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On July 8, 2003 we received a question in the Forum section of Sierra’s Exterior 
Ballistics Website from Mr. David Hollister.  This equation is repeated verbatim here: 
 
“Your explanation of the turning of a bullet in a crosswind to produce vertical deflection 
is the opposite to that experienced by shooters.  A wind from the right sends a bullet to 
10 o’clock and a wind from the left to 4 o’clock.  (A right wind produces a little more 
vertical deflection than a left wind.)  This has always been my experience shooting 
smallbore (22 rimfire) and 300 m ISSF with both your 155, 168 and 180gr MK and 
6mmBR 107MK.  Even a 5mph wind produces this phenomenon, but I must say that 
that as the crosswind increases the vertical component does not continue to increase 
relative to the horizontal. 
 
What is the cause of this deflection?” 
 
This was an excellent question and a difficult one to answer.  This writer replied a few 
days later in the Forum that he needed more time to study this phenomenon and 
promised an answer.  The writer has performed this study, mainly using Modern 
Exterior Ballistics by Robert L. McCoy, but with the aid of other references also.  Mr. 
Hollister’s observations are correct.  Section 4.3 of the Exterior Ballistics chapter of the 
Sierra Rifle and Handgun Reloading Manual, Edition V, is not correct.  This author will 
eat some humble pie and correct that section at the next printing of the Sierra Manual.  
This article has been prepared to answer Mr. Hollister’s question and to serve as a 
reference on crosswind deflections until the error in the Sierra Manual has been 
corrected and published.  Regrettably perhaps, some mathematics are necessary to 
answer the question, but the writer will do his best to explain in English what the 
mathematics are telling us about the motions of the bullet. 
 
In this article we will assume a level fire shooting situation, that is, where the firing point 
and the target are at the same (or nearly the same) elevation above sea level.  This is 
usually true for target shooting.  We also will describe the effects of a crosswind only, 
because the analysis is simplified a great deal, vertical air currents (vertical winds) are 
usually very small on level ranges, and headwinds or tailwinds are known to cause 
much smaller deflections of a bullet on a target than crosswinds.  We also will assume 
that the bullet has a right hand spin, but we will consider the effects of crosswinds in 
both directions.  Right hand spin is produced by rifles with right hand rifling twist, which 
is the usual case.   
 
When a bullet flies through the air, the velocity of the bullet relative to the ground is 
affected by the wind.  The following vector equation is the beginning point for every 
analysis of wind deflections: 
 
 Vbullet relative to the ground = Vbullet relative to the air + Vair relative to the ground (1)  



 
where Vbullet relative to the ground is the bullet velocity relative to the ground 
 Vbullet relative to the air is the bullet velocity relative to the air mass through which 

it flies 
 Vair relative to the ground is the velocity of the air mass relative to the ground (i.e., 

the wind velocity) 
 
The boldface letter (V) in each symbol in equation (1) denotes that each quantity is a 
vector.  Velocity is a vector quantity, that is, a quantity which has both a magnitude and 
a direction.  The magnitude of any velocity is speed, but the direction of each velocity 
must be taken into account when using equation (1).  All aerodynamic forces and 
torques on the bullet as it flies through the air are caused by the velocity of the bullet 
relative to the air, that is, Vbullet relative to the air. 
 
When a bullet exits the muzzle of a gun, it immediately begins some angular pitching 
and yawing motions which have several possible causes including the crosswind.  
These angular motions are small, cyclical, and transient.  They typically start out with 
amplitudes of a degree or so, and damp out, or at least damp to some very small 
residual values, after the bullet travels a relatively short distance.  From our experience 
measuring ballistic coefficients, these motions damp within 100 yards or less of bullet 
travel downrange. 
 
Throughout the trajectory, including the initial transient period, the bullet has an 
“average” angular orientation which aligns the longitudinal axis almost exactly with 
Vbullet relative to the air.  In this orientation the principal aerodynamic force on the bullet is 
drag, which acts in a direction opposite to Vbullet relative to the air.  The side forces on the 
bullet are essentially nulled in this “average” angular orientation.  Only a tiny lift force 
and a tiny side force are maintained to generate moments of torque which cause the 
nose of the bullet to turn.  We will describe these tiny effects a little later.  First, let us 
consider the “average” angular orientation. 
 
When the bullet exits the muzzle, its nose turns upwind.  This is the necessary direction 
to align the longitudinal axis with Vbullet relative to the air.  If the bullet did not turn in this 
direction, the crosswind would cause a strong side force on the bullet which would 
ultimately destabilize it.  The bullet turns because of its gyroscopic stabilization.  When 
the bullet exits the muzzle, there is an initial misalignment between the bullet axis and 
Vbullet relative to the air.  This misalignment disappears quickly due to the gyroscopic 
stabilization, and the bullet takes the “average” angular orientation.  Looking at Figure 2 
below, at the muzzle the “average” angle the bullet must turn into the wind is almost 
exactly given by: 
 
 θmuzzle = arctan [Vcrosswind / Vmuzzle]      (2) 
 
where Vcrosswind is the speed of the crosswind (the V symbol without boldface denotes 

the magnitude of the V vector velocity) 
Vmuzzle is the bullet speed at the muzzle (“muzzle velocity”) 



arctan means “the angle whose tangent is” 
 
This angle is small.  For example, for a rifle firing the 308 Winchester cartridge with 
Sierra’s 168 grain MatchKing bullet at 2650 fps muzzle speed in a 25 mph crosswind, 
θmuzzle = 0.793 degree = 47.6 minutes of angle.  For lower wind speeds higher muzzle 
velocities values of θmuzzle are even smaller. 
 
Figures 1, 2, and 3 have been prepared to support the rest of this discussion.  Figure 1 
is a side view of the trajectory as would be seen from a position to the right of the 
trajectory.  The X-axis is downrange from the shooter toward the target; the Y-axis is 
vertically upward at the firing point; and the Z-axis is horizontal and toward the shooter’s 
right at the firing point.  The side view then looks in the direction backward along the Z-
axis.  The black circle marked “Z” is meant to indicate that the viewer “sees” the Z-axis 
arrowhead. 
 
The trajectory is then viewed as if it were projected on the X-Y vertical plane.  On this 
plane the elevation angle of the trajectory, called φ, is the angle between the horizontal 
direction (the X-axis) and the velocity vector projected onto the X-Y plane.  The 
projected velocity vector, Vprojected, is the projection of both Vbullet relative to the air and 
Vbullet relative to the ground, because the wind velocity Vair relative to the ground is parallel to 
the Z-axis and points at the viewer. 
 

t every point on the trajectory the trajectory elevation angle φ is the angle between the 
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Figure 1  Side View of Trajectory
 
A
horizontal direction (parallel to the X-axis) and the projected velocity vector.  As shown 
in Figure 1, φ changes as the bullet flies.  For the level fire situation, at the muzzle φ is 
the superelevation of the bore required to put the bullet on the target, and this is a smal
positive elevation angle (positive because the trajectory starts upward).  For the 308 
Winchester example used above, the superelevation angle for a target at 1000 yards 
0.739 degrees = 44.3 minutes of angle.  As the bullet flies the trajectory curves 
downward, and φ decreases, going through zero at the summit of the trajectory, 



then going negative and increasing in magnitude as the trajectory steepens.  The bul
noses downward, and this is one of the small turning motions caused by a moment of 
torque on the bullet. 
 

let 

igure 2 shows a top view of the trajectory as would be seen from a point above the 

is 

ote that all the velocity vectors in Figure 2 are projections on the horizontal X-Z plane.  
nly Vcrosswind is always parallel to the horizontal plane. 

a crosswind blowing from the 
hooter’s left.  The trajectory then curves to the shooter’s right to follow the crosswind.  

 

osswind [1.0 – (Vdownrange / Vmuzzle)]    (3) 

een defined under equation (2).  Now Vdownrange = Vmuzzle at the muzzle, but 
ero 

nrange.  

F
shooter.  The top view then looks in the direction downward (backward) along the Y-
axis.  The black circle marked “Y” is meant to indicate that the viewer “sees” the Y-ax
arrowhead.  The trajectory relative to the ground is then seen as if it were projected on 
the X-Z horizontal plane.   
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Figure 2  Top View of Trajectory, Left to Right Crosswind
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Figure 2 is drawn for a bullet with right hand spin, and for 
s
As the trajectory curves the bullet gains a component of velocity relative to the ground in
the crossrange direction.  It is moving crossrange, so it must have a component of 
velocity in that direction.  The direction of this velocity component is parallel to the Z-
axis, and its speed is: 
 
 Vcrossrange = Vcr
 
where Vdownrange is the downrange speed of the bullet, and the other speeds have 
b
Vdownrange decreases as the bullet flies.  So equation (3) tells us that Vcrossrange is z
at the muzzle and then grows toward the value Vcrosswind as the bullet flies dow
Figure 2 attempts to show what this means.  As the bullet flies downrange the velocity 



vector Vbullet relative to the air turns gradually to the right, approaching an orientation 
where it would lie in a vertical plane parallel to the X-Y plane. 
 
In the formal analysis of bullet motion the angle θ is defined mathematically.  This angle 

 
of 

on 

θ = arctan {[(Vcrosswind – Vcrossrange) / Vdownrange] (cos φ)}   (4) 

here all parameters in this equation have been defined previously.  Equation (4) is 
 

s 

 there were no crosswind, equation (1) tells us that Vbullet relative to the air would be 
 full 

ll 
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 the crosswind blows from the shooter’s right to the left, the top view of the trajectory 

ir 
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 is important to understand that the trajectories shown in Figures 2 and 3 are 

is a measure of how far the velocity vector Vbullet relative to the air is turned away from a 
vertical plane parallel to the X-Y plane at each point on the trajectory.  This angle is 
complicated to describe, and even more complicated to sketch, without lots of vector
algebra.  However, it is necessary to the analysis, and  Figure 2 shows the projection 
this angle on the horizontal X-Z plane, denoted by the symbol θproj.  For a level fire 
shooting situation, the projected angle θproj is almost equal to the true angle θ at all 
points between the muzzle and the target.  So, Figure 2 is a pretty good representati
of how the true angle changes as the bullet flies from the gun to the target.  The true 
angle is given by the equation: 
 
 
 
w
accurate for all values of the trajectory elevation angle φ.  For the level fire situation φ
always has a very small value everywhere between the muzzle and the target so that 
(cos φ) has a value very nearly equal to 1.0 in this segment of the trajectory.  Under thi
condition equation (4) tells us that θ begins at the muzzle with the value given by 
equation (2), and then grows smaller as the bullet flies downrange. 
 
If
equal to Vbullet relative to the ground.  Figure 2 for this special case would show that the
trajectory of the bullet would lie in the vertical X-Y plane.  (This is not quite true as we 
will see later; because the yaw of repose would cause a drift to the right.)  Under this 
condition equation (4) tells us that the angle θ is zero, which means the same thing.  
However, the trajectory shown in Figure 1 would not change.  The trajectory would sti
curve downward from the muzzle, and Vbullet relative to the air, which is the same as Vbulle
relative to the ground, would turn downward as the bullet flies. 
 
If
would be as shown in Figure 3.  This figure is again drawn for a bullet with right hand 
spin, but the crosswind direction is reversed.  The velocity of the bullet relative to the a
is upwind as shown, and the bullet initially turns to align itself with Vrelative to the air.  As 
the bullet flies downrange it gains a component of crossrange velocity relative to the 
ground.  The angle θ decreases in magnitude, and the vector Vbullet relative to the air tur
gradually toward a vertical plane which is parallel to the X-Y plane.  The magnitudes of 
the angles given by equations (2) through (4) are the same.  And Figure 1 still applies to
this case; the bullet pitches downward as the trajectory curves downward, and from 
Figure 3 Vbullet relative to the air turns gradually to the left as the bullet flies. 
 
It
deflections of the bullet as it tries to “catch up” with the crosswind.  In order for the 
velocity vectors to turn, torques must be applied to the bullet, and the forces which 



create those torques cause additional small drifts of the bullet.  We will now describe
those drifts. 

At this point w

 

e have established graphically and verified analytically that the bullet 
elocity vectors turn in both the vertical direction (Figure 1) and the horizontal direction 

his 

 

o the air.  

lt of the bullet nose in any 
irection with respect to Vbullet relative to the air.  This is known as “aeroballistic yaw.”  

se 
 it flies, 
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(Figure 2 or 3) as the bullet flies in a crosswind.  The bullet itself stays aligned with t
velocity vector on the “average,” and so it also turns in both of these directions.  We 
know from the laws of physics that when a gyroscopically stabilized bullet turns, torques
must be applied to cause this to happen.  These torques can come only from 
aerodynamic forces.  To generate such aerodynamic forces, the bullet must have small 
aerodynamic yaw and pitch angles relative to the velocity vector Vbullet relative t
These angles are small deviations from the “average” angular orientation of the bullet, 
and they are known collectively as the “yaw of repose.” 
 
Ballisticians have long referred to “yaw” as an angle of ti
d
“Aeroballistic yaw” is composed of an aerodynamic pitch angle (nose up or down) 
followed by an aerodynamic yaw angle (nose right or left).  The yaw of repose is an 
aeroballistic yaw, and it can have both an aerodynamic pitch component and an 
aerodynamic yaw component.  The yaw of repose is just the angle of tilt the bullet no
must have relative to Vbullet relative to the air to cause the bullet to remain stable as
and turn as it moves along the trajectory.  
 
We will follow McCoy’s presentation in Chap .  The yaw 
f repose of a bullet in a crosswind has two components.  The first is an angular tilt of 

(5) 

o
the nose of the bullet to the right of Vbullet relative to the air (for a bullet with right hand 
spin).  This tilt is the same for both directions of crosswind and has the value: 
   

β = αRo (cos θ)          
 



Because the 
erodynamic side force to the right is generated.  This force causes a moment of torque 

 then θ would be 0, (cos θ) = 1.0, and β = αRo.  So, regardless of 
hether there is wind or not, the bullet nose is tilted slightly to the right of Vbullet relative to 

f 

he 
t 

ose would be tilted to the left, and the aerodynamic force would be directed to the left.  

ynamic and static 
haracteristics of the bullet and on environmental parameters: 

  (6) 

t
p is the bullet spin rate 

r through which the bullet is flying 
 of the bullet, where d is the bullet diameter  

 
In equ d easily, except for 

.  This aerodynamic characteristic of a bullet is measured in firing tests in spark 
ts.  

ding 
e causes of bullet deflections observed in the field.  It also varies with the speed of the 

nose of the bullet is tilted to the right with respect to Vbullet relative to air, an 
a
(another vector) directed vertically downward.  This moment causes the bullet to pitch 
downward as it flies. 
 
If there were no wind,
w
the air.  This generates the side force on the bullet pointed to the right and the moment o
torque directed vertically downward.  The rotational equations of motion of a spin 
stabilized bullet tell us that the angular momentum vector (pointed out the nose of the 
bullet for right hand spin) turns toward the moment of torque vector.  This causes t
nose of the bullet to pitch downward as it flies, keeping the longitudinal axis of the bulle
essentially tangent to the trajectory.  At the same time, the side force causes an 
acceleration of the bullet to the right, which in turn causes the bullet to drift to the right.   
 
This description is for a bullet with right hand spin.  If the bullet had left hand spin, the 
n
The aerodynamic torque moment would be directed upward.  But since the angular 
momentum vector would be pointed out the tail of the bullet, it would still pitch 
downward as it flies and remain tangent to the trajectory. 
 
The angle term αRo in equation (5) depends on both aerod
c
 
 αRo = (2Ixpg) / (ρSdV3CMα)     
 
where Ix is the polar momen  of inertia of the bullet 
 
 g is the acceleration due to gravity 
 ρ is the density of the ai

S = πd2/4 is the cross sectional area
V is the magnitude of Vbullet relative to the air 

CM  is the overturning moment coefficient for the bullet α

ation (6) all the parameters are known or can be measure
CMα
photography ballistic ranges, usually not available to manufacturers of sporting bulle
CMα is measured on military bullets, but is unknown for almost all sporting bullets. 
 
The angle αRo is small but unknown for sporting bullets, but it is useful for understan
th
bullet, because the bullet speed appears directly in equation (6) and CMα changes with 
Mach number. 



 
Now consider th
pward.  This is

e other component of the yaw of repose, the angular tilt downward or 
 either a negative or positive angle of attack: 

downrange] (cos θ) (sin φ) (cos φ)  (7) 

downrange] (cos θ) (sin φ) (cos φ)  (8) 

ullet sp (cos s always positive, and (cos φ) is always positive.  However, (sin φ) 
llet 

e 
crosswind d Vcrossrange are both equal to zero.  Equation (4) then tells us that the 

   (9) 

ir as th

 of attack is 
zero, that is, the nose of the bullet is not tilted either upward or downward with respect 

 tilt 

 the crossrange drift of the 
 
 

 
es of the bullet which are simply unknown for sporting 

ullets and unmeasurable in a manufacturer’s laboratory.  So, a calculation of this drift 
is not possible.  A target shooter therefore must determine the drift experimentally for 

u
 
 For a crosswind blowing from left to right: 
 
 αattack = - αRo [(Vcrosswind  - Vcrossrange) / V
 
 For a crosswind blowing from right to left: 
 
 αattack = + αRo [(Vcrosswind  - Vcrossrange) / V
 
In equations (7) and (8) the crosswind speed is always greater than the crossrange 
b eed, θ) i
is initially positive on the ascending part of the trajectory (see Figure 1) before the bu
reaches the summit, but it is negative on the descending part of the trajectory beyond 
the summit. 
 
Now, let us interpret these equations.  First, consider that there is no wind.  In this cas

 anV
angle θ = 0 for no wind.  This means that the bullet trajectory lies almost completely in 
the X-Y plane.  There will be a small drift out of this plane due to the yaw of repose. 
 
In equation (5) for no wind the term (cos θ) = 1.0, and then: 
 
 βno wind = αRo      
 
which means that the nose of the bullet is tilted slightly to the right of Vbullet relative to the 

e bullet fliea s. 
   
Equations (7) and (8) then tell us that, for the case of no wind, the angle

to Vbullet relative to the air.  So, the yaw of repose for the no wind case is simply a nose
to the right (away from the X-Y plane) as the bullet flies. 
 
With a slight nose tilt to the right, the aerodynamic force to the right will accelerate the 
ullet to the right (out of the X-Y plane).  This in results inb

bullet observed by target shooters.  This drift is to the right of the target if the bullet has
right hand spin.  If the bullet has left hand spin, the drift is to the left of the target.  If the
spin rates are the same (barrel twist rates are the same), the drift to the left will be the 
same as the drift to the right. 
 
There is an equation for the force caused by the yaw of repose.  However, this equation

volves aerodynamic propertiin
b



each cartridge and each bullet, muzzle velocity, and range distance to the target, and 
apply appropriate windage corrections for different range distances.  It is known that t
crossrange drift is relatively small, being a few inches at 1000 yards range distance for 
most cartridges. 
 
Now, consider the case when a crosswind is present.  The bullet follows the 
crosswind, so that the bullet crossrange speed Vcrossrange approaches the crosswind 
speed Vcrosswind.  So, the bullet.deflects in the direct

his 

ion of the crosswind, and we know 
at this is quite a large deflection.  This deflection is calculated by the Sierra Infinity 

pose.  
 

 
e equation 

)] and then decreases toward zero as the crossrange speed of the bullet grows toward 

nd there will be a 
ose tilt of the same magnitude and in the same direction as there is with no wind.  This 

and spin) superimposed on the deflection caused by the bullet following the wind.  

  (11) 

 

 the muzzle and the summit of the 
ero at the summit, and then is negative between the summit and the 

th
software.  In addition to this deflection there will be drift caused by the yaw of re
This drift will be in both the horizontal and vertical directions.  We cannot calculate this
drift, but the equations will tell us the directions and relative magnitudes. 
 
In equation (4) the term (cos φ) is almost exactly equal to 1.0 because for level fire φ is 
always small over the bullet trajectory between the muzzle and the target.  So, equation
(4) tells us that the angle θ begins at the muzzle with the value θmuzzle [se
(2
the crosswind speed.  So, the (cos θ) terms in equations (5), (7), and (8) can be set to 
1.0, as can the term (cos φ).  For this condition equation (5) becomes: 
 
 βcrosswind = αRo         (10) 
 
Equation (10) is the same as equation (9), telling us that with a crosswi
n
means that for a crosswind in either direction there will be a drift to the right (for right 
h
However, when the crosswind is left to right, the deflection is to the right and the 
drift adds to the deflection.  When the crosswind is right to left, the deflection is 
to the left and the drift subtracts from the deflection.  So the total horizontal 
movement of a bullet on the target should be a little larger for a crosswind 
blowing from left to right than it would be from a crosswind of the same speed 
but blowing from right to left.  This effect reverses if the bullet has left hand spin. 
 
Now consider the angles of attack.  Equations (7) and (8) become: 
 
 For a crosswind blowing from left to right: 
 
 αattack = - αRo [(Vcrosswind  - Vcrossrange) / Vdownrange] (sin φ) 
 
 For a crosswind blowing from right to left: 
 
 αattack = + αRo [(Vcrosswind  - Vcrossrange) / Vdownrange] (sin φ)   (12) 
 
In these equations note that φ is positive between
trajectory, is z
target.  Equation (11) tells us that for a crosswind blowing from left to right the angle of 



attack is negative (nose down) between the muzzle and the summit of the trajectory, 

 

 
tor Vbullet 

 
rce directed downward

goes through a zero value at the summit, and then is positive (nose up) between the 
summit and the target.  This is for a bullet with right hand spin; for left hand spin the
nose is up between muzzle and summit, and then down between summit and target.  If 
the crosswind is in the opposite direction, equation (12) tells us that these conditions 
simply reverse.  Both equations show us that the angles of attack decrease in 
magnitude as the crossrange speed of the bullet grows toward the crosswind speed. 
 
Equation (11) tells us that for the portion of the trajectory between the muzzle and the
summit of the trajectory the bullet nose turns downward with respect to the vec
relative to the air for a crosswind from left to right.  This means that a small aerodynamic
fo  is applied to the bullet before it reaches the summit.  This 
downward force accelerates the bullet downward.  This force goes to zero at the 
summit.  After the bullet passes the summit the angle of attack becomes positive.  The 
bullet nose then turns upward and the aerodynamic force becomes directed upward 
between the summit and the target. 
 
Using Infinity to search a number of level fire trajectories for the summit, we have found
that the summit occurs at about 58 % of the range distance between muzzle

 
et.  

ard before it reaches the summit is larger than the 
pward acceleration after it passes the summit.  The downward acceleration propagates 

 

ation is downward, reducing the upward drift of the bullet.  This 
ends the bullet imprint on the target to 10 o’clock.  Mr. Hollister’s observation (b) 

equations above do 
ot directly reveal the cause of this effect.  However, it was mentioned above that the 

t 

left-to-right crosswind of a certain speed produces a horizontal bullet displacement at 

 and targ
The acceleration of the bullet downw
u
into a downward ddrift of the bullet.  The upward acceleration after the bullet passes the 
summit is smaller in magnitude and has less time to act on the bullet before it reaches 
the target.  But, it tends to reduce the downward drift of the bullet.  This is the reason 
for the observations in Mr. Hollister’s question that (a) the total bullet drift in a 
crosswind blowing from left to right is toward 4 o’clock, and (b) as the crosswind 
speed increases, the vertical drift of the bullet does not increase as rapidly as the
crossrange drift. 
 
If the crosswind blows from right to left, equation (12) tells us that the stronger 
acceleration of the bullet is upward as it deflects to the left to follow the crosswind, and 
the weaker acceler
s
above also happens in this case because of the same effect. 
 
There remains one more part of Mr. Hollister’s question to answer.  This is his 
observation that a crosswind blowing from right to left produces a little more 
vertical drift than a crosswind blowing from left to right.  The 
n
horizontal drift produced by the yaw of repose adds to the horizontal deflection of a 
bullet following a left-to-right crosswind, and subtracts from the deflection of a bulle
following a right-to-left crosswind.  The vertical drifts, however, have the same 
magnitudes, provided the crosswind speeds are the same, but different directions. 
 
This writer believes that the reason for Mr. Hollister’s observation is the following.  A 



the target equal to the deflection caused by the crosswind plus the horizontal d
to the yaw of repose.  Suppose the horizontal deflection is 10 inches and the horizo

rift due 
ntal 

rift is 4 inches.  Further, suppose that the vertical drift caused by the yaw of repose is 
 
 

 
-

er, 

nt.  Other aerodynamic effects (Magnus force and moment, 
itch damping force and moment, and others) are smaller and assumed negligible. 

. 

erodynamic characteristics of sporting bullets are unknown and unmeasurable without 
e 

e 
ion 

d
minus 2 inches.  So, the bullet hole on the target should appear 14 inches to the right
and 2 inches down, relative to the bullseye.  Now, a right-to-left crosswind of the same
speed produces a horizontal bullet displacement at the target equal to the crosswind 
deflection minus the horizontal drift due to the yaw of repose.  The vertical drift caused 
by the yaw of repose is plus 2 inches for the right-to-left crosswind.  Then, the bullet 
hole on the target for this crosswind would appear 6 inches to the left and 2 inches up,
compared to the bullseye.  This would make it appear to the shooter as though the right
to-left crosswind produced vertical drifts greater than a left-to-right crosswind.  Howev
this would be an illusion. 
 
If this is not true, then the reason for this observation by Mr. Hollister could possibly be 
in the assumptions that McCoy lists leading to the derivation of the equation for the yaw 
of repose.  These assumptions make the yaw of repose dependent only on the lift force 
and the overturning mome
p
 
If a bullet has left hand spin, the bullet still deflects to follow the wind.  However, the yaw 
of repose reverses direction, and the aerodynamic forces associated with the yaw of 
repose reverse direction.  The displacement of the bullet on the target then is toward 2 
o’clock for a left-to-right crosswind, and toward 8 o’clock for a right-to-left crosswind
 
The bullet deflections by a crosswind depend on the ballistic coefficients of the bullet, 
which can be measured in a manufacturer’s shooting laboratory.  The deflections 
therefore can be calculated, and this is done in Infinity.  However, the horizontal and 
vertical drifts due to the yaw of repose cannot be calculated because the necessary 
a
very expensive laboratory instrumentation.  Luckily, the drifts are small compared to th
deflections.  But, the drifts can be observed by skilled target shooters.  So, it may b
important to measure them experimentally on the shooting range and use both elevat
and  windage corrections when adjusting the sights on the gun for targets at various 
range distances. 


