
Recursively Querying Monitoring Data in
NFV Environments

Xuejun Cai, Wolfgang John and Catalin Meirosu
Ericsson Research

Email: (xuejun.cai, wolfgang.john, catalin.meirosu)@ericsson.com

ABSTRACT

In Network Function Virtualization (NFV), a network service

is created by combining interconnected virtual network func-

tions (VNF), which may include nested VNFs or end points.

Querying the performance of a high-level, abstract network

service is challenging due to the recursivity of the NFV

architecture and the elasticity and dynamicity provided by the

NFV infrastructure, typically realized by Cloud virtualization

technologies. In this paper, we propose to use Datalog, a

declarative logic programming language, to build a query

engine which can provide recursive query capabilities on per-

formance metrics of network services. We present the language

and describe some example use cases for both compute and

network metrics. We describe the design of a query engine

utilizing the language, based on which we implemented a

proof of concept system. The resulting experimental system

has shown the effectiveness of the query language to recur-

sively retrieve monitoring results of NFV environments.

I. INTRODUCTION

Network Functions Virtualization (NFV) is gaining momen-

tum throughout the telecommunications community because

it can significantly improve service-delivery speed and agility.

The NFV concept is based on Virtualized Network Functions

(VNFs) as main building blocks, which can be combined to

create full-scale networking services. In NFV environments,

e.g., the architectures defined in ETSI [1] or the EU FP7

project UNIFY [2], [3], a network service (e.g., EPC, CDN,

and VPN) can be described by a (Virtual) Network Function

Forwarding Graph (VNFFG in ETSI, NF-FG in UNIFY) of

interconnected (Virtual) Network Functions (NFs) and end

points. A (V)NFFG (in the remainder of this paper only re-

ferred to as NFFG) can have network function nodes connected

by logical links. A simple example of a forwarding graph

is a chain of network functions. Figure 1 shows a sample

NFFG described in ETSI NFV architectural framework and

illustrates the representation of an end-to-end network service

that includes a nested NFFG as indicated by the network

function block nodes in the middle of the figure interconnected

by logical links (VNF-FG-2 in Figure 1).

This example highlights that the ETSI NFV architecture

allows nesting of NFFGs within each other. Such a recur-

sive structure is also emerging in very related technology

domains such as SDN and Cloud. For instance, the Open

Networking Forum (ONF) SDN architecture [4] considers

hierarchical recursion of controllers, allowing to recombine

low-level resources into increasingly abstract (networking)

resources and services at higher levels, similar to the NFV

environments considered by ETSI and UNIFY. With respect to

Cloud platforms, the Openstack framework includes a project

called Inception [5] that is handling Openstack-in-Openstack

clouds. Furthermore, companies such as Ravello Systems

(acquired by Oracle while this article was being reviewed)

developed software to help installing nested environments

(running OpenStack on top of Amazon Web Services or

Google Cloud infrastructure) [6] mainly for software testing

purposes.

In the light of future recursively structured NFV environments,

the service operators or developers will be interested in

monitoring the performance (including resource consumption

as well as network performance metrics) of whole network

services or specific service segments realized by groups of

VNFs, which may in turn consist of multiple finer granular

VNF components (in fact representing a recursively nested

NFFGs). In an existing NFV architectures such as ETSI, after

the VNF is instantiated by the VNF Manager and virtualized

resources are allocated by the Virtual Infrastructure Manager

(VIM) module (e.g., OpenStack Orchestrator [7]), a monitor-

ing module (e.g., OpenStack Ceilometer or Docker cAdvisor)

will collect the resource usage or other performance metrics of

primitive components (e.g., individual VMs representing the

finest granularity of VNFs) measured in NFV infrastructure.

However, these monitoring modules (e.g., Ceilometer and

cAdvisor) do not make available performance metric values

of high level services. Other tools such as Heapster [8] from

Google can aggregate performance data of containers managed

by Kubernetes [9], but it provides only a limited and static

aggregation. The metrics aggregation is usually for the entire

cluster or per Kubernetes Pod and cannot be defined based on

services.

A service operator currently has two options to query the

performance of the high-level service (composed by a nested

NFFG definition). In the first option, it has to identify all

primitive resources manually, query their usage from infras-

tructure monitoring functions, and then compile the aggregated

results. There are several disadvantages with this method. First,

the service operator has to know a detailed and up-to-date

resource composition in the infrastructure layer which may978-1-4673-9486-4/16/$31.00 c© 2016 IEEE

Fig. 1. The recursive NFFG described in ETSI NFV architecture [1]

not be available especially in recursive architecture (e.g., due

to business boundaries, security policies or other reasons).

Secondly, the service operator has to interact directly with

monitoring functions or databases, increasing the complexity

of their tasks, especially in vastly distributed and geographi-

cally spread NFV environments.

In the second option, the operator requests the infrastructure

during the creation of the network service to measure and

query the individual performance metrics, and then calculate

the aggregated result on its behalf [10], [11]. Also this

method has some shortcomings. Firstly, the mapping of high-

level aggregated performance metrics to primitive metrics is

static. Once the network service is modified (e.g., dynamic

scaling or migration of VNFs), the cloud operator needs to

re-map the metrics and instruct the infrastructure to modify

the aggregation behavior. The recursivity of the architecture

will make these shortcomings worse since the synchronization

between different layers is complex. Secondly, it is inflexible

as the operator has to make such request during the deploy-

time of a service, and it is difficult to specify new requests

during service runtime.

There are several network monitoring languages available

today. Examples include Frenetic/Pyretic [12] and the Akamai

query system [13]. But none of these languages or schema pro-

vides the capability to recursively query performance metrics

in hierarchical and recursive architectures like in NFV en-

vironments. Inspired by research in declarative programming

[14]–[16], we propose to use Datalog [17], a declarative logic

programming language with recursive query capability [18],

as the base for the monitoring query language.

The query language aims to help the service developer, oper-

ator, and other users to monitor the performance from a high-

level layer. It can perform recursive queries based on input in

form of the resource graph depicted as NFFG. By re-using the

NFFG model and the monitoring databases already deployed

in NFV infrastructure, the language can hide the complexity

of the multilayer cloud architecture with limited extra effort

and resources. Even for single layer NFV architectures, using

such language can simplify performance queries and enable

a more dynamic performance decomposition and aggregation

for the higher layer. The recursive query language can be

used to support many DevOps [19], [20] processes, most

notably observability and troubleshooting tasks relevant for

both operators and developer roles, e.g., for troubleshooting

tasks where various information from different sources need

to be retrieved (e.g., to close in on the root cause of an error

condition). Additionally, the query language might be used

by specific modules located in the control and orchestration

layers, e.g,. a module realizing infrastructure embedding of

NFFGs might query monitoring data for an up-to-date picture

of current resource usage. Also scaling modules of specific

network functions might take advantage of the flexible query

engine pulling of monitoring information on demand (e.g.,

resource usage, traffic trends, etc.), as complement to relying

on devices and/or elements to push this information based on

pre-defined thresholds.

The remainder of the paper is organized as follows. Section

II introduces the proposed query language. In section III, we

discuss two example use cases of the language. In section IV,

the design of a query engine is described. We then discuss the

experimental results in section V. Section VI concludes the

paper.

II. THE RECURSIVE QUERY LANGUAGE

A. Overview

To address the challenge of automatic and flexible perfor-

mance decomposition and abstraction in a recursive NFV

architecture, we argue for a declarative logic-based language.

The query language proposed in this paper is based on Datalog

[18] which provides recursive query capability. Datalog has

been used in cloud computing in recent years, e.g., the

OpenStack policy engine Congress [21]. Query evaluation

with Datalog is based on first order logic, and is thus sound

and complete. However, Datalog is not Turing complete,

and is thus used as a domain-specific language that can

take advantage of efficient algorithms developed for query

resolution. In Datalog, rules can be expressed in terms of other

rules, allowing a recursive definition of rules, together with re-

usability.

Like other Datalog based language, the recursive monitoring

query program consists of a set of declarative Datalog rules

and a query. A rule has the form: h <= p1, p2, · · · , pn
which can be defined as “p1 and p2 and ... and pn implies

h”. “h” is the head of the rule, and ”p1, p2, · · · , pn” is a

list of literals that constitutes the body of the rule. Literals

“p(x1, , xi, ..., xn)” are either predicates applied to arguments

“xi” (variables and constants), or function symbols applied

to arguments. The program is said to be recursive if a cycle

exists through the predicates, i.e., predicate appearing both in

the head and body of the same rule. The order in which the

rules are presented in a program is semantically irrelevant.

The commas separating the predicates in a rule are logical

conjuncts (AND); the order in which predicates appear in a

rule body has no semantic significance, i.e., no matter in what

order rules been processed, the result is atomic, i.e., the same.

The names of predicates, function symbols and constants begin

with a lower-case letter, while variable names begin with an

upper-case letter. A variable appearing in the head is called

distinguished variable while a variable appearing in the body

is called non-distinguished variable. The head is true for given

values of the distinguished variables if there exist values of

the non-distinguished variables that make all sub goals of the

body true. In every rule, each variable stands for the same

value. Thus, variables can be considered as placeholders for

values. Possible values are those that occur as constants in

some rule/fact of the program itself. In the program, a query

is of the form “query(m, y 1, ..., y n)”, in which “query” is

a predicate contains arguments “m” and “yi”. “m” represents

the monitoring metric to be queried, e.g., end to end delay,

average CPU usage, and etc. “yi” are the arguments for the

query function. The meaning of a query given a set of Datalog

rules and facts is the set of all facts of “query()” that are

given or can be inferred using the rules in the program. The

predicates can be divided into two categories: extensional

database predicates (EDB predicates), which contains ground

facts, meaning it only has constant arguments; and intentional

database predicates (IDB predicates), which correspond to

derived facts computed by Datalog rules.

In order to perform a recursive monitoring query, the resource

graph described by a NFFG needs be transformed so it is

represented as a set of Datalog ground facts which are used by

the rules in the program. The following keywords are defined

to represent the NFFG graph into Datalog facts, which are

then used in the query scripts:

• sub(x, y) which represents ‘y’ is an element of the

directly descend sub-layer of ‘x’;

• link(x, y) which represents that there is a direct link

between elements ‘x’ and ‘y’;

• node(z) which represents an node in NFFG.

It should be noted that more keywords can be defined in order

to describe other properties of an NFFG. The ground facts are

usually generated by the query engine by analyzing the NFFGs

on various level of abstraction (i.e., granularity).

In addition to ground facts, some rules shall be defined by

receivers (e.g., the network service operators) in order to

describe how to translate the high-level performance query

into primitive resource metric queries, and how to aggregate

the primitive query results in order to be able to return a single

high-level result.

A set of function calls can be defined in order to support the

decomposition of queries onto low level primitive resource

metrics, for example, the CPU or memory usage of given

VM. The function call will start with “fn ” in the syntax

and may include ‘boolean’ predicates, arithmetic computations

and some other simple operation. The function calls can be

added by either the provider of the query engine or the service

developer.

If the sub-NFFGs (nested levels of a NFFG) of a network

service are provided by a different NFV infrastructure provider

and are not available to the provider who like to measure some

aspect of the NFFG (e.g., due to privacy and security reasons),

additional extensions to the language and query engine would

be required. This scenario is not considered in this paper and

left for further study.

B. Formal syntax

The following syntax specification describes the Datalog

based recursive monitoring language and uses the augmented

Backus-Naur Form (BNF) as described in [22].

〈program〉 ::= 〈statement〉*

〈statement〉 ::= 〈rule〉 | 〈fact〉

〈rule〉 ::= [〈rule-identifier〉] 〈head〉 <= 〈body〉

〈fact〉 ::= [〈fact-identifier〉]〈clause〉
| 〈fact predicate〉(〈terms〉)

〈head〉 ::= 〈clause〉

〈body〉 ::= 〈clause〉

〈clause〉 ::= 〈atom〉 | 〈atom〉, 〈clause〉

〈atom〉 ::= 〈predicate〉 (〈terms〉)

〈predicate〉 ::= 〈lowercase-letter〉〈string〉

〈fact predicate〉 ::= (‘sub’ | ‘node’ | ‘link’)(〈terms〉)

〈terms〉 ::= 〈term〉 | 〈term〉, 〈terms〉

〈term〉 ::= 〈VARIABLE〉 | 〈constant〉

〈constant〉 ::= 〈lowercase-letter〉〈string〉

〈VARIABLE〉 ::= 〈Uppercase-letter〉〈string〉

〈fact-identifier〉 ::= ‘F’〈integer〉

〈rule-identifier〉 ::= ‘R’〈integer〉

III. EXAMPLE USAGE OF THE LANGUAGE

To recursively query the performance metrics of the network

functions or infrastructure, the developers or operators need

to write query scripts containing the Datalog rules according

to the defined language. In this section we illustrate how

queries can be expressed using two general examples related

to querying CPU/memory metrics as well as network delay of

network services realized by NFFGs. The sample usages are

based on the NFFG graphs shown in Figure 2 and 4.

A. Querying the CPU/memory usage of network functions

In the context of this paper, we define ”user” as a role that

an operator or developer takes in order to interact with our

query engine. Because a NFV network service usually consists

of multiple compute nodes, the users may be interested in

different aggregation methods for individual resource utiliza-

tion metrics. For instance, a possible usage is to query the

CPU/memory usage over all compute nodes belonging to a

specified network function or service, aggregated by statistical

set operations such as mean, median, min or max. Figure 3

shows an example of query scripts for maximum and mean

CPU based on our defined language.

In the script, F1-F2 are rules to translate the NFFG in Figure

2 into ground facts of Datalog. These rules can be generated

automatically from the NFFG. R1-R2 can recursively traverse

the graphs and figure out all child nodes (i.e., VNF1-1, VNF1-

3, VNF1-2, vm1, vm2, vm3, vm7, vm8, VNF2-1, VNF2-2,

In this paper, only the query for delay and CPU usage

are discussed. Obviously, the idea can be applied to other

monitoring metrics, where parts of these scripts can be re-

used. Some query scripts can be provided as a query library,

so that users may employ a familiar Command Line Interface

(CLI)-like syntax to query these monitoring metrics.

As it becomes apparent from these examples of usage, the

language provides great flexibility while hiding the complexity

of the underlying infrastructure to the receivers. It allows

automatic mapping of detailed performance metrics from the

infrastructure to abstracted, higher level views by following

the abstraction presented by NFFGs at various intermediate

architecture layers. This provides users with a very flexible

way of receiving monitoring data without the need to know

details beyond the level of abstraction present in their layer of

operation.

IV. THE DESIGN AND IMPLEMENTATION OF THE QUERY

ENGINE

To perform recursive monitoring query, a query engine is also

required in addition to the language. The main functions of the

query engine include:

• receiving a monitoring query from the receivers and

sending back query results;

• parsing and compiling the query scripts;

• communicating with NFFG repository and translating

NFFG graphs into Datalog facts;

• traversing NFFG graphs according to query scripts;

• querying monitoring databases which contain the mea-

surement results from monitoring functions.

We have designed and implemented a query engine as illus-

trated in Figure 6. It consists of the following components:

the Query Execution, the Request Handler, NFFG parser, In-

memory Data Store (DS), DB Query and Query Library.

The Query Execution provides the compiler and running

environment of the query language. The Query Execution

is implemented using PyDatalog, an open source Datalog

compiler. The Request Handler receives and parses the query

request from developers or operators. The query request could

be the scripts written with the proposed language or a simple

query request command. The query command could be in the

format of “query command [args]”, like the example of Q1 in

Fig. 5 (“aggregate delay ‘src’ ‘dst’”) to query the aggregated

delay between the source network function and destination

network function in service graph.

The NFFG parser is used to retrieve the NFFGs from the

NFFG repository which is maintained by NFV orchestrator. It

shall parse the NFFG and translates the graphs into Datalog

ground facts (e.g., F1-3 in Fig. 5) and stores them in an

in-memory Data Store (DS). Such translation is done auto-

matically according to the definition (in Section II.A) of the

three keywords for ground facts, i.e., sub(), link(), and node().

Whenever there is update of the NFFG, e.g., due to the scale-

in and scale-out made by the orchestrator, the NFFG parse

shall be notified and the Datalog ground facts will be modified

accordingly.

The query scripts are written in the language described in this

paper. Pre-defined Datalog query rules or scripts (e.g., R1-8)

can be stored in the Query Library, so that the receivers can

just use simplified commands to perform the query. The Query

Library contains the query scripts provided by developers

or operators, and an API can be provided for each stored

query script. The Datalog Execution will call the correspond-

ing library according to received query command or scripts,

and decompose the high level query request into primitive

queries towards the monitoring data stored in the monitoring

database. The Request Handler is also responsible for sending

aggregated or abstracted query results to the receivers.

In addition, the DS can also be used to store the intermediate

results obtained by querying the monitoring database(s). The

intermediate results can be used as cached results or to

aggregate the data to be returned to the receivers. The DB

Query retrieves low level monitoring data from the monitoring

database and store intermediate results into the DS.

The query engine provides a tool for the users to query

the various VNF performance metrics from the lower NFV

architecture layers (e.g., NVFI) at higher layers. As a natural

location, the query engine could be an application in a service

layer. It is to be noted that the query engine does not collect

monitoring data directly from the infrastructure layer. Instead

it relies on the data collected by the monitoring functions

deployed within the NFV infrastructure.

Below is a sequence flow of the query procedure based on the

design of the query engine and is illustrated in Figure 7 :

1) The Monitoring Functions (e.g., Ceilometer for Open-

Stack or cAdvisor for containers) deployed in the cloud

collect the data from the infrastructure and store it in

one ore multiple monitoring database(s) residing in the

NFVI. The name of the collected metrics and other

attributes (e.g., the tag name when OpenTSDB is used)

shall be known by the query engine;

2) The users develop the query commands or APIs and

store into the query library;

3) The query engine gets the NFFG and transforms it into

Datalog based facts;

4) The users send query scripts or commands to the query

engine;

5) The query engine parses the query commands or scripts;

6) The query engine execute the Datalog rules and calls

corresponding APIs in the query library if needed;

7) The query engine generates primitive query and retrieve

corresponding monitoring data from the monitoring

database;

8) The query engine aggregates the primitive metrics into

a high-level metric based on the aggregation function

(“fn ”)

9) The aggregated monitoring data is returned to the re-

ceivers by the query engine.

V. IMPLEMENTATION AND DISCUSSION

In this work, we have implemented a prototype of the query

engine in which the compiler and running environment is

Fig. 6. The design of the Query Engine.

Receivers Query Engine Query

Library

NF-FG

Repository

Monitoring

Database

Monitoring

Function

1: Store monitoring

data into database

2: Develop query APIs and

store in the library

3: Get NF-FG and convert

into Datalog facts

4: Send query commands

5: Parse query commands

6: Call APIs in

query library

7: Retrieve primitive monitoring data

8: Aggregate monitoring data

9: Return aggregated data

http://msc-generator.sourceforge.net v4.5

Fig. 7. The Recursive Query Sequence Flow.

based on PyDatalog, an extension of python to provide Datalog

support. The experimental environment of the NFV infrastruc-

ture is setup by using Docker container [24] based VNFs. The

NFFG files are based on the format specified in UNIFY project

[3]. Google cAdvisor [25] is used to collect the primitive re-

source usage (e.g., CPU and memory) of individual containers,

and for delay, simulated data are generated. OpenTSDB [26],

an open source distributed and scalable time series database,

is used as the monitoring database to store the collected

performance metrics. We have used the HTTP RESTful API

to query the performance metrics stored in OpenTSDB.

We have implemented the two example use cases described

above based on our query engine prototype, i.e., the end to end

delay between network services and aggregated CPU/memory

usage of network services. We have proved the effectiveness

of the recursive monitoring language and the query engine.

Below we will discuss the scalability of the recursive query

which is an important criteria considered in real system. We

will use the query latency as the factor during the discussion.

The query latency is defined as the time interval between a

performance query is sent to the query engine and a response

is received by the sender (corresponding to steps 4-9 in Fig.

7). It consists of the several parts and can be represented as:

Lq = ls + ld + ldb + lr (1)

in which ls denotes the latency from a performance query

request is sent by a receiver and it is received by the query

engine; ld is the time taken by the query engine to execute the

Datalog rules and decompose the query request into primitive

queries; ldb is the time taken by the query engine to retrieve

the primitive query results from the database; lr is the time

taken to send back the aggregated or abstracted results to

the receivers. For a single query from the receivers, ls and

lr are independent from the scale of the NFV infrastructure

and usually does not change much in the same setup. ld and

ldb will depends on the scale of the network infrastructure.

ld will also vary given different Datalog rules in the same

Datalog execution environment. ldb will depend on the number

of the primitive queries generated by the query engine, and

the latency of each primitive database query in turn depends

heavily on the monitoring database implementation.

Below we measured the latency ld and ldb. In the evaluation,

two types of NFFG are simulated. The first type is similar to

the example shown in Figure 2 which has nested NFFGs but

there is no multiple paths between network functions and is

refereed as nffg1. The second type of NFFG is similar to the

example shown in Figure 4, and it has multiple paths between

network functions but without nested NFFG and is refereed as

nffg2. In the emulation, we measured the query latency when

the size of the NFFG (i.e., the infrastructure size) is increased

from 10 to around 1000 for both nffg1 and nffg2. When we

increased the size of nffg1 and nffg2, the shapes are kept the

similar, and only the number of VNFs and nodes belonging to

VNFs are changed. For nffg1, the number of layer is still two,

and the number of nested VNFs and the number of nodes

in each VNFs are generated randomly. For nffg2, we only

changes the number of nodes of VNF1-2 and VNF2-1 from

10 to around 500 respectively.

In Figure 8 we show the measured latency (ld) for the

query engine to execute the Datalog rules that decompose and

aggregate the average CPU of a network service with both

types of NFFG. In Figure 9 we show the measured latency

ld for the query engine to execute the Datalog rules for the

end to end delay query between network functions. From both

figures we can see that the Datalog engine execution latency

The size of NF-FG

0 100 200 300 400 500 600 700 800 900 1000

❉
❛
t❛
❧♦
❣
❡
①
❡
❝
✉
t✐
♦
♥
❧❛
t❡
♥
❝②
� ❞
✭s
✮

0

0.05

0.1

0.15

0.2

0.25

nffg1

nffg2

Fig. 8. The Datalog execution latency (ld) for querying average CPU of
network services.

(ld) increases almost linearly when the size of the NFFG

increases. While the increasing rates show minor differences,

we consider that the main reason is that in order to obtain

the aggregated CPU and delay values the Datalog execution

needs to traverse the NFFG definition(s) and decompose the

performance query into primitive queries to individual nodes

in the NFFG. With the increase of the size of NFFG, more

nodes or links have to be traversed by the Datalog execution

environment. However, it has to be noted that this latency was

measured only for the Datalog engine PyDatalog. For other

Datalog engines, the trend may be different.

We observe that high query latencies may thus appear when

the size of the network service is extremely large (e.g, greater

than thousands of instances that need to be interrogated

simultaneously). One possible way to decrease such latencies

would be to cache the Datalog execution result into the DS in

cases when changes to the NFFG might not be that frequent.

Note that at the time of writing this paper, we were not

aware of any available implementation of potential alternative

methods to query the high level performance of NFV service.

Therefore we did not perform a quantitative comparison of our

results with comparable alternatives.

In Figure 10 the latency (ldb) to query the primitive metrics

from the monitoring database is measured. It shows that the

latency also grows when the number of the nodes included in

the query increase and the rate is greater than that of Datalog

execution latency (ld). It implies that the database query

latency ldb may have more impact on the overall query latency.

Some monitoring databases (e.g., OpenTSDB) provide some

aggregation functions though limited, which can be used to

reduce the database query latency when the size of the network

service is really huge. In addition, optimized placement and

pre-aggregation methods of monitoring components can also

be used to reduce the size of the collected monitoring data

[27], hence the database query latency.

In summary, the experimental prototype verified that the

proposed recursive monitoring query is practical and effective.

To tackle the potential high query latency for very large scale

network service, the Datalog execution results can be cached

in the query engine if the NFFG does not change frequently.

The size of NF-FG

0 100 200 300 400 500 600 700 800 900 1000

✁
✂
✄
✂
☎✆
✝
✞
✟
✞
✠
✡
✄
☛✆
☞
☎✂
✄
✞
☞
✠
✌
✍ ✎
✏
✑
✒

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

nffg1

nffg2

Fig. 9. The Datalog execution latency (ld) for querying aggregated network
delay between network services.

The number of the nodes included in the query
0 100 200 300 400 500 600 700 800 900 1000

✓✔
✕✖
✗
✘
✙
✕
✚
q
✛
✖
r✙
♠
✚
✗
✜✕
✚
r
✜✗
✢
✣
✔
✕✔
✤
✔
✥✖
✦ ✧❜
★✥
✩

0

0.2

0.4

0.6

0.8

1

Fig. 10. The latency (ldb) for querying primitive metrics in monitoring
database.

VI. CONCLUSION

In this paper, we proposed a Datalog based recursive moni-

toring language to automatically and dynamically decompose

high level NFV performance KPIs into low level primitive

performance metrics of cloud infrastructure in order to effi-

ciently query the performance metrics of high level network

services realized by NFV concepts. A query engine is also

designed to utilize this language and implemented as a proof

of concept prototype. The experimental prototype has verified

that the proposed recursive monitoring query language and

query engine are practicable and effective.

In future, we would like to explore more usages of the

query language in NFV monitoring. Furthermore, we think

it is worthy to support distributed query engine if the NFV

environment is built on distributed cloud platform.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the EU Seventh Framework Programme under grant

agreement nr. 619609 (UNIFY).

REFERENCES

[1] ETSI, “Network function virtualisation (NFV): archi-

tectual framework,” ETSI ISG, GS NFV 002, 2014.

[2] EU FP7 Project UNIFY: unifying cloud and carrier

networks. [Online]. Available: https://www.fp7-unify.

eu/ (visited on Mar. 14, 2016).

[3] UNIFY, “D2.2, final architecture,” EU FP7 UNIFY

Project Deliverable, 2014.

[4] ONF, “SDN architecture issue 1.1,” ONF Architec-

ture&Framwork WG, Tech. Rep. ONF TR-521, 2016.

[5] OpenStack Inception. [Online]. Available: https://wiki.

openstack.org/wiki/Inception (visited on Mar. 14, 2016).

[6] Hvx: Virtual infrastructure for the cloud. [Online].

Available: https://www.ravellosystems.com/technology/

hvx (visited on Mar. 14, 2016).

[7] Openstack. [Online]. Available: http://www.openstack.

org/ (visited on Mar. 14, 2016).

[8] Heapster. [Online]. Available: https : / / github . com /

kubernetes/heapster (visited on Mar. 14, 2016).

[9] Kubernetes. [Online]. Available: http : / /kubernetes . io/

(visited on Mar. 14, 2016).

[10] J. Zurawski, J. Boote, E. Boyd, M. Glowiak, A. Hane-

mann, M. Swany, and S. Trocha, “Hierarchically fed-

erated registration and lookup within the perfSONAR

framework,” in Integrated Network Management, 2007.

IM ’07. 10th IFIP/IEEE International Symposium on,

May 2007, pp. 705–708.

[11] A. Brinkmann, C. Fiehe, A. Litvina, I. Luck, L. Nagel,

K. Narayanan, F. Ostermair, and W. Thronicke, “Scal-

able monitoring system for clouds,” in Utility and Cloud

Computing (UCC), 2013 IEEE/ACM 6th International

Conference on, Dec. 2013.

[12] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J.

Rexford, A. Story, and D. Walker, “Frenetic: A network

programming language,” in Proceedings of the 16th

ACM SIGPLAN International Conference on Functional

Programming, ser. ICFP ’11, 2011, pp. 279–291.

[13] J. Cohen, T. Repantis, S. McDermott, S. Smith, and

J. Wein, “Keeping track of 70,000+ servers: The akamai

query system,” in Proceedings of the 24th International

Conference on Large Installation System Administra-

tion, ser. LISA’10, 2010, pp. 1–13.

[14] C. Liu, B. T. Loo, and Y. Mao, “Declarative automated

cloud resource orchestration,” in Proceedings of the 2Nd

ACM Symposium on Cloud Computing, ser. SOCC ’11,

2011.

[15] J. Seo, S. Guo, and M. Lam, “Socialite: Datalog ex-

tensions for efficient social network analysis,” in Data

Engineering (ICDE), 2013 IEEE 29th International

Conference on, Apr. 2013.

[16] Y. Jiang, H. Qiu, M. McCartney, W. G. J. Halfond,

F. Bai, D. Grimm, and R. Govindan, “Carlog: A plat-

form for flexible and efficient automotive sensing,” in

Proceedings of the 12th ACM Conference on Embedded

Network Sensor Systems, ser. SenSys ’14, 2014.

[17] S. Ceri, G. Gottlob, and L. Tanca, “What you always

wanted to know about Datalog (and never dared to

ask),” Knowledge and Data Engineering, IEEE Trans-

actions on, vol. 1, no. 1, pp. 146–166, Mar. 1989.

[18] T. J. Green, S. S. Huang, B. T. Loo, and W. Zhou, “Dat-

alog and recursive query processing,” Found. Trends

databases, vol. 5, no. 2, pp. 105–195, Nov. 2013.

[19] C. Meirosu, A. Manzalini, R. Steinert, G. Marchetto,

I. Papafili, K. Pentikousis, and S. Wright, “DevOps for

software-defined telecom infrastructures,” Internet-Draft

draft-unify-nfvrg-devops-03, Oct. 2015.

[20] R. Steinert, W. John, P. Sköldström, B. Pechenot, and

et.al, “Service provider DevOps network capabilities

and tools,” CoRR, vol. abs/1510.02818, 2015. [Online].

Available: http://arxiv.org/abs/1510.02818.

[21] OpenStack Congress. [Online]. Available: https://wiki.

openstack.org/wiki/Congress (visited on Mar. 14, 2016).

[22] D. Crocker and P. Overell, “Augmented BNF for syntax

specifications: Abnf,” RFC 2234, Nov. 1997.

[23] K. Hedayat, R. Krzanowski, A. Morton, K. Yum, and

J. Babiarz, “A two-way active measurement protocol

(TWAMP),” RFC 5357, Oct. 2008.

[24] Docker container. [Online]. Available: https : / / en .

wikipedia . org / wiki / Docker (software) (visited on

Mar. 14, 2016).

[25] Google cAdvisor. [Online]. Available: https : / / github.

com/google/cadvisor (visited on Mar. 14, 2016).

[26] OpenTSDB. [Online]. Available: http : / / opentsdb. net/

(visited on Mar. 14, 2016).

[27] W. John, C. Meirosu, B. Pechenot, P. Skoldstrom, P.

Kreuger, and R. Steinert, “Scalable software defined

monitoring for service provider DevOps,” in Software

Defined Networks (EWSDN), 2015 Fourth European

Workshop on, Sep. 2015, pp. 61–66.

