SlideShare a Scribd company logo
LTE Architecture &
Interfaces
Prepared By: RF Team
AbdelRahman Fady & Mohamed Mohsen
Course Contents
• Historical vision
• LTE Capabilities
• System architecture
General Revision
3GPP and IEEE evolutions
3GPP evolution
• 1G (Early 1980s)
– Analog speech communications.
– Analog FDMA.
– Ex: AMPS
• 2G: Started years ago with GSM: Mainly voice
– – Digital modulation of speech communications.
– – Advanced security and roaming.
– – TDMA and narrowband CDMA.
– – Ex: GSM, IS-95 (cdmaOne), and PDC
• 2.5G: Adding Packet Services: GPRS, EDGE
• 3G: Adding 3G Air Interface: UMTS
• 3G Architecture:
• Support of 2G/2.5G and 3G Access
• Handover between GSM and UMTS technologies
• 3G Extensions:
• HSDPA/HSUPA
• IP Multi Media Subsystem (IMS)
• Inter-working with WLAN (I-WLAN)
• Beyond 3G:
• Long Term Evolution (LTE)
• System Architecture Evolution (SAE)
• Adding Mobility towards I-WLAN and non-3GPP air interfaces
3GPP2 evolution
• CDMA2000 1X (1999)
• CDMA2000 1xEV-DO (2000)
• EV-DO Rev. A (2004): VoIP
• EV-DO Rev. B (2006): Multi-carrier
• Ultra Mobile Broadband (UMB), f.k.a. EV-DO Rev.C
– Based on EV-DO, IEEE 802.20, and FLASH-OFDM
– Spec finalized in April 2007.
– Commercially available in early 2009.
IEEE 802.16 Evolution
• 802.16 (2002): Line-of-sight fixed operation in 10 to 66
GHz
• 802.16a (2003): Air interface support for 2 to 11 GHz
• 802.16d (2004): Minor improvements to fixes to 16a
• 802.16e (2006): Support for vehicular mobility and
asymmetrical link
• 802.16m (in progress): Higher data rate, reduced
latency, and efficient security mechanism
Beyond 3G
• International Mobile Télécommunications (IMT)-2000
introduced global standard for 3G.
• Systems beyond IMT-2000 (IMT-Advanced) is set to introduce
evolutionary path beyond 3G.
• Mobile class targets 100 Mbps with high mobility and nomadic/
local area class targets 1 Gbps with low mobility.
• 3GPP and 3GPP2 are currently developing evolutionary/
revolutionary systems beyond 3G.
– 3GPP Long Term Evolution (LTE)
– 3GPP2 Ultra Mobile Broadband (UMB)
• IEEE 802.16-based WiMax is also evolving towards 4G through
802.16m.
Beyond 3G
• Release 99 (Mar. 2000): UMTS/WCDMA
• Rel-5 (Mar. 2002): HSDPA
• Rel-6 (Mar. 2005): HSUPA
• Rel-7 (2007):
DL MIMO, IMS (IP Multimedia Subsystem),
optimized real-time services (VoIP, gaming, push-to-talk).
• Long Term Evolution (LTE)
– 3GPP work on the Evolution of the 3G Mobile System started in
November 2004.
– Standardized in the form of Rel-8.
– Spec finalized and approved in January 2008.
– Target deployment in 2010.
• LTE advanced
Course Contents
• Historical Vision
• LTE Capabilities
• System architecture
Beyond 3G3G evolution
Why LTE ……?
• Need for PS optimized system
• Evolve UMTS towards packet only
system
• Need for higher data rates
• Can be achieved with HSDPA/HSUPA
• and/or new air interface defined by
3GPP LTE
• Less processor load cost
• Less number of transitions between
different states will lead definitely to
less processor load
• Need for high quality of services
• Use of licensed frequencies to
guarantee quality of services
• Always-on experience (reduce control
plane latency significantly)
• Reduce round trip delay (→ 3GPP LTE)
• Need for cheaper infrastructure
• Simplify architecture, reduce number
LTE Defined Data Rates
• Downlink
– 100Mbps theoretical
• Uplink
– 50Mbps theoretical
• Generally we can say the downlink rate relative to
HZ 5 bits/s/HZ and for Uplink 2.5bits/s/HZ
LTE duplexing and accessing
• Duplexing Methods
– FDD
• UL and DL can reach the peak traffic simultaneously
– TDD
• UL and DL can not reach the peak traffic
simultaneously
• Accessing techniques
– OFDMA for the DL
– SC-FDMA for the UL
Modulation and coding
• Adaptive Modulation and Coding
– DL Modulations: QPSK, 16-QAM and 64-QAM
modulation
– UL Modulations: QPSK and 16-QAM
– Turbo code
LTE Maximum Latency (1-2)
• For control Plane
– The delay of changing the mobile mode from the
active to non active and vice versa
• If the terminal was in the idle mode it needs 100msec
• If the terminal was in the dormant it needs 50msec
• For User Plane
– Time the terminal takes to transmit small packets
to the RAN and Vice versa is 5 msec
LTE Maximum Latency (2-2)
• What is the idle mode
– Terminal unknown for the RAN
– No Radio resources assigned
• What is the dormant mode
– Terminal is known for the RAN
– No Radio resources assigned
LTE theoretical Capacity
• Active Mode
– At 5MHZ BW the Cell can
support 200 users
simultaneously.
– At BW more than 5 MHZ
the Cell can support up to
400 Simultaneously
terminal.
• IDLE Mode
– Can support more than 400
Users at the same time
LTE System Performance targets(1-2)
• User throughput
– 95% from the users will take
average throughput
– 5% will be little bit smaller
than the average
• Spectrum efficiency
– It define high spectrum
efficiency Bits/MHZ/Cell
• Coverage
– 5 Km with high throughput
– 30 Km with low throughput
– 100Km with very low
throughput
LTE System Performance targets(2-2)
• Mobility
– 0-15km/ hour the more
better subscriber behavior.
– 120 km/ hour the accepted
behavior.
– 350 km/ hour very low data
rate and data throughput.
• Enhanced MBMS
– Up to 16 multimedia
channels per just one carrier
LTE deployment aspects
• Flexible spectrum
– The carrier could be 1.25
MHZ , 1.6 MHZ, 2.5 MHZ
,5MHZ , 10MHZ , 15MHZ or
20 MHZ
– Can use the IMT2000 Band
• 1910-1920 and 2010-2025 are
the TDD Band
• 1920- 1960 FDD UL and 2110-
2170 FDD DL
• Stand alone
• Coexisted with WCDMA and
GSM
– HO from LTE to GSM 500msec
for NRT and 300 for RT and
the same for GSM
• LTE Frequency Reuse Pattern
– Generally it is equal to 1
– IIC (Inter cell interference coordinator) is used to reduce
the interference and make the reuse for cell outer area > 1
Interference handling
Architecture and Migration
• LTE RAN agreed on the following
– Packet bearer support
• Real Time
• Conversational
– Reduce the number of the new
interfaces
– NO RNC
– NO CS-CN
– Reduce the single point of failure
– NO RNC
– Separate the treatment of different
types of traffic (O&M, Control and
Data) to utilize the BW
– Reduce the variable delay and Jitter
(TCP/IP)
– Agreed QOS between Transmitting end
and receiving end
– No SHO or Macro diversity
– MIMO and Tx diversity techniques
used
Complexity
• Easy design
• Less complex
• No redundant feature
• Minimize Cost and maintain system
performance
– Low complexity
– Low power consumption
LTE Services (1-2)
LTE Services (2-2)
Course Contents
• Historical Vision
• LTE Capabilities
• System architecture
Network architecture Evolution
3GPP-LTE Architecture High level
(1-2)
3GPP-LTE Architecture High level
(2-2)
SAE Network Architecture
Evolved UTRAN
EPC (1-5)
EPC (2-5)
EPC (3-5)
EPC (4-5)
EPC (5-5)
Interfaces
UTRAN interfaces
EPC Interfaces ( 1 – 5 )
EPC Interfaces ( 1 – 5 )
EPC Interfaces ( 2 – 5 )
EPC Interfaces ( 3 – 5 )
EPC Interfaces ( 4 – 5 )
EPC Interfaces ( 5 – 5 )
Interworking Architecture (1 – 4)
Interworking ArchitectureInterworking Architecture (2 – 4)
Interworking ArchitectureInterworking Architecture (3 – 4)
Interworking ArchitectureInterworking Architecture (4 – 4)
Roaming Architecture (1 - 3)
Roaming Architecture (2 - 3)
Roaming Architecture (3 - 3)
Overall LTE system Architecture
Thank You

More Related Content

LTE Architecture and interfaces

  • 1. LTE Architecture & Interfaces Prepared By: RF Team AbdelRahman Fady & Mohamed Mohsen
  • 2. Course Contents • Historical vision • LTE Capabilities • System architecture
  • 3. General Revision 3GPP and IEEE evolutions
  • 4. 3GPP evolution • 1G (Early 1980s) – Analog speech communications. – Analog FDMA. – Ex: AMPS • 2G: Started years ago with GSM: Mainly voice – – Digital modulation of speech communications. – – Advanced security and roaming. – – TDMA and narrowband CDMA. – – Ex: GSM, IS-95 (cdmaOne), and PDC • 2.5G: Adding Packet Services: GPRS, EDGE • 3G: Adding 3G Air Interface: UMTS • 3G Architecture: • Support of 2G/2.5G and 3G Access • Handover between GSM and UMTS technologies • 3G Extensions: • HSDPA/HSUPA • IP Multi Media Subsystem (IMS) • Inter-working with WLAN (I-WLAN) • Beyond 3G: • Long Term Evolution (LTE) • System Architecture Evolution (SAE) • Adding Mobility towards I-WLAN and non-3GPP air interfaces
  • 5. 3GPP2 evolution • CDMA2000 1X (1999) • CDMA2000 1xEV-DO (2000) • EV-DO Rev. A (2004): VoIP • EV-DO Rev. B (2006): Multi-carrier • Ultra Mobile Broadband (UMB), f.k.a. EV-DO Rev.C – Based on EV-DO, IEEE 802.20, and FLASH-OFDM – Spec finalized in April 2007. – Commercially available in early 2009.
  • 6. IEEE 802.16 Evolution • 802.16 (2002): Line-of-sight fixed operation in 10 to 66 GHz • 802.16a (2003): Air interface support for 2 to 11 GHz • 802.16d (2004): Minor improvements to fixes to 16a • 802.16e (2006): Support for vehicular mobility and asymmetrical link • 802.16m (in progress): Higher data rate, reduced latency, and efficient security mechanism
  • 7. Beyond 3G • International Mobile Télécommunications (IMT)-2000 introduced global standard for 3G. • Systems beyond IMT-2000 (IMT-Advanced) is set to introduce evolutionary path beyond 3G. • Mobile class targets 100 Mbps with high mobility and nomadic/ local area class targets 1 Gbps with low mobility. • 3GPP and 3GPP2 are currently developing evolutionary/ revolutionary systems beyond 3G. – 3GPP Long Term Evolution (LTE) – 3GPP2 Ultra Mobile Broadband (UMB) • IEEE 802.16-based WiMax is also evolving towards 4G through 802.16m.
  • 8. Beyond 3G • Release 99 (Mar. 2000): UMTS/WCDMA • Rel-5 (Mar. 2002): HSDPA • Rel-6 (Mar. 2005): HSUPA • Rel-7 (2007): DL MIMO, IMS (IP Multimedia Subsystem), optimized real-time services (VoIP, gaming, push-to-talk). • Long Term Evolution (LTE) – 3GPP work on the Evolution of the 3G Mobile System started in November 2004. – Standardized in the form of Rel-8. – Spec finalized and approved in January 2008. – Target deployment in 2010. • LTE advanced
  • 9. Course Contents • Historical Vision • LTE Capabilities • System architecture
  • 11. Why LTE ……? • Need for PS optimized system • Evolve UMTS towards packet only system • Need for higher data rates • Can be achieved with HSDPA/HSUPA • and/or new air interface defined by 3GPP LTE • Less processor load cost • Less number of transitions between different states will lead definitely to less processor load • Need for high quality of services • Use of licensed frequencies to guarantee quality of services • Always-on experience (reduce control plane latency significantly) • Reduce round trip delay (→ 3GPP LTE) • Need for cheaper infrastructure • Simplify architecture, reduce number
  • 12. LTE Defined Data Rates • Downlink – 100Mbps theoretical • Uplink – 50Mbps theoretical • Generally we can say the downlink rate relative to HZ 5 bits/s/HZ and for Uplink 2.5bits/s/HZ
  • 13. LTE duplexing and accessing • Duplexing Methods – FDD • UL and DL can reach the peak traffic simultaneously – TDD • UL and DL can not reach the peak traffic simultaneously • Accessing techniques – OFDMA for the DL – SC-FDMA for the UL
  • 14. Modulation and coding • Adaptive Modulation and Coding – DL Modulations: QPSK, 16-QAM and 64-QAM modulation – UL Modulations: QPSK and 16-QAM – Turbo code
  • 15. LTE Maximum Latency (1-2) • For control Plane – The delay of changing the mobile mode from the active to non active and vice versa • If the terminal was in the idle mode it needs 100msec • If the terminal was in the dormant it needs 50msec • For User Plane – Time the terminal takes to transmit small packets to the RAN and Vice versa is 5 msec
  • 16. LTE Maximum Latency (2-2) • What is the idle mode – Terminal unknown for the RAN – No Radio resources assigned • What is the dormant mode – Terminal is known for the RAN – No Radio resources assigned
  • 17. LTE theoretical Capacity • Active Mode – At 5MHZ BW the Cell can support 200 users simultaneously. – At BW more than 5 MHZ the Cell can support up to 400 Simultaneously terminal. • IDLE Mode – Can support more than 400 Users at the same time
  • 18. LTE System Performance targets(1-2) • User throughput – 95% from the users will take average throughput – 5% will be little bit smaller than the average • Spectrum efficiency – It define high spectrum efficiency Bits/MHZ/Cell • Coverage – 5 Km with high throughput – 30 Km with low throughput – 100Km with very low throughput
  • 19. LTE System Performance targets(2-2) • Mobility – 0-15km/ hour the more better subscriber behavior. – 120 km/ hour the accepted behavior. – 350 km/ hour very low data rate and data throughput. • Enhanced MBMS – Up to 16 multimedia channels per just one carrier
  • 20. LTE deployment aspects • Flexible spectrum – The carrier could be 1.25 MHZ , 1.6 MHZ, 2.5 MHZ ,5MHZ , 10MHZ , 15MHZ or 20 MHZ – Can use the IMT2000 Band • 1910-1920 and 2010-2025 are the TDD Band • 1920- 1960 FDD UL and 2110- 2170 FDD DL • Stand alone • Coexisted with WCDMA and GSM – HO from LTE to GSM 500msec for NRT and 300 for RT and the same for GSM
  • 21. • LTE Frequency Reuse Pattern – Generally it is equal to 1 – IIC (Inter cell interference coordinator) is used to reduce the interference and make the reuse for cell outer area > 1 Interference handling
  • 22. Architecture and Migration • LTE RAN agreed on the following – Packet bearer support • Real Time • Conversational – Reduce the number of the new interfaces – NO RNC – NO CS-CN – Reduce the single point of failure – NO RNC – Separate the treatment of different types of traffic (O&M, Control and Data) to utilize the BW – Reduce the variable delay and Jitter (TCP/IP) – Agreed QOS between Transmitting end and receiving end – No SHO or Macro diversity – MIMO and Tx diversity techniques used
  • 23. Complexity • Easy design • Less complex • No redundant feature • Minimize Cost and maintain system performance – Low complexity – Low power consumption
  • 26. Course Contents • Historical Vision • LTE Capabilities • System architecture
  • 39. EPC Interfaces ( 1 – 5 )
  • 40. EPC Interfaces ( 1 – 5 )
  • 41. EPC Interfaces ( 2 – 5 )
  • 42. EPC Interfaces ( 3 – 5 )
  • 43. EPC Interfaces ( 4 – 5 )
  • 44. EPC Interfaces ( 5 – 5 )
  • 52. Overall LTE system Architecture