This document provides an introduction to inferential statistics, including key terms like test statistic, critical value, degrees of freedom, p-value, and significance. It explains that inferential statistics allow inferences to be made about populations based on samples through probability and significance testing. Different levels of measurement are discussed, including nominal, ordinal, and interval data. Common inferential tests like the Mann-Whitney U, Chi-squared, and Wilcoxon T tests are mentioned. The process of conducting inferential tests is outlined, from collecting and analyzing data to comparing test statistics to critical values to determine significance. Type 1 and Type 2 errors in significance testing are also defined.