This document provides an overview of LTE architecture and interfaces. It begins with a brief history of 3GPP and IEEE standards evolutions leading to LTE. It then discusses the key capabilities and performance targets of LTE such as higher data rates, lower latency, and improved spectrum efficiency. The document outlines the LTE system architecture including the Evolved UTRAN and Evolved Packet Core. It describes the network interfaces between these components and other 3GPP networks for interworking and roaming. In summary, the document covers the evolution and standardization history driving LTE, its important technical capabilities, and high-level network architecture.
4. 3GPP evolution
• 1G (Early 1980s)
– Analog speech communications.
– Analog FDMA.
– Ex: AMPS
• 2G: Started years ago with GSM: Mainly voice
– – Digital modulation of speech communications.
– – Advanced security and roaming.
– – TDMA and narrowband CDMA.
– – Ex: GSM, IS-95 (cdmaOne), and PDC
• 2.5G: Adding Packet Services: GPRS, EDGE
• 3G: Adding 3G Air Interface: UMTS
• 3G Architecture:
• Support of 2G/2.5G and 3G Access
• Handover between GSM and UMTS technologies
• 3G Extensions:
• HSDPA/HSUPA
• IP Multi Media Subsystem (IMS)
• Inter-working with WLAN (I-WLAN)
• Beyond 3G:
• Long Term Evolution (LTE)
• System Architecture Evolution (SAE)
• Adding Mobility towards I-WLAN and non-3GPP air interfaces
5. 3GPP2 evolution
• CDMA2000 1X (1999)
• CDMA2000 1xEV-DO (2000)
• EV-DO Rev. A (2004): VoIP
• EV-DO Rev. B (2006): Multi-carrier
• Ultra Mobile Broadband (UMB), f.k.a. EV-DO Rev.C
– Based on EV-DO, IEEE 802.20, and FLASH-OFDM
– Spec finalized in April 2007.
– Commercially available in early 2009.
6. IEEE 802.16 Evolution
• 802.16 (2002): Line-of-sight fixed operation in 10 to 66
GHz
• 802.16a (2003): Air interface support for 2 to 11 GHz
• 802.16d (2004): Minor improvements to fixes to 16a
• 802.16e (2006): Support for vehicular mobility and
asymmetrical link
• 802.16m (in progress): Higher data rate, reduced
latency, and efficient security mechanism
7. Beyond 3G
• International Mobile Télécommunications (IMT)-2000
introduced global standard for 3G.
• Systems beyond IMT-2000 (IMT-Advanced) is set to introduce
evolutionary path beyond 3G.
• Mobile class targets 100 Mbps with high mobility and nomadic/
local area class targets 1 Gbps with low mobility.
• 3GPP and 3GPP2 are currently developing evolutionary/
revolutionary systems beyond 3G.
– 3GPP Long Term Evolution (LTE)
– 3GPP2 Ultra Mobile Broadband (UMB)
• IEEE 802.16-based WiMax is also evolving towards 4G through
802.16m.
8. Beyond 3G
• Release 99 (Mar. 2000): UMTS/WCDMA
• Rel-5 (Mar. 2002): HSDPA
• Rel-6 (Mar. 2005): HSUPA
• Rel-7 (2007):
DL MIMO, IMS (IP Multimedia Subsystem),
optimized real-time services (VoIP, gaming, push-to-talk).
• Long Term Evolution (LTE)
– 3GPP work on the Evolution of the 3G Mobile System started in
November 2004.
– Standardized in the form of Rel-8.
– Spec finalized and approved in January 2008.
– Target deployment in 2010.
• LTE advanced
11. Why LTE ……?
• Need for PS optimized system
• Evolve UMTS towards packet only
system
• Need for higher data rates
• Can be achieved with HSDPA/HSUPA
• and/or new air interface defined by
3GPP LTE
• Less processor load cost
• Less number of transitions between
different states will lead definitely to
less processor load
• Need for high quality of services
• Use of licensed frequencies to
guarantee quality of services
• Always-on experience (reduce control
plane latency significantly)
• Reduce round trip delay (→ 3GPP LTE)
• Need for cheaper infrastructure
• Simplify architecture, reduce number
12. LTE Defined Data Rates
• Downlink
– 100Mbps theoretical
• Uplink
– 50Mbps theoretical
• Generally we can say the downlink rate relative to
HZ 5 bits/s/HZ and for Uplink 2.5bits/s/HZ
13. LTE duplexing and accessing
• Duplexing Methods
– FDD
• UL and DL can reach the peak traffic simultaneously
– TDD
• UL and DL can not reach the peak traffic
simultaneously
• Accessing techniques
– OFDMA for the DL
– SC-FDMA for the UL
14. Modulation and coding
• Adaptive Modulation and Coding
– DL Modulations: QPSK, 16-QAM and 64-QAM
modulation
– UL Modulations: QPSK and 16-QAM
– Turbo code
15. LTE Maximum Latency (1-2)
• For control Plane
– The delay of changing the mobile mode from the
active to non active and vice versa
• If the terminal was in the idle mode it needs 100msec
• If the terminal was in the dormant it needs 50msec
• For User Plane
– Time the terminal takes to transmit small packets
to the RAN and Vice versa is 5 msec
16. LTE Maximum Latency (2-2)
• What is the idle mode
– Terminal unknown for the RAN
– No Radio resources assigned
• What is the dormant mode
– Terminal is known for the RAN
– No Radio resources assigned
17. LTE theoretical Capacity
• Active Mode
– At 5MHZ BW the Cell can
support 200 users
simultaneously.
– At BW more than 5 MHZ
the Cell can support up to
400 Simultaneously
terminal.
• IDLE Mode
– Can support more than 400
Users at the same time
18. LTE System Performance targets(1-2)
• User throughput
– 95% from the users will take
average throughput
– 5% will be little bit smaller
than the average
• Spectrum efficiency
– It define high spectrum
efficiency Bits/MHZ/Cell
• Coverage
– 5 Km with high throughput
– 30 Km with low throughput
– 100Km with very low
throughput
19. LTE System Performance targets(2-2)
• Mobility
– 0-15km/ hour the more
better subscriber behavior.
– 120 km/ hour the accepted
behavior.
– 350 km/ hour very low data
rate and data throughput.
• Enhanced MBMS
– Up to 16 multimedia
channels per just one carrier
20. LTE deployment aspects
• Flexible spectrum
– The carrier could be 1.25
MHZ , 1.6 MHZ, 2.5 MHZ
,5MHZ , 10MHZ , 15MHZ or
20 MHZ
– Can use the IMT2000 Band
• 1910-1920 and 2010-2025 are
the TDD Band
• 1920- 1960 FDD UL and 2110-
2170 FDD DL
• Stand alone
• Coexisted with WCDMA and
GSM
– HO from LTE to GSM 500msec
for NRT and 300 for RT and
the same for GSM
21. • LTE Frequency Reuse Pattern
– Generally it is equal to 1
– IIC (Inter cell interference coordinator) is used to reduce
the interference and make the reuse for cell outer area > 1
Interference handling
22. Architecture and Migration
• LTE RAN agreed on the following
– Packet bearer support
• Real Time
• Conversational
– Reduce the number of the new
interfaces
– NO RNC
– NO CS-CN
– Reduce the single point of failure
– NO RNC
– Separate the treatment of different
types of traffic (O&M, Control and
Data) to utilize the BW
– Reduce the variable delay and Jitter
(TCP/IP)
– Agreed QOS between Transmitting end
and receiving end
– No SHO or Macro diversity
– MIMO and Tx diversity techniques
used
23. Complexity
• Easy design
• Less complex
• No redundant feature
• Minimize Cost and maintain system
performance
– Low complexity
– Low power consumption