, we state a property
of bipartite graphs. Consider a connected bipartite graph [6]
of the form G = (V,E) where V = A ∪ B and every edge
is between a node in A and a node in B. Without loss of
generality, suppose |A| ≤ |B|. In the notation of Definition 3,
d = 2, I1 = B and I2 = A. Also, a necessary condition
for a node distribution {αi, i ∈ A; γj , j ∈ B}, under which
bandwidth is offered at node i ∈ A (respectively, j ∈ B) w.p.
αi (respectively, γj), to be valid is that

αi + γj ≤ 1 ∀(i, j) ∈ E. (78)

This is because, if αi+γj > 1 for some (i, j) ∈ E, then with a
positive probability bandwidth would be offered at both nodes
i and j, which are neighbors.

Now, in Section C1, we showed that Gm is mean valid for
even m. Now, let m be odd, say m = 2N−1 for some integer
N ≥ 2. Consider a valid distribution {αi : i = 1, . . . , 2N−1},
where αi is the probability with which bandwidth is offered
at node vi. With I1 and I2 as defined in Section C1, note that
|I1| = N and |I2| = N − 1. Let

α1 =
α1 + α3 + . . .+ α2N−1

N

and

α2 =
α2 + α4 + . . .+ α2N−2

N − 1

To show that Condition 2 in Definition 3 is satisfied, we need
to show that α1 + α2 ≤ 1, i.e.

(N − 1)(α1 + α3 + . . .+ α2N−1)

+ N(α2 + α4 + . . .+ α2N−2) ≤ N(N − 1) (79)

Since G2N−1 is a bipartite graph and the distribution {αi} is
valid, the necessary condition in (78) holds and in this case
becomes:

αi + αi+1 ≤ 1, i = 1, 2, . . . , 2N − 2 (80)
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Now,

LHS of (79)
= {(N − 1)(α1 + α2) + (α2 + α3)}

+{(N − 2)(α3 + α4) + 2(α4 + α5)}
+{(N − 3)(α5 + α6) + 3(α6 + α7)}
+ . . .

+{2(α2N−5 + α2N−4) + (N − 2)(α2N−4 + α2N−3)}
+{(α2N−3 + α2N−2) + (N − 1)(α2N−2 + α2N−1)}

≤ {(N − 1) + 1}+ {(N − 2) + 2}+ . . .

+{2 + (N − 2)}+ {1 + (N − 1)} (by (80))
= N(N − 1)

which proves (79) and the result follows.
Proof of part 4 of Theorem 3: In Section C1, we showed

that Hm,m is mean valid for even m. Now, let m be odd.
With I1, I2, I3 and I4 as defined in Section C1, it is easy to
check that |I1| =

(
m+1
2

)2
, |I2| = m2−1

4 , |I3| = m2−1
4 and

|I4| =
(
m−1
2

)2.
Consider a valid distribution {αz : z ∈ V }, where αz is the

probability with which bandwidth is offered at node z. We
now show that the graph is mean valid by showing that (21)
holds, which in this case becomes:

(m− 1)2(
∑
z∈I1

αz) + (m2 − 1)(
∑
z∈I2

αz) + (m2 − 1)(
∑
z∈I3

αz)

+(m+ 1)2(
∑
z∈I4

αz) ≤
(m2 − 1)2

4
. (81)

Consider cliques Ci,j , i, j ∈ {0, . . . ,m}. For i, j ∈
{1, . . . ,m − 1}, Ci,j is as defined in Section C1. For i or
j (or both) equal to 0 or m, let Ci,j be “dummy cliques”,
defined for convenience (see Fig. 13). For i, j ∈ {0, . . . ,m}:∑

z∈Cij

αz ≤ 1, (82)

because, if not, then bandwidth would be offered simultane-
ously at two or more of the nodes in Cij (which are neighbors)
with a positive probability. For i ∈ {0, . . . ,m}, let:

ei =

{
m− i, i odd
i, i even (83)

For i, j ∈ {0, . . . ,m}, let

fij = eiej . (84)

Note that by definition of the cliques {Ci,j}, node vij
belongs to each of the cliques Ci−1,j−1, Ci−1,j , Ci,j−1 and
Ci,j as shown in Fig. 14. So multiplying (82) by fij and
adding over i, j ∈ {0, 1, . . . ,m} gives:∑

z∈V

gzαz ≤ g0 (85)

where,

gvij = fi−1,j−1 + fi−1,j + fi,j−1 + fij (86)

and

g0 =
m∑
i=0

m∑
j=0

fi,j =
m∑
i=0

m∑
j=0

eiej =

(
m∑
i=0

ei

)2

=

 m∑
i=0,i odd

(m− i) +
m∑

i=0,i even

i

2

=
(m2 − 1)2

4
(87)

We will show below that

gz =

 (m− 1)2, z ∈ I1
(m2 − 1), z ∈ I2 or z ∈ I3
(m+ 1)2, z ∈ I4

(88)

Note that (81) follows from (85), (87) and (88), which shows
that Hm,m is mean valid.

Now we show (88). By definition of the I.S. I1, I2, I3 and
I4 (see Section C1), for vij ∈ I1, i and j are odd, for vij ∈ I2,
i is odd and j is even, for vij ∈ I3, i is even and j is odd and
for vij ∈ I4, i and j are even. So for vij ∈ I1, by (83), (84)
and (86):

gvij = (i− 1)(j − 1) + (i− 1)(m− j) + (m− i)(j − 1)

+(m− i)(m− j)

= (m− 1)2

Similarly, for vij ∈ I2:

gvij = (i− 1)(m− j + 1) + (i− 1)j + (m− i)(m− j + 1)

+(m− i)j

= m2 − 1

For vij ∈ I3, gvij = m2 − 1 by symmetry with the case
vij ∈ I2. For vij ∈ I4:

gvij = (m− i+ 1)(m− j + 1) + (m− i+ 1)j

+i(m− j + 1) + ij

= (m+ 1)2

Thus, we have shown (88), which completes the proof.

Fig. 13. The figure shows the cliques in H5,5. The cliques with dotted
outlines are the dummy cliques.

Proof of part 5 of Theorem 3: In Section C1, we
considered the case m even. The proof of the fact that Tm,m,m

is mean valid for m odd is similar to that for Hm,m with m
odd; we outline the differences. We define the cliques Cijl,
i, j, l ∈ {0, 1, . . . ,m}, similar to Cij for the case Hm,m.
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Fig. 14. The node vij and the cliques Ci−1,j−1, Ci−1,j , Ci,j−1 and Ci,j .

Consider a valid distribution {αz : z ∈ V }. Then similar
to (82), we get: ∑

z∈Cijl

αz ≤ 1 (89)

Let ei be as in (83) and fijl = eiejel, i, j, l ∈
{0, . . . ,m}. Multiplying (89) by fijl and adding over i, j, l ∈
{0, 1, . . . ,m}, we get (85) for some numbers {gz : z ∈ V } and
g0. Now, node vijl is at the center of the cliques Ci−1,j−1,l−1,
Ci−1,j−1,l, Ci−1,j,l−1, Ci−1,j,l, Ci,j−1,l−1, Ci,j−1,l, Ci,j,l−1,
and Ci,j,l. Using this fact, gvijl

for vijl in each of I1, . . . , I8
can be computed similar to the derivation of (88). Also, g0
can be calculated similar to (87). Substituting these values of
{gz : z ∈ V } and g0 into (85), we get (21) for Tm,m,m and
thereby the mean validity follows from Definition 3.

D. Proofs of results in Section IV-C

We first provide the intuition and an outline of the proofs
in Section D1 and then provide the details in Section D2.

1) Intuition and Proof Outline: Let the function w1(.) be
as defined in Section IV-C. We will later use the following
property, which is quite intuitive:

Lemma 19: w1(α) is a strictly increasing function of α on
[0, 1].

Proof: Let 0 ≤ α < α′ ≤ 1. It suffices to show that
w1(α) < w1(α

′).
Let Yi, i = 2, . . . , n be independent Bernoulli random vari-

ables and let Yi have mean qiα. Also, let Zi, i = 2, . . . , n be
independent Bernoulli random variables that are independent
of Yi, i = 2, . . . , n and let Zi have mean qiα

′−qiα
1−qiα

.
For i = 2, . . . , n, let:

Xi =

{
1, if Yi = 1 or Zi = 1 (or both)
0, else (90)

P (Xi = 1) = P ({Yi = 1} ∪ (Zi = 1)})
= P (Yi = 1) + P (Zi = 1)

−P ({Yi = 1} ∩ {Zi = 1})
= P (Yi = 1) + P (Zi = 1)− P (Yi = 1)P (Zi = 1)

(since Yi and Zi are independent)

= qiα+
qiα

′ − qiα

1− qiα
− (qiα)

(
qiα

′ − qiα

1− qiα

)
= qiα

′

So Xi is Bernoulli with mean qiα′. Also, since Yi, i = 2, . . . , n
and Zi, i = 2, . . . , n are independent, Xi, i = 2, . . . , n are
independent.

But by (90),

{Yi = 1} ⊂ {Xi = 1}, i = 1, . . . , n (91)

Also,

P{Xi = 1, Yi = 0} = P (Zi = 1, Yi = 0)

= P (Zi = 1)P (Yi = 0)

=

(
qiα

′ − qiα

1− qiα

)
(1− qiα)

= qiα
′ − qiα

> 0 (92)

By (91) and (92):

P (Xi = 1) > P (Yi = 1). (93)

Now, let X =
∑n

i=2Xi and Y =
∑n

i=2 Yi. We interpret
Xi (respectively, Yi) as the indicator of the event that primary
i offers bandwidth at a node v with node probability αv = α′

(respectively, αv = α). So X(respectively, Y ) is the number
of primaries who offer bandwidth at node v when αv = α′

(respectively, αv = α). By definition of the function w1(.):

w1(α
′) = P (X ≥ k) (94)

and
w1(α) = P (Y ≥ k). (95)

By (93), (94), (95) and the facts X =
∑n

i=2Xi and Y =∑n
i=2 Yi, it follows that w1(α) < w1(α

′).
Now, let the function W (.) be as defined in Section IV-C.

By Lemma 2, and similar to (18) in the single location case, in
a NE in class S, if primaries offer bandwidth at a node w.p.
α (and play the single-node NE strategy with q1α, . . . , qnα
in place of q1, . . . , qn respectively at that node), then W (α)
is the maximum expected payoff that each primary i can get
at that node. In an NE with strategy profile (ψ1, . . . , ψn), if
each primary offers bandwidth at node v ∈ V w.p. αv , then
the expected payoff of each primary i is given by:

E{ui(ψi, ψ−i)} =
∑
v∈V

αvW (αv). (96)

Also, note that if primary i offers bandwidth at I.S. I ′ ∈ I ,
its overall expected payoff, denoted by U1(I

′), is the sum of
the expected payoffs at the nodes in I ′, which, by (22) is given
by:

U1(I
′) =

∑
v∈I′

W (αv) =
∑
v∈I′

(1− w1(αv)). (97)

Now, let G be a mean valid graph. Suppose there exists a
NE in class S in which each primary offers bandwidth at node
aj,l w.p. αj,l, j = 1, . . . , d, l = 1, . . . ,Mj , where {αj,l} is
a valid distribution. Let the corresponding strategy profile be
(ψ1, . . . , ψn). In the NE (ψ1, . . . , ψn), by (22), primary 1 20

20The arguments in this section are given from the point of view of primary
1 for concreteness; they also hold for any primary i ∈ {2, . . . , n} since the
I.S. distributions of the primaries are symmetric in an NE in class S.
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gets an expected payoff of W (αj,l) at node aj,l; also, by (96),
its total expected payoff is:

E{u1(ψ1, ψ−1)} =
d∑

j=1

Mj∑
l=1

αj,lW (αj,l) (98)

We now prove that for each j, αj,l = αj ∀l = 1, . . . ,Mj ,
where αj is given by (21). Suppose not. By (22) and
Lemma 19, W (α) is a strictly decreasing function of α; so
primary 1 offers bandwidth with a high probability αj,l at
nodes aj,l at which it gets a low payoff W (αj,l). Suppose
now, primary 1 unilaterally switches to a strategy ψ0, under
which it offers bandwidth at each node in Ij , j ∈ {1, . . . , d}
w.p. αj . Note that

∑d
j=1 αj ≤ 1 by (21); so ψ0 is a

valid distribution since it corresponds to the I.S. distribution
{β(Ij) = αj , j ∈ {1, . . . , d}; β(I∅) = 1−

∑d
j=1 αj , β(I) = 0,

I ̸= I1, . . . , Id, I∅}. We will next show that this unilateral
switch to strategy ψ0 increases primary 1’s expected payoff,
which will in turn contradict the fact that (ψ1, . . . , ψn) is a
NE.

By (96), the total expected payoff of primary 1 if it plays
strategy ψ0 is:

E{u1(ψ0, ψ−1)} =
d∑

j=1

Mj∑
l=1

αjW (αj,l) (99)

By (98) and (99):

E{u1(ψ,ψ−1)} − E{u1(ψ0, ψ−1)}

=
d∑

j=1

Mj∑
l=1

αj,lW (αj,l)− αj

Mj∑
l=1

W (αj,l)

(100)

Now, we have the following algebraic fact, proved in Sec-
tion D2:

Lemma 20: Let N ≥ 2 be an integer, α1, . . . , αN be real
numbers and α =

∑N
i=1 αi

N . Let f(x) be any strictly decreasing
function of x. Then:

(
N∑
i=1

αif(αi)) ≤ α(
N∑
i=1

f(αi)) (101)

with equality iff α1 = . . . = αN = α.
Intuitively, since f(.) is strictly decreasing, in the LHS of

(101), the terms in which f(αi) is large are multiplied by
small factors αi and vice-versa; on the other hand, all terms
f(αi) on the RHS are multiplied by the same factor α. So the
LHS is smaller.

Now, as mentioned above, f(α) = W (α) = 1 − w1(α)
is a strictly decreasing function of α. So by Lemma 20, the
expression in (100) is < 0, since we have assumed that for
at least one value of j, αj,1, . . . , αj,Mj

are not all equal. This
contradicts the fact that (ψ1, . . . , ψn) is a NE. Thus, αj,l =
αj , l = 1, . . . ,Mj .

Now, suppose
∑d

j=1 αj < 1. Then primary 1 can unilat-
erally offer bandwidth at each node in Id with probability
1−
∑d−1

j=1 αj > αd instead of αd and increase its payoff. This
contradicts the fact that the distribution is a NE. So we must
have

∑d
j=1 αj = 1. Thus, we have shown:

Lemma 21: In a mean valid graph, under every NE in class
S, each primary offers bandwidth at each node in Ij w.p.
tj , j ∈ {1, . . . , d}, for some tj ≥ 0, j = 1, . . . , d, where∑d

j=1 tj = 1.
The following result, proved in Section D2, provides nec-

essary conditions for a distribution {tj : j = 1, . . . , d} as in
Lemma 21 to constitute a NE in class S.

Lemma 22: If a distribution {tj : j = 1, . . . , d} as in
Lemma 21 constitutes a NE in class S, then I1, . . . , Id′ are
best responses and Id′+1, . . . , Id are not, for some integer
d′ ∈ {1, . . . , d}. Also, each I ∈ I containing a node from Ij
for some j > d′ is not a best response. Hence (23) holds.

Recall that by (20), I1, . . . , Id are in decreasing order of
size. So Lemma 22 says that primaries do not choose I.S.
smaller than a certain size (out of I1, . . . , Id).

Now, consider a NE in class S with {tj : j = 1, . . . , d} as
in Lemma 21. The expected payoff of primary 1 if it offers
bandwidth at Ij is the sum of the expected payoffs at the nodes
in Ij , which, by (22), is given by:

U1(Ij) =
∑
v∈Ij

W (αv) =
∑
v∈Ij

W (tj) = |Ij |W (tj) =MjW (tj).

(102)
By Lemma 22, I1, . . . , Id′ are best responses and Id′+1 is

not. So U1(I1) = . . . = U1(Id′) > U1(Id′+1). Substituting
(102), and using (23) and the fact that W (0) = 1−w1(0) = r,
we get (24).

Thus, we have shown the following:
Lemma 23: A distribution {tj : j = 1, . . . , d} as in

Lemma 21 that constitutes a NE in class S must satisfy (23)
and (24) for some integer d′ ∈ {1, . . . , d}.

Lemma 23 provides necessary conditions for a distribution
{tj : j = 1, . . . , d} to constitute a NE in class S. The
following lemma shows that these conditions are sufficient as
well.

Lemma 24: Let 1 ≤ d′ ≤ d and t1, . . . , td be a probability
distribution such that (23) and (24) hold. Then the strategy
profile in which every primary offers bandwidth at each node
in Ij w.p. tj , j ∈ {1, . . . , d}, is a NE in class S.

The proof of Lemma 24 (see Section D2) is based on the
fact that the graph, being mean valid, satisfies Condition 2 in
Definition 3.

The following technical lemma, proved in Section D2,
shows the existence and uniqueness of a distribution
(t1, . . . , td) satisfying (23) and (24).

Lemma 25: There exists a unique integer d′ and a unique
probability distribution (t1, . . . , td) such that (23) and (24)
hold. Also, t1 ≥ t2 . . . ≥ td.

Note that the fact that t1 ≥ t2 . . . ≥ td is consistent with
the intuition that primaries offer bandwidth at the larger I.S.
with a larger probability.

Finally, putting together the above discussion, we prove both
Theorem 4 and Lemma 3.

Proof of Theorem 4 and Lemma 3: By Lemma 21, under
every NE in class S, each primary must offer bandwidth at all
the nodes in Ij , j ∈ {1, . . . , d}, w.p. tj for some probability
distribution (t1, . . . , td). Also, by Lemma 23, (23) and (24)
hold for this distribution. By Lemma 25, there exists a unique
distribution (t1, . . . , td) satisfying (23) and (24). Finally, by
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Lemma 24, the strategy profile where each primary uses this
distribution is a NE in class S. The result follows.

Thus, every mean valid graph has a unique NE in class S,
which can be explicitly computed by solving the system of
equations (23) and (24).

2) Details of Proofs: Let W (α) be as in (22). We will use
the following result throughout.

Lemma 26: (i) For 0 ≤ α ≤ 1, 0 ≤W (α) ≤ r, (ii) W (0) =
r, and (iii) W (α) is strictly decreasing in α.
Lemma 26 follows from (22), the fact that w1(0) = 1− r and
Lemma 19.

The following lemma is used in the proof of Lemma 20.
Lemma 27: Let N ≥ 2 be an integer and

α1, . . . , αN , f1, . . . , fN be real numbers. Then:

N(
N∑
i=1

αifi)− (
N∑
i=1

αi)(
N∑
i=1

fi) =
∑

1≤i<j≤N

(αj −αi)(fj − fi)

(103)
Proof: We prove the result by induction. For N = 2:

LHS = 2(α1f1 + α2f2)− (α1 + α2)(f1 + f2)

= (α2 − α1)(f2 − f1)

= RHS

Suppose the result is true for N . For N + 1:

LHS = (N + 1)(
N∑
i=1

αifi + αN+1fN+1)−

(

N∑
i=1

αi + αN+1)(

N∑
i=1

fi + fN+1)

=

{
N(

N∑
i=1

αifi)− (
N∑
i=1

αi)(
N∑
i=1

fi)

}

+NαN+1fN+1 +

N∑
i=1

αifi + αN+1fN+1

−αN+1(
N∑
i=1

fi)− (
N∑
i=1

αi)fN+1 − αN+1fN+1

=
∑

1≤i<j≤N

(αj − αi)(fj − fi)

+

N∑
i=1

(αN+1fN+1 + αifi − αN+1fi − αifN+1)

(by induction hypothesis and collecting terms)
= RHS

The result follows by induction.
Proof of Lemma 20: By symmetry, we can assume

WLOG that α1 ≤ α2 . . . ≤ αN . Since f(.) is strictly

decreasing, f(α1) ≥ f(α2) ≥ . . . ≥ f(αN ). Now:

(
N∑
i=1

αif(αi))− α(
N∑
i=1

f(αi))

=
1

N

(
N(

N∑
i=1

αif(αi))− (
N∑
i=1

αi)(
N∑
i=1

f(αi))

)
=

1

N

∑
1≤i<j≤N

(αj − αi)(f(αj)− f(αi)) (by (103))(104)

For i < j, αi ≤ αj and f(αi) ≥ f(αj). So each term in (104)
is ≤ 0. Hence, the expression in (104) is 0 iff each term is 0,
which happens iff α1 = . . . = αN = α.

Proof of Lemma 22: Let

U∗ = max{U1(Ij) : j ∈ {1, . . . , d}}
= max{MjW (tj) : j ∈ {1, . . . , d}} (by (102))

and B = {j ∈ {1, . . . , d} : MjW (tj) = U∗}. Note that B is
the set of indices of the I.S. out of I1, . . . , Id that yield the
highest payoff and U∗ is the value of that payoff.

By definition of B:

W (tj) =
U∗

Mj
, ∀j ∈ B (105)

W (tj) <
U∗

Mj
, ∀j /∈ B. (106)

Let I be any I.S. containing mj(I) nodes from Ij , j =
1, . . . , d. By (97):

U1(I) =

d∑
j=1

mj(I)W (tj)

≤
d∑

j=1

mj(I)

(
U∗

Mj

)
(by (105) and (106))(107)

≤ U∗ (by (67))

So maxI∈I U1(I) ≤ U∗, and since U1(Ij) = U∗, j ∈ B, each
Ij , j ∈ B, is a best response. Now, for I as defined above,
suppose mj(I) ≥ 1 for some j /∈ B. Then the inequality in
(107) is strict. So U1(I) < U∗ and I is not a best response.
Thus, each I ∈ I containing a node from Ij for some j /∈ B
is not a best response. In particular, ∀j /∈ B, Ij is not a best
response and, since primaries offer bandwidth at Ij w.p. tj in
the above NE, tj = 0 for all j /∈ B.

It now suffices to show that B = {1, . . . , d′} for some
1 ≤ d′ ≤ d. Suppose not. Then there exist j, l ∈ {1, . . . , d}
such that j < l, j /∈ B and l ∈ B. Since j /∈ B, tj = 0 by the
previous paragraph. Now, by (97):

U1(Ij) = MjW (tj)

= Mjr (by part (ii) of Lemma 26)
≥ Mlr (by (20), since j < l)

≥ MlW (tl) (by part (i) of Lemma 26)
= U∗

So Ij is a best response, which is a contradiction since j /∈ B.
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Proof of Lemma 24: Suppose primaries 2, . . . , n use the
strategy ψ, under which bandwidth is offered at the nodes in
Ij w.p. tj , j = 1, . . . , d. By (23) and part (ii) of Lemma 26,
W (tj) = r, j > d′. So by (97), the payoff of primary 1 if it
plays I.S. Ij , j ∈ {1, . . . , d′} (resp., j ∈ {d′ + 1, . . . , d}) is
U1(Ij) = MjW (tj) (resp., U1(Ij) = Mjr). Hence, by (24)
and (20), for some U∗,

U∗ = U1(I1) = . . . = U1(Id′) > U1(Id′+1) ≥ . . . ≥ U1(Id).

The maximum payoff that primary 1 can get at a node v ∈ Ij ,
j ∈ {1, . . . , d′} equals

W (tj) =
U1(Ij)

Mj
=
U∗

Mj
. (108)

Now, for j > d′, Mjr = U1(Ij) < U∗. So the maximum
payoff that primary 1 can get at a node v ∈ Ij , j > d′ is

r <
U∗

Mj
. (109)

Now, let I be an I.S. containing mj(I) nodes from Ij , j =
1, . . . , d. By (108) and (109):

U1(I) ≤ U∗

 d∑
j=1

mj(I)

Mj

 (110)

≤ U∗ (by (67))

Since U1(I1) = . . . = U1(Id′) = U∗, I1, . . . , Id′ are
best responses. Under the strategy ψ, primary 1 can only
play I1, . . . , Id′ with positive probability; hence, ψ is a best
response.

Proof of Lemma 25: Existence: For convenience, let
Md+1 = 0. For x ∈ [M1W (1),M1r] and j ∈ {1, . . . , d}, if
Mjr ≥ x, then we show that the equation:

MjW (tj) = x (111)

has a unique solution tj(x) ∈ [0, 1]. Let h(tj) = MjW (tj).
By part (ii) of Lemma 26, h(0) =Mjr ≥ x. Also,

h(1) = MjW (1)

≤ M1W (1) (by (20))
≤ x

Also, since w1(.) is a continuous function and by (22), h(tj)
is a continuous function of tj . So by the intermediate value
theorem [4], h(tj) = x has a solution in [0, 1]. By part (iii) of
Lemma 26, h(tj) is a strictly decreasing function of tj ; so this
solution, say tj(x), is unique. For x = Mjr, tj = 0 satisfies
(111) by part (ii) of Lemma 26. So tj(Mjr) = 0.

Since h(tj) is strictly decreasing on 0 ≤ tj ≤ 1, it is
invertible. Also, since the inverse of a continuous function is
continuous (see Theorem 4.17 in [4]), h−1(x) is continuous.
But x = h(tj(x)). So tj(x) = h−1(x). Thus, tj(x) is
continuous in x for x ≤Mjr. For x > Mjr, define tj(x) = 0.
As shown above, tj(Mjr) = 0. So tj(x) is continuous on
[M1W (1),M1r]. Let,

T (x) =

d∑
j=1

tj(x) (112)

As shown above, h(tj) is strictly decreasing on 0 ≤ tj ≤ 1
for j = 1, . . . , d. So tj(x) = h−1(x) is strictly decreasing for
x ≤Mjr. Also, by definition, tj(x) = 0 on Mjr < x ≤M1r.
So by (112), T (x) is strictly decreasing on [M1W (1),M1r]
(note that t1(x) is strictly decreasing on x ≤ M1r). Also,
tj(M1r) = 0, j = 1, . . . , d. So

T (M1r) = 0. (113)

Now, for j = 1 and x = M1W (1), t1 = 1 satisfies (111). So
t1(M1W (1)) = 1 and hence, by (112):

T (M1W (1)) ≥ 1. (114)

Now, since each tj(x), j = 1, . . . , d, is continuous on
[M1W (1),M1r], so is T (x) by (112). Hence, by (113), (114)
and the intermediate value theorem, the equation T (x) = 1
has a solution x∗ ∈ [M1W (1),M1r], which is unique because
T (x) is strictly decreasing. Let d′ = max{j :Mjr ≥ x∗}. By
definition of tj(x), for j = 1, . . . , d′, MjW (tj(x

∗)) = x∗

and for j > d′, Mjr < x∗ and hence tj(x
∗) = 0. Thus,

(t1(x
∗), . . . , td(x

∗)) satisfy (23) and (24). Also, by (112),∑d
j=1 tj(x

∗) = T (x∗) = 1; so (t1(x
∗), . . . , td(x

∗)) is a
probability distribution. The result follows.

Uniqueness: We now show the uniqueness of d′ and the
distribution (t1, . . . , td) satisfying (23) and (24). Assume, to
reach a contradiction, that there exist e, f ∈ {1, . . . , d} and
probability distributions t = (t1, . . . , td) and s = (s1, . . . , sd)
such that tj = 0 (respectively, sj = 0) for j > e (respectively,
j > f ) and for some y and z:

y =M1W (t1) = . . . =MeW (te) > Me+1r (115)

z =M1W (s1) = . . . =MfW (sf ) > Mf+1r (116)

First, suppose e = f . If y = z, then by (115) and
(116), MjW (tj) = MjW (sj), j = 1, . . . , e. By part (iii)
of Lemma 26, W (.) is a one-to-one function; so tj = sj ,
j = 1, . . . , e. Also, tj = sj = 0, j > e. So t = s.

Now, suppose z > y. Then MjW (sj) > MjW (tj), j =
1, . . . , e. So W (sj) > W (tj), and by part (iii) of Lemma 26,
sj < tj , j = 1, . . . , e. So 1 =

∑e
j=1 sj <

∑e
j=1 tj = 1, which

is a contradiction. Thus, z > y is not possible. By symmetry,
z < y is also not possible.

Now, suppose e < f . Then by (115) and (116), z =
Me+1W (se+1) ≤Me+1r < y. So for j ∈ {1, . . . , e}:

MjW (sj) = z < y =MjW (tj)

which implies sj > tj . So
∑e

j=1 sj >
∑e

j=1 tj = 1, which is
a contradiction. So e < f is not possible. By symmetry, e > f
is also not possible. The result follows.

Finally, we show that t1 ≥ t2 . . . ≥ td. For 1 ≤ i < j ≤ d′,
MiW (ti) = MjW (tj) by (24). But Mi ≥ Mj by (20); so
W (ti) ≤W (tj) and hence, by part (iii) of Lemma 26, ti ≥ tj .
For l > d′, tl = 0 by (23). The result follows.

E. Proof of Lemma 4
In Lemmas 28, 29 and 30 below, we state and prove a

generalization of Lemma 4 in which we relax the assumption
that M1, . . . ,Md are distinct.

Lemma 28: Let z = |{i : Mi = M1}|. If there exists an
ϵ > 0 such that for all large n, q < zkn/(n − 1) − ϵ, then
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η → 1, p̃j → ν, j = 1, . . . , z as n → ∞. Also, for all large
n, d′ = z, t1 = . . . = tz = 1/z, tz+1 = tz+2 = . . . td = 0.

Proof: Note that for all large enough n, for each i,∑n
j=1 qj−qi

z < (n − 1)q/z + (n − 1)ϵ/2z. Thus, if each
primary selects an I.S. w.p. 1/z, for a given primary with
available bandwidth, the expected number of primaries among
the rest minus the expected number of secondaries is less
than −(n − 1)ϵ/2z. Clearly, then, for each i, wi(1/z) → 0
as n → ∞ (convergence is exponentially fast by Hoeffd-
ing’s inequality [27]). Thus, W (1/z) → 1 as n → ∞.
Thus, for all large enough n, M1W (1/z) = M2W (1/z) =
. . .MzW (1/z) > Mz+1r. Thus, (1/z, . . . , 1/z, 0, . . . , 0) sat-
isfies the requisite equations for the symmetric NE I.S. se-
lection p.m.f. The last part follows. For j = 1, . . . , z, clearly
(ν − c)(1 − w1(1/z)) ≤ p̃j − c ≤ ν − c. Thus, p̃j → ν
as n → ∞. Thus, the expected utility of any primary with
available bandwidth converges to M1, the maximum possible
value, and the error decays exponentially with increase in n.
Thus, η → 1.

Lemma 29: Consider l < d. Let lmin = min{i ≤ l :Mi =
Ml} and lmax = max{i ≥ l : Mi = Ml}. If there exists
an ϵ > 0 such that for all large n, lkn/(n − 1) + ϵ < qn <
(l + 1)kn/(n − 1) − ϵ, then for all large n, d′n ≥ max(l +
1, lmax). Also, tmnqn → kn/(n− 1) for m = 1, . . . , lmin− 1

and tmnqn → min

(
qn−

(lmin−1)kn
n−1

lmax−lmin+1 , kn/(n− 1)

)
for m =

lmin, . . . , lmax.
Proof: First let d′n ≤ l. Then t1n ≥ 1/d′n ≥ 1/l.

Thus, t1nqn ≥ kn/(n − 1) + ϵ/l. Thus, W (t1n) → 0 and
M1W (t1n) → 0 as n → ∞. Thus, M1W (t1n) < Ml+1

for all large enough n (contradiction). Thus, d′n ≥ l + 1.
However, the fact that d′n ≥ l implies that d′n ≥ lmax. To
prove this, suppose not. Then MlW (tl) > Mlmaxr = Mlr.
So W (tl) > r, which contradicts Lemma 26. So d′n ≥ lmax

and hence d′n ≥ max(lmax, l + 1). Thus, the first part of the
lemma holds.

Now, consider a m ≤ lmax. Let there exist a δ > 0 such
that tmnqn > kn/(n − 1) + δ for a certain subsequence
{qn, kn}. Then W (tmn) → 0 for that subsequence. Thus,
MmW (tmn) → 0 for that subsequence. Let d′n = d in a
subsequence of the above subsequence. In this subsequence
td′

n
≤ 1/d, and thus td′

n
qn < kn/(n − 1) − ϵ, W (td′

n
) → 1

and Md′
n
W (td′

n
) > 0. Thus, MmW (tmn) ̸=Md′W (td′n) for

all large enough n (contradiction). Thus, d′n < d throughout
the above subsequence. But then MmW (tmn) < Md′

n+1 for
all large enough n (contradiction). Thus, no such subsequence
exists. Thus, lim sup tmn ≤ kn/(n− 1).

Now, for m ∈ {1, . . . , lmin − 1}, let there exist a δ > 0
such that tmnqn < kn/(n− 1)− δ for a certain subsequence
{qn, kn}. Then W (tmn) → 1 for that subsequence. Thus, in
that subsequence, MmW (tmn) > Mm+1 for all large enough
n. Then for all large enough n, d′n = m ≤ l (contradiction).
Thus, lim inf tmnqn ≥ kn/(n− 1). Hence,

tmnqn → kn/(n− 1), m = 1, . . . , lmin − 1. (117)

Now, let m ∈ {lmin, . . . , lmax}. Since Mlmin
= . . . =

Mlmax and MlminW (tlmin) = . . . = MlmaxW (tlmax), it
follows that tlmin = . . . = tlmax = tl. Suppose for a

subsequence, tlqn >
qn−

(lmin−1)kn
n−1

lmax−lmin+1 + δ. This implies

(lmax − lmin + 1)tl +

(
1

qn

(lmin − 1)kn
n− 1

)
>

δ

qn
+ 1

Taking limits as n → ∞ on both sides and using (117) and
the fact that tlmin = . . . = tlmax = tl, we get:

lmax∑
m=lmin

tm +

lmin−1∑
m=1

tm > 1 +
δ

q

which contradicts the fact that (t1, . . . , td) is a probability
distribution. Hence,

lim sup tlqn ≤
qn − (lmin−1)kn

n−1

lmax − lmin + 1
.

Now, we consider two cases.
Case (i):

lim
n→∞

qn − (lmin−1)kn

n−1

lmax − lmin + 1
≤ lim

n→∞

kn
n− 1

. (118)

Suppose there exists δ > 0 such that for a subsequence tln :

tlnqn <
qn − (lmin−1)kn

n−1

lmax − lmin + 1
− δ (119)

For this subsequence, after accounting for the probability
masses put on I1, . . . , Ilmax , there is still some left. So
d′ ≥ lmax + 1 for this subsequence. However, by (118) and
(119):

tlnqn <
kn
n− 1

− δ

for large enough n. So W (tln) → 1 for the subsequence. So
in the subsequence, MlW (tln) > Mlmax+1, which contradicts
the fact that d′n ≥ lmax + 1. Thus,

lim inf tlnqn ≥
qn − (lmin−1)kn

n−1

lmax − lmin + 1
(120)

and hence tlnqn → qn−
(lmin−1)kn

n−1

lmax−lmin+1 .
Case (ii):

lim
n→∞

kn
n− 1

< lim
n→∞

qn − (lmin−1)kn

n−1

lmax − lmin + 1
(121)

Suppose

tlnqn <
kn
n− 1

− δ (122)

for a subsequence. Then

W (tln) → 1 (123)

for that subsequence. Now, by (121) and (122):

tlnqn <
qn − (lmin−1)kn

n−1

lmax − lmin + 1

for large enough n. So similar to Case (i), after accounting
for the probability masses put on I1, . . . , Ilmax , there is still
some left. So

d′n ≥ lmax + 1. (124)
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But by (123), MlW (tln) > Mlmax+1, which contradicts (124).
Thus, in Case (ii), tlnqn → kn

n−1 .
Hence, in both cases, tmnqn →

min

(
qn−

(lmin−1)kn
n−1

lmax−lmin+1 , kn/(n− 1)

)
and we are done.

Lemma 30: If there exists an ϵ > 0 such that for all large
n, q > knd/(n− 1)+ ϵ, η → 0 as n→ ∞. Also, for all large
n, d′ = d and p̃j → c, j = 1, . . . , d.

Proof: Clearly, t1 ≥ 1/d. Thus, t1q ≥ kn/(n− 1)+ ϵ/d.
Now, for all large enough n, for each i,

∑n
j=1 t1qj − t1qi >

(n − 1)t1q − t1(n − 1)ϵ/2. Thus, if a given primary with
available bandwidth selects I1, then the expected number of
other primaries he sees at a node there minus the expected
number of secondaries is greater than (n − 1)ϵ/2. Clearly,
then for each i, wi(t1) → 1 as n → ∞ (convergence
is exponentially fast by Hoeffding’s inequality [27]). Thus,
W (t1) → 0 and M1W (t1) → 0 as n → ∞. Thus,
M1W (t1) < Md for all large enough n. Thus, d′ = d. So
for j = 1, . . . , d, MjW (tj) = M1W (tj) → 0 as n → ∞
and hence p̃j → c. Thus, the second part of the lemma holds.
Since M1W (t1) → 0 as n → ∞, expected utility of each
primary approaches 0, and the approach is exponentially fast.
Thus, the overall expected utility of all primaries approach 0.
Clearly, the expected utility attained by OPT is bounded away
from 0. The result follows.


