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Abstract—Real world objects handling requires a complete robot and sensor system that must be managed by an adequate software
architecture. The design of such a complex architecture is important not only to fulfill the hardware and software constraints but also
to shorten the development and integration time. This paper presents the lessons learned in the integration of a software architecture
based on ROS within the European project HANDLE. It focuses on the major concepts of component-based software engineering
intrinsically available in the ROS framework and describes the best practices to take advantage of flexibility, interoperability and
reconfigurability of packages offered by the ROS community for real world in-hand manipulation. The paper is divided in three parts.
In a first place, the core concepts in the ROS framework are presented, detailing the multi-robot and distributed computing capabilities
as well as existing software stacks for object manipulation applications. In a second place, a case study is done on the packages used
or developed during HANDLE, alternatively describing the concepts related to component-based design patterns and their application.
A last part covers integration choices relative to interfacing of the components, coordination and configuration of them in the final
application.

Index Terms—System integration and implementation, software frameworks, reusable software, manipulation, dexterous hands.

1 INTRODUCTION

The case study presented in this paper was carried out within
the European project HANDLE, which tackles the problem
of in-hand manipulation with an anthropomorphic hand. The
robot system involved in the project is composed of the
Shadow [1] Dexterous robotic hand with 5 fingers for a total
of 24 degrees of freedom (DoF) and the Shadow 4 DoF
biomorphic arm coupled with several external sensors such
as vision and tactile systems (Fig. 1).

The development of a software architecture capable of
handling complex tasks and driving the arm and hand robot
with all its sensors was required. Some specifications were
particularly important in the design of the software architecture
within the project:

Regular paper – Manuscript received November 11, 2013; revised April 29,
2014.

• The research leading to these results has been supported by the HANDLE
project (www.handle-project.eu), which has received funding from the
European Community’s Seventh Framework Program (FP7/2007-2013)
under grant agreement: ICT 231640.

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

• The architecture should be based on existing components
to accelerate the developments and permit to stay focused
on innovative algorithms for in-hand manipulation,

• The chosen architecture should support distributed com-
puting, with several computers involved in the control of
the robot and the processing of the sensor data,

• The software layer should provide an easy solution to
integrate all the components, in a high-level programming
language,

• The architecture should use modular blocks to offer par-
tial system testing possibilities and easy switch between
simulated and real robot.

This paper presents how different components were inte-
grated in order to fulfill the constraints of the specifications.
It is oriented in a way to highlight underlying possibilities
of existing software components, especially when they follow
suggested design patterns for re-usability and reconfigurability
[2]. It also shows how these components features were put
into application during the design and integration phases of the
HANDLE project. Although the architecture was implemented
on robots built by the Shadow Robot Company, the solution
is designed to be as generic as possible, that is, for any arm
and hand robots.

The paper is organized as follows. Section 2 describes the
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Fig. 1. HANDLE robotic platform: A biomorphic muscle-
driven arm, a dexterous motor- and tendon-driven hand,
a RGB-D camera and fingertip force sensors.

main software elements of the chosen framework. In section 3
the main concepts of component-based software engineering
are detailed in a case study of major components re-used or
adapted for the in-hand object manipulation application, and
in section 4 overall integration choices are presented together
with useful hints to fully use the possibilities of the framework.
A conclusion and future work in section 5 summarizes the
contribution and presents work perspectives.

2 A VERSATILE FRAMEWORK
The ROS [3] (Electric) meta-operating system was chosen
to develop the software architecture as it best fits the
project requirements and had been used before for a basic
object manipulation application on a different robot (PR2)
[4]. This framework heavily relies on components in the
form of nodes to handle different aspects of robotics such
as control, planning, image processing, database storage,
etc... The term component is admitted even if the ROS
nodes do not usually offer an abstraction of the framework
as expected in component-based software engineering
[5]. However, re-usability, flexibility and reconfigurability
are some aspects available in ROS as will be shown
through the paper. The components are provided via
packages developed by a large community. ROS supports
distributed computing and multiple robot management.
Applications can be developed in C++ or Python language.

In this section, key features of ROS will be detailed to high-
light the component-based aspects of the framework used in
this project and to point out important steps in the deployment
of the architecture.

Fig. 2. Fusion of two robots requires encapsulation of
low-level control interfaces to provide the same compo-
nent interfaces as a single robot to the system.

2.1 Multi-robot

The HANDLE project platform is composed of a multi-robot
system. In ROS, components handling hardware interface and
control of a robot necessarily run on the same machine in
what is called the realtime loop. This loop ensures low-level
state exchange (sensors / commands) between the host and the
robot through an etherCAT driver and processes controllers
update in a controller manager (CM). A special device access
is also provided in the pr2 ethercat bus driver package to
integrate non-etherCAT drivers in the loop. ROS is able
to simultaneously handle several robots that can be linked
together in a single robot description file using the Unified
Robot Description Format (URDF). However, even if the hand
and arm are statically linked to create a complete chain from
arm base to hand fingertips, their drivers cannot co-exist on the
same computer due to incompatible OS and communication
buses (etherCAT and Controller Area Network buses). In order
to provide a standard control interface to other components of
the system, the two separate control loops were encapsulated
into a component with similar ports (state and command) as
for a single robot. For this purpose a merger utility was created
to basically fuse the complete arm and hand joint states and a
controller manager wrapper was added to access the controller
managers of both robots as seen in Fig. 2.

Thanks to the standard control interface recreated in the
encapsulating component, the frame transforms for each link
of the robotic platform could be published in the usual
manner with the robot state publisher node in package TF1

by connecting directly to the merged joint states topic.

1. TF handles coordinate frames relation in a tree structure
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Fig. 3. Distributed computing over the network with all
the components visible through a master. Precise time
tracking with NTP is mandatory for event synchronization.

2.2 Distributed computing
As mentioned before, the fact that two robots are considered
when working with the hand and the arm is a first reason why
distributed computing features of ROS were used. Moreover,
to deal with external sensors, new computers and drivers were
added to the HANDLE platform. A vision system managing a
RGB-D sensor and a Pan-Tilt-Zoom (PTZ) camera gives the
robot platform some crucial information about the working
environment. Due to the huge amount of data to process
especially with point clouds, both devices are handled in a
separate computer from the robot’s computers.

ROS is designed to manage components processing data
over several computers all connected on a network bus and
visible through a master (Fig. 3). To correctly treat the events
passed over from one component to another, the synchro-
nization is operated with timestamps. Therefore, it is of
particular importance to synchronize all the computer clocks.
Consequences of a desynchronized multi-computer system are
mainly seen on the robot chain when frame transforms are
not coherent in time or on the fusion of data coming from
internal and external perception systems. Hence, a system such
as a NTP (Network Time Protocol) server is mandatory to
constantly track and correct computer clock drifts at runtime.

2.3 Object manipulation libraries
One of the main advantage of ROS is the large amount of
packages/libraries available thanks to a great community. A
set of stacks forming an object manipulation pipeline [4], [6]
is of particular interest as it deals with recognizing, reaching,
picking up and placing objects in a complex environment. A
clear diagram was created showing the stacks and regrouping
their functionality in blocks (Fig. 4). Here is a short introduc-
tion to the libraries that were re-used or adapted as described
in section 3:

• Arm navigation: In order to reach and grasp objects,
the arm movements planning is done through the OMPL
library [7] in the arm navigation stack. Additionally,
Orocos KDL [8] provides kinematics solving for any
kinematic chain built in a robot description file (URDF).

• Perception: Processing vision data is simplified through
the Point Cloud Library (PCL) [9] for RGB-D sensors
and is highly integrated in ROS with means to cluster,
detect and segment 3D objects. The OpenCV library
[10] contains standard 2D image processing algorithms
and is bridged to ROS via cv brige and image transport
packages.

• Household objects database: To recognize the
workspace, objects were 3D scanned and grasps were
generated for most of them for a robot gripper. A
postgresql database is delivered filled with models of
daily life objects and grasps for the PR2 gripper [11].

• Control and realtime loop: Low-level controllers run in
a realtime loop at 1kHz as plugins (pluginlib) and can
be loaded/unloaded on-the-fly to implement any control
solution commanding torques.

• Pick and Place: A node in object manipulator coordi-
nates the different steps of a pick and place scenario,
calling the actions in the relevant nodes presented above.

3 RE-USABILITY CASE STUDY

In this section, we highlight the re-usability of ROS packages
through well-known component-based concepts and show how
they applied in the implementation and integration phases of
the HANDLE project: i) flexibility applied to control design
and database extension, ii) reconfigurability for enhanced
perception, iii) new use of packages applied to planning
beyond arm movements and iv) configuration for complex
manipulation management.

3.1 Flexibility

Although most of the object manipulation stack packages
are mentioned to be robot agnostic (can work with any
robot), some modifications are sometimes needed. Different
solutions were used to adapt, extend or derive packages and are
described in this subsection. Adaptations were done respecting
the license limits and were obviously possible thanks to the
availability of the source code.

Principle of library extension: It sounds interesting to
patch a library to add some functions. However, mid-level
libraries such as kinematics libraries are linked to a lot of
high-level packages (more than 80). Changing the mid-level
may require to recompile the entire framework distribution and
having a patch propagated upstream might take a while.

Fortunately, some libraries are flexible enough to be ex-
tended through a new package containing the required func-
tionality. The best way is to use class inheritance and class
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Fig. 4. Main components of the object manipulation pipeline re-arranged in functional blocks. Several stacks were
re-used and adapted for in-hand manipulation such as arm navigation, control interface, household object database
and object manipulation stacks.

composition to create a new specialized class adding members
and methods to the parent class.

With this separation into main and extended packages,
standard high-level software still link with the original library
but new software using extended functionality link to both the
extension and the original package.

Application of library extension: Orocos KDL package
[8], on which arm navigation package depends, provides a
library for direct and inverse kinematics computation for
a large number of kinematic chains. The standard library
iteratively solves 6D pose inverse kinematics, which is fine for
most manipulators. Indeed, the arm and two wrist joints of the
HANDLE platform were linked to create a 6 DoF arm up to
the hand palm and Orocos KDL nicely solved the kinematics.

Re-using the library to solve the hand kinematics was
thought to be a good generic solution that could work for
several hands rather than developing a specific solver for the
Shadow robot hand. In fact, fingers can be seen as single
chains but the initial version of the KDL library cannot handle
coupled joints, which are present in a few robotic hands
[1], [12], [13]. Moreover, fingers rarely contain more than
5 joints, rather 3, making the inverse kinematics impossible
to solve with KDL 6D solvers. Therefore, an extension of
Orocos KDL (kdl coupling) was created with the technique
above (Fig. 5). It handles joint coupling in a generic fashion
involving a coupling matrix taken from a patch from [14].
The extension can also solve 3D pose inverse kinematics as
well as provide a Jacobian for 3D control. The solution is

based on a solver using WDLS (Weighted Damped Least-
Squares) already available in KDL. Detailed explanations
of the solver are beyond the scope of this document.

Principle of plugins and derived package creation:
ROS implements a mechanism of plugins through the plug-
inlib that permits to dynamically load libraries with specified
interface into a running node. The interface is described in a
package and several plugins that implement this interface can
be loaded at runtime. Nodes using the plugin principle do not
need to compile with a plugin header, only with the defined
interface header, thus enhancing the flexibility of the whole
package.

When the plugin mechanism was not sufficient to adapt
the functionality or when change in the data structure was
required, new packages were derived from existing ones. The
structure of the code was re-used as it implements the base
functions properly but new methods or members were added
to handle the robot specificity.

Application of plugins and derived package creation
to controllers: Several joint-space controllers are provided
in the robot mechanism controllers package and can be ap-
plied to any robot as long as the joints can be commanded
through torques. Among the controllers proposed are not only
velocity or position controllers for single joints but also joint
trajectory controllers, tracking several single joints at the same
time along a given trajectory parametrized with way points.
However, two limitations can be seen. On one hand, not all
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Fig. 5. Library extension through a package, involving in-
heritance and composition. The original package remains
untouched, not modifying the framework distribution but
new packages can take advantage of the extension.

robot systems are equipped with torque control at joint level,
and therefore need a specific controller manager relying on
other types of commands. On the other hand, all the proposed
controllers are based on basic PID controllers, which might
not be sufficient to overcome non-linear joint behavior such
as those seen in tendon-driven or muscle-driven joints.

Mixed position and velocity controllers were created for
the Shadow hand to command the tendon tension (similar
to joint torque) and to compensate for various non-linear
effects (friction). They were developed to implement the
pr2 controller interface and could then be loaded into the
standard pr2 controller manager node thanks to the mech-
anism of plugins (Fig. 6.a).

The Shadow biomorphic arm is composed of two
antagonistic pneumatic muscles per joints that are
only controllable in pressure at low-level. Due to
the nature of the muscles, pressure commands are
not equivalent to torque, for this reason the generic
controller manager using the standard robot state had to be
replaced. A new sr arm controller manager commanding
pressures could be derived from the existing controller
manager and loaded with non-linear position controllers
through the powerful plugin mechanism (Fig. 6.b).

Principle of database completing: Even if a software
component is robot agnostic, it may need to have new data fed
into the system as a kind of basic knowledge on how the robot
operates on the environment. This is particularly true for a
database storing information on interacting elements (objects,
obstacles). Two different cases were considered:

Fig. 6. a) Creating new controllers as plugins using a
predefined interface permits to load them in an existing
controller manager node handling such an interface. b) A
new controller manager can be derived from an existing
one with minor but necessary changes (torque to pres-
sure change in the robot state)

• Filling new data in existing database tables. Not modify-
ing the tables permits to re-use all the nodes reading and
filling these tables,

• Extending the tables with new kind of data. To maintain
backward compatibility, the additional data are distributed
between existing tables and new ones.

Application of database completing: The house-
hold objects database package relies on a database mainly
containing object models and grasps to seize these objects
with a 2-joint gripper. However, the database is flexible
and one can easily change settings to a different gripper,
namely the Shadow five-fingered hand, by detailing in the
hand description.yaml file that the device is composed of 20
joints. Adding a new entry in the grasp table is then immediate
even for existing objects provided that a vector of size 20 is
inserted for the grasp posture (Fig. 7).

The tools provided to add new objects or new grasps
generated by GraspIt! [15] could have been used immediately
to fill the unmodified tables but in the HANDLE project
suitable grasps were extracted by learning from humans.
Demonstration of a human grasping objects were recorded
with datagloves [16] and parameters transposed to joint config-
urations of the robot hand and arm [17], [18]. The learnt grasps
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Fig. 7. The household database is flexible enough to
handle new types of grippers described in a file. Shadow
hand grasps with 20-joint configurations can be added in
existing tables.

with joint configurations adapted to the dexterous hand were
filled in the grasp table thanks to a node based on a generic sql
database interaction component (database interface package).
The same way, new objects models were recorded through a
new 3D reconstruction method [19] and also inserted in the
existing object tables.

Since the project also deals with in-hand manipulation, new
kinds of data related to the grasp such as grip type (number
of fingers and posture used) or grip pose (relative hand to
object pose) had to be stored in the knowledge base. Instead of
modifying the existing tables, new tables were added to store
the advanced data, and wrapper tables would contain relation
to backward compatible tables and to tables containing the
new knowledge (Fig. 8). This way, existing components can
make profit of new entries (without new type of knowledge)
and new components can access entries with all their features.

3.2 Interoperability

It has been shown that the large panel of packages in ROS are
flexible and can be re-used with another robot but the diversity
of packages and the component-based framework also offers
the possibility to combine them to create new advanced
features. This is possible thanks to the interoperability of the
components using common message types. This subsection
presents two combinations of components at two levels:

• Combination of functions
• Combination of data

Both combination methods were employed to solve the prob-
lem of in-hand object tracking.

Combination of components for multi-marker track-
ing: Tracking objects is a complex task that is generally
treated differently for specific cases. No off-the-shelf method
could be found but a combination of several tools could do

Fig. 8. New tables were added to the household database
and combined with existing ones through wrapper tables
to maintain backward compatibility.

the job. Markers tracking was tested as a first step to track
objects but two major issues arose:

1) objects are small to fit in-hand and so will be the
markers. They need to be tracked by the vision system
during the whole hand movement,

2) objects are grasped in the hand whose fingers might
occlude some of the markers.

To solve the occlusion problem, multiple small markers were
added on the same object, whose pose was then computed
through a mean transform obtained from each markers filtered
out pose. The marker poses are extracted by ar pose [20]
relying on the ARToolkit [21], which can process several
elements in the same image. To solve the tracking of the
markers in-hand, a pan-tilt-zoom (PTZ) camera was chosen
to zoom on the hand, which pose was computed via forward
kinematics. The hand pose permitted to set the direction of
the optical axis and keep the markers in the field of view
while the hand was moving. The configuration of the different
components is shown in Figure 9.

Combination of data in sensor fusion: A second step
towards advanced in-hand object tracking involved fusion of
data. Basically the technique consists in using several sensors
to get a more confident estimation of the object pose. A so-
lution was developed based on visual and tactile information.
Visual data are provided on one side by the scene camera
recognizing objects through the tabletop detection package
(see Fig. 4), and on the other side by the multi-marker tracking
pipeline previously mentioned. Tactile data are provided by
the fingertip force sensors precisely locating the contact [22].
The fusion is represented in the lowest part of Figure 9. The
challenges were to get all the data transformed in the same
frame and to be sure the components would be able to get the
correct type of information by the corresponding node.
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Fig. 9. Use of common messages types
(std/image transport/tf/sensor/geometry) implicitly
offers interoperability that permits to combine functions
(top part) or data (bottom part).

For the two types of combination, all the packages work as
stand alone applications but could be easily connected together
thanks to low-level packages implicitly offering interoperabil-
ity. Most of the common message packages such as geome-
try msgs or sensor msgs were re-used as is, and two other
packages were of particular interest: image transport and TF.
Indeed, a lot of image processing relies on the image transport
library to transfer image data. Camera configuration is also
embedded in the transfer and was especially used to feedback
the change of zoom, and hence of camera configuration of the
PTZ camera to the ar pose package. Regarding TF, the frame
transform functions offered by the tf conversion tools made it
simple to transform the pose of the object, initially estimated
by the scene camera in the world frame, to the palm frame.
Then the pose was refined and tracked through the markers and
finally optimized thanks to the fingertip contact poses changed
to the palm frame.

This combination case highlights the fact that low-level
tools are really important and can simplify integration. Devel-
oping new packages that rely on common messages and use
of common tools is necessary to provide good interoperability
and thus permit multiple combinations and extended re-use.
A second point to mention is that ROS connects nodes via a
communication protocol (based on protobuf), which permits
to combine node programmed with different languages (or
different licenses) by exchanging common messages.

3.3 New use
Some packages in the community are already created with
the purpose of being generic and re-usable, and use low-
level libraries to offer good connectivity. This is the case
of packages that pack solutions for vast robotics problems
such as planning. The arm navigation stack is flexible and
reconfigurable to permit easy integration of a robotic arm
plus gripper into a manipulation process. It relies on OMPL
[7] and was tested on different robot arm systems, even on
industrial ones through ROS industrial project [23]. Thanks to
the flexibility and good documentation, it is even possible to
use such packages beyond their original design.

arm navigation for each finger: One concrete example
is the finger motion planning for in-hand manipulation. A
finger performing an action (press a button, lift a lever, turn
a knob etc...) while other fingers maintain a stable grasp on
the object is a common case. Planning the finger motion
from grasp release position to action position without touching
the object was a problem OMPL can solve. Reworking the
integration of the library in a new package doing finger
motion planning would have been cumbersome. Instead, the
arm navigation stack was completely re-used, for the full-arm
plus 5 mini-manipulators, one for each finger (Fig. 10). Our
extended KDL solvers (with coupling) were configured as IK
solvers for the planner. With this planning environment set up,
single finger motion could be planned out of the box. The only
specificity lies in the fact that the obstacle is the object held by
the hand, and is provided by higher level applications rather
than autonomously by the collision map processing package.

arm navigation for mixed chains: A second example,
pushing the limits of planning with the arm navigation stack,
was to create a new virtual kinematic chain composed of the
arm and wrist to which virtual degrees of freedom are added.
The virtual DoFs represent the possibility of the object to be
moved by the fingers through in-hand motion. The complete
chain has some redundancy and widens the possible reachable
poses for the gripper around the object relative to the arm
base. The planned trajectory on the virtual degrees of freedom
can then be fed into an in-hand motion planner such as [24] to
compute the adequate finger motions for in-hand manipulation.

In the end, the diversity of packages and the port to ROS of
largely used libraries made it possible to try and apply existing
solutions to new problems very rapidly.

3.4 Configuration
The last method showing re-usability is totally inherent to
component-based programming. At a high level, creating a
real robot application handling complex tasks requires to
configure the components to correctly process the data flow,
distribute the requests and collect the responses for each of
the specialized components.

Pick and place: The object manipulor package provides
a configuration node responsible of connecting the components
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Fig. 10. The same component (arm navigation) is used
for arm planning, finger planning or advanced virtual robot
planning.

for a pick and place application. Each of the interface of the
specialized component is defined through a parameter that can
be connected to other components at launch. It is straight
forward to replace one of the component with a new one as
long as it offers the same interfaces and services. However,
when it comes to change the application, then a new or
extended configuration node must be created.

Pick / manipulate / place: a pick and place applica-
tion existed but adding in-hand manipulation in-between the
pick and place tasks was done by rewriting a configuration
node directly in Python using the same technique (Fig. 11).
The individual components are connected and coordinated to
follow a designed flow, similar to the original package. In-
hand manipulation tasks make use of most of the existing
components but also of new components to move objects in-
hand.

4 OVERALL ARCHITECTURE

This section presents a discussion about choices made relative
to interaction between nodes and describes several ideas
implemented during the integration.

4.1 Actionlibs vs services

Before the integration process begun, components were devel-
oped and run in stand-alone applications to test the algorithms.
The interfaces were used to interact with the user or with other
components. At the time of integration, the implementation of
the interfaces became a major concern to ensure all of the
components were interoperable, and functions could be called
properly.

Fig. 11. Configuration nodes connect the components
to fulfill a task. The connections can be reconfigured to
execute a different task via a new configuration node.

ROS offers 3 types of interface in the components. Topics
and services are in the core library whereas actionlibs were
added as a package :

1) Topics [25] are event-based interfaces between the com-
ponents/nodes. When a publisher node sends a mes-
sage, every subscriber node is triggered via its callback
function. A complete flow of data can be processed
through topics only, having one node ”connected” to
the next using the publisher/subscriber interaction. This
connection is however not adapted when the flow is not
fully linear and can hardly handle complex scenarios.

2) Services [26] are peer-to-peer interfaces between com-
ponents/nodes. When a node calls a service proposed
by a second component, the request/response commu-
nication permits to exchange data and/or execute tasks.
To enhance the responsiveness, the communication link
can remain open for successive calls but this solution
has another major drawback: the caller node is blocked
while waiting for the response.

3) Actionlibs [27] is a mechanism that partly combines the
first two ideas and is one implementation of the task-
state pattern [28]. A component proposing a service
through an action server listens to a goal topic, and
provides feedback and results to two other topics. The
actionlib base class handles a state machine to easily
interact with the server. A mean to pre-empt the running
server is provided. This feature is particularly interesting
to cancel or to update a goal. The caller node is not
blocked, and can asynchronously check feedback and
result.

In the HANDLE scenarios, event-based interfaces were ex-
cluded because the flow of data could become complex.
However the topic-based interfaces were kept for low-level
interaction (commands sent to controllers, raw data processed
from sensors etc...). For high-level interaction, the choice
remained between services and actionlibs. The following ar-
guments convinced us to use actionslibs whenever possible:
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Fig. 12. A master controller actionlib interacts with the GUI to control and monitor the execution of the application, and
interfaces with N steps actionlibs. Steps interface with other actionlibs and services. Each step can be pre-empted by
a mechanism of cancel request propagation.

• Services are simple to implement but several nodes re-
quire interruption possibilities, especially execution nodes
that move the hardware and must stop when something
goes wrong. The original object manipulation stack [6]
includes reactive nodes exactly doing that with actionlibs,

• Services cannot handle long computation steps that must
be run in the background. When embedded in an ac-
tionlib, long computation steps can produce the result
when available. The main node can query the result at
any moment after it is ready, or wait for the result to be
ready as in a service mode,

• Actionlibs permit to start multiple actions together, for
instance several grasp generating nodes, and to take the
result of the first node that finishes,

• Actionlibs can be nested provided that the pre-emption
requests are propagated correctly in each server.

4.2 Coordination component

Requirements: The HANDLE project focused on in-
hand manipulation and the main application was developed to
show the advances in this domain. However, the main program
was also responsible for the preparation phases such as recog-
nizing and grasping the object to be in the situation of tasks
execution with in-hand actions. That is why a coordination
component, called the master controller (Fig. 12), was created
that could process data flows, from the sensor to the respective
components or from one component to another, in different
situations (known/unknown objects, user choices, etc.). This
step-based coordination component was also meant to be a
debug tool that could easily re-run a failed step, without re-
starting the preparation phases. Finally a user interface was

needed to monitor each step in simple and advanced display
modes for debug.

Step structure: Once the flow chart was designed, a set
of components was regrouped into steps. Each step is created
as an actionlib calling other actionlibs or services (Fig. 12).
For example, a step providing possible grasps associated to an
object is necessary. This step combines several components
such as a database grasp extraction node and several grasp
generators. Depending on the object type, either one or another
component is called. In the case of unknown objects several
generators are started in parallel through the mechanism of
actionlibs. When the first correct result is available the process
continues whatever the generator that provided the result is.

Master controller: To coordinate and chain the steps
in the correct fashion, the master controller node was created
as an actionlib also. This node is responsible for preparing
and distributing part of the data from one step to another
and decides which step should be called depending on the
previous result. It acts almost as a state machine but has less
possible transitions, staying close to a pre-defined order of
steps. Thanks to this node, it is easy to re-run a single step,
re-using the same data that came out of the previous step.
One can note that the pre-emption through the cancel topic
is designed to be propagated from a step actionlib to the
computing actionlibs and hence helps increase the reactivity
of the system.

GUI: Controlling and monitoring the master controller is
done through a GUI developed in rqt-gui2 (Fig. 13). Interaction
between the master controller actionlib and the GUI makes use
of several key methods:

2. Although ROS Electric was used in the project, rqt-gui is on ROS Fuerte
only but Electric and Fuerte run nicely together for actionlib interactions
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Fig. 13. A GUI concept providing services as interface.

• Requests from the master controller to the GUI, for
example to ask the user a confirmation, is done through
a service provided by the GUI. This service displays the
request message in a pop-up window and sends the user
selected button as a response to the caller.

• Buttons directly implement a service to get the master
controller wait for the user to press a ”next” button for
instance.

• Asynchronous data such as choices of check boxes/radio
buttons are saved and exchanged between the GUI and the
master controller through the parameter server. When the
master needs to know the state of a checkbox, it queries
the parameter server, which was updated by the GUI on
click events.

• Progress bars in the GUI show the level of completion of
each step, using the feedback mechanism of the actionlib.
Indeed, step feedback messages were designed to contain
a progress value among step-specific data.

• Step-specific feedback data are processed by step-specific
UIs loaded in the main GUI. These specific UIs imple-
ment their own services or feedback processing units to
exchange with a specific step.

• UIs and steps are developed together and are linked to the
master through a configuration file with a standardized set
of parameters.

All these mechanisms of interaction between the GUI
and the master controller are not specifically designed for
a GUI interaction. Since they rely on standard interfaces
(service/actionlib/parameter server), any node capable of an-
swering the requests could interact with the master. In fact,
one can think of fake-user processes, or nodes generating fake
(random) user data to automate/test the steps.

4.3 Integrating real and simulated worlds
With all the components ready and a master controller capable
of running the main application, the whole set of nodes must

be launched in different configurations such as simulated
worlds or with the real platform. ROS includes a powerful
mean to start nodes through an XML file called launch file.

Grouping by level: In the early integration or debug
phases, the need to restart single nodes is frequent. However
launch files usually configure and start several nodes together.
For this reason, grouping components by level and also by
steps proved to be practical (Fig. 14):

• low-level drivers were grouped, and then separated into
vision, tactile and motor driver files. One can restart the
hardware devices without breaking mid-level processing.

• mid-level nodes were grouped into processing unit files
such as perception, planning, learning, database, utilities,
etc. When developing one of these units, the nodes in it
could be restarted keeping the others running.

• high-level applications were grouped to provide the ma-
nipulation stack functionality.

• monitoring-level GUI is one of the last node to be started.
• top-level steps actionlibs and the master controller node,

which require all the components service/actionlibs to be
ready, must be started at last.

Using ENV variables: Launch files also read ENV
variables to configure parameters all over the included nodes.
This feature was mainly used to distinguish simulation and
real world runs. Some drivers or functions are not needed
in simulation since all of the low-level drivers, tactile and
vision plugins are started in a single application. The start
of those drivers was therefore inhibited by an environment
variable tested in the relevant launch files.

Machine parameter: Because of distributed computing,
not all the components and nodes could be started on a single
computer. ROS offers a method to start nodes through an ssh
connection via a parameter called machine. The feature was
used in most of the launch files, especially for drivers that are
associated to hardware sitting on a dedicated machine.
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Fig. 14. Launch files regrouping components by level
of action, using machine and ENV variables for further
reconfigurability.

Overlaying: One possibility given by the
ROS PACKAGE PATH variable was put into application in
the project. To launch an application, ROS finds and executes
the first corresponding node in the order of the PATH. It is
possible to get a new package be called first provided that
it has the same name as the package one wants to replace.
This is called an overlay. As an example, the sr description
package, containing the URDF and tuning settings of the
platform, is overlaid at different partners site, depending on
the hardware at that location. With another version of the
hand, overlaying the package and changing the model locally
was rapid and safe for all surrounding nodes.

5 CONCLUSION

This paper showed the re-usability of ROS standard or com-
munity based packages in terms of flexibility, interoperability
and reconfigurability. Other component-based specificities of
ROS were highlighted such as distributed computing and
multi-robot possibilities, multiplicity of the interfaces offered
and easy coordination of components. The application of
these features was detailed in examples of integration of the
HANDLE project software architecture, showing the type of
modifications that can be done to efficiently extend the original
work to new robots or new purposes. A GUI and a step-based
coordination component were described and useful hints about
the integration process were given. The HANDLE project
platform successfully proved the efficiency of the integration
approach in the final demonstration combining more than a
hundred of packages and components. As a future work, the
nodes will be further transformed to be even more compatible
with various hands with a different number of fingers.
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