The document discusses the process of completing the square to solve quadratic equations. It shows how to complete the square for a general quadratic equation of the form ax2 + bx + c = 0 by grouping like terms and factorizing into a perfect square form. Examples are worked through, including solving the specific equations x2 + 6x - 7 = 0, x2 - 6x + 6 = 0.
4. Completing the Square
e.g. (i ) x 2 6 x 7 0
x2 6x 7 move the constant
x 2 6 x 32 7 32 add half the coefficient of ‘x’ squared
5. Completing the Square
e.g. (i ) x 2 6 x 7 0
x2 6x 7 move the constant
x 2 6 x 32 7 32 add half the coefficient of ‘x’ squared
x 2 6 x 9 16
x 3 16
2
factorise to a perfect square
6. Completing the Square
e.g. (i ) x 2 6 x 7 0
x2 6x 7 move the constant
x 2 6 x 32 7 32 add half the coefficient of ‘x’ squared
x 2 6 x 9 16
x 3 16
2
factorise to a perfect square
x 3 4
7. Completing the Square
e.g. (i ) x 2 6 x 7 0
x2 6x 7 move the constant
x 2 6 x 32 7 32 add half the coefficient of ‘x’ squared
x 2 6 x 9 16
x 3 16
2
factorise to a perfect square
x 3 4
x 3 4
x 7 or x 1
10. (ii ) ax 2 bx c 0
b c
x2 x 0
a a
b c
x x
2
a a
11. (ii ) ax 2 bx c 0
b c
x2 x 0
a a
b c
x x
2
a a
2 2
x2 x
b b c b
a 2a a 2a
12. (ii ) ax 2 bx c 0
b c
x2 x 0
a a
b c
x x
2
a a
2 2
x2 x
b b c b
a 2a a 2a
2
x b c b
2
2a a 4a 2
b 2 4ac
4a 2
13. (ii ) ax 2 bx c 0
b c
x2 x 0
a a
b c
x x
2
a a
2 2
x2 x
b b c b
a 2a a 2a
2
x b c b
2
2a a 4a 2
b 2 4ac
4a 2
b b 2 4ac
x
2a 2a
14. (ii ) ax 2 bx c 0
b c
x2 x 0
a a
b c
x x
2
a a
2 2
x2 x
b b c b
a 2a a 2a
2
x b c b
2
2a a 4a 2
b 2 4ac
4a 2
b b 2 4ac
x
2a 2a
b b 2 4ac
x
2a