SNIA.

Cloud Data Management Interface
(CDMI™)

Version 2.0.0

ABSTRACT: This CDMI International Standard is intended for application developers who are implementing or using
cloud storage. It documents how to access cloud storage and to manage the data stored there.

This document has been released and approved by the SNIA. The SNIA believes that the ideas, methodologies, and
technologies described in this document accurately represent the SNIA goals and are appropriate for widespread
distribution. Suggestion for revision should be directed to http://www.snia.org/feedback/.

SNIA Technical Position

Sep 11, 2020

30

31

32
33

34

35
36

37
38

39
40
41
42
43
44
45
46
47

Cloud Data Management Interface 2.0.0

USAGE

Copyright © 2020 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their
respective owners.

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and
other business entities to use this document for internal use only (including internal copying, distribution, and display)
provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall
acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any excerpt or
this entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by emailing
tcemd@snia.org. Please include the identity of the requesting individual or company and a brief description of the pur-
pose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the following
license:

BSD 3-Clause Software License
Copyright (c) 2020, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EX-
PRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© SNIA 2020 SNIA Technical Position i

48

49
50
51

52

53

54
55

Cloud Data Management Interface 2.0.0

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any
kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages
in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to https://www.snia.org/feedback/.

Copyright © 2020 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their
respective owners.

© SNIA 2020 SNIA Technical Position ii

56

57

58

59

60

61
62
63
64
65

66
67
68
69
70
7
72
73
74

75

76
7
78
79
80
81

82
83
84
85
86
87
88

89

90
91
92
93
94
95
96

97

Cloud Data Management Interface 2.0.0

Table of Contents:

I CDMI Preamble

Clause 1: Scope

Clause 2: Normative references

Clause 3: Terms, acronyms, and definitions

Clause 4: Conventions

41 Interfaceformat L
4.2 Typographical conventions L
4.3 Request and response body requirements 0 0L
44 KeyWordrequirements

Clause 5: Overview of Cloud Storage

5.1 Overview e
5.2 Reference model for cloud storage interfaces L.
5.3 Cloud data managementinterface
54 Security
5.5 Required HTTP support st e e e
5.6 Timerepresentations e
5.7 Backwards compatibility oo
5.8 Objectreferences L

Il Basic Cloud Storage

Clause 6: Data Object Resource Operations using HTTP

6.1 OVerview e e
6.2 Create adataobjectusingHTTP
6.3 Read adataobjectusing HTTP
6.4 Update a data objectusing HTTP
6.5 Delete adataobjectusing HTTP

Clause 7: Container Object Resource Operations using HTTP

71 OVEIVIEW . . . o e e e e e
7.2 Create a container objectusing HTTP
7.3 Read a container objectusing HTTP
7.4 Update a container object using HTTP
7.5 Delete a container objectusing HTTP
7.6 Create (POST) a new data object using HTTP

Il CDMI Core

Clause 8: Data Object Resource Operations using CDMI

8.1 OVverview e
8.2 Dataobjectdetails
8.3 Create adataobjectusingCDMI oL
8.4 ReadadataobjectusingCDMI
8.5 Update adata objectusingCDMI oL
8.6 Delete adataobjectusingCDMI.

Clause 9: Container Object Resource Operations using CDMI

© SNIA 2020 SNIA Technical Position

98

99
100
101
102
103
104
105

106

107
108
109
110
m
112
13
114
115

116
17
118
119
120
121
122
123
124

125
126
127
128

129
130
131
132
133
134
135
136

137
138
139
140

141
142
143
144
145

146
147
148
149
150
151
1562

Cloud Data Management Interface 2.0.0

9.1 OVEIVIEW . . . o
9.2 Containerobjectdetails.
9.3 Create a container objectusingCDMI
9.4 Read a container objectusingCDMI L Lo
9.5 Update a container objectusingCDMI
9.6 Delete a container objectusingCDMI L.
9.7 Create (POST) a new data objectusingCDMI
9.8 Create (POST) a new queue objectusingCDMI

IV CDMI Advanced

Clause 10: Domain object resource operations using CDMI

101 Overview L L e e e
10.2 Domain objectdetails e
10.3 Domain object summaries
10.4 Domain object membership
10.5 Create a domain objectusingCDMI
10.6 Read a domain objectusingCDMI
10.7 Update a domain objectusing CDMI
10.8 Delete a domain objectusingCDMI,

Clause 11: Queue object resource operations using CDMI

11.1 Overview L e e e
11.2 Queue objectdetails
11.3 Create a queue objectusingCDMI
11.4 Read a queue objectusing CDMI
11.5 Update a queue objectusing CDMI
11.6 Delete a queue objectusingCDMI
11.7 Enqueue a new queue object value usingCDMI
11.8 Delete a queue object value usingCDMI

Clause 12: Capability object resource operations using CDMI

121 0verview L e e e
12.2 Capability objectdetails
12.3 Read a capabilities object using CDMI L.

Clause 13: Exported protocols

13.10verview . . . L. e
13.2 Container object exportdetails o L.
13.3 NFS exported protocol e
13.4 SMB exported protocol e e
13.5iSCSl exported protocol e
13.6 WebDAV exported protocol
13.7 OCCl exported protocol e

Clause 14: CDMI snapshots

141 0verview L e e e
14.2 Creatingasnapshot e
14.3 Deletingasnapshot.

Clause 15: Serialization/deserialization

151 0verview e
15.2 Canonical format
15.3 Exporting serializeddata
15.4 Importing serializeddata L o

Clause 16: Metadata

16.1 Overview L e e e
16.2 Support for storage systemmetadata
16.3 Support for data systemmetadatao Lo
16.4 Support for provided data systemmetadata
16.5 Supportforusermetadata Lo Lo
16.6 Metadata update operations

158
160

161
164
170
177
181

189

191
191
192
210

215
215
216
219
221

225
226

228
228
229
230

231
231
232
234
235

236
236
237

247
249
250

© SNIA 2020 SNIA Technical Position

153
154
155

156
1567
158
159
160
161
162

163
164
165
166

167
168
169

170
171
172

173
174
175

176
177
178
179
180
181
182
183
184

185
186
187
188
189
190
191
192
193
194
195

196
197
198
199
200
201
202
203
204
205

Cloud Data Management Interface 2.0.0

Clause 17: Access control

171 OVEIVIEW o o e e e e e e e e e e e
17.2 Access control flow

Clause 18: Retention and hold management

18.1 0verview L e e e
18.2 Retention management disciplines
18.3 CDMlretention e
184 CDMIhold e
18.5 CDMl auto-deletion
18.6 Retention security considerations

Clause 19: Scope specification

19.1 0verview e
19.2 Examples e e e e
19.3 Query matching expressions

Clause 20: Results specification

20.1 OVEIVIEW o o e e e e e e e e e e
20.2 Examples e e e e e

Clause 21: Notification queues

21.1 OVEIVIEW o o e e e e e e e e e e e
21.2 Metadata e e e

Clause 22: Query queues

221 OVEIVIEW . . L . e
22.2 Extending CDMIquery e

Clause 23: Encrypted objects

231 0VeIrVIEW . . L. e e
23.2 Encryption operations e e e
23.3 Example uses of encrypted objects
23.4 KMSintegration e e e
235 CMSformat e
23.6 JOSEformat e
23.7 Signature/digest verification Lo Lo
238 Errorhandling e e e e e

Clause 24: Delegated access control

241 OVeIVIEW L e
24.2 Delegated access control (DAC) e
24 .3 Delegated access control message exchange,
24 4 Client header passthrough
245 DACrequest L e e e
246 Packaged DACrequest. e
24.7 DAC IESPONSE . . . v i i e e e e e e e e e e e e e e e e e e e
24.8 Packaged DAC response o o v v i i i e e e e e e e e e e
249 Errorhandling
24 1Examples e e e e e e e

Clause 25: Data object versions

251 0OVerview e
25.2 Traversing version-enabled dataobjects
25.3 Concurrent updates and version-enabled dataobjects
25.4 Capabilities for version-enabled dataobjects
25.5 Updates triggering version creation oo oL
25.6 Operations on version-enabled dataobjects
25.7 Operations on data objectversions
25.8 Query of data objectversions L
25.9 Version-enabled data object serialization

251
251
252

264
264
265
266
268
271
272

273
273

276
279
279
280
281
281
282
286
288

289

© SNIA 2020 SNIA Technical Position

206

207
208
209
210
21
212
213

214

215

Cloud Data Management Interface 2.0.0

V CDMI Annexes 338
Clause 26: Extensions 339
26.1 OVEIVIEW . . . ot e e e e e e e 339
26.2 Summary metadata forbandwidth L 340
26.3 Expiring access control entries (ACEs) L L 342
26.4 Group storage systemmetadata L 343
26.5 Header-based metadata L 344
26.6 Immediate query L L e e e e e e e e 352
VI References 355
Bibliography 356
© SNIA 2020 SNIA Technical Position Vi

N

6

217
218
219
220
221
222

223

224

225

226

227

228
229
230
231

232

233
234

235

236
237
238
239
240
241
242
243

Cloud Data Management Interface 2.0.0

List of Figures

Fig. 1: Existing data storage interface standards oL oL 17
Fig. 2: Storage interfaces for object storage clientdata 18
Fig. 3: Cloud storage reference model L 20
Fig. 4: CDMlobjectmodel e e 22
Fig. 5: Object transitions between named and ID-only 23
Fig. 6: CDMIURI Components o i i i e e e e e e e e 28
Fig. 7: Hierarchy of domains e 135
Fig. 8: Hierarchy of capabilities e 193
Fig. 9: CDMI and OCClI in an integrated cloud computing environment 226
Fig. 10: Snapshot container structure L 228
Fig. 11: Access control flow L 253
Fig. 12: Objectretention e 266
Fig. 13: Objecthold o 268
Fig. 14: Object hold on object withretention 268
Fig. 15: Object with multiple holds 269
Fig. 16: Encrypted object state transistions o L 290
Fig. 17: Non-delegated (ACL-based) access controldataflow 299
Fig. 18: Delegated access control data flow example for non-encrypted object 303
Fig. 19: Delegated access control data flow example for encrypted object 304
Fig. 20: Updates to a non-version-enabled dataobject 326
Fig. 21: Updates to a version-enabled dataobject 327
Fig. 22: Linkages between a version-enabled data object and data objectversions 328
Fig. 23: Overlapping concurrentupdates e e 329
Fig. 24: Linkages for overlappingupdates L 329
Fig. 25: Nested concurrentupdates L 330
Fig. 26: Linkages fornested updates L 330
Fig. 27: Version to capabilityURI relationships. 331
© SNIA 2020 SNIA Technical Position vii

244

245

246
247

248
249
250
251

252
253
254
255
256
257
258
259
260
261
262
263
264

265
266
267
268
269
270
27
272

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

291

Cloud Data Management Interface 2.0.0

List of Tables

Table 1:

Table 2:
Table 3:

Table 4:
Table 5:
Table 6:
Table 7:

Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:

Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:

Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:

Table 47:

Overview of thisdocument e 2
Interface format 12
Key word requirements L e e 15
Types of resources in the CDMI object model 22
Creation/consumption of storage systemmetadata 23
Object ID format e e e 24
Relative URIs resolved againstroot URIs 29
Capabilities - Create a CDMI data object using HTTP 36
Request headers - Create a CDMI data objectusing HTTP 36
HTTP status codes - Create a data object using HTTP 37
Capabilities - Read a CDMI data object using HTTP 38
Request header - Read a CDMI data object using HTTP 39
Response headers - Read a CDMI Data Objectusing HTTP 39
HTTP status codes - Read a CDMI data object using HTTP 40
Capabilities - Update a CDMI data object using HTTP 42
Request headers - Update a CDMI data object using HTTP 42
Response header - Update a CDMI data object using HTTP 43
HTTP status codes - Update a CDMI data object using HTTP 43
Capabilities - Delete a CDMI data object using HTTP 45
HTTP status codes - Delete a CDMI data object using HTTP 46
Capabilities - Create a CDMI container object using HTTP 48
HTTP status codes - Create a container object using HTTP 49
Capabilities - Delete a CDMI container object using HTTP 52
HTTP status codes - Delete a CDMI container object using HTTP 53
Capabilities - Create a CDMI data object using HTTP POST 54
Request header - Create a new data object using HTTP 55
Response header - Create a new data object using HTTP 55
HTTP status codes - Create a new data object using HTTP 55
Capabilities - Create a CDMI data objectusing CDMI 63
Request headers - Create a CDMI data objectusing CDMI 63
Request message body - Create a data objectusingCDMI 64
Response headers - Create a data object usingCDMI 67
Response message body - Create a data objectusingCDMI 67
HTTP status codes - Create a data objectusing CDMI 68
Capabilities - Read a CDMI data objectusingCDMI 73
Request headers - Read a CDMI data object using CDMI 73
Response headers - Read a CDMI data objectusing CDMI 74
Response message body - Read a CDMI data objectusing CDMI 74
HTTP status codes - Read a CDMI data objectusing CDMI 76
Capabilities - Update a CDMI data object using CDMI 82
Request headers - Update a CDMI data objectusingCDMI 83
Request message body - Update a CDMI data objectusingCDMI 84
Response header - Update a CDMI data objectusingCDMI 87
HTTP status codes - Update a CDMI data objectusingCDMI 88
Capabilities - Delete a CDMI data objectusing CDMI 92
HTTP status codes - Delete a CDMI data objectusingCDMI 93
Containermetadata 96

© SNIA 2020 SNIA Technical Position viii

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
31
312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

344
345
346
347
348
349
350
351
352
353
354

Cloud Data Management Interface 2.0.0

Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:
Table 70:
Table 71:
Table 72:
Table 73:
Table 74:
Table 75:
Table 76:
Table 77:

Table 78:
Table 79:
Table 80:
Table 81:
Table 82:
Table 83:
Table 84:
Table 85:
Table 86:
Table 87:
Table 88:
Table 89:
Table 90:
Table 91:
Table 92:
Table 93:
Table 94:
Table 95:
Table 96:
Table 97:
Table 98:
Table 99:

Table 100:
Table 101:
Table 102:
Table 103:
Table 104:
Table 105:
Table 106:
Table 107:
Table 108:
Table 109:
Table 110:

Capabilities - Create a CDMI container object usingCDMI 98
Request headers - Create a container objectusing CDMI 98
Request message body - Create a container objectusingCDMI 98
Response headers - Create a container objectusingCDMI 100
Response message body - Create a container objectusingCDMI 100
HTTP status codes - Create a CDMI container objectusing COMI 101
Capabilities - Read a CDMI Container Object using CDMI 104
Request headers - Read a container objectusing CDMI 104
Response headers - Read a container objectusing CDMI 105
Response message body - Read a container objectusingCDMI 105
HTTP status codes - Read a container objectusing CDMI 107
Capabilities - Update a CDMI container objectusingCDMI 110
Request headers - Update a container object using CDMI 110
Request message body - Update a container object usingCDMI 110
Response header - Update a container object using CDMI 113
HTTP status codes - Update a container object usingCDMI 113
Capabilities - Delete a CDMI container object using CDMI 115
HTTP status codes - Delete a container objectusing COMI 116
Capabilities - Create a CDMI data objectusingCDMI 118
Request headers - Create a new data object UsingCDMI 119
Request message body - Create a new data object UsingCDMI 119
Response headers - Create a new data objectusingCDMI 123
Response message body - Create a new data objectusingCDMI 123
HTTP status codes - Create a new data objectusing CDMI 124
Capabilities - Create a CDMI Queue objectusing CDMI 129
Request headers - Create a new queue objectusingCDMI 129
Request message body - Create a new queue objectusingCDMI 130
Response headers - Create a new queue objectusingCDMI 131
Response message body - Create a new queue objectusingCDMI 131
HTTP status codes - Create a new queue objectusingCDMI 132
Required metadata for adomainobject 138
Contents of domain summary objects L L 141
Required settings for domain member userobjects 143
Required settings for domain member delegationobjectso, 144
Capabilities - Create a CDMI domain object using CDMI 146
Request headers - Create a domain objectusingCDMI 146
Request message body - Create a domain objectusingCDMI 147
Response headers - Create a domain objectusingCDMI 148
Response message body - Create a domain object usingCDMI 148
HTTP status codes - Create a domain objectusing CDMI 149
Capabilities - Read a CDMI domain objectusingCDMI 150
Request headers - Read a domain objectusingCDMI 150
Response headers - Read a domain objectusingCDMI 151
Response message body - Read a domain objectusingCDMI 151
HTTP status codes - Read a domain objectusingCDMI 152
Capabilities - Update a CDMI domain objectusingCDMI 154
Request headers - Update a domain object usingCDMI 154
Request message body - Update a domain objectusingCDMI 155
Response header - Update a domain object usingCDMI 156
HTTP status codes - Update a domain object using COMI 156
Capabilities - Delete a CDMI domain objectusing CDMI 158
HTTP status codes - Delete a domain objectusingCDMI 159
Capabilities - Create a CDMI queue objectusingCDMI 164
Request headers - Create a queue object UsingCDMI 165
Request message body - Create a queue objectusingCDMI 165
Response headers - Create a queue object Using CDMI 167
Response message body - Create a queue objectusingCDMI 167
HTTP status codes - Create a queue objectusing CDMI 168
Capabilities - Read a CDMI queue objectusing CDMI 170
Request headers - Read a queue objectusingCDMI 171
Response headers - Read a queue objectusing CDMI 171
Response message body - Read a queue object usingCDMI 171
HTTP status codes - Read a queue objectusingCDMI 174

© SNIA 2020 SNIA Technical Position ix

355
356
357
358
359
360
361
362
363
364
365
366
367

368
369
370
371
372
373
374
375
376
377
378

379

380
381
382
383

384

385
386
387

388
389
390
391
392

393

394
395

396
397

398
399
400
401

403

404
405
406
407

408

Cloud Data Management Interface 2.0.0

Table 111:
Table 112:
Table 113:
Table 114:
Table 115:
Table 116:
Table 117:
Table 118:
Table 119:
Table 120:
Table 121:
Table 122:
Table 123:

Table 124
Table 125:
Table 126:
Table 127:
Table 128:
Table 129:
Table 130:
Table 131:
Table 132:
Table 133:
Table 134:
Table 135:

Table 136:
Table 137:
Table 138:
Table 139:

Table 140:

Table 141:
Table 142:
Table 143:

Table 144
Table 145:
Table 146:
Table 147:
Table 148:

Table 149:

Table 150:
Table 151:

Table 152:
Table 153:

Table 154:
Table 155:
Table 156:
Table 157:
Table 158:

Table 159:

Table 161:
Table 162:
Table 163:
Table 164
Table 165:

Capabilities - Update a queue object usingCDMI 177
Request headers - Update a queue object UsingCDMI 177
Request message body - Update a queue object UsingCDMI 177
Response header - Update a queue object Using CDMI 179
HTTP status codes - Update a queue objectusingCDMI 179
Capabilities - Delete a queue objectusing CDMI 181
HTTP status codes - Delete a queue object UsingCDMI 182
Capabilities - Enqueue a new queue object value usingCDMI 183
Request headers - Enqueue a new queue object value usingCDMI 183
Request message body - Enqueue a new queue object value usingCDMI 184
HTTP status codes - Enqueue a new queue object value UsingCDMI 186
Capabilities - Delete a queue object value using CDMI 189
HTTP status codes - Delete a queue object value usingCDMI 190
System-wide capabilities 195
Capabilities for storage systemmetadata L 199
Capabilities for data systemmetadata oL 201
Capabilities fordataobjects 204
Capabilities for containerobjects 205
Capabilities fordomain objects L 207
Capabilities forqueue objects L 209
Capabilities - Read a capabilities object usingCDMI 210
Request headers - Read a capabilities objectusingCDMI 210
Response headers - Read a capabilities object UsingCDMI 211
Response message body - Read a capabilities object usingCDMI 21
HTTP status codes - Read a capabilities object usingCDMI 212
Elements of the NFS protocol export structure 219
Elements of the SMB protocol export structure 221
Elements of the iSCSI protocol export structure 223
Elements of the WebDAV protocol export structure 225
Serialization import behaviour 235
Storage systemmetadata 237
Datasystemmetadata e 239
Provided values of data systemmetadata L oL 247
ACE types o e 254
Whoidentifiers 254
ACEflags o o e 255
ACE masks bits 256
ACE bitmask/string e 262
Query matching expressions e 276
Required metadata for a notificationqueue o oo 282
Notification status metadata L 285
Required metadata fora queryqueue e 286
Query status metadata 287
Access modes for DAC L e e 301
DAC request e e 306
Packaged DAC request L e 308
DAC rESPONSE v v i i e e e e e e e e e 310
Packaged DAC responSe o v i i i e e e e e e e 31
Version-enabled data object metadataitemso L. 328
Response headers - Inspect a data object using HTTP 345
HTTP status codes - Inspect a data object using HTTP 346
Request headers - Create a container object using HTTP 348
Response Headers - Inspect a container object using HTTP 349
HTTP status codes - Inspect a container object using HTTP 350

© SNIA 2020 SNIA Technical Position X

409

Cloud Data Management Interface 2.0.0

Table 167: Required metadata for a query queue

© SNIA 2020 SNIA Technical Position

Xi

410

411

Cloud Data Management Interface 2.0.0

Part |

CDMI Preamble

© SNIA 2020 SNIA Technical Position

412
413

414

415

416

Cloud Data Management Interface 2.0.0

This Cloud Data Management Interface (CDMI™) International Standard is intended for application developers who are
implementing or using cloud storage. It documents how to access cloud storage and to manage the data stored there.

This document is organized as follows:

Table 1: Overview of this document

Clause 1 Scope Defines the scope of this document
Clause 2 Normative references Lists the normative references for this document
Clause 3 Terms Provides terminology used in this document
Clause 4 Conventions Describes the conventions used in presenting the interfaces and the
typographical conventions used in this document
Clause 5 Overview of Cloud Provides a brief overview of cloud storage and details the philosophy
Storage behind this International Standard as a model for the operations
Clause 6 Data Object Resource Provides the normative standard of data object resource operations
Operations using HTTP using HTTP
Clause 7 Container Object Provides the normative standard of container object resource
Resource Operations operations using HTTP
using HTTP
Clause 8 Data Object Resource Provides the normative standard of data object resource operations
Operations using CDMI using CDMI
Clause 9 Container Object Provides the normative standard of container object resource
Resource Operations operations using CDMI
using CDMI
Clause 10 Domain Object Resource Provides the normative standard of domain object resource
Operations using CDMI operations using CDMI
Clause 11 Queue Object Resource Provides the normative standard of queue object resource operations
Operations using CDMI using CDMI
Clause 12 Capability Object Provides the normative standard of capability object resource
Resource Operations operations using CDMI
using CDMI
Clause 13 Exported Protocols Discusses how virtual machines in the cloud computing environment
can use the exported protocols from CDMI containers
Clause 14 Snapshots Discusses how snapshots are accessed under CDMI containers
Clause 15 Serialization/ Discusses serialization and deserialization, including import and
Deserialization export of serialized data under CDMI
Clause 16 Metadata Provides the normative standard of the metadata used in the interface
Clause 18 Retention and Hold Describes the optional retention management disciplines to be
Management implemented into the system management functions
Clause 19 Scope Specification Describes the structure of the scope specification for JSON objects
Clause 20 Results Specification Provides a standardized mechanism to define subsets of CDMI object
contents
Clause 21 Notification Queues Describes how CDMI clients can efficiently discover what changes
have occurred to the system
Clause 22 Query Queues Describes how CDMI clients can efficiently discover what content
matches a given set of metadata query criteria or full-content search
criteria
Clause 23 Encrypted Objects Describes how to work with transparently encrypted objects
Clause 24 Delegated Access Control | Describes how to delegate access control to external systems
Clause 25 Data Object Versions Describes how to work with versioned data objects
Clause 26 Extensions Provides informative vendor extensions. Each extension is added to
the standard when at least two vendors implement the extension.
© SNIA 2020 SNIA Technical Position 2

Cloud Data Management Interface 2.0.0

. Clause 1

&

. Scope

s This CDMI™ International Standard specifies the interface to access cloud storage and to manage the data stored
a0 therein. This International Standard applies to developers who are implementing or using cloud storage.

by

© SNIA 2020 SNIA Technical Position 3

421

422

423
424
425

426
427
428
429

430
431

432

433
434

435
436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

Cloud Data Management Interface 2.0.0

Clause 2

Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for
its application. For dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

The provisions of the referenced specifications other than ISO/IEC, IEC, ISO, and ITU documents, as identified in this
clause, are valid within the context of this International Standard. The reference to such a specification within this
International Standard does not give it any further status within ISO/IEC. In particular, it does not give the referenced
specifications the status of an International Standard.

ISO 3166:2013, Codes for the representation of names of countries and their subdivisions (Parts 1, 2 and 3) - see
[35][36][37]

1ISO 4217:2015, Codes for the representation of currencies and funds - see [38]

ISO 8601:2019, Data elements and interchange formats — Information interchange — Representation of dates and times
- see [32][33]

ISO/IEC 9594-8:2017, Information technology — Open Systems Interconnection — The Directory: Public-key and attribute
certificate frameworks - see [43]

1ISO 14721:2012, Space data and information transfer systems — Open archival information system (OAIS) — Reference
model - see [34]

ISO/IEC 14776-414:2009, SCSI Architecture Model - 4 (SAM-4) - see [29]

ISO/IEC 17788:2014, Information technology — Cloud computing — Overview and vocabulary - see [31]

ISO/IEC 20648, TLS specification for storage systems - see [39]

ISO/IEC 27040:2015, Information technology — Security techniques — Storage security - see [30]

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 6th edition, 2011* - see [28]

IEEE 1003.1-2017, IEEE Standard for Information Technology—Portable Operating System Interface (POSIX(R)) Base
Specifications, Issue 7 - see [41]

RFC 1867, Form-based File Upload in HTML - see [20]

RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies - see [9]
RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types - see [10]

RFC 2119, Key Words for Use in RFCs to Indicate Requirement Levels - see [3]

RFC 2578, Structure of Management Information Version 2 (SMiv2) - see [21]

RFC 2616, Hypertext Transfer Protocol — HTTP/1.1 - see [23]

RFC 2617, HTTP Authentication: Basic and Digest Access Authentication - see [8]

RFC 3280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile - see [13]
RFC 3530, Network File System (NFS) Version 4 Protocol - see [1]

RFC 7143, Internet Small Computer System Interface (iSCSI) Protocol (Consolidated) - see [4]

RFC 3986, Uniform Resource Identifier (URI): Generic Syntax - see [2]

© SNIA 2020 SNIA Technical Position 4

457

458

459

460

461

462

463

464

465

466

467

468

469

Cloud Data Management Interface 2.0.0

RFC 4627, The Application/JSON Media Type for JavaScript Object Notation (JSON) - see [5]
RFC 4648, The Base16, Base32, and Base64 Data Encodings - see [19]

RFC 4918, HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV) - see [6]
RFC 5246, The Transport Layer Security (TLS) Protocol Version 1.2 - see [25]

RFC 6068, The ‘mailto’ URI Scheme - see [27]

RFC 5652, Cryptographic Message Syntac (CMS) - see [12]

RFC 6208, Cloud Data Management Interface (CDMI) Media Types - see [26]

RFC 6839, Additional Media Type Structured Syntax Suffixes - see [11]

RFC 7515, JSON Web Signatures - see [17]

RFC 7516, JSON Web Encryption - see [18]

RFC 7518, JSON Web Algorithms - see [15]

RFC 8446, The Transport Layer Security (TLS) Protocol Version 1.3 - see [24]

SNIA TLS, TLS Specification for Storage Systems, version 1.1.0 - see [42]

© SNIA 2020 SNIA Technical Position

470

471

472
473

474

475
476
477
478

479

480
481
482

483

484
485
486

487

488
489

490
491

492

493
494

495
496

497

498
499

500
501

502

503
504

505
506
507
508

Cloud Data Management Interface 2.0.0

Clause 3

Terms, acronyms, and definitions

For the purposes of this document, the terms and definitions given in Rec. ITU-T Y.3500 | ISO/IEC 17788:2014 and the
following apply.

3.1

Access Control List (ACL)
a persistent list, commonly composed of Access Control Entries (ACEs), that enumerates the rights of principals (users
and groups) to access resources

3.2

API
Application Programming Interface

3.3

cDMI™
Cloud Data Management Interface

3.4

CDMI capabilities
an object that describes what operations are supported for a given cloud or cloud object

The mimetype for this object is application/cdmi-capability.

3.5

CDMI container
an object that stores zero or more children objects and associated metadata

The mimetype for this object is application/cdmi-container.

3.6

CDMI data object
an object that stores an array of bytes (value) and associated metadata

The mimetype for this object is application/cdmi-object.

3.7

CDMI domain
an object that stores zero or more children domains and associated metadata describing object administrative ownership

The mimetype for this object is application/cdmi-domain.

© SNIA 2020 SNIA Technical Position 6

509

510
511

512

513

514

515

516
517

518

519
520
521

522

523
524
525

526

527
528

529

530

531
532

533

534

535
536

537

538

539
540
541
542

543

544
545
546

547

548
549
550

551

562
553
554

555

556
557
558
559
560

Cloud Data Management Interface 2.0.0

3.8

CDMI object
one of CDMI capabilities, CDMI container, CDMI data object, CDMI domain, or CDMI queue

3.9

CDMI queue
an object that stores a first-in, first-out set of values and associated metadata

The mimetype for this object is application/cdmi-queue.

3.10

CIFS
Common Internet File System (See SMB)

3.1

cloud storage
See Data storage as a Service

3.12

CRC
cyclic redundancy check

3.13

current data object version
the most recent version of a version-enabled data object

3.14

data object version
either the current data object version or an historical data object version

3.15

Data Storage as a Service (DSaaS)

delivery of appropriately configured virtual storage and related data services over a network, based on a request for a

given service level

3.16

delegated access control (DAC)
the process of delegating an access control decision to a third party

3.17

delegated access control provider (DAC provider)
a third-party system that is capable of making access control decisions

3.18

delegated access control request (DAC request)
a request made to a DAC provider for an access control decision

3.19

delegated access control response (DAC response)
a response from a DAC provider indicating the result of a request for an access control decision

© SNIA 2020 SNIA Technical Position

561

562
563
564

565
566

567

568
569
570
571

572

573
574
575

576

577
578

579

580

581
582
583

584

585
586
587

588

589
590

591

592
593

594

595
596
597

598

599
600

601

602

603
604

605

606

607
608
609
610
611
612
613

Cloud Data Management Interface 2.0.0

3.20

domain
a shared user authorization database that contains users, groups, and their security policies and associated accounting
information

Each CDMI object belongs to a single domain, and each domain provides user mapping and accounting information.

3.21

eventual consistency
a behavior of transactional systems that does not provide immediate consistency guarantees to provide enhanced
system availability and tolerance to network partitioning

3.22

FC
Fibre Channel

3.23

FCoE
Fibre Channel over Ethernet

3.24

historical data object version
a non-current state of a version-enabled data object

3.25

HTTP
HyperText Transfer Protocol

3.26

Infrastructure as a Service (laaS)
delivery over a network of an appropriately configured virtual computing environment, based on a request for a given
service level

Typically, laaS is either self-provisioned or provisionless and is billed based on consumption.

3.27

intermediary CDMI server
a CDMI server that is capable of forwarding DAC requests and responses

3.28

iSCSI
Internet Small Computer Systems Interface (see RFC 7143 [4])

3.29

JOSE
JavaScript Object Signing and Encryption

3.30

JWA
JSON Web Algorithm

© SNIA 2020 SNIA Technical Position 8

614

615
616

617

618

619
620

621

622

623
624

625

626

627
628
629

630

631
632
633

634

635
636
637

638

639
640
641

642

643
644
645

646

647
648

649
650

651

652
653
654

655

656
657
658

659

660
661
662

663
664
665

Cloud Data Management Interface 2.0.0

3.31

JWE
JSON Web Encryption

3.32

JWS
JSON Web Signing

3.33

JSON
JavaScript Object Notation

3.34

LDAP
Lightweight Directory Access Protocol

3.35

LUN
Logical Unit Number (see ISO/IEC 14776-414)

3.36

metadata
data about other data (see [34])

3.37
MIME

Multipurpose Internet Mail Extensions (see RFC 2045 [9])

3.38

NFS
Network File System (see RFC 3530 [1])

3.39
object

an entity that has an object ID, has a unique URI, and contains state
Types of CDMI objects include data objects, container objects, capability objects, domain objects, and queue objects.

3.40
object identifier

a globally-unique value assigned at creation time to identify an object

3.41

occl
Open Cloud Computing Interface (see [40])

3.42
Platform as a Service (PaaS)

delivery over a network of a virtualized programming environment, consisting of an application deployment stack based

on a virtual computing environment

Typically, Paa$S is based on laasS, is either self-provisioned or provisionless, and is billed based on consumption.

© SNIA 2020 SNIA Technical Position

666

667
668
669

670

671

672

673
674

675

676
677
678

679

680
681
682

683

684
685
686

687

688
689
690

691

692
693

694

695

696
697
698
699

700

701
702

703

704

705

706

707
708

709

710

Al
712

713

714

715
716

7

Cloud Data Management Interface 2.0.0

3.43

POSIX
Portable Operating System Interface (see IEEE Std 1003.1)

3.44

private cloud
delivery of SaaS, PaaS, laaS, and/or DaaS to a restricted set of customers, usually within a single organization

Private clouds are created due to issues of trust.

3.45

public cloud
delivery of SaaS, PaaS, laaS, and/or DaaS to, in principle, a relatively unrestricted set of customers

3.46

Representational State Transfer (REST)
a specific set of principles for defining, addressing, and interacting with resources addressable by URIs (see [7])

3.47

RPO
recovery point objective

3.48

RTO
recovery time objective

3.49

service level
performance targets for a service

3.50

Server Message Block
A network file system access protocol designed primarily used by Windows clients to communicate file access requests
to Windows servers. (Also see CIFS)

3.51

SNMP
Simple Network Management Protocol

3.52

Software as a Service (SaaS)
delivery over a network, on demand, of the use of an application

technology that allocates the physical capacity of a volume or file system as applications write data, rather than
pre-allocating all the physical capacity at the time of provisioning.

3.53

Uniform Resource Identifier (URI)
compact sequence of characters that identifies an abstract or physical resource (see RFC 3986 [2])

3.54

version-enabled data object
a CDMI data object with versioning enabled

© SNIA 2020 SNIA Technical Position 10

718

719
720

721

722

723
724

725

Cloud Data Management Interface 2.0.0

3.55
virtualization

presentation of resources as if they are physical, when in fact, they are decoupled from the underlying physical resources

3.56
WebDAV

Web Distributed Authoring and Versioning (see RFC 4918 [6])

© SNIA 2020

SNIA Technical Position

1"

726

7271

728

729

730

731

Cloud Data Management Interface 2.0.0

Clause 4

Conventions

4.1 Interface format

Each interface description has nine components, as described in Table 2.

Table 2: Interface format

Component

Description

Synopsis

The GET, PUT, POST, PATCH, and DELETE semantics

Delayed completion

For long-running operations, a description of behavior when the operation does
not immediately complete

Capabilities

A description of the supported operations

Request headers

The request headers, such as Accept, Authorization, Content-Length, Content-
Type

Request message body

A description of the message body contents

Response headers

The response headers, such as Content-Length, Content-Type

Response message body

A description of the message body contents

Response Status

A list of HTTP status codes

Example

An example of the operation

© SNIA 2020

SNIA Technical Position 12

732

733

734

735

736

737

738

739

Cloud Data Management Interface 2.0.0

4.2 Typographical conventions

All code text and HTTP status codes are shown in a fixed-width font.

API resquests also include a prefix to indicate the source of the request or reply:
* Client-initiated requests are prefixed with ‘—>’
+ Server-initiated replies are prefixed with ‘<’

An example is included below:

--> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com

--> Accept: application/cdmi-object

--> Content-Type: application/cdmi-object

-—>

—_> {

-—> "mimetype" : "text/plain",

-—> "metadata" : {

-—>

—-=> }r

--> "value" : "This is the Value of this Data Object"
—> }

<-- HTTP/1.1 202 Accepted
<-- Location: https://cloud.example.com/cdmi/2.0.0/MyContainer/MyDataObject.txt

Similarly, HTTP status codes are shown in a fixed-width font, as in:
Requesting an optional field that is not present shall result in an HTTP status code of 404 Not Found.

© SNIA 2020 SNIA Technical Position

13

Cloud Data Management Interface 2.0.0

« 4.3 Request and response body requirements

=1 In request and response body tables, the Requirement column contains one of the following three values:

742 » Mandatory. The value specified in this row shall be provided.

743 » Conditional. If the conditions specified in the Description cell is met, the value specified in this row shall be
744 provided. Otherwise, it may be provided unless the Description specifically prohibits it, in which case it shall not
745 be provided.

746 + Optional. The value specified in this row may be provided.

© SNIA 2020 SNIA Technical Position 14

Cloud Data Management Interface 2.0.0

« 4.4 Key Word requirements

ns In this International Standard, the key words in Table 3 shall be interpreted as described in ISO/IEC Directives, Part 2.
ne Table 2 — Key word requirements

Table 3: Key word requirements

Key words Denotes Description Equivalent expressions
(for exception cases only)
shall requirement An action that is unconditionally required.
* Do not use must as an alternative to * isto
shall. * is required to
» To express a direct instruction, for * itis required that
example, when referring to steps to * hasto
be taken in a test method, use the » only ... is permitted
imperative mood in English. * itis necessary
« EXAMPLE: Switch on the recorder.
shall not requirement An action that is unconditionally prohibited.
Do not use may not instead of shall not to * is not .allowed
express a prohibition. [permitted]
[acceptable]
[permissible]
* is required to be not
* is required that ...
be not
* is not to be
should recommendation An action that is recommended when
choosing among several possibilities, or an * itis recommended
action that is preferred but not necessarily that
required. * ought to
should not recommendation An action or certain possibility or course of
action that is deprecated but not prohibited. * itis not
recommended that
+ ought not to
may permission An action that indicates what is allowed
within the limits of the document. * is permitted
Do not use possible or can in this context. s aIIow'ed.
May signifies permission expressed by the * is permissible
document, whereas can refers to the ability
of a user of the document or to a possibility
open to him or her.
need not permission An action that indicates what is not required
within the limits of the document. * itis not required
Do not use impossible in this context. that . .
* no ... is required

© SNIA 2020

SNIA Technical Position

15

750

751

752

753

754
755
756
757
758

759

760
761
762

763
764

765

766

767
768
769

770
771
772

773

774
775

Cloud Data Management Interface 2.0.0

Clause 5

Overview of Cloud Storage

5.1 Overview

5.1.1 General Context

When discussing cloud storage and standards, it is important to distinguish the various resources that are being offered
as services. These resources are exposed to clients as functional interfaces (i.e., data paths) and are managed by
management interfaces (i.e., control paths). This International Standard explores the various types of interfaces that
are part of cloud services today and shows how they are related. This International Standard defines a model for the
interfaces that can be mapped to the various cloud services and a model that forms the basis for cloud storage interfaces
into the future.

Another important concept in this International Standard is that of metadata. When managing large amounts of data
with differing requirements, metadata is a convenient mechanism to express those requirements in such a way that
underlying data services can differentiate their treatment of the data to meet those requirements.

The appeal of cloud storage is due to some of the same attributes that define other cloud services: pay as you go, the
illusion of infinite capacity (elasticity), and the simplicity of use/management. It is therefore important that any interface
for cloud storage support these attributes, while allowing for a multitude of business use cases.

5.1.2 What is Cloud Storage?

The use of the term cloud in describing these new models arose from architecture drawings that typically used a cloud
as the icon for a network. The cloud represents any-to-any network connectivity in an abstract way. In this abstraction,
the network connectivity in the cloud is represented without concern for how it is made to happen.

The cloud abstraction of complexity produces a simple base on which other features can be built. The general cloud
model extends this base by adding a pool of resources. An important part of the cloud model is the concept of a pool of
resources that is drawn from, on demand, in small increments. A relatively recent innovation that has made this possible
is virtualization.

Thus, cloud storage is simply the delivery of virtualized storage on demand. The formal term that is used for this is Data
storage as a Service (DaaS).

© SNIA 2020 SNIA Technical Position 16

776

777
778
779

780
781

782

783
784
785
786
787

788

789
790
791

792
793
794

795
796

797

Cloud Data Management Interface 2.0.0

5.1.3 Data Storage as a Service

By abstracting data storage behind a set of service interfaces and delivering it on demand, a wide range of actual cloud
services and implementations are possible. The only type of storage that is excluded from this definition is that which
is delivered in fixed-capacity increments instead of that which is based on demand.

An important part of any DaaS system is the support of legacy clients. Support is accommodated with existing standard
protocols such as iSCSI (and others) for block network storage and SMB/NFS or WebDAV for file network storage, as
shown in Fig. 1.

Block Storage Client Filesystem Client

iSCSI LUNs, Targets POYIX (NFS, CIFS,

We¢bDAV)

Fig. 1: Existing data storage interface standards

The difference between purchasing a dedicated appliance or purchasing cloud storage is not the functional interface,
but the fact that the storage is delivered on demand. Customers pay for either what they actually use or what they have
allocated for use. For block storage, a Logical Unit Number (LUN), or virtual volume, is the granularity of allocation. For
file protocols, a file system is the unit of granularity. In either case, the actual storage space may be thin-provisioned
and billed for based on actual usage. Data services, such as compression and deduplication, can be used to further
reduce the actual space consumed.

Managing this storage is typically done out of band for these standard data storage interfaces, either through an API,
or more commonly, through an administrative browser-based user interface. This out-of-band interface can be used to
invoke other data services as well (e.g., snapshots or cloning).

In this model, the underlying storage space that has been exposed by the out-of-band interfaces is abstracted and
exposed using the notion of a container. A container is not only a useful abstraction for storage space, but also serves
as a grouping of the data stored in it and a point of control for applying data services in the aggregate.

Each data object is created, retrieved, updated, and deleted as a separate resource. In this type of interface, a container,
if used, is a simple grouping of data objects for convenience. Nothing prevents the concept of containers from being
hierarchical, although any given implementation might support only a single level (see Fig. 2).

© SNIA 2020 SNIA Technical Position 17

798

799
800
801

802
803
804

805
806
807

808
809
810

811
812

813

814
815
816
817

Cloud Data Management Interface 2.0.0

Object Storage Client

CRUD operations
via HTTP

Fig. 2: Storage interfaces for object storage client data

5.1.4 Data management for cloud storage

Many of the initial implementations of cloud storage focused on a kind of best effort quality of storage service and ignored
most other types of data services. To address the needs of enterprise applications with cloud storage, however, there
is an increasing need to offer better quality of service and to deploy additional data services.

Cloud storage can lose its abstraction and simplicity benefits if new data services that require complex management
are added. Cloud storage customers are likely to resist new demands on their time (e.g., setting up backup schedules
through dedicated interfaces, deploying data services individually for stored objects).

By supporting metadata in a cloud storage interface and prescribing how the storage system and data system metadata
is interpreted to meet the requirements of the data, the simplicity required by the cloud storage model can be maintained
while still addressing the requirements of enterprise applications and their data.

User metadata is retained by the cloud and can be used to find the data objects and containers by performing a query
for specific metadata values. The schema for this metadata may be determined by each application, domain, or user.
For more information on support for user metadata, see 16.5.

Storage system metadata is produced/interpreted by the cloud service provider and basic storage functions (e.g., mod-
ification and access statistics, access control). For more information on support for storage system metadata, see
16.2.

Data system metadata is interpreted by the cloud service provider as data requirements that control the operation of
underlying data services for that data. Depending on the level of granularity supported by the cloud, data system
metadata may apply to an aggregation of data objects in a container or to individual data objects, if the cloud service
provider supports this level of granularity. For more information on support for data system metadata, see 16.3.

© SNIA 2020 SNIA Technical Position 18

818

819
820
821
822
823
824

825
826
827
828

Cloud Data Management Interface 2.0.0

5.1.5 Data and container management

There is no reason that managing data and managing containers should involve different interfaces. Therefore, the use
of metadata is extended from applying to individual objects to applying to containers of objects as well. Thus, any data
placed into a container inherits the data system metadata of the container into which it was placed. When creating a
new container within an existing container, the new container would similarly inherit the metadata settings of its parent’s
data system metadata. After an object is created, the data system metadata may be overridden at the container or
individual object level, as desired.

Even if the provided interface does not support setting metadata on individual objects, metadata can still be applied
to the containers. In such a case, the interface does not provide a mechanism to override metadata that an individual
object inherits from its parent container. For file-based interfaces that support extended attributes (e.g., SMB, NFSv4),
these extended attributes may be used to specify the data system metadata to override that specified for the container.

© SNIA 2020 SNIA Technical Position 19

Cloud Data Management Interface 2.0.0

=» 9.2 Reference model for cloud storage interfaces

s The cloud storage reference model is shown in Fig. 3.

Clients acting in the role of using a data storage interface

Clients can be inside the
storage cloud (i.e.,
providing storage
resources to the cloud as
well as consuming them)
or outside the storage
cloud (i.e., only consuming
resources).

Block Storage Client File System Client

Exports to cloud
computing

iSCSI, FC, FCoE
LUNs, Targets POSIX (NFS,

CIFS, WebDAV)

Management of the cloud i =77
storage can be standalone 4 -
or part of the overall cloud ~

computing management. // _ -Data Styrage Cloud

Object Storage Client

XAM Client

4‘ XAM VIM
for CDMI

Database/Table
Client

CDMI

Multiple, vendor-
specific interfaces

7 P
/7 e
7 P
- Draws regources
m)‘// on deghand
CDMI
Data/Storage

Management Client

Clients acting in the
role of managing data/
storage

Infarmatinn

Information
Services
(future)

Fig. 3: Cloud storage reference model

831
832
833
834

ss individual objects or for groups of objects (containers).

This model shows multiple types of cloud data storage interfaces that are able to support both legacy and new appli-
cations. All of the interfaces allow storage to be provided on demand, drawn from a pool of resources. The storage
capacity is drawn from a pool of storage capacity provided by storage services. The data services are applied to indi-
vidual objects, as determined by the data system metadata. Metadata specifies the data requirements on the basis of

© SNIA 2020

SNIA Technical Position

20

836

837
838

839

840

841

842
843
844

845
846
847
848

849
850

851

852
853
854

855
856

857
858
859
860

861
862

863

864

865

866
867

868
869
870

871

872
873
874

875

876

877
878

Cloud Data Management Interface 2.0.0

5.3 Cloud data management interface

The Cloud Data Management Interface (CDMI™) shown in Fig. 3 may be used to create, retrieve, update, and delete
objects in a cloud. The features of the CDMI include functions that:

« allow clients to discover the capabilities available by the cloud service provider,
* manage containers and the data that is placed in them, and
+ allow metadata to be associated with containers and the objects they contain.

This International Standard divides operations into two types: those that use a CDMI content type in the HTTP body
and those that do not. While much of the same data is available via both types, providing both allows for CDMI-aware
clients and non-CDMI-aware clients to interact with a CDMI provider.

CDMI can also be used by administrative and management applications to manage containers, domains, security ac-
cess, and monitoring/billing information, even for storage that is functionally accessible by legacy or proprietary pro-
tocols. The capabilities of the underlying storage and data services are exposed so that clients can understand what
services the cloud service provider provides.

Conformant cloud service providers may support a subset of the CDMI, as long as they expose the limitations in the
capabilities reported via the interface.

This International Standard uses RESTful principles in the interface design where possible (see [7]).

CDMI defines both a means to manage the data as well as a means to store and retrieve the data. The means by which
the storage and retrieval of data is achieved is termed a data path. The means by which the data is managed is termed
a control path. CDMI specifies both a data path and control path interface.

CDMI does not need to be used as the only data path and is able to manage cloud storage properties for any data path
interface (e.g., standardized or vendor specific).

Container metadata is used to configure the data requirements of the storage provided through the exported protocol
(e.g., block protocol or file protocol) that the container exposes. When an implementation is based on an underlying file
system to store data for a block protocol (e.g., iISCSI), the CDMI container provides a useful abstraction for representing
the data system metadata for the data and the structures that govern the exported protocols.

A cloud service may also support domains that allow administrative ownership to be associated with stored objects.
Domains allow this International Standard to (among other things):

+ determine how user credentials are mapped to principals used in an Access Control List (ACL),
« allow granting of special cloud-related privileges, and
+ allow delegation to external user authorization systems (e.g., LDAP or Active Directory).

Domains may also be hierarchical, allowing for corporate domains with multiple children domains for departments or
individuals. The domain concept is also used to aggregate usage data that is used to bill, meter, and monitor cloud use.

Finally, capabilities allow a client to discover the capabilities of a CDMI implementation. Requirements throughout this
International Standard shall be understood in the context of CDMI capabilities. Mandatory requirements on functionality
that is conditioned on a CDMI capability shall not be interpreted to require implementation of that capability, but rather
shall be interpreted to apply only to implementations that support the functionality required by that capability.

For example, in 5.3.3, this International Standard states, “Every cloud storage system shall allow object ID-based access
to stored objects.” This requirement shall be understood in the context that access by object ID is predicated on the
presence of the cdmi_object access by ID capability.

5.3.1 Object model for CDMI

The model for CDMI is shown in Fig. 4.

The five types of resources defined are shown in Table 4. The content type in any given operation is specific to each
type of resource.

© SNIA 2020 SNIA Technical Position 21

879

880

881
882
883
884

885

886
887

888
889
890
891

892
893
894

895
896
897

898
899
900
901

Cloud Data Management Interface 2.0.0

Root Container capabilitiesURI ! Capability Objects
Key/Vale Metadata . Capability Entries - child
Children Child Children
0.* 0.* 0.* 1
Container Data Object Queue Object
Key/Value Metadata Key/Value Metadata Key/Value Metadata capabiliiesURI
Children Value Values
‘ | ‘ Domain Objects |
domainURI 1 0..*
Summary child
Membership
Children

Fig. 4: CDMI object model

Table 4: Types of resources in the CDMI object model

Resource type Description Reference

Data objects Data objects are used to store data and associated metadata, and See clause 8.
provide functionality similar to files in a file system.

Container objects Container objects have zero or more children objects, and store See clause 9.

metadata associated with the container as a whole. Container
objects do not store data directly. They provide functionality similar
to directories in a file system.

Domain objects Domain objects represent administrative groupings for user See clause 10.
authentication and accounting purposes.
Queue objects Queue objects store zero or more pieces of data, and store See clause 11.

metadata associated with the queue as a whole. Enqueued values
are accessed in a first-in-first-out manner.

Capability objects Capability objects describe the functionality implemented by a CDMI | See clause 12.
server and are used by a client to discover supported functionality.

For data storage operations, the client of the interface only needs to know about container objects and data objects. All
data path implementations are required to support at least one level of containers (see 5.1.5). Using the CDMI object
model (see Fig. 4), the client can send a PUT via CDMI (see Fig. 3) to the new container URI and create a new container
with the specified name. Container metadata are optional and are expressed as a series of name-value pairs. After a
container is created, a client can send a PUT to create a data object within the newly created container.

Queue objects are also defined (see Fig. 4) and provide in-order-first in-first-out access to enqueued objects. More
information on queues can be found in clause 11.

CDMI defines two namespaces that can be used to access stored objects, a flat object ID namespace and a hierar-
chical path-based namespace. Support for objects accessed by object ID is indicated by the system-wide capability
cdmi_object access by ID, and support for objects accessed by hierarchical path is indicated by the container
capability cdmi_create dataobject found on the root container (and any subcontainers).

Objects are created by ID by performing an HTTP POST against a special URI, designated as /cdmi_objectid/
(see 9.7). Subsequent to creation, objects are modified by performing PUTs using the object ID assigned by the CDMI
server, using the “/cdmi_objectid/” URI (see 8.5). The same URI is used to retrieve and delete objects by ID.

Objects are created by name by performing an HTTP PUT to the desired path URI (see 8.3). Subsequent to creation,
objects are modified by performing PUTs using the object path specified by the client (see 8.5). The same URI is used
to retrieve and delete objects by path.

CDMI defines mechanisms so that objects having only an object ID can be assigned a path location within the hierarchical
namespace, and so that objects having both an object ID and path can have their path dropped, such that the object
only has an object ID. This function is accomplished by using a “move” modifier to a PUT or POST operation, as shown
in Fig. 5.

© SNIA 2020 SNIA Technical Position 22

902

903
904

905
906
907

908
909

910

9N
912
913

914
915

916

917
918

919

920

921

922

923
924
925
926
927

928
929
930

931

932

933

Cloud Data Management Interface 2.0.0

PUT /name, {“move” : “/cdmi_objectid/<object ID>/"}

Object with Object with ID

Name and ID only

POST /cdmi_objectID/, {“move” : “/name"}

Fig. 5: Object transitions between named and ID-only

5.3.2 CDMI metadata

CDMI uses many different types of metadata, including HTTP metadata, data system metadata, user metadata, and
storage system metadata.

HTTP metadata is metadata that is related to the use of the HTTP protocol (e.g., Content-Length, Content-Type,
etc.). HTTP metadata is not specifically related to this International Standard but needs to be discussed to explain how
CDMI uses the HTTP standard.

CDMI data system metadata, user metadata, and storage system metadata is defined in the form of name-value pairs.
Vendor-defined data system metadata and storage system metadata names shall begin with the reverse domain name
of the vendor.

Data system metadata is metadata that is specified by a CDMI client and is a component of objects. Data system
metadata abstractly specifies the data requirements associated with data services that are deployed in the cloud storage
system.

User metadata consists of client-defined JSON strings, arrays, and objects that are stored in the metadata field. The
namespace used for user metadata names is self-administered (e.g., using the reverse domain name), and user meta-

data names shall not begin with the prefix “cdmi "

Storage system metadata is metadata that is generated by the storage services in the system (e.g., creation time, size)
to provide useful information to a CDMI client.

The matrix of the creation and consumption of storage system metadata is shown in Table 5.

Table 5: Creation/consumption of storage system metadata
Created by user Created By system
Consumed by user User metadata Storage system metadata
Consumed by system | Data system metadata | N/A

5.3.3 CDMI object IDs

Every object stored within a CDMI-compliant system shall have a globally unique object identifier (ID) assigned at
creation time. The CDMI object ID is a string with requirements for how it is generated and how it obtains its uniqueness.
Each cloud service that implements CDMI shall generate these identifiers such that the probability of conflicting with
identifiers generated by other CDMI Servers and the probability of generating an identifier that has already been used
is effectively zero.

Every cloud storage system shall allow object ID-based access to stored objects by allowing the object’s ID to be
appended to the root URI (see 5.5.5). If the data object “MyDataObject.txt”, stored in the root container “/” with a
root path of “/cdmi/2.0.0/”, has an object ID of “00006FFD001001CCE3B2B4F602032653”, the following pair of
URIs access the same data object:

* https://cloud.example.com/cdmi/2.0.0/MyDataObject.txt
* https://cloud.example.com/cdmi/2.0.0/cdmi objectid/00006FFD001001CCE3B2B4F602032653

© SNIA 2020 SNIA Technical Position 23

934
935
936

937

938
939

940

941
942

943

944
945
946
947

948

949

950

951

952

954
955

956

957
958
959
960

961

962

963

964

965

966

967

968

969

971
972
973

Cloud Data Management Interface 2.0.0

If containers are supported, they shall also be accessible by object ID. If the container “MyContainer”, stored in the root
container “/” with a root path of “/cdmi/2.0.0/”, has an object ID of “00006FFD0010AA33D8CEF9711E0835CA”,
the following pairs of URIs access the same object:

* https://cloud.example.com/cdmi/2.0.0/MyContainer/
* https://cloud.example.com/cdmi/2.0.0/cdmi objectid/00006FFD0010AA33D8CEF9711E0835CA/

* https://cloud.example.com/cdmi/2.0.0/MyContainer/MyDataObject.txt

* https://cloud.example.com/cdmi/2.0.0/cdmi objectid/00006FFD0010AA33D8CEF9711E0835CA/
MyDataObject.txt

5.3.4 CDMI object ID format

The CDMI Server shall create the object ID, which identifies an object. The object ID shall be globally unique and shall
conform to the format defined in Table 6. The native format of an object ID is a variable-length byte sequence and shall
be a maximum length of 40 bytes. A client should treat object IDs as opaque byte strings. However, the object ID format
is defined such that its integrity may be validated, and independent CDMI Servers may assign unique object ID values
independently.

Table 6: Object ID format

0 1 | 2 | 3 4 5 6 [7 [8]9 [10]..]38]39
Reserved Enterprise Number Reserved Length | CRC Opaque Data
(zero) (zero)

The fields shown in Table 6 are defined as follows:
» The reserved bytes shall be set to zero.

» The Enterprise Number field shall be the SNMP enterprise number of the offering organization that developed
the system that created the object ID, in network byte order. See RFC 2578 [21] and https://www.iana.org/
assignments/enterprise-numbers. 0 is a reserved value.

* The byte at offset 5 shall contain the full length of the object ID, in bytes.

» The CRC field shall contain a 2-byte (16-bit) CRC in network byte order. The CRC field enables the object ID to
be validated for integrity. The CRC field shall be generated by running the CRC algorithm across all bytes of the
object ID, as defined by the Length field, with the CRC field set to zero. The CRC function shall have the following
fields:

— Name : “CRC-167,
Width : 16,

Poly : 0x8005,
Init : 0x0000,
Refln : True,

RefOut : True,
XorQOut : 0x0000, and
Check : 0xBB3D.

This function defines a 16-bit CRC with polynomial 0x8005, reflected input, and reflected output.
+ Opaque data in each object ID shall be unique for a given Enterprise Number.

The native format for an object ID is binary. When necessary, such as when included in URIs and JSON strings, the
object ID textual representation shall be encoded using Base16 encoding rules described in RFC 4648 [19] and shall
be case insensitive.

© SNIA 2020 SNIA Technical Position 24

https://www.iana.org/assignments/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers

974

975

976
977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995
996

997
998
999
1000

1001

1002

1003
1004

1005

1006

1007
1008
1009

1010

1011

1012

1013
1014
1015
1016

1017

Cloud Data Management Interface 2.0.0

5.4 Security

5.4.1 Security objectives

Security, in the context of CDMI, refers to the protective measures employed in managing and accessing data and
storage. The specific objectives to be addressed by security include providing a mechanism that:

+ assures that the communications between a CDMI client and server cannot be read or modified by a third party;
« allows CDMI clients and servers to assure their identity;
+ allows control of the actions a CDMI client is permitted to perform on a CDMI server;
+ allows records to be generated for actions performed by a CDMI client on a CDMI server;
« protects data at rest;
+ eliminates data in a controlled manner; and
« discovers the security capabilities of of a particular implementation.
Security measures within CDMI are summarized as:
« transport security,
+ user and entity authentication,
« authorization and access controls,
+ data integrity,
« data and media sanitization,
+ data retention,
+ protections against malware,
+ data at-rest encryption, and
* security capabilities.

With the exception of both the transport security and the security capabilities, which shall be implmented, the security
measures can vary significantly from implementation to implementation.

When security is a concern, the CDMI client should begin with a series of security capability lookups (see 12.2.7 to
determine the exact nature of the security features that are available. Based on the values of these capabilities, a
risk-based decision should be made as to whether the CDMI server should be used. This is particularly true when the
data to be stored in the cloud storage is sensitive or regulated in a way that requires stored data to be protected (e.g.,
encrypted) or handled in a particular manner (e.g., full accountability and traceability of management and access).

5.4.2 HTTP security

HTTP is the mandatory transport mechanism for this version of CDMI. It is important to note that HTTP, by itself, offers
no confidentiality or integrity protections. As CDMI is built on top of HTTP, HTTP over Transport Layer Security (TLS)
(i.e., HTTPS) is the mechanism that is used to secure the communications between CDMI clients and servers.

To ensure both security and interoperability, all CDMI implementations:

+ shall implement the TLS protocol as described in the latest version of the “SNIA TLS Specification for Storage
Systems” [42]; with a six-month transition period for implementations. The TLS specification is updated when
new vulnerabilities are found, and CDMI implementations shall support the latest specification within six months
of its publication announcement;

+ shall support both HTTP over TLS and HTTP without TLS; and
« shall allow HTTP without TLS to be disabled.

When TLS is used to secure HTTP, the client and server typically perform some form of entity authentication. However,
the specific nature of this entity authentication depends on the cipher suite negotiated; a cipher suite specifies the
encryption algorithm and digest algorithm to use on a TLS connection. A very common scenario involves using server-
side certificates, which the client trusts, as the basis for unidirectional entity authentication. It is possible that mutual
authentication involving both client-side and server-side certificates are required.

© SNIA 2020 SNIA Technical Position 25

1018

1019

1020

1021

1022
1023
1024
1025
1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037
1038
1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

Cloud Data Management Interface 2.0.0

5.4.3 Client Authentication

A CDMI client shall comply with all security requirements for HTTP that apply to clients.

CDM I clients shall be responsible for initiating user authentication for each CDMI operation that is performed. The CDMI
server functions as the authenticator and receives and validates authentication credentials from the client.

RFC 2616 [23] and RFC 2617 [8] define requirements for HTTP authentication, which generally starts with an HTTP
client request. If the client request does not include an Authorization header and authentication is required, the
server responds with an HTTP status code of 401 Unauthorized and a WWW-Authenticate response header. The
HTTP client shall then respond with the appropriate Authorization header in a subsequent request. The format of
the WWw-Authenticate and Authorization headers varies depending on the type of authentication required.

« HTTP basic authentication involves sending the user name and password in the clear, and it should only be used
on a secure network or in conjunction with TLS.

» HTTP digest authentication sends a secure digest of the user name and password (and other information such
as a nonce value), and can be used on an insecure network without TLS.

* HTTP status codes of 401 Unauthorized should not include a choice of authentication.

« HTTP basic authentication and/or HTTP digest authentication should be implemented.

Authentication credentials used with one type of HTTP authentication (i.e., basic or digest) should never be sub-
sequently used with the other type of HTTP authentication.

Once a user is authenticated, the provided principal name shall be mapped by the CDMI domain to a domain user (or
used directly as the ACE “who” if domains are not supported). This mapping is then used to determine authorization.

A CDMI server typically relies on an authentication service (local and/or external) to validate client credentials. Differing
authentication schemes may be supported, including host-based authentication, Kerberos, PKI, or other; the authenti-
cation service is beyond the scope of this International Standard.

5.4.4 Use of TLS and HTTP

Recommendations for using HTTP and TLS are as follows:

+ A client connecting to a CMDI server using TLS should use TCP port 443, and a client connecting without TLS
should use TCP port 80.

+ A client that fails to connect to a CDMI server on port 443 should retry without TLS on TCP port 80 if their security
policy allows it.

» Servers may respond to HTTP requests on port 80 with an HTTP REDIRECT to the appropriate TLS URI (using
port 443). Clients should honor such redirects in this situation.

5.4.5 Further information

For further information pertaining to storage security techniques, see the latest version of ISO 20648.

© SNIA 2020 SNIA Technical Position 26

1050

1051

10562
1053

1054

1055
1056
1057

1058
1059
1060

1061
1062
1063

1064

1065

1066

1067

1068

1069

1070
1071

1072

1073
1074
1075

1076

1077

1078

1079

Cloud Data Management Interface 2.0.0

5.5 Required HTTP support

5.5.1 RFC 2616 support requirements

A conformant implementation of CDMI shall also be a conformant implementation of RFC 2616 [23] (i.e., HTTP 1.1).
The subclauses below list the sections of RFC 2616 [23] that shall be supported; however, this list is not comprehensive.

5.5.2 Content-Type negotiation

For CDMI operations, media types for CDMI objects are used as defined in RFC 6208 [26]. All CDMI representations
follow the rules established for application/json as defined in RFC 4627 [5]. The use of the CDMI media types
with the +7 son suffix shall be supported as defined in RFC 6839 [11].

A client can optionally supply an HTTP Accept header, as per section 14.1 of RFC 2616 [23]. If a client is restricting
the response to a specific CDMI media type, the corresponding media type shall be specified in the Accept header.
Otherwise, the Accept header can contain “*/*” or a list of media types, or it may be omitted.

If a request body is present, the client shall include a Content-Type header, as per section 14.17 of RFC 2616 [23]. If
the client does not provide a Content-Type header when required or provides a media type in the Content-Type header
that does not match with the existing resource media type, the server shall return an HTTP status code of 400 Bad
Request.

If a response body is present, the server shall provide a Content-Type header.

This International Standard may further qualify content negotiation (e.g., in 9.4, the absence of a Content-Type header
has a specific meaning).

5.5.3 Range support

The server shall support HTTP Range headers and partial content responses (see Section 14.16 of RFC 2616 [23]).

The values of the childrange, valuerange and queuerange fields are formatted based onthe HTTP byte-range-
resp-spec, as defined in clause 14.16 of RFC 2616 [23].

5.5.4 URI escaping

Percent escaping of reserved characters specified in RFC 3986 [2] shall be applied to all text strings used in HTTP
request URIs and HTTP header URlIs. This includes user-supplied field names, metadata names, data object names,
container object names, queue object names, and domain object names when used in HTTP request URIs and HTTP
header URIs.

Field names and values shall not be escaped when stored and when sent in request body and response bodies.

A client retrieving a metadata item named “@user” from a container object with the name of “@MyContainer” would
perform the following request and reply:

--> GET /cdmi/2.0.0/%40MyContainer/?objectNamesmetadata=%40user HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-container

<-- HTTP/1.1 200 OK

<-- Content-Type: application/cdmi-container
<—==

<= {

<-- "objectName": "@MyContainer/",

<-- "metadata": {

<-- "Quser": "test",

<

<-- }

© SNIA 2020 SNIA Technical Position 27

1080

1081

1082

1083

1084
1085

1086
1087
1088

1089

1090

1091

1092
1093
1094

1095

1096

1097
1098

1099
1100

1101

1102
1103

1104

1105

1106

Cloud Data Management Interface 2.0.0

5.5.5 Use of URIs

The format and syntax of URIs are defined by RFC 3986 [2].

This International Standard splits the RFC 3986 path into two parts: The “root path” and the “CDMI path”, as shown in
Fig. 6. The URI containing only the root path is called the “root URI".

https://example.com:443/cdmi/2.0.0/myContainer/myDataObject?value
\ / \ /\ | / \ /

scheme authority root path CDMI path query

| |
\ /

root URI

Fig. 6: CDMI URI Components

The container at the start of the CDMI path is the root container. For example, in Fig. 6, the root container is named
‘myContainer”.

All URlIs in this International Standard are relative to the root URI unless otherwise noted. As a consequence, the
algorithm used for calculating the resolved URI is as described in Section 5.2 of RFC 3986 [2]. Every CDMI client shall
maintain one or more root URIs that each correspond to a root CDMI container on the CDMI server. Since all URIs to
CDMI containers end in a trailing slash, all root URIs will end in a trailing slash.

This International Standard places no additional restrictions on root URIs beyond those specified for the “path compo-
nent” in RFC 3986.

Industry conventions for RESTful APIs suggest root URIs end in “/cdmi/<version>/", where <version> is in the form
of “<major>.<minor>.<micro>", where <major>, <minor> and <micro> are integers indicating the version of the
CDMI interface specification. All examples in this specification use a root URI of https://cloud.example.com/
cdmi/2.0.0/.

The properties of the root URI determine the parentID and parentURI fields of an root CDMI container:

+ If the root path is “/”, the root container shall not include the parentID field and shall populate an empty string
(*") for the value of the parentURTI field.

« If the root path is not “/” and the last entity in the root path is a CDMI container, the root container shall populate
parentID field with the CDMI object ID of the CDMI container corresponding to the parent path entity, and shall
populate the parentURT field with the URI of the parent path.

« If the root path is not “/” and the last entity in the root path is not a CDMI container, the root container shall not
include the parent1D field, and shall populate the parentURI field with the URI of the parent path.

+ If the root path is not “/” and the last entry in the root path is not accessible via the scheme, root container may
omit the parentID field and may populate parentURI field with an empty string ().

Table 7 shows how CDMI paths (relative URIs) are resolved with root URIs

© SNIA 2020 SNIA Technical Position 28

1107

1108

1109

Cloud Data Management Interface 2.0.0

Table 7: Relative URIs resolved against root URIs

Root URI + CDMI Path => Resolved URI

https://cloud.example. https://cloud.example.com/

com/

https://cloud.example. / https://cloud.example.com/

com/

https://cloud.example. myCDMIcontainer/ https://cloud.example.com/

com/ testObject myCDMIcontainer/testObject

https://cloud.example. myCDMIcontainer/ https://cloud.example.com/container/

com/ testObject testObject

https://cloud.example. myCDMIcontainer/ https://cloud.example.com/

com/myNonCDMIentity/ testObject myNonCDMIentity/myCDMIcontainer/
testObject

https://cloud.example. myCDMIcontainer/ https://cloud.example.com/

com/myNonCDMIentity/ testObject myCDMIcontainer/testObject

https://cloud.example. myCDMIcontainer/ https://cloud.example.com/cdmi/2.0.0/

com/cdmi/2.0.0/ testObject myCDMIcontainer/testObject

https://cloud.example. myCDMIcontainer/ https://cloud.example.com/

com/cdmi/2.0.0/ testObject myCDMIcontainer/testObject

5.5.6 Reserved characters

mo The name of CDMI data objects, container objects, queue objects, domain objects and capability objects shall not

1M

contain the “/” or “2?” characters, as these characters are reserved for delimiters.

© SNIA 2020

SNIA Technical Position

29

1112

1113
1114
1115

1116

17
1118
1119
1120
121

Cloud Data Management Interface 2.0.0

5.6 Time representations

Unless otherwise specified, all date/time values are in the ISO 8601:2004 extended representation (“YYYY-MM-
DDThh:mm:ss.ssssssz”). The full precision shall be specified, the sub-second separator shall be a “.”, the “z”
UTC zone indicator shall be included, and all timestamps shall be in UTC time zone. The “YYYY-MM-DDT24:00:00.
0000002z” hour shall not be used, and instead, it shall be represented as “YYYY-MM-DDT00:00:00.0000002".

Unless otherwise specified, all date/time intervals are in the ISO 8601:2004 start date/end date representation (“Yyvyy-
MM-DDThh:mm: ss.ssssssZ/YYYY-MM-DDThh:mm: ss.ssssssZ”). The end date shall be equal to or later than the
start date. The full precision shall be specified, the sub-second separator shall be a “.”, the “z” UTC zone indicator shall
be included, and all timestamps shall be in UTC time zone. The “YYYY-MM-DDT24:00:00.000000% hour shall not be
used, and instead, it shall be represented as “YYYY-MM-DDT00:00:00.0000002".

© SNIA 2020 SNIA Technical Position 30

1122

123

1124

125

1126

1127
1128
1129

1130

1131
132

1133

1134
1135
1136

Cloud Data Management Interface 2.0.0

5.7 Backwards compatibility

CDMI client and server implementations shall implement the following measures to ensure backwards compability with
earlier versions of this Interational Standard.

See the CDMI 1.1.1 Specification for details on backwards compatibility specific to the 1.x versions of CDMI.

5.7.1 Specification version detection

CDMI 2.x clients shall not include the X-CDMI-Specification-Version custom header. When a CDMI 2.x client
performs an operation against a CDMI 1.x Server, the absence of this header shall result in an error response from
the CDMI 1.x server. The client may use the presence of the X-CDMI-Specification-Version headerin an error
response as an indication to use CDMI 1.x (which mandates the use of this custom header), if supported.

CDMI 2.x servers may use the presence of the X-CDMI-Specification-Version custom header from a CDMI 1.x
client as an indication to use CDMI 1.x, if supported.

5.7.2 JSON value transfer encoding

CDMI 2.x servers may support the “json” value transfer encoding. When a CDMI server supports both CDMI 2.x and
CDMI 1.x, data objects with a value transfer encoding of json shall be made accessible to CDMI 1.x clients using a value
transfer encoding of UTF-8, with the server adding in the required escaping.

© SNIA 2020 SNIA Technical Position 31

1137

1138
1139

1140

1141
1142
1143
1144
1145

1146
1147

1148

1149

1150

1151
1152

1153

1154

Cloud Data Management Interface 2.0.0

5.8 Object references

Object references are URIs within the cloud storage namespace that redirect to another URI within the same or another
cloud storage namespace. References are similar to soft links in a file system. The cloud does not guarantee that the
referenced URI will be valid after the time of creation.

References are visible as children in a container and are distinguished from non-references in container children listings
by the presence of a trailing “2” character added to the reference name. Performing an operation (with the exception
of create or delete) to a reference URI will result in an HTTP status code of 302 Found, with the HTTP Location
header containing the absolute redirect destination URI that was specified at the time the reference was created. The
reference’s destination URI shall not be changed after a reference has been created.

To continue, when CDMI clients receive an HTTP status code of 302 Found, they should retry the operation using the
URI contained within the ™" Location™" header.

A delete operation on a reference URI shall delete the reference. References cannot be updated. To update the desti-
nation of a redirect, the client shall first delete the reference and then create a new reference to the desired destination.

EXAMPLE 1: GET to a URI, where the URI is a reference:

--> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-object

<-- HTTP/1.1 302 Found
<-- Location: https://cloud.example.com/cdmi/2.0.0/MyContainer/MyOtherDataObject.txt

References by object ID shall always redirect to a URI that ends with the same object ID as the request
URI.

EXAMPLE 2: GET to an object ID URI, where the URI is a reference:

--> GET /cdmi/2.0.0/cdmi objectid/00006FFDO010AA33D8CEF9711E0835CA HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-object

<-- HTTP/1.1 302 Found
<-- Location: https://archive.example.com/cdmi/2.0.0/cdmi objectid/
—00006FFDO010AA33D8CEF9711E0835CA

EXAMPLE 3: PUT to create a reference:

--> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com Accept: application/cdmi-object
--> Content-Type: application/cdmi-object

- {

--> "reference": "https://cloud.example.com/cdmi/2.0.0/MyContainer/MyOtherDataObject.
—txt"

—_—> }

<-- HTTP/1.1 201 Created

© SNIA 2020 SNIA Technical Position 32

1155

1156

Cloud Data Management Interface 2.0.0

EXAMPLE 4: POST to create a reference:

--> POST /cdmi/2.0.0/cdmi_objectid/ HTTP/1.1

--> Host: cloud.example.com Accept: application/cdmi-object
--> Content-Type: application/cdmi-object

-—>

—txt"</P>
—-_> }

<-- HTTP/1.1 201 Created
<-- Location: https://cloud.example.com/cdmi/2.0.0/cdmi objectid/
—~00007ED90010DF417BAD70A0CT7F5CDDA

--> "reference": "https://cloud.example.com/cdmi/2.0.0/MyContainer/MyOtherDataObject.

EXAMPLE 5: DELETE to delete a reference:

--> DELETE /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position

33

1157

1158

Cloud Data Management Interface 2.0.0

Part Il

Basic Cloud Storage

© SNIA 2020 SNIA Technical Position

34

1159

1160

1161

1162

1163

1164
1165

1166

1167
1168
1169

1170
171

1172
173
1174

175
1176
177

Cloud Data Management Interface 2.0.0

Clause 6

Data Object Resource Operations using
HTTP

6.1 Overview

Data objects are the fundamental storage components within CDMI™, and is analogous to files in a file system.

As CDMI builds on top of, and is compatible with, the HTTP standard (RFC 2616 [23]), this allows unmodified HTTP
clients to communicate with a CDMI server. This also allows CDMI operations to coexist with other HTTP-based storage
protocols, such as WebDAV, S3, and OpenStack Swift.

A CDMl server differentiates between HTTP and CDMI operations using the standard Content-Type and Accept headers.
When CDMI MIME types defined in RFC 6208 [26] are used in these headers, this indicates that CDMI behaviors, as
described in clause 8, are used in addition to the standard HTTP behaviors.

In CDMI 1.0.2, basic HTTP operations were described as “Non-CDMI” operations to distinguish them from operations
using CDMI MIME types.

A CDMI implementation that supports data objects shall include support for basic data object HTTP operations corre-
sponding with the CDMI capabilities that are published by the implementation. Capabilities allow a client to discover
which operations (such as create, update, delete, etc.) are supported and are described in clause 9.

Ciphertext representation of encrypted objects are created, accessed, and updated by explicitelyspecifying a MIME type
“application/cms”or“application/jose+json”. Otherwise, a plaintext representation is created, accessed, and
updated. For more details on encrypted updates, see clause 23.

© SNIA 2020 SNIA Technical Position 35

1178

179

1180

1181

1182

1183

1184
1185

1186

1187

1188

1189

1190

1191

1192

1193

Cloud Data Management Interface 2.0.0

6.2 Create a data object using HTTP

6.2.1 Synopsis

The following HTTP PUT operation creates a new data object in the specified container:

* PUT <root URI>/<ContainerName>/<DataObjectName>

Where:

* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., " /") between

each pair of container names.

* <DataObjectName> is the name specified for the data object to be created.

After it is created, the data object shall also be accessible at <root URI>/cdmi_ objectid/<objectID>.

6.2.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 8.

Table 8: Capabilities - Create a CDMI data object using HTTP

Capability Location Description

cdmi create dataobject Parent Container Ability to create a new data object

cdmi create value range System Wide Ability to create a data object using a specified
Capability byte range

6.2.3 Request headers

The HTTP request headers for creating a CDMI data object using HTTP are shown in Table 9.

Table 9: Request headers - Create a CDMI data object using HTTP

Header

Type

Description

Requirement

Content-Type

Header
string

The content type of the data to be stored as a data object.
The value specified in this header shall be converted to lower
case and stored in the mimetype field of the CDMI data
object.

* If the Content-Type header includes the charset
parameter as defined in RFC 2616 [23] of “ut£-8 (e.g.,
“;charset=utf-8"), the valuetransferencoding
field of the CDMI data object shall be set to “ut £-8".
Otherwise, the valuetransferencoding field of the
CDMI data object shall be set to “basec4”.

* If not specified, the mimetype field shall be set to
“application/octet-stream”.

Optional

X-CDMI-Partial

Header
String

Indicates that the newly created object is part of a series of
writes and has not yet been fully created. When set to
“true”, the completionStatus field shall be set to
“Processing”. X-CDMI-Partial works across CDMI and
non-CDMI operations.

Optional

Content-Range

Header
String

A valid ranges-specifier (see RFC 2616 [23] Section 14.35.1)

Optional

© SNIA 2020

SNIA Technical Position

36

1194

1195

1196

197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

Cloud Data Management Interface 2.0.0

6.2.4 Request message body

The request message body contains the data to be stored in the value of the data object.

6.2.5 Response headers

No response headers are specified.

6.2.6 Response message body

No response message body fields are specified.

6.2.7 Response status
The HTTP status codes that occur when creating a data object using HTTP are described in Table 10.

Table 10: HTTP status codes - Create a data object using HTTP

HTTP Status Description

201 Created The new data object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a
state transition error on the server.

6.2.8 Examples

EXAMPLE 1: PUT to the container URI the data object name and contents.

--> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com

--> Content-Type: text/plain;charset=utf-8

--> Content-Length: 37

--> This is the Value of this Data Object

<-- HTTP/1.1 201 Created

EXAMPLE 2: Put to the container URI to create an encrypted object:

--> PUT /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
--> Host: cloud.example.com

--> Content-Type: application/cms

--> Content-Length: 1425

--> <CMS Encrypted Object>

<-- HTTP/1.1 201 Created

EXAMPLE 3: PUT to the container URI to create an encrypted object:

© SNIA 2020 SNIA Technical Position

37

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

Cloud Data Management Interface 2.0.0

6.3 Read a data object using HTTP

6.3.1 Synopsis

The following HTTP GET operations read from an existing data object at the specified URI:
* GET <root URI>/<ContainerName>/<DataObjectName>
* GET <root URI>/cdmi_ objectid/<DataObjectID>
Where:
* <root URI> is the path to the CDMI cloud.
* <ContainerName> is zero or more intermediate containers.
* <DataObjectName> is the name of the data object to be read from.

* <DataObjectID> is the ID of the data object to be read from.

6.3.2 Capabilities
Capabilities that indicate which operations are supported are shown in Table 11.

Table 11: Capabilities - Read a CDMI data object using HTTP

Capability Location Description
cdmi read value Data Object Ability to read the value of an existing data object
cdmi read value range Data Object Ability to read a sub-range of the value of an
existing data object
cdmi_object access by ID System Wide Ability to access the object by ID
Capability

6.3.3 Request header

The HTTP request header for reading a CDMI data object using HTTP is shown in Table 12.

© SNIA 2020 SNIA Technical Position 38

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

Cloud Data Management Interface 2.0.0

Table 12: Request header - Read a CDMI data object using HTTP

or “application/jose+json”, and the mimetype
“application/cms” or “application/jose+json”
is included in the Accept header mimetype, the CDMI
server shall return the CMS or JOSE value in the
response message body.

» Otherwise, the decrypted plaintext shall be returned in
the response message body, along with the
encapsulated mimetype in the Content-Type response
header. If decryption is not possible, an error result
code shall be returned. (See clause 23 — Encrypted
Objects)

« If the Accept header mimetype list includes “\ * /\ *”
before “application/cms” and/or
“application/jose+json”, the server will first try to
return the decrypted plaintext, and shall return the CMS
or JOSE value when decryption fails.

« If the Accept header mimetype list excludes “\ * /\ *”,
decrypted plaintext shall only be returned if the
encapsulated mimetype is included in the Accept
header mimetype list.

Header Type Description Requirement

Range Header A valid ranges-specifier (see RFC 2616 [23] Section 14.35.1) | Optional
string

Accept Header “*/*” or a value as described in: 5.5.2. Optional
string « If the object has a mimetype of “application/cms”

6.3.4 Request message body

A request body shall not be provided.

6.3.5 Response headers

The HTTP response headers for reading a data object using HTTP are shown in Table 13.

Table 13: Response headers - Read a CDMI Data Object using HTTP

Header Type Description Requirement

Content-Type Header The content type returned shall be the mimetype field in the Mandatory
string data object.

Location Header The server shall respond with the URI that the reference Conditional
string redirects to if the object is a reference.

6.3.6 Response message body

When reading a data object using HTTP, the following applies:

» The response message body shall be the contents of the data object’s value field.

* When reading a value, zeros shall be returned for any gaps resulting from non-contiguous writes.

© SNIA 2020

SNIA Technical Position

39

1235

1236

1237

1238

1239

1240

1241

1242

1243
1244

Cloud Data Management Interface 2.0.0

6.3.7 Response status

The HTTP status codes that occur when reading a data object using HTTP are described in Table 14.

Table 14: HTTP status codes - Read a CDMI data object using HTTP

HTTP Status Description

200 OK The data object content was returned in the response.

206 Partial Content A requested range of the data object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI, or a requested field within the
resource was not found.

6.3.8 Examples

EXAMPLE 1: GET to the data object URI to read the value of the data object:

--> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
-—-> Host: cloud.example.com

<-- HTTP/1.1 200 OK
<-- Content-Type: text/plain
<-- Content-Length: 37

<-- This is the value of this data object

EXAMPLE 2: GET to the data object URI to read the first 11 bytes of the value of the data object:

--> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com
--> Range: bytes=0-10

<-- HTTP/1.1 206 Partial Content
<-- Content-Type: text/plain

<-- Content-Range: bytes 0-10/37
<-- Content-Length: 11

<-- This is the value of this data object

EXAMPLE 3: GET to the data object URI to always return the ciphertext of an encrypted object:

--> GET /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cms, application/jose+7json

<-- HTTP/1.1 200 OK
<-- Content-Type: application/cms
<-- Content-Length: 1425

<-- <CMS Encrypted Object>

EXAMPLE 4: GET to the data object URI to read the plaintext of an encrypted object, if possible; otherwise, get the

ciphertext:

--> GET /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1

--> Host: cloud.example.com

--> Accept: */*, application/cms, application/jose+json

--> <Header credentials used to authenticate and access the decryptionkey>

<-- HTTP/1.1 200 OK
<-- Content-Type: text/plain

(continues on next page)

© SNIA 2020 SNIA Technical Position

40

1245

Cloud Data Management Interface 2.0.0

(continued from previous page)

<-- Content-Length: 252
<—-
<-- <Decrypted contents of Encrypted Value>

EXAMPLE 5: GET to the data object URI to read the plaintext of an encrypted object:

--> GET /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
-—-> Host: cloud.example.com
--> <Header credentials used to authenticate and access the decryption key>

<-- HTTP/1.1 200 OK
<-- Content-Type: text/plain
<-- Content-Length: 252

<-- <Decrypted contents of Encrypted Value>

© SNIA 2020 SNIA Technical Position

41

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

Cloud Data Management Interface 2.0.0

6.4 Update a data object using HTTP

6.4.1 Synopsis

The following HTTP PATCH operation updates an existing data object at the specified URI:

* PATCH <root URI>/<ContainerName>/<DataObjectName>

* PATCH <root URI>/cdmi_ objectid/<DataObjectID>

Where:

* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate containers.

* <DataObjectName> is the name of the data object to be updated.

* <DataObjectID> is the ID of the data object to be read from.

6.4.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 15.

Table 15: Capabilities - Update a CDMI data object using HTTP

Capability Location Description
cdmi modify value Data Object Ability to modify the value of an existing data
object
cdmi_modify value range Data Object Ability to modify a sub-range of the value of an
existing data object
cdmi object access by ID System Wide Ability to access the object by ID
Capability

6.4.3 Request headers

The HTTP request headers for updating a CDMI data object using HTTP are shown in Table 16.

Table 16: Request headers - Update a CDMI data object using HTTP

Header

Type

Description

Requirement

Content-Type

Header
string

The content type of the data to be stored as a data object.
The value specified in this header shall be converted to lower
case and stored in the mimetype field of the CDMI data
object.

* If the Content-Type header includes the charset
parameter as defined in RFC 2616 [23] of “ut£-8 (e.g.,
“;charset=utf-8"), the valuetransferencoding
field of the CDMI data object shall be set to “ut £-8".
Otherwise, the valuetransferencoding field of the
CDMI data object shall be set to “base64”.

* If not specified, the existing mimetype field value shall
be preserved.

Optional

Content-Range

Header
string

A valid ranges-specifier (see RFC 2616 [23] Section 14.35.1)

Optional

continues on next page

© SNIA 2020

SNIA Technical Position

42

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

Cloud Data Management Interface 2.0.0

Table 16 — continued from previous page

completionStatus field shall be setto “Processing”.
X-CDMI-Partial works across CDMI and non-CDMI
operations.

If the completionStatus field had previously been set to
“Processing” by including this header in a create or update,
the next update without this field shall change the
completionStatus field back to “Complete”.

Header Type Description Requirement
X-CDMI-Partial Header Indicates that the operation is part of a series of updates and Optional
string has not yet been fully created. When set to “true”, the

6.4.4 Request message body

The request message body contains the data to be stored in the value of the data object.

6.4.5 Response header

The HTTP response header for updating a data object using HTTP is shown in Table 17.

Table 17: Response header - Update a CDMI data object using HTTP

Header Type Description Requirement
Location Header The server shall respond with the URI to which the reference Conditional
string redirects if the object is a reference.

6.4.6 Response message body

A response body may be provided as per RFC 2616 [23].

6.4.7 Response status

The HTTP status codes that occur when updating a data object using HTTP are described in Table 18.

Table 18: HTTP status codes - Update a CDMI data object using HTTP

HTTP Status Description
204 No Content The data object content was returned in the response.
302 Found The resource is a reference to another resource.

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization to perform this request.

404 Not Found

The resource was not found at the specified URI.

409 Conflict

The operation conflicts with a non-CDMI access protocol lock or has caused a

state transition error on the server.

© SNIA 2020

SNIA Technical Position

43

1272

1273

1274

Cloud Data Management Interface 2.0.0

6.4.8 Examples

EXAMPLE 1: PATCH to the data object URI to update the value of the data object:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com

--> Content-Type: text/plain

--> Content-Length: 37

--> This is the value of this data object

<-- HTTP/1.1 204 No Content

EXAMPLE 2: PATCH to the data object URI to update four bytes within the value of the data object:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com

--> Content-Range: bytes 21-24/37

--> Content-Type: text/plain

--> Content-Length: 4

--> that

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position

44

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

Cloud Data Management Interface 2.0.0

6.5 Delete a data object using HTTP

6.5.1 Synopsis

The following HTTP DELETE operations delete an existing data object at the specified URI:
* DELETE <root URI>/<ContainerName>/<DataObjectName>
* DELETE <root URI>/cdmi objectid/<DataObjectID>
Where:
* <root URI> is the path to the CDMI cloud.
* <ContainerName> is zero or more intermediate containers.
* <DataObjectName> is the name of the data object to be deleted.
* <DataObjectID> is the ID of the data object to be deleted.

6.5.2 Capability

Capabilities that indicate which operations are supported are shown in Table 19.

Table 19: Capabilities - Delete a CDMI data object using HTTP

Capability Location Description

cdmi delete dataobject Data Object Ability to delete an existing data object

cdmi_object access by ID System Wide Ability to access the object by ID
Capability

6.5.3 Request headers

Request headers may be provided as per RFC 2616 [23].

6.5.4 Request message body

A request body may be provided as per RFC 2616 [23].

6.5.5 Response headers

Response headers may be provided as per RFC 2616 [23].

6.5.6 Response message body

A response body may be provided as per RFC 2616 [23].

© SNIA 2020 SNIA Technical Position

45

1295

1296

1297

1298

1299

1300

Cloud Data Management Interface 2.0.0

6.5.7 Response status

Table 20 describes the HTTP status codes that occur when deleting a data object using HTTP.

Table 20: HTTP status codes - Delete a CDMI data object using HTTP

HTTP Status

Description

204 No Content

The data object was successfully deleted.

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization to perform this request.

404 Not Found

The resource was not found at the specified URI.

409 Conflict

The operation conflicts with a non-CDMI access protocol lock, has caused a
state transition error on the server, or the data object cannot be deleted.

6.5.8 Example

EXAMPLE 1: DELETE to the data object URI:

--> DELETE /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 204 No Content

© SNIA 2020

SNIA Technical Position

46

1301

1302

1303

1304

1305

1306

1307
1308

1309
1310

1311

1312
1313
1314

1315
1316

1317

1318
1319

1320

Cloud Data Management Interface 2.0.0

Clause 7

Container Object Resource Operations
using HTTP

7.1 Overview

Container objects are the fundamental grouping mechanism for stored data within CDMI, and is analogous to directories
in a file system. Each container object has zero or more child objects.

Following the URI conventions for hierarchical paths, container URIs shall consist of one or more container names that
are separated by forward slashes (“/”) and that end with a forward slash (/).

As basic HTTP operations do not use the CDMI MIME types that distinguish data object operations from container
object operations, a CDMI implementation shall use the presence or absence of a forward slash at the end of a URI to
distinguish between a container object create or a data object create, respectively.

If a basic HTTP read, update, or delete operation is performed against an existing container resource and the trailing
slash at the end of the URI is omitted, the server shall respond with an HTTP status code of 301 Moved Permanently.
In addition, a Location header containing the URI with the trailing slash added shall be returned.

A CDMI server differentiates between HTTP and CDMI operations using the standard Content-Type and Accept headers.
When CDMI MIME types defined in RFC 6208 [26] are used in these headers, this indicates that CDMI behaviors, as
described in Clause 9 are used in addition to the standard HTTP behaviors.

A CDMI implementation that supports container objects shall include support for basic container object HTTP operations
corresponding with the CDMI capabilities that are published by the implementation. Capabilities allow a client to discover
which operations (such as create, update, delete, etc.) are supported and are described in Clause 12.

© SNIA 2020 SNIA Technical Position 47

1321

1322

1323

1324

1325

1326

1327
1328

1329

1330

1331
1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

Cloud Data Management Interface 2.0.0

7.2 Create a container object using HTTP

7.2.1 Synopsis

To create a new container object, the following request shall be performed:

* PUT <root URI>/<ContainerName>/<ContainerObjectName>/
Where:

* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate container objects that already exist, with one slash (i.e., /")
between each pair of container object names.

* <ContainerObjectName> is the name specified for the container object to be created.
After it is created, the container object shall also be accessible at <root URI>/cdmi objectid/<objectID>/.

The presence of a trailing slash at the end of the HTTP PUT URI indicates that a container object is being created and
distinguishes it from a request to create a data object.

7.2.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 21.

Table 21: Capabilities - Create a CDMI container object using HTTP

Capability Location Description
cdmi create container Parent Container Ability to create a new data object

7.2.3 Request headers

Request headers can be provided as per RFC 2616 [23].

7.2.4 Request message body

A request body shall not be provided.

7.2.5 Response headers

Response headers can be provided as per RFC 2616 [23].

7.2.6 Response message body

A response body can be provided as per RFC 2616 [23].

© SNIA 2020 SNIA Technical Position 48

1343

1344

1345

1346

1347

1348

Cloud Data Management Interface 2.0.0

7.2.7 Response status

Table 22 describes the HTTP status codes that occur when creating a container object using HTTP.

Table 22: HTTP status codes - Create a container object using HTTP

HTTP Status

Description

201 Created

The new container object was created.

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization to perform this request.

404 Not Found

The resource was not found at the specified URI.

409 Conflict

state transition error on the server.

The operation conflicts with a non-CDMI access protocol lock or has caused a

7.2.8 Example

EXAMPLE 1: PUT to the URI the container object name:

--> PUT /cdmi/2.0.0/MyContainer/ HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 201 Created

© SNIA 2020

SNIA Technical Position

49

1349

1350

1351

1352

Cloud Data Management Interface 2.0.0

7.3 Read a container object using HTTP

Reading a container object using HTTP is not defined by this version of this International Standard. A server is allowed

to implement responses such as an Apache directory listing or an S3-style bucket listing.

To read a container object using CDMI, see 9.4.

© SNIA 2020

SNIA Technical Position

50

1353

1354

1355

Cloud Data Management Interface 2.0.0

7.4 Update a container object using HTTP

Updating a container object using HTTP is not defined by this version of this International Standard.

To update a container object using CDMI, see 9.5.

© SNIA 2020 SNIA Technical Position

51

1356

1357

1358
1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

Cloud Data Management Interface 2.0.0

7.5 Delete a container object using HTTP

7.5.1 Synopsis

The following HTTP DELETE operations delete an existing container object at the specified URI, including all contained

children and snapshots:

* DELETE <root URI>/<ContainerName>/<ContainerObjectName>/

* DELETE <root URI>/cdmi objectid/<ContainerObjectID>

Where:

* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate container objects.

* <ContainerObjectName> is the name of the container object to be deleted.

* <ContainerObjectID> is the ID of the container object to be deleted.

7.5.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 23.

Table 23: Capabilities - Delete a CDMI container object using HTTP

Capability Location Description
cdmi delete container Parent Container Ability to delete an existing container object
cdmi object access by ID System Wide Ability to access the object by ID

Capability

7.5.3 Request headers

Request headers can be provided as per RFC 2616 [23].

7.5.4 Request message body

A request body can be provided as per RFC 2616 [23].

7.5.5 Response headers

Response headers can be provided as per RFC 2616 [23].

7.5.6 Response message body

A response body can be provided as per RFC 2616 [23].

© SNIA 2020

SNIA Technical Position

52

1377

1378

1379

1380

1381

1382

Cloud Data Management Interface 2.0.0

7.5.7 Response status

Table 24 describes the HTTP status codes that occur when deleting a container object using HTTP.

Table 24: HTTP status codes - Delete a CDMI container object using

HTTP

HTTP Status

Description

204 No Content

The container object was successfully deleted.

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization to perform this request.

404 Not Found

The resource was not found at the specified URI.

409 Conflict

The operation conflicts with a non-CDMI access protocol lock or has caused a
state transition error on the server.

7.5.8 Example

EXAMPLE 1: DELETE to the container object URI:

--> DELETE /cdmi/2.0.0/MyContainer/ HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 204 No Content

© SNIA 2020

SNIA Technical Position

53

1383

1384

1385
1386

1387

1388

1389

1390
1391

1392
1393

1394
1395

1396

1397

1398

1399

1400

Cloud Data Management Interface 2.0.0

7.6 Create (POST) a new data object using HTTP

7.6.1 Synopsis

To create a new data object in a specified container where the name of the data object is a server-assigned object
identifier, the following request shall be performed:

POST <root URI>/<ContainerName>/
Where:
* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate container objects that already exist, with one slash (i.e., “/")
between each pair of container object names.

The data object shall be accessible as a child of the container with a server-assigned name and shall also be accessible
at <root URI>/cdmi_ objectid/<objectID>

HTTP POST to a container is used to enable CDMI servers to support RFC 1867 [20] form-based file uploading. When
implementing RFC 1867 [20], the CDMI server-assigned name may be set to, or derived from, the user-provided file
name.

7.6.2 Capabilities
Capabilities that indicate which operations are supported are shown in Table 25.

Table 25: Capabilities - Create a CDMI data object using HTTP POST

Capability Location Description

cdmi create dataobject Parent Container Ability to create a new data object

cdmi post dataobject

cdmi post dataobject by ID System Wide Ability to create a data object in
Capability "/cdmi_objectid/"

cdmi create value range System Wide Ability to create a data object using a specified
Capability byte range

cdmi_create value range by ID| System Wide Ability to create a data object in
Capability "/cdmi_ objectid/" using a specified byte

range

cdmi multipart mime System Wide Ability to create a data object using multi-part

Capability MIME

7.6.3 Request headers

The HTTP request header for creating a new CDMI data object using HTTP is shown in Table 26.

© SNIA 2020 SNIA Technical Position 54

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

Cloud Data Management Interface 2.0.0

Table 26: Request header - Create a new data object using HTTP

Header

Type

Description

Requirement

Content-Type

Header
String

The content type of the data to be stored as a data object.
The value specified here shall be converted to lower case and
stored in the mimetype field of the CDMI data object.
« If the content type includes the charset parameter as
defined in RFC 2616 [23] of “ut £-8 (e.g.,
“; charset=utf-8"), the valuetransferencoding field
of the CDMI data object shall be set to “ut £-8”.
Otherwise, the valuetransferencoding field of the CDMI
data object shall be set to “base64”.
« If not specified, the mimetype field shall be set to
“application/octet-stream”.

Optional

X-CDMI-Partial

Header
String

Indicates that the newly created object is part of a series of
writes and has not yet been fully created. When set to
“true”, the completionStatus field shall be set to
“Processing”. X-CDMI-Partial works across CDMI and
non-CDMI operations.

Optional

7.6.4 Request message body

The message body shall contain the contents (value) of the data object to be created.

7.6.5 Response headers

The HTTP response header for creating a new CDMI data object using HTTP is shown in Table 27.

Table 27: Response header - Create a new data object using HTTP

In the absence of file name information from the client, the
system shall assign the URI in the form:
http://host:port/<root
URI>/<ContainerName>/<ObjectID> Or
https://host:port/<root
URI>/<ContainerName>/<ObjectID>

Header Type Description Requirement
Location Header The unique absolute URI for the new data object as assigned | Mandatory
string by the system.

7.6.6 Response message body

A response body can be provided as per RFC 2616 [23].

7.6.7 Response status

Table 28 describes the HTTP status codes that occur when creating a new data object using HTTP.

Table 28: HTTP status codes - Create a new data object using HTTP

HTTP Status

Description

201 Created

The new data object was created.

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization to perform this request.

404 Not Found

The resource was not found at the specified URI.

© SNIA 2020

SNIA Technical Position

55

Cloud Data Management Interface 2.0.0

ws 1.6.8 [ExarnF“es

wes EXAMPLE 1: POST to the container object URI the data object contents:

--> POST /cdmi/2.0.0/MyContainer/ HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: text/plain;charset=utf-8

--> <object contents>
<-- HTTP/1.1 201 Created

<-- Location: https://cloud.example.com/cdmi/2.0.0/MyContainer/
—00007ED900104E1D14771DC67C27BF8B

© SNIA 2020 SNIA Technical Position

56

1417

1418

Cloud Data Management Interface 2.0.0

Part Il

CDMI Core

© SNIA 2020 SNIA Technical Position

57

1419

1420

1421

1422

1423
1424

1425

1426

1427

1428

1429

1430
1431
1432

1433

1434

1435

1436
1437

Cloud Data Management Interface 2.0.0

Clause 8

Data Object Resource Operations using

CDMI

8.1 Overview

Data objects are the fundamental storage component within CDMI™ and are analogous to files within a file system.

Each data object has a set of well-defined fields that include:
* a mandatory value,
+ mandatory fields generated by the cloud storage system,
* mandatory metadata items generated by the cloud storage system,
+ optional metadata generated by the cloud storage system; and
+ optional metadata specified by the cloud user.

All cloud storage systems shall support data objects, but the ability to create a data object is determiend by the presence
orabsence ofthe cdmi create dataobjectand cdmi post dataobject capabilities in the parent container, and

by the cdmi_post dataobject by ID system-wide capability for creation by ID.

Each CDMI data object is represented as a JSON object, containing one or more “fields”. For example, the “metadata

field contains metadata items.
EXAMPLE 1: CDMI Data Object

{
"objectType" : "application/cdmi-object",
"objectID" : "00007ED90010D891022876A8DEOBCOFD",
"objectName" : "MyDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi domains/MyDomain/",
"capabilitiesURI" : "/cdmi capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {
"cdmi size" : "37"
}l
"valuetransferencoding" : "utf-8",
"valuerange" : "0-36",
"value" : "This is the Value of this Data Object"
}

The meaning, use, and permitted values of each field is described in each operation that creates, modifies or retreives

CDMI data objects.

© SNIA 2020 SNIA Technical Position

58

1438

1439

1440

1441

1442
1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455
1456

1457

1458
1459

1460

1461

1462

1463

1464
1465
1466
1467
1468

1469

1470

1471

1472
1473
1474

1475

1476
1477
1478
1479

1480
1481

1482

Cloud Data Management Interface 2.0.0

8.2 Data object details

8.2.1 Data object addressing

Data objects are addressed in CDMI in two ways:
* by name (e.g. https://cloud.example.com/cdmi/2.0.0/dataobject); and

* by ID (e.g. https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/
< 00007ED90010D891022876A8DEOBCOFD).

Every data object has a single, globally-unique object identifier (ID) that remains constant for the life of the object. Each
data object shall have one or more URI addresses that allow the object to be accessed.

8.2.2 Data object fields

Individual fields within a data object can be accessed by specifying the field name after a question mark “?” that is
appended to the end of the data object URI.

EXAMPLE 2: The following URI returns the value field in the response body:
https://cloud.example.com/cdmi/2.0.0/dataobject?value

A list of unique fields, separated by an ampersand “s” can be specified, allowing multiple fields to be accessed in a
single request.

EXAMPLE 3: The following URI returns the value and metadata fields in the response body:
https://cloud.example.com/cdmi/2.0.0/dataobject?valuesmetadata

When a client provides fields that are not defined in this International Standard or deserializes an object containing fields
that are not defined in this International Standard, these fields shall be persisted, but shall not be interpreted.

8.2.3 Data Object Value

The encoding of the data transported in the data object value field depends on the data object valuetransferen-
coding field.

« If the value transfer encoding of the object is set to “ut £-8”, the data stored in the value of the data object shall
be a valid UTF-8 string and shall be transported as a UTF-8 string in the value field.

« If the value transfer encoding of the object is set to “base64”, the data stored in the value of the data object can
contain arbitrary binary sequences, and it shall be transported as a base 64-encoded string in the value field.

« If the value transfer encoding of the object is set to “json”, the data stored in the value of the data object shall
contain a valid JSON object, and the value field shall contain a valid JSON object. The JSON stored and returned
shall be semantically equivalent but may not be syntactically identical. For example, whitespace outside of JSON-
quoted strings may be removed or added by either client libraries or by the server. This means that the number
of bytes sent may not be the same as the number of bytes stored.

Specific ranges of the value of a data object can be accessed by specifying a byte range after the value field name.
EXAMPLE 4: The following URI returns the first thousand bytes in the value field:
https://cloud.example.com/cdmi/2.0.0/dataocbject?value=0-999

Because a byte range of a UTF-8 string is often not a valid UTF-8 string, the response to a range request shall always
be transported in the value field as a base 64-encoded string. Likewise, when updating a range of bytes within the value
of a data object, the contents of the value field shall be transported as a base 64-encoded string.

Byte ranges are specified as single inclusive byte ranges as per Section 14.35.1 of RFC 2616 [23].

The value of a data object can also be specified and retrieved using multipart MIME, where the CDMI JSON is transferred
in the first MIME part, and the raw object value is transferred in the second MIME part. Each MIME part, including any
header fields, shall conform to RFC 2045 [9], RFC 2046 [10], and RFC 2047 [22]. The length of each part can optionally
be specified by a Content-Length header in addition to the MIME boundary delimiter.

Multiple non-overlapping ranges of the value of a data object can also be accessed or updated in a multipart MIME
operation by transferring one MIME part for each range of the value. The byte ranges for these operations shall be
specified as per Section 14.35.1 of RFC 2616 [23].

© SNIA 2020 SNIA Technical Position 59

1483

1484

1485

1486
1487
1488
1489

1490

1491

1492
1493

1494

1495

1496
1497

1498

1499

1500

1501

1502

1503

1504

1505

1506
1507
1508

1509

1510
1511

1512
1513

1514

1515

1516
1517

1518

Cloud Data Management Interface 2.0.0

Multipart MIME enables the efficient transfer of binary data alongside CDMI object metadata without incurring the over-
head of the UTF-8 or Base64 encoding and validation required to represent binary data in JSON.

8.2.4 Data object metadata

Data object metadata can also include arbitrary user-supplied metadata, storage system metadata, and data system
metadata, as specified in clause 16. Metadata shall be stored as a valid UTF-8 string. Binary data stored in user
metadata shall be first encoded such that it can be contained in a UTF-8 string, with the use of base 64 encoding
recommended.

Every data object has a parent object from which the data object inherits data system metadata that is not explicitly
specified in the data object itself.

EXAMPLE 5: The “budget.xls” data object stored at the following URI would inherit data system metadata
from its parent container, “finance”:

https://cloud.example.com/cdmi/2.0.0/finance/budget.xls

8.2.5 Data object access control

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields shall be returned.
If no requested fields are permitted to be read, an HTTP status code of 403 Forbidden shall be returned to the client.

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be performed, and an
HTTP status code of 403 Forbidden shall be returned to the client.

8.2.6 Data object consistency

Writing to a data object is an atomic operation.

« If a client reads a data object simultaneously with a write to that same data object, the reading client shall get
either the old version or the new version, but not a mixture of both.

« If a write is terminated due to errors, the contents of the data object shall be as if the write never occurred (i.e.,
writes are atomic in the face of errors).

Create and update timestamps that are returned in response to multiple client writes to a given object can indicate that
a specific write is the newest (i.e., the write whose data is expected to be returned to subsequent reads until another
write is processed). However, there is no guarantee that the write with the latest timestamp is the one whose data is
returned on subsequent reads.

Range writes can result in a gap in an object value that have had no data written to them. Reading from a gap in a data
object value shall return zero for each byte read.

Implementations of this International Standard shall provide the atomicity features described in this subclause for data
objects that are accessed via CDMI. The atomicity properties of data objects that are accessed by protocols other than
CDMI are outside the scope of this International Standard.

8.2.7 Data object representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support UTF-8 JSON
representation. The request and response body JSON fields may be specified or returned in any order, with the exception
that, if present, for data objects, the “valuerange” and “value” fields shall appear last and in that order.

© SNIA 2020 SNIA Technical Position 60

Cloud Data Management Interface 2.0.0

w0 8.2.8 Encrypted objects

120 CDMI data object operations only permit management operations and access to the ciphertext of encrypted objects.
1521 For more details on encrypted objects, see clause 23.

© SNIA 2020 SNIA Technical Position 61

1622

1523

1524

1525

1526

1527

1528

1529
1530

1531

1532

1533

1534
1535
1536

1537

1538

1539

1540

1541

1542

1543
1544

1545
1546

1547

1548

1549

1550
1551

1552

Cloud Data Management Interface 2.0.0

8.3 Create a data object using CDMI

8.3.1 Synopsis

To create a new data object, the following request shall be performed:
* PUT <root URI>/<ContainerName>/<DataObjectName>
To create a new data object by ID, see 9.7.
Where:
* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., “/”) between
each pair of container names.

* <DataObjectName> is the name specified for the data object to be created.

After it is created, the data object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.3.2 Delayed completion of create

In response to a create operation for a data object, the server may return an HTTP status code of 202 Accepted to
indicate that the object is in the process of being created. This response is useful for long-running operations (e.g.,
copying a large data object from a source URI). Such a response has the following implications.

* The server shall return a Location header with an absolute URI to the object to be created along with an HTTP
status code of 202 Accepted.

« With an HTTP status code of 202 Accepted, the server implies that the following checks have passed:
— user authorization for creating the object;
— user authorization for read access to any source object for move, copy, serialize, or deserialize; and
— availability of space to create the object or at least enough space to create a URI to report an error.

+ A client might not be able to immediately access the created object, e.g., due to delays resulting from the imple-
mentation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the server returns
two fields in its response body to indicate progress.

* Amandatory completionStatus text field contains either “Processing”, “Complete”, or an error string start-
ing with the value “Error”.

» An optional percentComplete field contains the percentage of the operation that has completed (0 to 100).

GET shall not return any value for the data object when completionStatus is not “Complete”. If the final result of
the create operation is an error, the URI is created with the completionStatus field set to the error message. Itis
the client’s responsibility to delete the URI after the error has been noted.

© SNIA 2020 SNIA Technical Position 62

1553

1554

1555

1556

Cloud Data Management Interface 2.0.0

8.3.3 Capabilities

Capabilities that indicate which operations are supported are shown in Table 29.

Table 29: Capabilities - Create a CDMI data object using CDMI

Capability

Location

Description

cdmi create dataobject

Parent Container

Ability to create a new data object

cdmi create reference

Parent Container

Ability to create a new reference

cdmi copy dataobject

Parent Container

Ability to create a data object that is a copy of
another data object

cdmi move dataobject

Parent Container

Ability to move a data object from another
container

cdmi deserialize dataobject

Parent Container

Ability to create a data object that is deserialized
from the contents of the PUT or the contents of
another data object

cdmi_ serialize dataobject
cdmi serialize container
cdmi_serialize domain
cdmi serialize queue

Parent Container

Ability to create a data object that contains a
serialized representation of an existing data
object, container, domain or queue

cdmi create value range

Parent Container

Ability to create a data object using a specified
byte range

cdmi multipart mime

System Wide
Capability

Ability to create a data object using multi-part
MIME

8.3.4 Request headers

The HTTP request headers for creating a CDMI data object using CDMI are shown in Table 30.

Table 30: Request headers - Create a CDMI data object using CDMI

Header Type

Description

Requirement

Header
string

Accept

“application/cdmi-object” or a consistent value
defined in 5.5.2

Optional

Header
string

Content-Type

“application/cdmi-object” or ‘multipart/mixed”

* If‘multipart/mixed” is specified, the body shall
consist of at least two MIME parts, where the first part
shall contain a body of content-type
“application/cdmi-object”, and the second and
subsequent parts shall contain one or more byte
ranges of the value.

« If multiple byte ranges are included and the
Content-Range header is omitted for a part, the data
in the part shall be appended to the data in the
preceding part, with the first part having a byte offset of

Zero.

Mandatory

Header
string

X-CDMI-Partial

Indicates that the newly created object is part of a series of
writes and has not yet been fully created. When set to
“true”, the completionStatus field shall be set to
“Processing”. X-CDMI-Partial works across CDMI and
non-CDMI operations.

Optional

© SNIA 2020

SNIA Technical Position

63

Cloud Data Management Interface 2.0.0

s 8.3.5 Request message body

153, The request message body fields for creating a data object using CDMI
19 tbl cdmi data object create request message body.

Table 31: Request message body - Create a data object using CDMI

are shown in

Field Name Type Description

Requirement

mimetype JSON MIME type of the data contained within the value field of the

string data object

« This field may be included when creating by value or
when deserializing, serializing, copying, and moving a
data object.

« If this field is not included and multi-part MIME is not
being used, the value of “text/plain” shall be
assigned as the field value.

« If this field is not included and multi-part MIME is being
used, the value of the Content-Type header of the
second MIME part shall be assigned as the field value.

+ This field field value shall be converted to lower case
before being stored.

Optional

metadata JSON Metadata for the data object

object « If this field is included, the contents of the JSON object
provided in this field shall be used as data object
metadata.

« If this field is included when deserializing, serializing,
copying, or moving a data object, the contents of the
JSON object provided in this field shall be used as
object metadata instead of the metadata from the
source URI.

« If this field is not included, no user-specified metadata
shall be added to the object.

« If this field is not included when deserializing,
serializing, copying, or moving a data object, metadata
from the source URI shall be used.

« This field shall not be included when creating a
reference to a data object.

Optional

domainURI JSON URI of the owning domain

string « If different from the parent domain, the user shall have
the “cross-domain” privilege (see
cdmi member privileges in Table 80 .

* If not specified, the domain of the parent container shall
be used.

Optional

deserialize JSON URI of a CDMI data object with a value that contains a data
string object serialized as specified in clause 15. The serialized data
object shall be deserialized to create the new data object.

Optional’

serialize JSON URI of a CDMI object that shall be serialized into the new
String data object

Optional’

continues on next page

© SNIA 2020 SNIA Technical Position

64

Cloud Data Management Interface 2.0.0

Table 31 — continued from previous page

Field Name

Type

Description

Requirement

copy

JSON
string

URI of a source CDMI data object or queue object that shall
be copied into the new destination data object.

« If the destination data object URI and the copy source
object URI both do not specify individual fields, the
destination data object shall be a complete copy of the
source data object.

« If the destination data object URI or the copy source
object URI specifies individual fields, only the fields
specified shall be used to create the destination data
object. If specified fields are not present in the source,
default field values shall be used.

« If the destination data object URI and the copy source
object URI both specify fields, an HTTP status code of
400 Bad Request shall be returned to the client.

« If the copy source object URI points to a queue object,
as part of the copy operation, multiple queue values
shall be concatenated into a single data object value.

« If the copy source object URI points to one or more
queue object values, as part of the copy operation, the
specified queue values shall be concatenated into a
single data object value.

« If there are insufficient permissions to read the data
object at the source URI or create the data object at the
destination URI, or if the read operation fails, the copy
shall return an HTTP status code of 400 Bad
Request, and the destination object shall not be
created.

Optional’

move

JSON
string

URI of an existing local or remote CDMI data object (source
URI) that shall be relocated to the URI specified in the PUT.
The contents of the object, including the object ID, shall be
preserved by a move, and the data object at the source URI
shall be removed after the data object at the destination has
been successfully created.

If there are insufficient permissions to read the data object at
the source URI, write the data object at the destination URI,
or delete the data object at the source URI, or if any of these
operations fail, the move shall return an HTTP status code of
400 Bad Request, and the source and destination are left
unchanged.

Optional

reference

JSON
string

URI of a CDMI data object that shall be redirected to by a
reference. If any other fields are supplied when creating a
reference, the server shall respond with an HTTP status code
of 400 Bad Request

Optional’

deserializevalue

JSON
string

A data object serialized as specified in clause 15 and encoded
using base 64 encoding rules described in RFC 4648 [19],
that shall be deserialized to create the new data object.

* If multi-part MIME is being used and this field contains
the value of the MIME boundary parameter, the
contents of the second MIME part shall be assigned as
the field value.

« If the serialized data object in the second MIME part
does not include a value field, the contents of the third
MIME part shall be assigned as the field value of the
value field.

Optional’

continues on next page

© SNIA 2020

SNIA Technical Position

65

Cloud Data Management Interface 2.0.0

Table 31 — continued from previous page

Field Name Type Description Requirement
valuetransfer JSON The value transfer encoding used for the data object value. Optional
— encoding string Three value transfer encodings are defined.

+ “ut£-8” indicates that the data object contains a valid
UTF-8 string, and it shall be transported as a UTF-8
string in the value field.

* “base64” indicates that the data object may contain
arbitrary binary sequences, and it shall be transported
as a base 64-encoded string in the value field. Setting
the contents of the data object value field to any value
other than a valid base 64 string shall result in an HTTP
status code of 400 Bad Request being returned to
the client.

* “Json” indicates that the data object contains a valid
JSON object, and the value field shall be a JSON
object containing valid JSON data. If the contents of
the value field are set to any value other than a valid
JSON object, an HTTP status code of 400 Bad
Request shall be returned to the client.

« This field shall only be included when creating a data
object by value.

« If this field is not included and multi-part MIME is not
being used, the value of “ut £-8” shall be assigned as
the field value.

« If this field is not included and multi-part MIME is being
used, the value of “ut £-8” shall be assigned as the
field value if the Content-Type header of the second
and all MIME parts includes the charset parameter as
defined in RFC 2046 of “ut£-8” (e.g.,

“; charset=utf-8"). Otherwise, the value of
“base64” shall be assigned as the field value. This
field applies only to the encoding of the value when
represented in CDMI; the
Content-Transfer-Encoding header of the part
specifies the encoding of the value within a multi-part
MIME request, as defined in RFC 2045 [9].

value JSON The data object value Optional

string « If this field is not included and multi-part MIME is not
being used, an empty JSON String (i.e., “*) shall be
assigned as the field value.

« If this field is not included and multi-part MIME is being
used, the contents of the second MIME part shall be
assigned as the field value.

* Ifthe valuetransferencoding field indicates UTF-8
encoding, the value shall be a UTF-8 string escaped
using the JSON escaping rules described in RFC 4627
[5].

» Ifthe valuetransferencoding field indicates base
64 encoding, the value shall be first encoded using the
base 64 encoding rules described in RFC 4648 [19].

* Ifthe valuetransferencoding field indicates JSON
encoding, the value shall contain a valid JSON object.

" Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 66

1560

1561

1562

1563

1564

1565

Cloud Data Management Interface 2.0.0

8.3.6 Response headers

The HTTP response headers for creating a data object using CDMI are shown in Table 32.

Table 32: Response headers - Create a data object using CDMI

Header Type Description Requirement
Content-Type Header ‘application/cdmi-object” Mandatory
string
Location Header When an HTTP status code of 202 Accepted is returned, Conditional
string the server shall respond with the absolute URL of the object
that is in the process of being created.

8.3.7 Response message body
The response message body fields for creating a data object using CDMI are shown in Table 33.

Table 33: Response message body - Create a data object using CDMI

Field Name Type Description Requirement

objectType JSON “application/cdmi-object” Mandatory
string

objectID JSON Object ID of the object Mandatory
string

objectName JSON Name of the object Mandatory
string

parentURI JSON URI for the parent object. Mandatory
string Appending the objectName to the parentURI shall always

produce a valid URI for the object.

parentID JSON Object ID of the parent container object Mandatory
string

domainURI JSON URI of the owning domain Mandatory
string

capabilitiesURI | JSON URI to the capabilities for the object Mandatory
string

completionStatus| JSON A string indicating if the object is still in the process of being Mandatory
string created or updated by another operation, and after that

operation is complete, indicates if it was successfully created
or updated or if an error occurred.

The value shall be the string “Processing”, the string
“Complete”, or an error string starting with the value “Error”.

percentComplete | JSON A string indicating the percentage of completion if the objectis | Optional
string still in the process of being created or updated by another
operation.

* When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from “0” through “100”.

* When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

* When the value of completionStatus is “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

mimetype JSON MIME type of the value of the data object Mandatory
string

continues on next page

© SNIA 2020 SNIA Technical Position 67

1566

1567

1568

1569

1570

1571

Cloud Data Management Interface 2.0.0

Table 33 — continued from previous page

Field Name Type Description Requirement
metadata JSON Metadata for the data object. This field includes any user and | Mandatory
object data system metadata specified in the request body metadata

field, along with storage system metadata generated by the
cloud storage system. See clause 16 for a further description
of metadata.

8.3.8 Response status

The HTTP status codes that occur when creating a data object using CDMI are described in Table 34.

Table 34:

HTTP status codes - Create a data object using CDMI

HTTP Status

Description

201 Created

The new data object was created.

202 Accepted

The data object is in the process of being created. The CDMI client should
monitor the completionStatus and percentComplete fields to determine
the current status of the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a

state transition error on the server.

8.3.9 Examples

EXAMPLE 1: PUT to the container URI the data object name and contents:

--> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com

--> Accept: application/cdmi-object

--> Content-Type: application/cdmi-object

-—>

-—> {

-—> "mimetype" "text/plain",

—-——> "metadata" : {

-—>

-—> 1},

-—> "value" "This is the Value of this Data Object"
<-- HTTP/1.1 201 Created

<-- Content-Type: application/cdmi-object

<—

<=={

<-= "objectType" "application/cdmi-object",

<-- "objectID" "00007ED90010D891022876A8DEOBCOFD",
<-- "objectName" "MyDataObject.txt",

<-- "parentURI" "/MyContainer/",

<-- "parentID" "00007E7F00102E230ED82694DAA975D2",
<-- "domainURI" "/cdmi_domains/MyDomain/",

<-- "capabilitiesURI" "/cdmi_ capabilities/dataobject/",
<-- "completionStatus" "Complete",

<-- "mimetype" "text/plain",

<-- "metadata" : {

<-- "cdmi size" "3

<-= }

<--}

© SNIA 2020

SNIA Technical Position

68

1572

1573

Cloud Data Management Interface 2.0.0

EXAMPLE 2: PUT to the container URI the data object name and binary contents:

PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com

Accept: application/cdmi-object

Content-Type: application/cdmi-object

{

"mimetype" : "text/plain",

"metadata" : { },

"valuetransferencoding" : "base64"

"value" : "VGhpcyBpcyB0aGUgVmFsdWUgb2YgdGhpcyBEYXRhIE9iamVjdA=="

}

HTTP/1.1 201 Created
Content-Type: application/cdmi-object

{

"objectType": "application/cdmi-object",
"objectID": "00007ED9001008C174ABCE6AC3287E5F",
"objectName": "MyDataObject.txt",
"parentURI": "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi domains/MyDomain/",
"capabilitiesURI": "/cdmi capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "text/plain",
"metadata": {

"cdmi size": "37"

}

EXAMPLE 3: PUT to the container URI the data object name and binary contents using multi-part MIME:

PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1

Host: cloud.example.com

Accept: application/cdmi-object

Content-Type: multipart/mixed; boundary=gcOp4JgOM2Yt08j34cOp

--gc0p4Jg0M2Yt08334cOp
Content-Type: application/cdmi-object

{

"domainURI": "/cdmi domains/MyDomain/",
"metadata": {
"colour": "blue"
}
}
--gc0p4Jgq0M2Yt08334cO0p

Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>
--gc0p4Jg0M2Yt08334c0p--

HTTP/1.1 201 Created
Content-Type: application/cdmi-object

{

"objectType": "application/cdmi-object",

"objectID": "00007EDS00103ADESDE3A8DICF5436A3",
"objectName": "MyDataObject.txt",

"parentURI": "/MyContainer/",

"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi domains/MyDomain/",
"capabilitiesURI": "/cdmi capabilities/dataobject/",
"completionStatus": "Complete",

"mimetype": "application/octet-stream",

(continues on next page)

© SNIA 2020 SNIA Technical Position

69

1574
1575

1576

Cloud Data Management Interface 2.0.0

(continued from previous page)

"metadata": {
"cdmi size": "37",
"colour": "blue",

EXAMPLE 4: PUT to the container URI the data object name and binary contents using multi-part MIME with op

content-lengths for the parts:

tional

PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1

Host: cloud.example.com

Accept: application/cdmi-object

Content-Type: multipart/mixed; boundary=gcO0p4Jgq0M2Yt08334c0

--gc0p4Jg0M2Yt08534cOp
Content-Type: application/cdmi-object
Content-Length: 82

—_> {

"domainURI":

"metadata": {
"colour": "blue"

"/cdmi_ domains/MyDomain/",

—_—> }
-—>}

--gc0p4Jg0M2Yt08334cO0p

Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Length: 37

<37 bytes of binary data>
--gc0p4Jg0M2Yt08334cO0p--

HTTP/1.1 201 Created
Content-Type: application/cdmi-object

<= {
"objectType": "application/cdmi-object",
"objectID": "00007ED900103ADE9DE3A8DICF5436A3",
"objectName": "MyDataObject.txt",
"parentURI": "/MyContainer/",
"parentID" "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi domains/MyDomain/",
"capabilitiesURI": "/cdmi capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "application/octet-stream",
"metadata": {

"cdmi size": "37",

"colour": "blue",

EXAMPLE 5: PUT to the container URI the data object name and JSON contents:

PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com

Accept: application/cdmi-object

Content-Type: application/cdmi-object

- {
"mimetype" "text/plain",
"metadata" : { },
"valuetransferencoding"
"value" : {
"test"

vvj son'

"value"
——> }

(continues on next page)

© SNIA 2020 SNIA Technical Position

70

1577

Cloud Data Management Interface 2.0.0

(continued from previous page)

-—> }

<-- HTTP/1.1 201 Created
<-- Content-Type: application/cdmi-object

<—-
<=={

<-= "objectType": "application/cdmi-object",

<-- "objectID": "0000706D0010374085EF1A5C7018D774",

<-- "objectName": "MyDataObject.txt",

<-- "parentURI": "/MyContainer/",

<== "parentID" : "00007ED90010067404EDED32860C086A",

<-- "domainURI": "/cdmi domains/MyDomain/",

<-- "capabilitiesURI": "/cdmi capabilities/dataobject/",
<-= "completionStatus": "Complete",

<-- "mimetype": "text/plain",

<-- "metadata": {

<-= "cdmi size": "21"

<-= }

<--}

EXAMPLE 6: PUT to the container URI to create an encrypted object:

--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

-—>

-—> {

-—> "mimetype" : "application/cms",

-—> "metadata" : {

-=> "cdmi enc key id" : "testkey"

-=> I

-—> "valuetransferencoding" : "base64"

-—> "value" : "<CMS Encrypted Object in Base64>"
—_> }

<-- HTTP/1.1 201 Created

-=> PUT /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.

© SNIA 2020 SNIA Technical Position

71

Cloud Data Management Interface 2.0.0

17 EXAMPLE 7: PUT to the container URI to create an encrypted object:

--> PUT /cdmi/2.0.0/MyContainer/MyEncryptedObject2.txt HTTP/1.1
-—> Host: cloud.example.com

--> Content-Type: application/cdmi-object

-—>

-—> "mimetype" : "application/jose+json",

-—> "metadata" : {

-=> "cdmi enc key id" : "77c7e2b8-6el3-45cf-8672-617b5b45243a"
-=> I

-=> "valuetransferencoding" : "json",

-——> "value" : {

-—> "protected": "eyJhbGciOiJkaXIiLCJraWQiOiI3N2M3ZTJi
-—> OC02ZTEzLTQ1Y2YtODY3Mi02MTdiNWIONTIO

-=> M2EiLCJ1lbmMiOiJBMTI4RONNINO",

-——> "iv": "refad67QzzKx6QAB",

-—> "ciphertext": "JW i f52hww ELQPGaYyeABG6HYGCR55919T
-—> YnSovc23XJoBcW29rHP8yZOZG7YhLpT1lbjF

-—> uvZPjQOS-mOIFtVcXkZXdH 1lr FrdYt9HRUY

-=> kshtrMmIUAYyGmUnd9zMDB2n0cRDIHAZEVeJ

-—> UDXkUWVAE7_YGRPdchyiBoCO—FBdE—Nceb

-—> 4h3-FtBP-c BIWCPTjbS%00SbdcdREEMIMyZ

-=> BH8ySWMVilgPD9yxi-aQpGbSv FON4IZAxs

-—> cj59-NJsUPbjk29-s7LJIAGb15wEBtXphVCg

-—> yy53CoIKLHHeJHXex45Uz9aKZSRSInZI-wj

-——> sYOyu3cT4_aQ3ilo-tiE-F8Ios61EKgyIQ4

-=> CWao8PFMj8TTnp",

-=> "tag": "vbb32Xvllea20tmHAdccRQ",

-—> "cty": "text/plain"

——> }

<-- HTTP/1.1 201 Created

© SNIA 2020 SNIA Technical Position

72

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

Cloud Data Management Interface 2.0.0

8.4 Read a data object using CDMI

8.4.1 Synopsis

To read an existing data object, the following requests shall be performed:

* GET <root URI>/<ContainerName>/<DataObjectName>

* GET <root URI>/<ContainerName>/<DataObjectName>?<fieldname>&<fieldname>&. ..

* GET <root URI>/<ContainerName>/<DataObjectName>?value=<range>&. ..

* GET <root URI>/<ContainerName>/<DataObjectName>?metadata=<prefix>é&...

* GET <root URI>/cdmi objectid/<DataObjectID>

* GET <root URI>/cdmi_objectid/<DataObjectID>?<fieldname>&<fieldname>&...

* GET <root URI>/cdmi objectid/<DataObjectID>?value=<range>&...

* GET <root URI>/cdmi objectid/<DataObjectID>?metadata=<prefix>&...

Where:

* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate containers.

* <DataObjectName> is the name of the data object to be read from.

* <fieldname> is the name of a field.

* <range> is a byte range of the data object value to be returned in the value field.

* <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

* <DataObjectID> is the ID of the data object to be read from.

8.4.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 35.

Table 35: Capabilities - Read a CDMI data object using CDMI

Capability Location Description
cdmi read metadata Data Object Ability to read the metadata of an existing data
object
cdmi_ read value Data Object Ability to read the value of an existing data object
cdmi_read value range Data Object Ability to read a sub-range of the value of an
existing data object
cdmi multipart mime System Wide Ability to read a data object using multi-part MIME
Capability
cdmi_object access by ID System Wide Ability to access the object by ID
Capability

8.4.3 Request headers

The HTTP request headers for reading a CDMI data object using CDMI are shown in Table 36.

Table 36: Request headers - Read a CDMI data object using CDMI

Header Type Description Requirement
Accept Header “application/cdmi-object”, “multipart/mixed”’, ora | Optional
string consistent value defined in 5.5.2

© SNIA 2020

SNIA Technical Position 73

1604

1605

1606

1607

1608

1609

1610

1611

Cloud Data Management Interface 2.0.0

8.4.4 Request message body

A request body shall not be provided.

8.4.5 Response headers

The HTTP response headers for reading a data object using CDMI are shown in Table 37.

Table 37: Response headers - Read a CDMI data object using CDMI

Header

Type

Description

Requirement

Content-Type

Header
string

“‘application/cdmi-object”or ‘multipart/mixed”

e If ‘multipart/mixed”, the body shall consist of at
least two MIME parts, where the first part shall contain
a body of content-type “application/cdmi-object
and the second and subsequent parts shall contain the
requested byte ranges of the value.

+ If multiple byte ranges are included and the
Content-Range header is omitted for a part, the data in
the part shall be appended to the data in the preceding
part, with the first part having a byte offset of zero.

Mandatory

Location

Header
string

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

8.4.6 Response message body

The response message body fields for reading a CDMI data object using CDMI are shown in Table 38.

Table 38: Response message body - Read a CDMI data object using

CDMI
Field Name Type Description Requirement
objectType JSON ‘application/cdmi-object” Mandatory
string
objectID JSON Object ID of the object Mandatory
string
objectName JSON Name of the object Conditional
string » For objects in a container, the objectName field shall be
returned.
» For objects not in a container (objects that are only
accessible by ID), the “objectName” field does not
exist and shall not be returned.
parentURI JSON URI for the parent object Conditional
string + For objects in a container, the parentURI field shall be
returned.
+ For objects not in a container (objects that are only
accessible by ID), the “parentURT” field does not exist
and shall not be returned.
Appending the “objectName” to the “parentURI” shall
always produce a valid URI for the object.

continues on next page

© SNIA 2020

SNIA Technical Position

74

Cloud Data Management Interface 2.0.0

Table 38 — continued from previous page

Field Name Type Description Requirement
parentID JSON Object ID of the parent container object Conditional
string » For objects in a container, the “parent1D” field shall
be returned.
» For objects not in a container (objects that are only
accessible by ID), the “parentID” field does not exist
and shall not be returned.
domainURI JSON URI of the owning domain Mandatory
string
capabilitiesURI | JSON URI to the capabilities for the object Mandatory
string
completionStatus| JSON A string indicating if the object is still in the process of being Mandatory
string created or updated by another operation, and after that
operation is complete, indicates if it was successfully created
or updated or if an error occurred.
The value shall be the string “Processing”, the string
“Complete”, or an error string starting with the value “Error”.
percentComplete | JSON A string indicating the percentage of completion if the objectis | Optional
string still in the process of bewing created or updated by another
operation.
* When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from 0 through 100.
* When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.
* When the value of completionStatusis “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.
mimetype JSON MIME type of the value of the data object Mandatory
string
metadata JSON Metadata for the data object. This field includes any user and | Mandatory
object data system metadata specified in the request body metadata
field, along with storage system metadata generated by the
cloud storage system.
See clause 16 for a further description of metadata.
valuerange JSON The range of bytes of the data object to be returned in the Mandatory
string value field
« If a specific value range has been requested, the
valuerange field shall correspond to the bytes
requested. If the request extends beyond the end of
the value, the valuerange field shall indicate the smaller
byte range returned.
« If the object value has gaps (due to PUTs with
non-contiguous value ranges), the value range will
indicate the range to the first gap in the object value.
* The cdmi_size storage system metadata of the data
object shall always indicate the complete size of the
object, including zero-filled gaps.

continues on next page

© SNIA 2020

SNIA Technical Position

75

Cloud Data Management Interface 2.0.0

Table 38 — continued from previous page

Field Name Type Description Requirement
valuetransfer JSON The value transfer encoding used for the data object value. Mandatory
— encoding string Three value transfer encodings are defined:

+ “ut£-8” indicates that the data object contains a valid
UTF-8 string, and it shall be transported as a UTF-8
string in the value field.

* “base64” indicates that the data object may contain
arbitrary binary sequences, and it shall be transported
as a base 64-encoded string in the value field.

* “Json” indicates that the data object contains a valid
JSON object, and the value field shall contain a valid

JSON object.
value JSON The data object value Conditional
string « If the valuetransferencoding field indicates UTF-8

encoding, the value field shall contain a UTF-8 string
using JSON escaping rules described in RFC 4627 [5].

« If the valuetransferencoding field indicates base 64
encoding, the value field shall contain a base
64-encoded string as described in RFC 4648 [19].

« If the valuetransferencoding field indicates JSON
encoding, the value field shall contain a valid JSON
object.

» The value field shall not be provided when using
multi-part MIME.

» The value field shall only be provided when the
completionStatus field contains “Complete”.

* When reading a value, zeros shall be returned for any
gaps resulting from non-contiguous writes.

w12 If individual fields are specified in the GET request, only these fields are returned in the result body. Optional fields that
113 are requested but do not exist are omitted from the result body.

we 8.4.7 Response status

w15 The HTTP status codes that occur when reading a data object using CDMI are described in Table 39.

Table 39: HTTP status codes - Read a CDMI data object using CDMI

1617

HTTP Status Description
200 OK The data object content was returned in the response.
202 Accepted The data object is in the process of being created. The CDMI client should

monitor the completionStatus and percentComplete fields to determine
the current status of the operation.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the specified in the Accept header.

© SNIA 2020 SNIA Technical Position 76

1618

1619

1620

1621

Cloud Data Management Interface 2.0.0

8.4.8 Examples

EXAMPLE 1: GET to the data object URI to read all fields of the data object:

--> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-object

<-- HTTP/1.1 200 OK
<-- Content-Type: application/cdmi-object

<__

<=-{

<-- "objectType" : "application/cdmi-object",

<-= "objectID" : "00007ED90010D891022876A8DEOBCOFD",
<-- "objectName" : "MyDataObject.txt",

<-- "parentURI" : "/MyContainer/",

<-- "parentID" : "00007E7F00102E230ED82694DAAS75D2",
<-= "domainURI" : "/cdmi domains/MyDomain/",

<-- "capabilitiesURI" : "/cdmi capabilities/dataobject/",
<-- "completionStatus" : "Complete",

<-- "mimetype" : "text/plain",

<-- "metadata" : {

<-- "cdmi size" : "37"

<-- I

<-- "valuerange" : "0-36",

<-= "valuetransferencoding" : "utf-8",

<-= "value" : "This is the Value of this Data Object"
<--}

EXAMPLE 2: GET to the data object URI by ID to read all fields of the data object:

--> Host: cloud.example.com
--> Accept: application/cdmi-object

<-- HTTP/1.1 200 OK
<-- Content-Type: application/cdmi-object

<—-
<--{

<-= "objectType" : "application/cdmi-object",

<-- "objectID" : "00007ED90010D891022876A8DEOBCOFD",

<-- "objectName" : "MyDataObject.txt",

<-- "parentURI" : "/MyContainer/",

<-- "parentID" : "00007E7F00102E230ED82694DAAS75D2",

<-- "domainURI" : "/cdmi domains/MyDomain/",

<-- "capabilitiesURI" : "/cdmi capabilities/dataobject/",
<-- "completionStatus" : "Complete",

<-- "mimetype" : "text/plain",

<-= "metadata" : {

<-- "cdmi size" : "37"

<-- I

<-- "valuetransferencoding" : "utf-8",

<-- "valuerange" : "0-36",

<-- "value" : "This is the Value of this Data Object"
<--1}

--> GET /cdmi/2.0.0/cdmi objectid/00007ED90010D891022876A8DEOBCOFD HTTP/1.1

EXAMPLE 3: GET to the data object URI to read the value and mimetype fields of the data object:

--> Host: cloud.example.com
--> Accept: application/cdmi-object

<-- HTTP/1.1 200 OK
<-- Content-Type: application/cdmi-object

<—-
<--{

<-- "value" : "This is the Value of this Data Object",
<-- "mimetype" : "text/plain"

<=}

--> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt?valuesmimetype HTTP/1.1

© SNIA 2020 SNIA Technical Position

77

1622

1623

1624
1625

Cloud Data Management Interface 2.0.0

EXAMPLE 4: GET to the data object URI to read the first 11 bytes of the value of the data object:

--> Host: cloud.example.com
--> Accept: application/cdmi-object

<-- HTTP/1.1 200 OK
<-- Content-Type: application/cdmi-object

<—
<--{

<-- "valuerange" : "0-10",

<-- "value" : "VGhpcyBpcyB0aGU="
<=}

--> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt?valuerange&value=0-10 HTTP/1.1

EXAMPLE 5: GET to the data object URI to read the data object using multi-part MIME:

--> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com
--> Accept: multipart/mixed

<-- HTTP/1.1 200 OK
<-- Content-Type: multipart/mixed; boundary=gc0p4JqOM2Yt08j34cOp

<__

<-- --gc0p4JgOM2Yt08334cOp

<-- Content-Type: application/cdmi-object

<--

<=={

<-= "objectType": "application/cdmi-object",

<-- "objectID": "00007ED90010C2414303B5C6D4F83170",
<-- "objectName": "MyDataObject.txt",

<-- "parentURI": "/MyContainer/",

<-- "parentID" : "00007E7F00102E230ED82694DAA975D2",
<-- "domainURI": "/cdmi domains/MyDomain/",

<-- "capabilitiesURI": "/cdmi capabilities/dataobject/",
<=- "completionStatus": "Complete",

<-- "mimetype": "application/octet-stream",

<-- "metadata": {

<-= "cdmi size": "37",

<-- "colour": "blue",

<—=

<-= b

<-= "valuerange": "0-36",

<-- "valuetransferencoding": "base64"

<--}

<--

<-- --gc0p4JgOM2Yt08334cOp

<-- Content-Type: application/octet-stream
<-- Content-Transfer-Encoding: binary

<__

<-- <37 bytes of binary data>
<—

<-- --gc0p4JqOM2Yt08334cO0p—

EXAMPLE 6: GET to the data object URI to read the data object using multi-part MIME, with optional content-lengths

for the parts:

--> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com
--> Accept: multipart/mixed

<-- HTTP/1.1 200 OK
<-- Content-Type: multipart/mixed; boundary=gc0p4JgqOM2Yt08j34cOp

<-- --gc0p4JgOM2Yt08334cOp
<-- Content-Type: application/cdmi-object
<-- Content-Length: 505

<—
<=={

<-- "objectType": "application/cdmi-object",

<-= "objectID": "00007ED90010C2414303B5C6D4F83170",

(continues on next page)

© SNIA 2020 SNIA Technical Position

78

1626
1627

Cloud Data Management Interface 2.0.0

(continued from previous page)

"objectName": "MyDataObject.txt",
"parentURI": "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi domains/MyDomain/",
"capabilitiesURI": "/cdmi capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "application/octet-stream",
"metadata": {
"cdmi size": "37",
"colour": "blue",
}I
"valuerange": "0-36",
"valuetransferencoding": "base64"
}
--gc0p4Jg0M2Yt08534c0p

Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Length: 37

<37 bytes of binary data>

--gc0p4Jq0M2Yt08534c0p—

EXAMPLE 7: GET to the data object URI to read the metadata and multiple byte ranges of the binary contents using

multi-part MIME:
--> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata&value=0-10&value=21-240
—HTTP/1.1
--> Host: cloud.example.com
--> Accept: multipart/mixed
<-- HTTP/1.1 200 OK
<-- Content-Type: multipart/mixed; boundary=gc0p4Jq0OM2Yt08j34cOp
<——
<-- --gc0p4JgOM2Yt08334cOp
<-- Content-Type: application/cdmi-object
<--
<--{
<-- "metadata": {
<-- "cdmi size": "37",
<-- "colour": "blue",
<--
<== }
<--}
<—-
<-- --gc0p4JgqOM2Yt08334cOp
<-- Content-Type: application/octet-stream
<-- Content-Transfer-Encoding: binary
<-- Content-Range: bytes 0-10/37
<--
<-- <11 bytes of binary data>
<—-
<-- --gc0p4JgOM2Yt08334cOp
<-- Content-Type: application/octet-stream
<-- Content-Transfer-Encoding: binary
<-- Content-Range: bytes 21-24/37
<—-
<-- <4 bytes of binary data>
<—-
<-- --gc0p4JgqOM2Yt08334cOp--

© SNIA 2020 SNIA Technical Position

79

Cloud Data Management Interface 2.0.0

1w2s EXAMPLE 8: GET to the data object URI to read the value and valuetransferencoding fields of a data object storing

w20 JSON data:

-=> GET /cdmi/2.0.0/cdmi objectid/0000706D0010374085EF1A5C7018D7747?
—valuetransferencoding&value HTTP/1.1

--> Host: cloud.example.com

--> Accept: application/cdmi-object

<-- Content-Type: application/cdmi-object

<=={

<== "valuetransferencoding" : "json"
<-- "value" : {

<-- "test" : "value"

<-= }

w0 EXAMPLE 9: GET to the data object URI to read a newly-created data object with a current version:

--> GET /cdmi/2.0.0/MyContainer/MyVersionedDataObject.txt HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-object

<-- Content-Type: application/cdmi-object

<—-
<=={

<__

<-= "objectType" : "application/cdmi-object",

<-= "objectID" : "00007ED900100DA32EC94351F8970400",

<-- "objectName" : "MyVersionedDataObject.txt",

<-- "parentURI" : "/MyContainer/",

<-- "parentID" : "00007E7F00102E230ED82694DAA975D2",

<-- "domainURI" : "/cdmi domains/MyDomain/",

<-- "capabilitiesURI" : "/cdmi capabilities/dataobject/",

<== "completionStatus" : "Complete",

<-- "mimetype" : "text/plain",

<-= "metadata" : {

<-- "cdmi size" : "33",

<-- "cdmi versioning" : "user",

<-- "cdmi version object" : "/cdmi objectid/00007ED900100DA32EC94351F8970400",
<-- "cdmi version current" : "/cdmi objectid/00007ED90010512EB55A9304EACS5D4AA",
<-- "cdmi version oldest" : [

<-- "/cdmi objectid/00007ED90010512EB55A9304EAC5D4AA"

<-- 1,

<-- ...

<-= }I

<-- "valuerange" : "0-32",

<-- "valuetransferencoding" : "utf-8",

<-- "value" : "First version of this Data Object"

<--}

131 EXAMPLE 10: GET to the data object URI to read a data object with two historical versions:

--> GET /cdmi/2.0.0/MyContainer/MyVersionedDataObject.txt HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-object

<-- Content-Type: application/cdmi-object

<=
<--{

<

<-- "objectType" : "application/cdmi-object",

<-- "objectID" : "00007ED900100DA32EC94351F8970400",

<-- "objectName" : "MyDataObject.txt",

<-- "parentURI" : "/MyContainer/",

<-- "parentID" : "00007E7F00102E230ED82694DAAS75D2",

<-- "domainURI" : "/cdmi_ domains/MyDomain/",

<-- "capabilitiesURI" : "/cdmi capabilities/dataobject/",
<-- "completionStatus" : "Complete",

<-- "mimetype" : "text/plain",

(continues on next page)

© SNIA 2020 SNIA Technical Position

80

1632

Cloud Data Management Interface 2.0.0

(continued from previous page)

<-- "metadata" : {

<-- "cdmi size" : "33",

<-- "cdmi versioning" : "user",

<-= "cdmi version object" : "/cdmi objectid/00007ED900100DA32EC94351F8970400",
<-= "cdmi version current" : "/cdmi objectid/00007ED90010F077F4EB1C99C87524CC",
<-- "cdmi version oldest" : [

<-- "/cdmi objectid/00007ED90010512EB55A9304EAC5D4AA"

<-=] ’

<-- .

<-- I

<-- "valuerange" : "0-32",

<-= "valuetransferencoding" : "utf-8",

<-- "value" : "Third version of this Data Object"

<=-}

EXAMPLE 11: GET to the URI of a data object version:

--> GET /cdmi/2.0.0/cdmi objectid/00007ED9001005192891EEBE599D94BB HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-object

<-- Content-Type: application/cdmi-object

<__

<--{

<-= "objectType" : "application/cdmi-object",

<-- "objectID" : "00007ED9001005192891EEBE599D94BB",

<-- "objectName" : "MyVersionedDataObject.txt",

<-- "parentURI" : "/MyContainer/",

<-- "parentID" : "00007E7F00102E230ED82694DAAS75D2",

<-- "domainURI" : "/cdmi domains/MyDomain/",

<-- "capabilitiesURI" : "/cdmi capabilities/dataobject/dataobject version/",

<-- "completionStatus" : "Complete",

<-- "mimetype" : "text/plain",

<—- "metadata" : {

<== "cdmi_ size" : "34",

<-= "cdmi version object" : "/cdmi objectid/00007ED900100DA32EC94351F8970400",
<-- "cdmi version current" : "/cdmi objectid/00007ED90010F077F4EB1C99C87524CC",
<-- "cdmi version oldest" : [

<-- "/cdmi objectid/00007ED90010512EB55A9304EAC5D4AA"

<-=] ’

<-- "cdmi version parent" : "/cdmi objectid/00007ED90010512EB55A9304EAC5D4AA",
<-- "cdmi version children" : [

<-- "/cdmi objectid/00007ED90010F077F4EB1C99C87524CC"

<--] ’

<-- Ce

<-= }I

<-- "valuerange" : "0-33",

<-- "valuetransferencoding" : "utf-8",

<-- "value" : "Second version of this Data Object"

<--}

© SNIA 2020 SNIA Technical Position

81

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

Cloud Data Management Interface 2.0.0

8.5 Update a data object using CDMI

8.5.1 Synopsis

To update part or all of an existing data object, the following requests shall be performed:

* PATCH <root URI>/<ContainerName>/<DataObjectName>

* PATCH <root URI>/<ContainerName>/<DataObjectName>?value=<range>

* PATCH <root URI>/<ContainerName>/<DataObjectName>?metadata=<metadataname>g....

* PATCH <root URI>/cdmi objectid/<DataObjectID>

* PATCH <root URI>/cdmi objectid/<DataObjectID>?value=<range>

* PATCH <root URI>/cdmi objectid/<DataObjectID>?metadata=<metadataname>&....

Where:

* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate containers.

* <DataObjectName> is the name of the data object to be updated.

* <range> is a byte range for the data object value to be updated.

* <DataObjectID> is the ID of the data object to be updated.

8.5.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 40.

Table 40: Capabilities - Update a CDMI data object using CDMI

Capability Location Description
cdmi modify metadata Data Object Ability to modify the metadata of an existing data
object
cdmi modify value Data Object Ability to modify the value of an existing data
object
cdmi _modify value range Data Object Ability to modify a sub-range of the value of an
existing data object
cdmi multipart mime System Wide Ability to modify a data object using multi-part
Capability MIME
cdmi object access by ID System Wide Ability to access the object by ID
Capability

© SNIA 2020

SNIA Technical Position

82

1650

1651

1652

1653

1654

Cloud Data Management Interface 2.0.0

8.5.3 Request headers

The HTTP request headers for updating a CDMI data object using CDMI are shown in Table 41.

Table 41: Request headers - Update a CDMI data object using CDMI

Header

Type

Description

Requirement

Content-Type

Header
string

“application/cdmi-object” or ‘multipart/mixed”

e If‘multipart/mixed” is specified, the body shall
consist of at least two MIME parts, where the first part
shall contain a body of content-type
“application/cdmi-object”, and the second and
subsequent parts shall contain one or more byte
ranges of the value.

« If multiple byte ranges are included and the
Content-Range header is omitted for a part, the data
in the part shall be appended to the data in the
preceding part, with the first part having a byte offset of
zero.

Mandatory

X-CDMI-Partial

Header
string

Indicates that the newly created object is part of a series of
writes and has not yet been fully created. When set to
“true”, the completionStatus field shall be set to
“Processing”. X-CDMI-Partial works across CDMI and
non-CDMI operations.

If the completionStatus field had previously been set to
“Processing” by including this header in a create or update,
the next update without this field shall change the
completionStatus field back to “Complete”.

Optional

8.5.4 Request message body

The request message body
tbl cdmi data object update request message body

fields for updating a data object using CDMI

are shown

in

© SNIA 2020

SNIA Technical Position

83

Cloud Data Management Interface 2.0.0

Table 42: Request message body - Update a CDMI data object using

CDMI

Field Name

Type

Description

Requirement

mimetype

JSON
string

MIME type of the data contained within the value field of the
data object. If present, this value replaces the existing
mimetype field value.
* This field may be included when updating by value,
deserializing, and copying a data object.
« If this field is not included, the existing value of the
mimetype field shall be left unchanged.
* This field field value shall be converted to lower case
before being stored.
If this field is set to “application/cms” or
“application/jose+7json”, the CDMI server shall encrypt
or reencrypt the value of the object in place, using the key
specified by the “cdmi_enc_key id” metadata item. If the
‘cdmi_enc key id” metadata item is not present, the
object ID shall be used as the key identifier. The mimetype of
the plaintext shall be stored in the CMS or JWE JSON
representation.

Ifa“cdmi enc value sign id” metadata item is present,
the encrypted object shall also be signed.

If this field is changed from “application/cms” or

“application/jose+7json” to any other mimetype, the
CDMI server shall decrypt the value of the object in place,
replacing the specified mimetype with the mimetype of the
encrypted object, if stored as part of the encrypted object.

For more details on encrypted objects, see clause 23.

Optional

metadata

JSON
object

Metadata for the data object. If present, the new metadata
specified replaces the existing object metadata. If individual
metadata items are specified in the URI, only those items are
replaced; other items are preserved. See clause 16 for a
further description of metadata.

Optional

domainURI

JSON
string

URI of the owning domain
« If different from the parent domain, the user shall have
the “cross-domain” privilege (see
cdmi member privileges in Table 80).
* If not specified, the existing domain shall be preserved.

Optional

deserialize

JSON
string

URI of a CDMI data object with a value that contains a data
object serialized as specified in clause 15. The serialized data
object shall be deserialized to update the existing data object.

The object ID of the serialized data object shall match the
object ID of the destination data object. Otherwise, the server
shall return an HTTP status code of 400 Bad Request.

Optional’

continues on next page

© SNIA 2020

SNIA Technical Position

84

Cloud Data Management Interface 2.0.0

Table 42 — continued from previous page

that shall be deserialized to update the existing data object.

The object ID of the serialized data object shall match the
object ID of the destination data object. Otherwise, the server
shall return an HTTP status code of 400 Bad Request.

Field Name Type Description Requirement
copy JSON URI of a source CDMI data object or queue object that shall Optional’
string be copied into an existing destination data object.

« If the destination data object URI and the copy source
object URI both do not specify individual fields, the
destination data object shall be replaced with the
source data object.

« If the destination data object URI or the copy source
object URI specifies individual fields, only the fields
specified shall be used to update the destination data
object. If specified fields are not present in the source,
these fields shall be ignored.

« If the destination data object URI and the copy source
object URI both specify fields, an HTTP status code of
400 Bad Request shall be returned to the client.

If the copy source object URI points to a queue object, as part
of the copy operation, multiple queue values shall be
concatenated into a single data object value.
If there are insufficient permissions to read the data object at
the source URI, update the data object at the destination URI,
or if the read operation fails, the copy shall return an HTTP
status code of 400 Bad Request, and the destination shall
be left unchanged.
deserializevalue| JSON A data object serialized as specified in clause 15 and encoded | Optional’
string using base 64 encoding rules described in RFC 4648 [19],

continues on next page

© SNIA 2020

SNIA Technical Position

85

Cloud Data Management Interface 2.0.0

Table 42 — continued from previous page

+ “ut£-8” indicates that the data object contains a valid
UTF-8 string and shall be transported as a UTF-8 string
in the value field. If the contents of the data object
value field are set or updated to any value other than a
valid UTF-8 string, an HTTP status code of 400 Bad
Request shall be returned to the client.

* “base64” indicates that the data object may contain
arbitrary binary sequence and shall be transported as a
base 64 encoded string in the value field. Setting the
contents of the data object value field to any value
other than a valid base 64 string shall result in an HTTP
status code of 400 Bad Request being returned to
the client.

* “Json” indicates that the data object contains a valid
JSON object and shall be transported as a JSON
object in the value field. If the contents of the data
object value field are set or updated to any value other
than a valid JSON object, an HTTP status code of 400
Bad Request shall be returned to the client.

This field shall only be included when updating a data object
by value.

« If this field is not included and multi-part MIME is not
being used, the existing value of
“valuetransferencoding” shall be left unchanged.

« If this field is not included and multi-part MIME is being
used, the value of “ut £-8” shall be assigned as the
field value if the “Content-Type” header of the
second and all subsequent MIME parts includes the
charset parameter as defined in RFC 2046 of “ut £-8”
(e.g., “; charset=utf-8"). Otherwise, the value of
“‘base64” shall be assigned as the field value. This
field applies only to the encoding of the value when
represented in JSON; the
“Content-Transfer-Encoding” header of the part
specifies the encoding of the value within a multi-part
MIME request, as defined in RFC 2045.

Field Name Type Description Requirement
valuetransfer JSON The value transfer encoding used for the data object value. Optional
— encoding string Three value transfer encodings are defined:

continues on next page

© SNIA 2020

SNIA Technical Position

86

1655

1656

1657

1658

1659

1660

1661

1662

Cloud Data Management Interface 2.0.0

Table 42 — continued from previous page

Field Name Type Description Requirement
value JSON This field contains the new data for the object. If present, this | Optional
string value replaces the existing value.

If this field is not included and multi-part MIME is being
used, the contents of the second and subsequent
MIME parts shall be assigned to the corresponding
byte ranges of the field value.

If the valuetransferencoding field indicates UTF-8
encoding, the value shall be a UTF-8 string escaped
using the JSON escaping rules described in RFC 4627
[5].

If the valuetransferencoding field indicates base 64
encoding, the value shall be first encoded using the
base 64 encoding rules described in RFC 4648 [19].

If the valuetransferencoding field indicates JSON
encoding, the value field shall contain a valid JSON
object.

If a value range was specified in the request, the new
data shall be inserted at the location specified by the
range. Any resulting gaps between ranges shall be
treated as if zeros had been written and shall be
included when calculating the size of the value. When
storing a range, the value shall be encoded using base
64, and the valuetransferencoding field shall be set to
“base64d”.

8.5.5 Response header

The HTTP response header for updating a data object using CDMI is shown in Table 43.

Table 43: Response header - Update a CDMI data object using CDMI

Header Type Description Requirement
Location Header The server shall respond with the URI to which the reference Conditional
string redirects if the object is a reference.

8.5.6 Response message body

A response body can be provided as per RFC 2616 [23].

8.5.7 Response status

The HTTP status codes that occur when updating a data object using CDMI are described in Table 44.

" Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020

SNIA Technical Position

87

Cloud Data Management Interface 2.0.0

1663

Table 44: HTTP status codes - Update a CDMI data object using CDMI

1664

HTTP Status Description

204 No Content The data object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a
state transition error on the server.

65 8.9.8 Examples

1wee EXAMPLE 1: PATCH to the data object URI to set new field values:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

-—>

> {

-—> "mimetype" : "text/plain",

-——> "metadata" : {

-——> "colour" : "blue",

-—> "length" : "10"

—-=> }I

-—> "value" : "This is the Value of this Data Object"
- }

<-- HTTP/1.1 204 No Content

ez EXAMPLE 2: PATCH to the data object URI to set a new MIME type:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?mimetype HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

-—> "mimetype" : "text/plain"
> }

<-- HTTP/1.1 204 No Content

1wes EXAMPLE 3: PATCH to the data object URI to update a range of the value:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?value=21-24 HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

-—> {
--> "value" : "dGhhda=="
—_> }

<-- HTTP/1.1 204 No Content

1weo When updating a value without specifying a value transfer encoding, the client must be aware of the current value
w0 transfer encoding of the object.

1671 « If a client sends a value containing a UTF-8 string that is not a valid base 64 string to update an existing object
1672 with a value transfer encoding of “base64”, the server shall return an error.

1673 « If a client sends a value containing a base 64 string to update an existing object with a value transfer encoding of
1674 “ut£-8", the server shall not return an error. Instead, the server shall store the literal base 64 character sequence
1675 in the data object instead of the data encoded in the base 64 string.

© SNIA 2020 SNIA Technical Position 88

Cloud Data Management Interface 2.0.0

1wze EXAMPLE 4: PATCH to the data object URI to replace all metadata with new metadata:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

-—> "metadata" : {
-—> "colour" : "red",
-—> "number" : "7"

-—> }

<-- HTTP/1.1 204 No Content

w7 EXAMPLE 5: PATCH to the data object URI to add a new metadata item while preserving existing metadata:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=shape HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

- {

--> "metadata" : {

-=> "shape" : "round"
——> }

__> }

<-- HTTP/1.1 204 No Content

1wzs EXAMPLE 6: PATCH to the data object URI to replace just one metadata item with a new value:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=colour HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

—-_> {
-——> "metadata" : {
-——> "colour" : "green"

- }

<-- HTTP/1.1 204 No Content

1wre EXAMPLE 7: Delete a single metadata item:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=colour HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

—_—> {
-——> "metadata": {}
__> }

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position

Cloud Data Management Interface 2.0.0

1wso EXAMPLE 8: Add, update, and delete metadata items. Assume a starting condition where the object has a metadata
we1 item “colour” with value “green” and a metadata item “shape” with value “round” and does not have a metadata item

” o«

ws2 “size”. After the update, “colour” has value “red”, “shape” is deleted, and “size” has been added with value “10”.

—metadata=size HTTP/1.1

-—>

--> Host: cloud.example.com

--> Content-Type: application/cdmi-object
-—>

- {

-—> "metadata": {

-—> "colour": "red",

-=> "size": "10"

<-- HTTP/1.1 204 No Content

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=colours&metadata=shapes

1wss EXAMPLE 9: PATCH to the data object URI to set new field values and the binary contents using multi-part MIME:

--> Host: cloud.example.com

-=> —-gc0p4Jg0M2Yt08j34cOp

--> Content-Type: application/cdmi-object
- {

-—> "metadata": {

-—> "colour": "red",

-—> "number": "7"

--> --gcO0p4Jq0M2Yt08334cOp

--> Content-Type: application/octet-stream
--> Content-Transfer-Encoding: binary

--> <37 bytes of binary data>

—=> ——gc0p4JqOM2Yt08934c0p--

<-- HTTP/1.1 204 No Content

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1

--> Content-Type: multipart/mixed; boundary=gcOp4Jgq0M2Yt08j34cOp

1wss EXAMPLE 10: PATCH to the data object URI to replace just one metadata item and update multiple byte ranges within

wes the binary contents of the data object using multi-part MIME:

--> Host: cloud.example.com

-=> —--gc0p4Jg0OM2Yt08j34cOp
--> Content-Type: application/cdmi-object

—_—> {

-——> "metadata": {

-—> "colour": "green"
- }

- }

-=> —-gcO0p4Jg0OM2Yt08j34cOp

--> Content-Type: application/octet-stream
--> Content-Range: bytes 0-10/37

--> <11 bytes of binary data>

--> --gcOp4Jq0M2Yt08334cOp
--> Content-Type: application/octet-stream

--> Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt087334cOp

--> PATCH /cdmi/2.0.0/MyContainer/BinaryObject.txt?metadata=colour HTTP/1.1

(continues on next page)

© SNIA 2020 SNIA Technical Position

90

1686

1687

Cloud Data Management Interface 2.0.0

(continued from previous page)

--> Content-Range: bytes 21-24/37
--> <4 bytes of binary data>
--> --gc0p4Jqg0M2Yt08j34cOp—-

<-- HTTP/1.1 204 No Content

EXAMPLE 11: PATCH to the data object URI to encrypt an existing object:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com

--> Content-Type: application/cdmi-object

-—>

- {

-—> "mimetype" : "application/cms",

-—> "metadata" : {

-=> "cdmi enc key id" : "testkey"

——> } - - -

<-- HTTP/1.1 204 No Content

EXAMPLE 12: PATCH to the data object URI to decrypt an existing encrypted object:

--> PATCH /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
--> Host: cloud.example.com

--> Content-Type: application/cdmi-object

-—>

- {

-—> "mimetype" : "text/plain"

-—> }

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position

91

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

Cloud Data Management Interface 2.0.0

8.6 Delete a data object using CDMI

8.6.1 Synopsis

To delete an existing data object, the following requests shall be performed:

* DELETE <root URI>/<ContainerName>/<DataObjectName>

* DELETE <root URI>/cdmi objectid/<DataObjectID>

Where:

* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate containers.

* <DataObjectName> is the name of the data object to be deleted.

* <DataObjectID> is the ID of the data object to be deleted.

8.6.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 45.

Table 45: Capabilities - Delete a CDMI data object using CDMI

Capability Location Description

cdmi delete dataobject Data Object Ability to delete an existing data object

cdmi_object access by ID System Wide Ability to access the object by ID
Capability

8.6.3 Request headers

Request headers can be provided as per RFC 2616 [23].

8.6.4 Request message body

A request body can be provided as per RFC 2616 [23].

8.6.5 Response headers

Response headers can be provided as per RFC 2616 [23].

8.6.6 Response message body

A response body can be provided as per RFC 2616 [23].

© SNIA 2020 SNIA Technical Position

92

1708

1709

1710

171

1712

1713

1714

Cloud Data Management Interface 2.0.0

8.6.7 Response status

Table 46 describes the HTTP status codes that occur when deleting a data object using CDMIL.

Table 46: HTTP status codes - Delete a CDMI data object using CDMI

HTTP Status

Description

204 No Content

The data object was successfully deleted.

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization to perform this request.

404 Not Found

The resource was not found at the specified URI.

409 Conflict

The operation conflicts with a non-CDMI access protocol lock or has caused a
state transition error on the server or the data object cannot be deleted.

8.6.8 Example

EXAMPLE 1: DELETE by data object URI:

--> DELETE /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 204 No Content

EXAMPLE 2: DELETE by data object ID:

--> DELETE /cdmi/2.0.0/cdmi_objectid/00007ED90010D891022876A8DEOBCOFD HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 204 No Content

© SNIA 2020

SNIA Technical Position

93

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728
1729

1730

1731

1732

Cloud Data Management Interface 2.0.0

Clause 9

Container Object Resource Operations

using CDMI

9.1 Overview

Container objects are the fundamental grouping of stored data within CDMI™ and are analogous to directories within a

file system. Each container object has a set of well-defined fields that include:

« zero or more child objects,

+ mandatory fields generated by the cloud storage system,

+ mandatory metadata items generated by the cloud storage system,
+ optional metadata generated by the cloud storage system; and

+ optional metadata specified by the cloud user.

All cloud storage systems shall support containers, but the ability to create a containers is determiend by the presence

or absence of the cdmi create container capability in the parent container.

Each CDMI container object is represented as a JSON object, containing one or more “fields”. For example, the

“‘metadata” field contains metadata items.
EXAMPLE 1: CDMI Container Object

{
"objectType" : "application/cdmi-container",
"objectID" : "00007ED900104E1D14771DC67C27BF8B",
"objectName" : "MyContainer/",
"parentURI" : "/",
"parentID" : "00007E7F0010128E42D87EE34F5A6560",
"domainURI" : "/cdmi domains/MyDomain/",
"capabilitiesURI" : "/cdmi capabilities/container/",
"completionStatus" : "Complete",
"metadata" : {
"cdmi ctime" : "2018-05-16T08:01:02.3532"
}I
"childrenrange" : "0-4",
"children" : [
"red" ,
"green",
"yellow",
"orange/",
"purple/"
]
}

The meaning, use, and permitted values of each field is described in each operation that creates, modifies or retreives

CDMI container objects.

© SNIA 2020 SNIA Technical Position

94

1733

1734

1735

1736

1737
1738

1739

1740

1741
1742
1743
1744
1745

1746
1747

1748
1749

1750

1751
1752

1753

1754

1755

1756

1757

1758

1759

1760
1761
1762
1763
1764

1765

1766

1767

1768

1769

1770
1771

1772

1773
1774

1775
1776

1777

1778

Cloud Data Management Interface 2.0.0

9.2 Container object details

9.2.1 Container object addressing

Container objects are addressed in CDMI in two ways:
* by name (e.g. https://cloud.example.com/cdmi/2.0.0/container/); and

* by ID (e.g. https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/
< 00007ED900104E1D14771DC67C27BF8B/).

Every container object has a single, globally-unique object ID that remains constant for the life of the object. Each
container object may also have one or more URI addresses that allow the container object to be accessed.

When a container object is addressed via more than one unique URIs, all operations may be performed through any of
these URIs. For example, a container object may be accessible via multiple virtual hosting paths, where https:/
/cloud.example.com/users/snia/cdmi/ is also accessible through https://snia.example.com/cdmi/

Conflicting writes via different paths shall be managed the same way that conflicting writes via one path are managed,
via the principle of eventual consistency (see 9.3).

Following the URI conventions for hierarchical paths, container URIs shall consist of one or more container names that
are separated by forward slashes (“/”) and that end with a forward slash (“/”).

If a request is performed against an existing container resource and the trailing slash at the end of the URI is omitted,
the server shall respond with an HTTP status code of 301 Moved Permanently. In addition, a Location header
containing the URI with the trailing slash added shall be returned.

If a CDMI request is performed to create a new container resource and the trailing slash at the end of the URI is omitted,
the server shall respond with an HTTP status code of 400 Bad Request.

Non-CDMI requests to create a container resource shall include the trailing slash at the end of the URI; otherwise, the
request shall be considered a request to create a data object.

Containers may also be nested.
EXAMPLE 2: The following URI represents a nested container:
https://cloud.example.com/container/subcontainer/

A nested container has a parent container object, shall be included in the children field of the parent container object,
and shall inherit data system metadata and ACLs from its parent container.

This model allows direct mapping between CDMI-managed cloud storage and file systems (e.g., NFSv4 or WebDAV). If
a CDMI container object is exported as a file system, then the file system may make the CDMI metadata accessible via
file system-specific mechanisms. As files and directories are created by the file system, they become visible through the
CDMI interface acting as a data path. The mapping between file system constructs and CDMI data objects, container
objects, and metadata is outside the scope of this International Standard.

9.2.2 Container object fields

Individual fields within a container object may be accessed by specifying the field name after a question mark “2”
appended to the end of the container object URI.

EXAMPLE 3: The following URI returns just the children field in the response body:
https://cloud.example.com/cdmi/2.0.0/container/?children

EXAMPLE 4: By specifying a range after the children field name, specific ranges of the children field may
be accessed.

https://cloud.example.com/cdmi/2.0.0/container/?children=0-2

Children ranges are specified in a way that is similar to byte ranges as per Section 14.35.1 of RFC 2616 [23]. A client can
determine the number of children present by requesting the childrenrange field without requesting a range of children.

A list of fields, separated by an ampersand “&” may be specified, allowing multiple fields to be accessed in a single
request.

EXAMPLE 5: The following URI would return the children and metadata fields in the response body:

https://cloud.example.com/cdmi/2.0.0/container/?childrens&smetadata

© SNIA 2020 SNIA Technical Position 95

1779
1780

1781

1782

1783

1784

1785

1786

1787

1788
1789

1790

1791
1792

1793

1794

1795

1796

1797

1798

1799

1800
1801

1802

1803
1804

1805

Cloud Data Management Interface 2.0.0

When a client provides fields that are not defined in this International Standard or deserializes an object containing fields
that are not defined in this International Standard, these fields shall be persisted, but shall not be interpreted.

9.2.3 Container object metadata
The following optional container-specific data system metadata may be provided (see Table 47).

Table 47: Container metadata

Metadata Name Type Description Requirement
cdmi_assignedsize JSON The number of bytes that is reported via exported Optional
string protocols (e.g., the device may be thin provisioned).
This number may limit cdmi_size.

Container metadata may also include arbitrary user-supplied metadata, storage system metadata, and data system
metadata as described in clause 16.

9.2.4 Container object access control

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields shall be returned.
If no requested fields are permitted to be read, an HTTP status code of 403 Forbidden shall be returned to the client.

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be performed, and an
HTTP status code of 403 Forbidden shall be returned to the client.

9.2.5 Reserved container object names

This International Standard defines reserved container names that should not be used by clients when creating new
containers. These container names are reserved for use by this International Standard, and if an attempt is made to
create or delete them, an HTTP status code of 400 Bad Request shall be returned to the client.

Reserved container names defined in this specification include:
* “cdmi_objectid’
* “cdmi_domains”
* “cdmi_capabilities”
* “cdmi_snapshots “

* “cdmi_versions”

As additional names may be added in future versions of this International Standard, server implementations shall prevent

the creation of user-defined containers if the container name starts with “cdmi_".

9.2.6 Container object representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support UTF-8 JSON
representation. The request and response body JSON fields may be specified or returned in any order, with the exception
that, if present, for container objects, the “childrenrange” and “children” fields shall appear last and in that order.

© SNIA 2020 SNIA Technical Position 96

1806

1807

1808

1809

1810

1811

1812
1813

1814

1815

1816

1817
1818
1819

1820

1821
1822

1823

1824

1825

1826
1827

1828
1829

1830

1831

1832
1833

1834

1835

1836
1837

Cloud Data Management Interface 2.0.0

9.3 Create a container object using CDMI

9.3.1 Synopsis

To create a new container object, the following request shall be performed:
* PUT <root URI>/<ContainerName>/<NewContainerName>/
Where:
* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate container objects that already exist, with one slash (i.e., “/”)
between each pair of container object names.

* <NewContainerName> is the name specified for the container object to be created.
After it is created, the container object shall also be accessible at <root URI>/cdmi objectid/<objectID>/.

9.3.2 Delayed completion of create

In response to a create operation for a container object, the server may return an HTTP status code of 202 Accepted
to indicate that the object is in the process of being created. This response is useful for long-running operations (e.g.,
deserializing a source data object to create a large container object hierarchy). Such a response has the following
implications.

* The server shall return a Location header with an absolute URI to the object to be created along with an HTTP
status code of 202 Accepted.

» With an HTTP status code of 202 Accepted, the server implies that the following checks have passed:
— user authorization for creating the container object;
— user authorization for read access to any source object for move, copy, serialize, or deserialize; and

— availability of space to create the container object or at least enough space to create a URI to report an
error.

+ A client might not be able to immediately access the created object, e.g., due to delays resulting from the imple-
mentation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the server returns
two fields in its response body to indicate progress.

* A mandatory completionStatus text field contains either “Processing”, “Complete”, or an error string start-
ing with the value “Error”.

» An optional percentComplete field contains the percentage that the accepted PUT has completed (0 to 100).
GET does not return any children for the container object when completionStatus is not “Complete”.

When the final result of the create operation is an error, the URI is created with the completionStatus field set to the
error message. It is the client’s responsibility to delete the URI after the error has been noted.

© SNIA 2020 SNIA Technical Position 97

1838

1839

1840

1841

1842

1843
1844

Cloud Data Management Interface 2.0.0

9.3.3 Capabilities
Capabilities that indicate which operations are supported are shown in Table 48.

Table 48: Capabilities - Create a CDMI container object using CDMI

Capability Location Description

cdmi create container Parent container Ability to create a new container object

cdmi create reference Parent container Ability to create a new reference

cdmi copy container Parent container Ability to create a container object that is a copy
of another container object

cdmi move container Parent container Ability to move a container object from another
location

cdmi deserialize container Parent container Ability to create a container object that is
deserialized from the contents of the PUT or the
contents of a data object

9.3.4 Request headers
The HTTP request headers for creating a CDMI container object using CDMI are shown in Table 49.

Table 49: Request headers - Create a container object using CDMI

Header Type Description Requirement

Accept Header “application/cdmi-container” or a consistent value described Optional
string in5.5.2

Content-Type Header “application/cdmi-container” Mandatory
string

9.3.5 Request message body

The request message body fields for creating a container object using CDMI are shown in
tbl cdmi container object create request message body.

Table 50: Request message body - Create a container object using CDMI

Field Name Type Description Requirement
metadata JSON Metadata for the container object Optional
object « If this field is included, the contents of the JSON object
provided in this field shall be used as container object
metadata.

« If this field is included when deserializing, serializing,
copying, or moving a container object, the contents of
the JSON object provided in this field shall be used as
object metadata instead of the metadata from the
source URI.

« If this field is not included, no user-specified metadata
shall be added to the object.

« If this field is not included when deserializing,
serializing, copying, or moving a container object,
metadata from the source URI shall be used.

* This field shall not be included when creating a
reference to a container object.

continues on next page

© SNIA 2020 SNIA Technical Position 98

Cloud Data Management Interface 2.0.0

Table 50 — continued from previous page

Field Name

Type

Description

Requirement

domainURI

JSON
string

URI of the owning domain
« If different from the parent domain, the user shall have
the “cross-domain” privilege (see
cdmi member privileges in Table 80 .
« If not specified, the existing domain shall be preserved.

Optional

exports

JSON
object

A structure for each protocol enabled for this container object
(see clause 13). This field shall not be included when
referencing a container object.

Optional

deserialize

JSON
string

URI of a CDMI data object with a value that contains a
container object serialized as specified in clause 15. The
serialized container object shall be deserialized to create the
new container object, including all child objects.

When deserializing a container object, any exported protocols
from the original serialized container object are not applied to
the newly created container object(s).

Optional’

Copy

JSON
string

URI of a source CDMI container object that shall be copied
into the new destination container object.

« If the destination container object URI and the copy
source object URI both do not specify individual fields,
the destination container object shall be a complete
copy of the source container object, including all child
objects under the source container object.

« If the destination container object URI or the copy
source object URI specifies individual fields, only the
fields specified shall be used to create the destination
container object. If specified fields are not present in
the source, default field values shall be used.

« If the destination container object URI and the copy
source object URI both specify fields, an HTTP status
code of 400 Bad Request shall be returned to the
client.

When copying a container object, exported protocols are not
preserved across the copy.

If there are insufficient permissions to read the container
object at the source URI or create the container object at the
destination URI, or if the read operation fails, the copy shall
return an HTTP status code of 400 Bad Request, and the
destination container object shall not be created.

Optional

move

JSON
string

URI of an existing local or remote CDMI container object
(source URI) that shall be relocated, along with all child
objects, to the URI specified in the PUT. The contents of the
container object and all children, including the object ID, shall
be preserved by a move, and the container object and all
children of the source URI shall be removed after the objects
at the destination have been successfully created.

If there are insufficient permissions to read the objects at the
source URI, write the objects at the destination URI, or delete
the objects at the source URI, or if any of these operations
fail, the move shall return an HTTP status code of 400 Bad
Request, and the source and destination are left unchanged.

Optional’

reference

JSON
string

URI of a CDMI container object that shall be redirected to by
a reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status code
of 400 Bad Request

Optional’

continues on next page

© SNIA 2020

SNIA Technical Position

99

Cloud Data Management Interface 2.0.0

Table 50 — continued from previous page

Field Name Type Description Requirement
deserializevalue| JSON A container object serialized as specified in clause 15 and Optional’
string encoded using base 64 encoding rules described in RFC

4648 [19], that shall be deserialized to create the new
container object, including all child objects.

ws 9.3.6 Response headers
116 The HTTP response headers for creating a CDMI container object using CDMI are shown in Table 51.

Table 51: Response headers - Create a container object using CDMI

Header Type Description Requirement
Content-Type Header “application/cdmi-container” Mandatory
string
Location Header When an HTTP status code of 202 Accepted is returned, Conditional
string the server shall respond with the absolute URL of the object
that is in the process of being created.

w 9.3.7 Response message body
148 The response message body fields for creating a CDMI container object using CDMI are shown in Table 52.

Table 52: Response message body - Create a container object using

CDMI
Field Name Type Description Requirement
objectType JSON “application/cdmi-container” Mandatory
string
objectID JSON Object ID of the object Mandatory
string
objectName JSON Name of the object Mandatory
string
parentURI JSON URI for the parent object Mandatory
string Appending the objectName to the parentURT shall always
produce a valid URI for the object.
parentID JSON Object ID of the parent container object Mandatory
string
domainURT JSON URI of the owning domain Mandatory
string
capabilitiesURI | JSON URI to the capabilities for the object Mandatory
string
completionStatus| JSON A string indicating if the object is still in the process of being Mandatory
string created or updated by another operation, and after that
operation is complete, indicates if it was successfully created
or updated or if an error occurred.
The value shall be the string “Processing”, the string
“‘Complete”, or an error string starting with the value “Error”.

continues on next page

" Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 100

1849

1850

1851

1852

Cloud Data Management Interface 2.0.0

Table 52 — continued from previous page

Field Name Type Description Requirement
percentComplete | JSON A string indicating the percentage of completion if the objectis | Optional
string still in the process of bewing created or updated by another
operation.
* When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from “0” through “100”.
* When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.
* When the value of completionStatusis “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.
metadata JSON Metadata for the container object. This field includes any user | Mandatory
object and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See clause 16 for a
further description of metadata.
exports JSON A structure for each protocol that is enabled for this container | Optional®
object object. See clause 13.
snapshots JSON URI(s) of the snapshot container objects. See clause 14. Optional?
array of
JSON
strings
childrenrange JSON The children of the container expressed as a range. If arange | Optional
string of children is requested, this field indicates the children
returned as a range.
This field should not be returned in the response message
body that is associated with a copy, move, deserialize, or
deserialize value operation.
children JSON Names of the children objects in the container object. Child Optional
array of | container objects end with “/”.
itSrI?] gls This field should not be returned in the response message
body that is associated with a copy, move, deserialize, or
deserialize value operation.

9.3.8 Response status

Table 53 describes the HTTP status codes that occur when creating a container object using CDMI.

Table 53: HTTP status codes - Create a CDMI container object using

CDMI

HTTP status

Description

201 Created

The new container object was created.

202 Accepted

The container is in the process of being created. The CDMI client should
monitor the completionStatus and percentComplete fields to determine
the current status of the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.

409 Conflict

The operation conflicts with a non-CDMI access protocol lock or had caused a
state transition error on the server.

2 Returned only if present.

© SNIA 2020

SNIA Technical Position

101

1853

1854

1855

Cloud Data Management Interface 2.0.0

9.3.9 Examples

EXAMPLE 1: Create a new container with no metadata:

PUT /cdmi/2.0.0/MyContainer/ HTTP/1.1
Host: cloud.example.com

Accept: application/cdmi-container
Content-Type: application/cdmi-container

{
}

HTTP/1.1 201 Created
Content-Type: application/cdmi-container

{

"objectType" : "application/cdmi-container",
"objectID" : "00007ED900104E1D14771DC67C27BF8B",
"objectName" : "MyContainer/",

"parentURI" : "/",

"parentID" : "00007E7F0010128E42D87EE34F5A6560",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi capabilities/container/",
"completionStatus" : "Complete",

"metadata" : {

}I

"childrenrange": "",

"children": []

EXAMPLE 2: Create a container with metadata:

PUT /cdmi/2.0.0/MyContainer/ HTTP/1.1
Host: cloud.example.com

Accept: application/cdmi-container
Content-Type: application/cdmi-container

{
"metadata": {
"Colour": "Yellow"
}
}

HTTP/1.1 201 Created
Content-Type: application/cdmi-container

{

"objectType" : "application/cdmi-container",
"objectID" : "00007ED900104E1D14771DC67C27BF8B",
"objectName" : "MyContainer/",
"parentURI" : "/",
"parentID" : "00007E7F0010128E42D87EE34F5A6560",
"domainURI" : "/cdmi domains/MyDomain/",
"capabilitiesURI" : "/cdmi capabilities/container/",
"completionStatus" : "Complete",
"metadata" : {

"Colour": "Yellow",
}I
"childrenrange": "",
"children": []

© SNIA 2020 SNIA Technical Position

102

1856

1857

Cloud Data Management Interface 2.0.0

EXAMPLE 3: Create a container that is a copy of a container:

--> PUT /cdmi/2.0.0/MyContainerCopy/ HTTP/1.1
--> Host: cloud.example.com

--> Accept: application/cdmi-container

--> Content-Type: application/cdmi-container

—_> {
-—> "copy": "/MyContainer/"
- }

<-- HTTP/1.1 201 Created

<-- Content-Type: application/cdmi-container

<__

<= {

<== "objectType" : "application/cdmi-container",

<-- "objectID" : "00007ED900104E1D14771DC67C27BF8B",
<-= "objectName" : "MyContainerCopy/",

<-- "parentURI" : "/",

<-- "parentID" : "00007E7F0010128E42D87EE34F5A6560",
<-- "domainURI" : "/cdmi domains/MyDomain/",

<-- "capabilitiesURI" : "/cdmi capabilities/container/",
<-- "completionStatus" : "Complete",

<== "metadata" : {

<-- "Colour": "Yellow",

<__

<-- }

<--}

EXAMPLE 4: Rename a container:

--> PUT /cdmi/2.0.0/MyContainerRenamed/ HTTP/1.1
--> Host: cloud.example.com

--> Accept: application/cdmi-container

--> Content-Type: application/cdmi-container

—_> {
-—> "move": "/MyContainer/"

<-- HTTP/1.1 201 Created
<-- Content-Type: application/cdmi-container

<—
<=={

<-- "objectType" : "application/cdmi-container",

<-= "objectID" : "00007ED900104E1D14771DC67C27BF8B",

<-- "objectName" : "MyContainerRenamed/",

<-- "parentURI" : "/",

<-= "parentID" : "00007E7F0010128E42D87EE34F5A6560",

<-- "domainURI" : "/cdmi_domains/MyDomain/",

<-- "capabilitiesURI" : "/cdmi capabilities/container/",
<-- "completionStatus" : "Complete",

<—= "metadata" : {

<-- "Colour": "Yellow",

<—=

<-= }

<=-}

© SNIA 2020 SNIA Technical Position

103

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

Cloud Data Management Interface 2.0.0

9.4 Read a container object using CDMI

9.4.1 Synopsis

To read an existing container object, the following requests shall be performed:

GET
GET
GET
GET
GET
GET
GET
GET

Where:
<root URI> is the path to the CDMI cloud.

<root
<root
<root
<root
<root
<root
<root

<root

URI>/<ContainerName>/<TheContainerName>/
URI>/<ContainerName>/<TheContainerName>/?<fieldname>&<fieldname>g. ..
URI>/<ContainerName>/<TheContainerName>/?children=<range>&. ..
URI>/<ContainerName>/<TheContainerName>/?metadata=<prefix>&...
URI>/cdmi objectid/<ContainerObjectID>/

URI>/cdmi objectid/<ContainerObjectID>/?<fieldname>&<fieldname>¢. ..
URI>/cdmi_objectid/<ContainerObjectID>/?children=<range>&. ..
URI>/cdmi objectid/<ContainerObjectID>/?metadata=<prefix>&...

<ContainerName> is zero or more intermediate container objects.

<TheContainerName> is the name specified for the container object to be read from.

<fieldname> is the name of a field.

<range> is a numeric range within the list of children.

<prefix> is a matching prefix that returns all metadata items that start with the prefix value.

<ContainerObjectID> is the ID of the data object to be read from.

9.4.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 54.

Table 54: Capabilities - Read a CDMI Container Object using CDMI

Capability Location Description

cdmi read metadata Container object Ability to read the metadata of an existing
container object

cdmi list children Container object Ability to list the children of an existing container
object

cdmi list children range Container object Ability to list a specific range of children of an
existing container object

cdmi object access by ID System wide Ability to access the object by ID

capability

9.4.3 Request headers

The HTTP request headers for reading a CDMI container object using CDMI are shown in Table 55.

Table 55: Request headers - Read a container object using CDMI

Header Type Description Requirement
Accept Header “application/cdmi-container” or a consistent value as Optional
string described in 5.5.2
© SNIA 2020 SNIA Technical Position 104

1881

1882

1883

1884

1885

1886

1887

Cloud Data Management Interface 2.0.0

9.4.4 Request message body

A request body shall not be provided.

9.4.5 Response headers

The HTTP response headers for reading a CDMI container object using CDMI are shown in Response headers - Read
a container object using CDMI.

Table 56: Response headers - Read a container object using CDMI

Header Type Description Requirement

Content-Type Header “application/cdmi-container” Mandatory
string

Location Header The server shall respond with an absolute URI to which the Conditional
string reference redirects if the object is a reference.

9.4.6 Response message body

The response message body fields for reading a CDMI container object using CDMI are shown in Table 57

Table 57: Response message body - Read a container object using CDMI

Field Name Type Description Requirement
objectType JSON “application/cdmi-container” Mandatory
string
objectID JSON Object ID of the object Mandatory
string
objectName JSON Name of the object Conditional
string » For objects in a container, the objectName field shall be
returned.
» For objects not in a container (objects that are only
accessible by ID), the “objectName” field does not
exist and shall not be returned.
parentURI JSON URI for the parent object Conditional
string For objects in a container, the parentURI field shall be
returned.
» For objects not in a container (objects that are only
accessible by ID), the “parentURT” field does not exist
and shall not be returned.
Appending the “objectName” to the “parentURI” shall
always produce a valid URI for the object.
parentID JSON Object ID of the parent container object Conditional
string + For objects in a container, the “parentID” field shall
be returned.
» For objects not in a container (objects that are only
accessible by ID), the “parentID” field does not exist
and shall not be returned.
domainURI JSON URI of the owning domain Mandatory
string
capabilitiesURI | JSON URI to the capabilities for the object Mandatory
string

continues on next page

© SNIA 2020

SNIA Technical Position

105

Cloud Data Management Interface 2.0.0

Table 57 — continued from previous page

Field Name Type Description Requirement
completionStatus| JSON A string indicating if the object is still in the process of being Mandatory
string created or updated by another operation, and after that

operation is complete, indicates if it was successfully created
or updated or if an error occurred.

The value shall be the string “Processing”, the string
“‘Complete”, or an error string starting with the value “Error”.

percentComplete | JSON A string indicating the percentage of completion if the objectis | Optional
string still in the process of bewing created or updated by another
operation.

* When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from 0 through 100.

* When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

* When the value of completionStatus is “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

metadata JSON Metadata for the container object. This field includes any user | Mandatory
object and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See clause 16 for a
further description of metadata.

exports JSON A structure for each protocol that is enabled for this container | Optional’
object object (see clause 13)

snapshots JSON URIs of the snapshot container objects Optional’
array of
JSON
strings

childrenrange JSON The children of the container expressed as a range. If arange | Mandatory
string of children is requested, this field indicates the children

returned as a range.

children JSON Names of the children objects in the container object. When a | Mandatory
array of client uses a child name in a request URI or a header URI,
JSON the client shall escape reserved characters according to RFC
strings 3986 [2], e.g., a “%” character in a child name shall be

replaced with “325”.
+ Children that are container objects shall have “/”
appended to the child name.
« Children that are references shall have “?” appended to
the child name.

wes If individual fields are specified in the GET request, only these fields are returned in the result body. Optional fields that
1es are requested but do not exist are omitted from the result body.

" Returned only if present.

© SNIA 2020 SNIA Technical Position 106

1890

1891

1892

1893

1894

1895

Cloud Data Management

Interface 2.0.0

9.4.7 Response status

Table 58 describes the HTTP status codes that occur when reading a container object using CDMI.

Table 58: HTTP status codes - Read a container object using CDMI

HTTP status Description
200 OK The metadata for the container object is provided in the message body.
302 Found The resource is a reference to another resource.

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization to perform this request.

404 Not Found

The resource was not found at the specified URI.

406 Not Acceptable

Accept header.

The server is unable to provide the object in the content type specified in the

9.4.8 Examples

EXAMPLE 1: GET to the container object URI to read all the fields of the container object:

--> GET /cdmi/2.0.0/MyContainer/ HTTP/1.1

--> Host: cloud.example.com

--> Accept: application/cdmi-container

<-- HTTP/1.1 200 OK

<-- Content-Type: application/cdmi-container

<__

<-- {

<-- "objectType" "application/cdmi-container",

<-= "objectID" "00007ED900104E1D14771DC67C27BF8B",
<-- "objectName" "MyContainer/",

<= "parentURI" "/,

<-- "parentID" "00007E7F0010128E42D87EE34F5A6560",
<-= "domainURI" "/cdmi domains/MyDomain/",

<-- "capabilitiesURI" "/cdmi_ capabilities/container/",
<-- "completionStatus" "Complete",

<-- "metadata" {

<-- Ce

<-- I

<-- "exports" : {

<-- "OCCI/1iSCSI": {

<-- "identifier": "00007E7F00104BE66AB53A9572F9F51E",
<-- "permissions": [

<-- "https://example.com/compute/0/",

<-- "https://example.com/compute/1/"

<--]

<== }r

<-- "Network/NFSv4" : {

<-- "identifier" "/users",

<-- "permissions" "domain"

<-= }l

<-- "childrenrange" : "0-4",

<== "children" : [

<—= "red",

<-- "green",

<-- "yellow",

<-- "orange/",

<-- "purple/"

<--]

<-= }

<--}

© SNIA 2020

SNIA Technical Position

107

1896

1897

1898

Cloud Data Management Interface 2.0.0

EXAMPLE 2: GET to the container object URI to read parentURI and children of the container object:

--> GET /cdmi/2.0.0/MyContainer/?parentURI&children HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-container

<-=- HTTP/1.1 200 OK
<-- Content-Type: application/cdmi-container

<__

<--

<-- "parentURI" : "/",
<-- "children" : [
<-- "red",

<-- "green",

<-- "yellow",
<-- "orange/",
<-- "purple/"
<-- 1

<-- 1}

EXAMPLE 3: GET to the container object URI to read children 0..2 and childrenrange of the container object:

--> GET /cdmi/2.0.0/MyContainer/?childrenrange&children=0-2 HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-container

<-- HTTP/1.1 200 OK
<-- Content-Type: application/cdmi-container

<--
<=-{

<-= "childrenrange" : "0-2",
<-- "children" : [

<-= "red",

<-- "green",

<-- "yellow"

<--]

<--}

EXAMPLE 4: GET to the container object by ID to read children 0..2 and childrenrange of the container object:

-=> GET /cdmi/2.0.0/cdmi objectid/0000706D0010B84FAD185C425D8B537E/?childrenranges
—children=0-2 HTTP/1.1

--> Host: cloud.example.com

--> Accept: application/cdmi-container

<-- HTTP/1.1 200 OK
<-- Content-Type: application/cdmi-container

<__

<--{

<-= "childrenrange": "0-2",
<-- "children": [

<-- "red",

<-- "green",

<-- "yellow"

<--]

<--}

© SNIA 2020 SNIA Technical Position

108

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912
1913

1914

1915

1916

1917

1918

1919

1920
1921

1922
1923

1924

1925

1926
1927

Cloud Data Management Interface 2.0.0

9.5 Update a container object using CDMI

9.5.1 Synopsis

To update part or all of an existing container object, the following requests shall be performed:

* PATCH <root URI>/<ContainerName>/<TheContainerName>

* PATCH <root URI>/<ContainerName>/<TheContainerName>?metadata=<metadataname>&....

* PATCH <root URI>/cdmi objectid/<ContainerObjectID>

* PATCH <root URI>/cdmi objectid/<ContainerObjectID>?metadata=<metadataname>s....
Where:

* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate container objects.

* <TheContainerName> is the name of the container object to be updated.

* <ContainerObjectID> is the ID of the data object to be updated.

9.5.2 Delayed completion of snapshot

If the creation of a snapshot (see clause 14) is requested by including a snapshot field in the request message body,
the server may return an HTTP status code of 202 Accepted. Such a response has the following implications:

« With an HTTP status code of 202 Accepted, the server implies that the following checks have passed:
— user authorization for creating the snapshot,
— user authorization for read access to the container object, and
— availability of space to create the snapshot or at least enough space to create a URI to report an error.

+ A client might not be able to immediately access the snapshot, e.g., due to delays resulting from the implemen-
tation’s use of eventual consistency.

The client performs GET operations to the snapshot URI to track the progress of the operation. In particular, the server
returns two fields in its response body to indicate progress:

* AcompletionStatus field contains either “Processing”, “Complete”, oran error string starting with the value
“Error”.

* An optional percentComplete field contains the percentage that the accepted PATCH has completed (“0” to
“100”). GET does not return any value for the object when completionStatus is not “Complete”.

When the final result of the snapshot operation is an error, the snapshot URI is created with the completionStatus
field set to the error message. It is the client’s responsibility to delete the URI after the error has been noted.

© SNIA 2020 SNIA Technical Position 109

1928

1929

1930

1931

1932

1933

1934

Cloud Data Management Interface 2.0.0

9.5.3 Capabilities
Capabilities that indicate which operations are supported are shown in Table 59.

Table 59: Capabilities - Update a CDMI container object using CDMI

Capability Location Description

cdmi_modify metadata Container object Ability to modify the metadata of an existing
container object

cdmi_snapshot Container object Ability to create a new snapshot of an existing
container object

cdmi_export <protocol> Container object Ability to add and modify exports for an existing
container object

cdmi object access by ID System wide Ability to access the object by ID

capability

9.5.4 Request headers
The HTTP request headers for updating a CDMI container object using CDMI are shown in Table 60.

Table 60: Request headers - Update a container object using CDMI

Header Type Description Requirement
Content-Type Header “application/cdmi-container” Mandatory
string

9.5.5 Request message body

The request message body fields for updating a container object using CDMI are shown in
tbl cdmi container object update request message body.

Table 61: Request message body - Update a container object using CDMI

Field Name Type Description Requirement
metadata JSON Metadata for the container object. If present, the new Optional
object metadata specified replaces the existing object metadata. If

individual metadata items are specified in the URI, only those
items are replaced; other items are preserved.

See clause 16 for a further description of metadata.

domainURI JSON URI of the owning domain Optional
string « If different from the parent domain, the user shall have
the “cross-domain” privilege (see
cdmi_member privileges in Table 80).
« If not specified, the parent domain shall be used.

continues on next page

© SNIA 2020 SNIA Technical Position 110

Cloud Data Management Interface 2.0.0

Table 61 — continued from previous page

Field Name Type Description Requirement
snapshot JSON Name of the snapshot to be taken. This is not a URL, but Optional
string rather, the final component of the absolute URL where the
snapshot will exist when the snapshot operation successfully
completes.
« If a snapshot is added or changed, the PATCH
operation only returns after the snapshot is added to
the snapshot list.
« After they are created, snapshots may be accessed as
children container objects under the cdmi_snapshots
child container object of the container object receiving a
snapshot.
* When creating a snapshot with the same name as an
existing snapshot, the new snapshot will replace the
existing snapshot.
deserialize JSON URI of a CDMI data object with a value that contains a Optional’
string container object serialized as specified in clause 15. The
serialized container object shall be deserialized to update the
existing container object.
The object ID of the serialized container object shall match
the object ID of the destination container object. Otherwise,
the server shall return an HTTP status code of 400 Bad
Request.
« If the serialized container object does not contain
children, the update is applied only to the container
object, and any existing children are left as is.
« If the serialized container object does contain children,
then creates, updates, and deletes are recursively
applied for each child, depending on the differences
between the provided serialized state and the current
state of the child.
copy JSON URI of a CDMI container object that shall be copied into the Optional’
string existing container object. Only the contents of the container
object itself shall be copied, not any children of the container
object.
« If the destination container object URI and the copy
source object URI both do not specify individual fields,
the destination container object shall be replaced with
the source container object, including all child objects
under the source container object.
« If the destination container object URI or the copy
source object URI specifies individual fields, only the
fields specified shall be used to update the destination
container object. If specified fields are not present in
the source, these fields shall be ignored.
+ If the destination container object URI and the copy
source object URI both specify fields, an HTTP status
code of 400 Bad Request shall be returned to the
client.
When copying a container object, exported protocols are not
preserved across the copy.
If there are insufficient permissions to read the container
object at the source URI or create the container object at the
destination URI, or if the read operation fails, the copy shall
return an HTTP status code of 400 Bad Request, and the
destination container object shall not be updated.
continues on next page
© SNIA 2020 SNIA Technical Position 111

Cloud Data Management Interface 2.0.0

Table 61 — continued from previous page

Field Name

Type

Description

Requirement

deserializevalue

JSON
sting

A container object serialized as specified in clause 15 and
encoded using base 64 encoding rules described in RFC
4648 [19], that shall be deserialized to update the existing
container object.

The object ID of the serialized container object shall match
the object ID of the destination container object. Otherwise,
the server shall return an HTTP status code of 400 Bad
Request.

« If the serialized container object does not contain
children, the update is applied only to the container
object, and any existing children are left as is.

« If the serialized container object does contain children,
then creates, updates, and deletes are recursively
applied for each child, depending on the differences
between the provided serialized state and the current
state of the children.

Optional’

exports

JSON
object

A structure for each protocol that is enabled for this container
object (see clause 13). If an exported protocol is added or
changed, the PATCH operation only returns after the export
operation has completed.

Optional

" Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored.

© SNIA 2020

SNIA Technical Position

112

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

Cloud Data Management Interface 2.0.0

9.5.6 Response headers
The HTTP response header for updating a CDMI container object using CDMI is shown in Table 62.

Table 62: Response header - Update a container object using CDMI

Header Type Description Requirement
Location Header The server shall respond with an absolute URI to which the Conditional
string reference redirects if the object is a reference.

9.5.7 Response message body

A response body can be provided as per RFC 2616 [23].

9.5.8 Response status

Table 63 describes the HTTP status codes that occur when updating a container object using CDMI.

Table 63: HTTP status codes - Update a container object using CDMI

HTTP status Description
204 No Content The data object content was returned in the response.
202 Accepted The container or snapshot (subcontainer object) is in the process of being

created. The CDMI client should montitor the completionStatus and
percentComplete fields to determine the current status of the operation.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a

state transition error on the server.

9.5.9 Examples

EXAMPLE 1: PATCH to the container object URI to replace all metadata with new metadata:

--> PATCH /cdmi/2.0.0/MyContainer/ HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-container

—-_> {

-—> "metadata" : {
-—> "colour" : "red",
-——> "numpber" : "7"

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 113

1945

Cloud Data Management Interface 2.0.0

EXAMPLE 2: PATCH to the container object URI to set a new exported protocol value:

--> PATCH /cdmi/2.0.0/MyContainer/?exports HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-container

-—>

-—> {

-—> "exports" : {

-—> "OCCI/1iSCSI" : {

-—> "identifier" : "00007ED900104E1D14771DC67C27BF8B",
-=> "permissions" : "00007E7F00104EB781F900791C70106C"
-=> I

-——> "Network/NFSv4" : {

-—> "identifier" : "/users",

-=> "permissions" : "domain"

- }

——> }

-—> }

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position

114

1946

1947

1948
1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

Cloud Data Management Interface 2.0.0

9.6 Delete a container object using CDMI

9.6.1 Synopsis

To delete an existing container object, including all contained children and snapshots, the following requests shall be

performed:

* DELETE <root URI>/<ContainerName>/<TheContainerName>

* DELETE <root URI>/cdmi objectid/<ContainerObjectID>
Where:

* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate container objects.

* <TheContainerName> is the name of the container object to be deleted.

* <ContainerObjectID> is the ID of the container object to be deleted.

9.6.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 64.

Table 64: Capabilities - Delete a CDMI container object using CDMI

Capability Location Description
cdmi delete container Container object Ability to delete an existing container object
cdmi object access by ID System wide Ability to access the object by ID

capability

9.6.3 Request headers

Request headers can be provided as per RFC 2616 [23].

9.6.4 Request message body

A request body can be provided as per RFC 2616 [23].

9.6.5 Response headers

Response headers can be provided as per RFC 2616 [23].

9.6.6 Response message body

A response body can be provided as per RFC 2616 [23].

© SNIA 2020 SNIA Technical Position

115

Cloud Data Management Interface 2.0.0

w 9.6.7 Response status

1es Table 65 describes the HTTP status codes that occur when deleting a container object using CDMI.

1969

Table 65: HTTP status codes - Delete a container object using CDMI

1970

HTTP status Description

204 No Content The container object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a
state transition error on the server.

o 9.6.8 [Exannple

12 EXAMPLE 1: DELETE to the container object URI:

--> DELETE /cdmi/2.0.0/MyContainer/ HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 204 No Content

173 EXAMPLE 2: DELETE by container object ID:

--> DELETE /cdmi/2.0.0/cdmi_objectid/00007ED900104E1D14771DC67C27BF8B/ HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 116

1974

1975

1976

1977

1978
1979

1980

1981

1982

1983
1984

1985

1986

1987

1988
1989

1990

1991
1992
1993

1994

1995

1996

1997

1998

1999

2000
2001

2002
2003

2004

2005

2006

2007
2008
2009

Cloud Data Management Interface 2.0.0

9.7 Create (POST) a new data object using CDMI

9.7.1 Synopsis

To create a new data object in a specified container, the following request shall be performed:
* POST <root URI>/<ContainerName>/

To create a new data object where the data object does not belong to a container and is only accessible by ID (see
5.3.1), the following request shall be performed:

* POST <root URI>/cdmi_ objectid/
Where:
* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate container objects that already exist, with one slash (i.e., “/”)
between each pair of container object names.

* <DataObjectName> is the name specified for the data object to be created.

If created in a container, the data object shall be accessible as a child of the container with a server-assigned name,
and shall also be accessible at <root URI>/cdmi objectid/<objectID>.

If created in “/cdmi objectid/”, the data object shall only be accessible at <root URI>/cdmi objectid/
<objectID>.

9.7.2 Delayed completion of create

In response to a create operation for a data object, the server may return an HTTP status code of 202 Accepted to
indicate that the object is in the process of being created. This response is useful for long-running operations (e.g.,
copying a large data object from a source URI). Such a response has the following implications.

* The server shall return a Location header with an absolute URI to the object to be created along with an HTTP
status code of 202 Accepted.

« With an HTTP status code of 202 Accepted, the server implies that the following checks have passed:
— user authorization for creating the object;
— user authorization for read access to any source object for move, copy, serialize, or deserialize; and
— availability of space to create the object or at least enough space to create a URI to report an error.

+ A client might not be able to immediately access the created object, e.g., due to delays resulting from the imple-
mentation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the server returns
two fields in its response body to indicate progress.

* A mandatory completionStatus text field contains either “Processing”, “Complete”, or an error string start-
ing with the value “Error”.

» An optional percentComplete field contains the percentage of the operation that has completed (0 to 100).

GET shall not return any value for the data object when completionStatus is not “Complete”. If the final result of
the create operation is an error, the URI is created with the completionStatus field set to the error message. Itis
the client’s responsibility to delete the URI after the error has been noted.

© SNIA 2020 SNIA Technical Position 117

Cloud Data Management Interface 2.0.0

20 9.7.3 Capabilities

201 Capabilities that indicate which operations are supported are shown in Table 66.

Table 66: Capabilities - Create a CDMI data object using CDMI

Capability

Location

Description

cdmi post dataobject
cdmi create dataobject

Parent container

Ability to create a new data object

cdmi create reference

Parent container

Ability to create a new reference

cdmi copy dataobject

Parent container

Ability to create a data object that is a copy of
another data object

cdmi move dataobject

Parent container

Ability to move a data object from another
container

cdmi_deserialize dataobject

Parent container

Ability to create a data object that is deserialized
from the contents of the PUT or the contents of
another data object

cdmi serialize dataobject
cdmi_serialize container
cdmi serialize domain
cdmi serialize queue

Parent container

Ability to create a data object that contains a
serialized representation of an existing data
object, container, domain or queue

cdmi create value range

Parent container

Ability to create a data object using a specified
byte range

cdmi post dataobject by ID System wide Ability to create a new data object in
capability “/cdmi_objectid/”
cdmi create reference by ID System wide Ability to create a new reference in
capability “/cdmi_objectid/”
cdmi copy dataobject by ID System wide Ability to create a data object in
capability “/cdmi_objectid/” thatis a copy of another
data object
cdmi object move to ID System wide Ability to move a data object to
capability “/cdmi_objectid/” from another container
cdmi deserialize dataobject by System wide Ability to create a data object in
capability “/cdmi_objectid/” thatis deserialized from

the contents of the PUT or the contents of another
data object

cdmi_serialize dataobject to_
cdmi serialize container to I
cdmi_serialize domain to ID
cdmi serialize queue to ID

[Bystem wide
D capability

Ability to create a data object in
“/cdmi_objectid/” that contains a serialized
representation of an existing data object,
container, domain or queue

cdmi create value range by ID| System wide Ability to create a data object in
capability “/cdmi_objectid/” using a specified byte
range
cdmi multipart mime System wide Ability to create a data object using multi-part
capability MIME

© SNIA 2020

SNIA Technical Position

118

Cloud Data Management Interface 2.0.0

22 9.7.4 Request headers
2013 The HTTP request headers for creating a new CDMI data object using CDMI are shown in Table 67.

Table 67: Request headers - Create a new data object Using CDMI

Header Type Description Requirement

Accept Header “application/cdmi-object” or a consistent value as Optional
string described in 5.5.2

Content-Type Header “application/cdmi-object” or ‘multipart/mixed” Mandatory
string * If‘multipart/mixed” is specified, the body shall

consist of at least two MIME parts, where the first part
shall contain a body of content-type
“application/cdmi-object”, and the second and
subsequent parts shall contain one or more byte
ranges of the value.

« If multiple byte ranges are included and the
Content-Range header is omitted for a part, the data
in the part shall be appended to the data in the
preceding part, with the first part having a byte offset of

zero.
X-CDMI-Partial Header Indicates that the newly created object is part of a series of Optional
string writes and has not yet been fully created. When set to

“true”, the completionStatus field shall be set to
“Processing”. X-CDMI-Partial works across CDMI and
non-CDMI operations.

o 9.7.5 Request message body

215 The request message body fields for creating a new data object using CDMI are shown in
2016 tbl cdmi post object create request message body.

Table 68: Request message body - Create a new data object Using CDMI

Field Name Type Description Requirement
mimetype JSON MIME type of the data contained within the value field of the Optional
string data object

* This field may be included when creating by value or
when deserializing, serializing, copying, and moving a
data object.

« If this field is not included and multi-part MIME is not
being used, the value of “text/plain” shall be
assigned as the field value.

« If this field is not included and multi-part MIME is being
used, the value of the Content-Type header of the
second MIME part shall be assigned as the field value.

+ This field field value shall be converted to lower case
before being stored.

continues on next page

© SNIA 2020 SNIA Technical Position 119

Cloud Data Management Interface 2.0.0

Table 68 — continued from previous page

Field Name

Type

Description

Requirement

metadata

JSON
object

Metadata for the data object

« If this field is included, the contents of the JSON object
provided in this field shall be used as data object
metadata.

« If this field is included when deserializing, serializing,
copying, or moving a data object, the contents of the
JSON object provided in this field shall be used as
object metadata instead of the metadata from the
source URI.

« If this field is not included, no user-specified metadata
shall be added to the object.

« If this field is not included when deserializing,
serializing, copying, or moving a data object, metadata
from the source URI shall be used.

« This field shall not be included when creating a
reference to a data object.

Optional

domainURI

JSON
string

URI of the owning domain
« If different from the parent domain, the user shall have
the “cross-domain” privilege (see
cdmi member privileges in Table 80 .
« If not specified, the domain of the parent container shall
be used.

Optional

deserialize

JSON
string

URI of a CDMI data object with a value that contains a data
object serialized as specified in clause 15. The serialized data
object shall be deserialized to create the new data object.

Optional’

serialize

JSON
string

URI of a CDMI object that shall be serialized into the new
data object

Optional’

copy

JSON
string

URI of a source CDMI data object or queue object that shall
be copied into the new destination data object.

« If the destination data object URI and the copy source
object URI both do not specify individual fields, the
destination data object shall be a complete copy of the
source data object.

« If the destination data object URI or the copy source
object URI specifies individual fields, only the fields
specified shall be used to create the destination data
object. If specified fields are not present in the source,
default field values shall be used.

« If the destination data object URI and the copy source
object URI both specify fields, an HTTP status code of
400 Bad Request shall be returned to the client.

+ If the copy source object URI points to a queue object,
as part of the copy operation, multiple queue values
shall be concatenated into a single data object value.

« If the copy source object URI points to one or more
gueue object values, as part of the copy operation, the
specified queue values shall be concatenated into a
single data object value.

« If there are insufficient permissions to read the data
object at the source URI or create the data object at the
destination URI, or if the read operation fails, the copy
shall return an HTTP status code of 400 Bad
Request, and the destination object shall not be
created.

Optional’

continues on next page

© SNIA 2020

SNIA Technical Position

120

Cloud Data Management Interface 2.0.0

Table 68 — continued from previous page

Field Name

Type

Description

Requirement

move

JSON
string

URI of an existing local or remote CDMI data object (source
URI) that shall be relocated to the URI specified in the PUT.
The contents of the object, including the object ID, shall be
preserved by a move, and the data object at the source URI
shall be removed after the data object at the destination has
been successfully created.

If there are insufficient permissions to read the data object at
the source URI, write the data object at the destination URI,
or delete the data object at the source URI, or if any of these
operations fail, the move shall return an HTTP status code of
400 Bad Request, and the source and destination are left
unchanged.

Optional’

reference

JSON
string

URI of a CDMI data object that shall be redirected to by a
reference. If any other fields are supplied when creating a
reference, the server shall respond with an HTTP status code
of 400 Bad Request

Optional’

deserializevalue

JSON
string

A data object serialized as specified in clause 15 and encoded
using base 64 encoding rules described in RFC 4648 [19],
that shall be deserialized to create the new data object.

* If multi-part MIME is being used and this field contains
the value of the MIME boundary parameter, the
contents of the second MIME part shall be assigned as
the field value.

« If the serialized data object in the second MIME part
does not include a value field, the contents of the third
MIME part shall be assigned as the field value of the
value field.

Optional’

continues on next page

© SNIA 2020

SNIA Technical Position

121

Cloud Data Management Interface 2.0.0

Table 68 — continued from previous page

Field Name Type Description Requirement
valuetransfer JSON The value transfer encoding used for the data object value. Optional
— encoding string Three value transfer encodings are defined:

+ “ut£-8” indicates that the data object contains a valid
UTF-8 string, and it shall be transported as a UTF-8
string in the value field.

* “base64” indicates that the data object may contain
arbitrary binary sequences, and it shall be transported
as a base 64-encoded string in the value field. Setting
the contents of the data object value field to any value
other than a valid base 64 string shall result in an HTTP
status code of 400 Bad Request being returned to
the client.

* “Json” indicates that the data object contains a valid
JSON object, and the value field shall be a JSON
object containing valid JSON data. If the contents of
the value field are set to any value other than a valid
JSON object, an HTTP status code of 400 Bad
Request shall be returned to the client.

« This field shall only be included when creating a data
object by value.

« If this field is not included and multi-part MIME is not
being used, the value of “ut £-8” shall be assigned as
the field value.

« If this field is not included and multi-part MIME is being
used, the value of “ut £-8” shall be assigned as the
field value if the Content-Type header of the second
and all MIME parts includes the charset parameter as
defined in RFC 2046 of “ut£-8" (e.g.,

“; charset=utf-8"). Otherwise, the value of
“base64” shall be assigned as the field value. This
field applies only to the encoding of the value when
represented in JSON; the
Content-Transfer-Encoding header of the part
specifies the encoding of the value within a multi-part
MIME request, as defined in RFC 2045 [9].

value JSON The data object value Optional

string « If this field is not included and multi-part MIME is not
being used, an empty JSON String (i.e., “*) shall be
assigned as the field value.

« If this field is not included and multi-part MIME is being
used, the contents of the second MIME part shall be
assigned as the field value.

* Ifthe valuetransferencoding field indicates UTF-8
encoding, the value shall be a UTF-8 string escaped
using the JSON escaping rules described in RFC 4627
[5].

» Ifthe valuetransferencoding field indicates base
64 encoding, the value shall be first encoded using the
base 64 encoding rules described in RFC 4648 [19].

* Ifthe valuetransferencoding field indicates JSON
encoding, the value shall contain a valid JSON object.

" Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 122

Cloud Data Management Interface 2.0.0

27 9.7.6 Response headers

2018 The HTTP response headers for creating a new CDMI data object using CDMI are shown in Table 69.

zzz Table 69: Response headers - Create a new data object using CDMI

the client, the system shall assign the URI in the form:
http://host:port/<root
URI>/<ContainerName>/<0ObjectID> Or
https://host:port/<root
URI>/<ContainerName>/<ObjectID>.

Header Type Description Requirement

Content-Type Header ‘application/cdmi-object” Mandatory
string

Location Header The unique absolute URI for the new data object as assigned | Mandatory
string by the system. In the absence of file name information from

w1 9.7.7 Response message body

222 The response message body fields for creating a new CDMI data object using CDMI are shown in Table 70.

Table 70: Response message body - Create a new data object using

CDMI
Field Name Type Description Requirement
objectType JSON “application/cdmi-object” Mandatory
string
objectID JSON Object ID of the object Mandatory
string
objectName JSON Name of the object Conditional
string » For objects in a container, the objectName field shall be
returned.
+ For objects not in a container (objects that are only
accessible by ID), the objectName field does not exist
and shall not be returned.
parentURI JSON URI for the parent object Conditional
string For objects in a container, the parentURI field shall be
returned.
» For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist
and shall not be returned.
Appending the objectName to the parentURI shall always
produce a valid URI for the object.
parentID JSON Object ID of the parent container object Conditional
string » For objects in a container, the parentID field shall be
returned.
» For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist and
shall not be returned.
domainURI JSON URI of the owning domain Mandatory
string
capabilitiesURI | JSON URI to the capabilities for the object Mandatory
string

continues on next page

© SNIA 2020 SNIA Technical Position

123

Cloud Data Management Interface 2.0.0

Table 70 — continued from previous page

Field Name Type Description Requirement
completionStatus| JSON A string indicating if the object is still in the process of being Mandatory
string created or updated by another operation, and after that

operation is complete, indicates if it was successfully created
or updated or if an error occurred.

The value shall be the string “Processing”, the string
“‘Complete”, or an error string starting with the value “Error”.

percentComplete | JSON A string indicating the percentage of completion if the objectis | Optional
string still in the process of bewing created or updated by another
operation.

* When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from “0” through “100”.

* When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

* When the value of completionStatus is “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

mimetype JSON MIME type of the value of the data object Mandatory
string

metadata JSON Metadata for the data object. This field includes any user and | Mandatory
object data system metadata specified in the request body metadata

field, along with storage system metadata generated by the
cloud storage system. See clause 16 for a further description
of metadata.

2 9.7.8 Response status

2004 Table 71 describes the HTTP status codes that occur when creating a new data object using CDMI.

e Table 71: HTTP status codes - Create a new data object using CDMI

2026

HTTP status Description
201 Created The new data object was created.
202 Accepted The data object is in the process of being created. The CDMI client should

monitor the completionStatus and percentComplete fields to determine
the current status of the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a

state transition error on the server.

© SNIA 2020 SNIA Technical Position 124

2027

2028

2029

Cloud Data Management Interface 2.0.0

9.7.9 Examples

EXAMPLE 1: POST to the container object URI the data object contents:

--> POST /cdmi/2.0.0/MyContainer/ HTTP/1.1
--> Host: cloud.example.com

--> Accept: application/cdmi-object

--> Content-Type: application/cdmi-object

-—>

-—> "mimetype" : "text/plain",

—-——> "metadata" : {

-—>

-=> }r

-—> "value" : "This is the Value of this Data Object"
-—> }

<-- HTTP/1.1 201 Created

<-- Content-Type: application/cdmi-object

<-- Location: https://cloud.example.com/cdmi/2.0.0/MyContainer/
—>00007ED900104E1D14771DC67C27BF8B

<__

<=={

<-- "objectType" : "application/cdmi-object",

<-- "objectID" : "00007ED900104E1D14771DC67C27BF8B",
<-- "objectName" : "00007ED900104E1D14771DC67C27BF8B",
<-- "parentURI" : "/MyContainer/",

<== "parentID" : "00007ED900104E1D14771DC67C27BF8RB",
<-- "domainURI" : "/cdmi domains/MyDomain/",

<-- "capabilitiesURI" : "/cdmi capabilities/dataobject/",
<-- "completionStatus" : "Complete",

<-- "mimetype" : "text/plain",

<== "metadata" : {

<«

<== }

<--}

EXAMPLE 2: POST to the object ID URI the data object contents:

-=> POST /cdmi/2.0.0/cdmi objectid/ HTTP/1.1
--> Host: cloud.example.com

--> Accept: application/cdmi-object

--> Content-Type: application/cdmi-object

-—>

—-——> {

-—> "mimetype": "text/plain",

-—> "domainURI": "/cdmi_ domains/MyDomain/",

-—> "value": "This is the Value of this Data Object"
—_> }

<-- HTTP/1.1 201 Created

<-- Location: https://cloud.example.com/cdmi/2.0.0/cdmi objectid/
—~00007ED900104E1D14771DC67C27BF8B

<-- Content-Type: application/cdmi-object

<__

<=={

<== "objectType": "application/cdmi-object",

<=- "objectID": "00007ED900104E1D14771DC67C27BF8B",
<-- "domainURI": "/cdmi domains/MyDomain/",

<-- "capabilitiesURI": "/cdmi capabilities/dataobject/",
<-- "completionStatus": "Complete",

<-- "mimetype": "text/plain",

<-- "metadata": {

<-- "cdmi_ acl": [

<-= {

<-- "acetype": "ALLOW",

<-= "identifier": "OWNERQ@",

<-- "aceflags": "NO_FLAGS",

<-- "acemask": "ALL_ PERMS"

(continues on next page)

© SNIA 2020 SNIA Technical Position

125

Cloud Data Management Interface 2.0.0

(continued from previous page)

© SNIA 2020 SNIA Technical Position 126

2030

Cloud Data Management Interface 2.0.0

EXAMPLE 3: POST to the object ID URI the data object fields and binary contents using multi-part MIME:

<—=

<—=

POST /cdmi/2.0.0/cdmi objectid/ HTTP/1.1

Host: cloud.example.com

Accept: application/cdmi-object

Content-Type: multipart/mixed; boundary=gcOp4Jq0M2Yt083j34cOp

--gc0p4Jg0M2Yt08534cOp
Content-Type: application/cdmi-object

{

"domainURI": "/cdmi domains/MyDomain/",
"metadata": {
"colour": "blue"
}
}
--gc0p4Jg0M2Yt08334cOp

Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>
--gc0p4Jg0M2Yt08534cOp--

HTTP/1.1 201 Created
Location: https://cloud.example.com/cdmi/2.0.0/cdmi objectid/

—00007ED90010C2414303B5C6D4F83170

Content-Type: application/cdmi-object

"objectType": "application/cdmi-object",
"objectID": "00007ED90010C2414303B5C6D4F83170",
"domainURI": "/cdmi domains/MyDomain/",
"capabilitiesURI": "/cdmi capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "application/octet-stream",
"metadata": {

"cdmi size": "37",

"colour": "blue",

© SNIA 2020 SNIA Technical Position

127

2031

2032

2033
2034

2035

2036
2037

2038

2039

2040

2041

2042

2043
2044

2045
2046

2047

2048
2049

2050

2051
2052

2053

2054

2055

2056

2057
2058

2059
2060

2061
2062

2063

2064
2065
2066

Cloud Data Management Interface 2.0.0

9.8 Create (POST) a new queue object using CDMI

9.8.1 Synopsis

To create a new queue object (see clause 11) in a specified container where the name of the queue object is a server-
assigned object identifier, the following request shall be performed:

* POST <root URI>/<ContainerName>/

To create a new queue object where the queue object does not belong to a container and is only accessible by ID (see
5.3.1), the following request shall be performed:

* POST <root URI>/cdmi_ objectid/
Where:
* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate container objects that already exist, with one slash (i.e., “/”)
between each pair of container object names.

If created in a container, the queue object shall be accessible as a child of the container with a server-assigned name,
and shall also be accessible at <root URI>/cdmi objectid/<objectID>.

If created in “/cdmi objectid/”, the queue object shall only be accessible at <root URI>/cdmi objectid/
<objectID>.

9.8.2 Delayed completion of create

In response to a create operation for a queue object, the server may return an HTTP status code of 202 Accepted
to indicate that the object is in the process of being created. This response is useful for long-running operations (e.g.,
copying a large number of queue values from a source URI). Such a response has the following implications.

* The server shall return a Location header with an absolute URI to the object to be created along with an HTTP
status code of 202 Accepted.

» With an HTTP status code of 202 Accepted, the server implies that the following checks have passed:
— user authorization for creating the object;
— user authorization for read access to any source object for move, copy, serialize, or deserialize; and
— availability of space to create the object or at least enough space to create a URI to report an error.

+ A client might not be able to immediately access the created object, e.g., due to delays resulting from the imple-
mentation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the server returns
two fields in its response body to indicate progress.

* A mandatory completionStatus text field contains either “Processing”, “Complete”, or an error string start-
ing with the value “Error”.

+ An optional percentComplete field contains the percentage of the operation that has completed (0 to 100).

GET shall not return any value for the queue object when completionStatus is not “Complete”. If the final result of
the create operation is an error, the URI is created with the completionStatus field set to the error message. It is
the client’s responsibility to delete the URI after the error has been noted.

© SNIA 2020 SNIA Technical Position 128

2067

2068

2069

2070

2071

2072

Cloud Data Management Interface

2.0.0

9.8.3 Capabilities

Capabilities that indicate which operations are supported are shown in Table 72.

Table 72: Capabilities - Create a CDMI Queue object using CDMI

Capability

Location

Description

cdmi post queue
cdmi create queue

Parent container

Ability to create a new queue object

cdmi create reference

Parent container

Ability to create a new reference

cdmi copy queue

Parent container

Ability to create a queue object that is a copy of
another queue object

cdmi move queue

Parent container

Ability to move a queue object from another
container

cdmi deserialize queue

Parent container

Ability to create a queue object that is
deserialized from the contents of the PUT or the
contents of another queue object

cdmi post queue by ID System wide Ability to create a new queue object in
capability “/cdmi_objectid/”
cdmi create reference by ID System wide Ability to create a new reference in
capability “/cdmi_objectid/”
cdmi copy queue by ID System wide Ability to create a queue object in
capability “/cdmi_objectid/” thatis a copy of another
queue object
cdmi object move to ID System wide Ability to move a queue object to
capability “/cdmi_objectid/” from another container
cdmi deserialize queue by ID | System wide Ability to create a queue object in
capability “/cdmi_objectid/” that is deserialized from

the contents of the PUT or the contents of another
data object

cdmi_serialize dataobject to_
cdmi serialize container to I
cdmi_serialize domain to ID
cdmi serialize queue to ID

[Bystem wide
D capability

Ability to create a data object in
“/cdmi_objectid/” that contains a serialized
representation of an existing data object,
container, domain or queue

9.8.4 Request headers

The HTTP request headers for creating a new CDMI queue object using CDMI are shown in Table 73.

Table 73: Request headers - Create a new queue object using CDMI

Header Type Description Requirement

Accept Header “application/cdmi-object” or a consistent value as Optional
string described in 5.5.2

Content-Type Header “application/cdmi-queue” Mandatory
string

Content-Range Header A valid ranges-specifier (see RFC 2616 [23] Section 14.35.1) | Optional
string

© SNIA 2020

SNIA Technical Position

129

Cloud Data Management Interface 2.0.0

o 9.8.5 Request message body

w14 The request message body fields for creating a new queue object using CDMI are shown in
205 tbl cdmi queue object create post request message body.

Table 74: Request message body - Create a new queue object using

CDMI
Field Name Type Description Requirement
metadata JSON Metadata for the queue object Optional
object « If this field is included, the contents of the JSON object
provided in this field shall be used as queue object
metadata.
« If this field is included when deserializing, serializing,
copying, or moving a queue object, the contents of the
JSON object provided in this field shall be used as
object metadata instead of the metadata from the
source URI.
« If this field is not included, no user-specified metadata
shall be added to the object.
« If this field is not included when deserializing,
serializing, copying, or moving a queue object,
metadata from the source URI shall be used.
+ This field shall not be included when creating a
reference to a queue object.
domainURI JSON URI of the owning domain Optional
string « If different from the parent domain, the user shall have
the “cross-domain” privilege (see
cdmi member privileges in Table 80 .
« If not specified, the domain of the parent container shall
be used.
deserialize JSON URI of a CDMI data object with a value that contains a queue | Optional’
string object serialized as specified in clause 15. The serialized
queue object shall be deserialized to create the new queue
object.
copy JSON URI of a CDMI queue object that will be copied into the new Optional’
string queue object
move JSON URI of a CDMI queue object that will be copied into the new Optional’
string queue object. When the copy is successfully completed, the
queue object at the source URI is removed.
reference JSON URI of a CDMI queue object that shall be redirected to by a Optional
string reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status code
of 400 Bad Request.
deserializevalue| JSON A queue object serialized as specified in clause 15 and Optional
string encoded using base 64 encoding rules described in RFC
4648 [19], that shall be deserialized to create the new queue
object.

" Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 130

2076

2077

2078

2079

2080

2081

Cloud Data Management Interface 2.0.0

9.8.6 Response headers

The response headers for creating a new CDMI queue object using CDMI are shown in Table 75.

Table 75: Response headers - Create a new queue object using CDMI

Header Type Description Requirement

Content-Type Header “application/cdmi-queue” Mandatory
string

Location Header The unique absolute URI for the new queue object as Mandatory
string assigned by the system.

9.8.7 Response message body
The response message body fields for creating a new CDMI queue object using CDMI are shown in Table 76.

Table 76: Response message body - Create a new queue object using

CDMI
Field Name Type Description Requirement
objectType JSON “application/cdmi-queue” Mandatory
string
objectID JSON Object ID of the object Mandatory
string
objectName JSON Name of the object Conditional
string » For objects in a container, the objectName field shall be
returned.
» For objects not in a container (objects that are only
accessible by ID), the objectName field does not exist
and shall not be returned.
parentURI JSON URI for the parent object Conditional
string + For objects in a container, the parentURI field shall be
returned.
» For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist
and shall not be returned.
Appending the objectName to the parentURI shall always
produce a valid URI for the object.
parentID JSON Object ID of the parent container object Conditional
string » For objects in a container, the parentID field shall be
returned.
» For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist and
shall not be returned.
domainURI JSON URI of the owning domain Mandatory
string
capabilitiesURI | JSON URI to the capabilities for the object Mandatory
string
completionStatus| JSON A string indicating if the object is still in the process of being Mandatory
string created or updated by another operation, and after that
operation is complete, indicates if it was successfully created
or updated or if an error occurred.
The value shall be the string “Processing”, the string
“Complete”, or an error string starting with the value “Error”.

continues on next page

© SNIA 2020 SNIA Technical Position 131

Cloud Data Management Interface 2.0.0

Table 76 — continued from previous page

Field Name Type Description Requirement
percentComplete | JSON A string indicating the percentage of completion if the objectis | Optional
string still in the process of bewing created or updated by another
operation.

* When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from “0” through “100”.

* When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

* When the value of completionStatusis “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

metadata JSON Metadata for the queue object. This field includes any user Mandatory
object and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See clause 16 for a
further description of metadata.

queueValues JSON The range of designators for enqueued values. Every Mandatory
string enqueued value shall be assigned a unique,
monotonically-incrementing positive integer designator,
starting from 0. If no values are enqueued, an empty string
shall be returned. If values are enqueued, the lowest
designator, followed by a hyphen (“-), followed by the
highest designator shall be returned.

22 9.8.8 Response status

283 Table 77 describes the HTTP status codes that occur when creating a new queue object using CDMI.

2084

Table 77: HTTP status codes - Create a new queue object using CDMI

2085

HTTP status Description
201 Created The new queue object was created.
202 Accepted The queue object is in the process of being created. The CDMI client should

monitor the completionStatus and percentComplete fields to determine
the current status of the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a

state transition error on the server.

© SNIA 2020 SNIA Technical Position 132

Cloud Data Management Interface 2.0.0

s 9.8.9 Example

2z EXAMPLE 1: POST to the container object URI the queue object contents:

--> POST /cdmi/2.0.0/MyContainer/ HTTP/1.1
--> Host: cloud.example.com

--> "“Content-Type: application/cdmi-queue’
--> Accept: application/cdmi-queue

-—>

—_> }

<-- HTTP/1.1 201 Created

<-- Content-Type: application/cdmi-queue

<-- Location: https://cloud.example.com/cdmi/2.0.0/MyContainer/
—~00007ED900104E1D14771DC67C27BF8B

<__

<=={

<== "objectType" : "application/cdmi-queue",

<=- "objectID" : "00007ED900104E1D14771DC67C27BF8B",
<-- "objectName" : "00007ED900104E1D14771DC67C27BF8B",
<-- "parentURI" : "/MyContainer/",

<-= "parentID" : "00007ED900104E1D14771DC67C27BF8B",
<-= "domainURI" : "/cdmi domains/MyDomain/",

<-- "capabilitiesURI"™ : "/cdmi capabilities/queue/",
<== "completionStatus" : "Complete",

<== "metadata" : {

<-- R

<-- bo

<-- "queueValues" : ""

<==}

© SNIA 2020 SNIA Technical Position

133

Cloud Data Management Interface 2.0.0

Part IV

CDMI Advanced

© SNIA 2020 SNIA Technical Position 134

2090

2091

2092

2093

2094
2095

2096

2097

2098
2099
2100
2101
2102

2103

2104

2105

2106

2107

Cloud Data Management Interface 2.0.0

Clause 10

Domain object resource operations using
CDMI

10.1 Overview

Domain objects represent the concept of administrative ownership of stored data within a CDMI™ storage system. Each
object may be owned and managed by a different administrative entity, which is expressed as a domain.

If a cloud storage system supports domains, the cdmi_domains system-wide capability shall be present, and the
cdmi domains container shall be present in the CDMI root container.

A cloud storage system may include a hierarchy of domains that provide access to domain-related information within a
CDMI context. This domain hierarchy is a series of CDMI objects that correspond to parent and child domains, with each
domain corresponding to logical groupings of objects that are to be managed together. Domain measurement informa-
tion about objects that are associated with each domain flow up to parent domains, facilitating billing and management
operations that are typical for a cloud storage environment.

Fig. 7 shows the hierarchy of domains and shows how the domainURI links data objects, container objects and queue
objects into the domain hierachy.

“/” Root URI % cdmi_domains/

mydataobject/ domainURI domain1/
mycontainer/ domainURI domain2/ s
ummary
(] Inheritecm aggegrated
0 myqueue/ domainURI subdomain/
0 0 0

Fig. 7: Hierarchy of domains

Each CDMI domain object is represented as a JSON object, containing one or more “fields”. For example, the
“‘metadata” field contains metadata items.

EXAMPLE 1: CDMI domain object

{
"objectType" : "application/cdmi-domain",
"objectID" : "00007E7F00104BE66AB53A9572F9F51E",
"objectName" : "MyDomain/",
"parentURI" : "/cdmi_domains/",
"parentID" : "00007E7F0010C058374D08BOACT7B3550",

(continues on next page)

© SNIA 2020 SNIA Technical Position 135

Cloud Data Management Interface 2.0.0

(continued from previous page)

"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi capabilities/domain/",
"metadata" : {

"cdmi domain enabled": "true",

"cdmi authentication methods": "anonymous, basic",

by
"childrenrange" : "0-1",
"children" : [
"cdmi domain summary/",
"cdmi_ domain members/"

}

208 The meaning, use, and permitted values of each field is described in each operation that creates, modifies or retreives
200 CDMI domain objects.

© SNIA 2020 SNIA Technical Position 136

2110

2111

2112
2113
2114
2115
2116

2117

2118

2119
2120

2121
2122
2123
2124

2125
2126
2127

2128

2129

2130

2131

2132

2133

2134

2135

2136
2137

2138

2139

2140
2141

2142
2143

2144

2145

2146
2147

2148

2149
2150

2151
2152

Cloud Data Management Interface 2.0.0

10.2 Domain object details

10.2.1 Domain object addressing

Domain objects are created as children of a special cdmi domains container object, which is present in the root URI
for the cloud storage system when domains are supported. The cdmi_domains container object is system-generated,
read-only, cannot be deleted, and only permits the creation of children domain objects, as indicated by the presence of
the cdmi create_ domain capability. The ability to create a sub-domain under an existing domain object is indicated
by the presence of the cdmi create domain capability for a given domain object.

Domain objects are addressed in CDMI in two ways:
* by name (e.g., https://cloud.example.com/cdmi/2.0.0/cdmi_domains/myDomain/); and

* by ID (e.g., https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/
< 00007ED90010329E642EBFBC8B57E9AD/).

Every domain object has a single, globally-unique object ID that remains constant for the life of the object. Each domain
object shall also have at least one URI address that allows the domain object to be accessed. Following the URI
conventions for hierarchical paths, domain URIs shall start with “<root URI>/cdmi domains/” and consist of one
or more domain names that are separated by forward slashes (“/”) and that end with a forward slash (“/”).

If a request is performed against an existing domain resource and the trailing slash at the end of the URI is omitted, the
server shall respond with an HTTP status code of 301 Moved Permanently, and a “Location” header containing the
URI with the trailing slash will be added.

If a CDMI request is performed to create a new domain resource and the trailing slash at the end of the URI is omitted,
the server shall respond with an HTTP status code of 400 Bad Request.

Domain objects may also be nested.
EXAMPLE 2: The following URI represents a nested domains:
https://cloud.example.com/cdmi/2.0.0/cdmi domains/myDomain/subDomain/

A sub-domain has a parent domain object, shall be included in the children field of the parent domain object, and shall
inherit Domain Membership from its parent domain (if not specified in the sub-domain).

10.2.2 Domain object fields

“yn

Individual fields within a domain object may be accessed by specifying the field name after a question mark “2” appended

to the end of the domain object URI.
EXAMPLE 3: The following URI returns just the children field in the response message body:
https://cloud.example.com/cdmi/2.0.0/cdmi domains/myDomain/?children

EXAMPLE 4: By specifying a range after the children field name, specific ranges of the children field may
be accessed.

https://cloud.example.com/cdmi/2.0.0/cdmi_ domains/myDomain/?
children=0-2

Children ranges are specified in a way that is similar to byte ranges as per Section 14.35.1 of RFC 2616 [23]. A client can
determine the number of children present by requesting the childrenrange field without requesting a range of children.

A list of fields separated by an ampersand “s” may be specified, allowing multiple fields to be accessed in a single
request.

EXAMPLE 5: The following URI would return the children and metadata fields in the response body:

https://cloud.example.com/cdmi/2.0.0/cdmi domains/myDomain/?children;
metadata

When a client provides fields that are not defined in this International Standard or deserializes an object containing fields
that are not defined in this International Standard, these fields shall be persisted, but shall not be interpreted.

© SNIA 2020 SNIA Technical Position 137

2153

2154

2155

2156

2157

2158
2159

2160
2161

2162

2163
2164
2165
2166

2167

2168
2169
2170

Cloud Data Management Interface 2.0.0

10.2.3 Domain object metadata
The following domain-specific field shall be present for each domain (see Table 78).

Table 78: Required metadata for a domain object

Metadata name Type Description Requirement
cdmi_domain_ enabled JSON Indicates if the domain is enabled and specified at the | Mandatory
string time of creation. Values shall be “true” or “false”.

« If this metadata item is not present at the time
of domain creation, the value is set to “false”.

+ If a domain is disabled, the cloud storage
system shall not permit any operations to be
performed against any URI managed by that
domain.

* When a domain is disabled, all operations that
are performed against URIs that are managed
by a disabled domain shall return an HTTP
status code of 403 Forbidden.

cdmi domain delete JSON If the domain is deleted, indicates to which domain Conditional
< reassign string the objects that belong to the domain shall be
reassigned.

+ To delete a domain that contains objects, this
metadata item shall be present.

« If this metadata item is not present or does not
contain the URI of a valid domain that is
different from the URI of the domain being
deleted, an attempt to delete a domain that has
objects shall result in an HTTP status code of
400 Bad Request.

cdmi authentication JSON Indicates a list of which authentication methods are Optional
— methods array enabled for the domain.

SfSON Supported authentication method values are

strings indicated by the cdmi_authentication_methods

capability.

Domains may also contain domain-specific data system metadata items as defined in 16.3 and 16.4. Domain data
system metadata shall be inherited to child domain objects.

10.2.4 Domain object access control

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields shall be returned.
If no requested fields are permitted to be read, an HTTP status code of 403 Forbidden shall be returned to the client.

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be performed, and an
HTTP status code of 403 Forbidden shall be returned to the client.

10.2.5 Domain usage in access control

When a transaction is performed against a CDMI object, the associated domain object (i.e., the domain object indicated
by the domainURT) specifies the authentication context. The user identity and credentials presented as part of the
transaction are compared to the domain membership list to determine if the user is authorized within the domain and
to resolve the user’s principal. If resolved, the user’s principal is evaluated against the object’s ACL to determine if the
transaction is permitted.

When evaluating members within a domain, delegations are evaluated first, in any order, followed by user records, in
any order. If there is at least one matching record and none of the matching records indicate that the user is disabled,
the user is considered to be a member of the domain.

© SNIA 2020 SNIA Technical Position 138

Cloud Data Management Interface 2.0.0

271 When a sub-domain is initially created, the membership container contains one member record that is a delegation in
212 which the delegation URI is set to the URI of the parent domain.

27 10.2.6 Domain object representations

27 The representations in this clause are shown using JSON notation. Both clients and servers shall support UTF-8 JSON
275 representation. The request and response body JSON fields may be specified or returned in any order, with the exception
ae - that, if present, for domain objects, the childrenrange and children fields shall appear last and in that order.

© SNIA 2020 SNIA Technical Position 139

2177

2178
2179
2180
2181

2182
2183
2184
2185

2186

2187

2188
2189

2190

2191
2192

2193

2194

2195
2196

2197

2198

2199
2200

2201
2202

2203
2204

2205
2206

2207

2208

2209
2210

221
2212

2213

2214
2215

2216
2217
2218

2219

2220
2221

2222
2223

2224

2225

2226
2227

Cloud Data Management Interface 2.0.0

10.3 Domain object summaries

Domain object summaries provide summary measurement information about domain usage and billing. If supported, a
domain summary container named “cdmi_domain summary” shall be present under each domain container. Like any
container, the domain summary subcontainer may have an Access Control List (ACL) (see 17.1) that restricts access
to this information.

Within each domain summary container are a series of domain summary data objects that are generated by the cloud
storage system. The “yearly”, “monthly”, and “daily” containers of these data objects contain domain summary
data objects corresponding to each year, month, and day, respectively. These containers are organized into the following

structures:

https://example.
https://example.
https://example.

cumulative

https://example.
https://example.

com/cdmi/2.
com/cdmi/2.

com/cdmi/2.

com/cdmi/2.

com/cdmi/2.

0

.0/cdmi _domains/domain/
.0/cdmi_domains/domain/cdmi_ domain summary/

.0/cdmi_domains/domain/cdmi_domain summary/

.0/cdmi domains/domain/cdmi_ domain summary/daily/

0.0/cdmi_domains/domain/cdmi domain summary/daily/
2009-07-01

https://example.com/cdmi/2.0.

2009-07-02

0/cdmi_domains/domain/cdmi_domain summary/daily/

https://example.com/cdmi/2.0.

2009-07-03

0/cdmi domains/domain/cdmi domain summary/daily/

https://example.com/cdmi/2.0.

monthly/

0/cdmi_domains/domain/cdmi domain summary/

https://example.com/cdmi/2.0.

monthly/2009-07

0/cdmi_domains/domain/cdmi_domain summary/

https://example.com/cdmi/2.0.

monthly/2009-08

0/cdmi_domains/domain/cdmi_domain_summary/

https://example.com/cdmi/2.0.

monthly/2009-10

0/cdmi domains/domain/cdmi domain summary/

https://example.com/cdmi/2.0.

yearly/

0/cdmi domains/domain/cdmi domain summary/

https://example.com/cdmi/2.0.

yearly/2009

0/cdmi_domains/domain/cdmi_domain summary/

https://example.com/cdmi/2.0.

yearly/2010

0/cdmi_domains/domain/cdmi_domain summary/

The “cumulative” summary data object covers the entire time period, from the time the domain is created to the time
it is accessed. Each data object at the daily, monthly, and yearly level contains domain summary information for the
time period specified, bounded by domain creation time and access time.

If a time period extends earlier than the domain creation time, the summary information includes the time from when the
domain was created until the end of the time period.

EXAMPLE 1: If a domain were created on July 4, 2009, at noon, the daily summary “2009-07-04" would contain
information from noon until midnight, the monthly summary “2009-07" would contain information from noon on July 4
until midnight on July 31, and the yearly summary “2009” would contain information from noon on July 4 until midnight
on December 31.

If a time period starts after the time when the domain was created and ends earlier than the time of access, the summary
data object contains complete information for that time period.

EXAMPLE 2: If a domain were created on July 4, 2009, and on July 10, the “2009-07-06" daily summary data object
was accessed, it would contain information for the complete day.

If a time period ends after the current access time, the domain summary data object contains partial information from
the start of the time period (or the time the domain was created) until the time of access.

EXAMPLE 3: If a domain were created on July 4, 2009, and at noon on July 10, the “2009-07-10" daily summary data
object was accessed, it would contain information from the beginning of the day until noon.

© SNIA 2020 SNIA Technical Position 140

Cloud Data Management Interface 2.0.0

2228 The information in Table 79 shall be present within the contents of each domain summary object, which are in JSON
220 representation.

Table 79: Contents of domain summary objects

Metadata name Type Description Requirement
cdmi_ domainURI JSON Domain name corresponding to the Mandatory
string domain that is summarized
cdmi summary start JSON An ISO-8601 time indicating the start of Mandatory
string the time range that the summary
information is presenting
cdmi_summary end JSON An 1ISO-8601 time indicating the end of the | Mandatory
string time range that the summary information is
presenting
cdmi_ summary objecthours JSON The sum of the time each object belonging | Optional
string to the domain existed during the summary
time period
cdmi_summary objectsmin JSON The minimum number of objects belonging | Optional
string to the domain during the summary time
period
cdmi summary objectsmax JSON The maximum number of objects Optional
string belonging to the domain during the
summary time period
cdmi_summary objectsaverage JSON The average number of objects belonging Optional
string to the domain during the summary time
period
cdmi summary puts JSON The number of objects written to the Optional
string domain
cdmi_ summary gets JSON The number of objects read from the Optional
string domain
cdmi_ summary bytehours JSON The sum of the time each byte belonging Optional
string to the domain existed during the summary
time period
cdmi_summary bytesmin JSON The minimum number of bytes belonging Optional
string to the domain during the summary time
period
cdmi summary bytesmax JSON The maximum number of bytes belonging Optional
string to the domain during the summary time
period
cdmi_summary bytesaverage JSON The average number of bytes belonging to | Optional
string the domain during the summary time
period
cdmi summary writes JSON The number of bytes written to the domain | Optional
string
cdmi_ summary_ reads JSON The number of bytes read from the domain | Optional
string
cdmi_ summary_ charge JSON An ISO 4217 currency code (see [38]) that | Optional
string is followed or preceded by a numeric value
and separated by a space, where the
numeric value represents the closing
charge in the indicated currency for the
use of the service associated with the
domain over the summary time period
cdmi_summary kwhours JSON The sum of energy consumed (in kilowatt Optional
string hours) by the domain during the summary
time period

continues on next page

© SNIA 2020 SNIA Technical Position 141

2230

2231

2232

2233
2234
2235

Cloud Data Management Interface 2.0.0

Table 79 — continued from previous page

the domain during the summary time
period

string consumed (in kilowatt hours per hour) by

Metadata name Type Description Requirement
cdmi_ summary kwmin JSON The minimum rate at which energy is Optional
string consumed (in kilowatt hours per hour) by
the domain during the summary time
period
cdmi_ summary kwmax JSON The maximum rate at which energy is Optional
string consumed (in kilowatt hours per hour) by
the domain during the summary time
period
cdmi_ summary kwaverage JSON The average rate at which energy is Optional

EXAMPLE 4: An example of a daily domain summary object is as follows:

{
"cdmi_domainURI" : "/cdmi_ domains/MyDomain/",
"cdmi summary start" : "2009-12-10T00:00:00",
"cdmi_ summary end" : "2009-12-10T23:59:59",
"cdmi_ summary objecthours" : "382239734",
"cdmi summary puts" : "234234",
"cdmi summary gets" : "489432",
"cdmi summary bytehours" : "334895798347",
"cdmi summary writes" : "7218368343",
"cdmi summary reads" : "11283974933",
"cdmi_ summary charge" : "4289.23 USD"

}

If the charge value is provided, the value is for the operational cost (excluding fixed fees) of service already performed

and storage and bandwidth already consumed. Pricing of services is handled separately.

Domain summary information may be extended by vendors to include additional metadata or domain reports beyond
the metadata items specified by this International Standard, as long as the field names for those metadata items do not

»

begin with “cdmi_”.

© SNIA 2020 SNIA Technical Position

142

2236

2237
2238
2239
2240

2241
2242
2243
2244
2245
2246

2247
2248
2249

2250

2251

2252

2253

2254
2255

2256

2257

2258
2259
2260
2261

2262

Cloud Data Management Interface 2.0.0

10.4 Domain object membership

In cloud storage environments, in the same way that domains are often created programmatically, domain user member-
ship and credential mapping also shall be populated using such interfaces. By providing access to user membership, this
capability enables self-enroliment, automatic provisioning, and other advanced self-service capabilities, either directly
using CDMI or through software systems that interface with CDMI.

The domain membership capability provides information about, and allows the specification of, end users and groups of
users that are allowed to access the domain via CDMI and other access protocols. The concept of domain membership
is not intended to replace or supplant ACLs (see 17.1), but rather to provide a single, unified place to map identities and
credentials to principals used by ACLs within the context of a domain (see model described in 10.2.5). It also provides
a place for authentication mappings to external authentication providers, such as LDAP and Active Directory, to be
specified.

If supported, a domain membership container named cdmi_domain_members shall be present under each domain.
Like any container, the domain membership container has an Access Control List (see 17.1) that restricts access to this
information.

Within each domain membership container are a series of user objects that are specified through CDMI to define each
user known to the domain. These objects are formatted into the following structure:

https://example.com/cdmi/2.0.0/cdmi domains/domain/
https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain members/

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain members/
john doe

https://example.com/cdmi/2.0.0/cdmi domains/domain/cdmi_ domain members/
john smith

The domain membership container may also contain subcontainers with data objects. Data objects in these subcon-
tainers are treated the same as data objects in the domain membership container, and no meaning is inferred from the
subcontainer name. This organization is used to create different access security relationships for groups of user objects
and to allow delegation to a common set of members.

Table 80 lists the domain settings that shall be present within each domain member user object.

Table 80: Required settings for domain member user objects

Metadata name Type Description Requirement
cdmi member enabled JSON If true, this field indicates that requests Mandatory
string associated with this domain member are

allowed. If false, all requests performed by
this domain member shall result in an
HTTP status code of 403 Forbidden.

cdmi_member type JSON This field indicates the type of member Mandatory
string record. Values include “user”, “group”,
and “delegation”.
cdmi member name JSON This field contains the user or group name | Mandatory
string as presented by the client. This will
normally be the standard full name of the
principal.
cdmi member credentials JSON This field contains credentials to be Optional
string matched against the credentials as

presented by the client. If this field is not
present, one or more delegations shall be
present and shall be used to resolve user
credentials. As one cannot log in as a
group but only as a member of a group,
the “group” type member records shall
not have credentials.

continues on next page

© SNIA 2020 SNIA Technical Position 143

2263

Cloud Data Management Interface 2.0.0

Table 80 — continued from previous page

Metadata name

Type

Description

Requirement

cdmi member principal

JSON
string

This field indicates to which principal name
(used in ACLs) the user or group is
mapped. If this field is not present, one or
more delegations shall be present and
shall be used to resolve the principal.

Optional

cdmi member privileges

JSON
array
of
JSON
strings

This field explicitly confers zero or more
special privileges to a user or group. When
delegated, privileges are conferred based
on the information returned from the
external system to which the delegation
points. The following privileges are
defined:

* “administrator”. Allows the
principal to take ownership of any
object/container.

* “packup operator”. Bypass
regular ACL checks to allow backup
and restore of objects and
containers, including all associated
attributes, metadata, ACLs and
ownership.

* “cross_domain”. Operations
specifying a domain other than the
domain of the parent object are
permitted. Unless this privilege is
conferred by the user record or a
group (possibly nested) to which the
user or group belongs, all attempts
to change the domain of objects to a
domain other than the parent
domain shall fail.

Mandatory

cdmi member groups

JSON
array
of
JSON
strings

This field contains a JSON array of group
names to which the user or group belongs.

Optional

Table 81 lists the domain settings that shall be present within each domain member delegation object.

Table 81: Required settings for domain member delegation objects

Metadata name Type Description Requirement
cdmi member enabled JSON If true, this field indicates that requests Mandatory
string associated with this domain member are
allowed. If false, all requests performed by
this domain member shall result in an
HTTP status code of 403 Forbidden.
cdmi_member type JSON This field indicates the type of member Mandatory
string record. Values include “user” and
“delegation”.
cdmi delegation URI JSON This field contains the URI of an external Mandatory
string identity resolution provider (such as LDAP
or Active Directory) or the URI of a domain
membership container object.
External delegations are expressed in the
form of 1dap://<uri>orad://<uri>.
© SNIA 2020 SNIA Technical Position 144

2264

2265

Cloud Data Management Interface 2.0.0

EXAMPLE 1: An example of a domain membership object for a user is as follows:

{

"cdmi member enabled" : "true",
"cdmi member type" : "user",
"cdmi member name" : "John Doe",
"cdmi member credentials" : "p+5/0X1cmExfOIrUxhXllw==",
"cdmi member groups" : [
"users"
] 4
"cdmi member principal" : "jdoe",

"cdmi privileges" : [
"administrator",
"cross_domain"

EXAMPLE 2: An example of a domain membership object for a delegation is as follows:

{

"cdmi member enabled" : "true",
"cdmi member type" : "delegation",
"cdmi delegation URI" : "/cdmi domains/MyDomain/"

© SNIA 2020 SNIA Technical Position

145

2266

2267

2268

2269

2270

2271

2272
2273

2274

2275

2276

2277

2278

2279

2280

2281

Cloud Data Management Interface 2.0.0

10.5 Create a domain object using CDMI

10.5.1 Synopsis

To create a new domain object, the following request shall be performed:

* PUT <root URI>/cdmi_ domains/<DomainName>/<NewDomainName>/
Where:

* <root URI> is the path to the CDMI cloud.

* <DomainName> is zero or more intermediate domains that already exist, with one slash (i.e., “/”) between each
pair of domain names.

* <NewDomainName> is the name specified for the domain to be created.
After it is created, the domain shall also be accessible at <root URI>/cdmi objectid/<objectID>/.

10.5.2 Delayed completion of create

Delayed completion shall not be supported for creating domain objects.

10.5.3 Capabilities

Capabilities that indicate which operations are supported are shown in Table 82.

Table 82: Capabilities - Create a CDMI domain object using CDMI

Capability Location Description

cdmi create domain Parent container Ability to create a new domain object

cdmi copy domain Parent container Ability to create a domain object that is a copy of
another domain object

cdmi deserialize domain Parent container Ability to create a domain object that is
deserialized from the contents of the PUT or the
contents of another data object

10.5.4 Request headers
The HTTP request headers for creating a CDMI domain object using CDMI are shown in Table 83

Table 83: Request headers - Create a domain object using CDMI

Header Type Description Requirement

Accept Header | “application/cdmi-domain” or a consistent Optional
string value as described in 5.5.2

Content-Type Header | “application/cdmi-domain” Mandatory
string

© SNIA 2020 SNIA Technical Position 146

2282

2283

Cloud Data Management Interface 2.0.0

10.5.5 Request message body
The request message body fields for creating a domain object using CDMI are shown in Table 84.

Table 84: Request message body - Create a domain object using CDMI

Field Name Type Description Requirement
metadata JSON Metadata for the domain object Optional
object « [f this field is included, the contents of the

JSON object provided in this field shall be used
as domain object metadata.

« If this field is included when deserializing,
serializing, copying, or moving a domain object,
the contents of the JSON object provided in
this field shall be used as object metadata
instead of the metadata from the source URI.

« If this field is not included, no user-specified
metadata shall be added to the object.

« If this field is not included when deserializing,
serializing, copying, or moving a domain object,
metadata from the source URI shall be used.

copy JSON URI of a CDMI domain that shall be copied into the Optional’
string new domain, including all child domains and
membership from the source domain
move JSON URI of an existing local CDMI domain object (source Optional’

string URI) that shall be relocated, along with all child
domains, to the URI specified in the PUT. The
contents of the domain and all sub-domains,
including the object ID, shall be preserved by a move,
and the domain and sub-domains of the source URI
shall be removed after the objects at the destination
have been successfully created.

If there are insufficient permissions to read the
objects at the source URI, write the objects at the
destination URI, or delete the objects at the source
URI, or if any of these operations fail, the move shall
return an HTTP status code of 400 Bad Request,
and the source and destination are left unchanged.

deserialize JSON URI of a CDMI data object with a value that contains Optional’
string a domain object serialized as specified in clause 15.
The serialized domain object shall be deserialized to
create the new domain object, including all child
objects.

deserializevalue JSON A domain object serialized as specified in clause 15 Optional’
string and encoded using base 64 encoding rules described
in RFC 4648 [19], that shall be deserialized to create
the new domain object, including all child objects.

" Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 147

2284

2285

2286

2287

Cloud Data Management Interface 2.0.0

10.5.6 Response headers

The HTTP response headers for creating a domain object using CDMI are shown in Table 85

Table 85: Response headers - Create a domain object using CDMI
Header Type Description Requirement
Content-Type Header | “application/cdmi-domain” Mandatory
string

10.5.7 Response message body

The response message body fields for creating a domain object using CDMI are shown in Table 86

Table 86: Response message body - Create a domain object using CDMI

Field Name Type Description Requirement
objectType JSON “application/cdmi-domain” Mandatory
string
objectID JSON Object ID of the domain Mandatory
string
objectName JSON Name of the object Mandatory
string
parentURI JSON URI for the parent object Mandatory
string Appending the objectName to the parentURI shall
always produce a valid URI for the object.
parentID JSON Object ID of the parent container object Mandatory
string
domainURI JSON URI of the owning domain. A domain object is always | Mandatory
string owned by itself.
capabilitiesURI JSON URI to the capabilities for the object Mandatory
string
metadata JSON Metadata for the domain object. This field includes Mandatory
object any user and data system metadata specified in the
request body metadata field, along with storage
system metadata generated by the cloud storage
system. See clause 16 for a further description of
metadata.
childrenrange JSON The sub-domains of the domain expressed as a Mandatory
string range. If a range of sub-domains is requested, this
field indicates the children returned as a range.
children JSON Names of the children domains in the domain. Child Mandatory
array containers end with “/”.
of
JSON
strings
© SNIA 2020 SNIA Technical Position 148

Cloud Data Management Interface 2.0.0

2 10.5.8 Response status

280 Table 87 describes the HTTP status codes that occur when creating a domain object using CDMI.

Table 87: HTTP status codes - Create a domain object using CDMI

HTTP Status Description

201 Created The new domain object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a
state transition error on the server.

20 10.5.9 Examples

201 EXAMPLE 1: PUT to the domain URI the domain name and metadata:

-=> PUT /cdmi/2.0.0/cdmi_domains/MyDomain/ HTTP/1.1
--> Host: cloud.example.com

--> Accept: application/cdmi-domain

--> Content-Type: application/cdmi-domain

-—>

--> "metadata":

- {

-—> "cdmi domain enabled": "true"

<-- HTTP/1.1 201 Created
<-- Content-Type: application/cdmi-domain

<—-
<=={

<-= "objectType" : "application/cdmi-domain",

<-- "objectID" : "00007E7F00104BE66AB53A9572F9F51E",

<-= "objectName" : "MyDomain/",

<-- "parentURI" : "/cdmi domains/",

<-= "parentID" : "00007E7F0010C058374D08BOAC7B3550",

<-- "domainURI" : "/cdmi_ domains/MyDomain/",

<-- "capabilitiesURI" : "/cdmi capabilities/domain/",
<-- "metadata" : {

<-- "cdmi domain_enabled": "true",

<-- "cdmi_ authentication methods": "anonymous, basic",
<-- e

<-- I

<-= "childrenrange" : "0-1",

<-- "children" : [

<-= "cdmi domain summary/",

<-- "cdmi domain members/"

<] B B

<--}

© SNIA 2020 SNIA Technical Position

149

2292

2293

2294

2295

2296
2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

Cloud Data Management Interface 2.0.0

10.6 Read a domain object using CDMI

10.6.1 Synopsis

To read an existing domain object, the following requests shall be performed:

GET
GET

GET
GET
GET
GET
GET
GET

Where:
* <root URI> is the path to the CDMI cloud.

<root URI>/cdmi domains/<DomainName>/<TheDomainName>/

<root URI>/cdmi_ domains/<DomainName>/<TheDomainName>/?<fieldname>&<fieldname>&.

<root URI>/cdmi domains/<DomainName>/<TheDomainName>/?children=<range>&. ..
<root URI>/cdmi domains/<DomainName>/<TheDomainName>/?metadata=<prefix>g...
<root URI>/cdmi objectid/<DomainObjectID>/

<root URI>/cdmi objectid/<DomainObjectID>/?<fieldname>&<fieldname>&. ..
<root URI>/cdmi objectid/<DomainObjectID>/?children=<range>s&...

<root URI>/cdmi objectid/<DomainObjectID>/?metadata=<prefix>&...

<DomainName> is zero or more parent domains.

<TheDomainName> is the name specified for the domain to be read from.

<fieldname> is the name of a field.

<range> is a numeric range within the list of children.

<prefix> is a matching prefix that returns all metadata items that start with the prefix value.

<DomainObjectID> is the ID of the domain object to be read from.

10.6.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 88.

Table 88: Capabilities - Read a CDMI domain object using CDMI

Capability Location Description
cdmi_ read metadata Domain object Ability to read the metadata of an existing domain
object
cdmi list children Domain object Ability to list the children of an existing domain
object
cdmi object access by ID System wide Ability to access the object by ID
capability

10.6.3 Request headers

The HTTP request headers for reading a CDMI domain object using CDMI are shown in Table 89.

Table 89: Request headers - Read a domain object using CDMI

Header

Type Description Requirement

Accept

Header “application/cdmi-domain” or a consistent value as Optional
string described in 5.5.2

© SNIA 2020 SNIA Technical Position 150

Cloud Data Management Interface 2.0.0

= 10.6.4 Request message body

27 A request body shall not be provided.

=w 10.6.5 Response headers
219 The HTTP response headers for reading a CDMI domain object using CDMI are shown in Table 90.

Table 90: Response headers - Read a domain object using CDMI

Header Type Description Requirement

Content-Type Header “‘application/cdmi-domain” Mandatory
string

Location Header The server shall respond with an absolute URI to which the Conditional
string reference redirects if the object is a reference.

=0 10.6.6 Response message body
221 The response message body fields for reading a CDMI domain object using CDMI are shown in Table 91

Table 91: Response message body - Read a domain object using CDMI

Field Name Type Description Requirement

objectType JSON “application/cdmi-domain” Mandatory
string

objectID JSON Object ID of the domain Mandatory
string

objectName JSON Name of the object Mandatory
string

parentURI JSON URI for the parent object Mandatory
string

Appending the “objectName” to the “parentURI” shall
always produce a valid URI for the object.

parentID JSON Object ID of the parent domain object Mandatory
string + For domain objects directly under “cdmi_domains”,
the object ID of “cdmi domains” container shall be
returned.

» For domain objects under another domain, the object
ID of the parent domain shall be returned.

domainURI JSON URI of the owning domain. A domain object shall always be Mandatory
string owned by itself.

capabilitiesURI | JSON URI to the capabilities for the object Mandatory
string

metadata JSON Metadata for the domain object. This field includes any user Mandatory
object and data system metadata specified in the request body

metadata field, along with storage system metadata
generated by the cloud storage system. See clause 16 for a
further description of metadata.

childrenrange JSON The sub-domains of the domain expressed as a range. If a Mandatory
string range of sub-domains is requested, this field indicates the
children returned as a range.
children JSON The children of the domain. Sub-domains end with “/”. Mandatory
array of
JSON
strings

222 If individual fields are specified in the GET request, only these fields are returned in the result body. Optional fields that
2323 are requested but do not exist are omitted from the result body.

© SNIA 2020 SNIA Technical Position 151

2324

2325

2326

2327

2328

2329

2330

Cloud Data Management Interface 2.0.0

10.6.7 Response status

Table 92 describes the HTTP status codes that occur when reading a domain object using CDMI.

Table 92: HTTP status codes - Read a domain object using CDMI

HTTP Status Description

200 OK The domain object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in the
Accept header.

10.6.8 Examples

EXAMPLE 1: GET to the domain URI to read all the fields of the domain:

-=> GET /cdmi/2.0.0/cdmi domains/MyDomain/ HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-domain

<-- HTTP/1.1 200 OK
<-- Content-Type: application/cdmi-domain

<__

<=={

<-- "objectType": "application/cdmi-domain",

<-= "objectID": "00007E7F00104BE66AB53A9572F9F51E",
<-- "objectName": "MyDomain/",

<-- "parentURI": "/cdmi domains/",

<-- "parentID": "00007E7F0010C058374D08BOACT7B3550",
<-= "domainURI": "/cdmi domains/MyDomain/",

<-- "capabilitiesURI": "/cdmi capabilities/domain/",
<== "metadata": {

<-- "cdmi domain enabled": "true",

<-- "cdmi authentication methods": "anonymous, basic",
<-- c.

<-- }l

<-- "childrenrange": "0-1",

<—- "children": [

<-- "cdmi_domain_summary/",

<-- "cdmi domain members/"

<] - B

<=}

EXAMPLE 2: GET to the domain URI to read the parentURI and children of the domain:

--> GET /cdmi/2.0.0/MyDomain/?parentURI&children HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-domain

<-- HTTP/1.1 200 OK

<-- Content-Type: application/cdmi-domain
<

<=={

<-- "parentURI" : "/cdmi domains/",

<-- "children" : [

<-- "cdmi domain summary/",

<-- "cdmi domain members/"

<——] B B

<--}

© SNIA 2020 SNIA Technical Position

152

2331

Cloud Data Management Interface 2.0.0

EXAMPLE 3: GET to the domain URI to read the first two children of the domain:

--> GET /cdmi/2.0.0/MyDomain/?childrenrange&children=0-1 HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-domain

<-=- HTTP/1.1 200 OK
<-- Content-Type: application/cdmi-domain

<__

<--{

<-- "childrenrange" : "0-1",
<-- "children" : [

<-- "cdmi_domain_summary/",
<-- "cdmi domain members/"
<] B -

<--}

© SNIA 2020 SNIA Technical Position

153

2332

2333

2334

2335

2336
2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

Cloud Data Management Interface 2.0.0

10.7 Update a domain object using CDMI

10.7.1 Synopsis

To update part or all of an existing domain object, the following requests shall be performed:

* PATCH <root URI>/cdmi domains/<DomainName>/<TheDomainName>/

* PATCH

<root

URI>/cdmi_ domains/<DomainName>/<TheDomainName>/?

metadata=<metadataname>&. ..

* PATCH <root URI>/cdmi objectid/<DomainObjectID>

* PATCH <root URI>/cdmi objectid/<DomainObjectID>?metadata=<metadataname>s...

Where:

* <root URI> is the path to the CDMI cloud.

* <DomainName> iS zero or more parent domains.

* <TheDomainName> is the name specified for the domain to be read from.

* <DomainObjectID> is the ID of the data object to be read from.

10.7.2 Delayed completion of update

Delayed completion shall not be supported for creating domain objects.

10.7.3 Capabilities

Capabilities that indicate which operations are supported are shown in Table 93.

Table 93: Capabilities - Update a CDMI domain object using CDMI

Capability

Location

Description

cdmi modify metadata

Domain object

Ability to modify the metadata of an existing
domain object

cdmi object access by ID

System wide
capability

Ability to access the object by ID

10.7.4 Request headers

The HTTP request headers for updating a CDMI domain object using CDMI are shown in Table 94.

Table 94: Request headers - Update a domain object using CDMI

Header Type Description Requirement
Content-Type Header “application/cdmi-domain” Mandatory
string
© SNIA 2020 SNIA Technical Position 154

2353

2354

Cloud Data Management Interface 2.0.0

10.7.5 Request message body

The request message body fields for updating a domain object using CDMI are shown in Table 95.

Table 95: Request message body - Update a domain object using CDMI

Field Name

Type

Description

Requirement

metadata

JSON
object

Metadata for the domain object. If present, the new metadata
specified replaces the existing object metadata. If individual
metadata items are specified in the URI, only those items are
replaced; other items are preserved.

See clause 16 for a further description of metadata.

Optional

Copy

JSON
string

URI of a CDMI domain object that shall be copied into the
existing domain object. Only the metadata and membership
of the domain object itself shall be copied, not any
sub-domains of the domain object.

« If the destination domain object URI and the copy
source domain object URI both do not specify individual
fields, the destination domain object metadata and
membership shall be replaced with the source domain
object metadata and membership.

« If the destination domain object URI or the copy source
domain object URI specifies individual fields, only the
fields specified shall be used to update the destination
domain object. If specified fields are not present in the
source, these fields shall be ignored.

If the destination domain object URI and the copy
source domain object URI both specify fields, an HTTP
status code of 400 Bad Request shall be returned to
the client.

If there are insufficient permissions to read the domain object
at the source URI or create the domain object at the
destination URI, or if the read operation fails, the copy shall
return an HTTP status code of 400 Bad Request, and the
destination domain object shall not be updated.

Optional®

deserialize

JSON
string

URI of a CDMI data object with a value that contains a
domain object serialized as specified in clause 15. The
serialized domain object shall be deserialized to update the
existing domain object.

The object ID of the serialized domain object shall match the
object ID of the destination domain object. Otherwise, the
server shall return an HTTP status code of 400 Bad
Request.

« If the serialized domain object does not contain
sub-domains, the update is applied only to the domain
object, and any existing sub-domains are left as is.

« If the serialized domain object does contain
sub-domains, then creates, updates, and deletes are
recursively applied for each sub-domain, depending on
the differences between the provided serialized state
and the current state of the sub-domains.

Optional?

continues on next page

© SNIA 2020

SNIA Technical Position

155

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

Cloud Data Management Interface 2.0.0

Table 95 — continued from previous page

4648 [19], that shall be deserialized to update the existing
domain object.

The object ID of the serialized domain object shall match the
object ID of the destination domain object. Otherwise, the
server shall return an HTTP status code of 400 Bad
Request.

« If the serialized domain object does not contain
sub-domains, the update is applied only to the domain
object, and any existing sub-domains are left as is.

« If the serialized domain object does contain
sub-domains, then creates, updates, and deletes are
recursively applied for each sub-domain, depending on
the differences between the provided serialized state
and the current state of the sub-domains.

Field Name Type Description Requirement
deserializevalue| JSON A domain object serialized as specified in clause 15 and Optional®
string encoded using base 64 encoding rules described in RFC

10.7.6 Response header

The HTTP response header for updating a CDMI domain object using CDMI is shown in Table 96

Table 96: Response header - Update a domain object using CDMI

Header Type Description Requirement
Location Header The server shall respond with an absolute URI to which the Conditional
string reference redirects if the object is a reference.

10.7.7 Response message body

A response body may be provided as per RFC 2616 [23].

10.7.8 Response status

Table 97 describes the HTTP status codes that occur when updating a domain object using CDMI.

Table 97: HTTP status codes - Update a domain object using CDMI

HTTP Status Description
204 No Content The data object content was returned in the response.
302 Found The resource is a reference to another resource.

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization to perform this request.

404 Not Found

The resource was not found at the specified URI.

409 Conflict

The operation conflicts with a non-CDMI access protocol lock or has caused a

state transition error on the server.

2 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored.

© SNIA 2020

SNIA Technical Position

156

2365

2366

Cloud Data Management Interface 2.0.0

10.7.9 Example

EXAMPLE 1: PATCH to the domain URI to set new field values:

-=> PATCH /cdmi/2.0.0/cdmi domains/MyDomain/ HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-domain

-——> "metadata" : {
-—> "test" : "value"

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position

157

2367

2368

2369
2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

Cloud Data Management Interface 2.0.0

10.8 Delete a domain object using CDMI

10.8.1 Synopsis

To delete an existing domain object, and transfer all objects associated with that domain to another domain (to preserve
access), the following request shall be performed:

* DELETE <root URI>/cdmi domains/<DomainName>/<TheDomainName>/
* DELETE <root URI>/cdmi objectid/<DomainObjectID>
Where:
* <root URI> is the path to the CDMI cloud.
* <DomainName> iS zero or more parent domains.
* <TheDomainName> is the name specified for the domain to be deleted.
* <DomainObjectID> is the ID of the domain object to be deleted.

10.8.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 98.

Table 98: Capabilities - Delete a CDMI domain object using CDMI

Capability Location Description

cdmi delete domain Domain object Ability to delete an existing domain object

cdmi object access by ID System wide Ability to access the object by ID
capability

10.8.3 Request headers

Request headers may be provided as per RFC 2616 [23].

10.8.4 Request message body

A request body may be provided as per RFC 2616 [23].

10.8.5 Response headers

Response headers may be provided as per RFC 2616 [23].

10.8.6 Response message body

A response body may be provided as per RFC 2616 [23].

© SNIA 2020 SNIA Technical Position 158

Cloud Data Management Interface 2.0.0

s 10.8.7 Response status

2389 Table 99 describes the HTTP status codes that occur when deleting a domain object using CDMI.

2390

Table 99: HTTP status codes - Delete a domain object using CDMI

2391

HTTP Status Description

204 No Content The domain object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a
state transition error on the server.

=z 10.8.8 Example

203 EXAMPLE 1: DELETE to the domain object URI:

--> DELETE /cdmi/2.0.0/cdmi domains/MyDomain/ HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 159

2394

2395

2396

2397

2398
2399

2400
2401
2402

2403
2404
2405
2406

2407
2408

2409

2410
2411

Cloud Data Management Interface 2.0.0

Clause 11

Queue object resource operations using

CDMI

11.1 Overview

Queue objects are similar to data objects, only with first-in, first-out access “queue”style accesse semantics when
storing and retrieving value data.

If a cloud storage system supports queues, the cdmi queues system-wide capability shall be present. The ability to
create a queue object is determiend by the presence or absence of the cdmi create gqueue and cdmi_post queue
capabilities in the parent container, and by the cdmi _post queue by ID system-wide capability for creation by ID.

A queue object writer POSTs data into a queue object, and a queue object reader GETs value(s) from the queue object
and subsequently deletes the value(s) to acknowledge receipt of the value(s) that it received. Queues provides a simple
mechanism for one or more writers to send data to a single reader in a reliable way. If supported by the cloud storage
system, cloud clients create the queue objects by using the mechanism described in 9.8 and this clause.

Each CDMI queue object is represented as a JSON object, containing one or more “fields”. For example, the “metadata”
field contains metadata items.

EXAMPLE 1: CDMI queue object

{

] 4

"utf-g"
]I

"value": [

]
}

"objectType": "application/cdmi-queue",
"objectID": "00007E7F00104BE66AB53A9572F9F51E",
"objectName": "MyQueue",
"parentURI": "/MyContainer/",
"parentID" : "00007ED900104F67307652BAC9A37C93",
"domainURI": "/cdmi domains/MyDomain/",
"capabilitiesURI": "/cdmi capabilities/queue/",
"completionStatus": "Complete",
"metadata": {},
"queueValues": "1-1",
"mimetype": [

"text/plain"
]I
"valuerange": [

IIO_19"

"valuetransferencoding": [

"First Enqueued Value"

The meaning, use, and permitted values of each field are described in each operation that creates, modifies or retreives

CDMI queue objects.

© SNIA 2020

SNIA Technical Position 160

2412

2413

2414

2415

2416
2417

2418

2419

2420

2421
2422

2423

2424

2425

2426

2427

2428
2429

2430

2431
2432

2433

2434

2435

2436
2437

2438

2439

2440
2441

2442

2443

2444

2445
2446

2447

2448
2449

2450
2451

2452

2453

2454

2455

Cloud Data Management Interface 2.0.0

11.2 Queue object details

11.2.1 Queue object addressing

Queue objects are addressed in CDMI in two ways:
* by name (e.g., https://cloud.example.com/cdmi/2.0.0/queueobject); and

* by ID (e.g., https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/
< 00007ED900104F67307652BAC9A37C93/).

Every queue object has a single, globally-unique object ID that remains constant for the life of the object. Each queue
object may also have one or more URI addresses that allow the queue object to be accessed.

11.2.2 Queue object fields

“An

Individual fields within a queue object can be accessed by specifying the field name after a question mark “2?” appended
to the end of the queue object URI.

EXAMPLE 2: The following URI returns just the number of values stored in the queue object in the response
body:

https://cloud.example.com/cdmi/2.0.0/queueobject?queueValues

A list of unique fields, separated by an ampersand “s” can be specified, allowing multiple fields to be accessed in a
single request.

EXAMPLE 3: The following URI returns the number of values stored and metadata fields in the response
body:

https://cloud.example.com/cdmi/2.0.0/queueobject?queueValues&metadata

When a client provides fields that are not defined in this International Standard or deserializes an object containing fields
that are not defined in this International Standard, these fields shall be persisted, but shall not be interpreted.

11.2.3 Queue object value

The encoding of the data stored in the queue object value field depends on the queue object valuetransferencoding
field:

« If the value transfer encoding of the object is set to “ut £-8”, the data stored in the value of the queue object shall
be a valid UTF-8 string, and it shall be transported as a UTF-8 string in the value field.

« If the value transfer encoding of the object is set to “base64”, the data stored in the value of the queue object
may contain arbitrary binary sequences, and it shall be transported as a base 64-encoded string in the value field.

« If the value transfer encoding of the object is set to “json”, the data stored in the value of the queue object shall
be a valid JSON object, and the value field shall contain a valid JSON object.

Specific ranges of the value of a queue object can be accessed by specifying a byte range after the value field name.
EXAMPLE 4: The following URI returns the first thousand bytes of the oldest value enqueued:
https://cloud.example.com/cdmi/2.0.0/queueobject?value=0-999

Because a byte range of a UTF-8 string is often not a valid UTF-8 string, the response to a range request shall always
be transported in the value field as a base 64-encoded string.

Byte ranges are specified as single, inclusive byte ranges as per Section 14.35.1 of RFC 2616 [23].

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields shall be returned.
If no requested fields are permitted to be read, an HTTP status code of 403 Forbidden shall be returned to the client.

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be performed, and an
HTTP status code of 403 Forbidden shall be returned to the client.

When a client provides or includes deserialization fields that are not defined in this International Standard, these fields
shall be stored as part of the object.

The value of a queue object may also be specified and retrieved using multi-part MIME, where the CDMI JSON is
transferred in the first MIME part and the raw queue values are transferred in the subsequent MIME parts. Each MIME

© SNIA 2020 SNIA Technical Position 161

2456
2457

2458
2459

2460

2461
2462

2463

2464
2465
2466
2467

2468
2469

2470

2471

2472

2473

2474
2475

2476

2477

2478

2479

2480

2481
2482

2483

2484

2485

2486
2487

2488

2489
2490

2491
2492
2493
2494

2495
2496

2497

Cloud Data Management Interface 2.0.0

part, including any header fields, shall conform to RFC 2045 [9], RFC 2046 [10], and RFC 2616 [23], and the length of
each part may optionally be specified by a “Content-Length” header in addition to the MIME boundary delimiter.

Multiple non-overlapping ranges of the value of a queue object may also be accessed or updated in a multi-part MIME
operation by transferring one MIME part for each range of the value. The byte ranges for these operations shall be
specified as per Section 14.35.1 of RFC 2616 [23].

Multi-part MIME enables the efficient transfer of binary data alongside CDMI object metadata without incurring the
overhead of the UTF-8 or Base64 encoding and validation required to represent binary data in JSON.

11.2.4 Queue object metadata

Queue object metadata may also include arbitrary user-supplied metadata, storage system metadata, and data system
metadata, as specified in clause 16. Metadata shall be stored as a valid UTF-8 string. Binary data stored in user
metadata shall be first encoded such that it can be contained in a UTF-8 string, with the use of base 64 encoding
recommended.

Every queue object has a parent object from which the queue object inherits data system metadata that is not explicitly
specified in the data object itself.

EXAMPLE 5: The “pages” queue object stored at the following URI would inherit data system metadata
from its parent container, “OCR”:

https://cloud.example.com/cdmi/2.0.0/0CR/pages

11.2.5 Queue object access control

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields shall be returned.
If no requested fields are permitted to be read, an HTTP status code of 403 Forbidden shall be returned to the client.

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be performed, and an
HTTP status code of 403 Forbidden shall be returned to the client.

11.2.6 Queue object consistency

Writing to a queue object is an atomic operation.
For non-value-related fields:

« If a client reads a queue object simultaneously with a write to that same queue object, the reading client shall get
either the old version or the new version, but not a mixture of both.

« If a write is terminated due to errors, the contents of the queue object shall be as if the write never occurred (i.e.,
writes are atomic in the face of errors).

For value-related fields:

« If a client dequeues or deletes one or more queue values simultaneously with one or more queue values being
enqueued to that same queue object, the order of operations shall be as if the dequeue/delete operation happens
before the enqueue operation.

+ If a dequeue, delete or enqueue is terminated due to errors, the contents of the queue object shall be as if the
dequeue/delete/enqueue never occurred (i.e., writes are atomic in the face of errors).

Create and update timestamps that are returned in response to multiple client writes to a given object may indicate that
a specific write is the newest (i.e., the write whose data is expected to be returned to subsequent reads until another
write is processed). However, there is no guarantee that the write with the latest timestamp is the one whose data is
returned on subsequent reads.

Implementations of this International Standard shall provide the atomicity features described in this subclause for queue
objects that are accessed via CDMI. The atomicity properties of queue objects that are accessed by protocols other
than CDMI are outside the scope of this International Standard.

© SNIA 2020 SNIA Technical Position 162

2498

2499
2500
2501

Cloud Data Management Interface 2.0.0

11.2.7 Queue object representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support UTF-8 JSON
representation. The request and response body JSON fields may be specified or returned in any order, with the exception

that, if present, for queue objects, the “valuerange” and “value” fields shall appear last and in that order.

© SNIA 2020

SNIA Technical Position

163

2502

2503

2504

2505

2506

2507

2508

2509
2510

251

2512

2513

2514

2515

2516
2517

2518

2519
2520

2521

2522

2523

2524

2525
2526

2527

2528

2529
2530

2531

2532
2533
2534

2535

2536

Cloud Data Management Interface 2.0.0

11.3 Create a queue object using CDMI

11.3.1 Synopsis

To create a new queue object, the following request shall be performed:
e PUT <root URI>/<ContainerName>/<QueueName>

To create a new queue object by ID, see 9.8.

Where:
* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., “/”) between
each pair of container names.

* <QueueName> is the name specified for the queue object to be created.
After it is created, the object shall also be accessible at <root URI>/cdmi objectid/<objectID>.

The newly created queue shall have no values unless the queue is created as a result of copying or moving a source
queue that has values or as a result of deserializing a serialized queue that has values.

11.3.2 Delayed completion of create

In response to a create operation for a queue object, the server may return an HTTP status code of 202 Accepted
to indicate that the object is in the process of being created. This response is useful for long-running operations (e.g.,
copying a large queue object from a source URI). Such a response has the following implications.

» The server shall return a "Location” header with an absolute URI to the object to be created along with an HTTP
status code of 202 Accepted.

« With an HTTP status code of 202 Accepted, the server implies that the following checks have passed:
— user authorization for creating the object;
— user authorization for read access to any source object for move, copy, serialize, or deserialize; and
— availability of space to create the object or at least enough space to create a URI to report an error.

+ A client might not be able to immediately access the created object, e.g., due to delays resulting from the imple-
mentation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the server returns
two fields in its response body to indicate progress.

» o«

* A mandatory completionStatus text field contains either “Processing”,
ing with the value “Error”.

Complete”, or an error string start-

» An optional percentComplete field contains the percentage of the operation that has completed (0 to 100).

GET shall not return any value for the queue object when completionStatus is not “Complete”. If the final result of
the create operation is an error, the URI is created with the completionStatus field set to the error message. Itis
the client’s responsibility to delete the URI after the error has been noted.

11.3.3 Capabilities

Capabilities that indicate which operations are supported are shown in Table 100.

Table 100: Capabilities - Create a CDMI queue object using CDMI

Capability Location Description

cdmi create queue Parent container Ability to create a new queue object

cdmi create reference Parent container Ability to create a new reference

cdmi copy queue Parent container Ability to create a queue object that is a copy of
another queue object

continues on next page

© SNIA 2020 SNIA Technical Position 164

2537

2538

2539

2540

2541

2542
2543

Cloud Data Management Interface 2.0.0

Table 100 — continued from previous page

Capability

Location Description

cdmi move queue

Parent container
queue object

Ability to move a queue object from another

cdmi deserialize queue

Parent container

contents of another data object

Ability to create a queue object that is
deserialized from the contents of the PUT or the

11.3.4 Request headers

The HTTP request headers for creating a CDMI queue object using CDMI are shown in Table 101

Table 101: Request headers - Create a queue object Using CDMI

Header Type Description Requirement
Accept Header “application/cdmi-queue” Mandatory
string
Content-Type Header “application/cdmi-queue” Mandatory
string
11.3.5 Request message body
The request message body fields for creating a queue object using CDMI are shown in

tbl cdmi queue object create request message body.

Table 102: Request message body - Create a queue object using CDMI

Field Name

Type

Description

Requirement

metadata

JSON
object

Metadata for the queue object

« If this field is included, the contents of the JSON object
provided in this field shall be used as queue object
metadata.

« If this field is included when deserializing, serializing,
copying, or moving a queue object, the contents of the
JSON object provided in this field shall be used as
object metadata instead of the metadata from the
source URI.

« If this field is not included, no user-specified metadata
shall be added to the object.

« If this field is not included when deserializing,
serializing, copying, or moving a queue object,
metadata from the source URI shall be used.

* This field shall not be included when creating a
reference to a queue object.

Optional

domainURI

JSON
string

URI of the owning domain
« If different from the parent domain, the user shall have
the “cross_domain” privilege (see
cdmi_member privileges in Table 80).
* If not specified, the domain of the parent container shall
be used.

Optional

deserialize

JSON
string

URI of a CDMI data object with a value that contains a queue
object serialized as specified in clause 15. The serialized
queue object shall be deserialized to create the new queue
object.

Optional’

continues on next page

© SNIA 2020

SNIA Technical Position

165

Cloud Data Management Interface 2.0.0

Table 102 — continued from previous page

Field Name Type Description Requirement
copy JSON URI of a source CDMI queue object that shall be copied into Optional’
string the new destination queue object.

« If the destination queue object URI and the copy source
queue object URI both do not specify individual fields,
the destination queue object shall be a complete copy
of the source queue object, including all enqueued
values.

« If the destination queue object URI or the copy source

queue object URI specifies individual fields, only the

fields specified shall be used to create the destination
queue object. If specified fields are not present in the
source, default field values shall be used.

If the destination queue object URI and the copy source

queue object URI both specify fields, an HTTP status

code of 400 Bad Request shall be returned to the
client.

If there are insufficient permissions to read the queue object

at the source URI or create the queue object at the

destination URI, or if the read operation fails, the copy shall
return an HTTP status code of 400 Bad Request, and the
destination queue object shall not be created.

move JSON URI of an existing local or remote CDMI queue object (source | Optional’
string URI) that shall be relocated to the URI specified in the PUT.
The contents of the queue object, including the object ID,
shall be preserved by a move, and the queue object at the
source URI shall be removed after the queue object at the
destination has been successfully created.

If there are insufficient permissions to read the queue object
at the source URI, write the queue object at the destination
URI, or delete the queue object at the source URI, or if any of
these operations fail, the move shall return an HTTP status
code of 400 Bad Request, and the source and destination
are left unchanged.

reference JSON URI of a CDMI queue object that shall be redirected to by a Optional
string reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status code
of 400 Bad Request.

deserializevalue| JSON A queue object serialized as specified in clause 15 and Optional’
string encoded using base 64 encoding rules described in RFC
4648 [19], that shall be deserialized to create the new queue
object.

" Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 166

Cloud Data Management Interface 2.0.0

=4 11.3.6 Response status

245 The HTTP response headers for creating a CDMI queue object using CDMI are shown in Table 103

2546

Table 103: Response headers - Create a queue object Using CDMI

2547

Header Type Description Requirement
Content-Type Header “application/cdmi-queue” Mandatory
string
Location Header When an HTTP status code of 202 Accepted is returned, Conditional
string the server shall respond with the absolute URL of the object
that is in the process of being created.

=5 11.3.7 Response message body
29 The response message body fields for creating a CDMI queue object using CDMI are shown in Table 104

Table 104: Response message body - Create a queue object using CDMI

Field Name Type Description Requirement

objectType JSON “application/cdmi-queue” Mandatory
string

objectID JSON Object ID of the object Mandatory
string

objectName JSON Name of the object Mandatory
string

parentURI JSON URI for the parent object Mandatory
string Appending the objectName to the parentURI shall always

produce a valid URI for the object.

parentID JSON Object ID of the parent container object Mandatory
string

domainURI JSON URI of the owning domain. Mandatory
string

capabilitiesURI | JSON URI to the capabilities for the object Mandatory
string

completionStatus| JSON A string indicating if the object is still in the process of being Mandatory
string created or updated by another operation, and after that

operation is complete, indicates if it was successfully created
or updated or if an error occurred.

The value shall be the string “Processing”, the string
“Complete”, or an error string starting with the value “Error”.

percentComplete | JSON A string indicating the percentage of completion if the objectis | Optional
string still in the process of bewing created or updated by another
operation.

* When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from “0” through “100”.

* When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

* When the value of completionStatus is “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

continues on next page

© SNIA 2020 SNIA Technical Position 167

2550

2551

2552

2553

2554

2555

Cloud Data Management Interface 2.0.0

Table 104 — continued from previous page

Field Name Type Description Requirement
metadata JSON Metadata for the queue object. This field includes any user Mandatory
object and data system metadata specified in the request body

metadata field, along with storage system metadata

further description of metadata.

generated by the cloud storage system. See clause 16 for a

queueValues JSON The range of designators for enqueued values. Every

string enqueued value shall be assigned a unique,

shall be returned. If values are enqueued, the lowest

“ o«

highest designator shall be returned.

monotonically-incrementing positive integer designator,
starting from 0. If no values are enqueued, an empty string

designator, followed by a hyphen (“-*), followed by the

Mandatory

11.3.8 Response status

The HTTP status codes that occur when creating a queue object using CDMI are described in Table 105.

Table 105: HTTP status codes - Create a queue object using CDMI

HTTP Status Description

201 Created The new queue object was created.

202 Accepted

the current status of the operation.

The queue object is in the process of being created. The CDMI client should
monitor the completionStatus and percentComplete fields to determine

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.

409 Conflict

state transition error on the server.

The operation conflicts with a non-CDMI access protocol lock or has caused a

11.3.9 Examples

Example 1: PUT to the queue URI the queue object name and contents:

-—>
-—>
-—>
-—>

PUT /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com

Accept: application/cdmi-queue

Content-Type: application/cdmi-queue

{

"metadata" : {

}
}

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue

"objectType" : "application/cdmi-queue",
"objectID" : "00007E7F00104BE66ABS53A9572F9F51E",
"objectName" : "MyQueue",

"parentURI " : "/MyContainer/",

"parentID" : "00007ED900104F67307652BAC9A37C93",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi capabilities/queue/",
"completionStatus" : "Complete",

(continues on next page)

© SNIA 2020 SNIA Technical Position

168

2556

Cloud Data Management Interface 2.0.0

(continued from previous page)

<-- "metadata" : {

<-- Ce

<-- }l

<-- "queueValues" : ""
<=}

EXAMPLE 2: PUT to the queue object URI to create a new queue, copying from another queue:

--> PUT /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-queue

-—> {
-=> "copy": "/MyContainer/SourceQueue?value=0-9"
—> }

<-- HTTP/1.1 201 Created
<-- Content-Type: application/cdmi-queue

<—-
<=={

<-- "objectType": "application/cdmi-queue",

<-- "objectID": "00007E7F00104BE66AB53A9572F9F51E",
<== "objectName": "MyQueue",

<-- "parentURI ": "/MyContainer/",

<-= "parentID": "00007ED900104F67307652BAC9A37C93",
<-- "domainURI": "/cdmi_domains/MyDomain/",

<-- "capabilitiesURI": "/cdmi capabilities/queue/",
<-- "completionStatus": "Complete",

<-- "metadata": {

<-- Ce

<-- }r

<-- "queueValues": "0-9"

<--}

© SNIA 2020 SNIA Technical Position

169

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578
2579

2580

2581

2582
2583

2584

2585

Cloud Data Management Interface 2.0.0

11.4 Read a queue object using CDMI

11.4.1 Synopsis

To read all fields from an existing queue object, the following request shall be performed:

GET <root URI>/<ContainerName>/<QueueName>

GET <root URI>/<ContainerName>/<QueueName>?<fieldname>&<fieldname>&. ..
GET <root URI>/<ContainerName>/<QueueName>?value=<range>é&. ..

GET <root URI>/<ContainerName>/<QueueName>?metadata=<prefix>&...

GET <root URI>/<ContainerName>/<QueueName>?values=<count>

GET <root URI>/cdmi objectid/<QueueObjectID>

GET <root URI>/cdmi objectid/<QueueObjectID>?<fieldname>&<fieldname>&. ..
GET <root URI>/cdmi objectid/<QueueObjectID>?value=<range>&...

GET <root URI>/cdmi objectid/<QueueObjectID>?metadata=<prefix>&...

GET <root URI>/cdmi objectid/<QueueObjectID>?values=<count>

Where:

<root URI> is the path to the CDMI cloud.
<ContainerName> is zero or more intermediate containers.
<QueueName> is the name of the queue object to be read from.
<fieldname> is the name of a field.

<range> is a byte range of the queue object value to be returned in the value field. If a byte range is requested,
the range returned shall be from the oldest queue object value.

<prefix> is a matching prefix that returns all metadata items that start with the prefix value.

<count> is the number of values to be retrieved from the queue object. If more queue object entries are requested
to be retrieved than exist in the queue object, the count is processed as if it is equal to the number of entries in
the queue object.

<QueueObjectID> is the ID of the queue object to be read from.

Reading a queue object shall, by default, return the complete value of the oldest item in the queue, unless the queue-
Values range is empty.

11.4.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 106.

Table 106: Capabilities - Read a CDMI queue object using CDMI

Capability Location Description

cdmi read metadata Queue object Ability to read the metadata of an existing queue
object

cdmi read value Queue object Ability to read the value of an existing queue
object

cdmi multipart mime Queue object Ability to read a queue object using multi-part
MIME

cdmi_object access by ID System wide Ability to access the object by ID

capability

© SNIA 2020 SNIA Technical Position 170

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

Cloud Data Management Interface 2.0.0

11.4.3 Request headers

The HTTP request headers for reading a CDMI queue object using CDMI are shown in Table 107

Table 107: Request headers - Read a queue object using CDMI

Header Type Description Requirement
Accept Header “application/cdmi-queue”, “multipart/mixed”, ora Optional
string consistent value as defined in 5.5.2

If ‘multipart/mixed”, the body shall consist of one or more
MIME parts, where the first part shall contain a body of
content-type “application/cdmi-queue”, and the second
and subsequent parts shall each contain the corresponding
queue value.

11.4.4 Request message body

A request body shall not be provided.

11.4.5 Response status

The HTTP response headers for reading a CDMI queue object using CDMI are shown in Table 108.

Table 108: Response headers - Read a queue object using CDMI

Header Type Description Requirement

Content-Type Header “application/cdmi-queue” or “‘multipart/mixed” Mandatory
string

Location Header The server shall respond with an absolute URI to which the Conditional
string reference redirects if the object is a reference.

11.4.6 Response message body

The response message body fields for reading a CDMI queue object using CDMI are shown in Table 109

Table 109: Response message body - Read a queue object using CDMI

returned.

» For objects not in a container (objects that are only
accessible by ID), the “objectName” field does not
exist and shall not be returned.

Field Name Type Description Requirement

objectType JSON “‘application/cdmi-queue” Mandatory
string

objectID JSON Object ID of the object Mandatory
string

objectName JSON Name of the object Conditional
string » For objects in a container, the objectName field shall be

continues on next page

© SNIA 2020

SNIA Technical Position

171

Cloud Data Management Interface 2.0.0

Table 109 — continued from previous page

Field Name

Type

Description

Requirement

parentURI

JSON
string

URI for the parent object
» For objects in a container, the parentURI field shall be
returned.
» For objects not in a container (objects that are only
accessible by ID), the “parentURI” field does not exist
and shall not be returned.

Appending the “objectName” to the “parentURI” shall
always produce a valid URI for the object.

Conditional

parentID

JSON
string

Object ID of the parent container object
* For objects in a container, the “parentID” field shall
be returned.
» For objects not in a container (objects that are only
accessible by ID), the “parentID” field does not exist
and shall not be returned.

Conditional

domainURI

JSON
string

URI of the owning domain

Mandatory

capabilitiesURI

JSON
string

URI to the capabilities for the object

Mandatory

completionStatus

JSON
string

A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully created
or updated or if an error occurred.

The value shall be the string “Processing”, the string
“‘Complete”, or an error string starting with the value “Error”.

Mandatory

percentComplete

JSON
string

A string indicating the percentage of completion if the object is
still in the process of bewing created or updated by another
operation.

* When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from 0 through 100.

* When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

* When the value of completionStatus is “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

Optional

metadata

JSON
object

Metadata for the queue object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system.

See clause 16 for a further description of metadata.

Mandatory

queueValues

JSON
string

The range of designators for enqueued values. Every
enqueued value shall be assigned a unique,
monotonically-incrementing positive integer designator,
starting from 0. If no values are enqueued, an empty string
shall be returned. If values are enqueued, the lowest
designator, followed by a hyphen (“-*), followed by the
highest designator shall be returned.
* This field shall only be provided when
completionStatus is “Complete” and when one or
more values are enqueued.

Mandatory

continues on next page

© SNIA 2020

SNIA Technical Position

172

2598
2599

Cloud Data Management Interface 2.0.0

Table 109 — continued from previous page

encoding, the corresponding value field shall contain a
UTF-8 string using JSON escaping rules described
in RFC 4627 [5].

* Ifthe valuetransferencoding field indicates base
64 encoding, the corresponding value field shall contain
a base 64-encoded string as described in RFC RFC
4648 [19].

* Ifthe valuetransferencoding field indicates JSON
encoding, the corresponding value field shall contain a
JSON object.

» The value field shall not be provided when using
multi-part MIME.

» The value field shall only be provided when the
completionStatus field contains “Complete”.

Field Name Type Description Requirement
mimetype JSON MIME types for each queue object value * The MIME types of | Optional
array of | the values are returned, each corresponding to the value in
JSON the same position in the JSSON array. * This field shall only be
strings provided when completionStatus is “Complete” and
when one or more values are enqueued.
valuerange JSON The range of bytes of the queue object values to be returned Optional
array of | in the value field
JSON » The value ranges of the values are returned, each
strings corresponding to the value in the same position in the
JSON array.
« If a specific value range has been requested, the entry
in the valuerange field shall correspond to the bytes
requested. If the request extends beyond the end of
the value, the valuerange field shall indicate the smaller
byte range returned.
* This field shall only be provided when
completionStatus is “Complete” and when one or
more values are enqueued.
valuetransfer JSON The value transfer encoding used for each queue object Optional
— encoding array of | value. Two value transfer encodings are defined:
JSON » “ut £-8” indicates that the queue object value contains
strings a valid UTF-8 string, and it shall be transported as a
UTF-8 string in the value field.
* “base64” indicates that the queue object value may
contain arbitrary binary sequences, and it shall be
transported as a base 64-encoded string in the value
field.
* “Json” indicates that the queue object value contains a
valid JSON object, and the value field shall contain a
JSON object.
The value transfer encodings are returned, each
corresponding to the value in the same position in the JSON
array.
+ This field shall only be provided when
completionStatus is “Complete” and when one or
more values are enqueued.
value JSON The oldest enqueued queue object values Conditional
array of » The values in the JSON array are returned in order
JSON from oldest to newest.
strings * Ifthe valuetransferencoding field indicates UTF-8

If individual fields are specified in the GET request, only these fields are returned in the result body. Optional fields that
are requested but do not exist are omitted from the result body.

© SNIA 2020

SNIA Technical Position

173

2600

2601

2602

2603

2604

2605

2606

Cloud Data Management Interface 2.0.0

11.4.7 Response status

The HTTP status codes that occur when reading a queue object using CDMI are described in Table 110.

Table 110: HTTP status codes - Read a queue object using CDMI

HTTP Status Description
200 OK The queue object content was returned in the response.
302 Found The resource is a reference to another resource.

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization to perform this request.

404 Not Found

The resource was not found at the specified URI.

406 Not Acceptable

The server is unable to provide the object in the content type specified in the
Accept header.

11.4.8 Examples

EXAMPLE 1: GET to the queue object URI to read all fields of the queue object:

<-- HTTP/1.1 200 OK

--> GET /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-queue

<-- Content-Type: application/cdmi-queue

<__

<--

<-- "objectType": "application/cdmi-queue",

<-- "objectID": "00007E7F00104BE66AB53A9572F9F51E",
<-- "objectName": "MyQueue",

<-- "parentURI": "/MyContainer/",

<-- "parentID" : "00007ED900104F67307652BAC9A37C93",
<-= "domainURI": "/cdmi domains/MyDomain/",

<-- "capabilitiesURI": "/cdmi capabilities/queue/",
<-- "completionStatus": "Complete",

<-- "metadata": {},

<-= "queueValues": "1-1",

<-- "mimetype": [

<-- "text/plain"

<-- 1,

<== "valuerange": [

<-- "0-19"

<-- 1,

<-- "valuetransferencoding": [

<-- "utf-8"

<-- 1,

<== "value": [

<-= "First Enqueued Value"

<-- 1

<-- 1}

EXAMPLE 2: GET to the queue object URI to read the value and queue items of the queue object:

<-- HTTP/1.1 200 OK

<--
<=

<-- "queueValues"
<-- "value" : [

--> GET /cdmi/2.0.0/MyContainer/MyQueue?valuesqueueValues HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-queue

<-- Content-Type: application/cdmi-queue

nioqm,

(continues on next page)

© SNIA 2020

SNIA Technical Position

174

2607

2608

2609

Cloud Data Management Interface 2.0.0

(continued from previous page)

<-- "First Enqueued Value"

EXAMPLE 3: GET to the queue object URI to read the first five bytes of the value of the queue object:

--> GET /cdmi/2.0.0/MyContainer/MyQueue?value:0-4 HTTP/1.1
-—-> Host: cloud.example.com
--> Accept: application/cdmi-queue

<-- HTTP/1.1 200 OK
<-- Content-Type: application/cdmi-queue

<--{

<-- "value" : [
<-- "First"
<--]

EXAMPLE 4: GET to the queue object URI to read two values of the queue object:

--> GET /cdmi/2.0.0/MyContainer/MyQueue?mimetype&valuerange&values=2 HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-queue

<-- HTTP/1.1 200 OK
<-- Content-Type: application/cdmi-queue

<__

<= {

<-- "mimetype" : [

<-- "text/plain",

<-- "text/plain"

<-- 1,

<-= "valuerange" : [

<-- "0-19",

<__ "O_20"

<-- 1,

<== "value" : [

<-- "First Enqueued Value",
<-- "Second Enqueued Value"
<-=]

<--}

EXAMPLE 5: GET to the queue object URI to read the queue object using multi-part MIME:

--> GET /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
--> Host: cloud.example.com
--> Accept: multipart/mixed

<-- HTTP/1.1 200 OK
<-- Content-Type: multipart/mixed; boundary=gc0p4JqOM2Yt08j34cOp

<__

<-- --gc0p4JgOM2Yt08334cOp

<-- Content-Type: application/cdmi-queue

<__

<--{

<-= "objectType": "application/cdmi-queue",

<== "objectID": "00007ED9001035E14BD1BA70C2EES8FC",
<-- "objectName": "MyQueue",

<-- "parentURI": "/MyContainer/",

<-= "parentID" : " 00007ED90010C2414303B5C6D4F83170",
<-- "domainURI": "/cdmi domains/MyDomain/",

<-- "capabilitiesURI": "/cdmi capabilities/queue/",
<-- "completionStatus": "Complete",

<-- "metadata": {

<-- .

<-- }l

<-= "queueValues": "1-2",

(confinues on next page)

© SNIA 2020 SNIA Technical Position

175

Cloud Data Management Interface 2.0.0

(continued from previous page)

<-- "mimetype": [

<-- "application/octet-stream",
<-- "application/octet-stream"
<--] ’

<-- "valuerange": [

<-- "0-19",

<-- "0-36"

<--= 1,

<-- "valuetransferencoding": [
<-- "base64",

<-= "base64"

<-=]

<=-}

<__

<-- --gc0p4Jq0OM2Yt08334cOp

<-- Content-Type: application/octet-stream
<-- Content-Transfer-Encoding: binary

<—
<-- <20 bytes of binary data>
<—

<-- --gc0p4Jg0M2Yt08334cOp

<-- Content-Type: application/octet-stream
<-- Content-Transfer-Encoding: binary

<—
<-- <37 bytes of binary data>
<——

<-- --gc0p4JgOM2Yt08334cOp--

© SNIA 2020 SNIA Technical Position 176

Cloud Data Management Interface 2.0.0

- 11.5 Update a queue object using CDMI

w1 11.5.1 Synopsis

12 To update some or all fields in an existing queue object (excluding the enqueueing of values), the following request shall
%13 be performed:

2614 * PATCH <root URI>/<ContainerName>/<QueueName>

2615 ¢ PATCH <root URI>/<ContainerName>/<QueueName>?metadata=<metadataname>&. ..
2616 * PATCH <root URI>/cdmi objectid/<QueueObjectID>

2617 * PATCH <root URI>/cdmi objectid/<QueueObjectID>?metadata=<metadataname>&. ..
18 Where:

2619 * <root URI> is the path to the CDMI cloud.

2620 * <ContainerName> is zero or more intermediate containers.

2621 * <QueueName> is the name of the queue object to be updated.

2622 * <QueueObjectID> is the ID of the queue object to be updated.

w2z 11.5.2 Capabllltles
x2e Capabilities that indicate which operations are supported are shown in Table 111.

Table 111: Capabilities - Update a queue object using CDMI

Capability Location Description
cdmi modify metadata Queue object Ability to modify the metadata of an existing
queue object
cdmi object access by ID System wide Ability to access the object by ID
capability

x5 11.5.3 Request headers

226 1he HTTP request headers for updating a CDMI queue object using CDMI are shown in Table 112

2627

Table 112: Request headers - Update a queue object Using CDMI

2628

Header Type Description Requirement
Content-Type Header “application/cdmi-queue” Mandatory
string

w0 11.5.4 Request message body

w0 The request message body fields for wupdating a queue object using CDMI are shown in
2631 tbl cdmi queue object update request message body.

Table 113: Request message body - Update a queue object Using CDMI

Field Name Type Description Requirement
metadata JSON Metadata for the queue object. If present, the new metadata Optional
object specified replaces the existing object metadata. If individual

metadata items are specified in the URI, only those items are
replaced; other items are preserved. See clause 16 for a
further description of metadata.

continues on next page

© SNIA 2020 SNIA Technical Position 177

Cloud Data Management Interface 2.0.0

Table 113 — continued from previous page

Field Name

Type

Description

Requirement

domainURI

JSON
string

URI of the owning domain
« If different from the parent domain, the user shall have
the “cross-domain” privilege (see
cdmi_member privileges in Table 80).
« If not specified, the existing domain shall be preserved.

Optional

deserialize

JSON
string

URI of a CDMI data object with a value that contains a queue
object serialized as specified in clause 15. The serialized
queue object shall be deserialized to update the existing
queue object.

« If the destination queue object URI and the source
serialized queue object URI both do not specify
individual fields, the destination queue object shall be
replaced with the contents of the serialized source
queue object, with the exception that the destination
queue values shall be preserved. See 11.7 to
deserailize enqueued items.

« If the destination queue object URI or the source
serialized queue object URI specifies individual fields,
only the fields specified shall be used to update the
destination queue object. If specified fields are not
present in the source, these fields shall be ignored. If
the value field is specified, it shall be ignored.

« If the destination queue object URI and the source
serialized queue object URI both specify fields, an
HTTP status code of 400 Bad Request shall be
returned to the client.

If there are insufficient permissions to read the serialized
queue object at the source URI or update the queue object at
the destination URI, or if the read operation fails, the update
shall return an HTTP status code of 400 Bad Request, and
the destination queue object shall not be updated.

Optional®

Copy

JSON
string

URI of a source CDMI queue object that shall be copied into
the existing destination queue object.

« If the destination queue object URI and the copy source
queue object URI both do not specify individual fields,
the destination queue object shall be replaced with the
source queue object, with the exception that the
destination queue values shall be preserved. See 11.7
to copy enqueued items.

« If the destination queue object URI or the copy source
queue object URI specifies individual fields, only the
fields specified shall be used to update the destination
queue object. If specified fields are not present in the
source, these fields shall be ignored. If the value field is
specified, it shall be ignored.

If the destination queue object URI and the copy source
queue object URI both specify fields, an HTTP status
code of 400 Bad Request shall be returned to the
client.

If there are insufficient permissions to read the queue object
at the source URI or update the queue object at the
destination URI, or if the read operation fails, the update shall
return an HTTP status code of 400 Bad Request, and the
destination queue object shall not be updated.

Optional?

continues on next page

© SNIA 2020

SNIA Technical Position

178

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

Cloud Data Management Interface 2.0.0

Table 113 — continued from previous page

4648 [19], that shall be deserialized to update the existing
queue object.

The object ID of the serialized queue object shall match the
object ID of the destination queue object. Otherwise, the
server shall return an HTTP status code of 400 Bad
Request.

« If the destination queue object URI does not specify
individual fields, the destination queue object shall be
replaced with the contents of the serialized source
queue object, with the exception that the destination
queue values shall be preserved. See 11.7 to
deserailize enqueued items.

« If the destination queue object URI specifies individual
fields, only the fields specified shall be used to update
the destination queue object. If specified fields are not
present in the source, these fields shall be ignored. If
the value field is specified, it shall be ignored.

If there are insufficient permissions update the queue object
at the destination URI, the update shall return an HTTP status
code of 400 Bad Request, and the destination queue
object shall not be updated.

Field Name Type Description Requirement
deserializevalue| JSON A queue object serialized as specified in clause 15 and Optional®
string encoded using base 64 encoding rules described in RFC

11.5.5 Response header

The HTTP response header for updating a CDMI queue object using CDMI is shown in Table 114

Table 114: Response header - Update a queue object Using CDMI
Header Type Description Requirement
Location Header The server shall respond with an absolute URI to which the Conditional
string reference redirects if the object is a reference.

11.5.6 Response message body

A response body can be provided as per RFC 2616 [23].

11.5.7 Response status

Table 115 describes the HTTP status codes that occur when updating a queue object using CDMI.

Table 115: HTTP status codes - Update a queue object using CDMI
HTTP Status Description
204 No Content The data object content was returned in the response.
302 Found The resource is a reference to another resource.

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization to perform this request.

404 Not Found

The resource was not found at the specified URI.

409 Conflict

The operation conflicts with a non-CDMI access protocol lock or has caused a

state transition error on the server.

2 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored.

© SNIA 2020

SNIA Technical Position

179

Cloud Data Management Interface 2.0.0

w2 11.5.8 Examples

xi3 EXAMPLE 1: PATCH to the queue object URI to set new metadata:

--> PATCH /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-queue

__> {
-——> "metadata" : {

- }
-=> }

<-- HTTP/1.1 204 No Content

x4 EXAMPLE 2: PATCH to the queue object URI to move six queue values from another queue:

--> PATCH /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-queue

-—> "move": "/MyContainer/SourceQueue?value:10-15"
- }

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 180

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

Cloud Data Management Interface 2.0.0

11.6 Delete a queue object using CDMI

11.6.1 Synopsis

To delete an existing queue object, along with all enqueued values, the following request shall be performed:

¢ DELETE <root URI>/<ContainerName>/<QueueName>

* DELETE <root URI>/cdmi objectid/<QueueObjectID>
Where:

* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate containers.

* <QueueName> is the name of the queue object to be deleted.

* <QueueObjectID> is the ID of the queue object to be deleted.

11.6.2 Capability
Capabilities that indicate which operations are supported are shown in Table 116.

Table 116: Capabilities - Delete a queue object using CDMI

Capability Location Description

cdmi_ delete queue Queue object Ability to delete an existing queue object

cdmi_object access by ID System wide Ability to access the object by ID
capability

11.6.3 Request header

Request headers can be provided as per RFC 2616 [23].

11.6.4 Request message body

A request body can be provided as per RFC 2616 [23].

11.6.5 Response headers

Response headers can be provided as per RFC 2616 [23].

11.6.6 Response message body

A response body can be provided as per RFC 2616 [23].

© SNIA 2020 SNIA Technical Position

181

2665

2666

2667

2668

2669

2670

Cloud Data Management Interface 2.0.0

11.6.7 Response status

Table 117 describes the HTTP status codes that occur when deleting a queue object using CDMI.

Table 117:

HTTP status codes - Delete a queue object Using CDMI

HTTP Status

Description

204 No Content

The queue object was successfully deleted.

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization to perform this request.

404 Not Found

The resource was not found at the specified URI.

409 Conflict

The operation conflicts with a non-CDMI access protocol lock or has caused a
state transition error on the server.

11.6.8 Example

EXAMPLE 1: DELETE to the queue object URI:

--> DELETE /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 204 No Content

© SNIA 2020

SNIA Technical Position 182

2671

2672

2673

2674

2675

2676

2677

2678
2679

2680

2681

2682

2683

2684

2685

2686

2687

Cloud Data Management Interface 2.0.0

11.7 Enqueue a new queue object value using CDMI

11.7.1 Synopsis

To enqueue one or more values into an existing queue object, the following request shall be performed:

¢ POST <root URI>/<ContainerName>/<QueueName>

e POST <root URI>/cdmi_objectid/<QueueObjectID>

Where:

* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., “/”) between

each pair of container names.

* <QueueName> is the name of the queue object to be enqueued into.

* <QueueObjectID> is the ID of the queue object to be enqueued into.

11.7.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 118.

Table 118: Capabilities - Enqueue a new queue object value using CDMI

Capability Location Description
cdmi modify value Queue object Ability to enqueue a value into an existing queue
object
cdmi multipart mime System wide Ability to modify a queue object using multi-part
capability MIME
cdmi_object access by ID System wide Ability to access the object by ID
capability

11.7.3 Request headers

The HTTP request headers for enqueuing a new CDMI queue object value using CDMI are shown in Table 119

Table 119: Request headers - Enqueue a new queue object value using

CDMI
Header Type Description Requirement
Content-Type Header “application/cdmi-queue” or ‘multipart/mixed” Mandatory
string

If ‘multipart/mixed”, the first part shall contain a body of
content-type “application/cdmi-queue”, and the
subsequent parts shall contain the queue values as described
in 8.4.

© SNIA 2020

SNIA Technical Position 183

Cloud Data Management Interface 2.0.0

«s 11.7.4 Request message body
w8 The request message body fields for enqueuing a new queue object value using CDMI are shown in Table 120.

Table 120: Request message body - Enqueue a new queue object value
using CDMI

Field Name Type Description Requirement

mimetype JSON MIME type(s) of the data value(s) to be enqueued into the Optional

array of | queue object.

JSON « If this field is not included and multi-part MIME is not

strings being used, the value of “text/plain” shall be
assigned as the field value.

« If this field is not included and multi-part MIME is being
used, the value of the “Content-Type” header of the
corresponding MIME part shall be assigned as the field
value.

» The same number of array elements shall be present
as is present in the value field, and the mimetype field
shall be associated with the value in the corresponding
position.

» This mimetype field value shall be converted to lower
case before being stored.

copy JSON URI of a source CDMI data object or queue object from which | Optional®

string the value shall be copied and enqueued.

« If a copy source object URI to a data object is provided,
the value, mimetype, and valuetransferencoding field
values from the source data object are used to enqueue
the new item into the destination queue object.

« If a copy source object URI to a queue object is
provided, the corresponding value, mimetype, and
valuetransferencoding field values of the specified
number of enqueued items in the source queue object
are copied to the destination queue object.

move JSON URI of a source CDMI data object or queue object from which | Optional®

string the value shall be moved and enqueued.

« If a move source object URI to a data object is provided,
the value, mimetype, and valuetransferencoding field
values from the source data object are used to
enqueue the new item into the destination queue
object, and the source data object is atomically deleted.

« If a move source object URI to a queue object is
provided, the corresponding value, mimetype, and
valuetransferencoding field values of the specified
number of enqueued items in the source queue object
are transferred to the destination queue object and
atomically removed from the source queue object.

continues on next page

© SNIA 2020 SNIA Technical Position 184

Cloud Data Management Interface 2.0.0

Table 120 — continued from previous page

Field Name Type Description Requirement
valuetransfer JSON The value transfer encoding used for the queue object value. Optional
— encoding array of | Two value transfer encodings are defined:

JSON « “ut £-8” indicates that the queue object value contains

strings a valid UTF-8 string, and shall be transported as a

UTF-8 string in the value field.

* “base64” indicates that the queue object value may
contain arbitrary binary sequences, and shall be
transported as a base 64 encoded string in the value
field. Setting the contents of the queue object value
field to any value other than a valid base 64 string shall
result in an HTTP status code of 400 Bad Request
being returned to the client.

* “Json” indicates that the queue object value contains a
valid JSON object, and the value field shall contain a
JSON object. Setting the contents of the queue object
value field to any value other than a valid JSOM object
shall result in an HTTP status code of 400 Bad
Request being returned to the client.

« If this field is not included and multi-part MIME is not
being used, the value of “ut £-8” shall be assigned as
the field value.

« If this field is not included and multi-part MIME is being
used, the value of “ut £-8” shall be assigned as the
field value if the “Content-Type” header of the
corresponding MIME part includes the charset
parameter as defined in RFC 2046 of “ut£-8” (e.g.,

“; charset=utf-8"). Otherwise, the value of
“pase64” shall be assigned as the field value. This
field applies only to the encoding of the value when
represented in JSON; the
“Content-Transfer-Encoding” header of the part
specifies the encoding of the value within a multi-part
MIME request, as defined in RFC 2045 [9].

value JSON Data to be enqueued into the queue object. Optional®
array of « If this field is not included and multi-part MIME is being
JSON used, the contents of the MIME parts shall be assigned
strings as the field value.

« If the corresponding valuetransferencoding field
indicates UTF-8 encoding, the value shall be a UTF-8
string escaped using the JSON escaping rules
described in RFC 4627 [5].

« If the corresponding valuetransferencoding field
indicates base 64 encoding, the value shall be first
encoded using the base 64 encoding rules as
described in RFC 4648 [19].

« If the corresponding valuetransferencoding field
indicates JSON encoding, the value shall contain a
JSON object.

3 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 185

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

Cloud Data Management Interface 2.0.0

11.7.5 Response headers

Response headers can be provided as per RFC 2616 [23].

11.7.6 Response message body

A response body can be provided as per RFC 2616 [23].

11.7.7 Response status
Table 121 describes the HTTP status codes that occur when enqueuing a new queue object using CDMI.

Table 121: HTTP status codes - Enqueue a new queue object value Using

CDMI
HTTP Status Description
204 No Content The new queue object values were enqueued.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a
state transition error on the server.

11.7.8 Examples

EXAMPLE 1: POST to the queue object URI a new value:

--> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-queue

-—> {
-—> "mimetype" : [

-——> "text/plain"

-=> 1,

-——> "value" : [

-——> "Value to Enqueue"
——>]

-—> }

<-- HTTP/1.1 204 No Content

EXAMPLE 2: POST to the queue object URI to copy an existing value:

-—> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

-—> "copy" : "/MyContainer/MyDataObject.txt"

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 186

Cloud Data Management Interface 2.0.0

01 EXAMPLE 3: POST to the queue object URI to transfer 20 values from another queue object:

--> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

-—> "move" : "/MyContainer/FirstQueue?values=20"
> }

<-- HTTP/1.1 204 No Content

a2 EXAMPLE 4: POST to the queue object URI two new values:

--> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

-—>
-—> {

-—> "mimetype" : [
-=> "text/plain",
-—> "text/plain"
-=> 1,

-—> "value" : [

-——> "First",

-—> "Second"

—_>]

> }

<-- HTTP/1.1 204 No Content

s EXAMPLE 5: POST to the queue object URI two new values, one with base 64 transfer encoding and one with utf-8
204 transfer encoding:

--> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

-—>

- {

-—> "mimetype": [

-—> "text/plain",

—-=> "text/plain",

-—> "application/json"
—-=>] ’

-——> "valuetransferencoding": [
-—> "utf-8",

-—> "baseod",

-—> "json"

-=> 1,

-——> "value": [

-—> "First",

-—> "U2vVib25k",

- {

-—> "value" : "test"
——> }

—-_> }

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 187

2705

2706

2707

Cloud Data Management Interface 2.0.0

EXAMPLE 6: POST to the queue object URI the binary contents of two new values using multi-part MIME:

--> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08334cOp

-=> —--gcO0p4Jgq0M2Yt08j34cOp
--> Content-Type: application/cdmi-queue

-=> {}

-=> —-gcO0p4Jgq0M2Yt08j34cOp

--> Content-Type: application/octet-stream
--> Content-Transfer-Encoding: binary

--> <20 bytes of binary data>

-=> —-gc0p4Jg0M2Yt08j34cOp

--> Content-Type: application/octet-stream
--> Content-Transfer-Encoding: binary

--> <37 bytes of binary data>

--> --gc0p4Jqg0M2Yt08j34cOp—-

<-- HTTP/1.1 204 No content

EXAMPLE 7: POST to the queue object URI the mime types and binary contents of two new values using multi-part

MIME:

--> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: multipart/mixed; boundary=gcOp4Jq0M2Yt08j34cOp

--> --gcOp4Jq0M2Yt08334cOp
--> Content-Type: application/cdmi-queue

- {

-—> "mimetype" : [

-—> "application/pdf",

-—> "image/Jjpeg"

--> --gcO0p4Jq0M2Yt08334cOp

--> Content-Type: application/octet-stream
--> Content-Transfer-Encoding: binary

--> <20 bytes of binary data>

--> --gcO0p4Jq0M2Yt08334cOp

--> Content-Type: application/octet-stream
--> Content-Transfer-Encoding: binary

--> <37 bytes of binary data>

--> --gc0p4Jg0OM2Yt08j34cOp——

<-- HTTP/1.1 204 No content

© SNIA 2020 SNIA Technical Position

188

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722
2723
2724

2725
2726
2727
2728
2729
2730

2731

2732

2733

2734

2735

2736

Cloud Data Management Interface 2.0.0

11.8 Delete a queue object value using CDMI

11.8.1 Synopsis

To delete one or more of the oldest enqueued values in an existing queue, the following request shall be performed:

DELETE <root URI>/<ContainerName>/<QueueName>?value

DELETE <root URI>/<ContainerName>/<QueueName>?values=<count>
DELETE <root URI>/<ContainerName>/<QueueName>?values=<range>
DELETE <root URI>/cdmi objectid/<QueueObjectID>?value

DELETE <root URI>/cdmi objectid/<QueueObjectID>?values=<count>
DELETE <root URI>/cdmi_ objectid/<QueueObjectID>?values=<range>

Where:

<root URI> is the path to the CDMI cloud.

<ContainerName> is zero or more intermediate containers.
<QueueName> is the name of the queue object to be deleted from.
<QueueObjectID> is the ID of the queue object to be deleted from.

<count> is the number of values, starting from the oldest, to be removed from the queue object. If more queue
object entries are requested to be deleted than exist in the queue object, the count shall be considered equal to
the number of entries in the queue object.

<range> is the lowest to highest numbers as found in the queueValues field that are to be removed from the
queue object. The first range value shall be smaller or equal to the lowest queue value. If the first range value
is smaller than the lowest queue value, the lowest existing queue value shall be used. If the first range value is
larger than the lowest queue value, an HTTP status code of 400 Bad Request shall be returned to the client.
If the second range value is higher than the highest existing queue value, the highest existing queue value shall
be used, which allows for idempotent queue value deletion.

The “?value” suffix at the end of the queue resource URI shall be included to distinguish the deletion of the oldest value
from the deletion of the queue object itself, as described in 11.6 (which deletes all enqueued values).

11.8.2 Capabilities

Capabilities that indicate which operations are supported are shown in Table 122.

Table 122: Capabilities - Delete a queue object value using CDMI

Capability Location Description
cdmi modify value Queue object Ability to delete a value from an existing queue
object
cdmi object access by ID System wide Ability to access the object by ID
capability

11.8.3 Request header

Request headers can be provided as per RFC 2616 [23].

© SNIA 2020 SNIA Technical Position 189

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

Cloud Data Management Interface 2.0.0

11.8.4 Request message body

A request body can be provided as per RFC 2616 [23].

11.8.5 Response headers

Response headers can be provided as per RFC 2616 [23].

11.8.6 Response message body

A response body can be provided as per RFC 2616 [23].

11.8.7 Response status

Table 123 describes the HTTP status codes that occur when deleting a queue object value using CDMI.

Table 123: HTTP status codes - Delete a queue object value using CDMI

HTTP Status

Description

204 No Content

The queue object value was successfully deleted.

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization to perform this request.

404 Not Found

The resource was not found at the specified URI.

409 Conflict

The operation conflicts with a non-CDMI access protocol lock or has caused a
state transition error on the server.

11.8.8 Examples

EXAMPLE 1: DELETE to the queue object URI value to delete the oldest enqueued value:

--> DELETE /cdmi/2.0.0/MyContainer/MyQueue?value HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 204 No Content

EXAMPLE 2: DELETE to the queue object URI value to remove the ten oldest values:

--> DELETE /cdmi/2.0.0/MyContainer/MyQueue?values=10 HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 204 No Content

EXAMPLE 3: DELETE to the queue object URI value to remove queue values 10 through 19:

--> DELETE /cdmi/2.0.0/MyContainer/MyQueue?values=10-19 HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 204 No Content

© SNIA 2020

SNIA Technical Position 190

2751

2752

2753

2754

2755
2756

2757

2758
2759

2760

2761

Cloud Data Management Interface 2.0.0

Clause 12

Capability object resource operations using
CDMI

12.1 Overview

Capability objects indicate what specific functionality and operations are supported by a given CDMI server, and allow
CDMI clients to discover what subset of this International Standard is implemented.

All CDMI servers shall support capabilities and the ability for CDMI clients to read capabilities.

Each CDMI capability object is represented as a JSON object, containing one or more “fields”. For example, the
“capabilities” field contains specific capability items.

EXAMPLE 1: CDMI capability object

{
"objectType": "application/cdmi-capability",
"objectID": "00007E7F00104BE66AB53A9572F9F51E",
"objectName": "cdmi capabilities/",
"parentURI": "/",
"parentID": "00007E7F0010128E42D87EE34F5A6560",
"capabilities™: {
"cdmi domains": "true",
"cdmi_ export nfs": "true",
"cdmi export iscsi": "true",
"cdmi queues": "true",
"cdmi notification": "true",
"cdmi query": "true",
"cdmi metadata maxsize": "4096",
"cdmi metadata maxitems": "1024"
}I
"childrenrange": "0-3",
"children": [
"domain/",
"container/",
"dataobject/",
"queue/"

]

}

The meaning, use, and permitted values of each field is described in 12.3.

© SNIA 2020 SNIA Technical Position 191

2762

2763

2764

2765

2766
2767

2768

2769

2770
2771
2772
2773

2774
2775

2776
2777

2778

2779

2780

2781

2782

2783

2784

2785
2786

2787

2788

2789
2790

2791
2792
2793

2794

2795
2796
2797

2798

2799

Cloud Data Management Interface 2.0.0

12.2 Capability object details

12.2.1 Capability object addressing

Capability objects are addressed in CDMI in two ways:
* by name (e.g. https://cloud.example.com/cdmi/2.0.0/cdmi_capabilities/);and

* by ID (e.g. https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/
< 00007E7F00104BE66AB53A0572F9F51E/).

Every capability object has a single, globally-unique object ID that remains constant for the life of the object. Each
capability object may also have one or more URI addresses that allow the capability object to be accessed.

When a capability object is addressed via more than one unique URIs, all operations may be performed through
any of these URIs. For example, a capability object may be accessible via multiple virtual hosting paths,
where https://cloud.example.com/cdmi/2.0.0/users/snia/cdmi/cdmi_capabilities/ is also acces-
sible through https://snia.example.com/cdmi/2.0.0/cdmi_cabilities/.

Following the URI conventions for hierarchical paths, capability URIs shall consist of one or more capability names that
are separated by forward slashes (“/”) and that end with a forward slash (“/”).

If a request is performed against an existing capability resource and the trailing slash at the end of the URI is omitted,
the server shall respond with an HTTP status code of 301 Moved Permanently. In addition, a Location header
containing the URI with the trailing slash added shall be returned.

Capabilities may also be nested.
EXAMPLE 2: The following URI represents a nested capability:
https://cloud.example.com/cdmi/2.0.0/cdmi capabilities/container/

A nested capability has a parent capability object, and shall be included in the children field of the parent capability
object.

12.2.2 Capability object fields

Every CDMI object (excluding capability objects) includes a server-generated “capabilitiesURI” field that contains
the URI of the capabilities object that describes which operations are permitted for that CDMI object.

Fig. 8 (shown on the next page) shows the hierarchy of capabilities and shows how the capabilitiesURI links data objects,
container objects, queue objects and domain objects into the capabilities tree.

System-wide capabilities are described by the root capabilities object, which is accessible at “<root URI>/
cdmi capabilities/”.

Capabilities cannot be altered by clients, but may be changed by the CDMI server to reflect configuration changes or
operational changes. For example, if a CDMI server is upgraded or reconfigured, additional capabilities may become
present, or existing capabilties may no longer be present. In practice, capabilities rarely change, and a client can assume
that they shall remain constant for the duration of a client-server HTTP/HTTPS session.

Cloud clients should use capabilities to discover what operations are supported. If an operation is attempted on a CDMI
object that does not have a corresponding capability, an HTTP status code of 400 Bad Request shall be returned to
the client.

The capabilities defined as part of this International Standard are described starting in 12.2.7. Vendor-defined capabili-

ties not specified in this International Standard shall not start with “cdmi_”.

© SNIA 2020 SNIA Technical Position 192

2800

2801

2802

2803

2804

2805
2806

2807

2808

2809

Cloud Data Management Interface 2.0.0

capabilitiesURI

“/” Root URI | “cdmi_cababilities/”

capabilitiesURI “domain/*

mydomain/

capabilitiesURI

mycontainer/ “container/*

capabilitiesURI

mygoldcontainer/ “gold_container/

capabilitiesURI

mydataobject

“dataobject/*

k “immutable/*

“‘queue/*

capabilitiesURI

myimmutabledataobject

capabilitiesURI
myqueue

Fig. 8: Hierarchy of capabilities

12.2.3 Capability object metadata

Capability objects do not have metadata.

12.2.4 Capability object access control

Capability objects are not subject to CDMI ACLs. Any authenticated CDMI client shall be capable of reading all Capability
objects’ .

Capabilities may differ from the operations permitted by an Access Control List (ACL) (see 17.1) associated with a given
object. For example, a read-only cloud may not permit write access to a container or object, despite the presence of an
ACL allowing write access.

12.2.5 Queue object consistency

Capabilitiy objects are read-only.

' A CDMI Server may filter the visibility of capability objects and/or capability items for security purposes, for example, to prevent the client
discovery of the names and characteristics of classification levels above the client’'s maximum classification level. Such filtering is out of scope
of this International Standard.

© SNIA 2020 SNIA Technical Position 193

2810

2811
2812
2813
2814

Cloud Data Management Interface 2.0.0

12.2.6 Capability object representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support UTF-8 JSON
representation. The request and response body JSON fields may be specified or returned in any order, with the exception
that, if present, for capability objects, the “childrenrange” and “children fields” shall appear last and in that

order.

© SNIA 2020

SNIA Technical Position

194

2815

2816
2817

Cloud Data Management Interface 2.0.0

12.2.7 Cloud storage system-wide capabilities

tbl system wide capabilities defines the system-wide capabilities in a cloud storage system. These capabili-
ties, which are found in the capabilities object, are referred to by the root URI (root capabilities).

Table 124: System-wide capabilities

Capability name

Type

Definition

cdmi domains

JSON string

If present and “t rue”, the CDMI server supports
domains.

If not present, the domainURI field shall not be present
in response bodies and the “cdmi_domains” URI shall
not be present.

cdmi export smb

JSON string

If present and “t rue”, the CDMI server supports SMB
exports.

cdmi dataobjects

JSON string

If present and “true”, the CDMI server supports data
objects.

cdmi_export iscsi

JSON string

If present and “t rue”, the CDMI server supports iSCSI
exports.

cdmi_export nfs

JSON string

If present and “true”, the CDMI server supports NFS
protocol exports.

cdmi export occi iscsi

JSON string

If present and “true”, the CDMI server supports
OCCI/iSCSI exports.

cdmi_ export webdav

JSON string

If present and “true”, the CDMI server supports
WebDAV exports.

cdmi metadata maxitems

JSON string

If present, this capability indicates the maximum number
of user-defined metadata items supported per object.

If not present, there is no limit placed on the number of
user-defined metadata items.

cdmi metadata maxsize

JSON string

If present, this capability indicates the maximum size, in
bytes, of each user-defined metadata item supported
per object.

If not present, there is no limit placed on the size of
user-defined metadata items.

cdmi metadata maxtotalsize

JSON string

If present, this capability indicates the maximum size, in
bytes, of user-defined metadata supported by the CDMI
server.

If not present, there is no limit placed on the size of
user-defined metadata.

cdmi notification

JSON string

If present and “true”, the CDMI server supports
notification queues.

cdmi logging

JSON string

If present and “t rue”, the CDMI server supports
logging queues.

cdmi query

JSON string

If present and “t rue”, the CDMI server supports query
queues.

cdmi query regex

JSON string

If present and “t rue”, the CDMI server supports query
with regular expressions.

cdmi query contains

JSON string

If present and “t rue”, the CDMI server supports query
with “contains” expressions.

cdmi query tags

JSON string

If present and “t rue”, the CDMI server supports query
with tag-matching expressions.

cdmi query value

JSON string

If present and “t rue”, the CDMI server supports query
of value fields.

cdmi queues

JSON string

If present and “t rue”, the CDMI server supports queue
objects.

cdmi security access control

JSON string

If present and “true”, the CDMI server supports ACLs.
See 12.2.9 for additional information.

continues on next page

© SNIA 2020

SNIA Technical Position

195

Cloud Data Management Interface 2.0.0

Table 124 — continued from previous page

Capability name

Type

Definition

cdmi security data integrity

JSON string

If present and “true”, the CDMI server supports data
integrity/authenticity. See 12.2.9 for additional
information.

cdmi security encryption

JSON string

If present and “true”, the CDMI server supports data
at-rest encryption. See 12.2.9 for additional information.

cdmi security immutability

JSON string

If present and “true”, the CDMI server supports data
immutability/retentions. See 12.2.9 for additional
information.

cdmi security sanitization

JSON string

If present and “true”, the CDMI server supports
data/media sanitization. See 12.2.9 for additional
information.

cdmi serialization json

JSON string

If present and “true”, the CDMI server supports JSON
as a serialization format.

cdmi snapshots

JSON string

If present and “true”, the CDMI server supports
snapshots.

cdmi references

JSON string

If present and “true”, the CDMI server supports
references.

cdmi object move from local

JSON string

If present and “true”, the CDMI server supports
moving CDMI objects from URIs within the same
storage system.

cdmi object move from remote

JSON string

If present and “true”, the CDMI server supports
moving CDMI objects from URIs within other CDMI
storage systems.

cdmi object move from ID

JSON string

If present and “true”, the CDMI server supports
moving CDMI objects without a path from a
/cdmi_objectid/ URI within the same storage
system. This effectively adds a path, allowing the object
to be accessed by ID and by path.

cdmi object move to ID

JSON string

If present and “true”, the CDMI server supports
moving CDMI objects with a path to a
/cdmi_objectid/ URI within the same storage
system. This effectively removes the path, leaving the
object only accessible by ID.

cdmi object copy from local

JSON string

If present and “true”, the CDMI server supports
copying CDMI objects from URIs within the same
storage system.

cdmi object copy from remote

JSON string

If present and “true”, the CDMI server supports
copying CDMI objects from URIs within other CDMI
storage systems.

cdmi object access by ID

JSON string

If present and “true”, the CDMI server supports
accessing, updating, and deleting objects through
/cdmi_objectid/.

cdmi post dataobject by ID

JSON string

If present and “t rue”, the CDMI server supports adding
a new data object by ID via POST to
“/cdmi_objectid/”.

cdmi post queue by ID

JSON string

If present and “true”, the CDMI server supports adding
a new queue object by ID via POST to
“/cdmi_objectid/”.

cdmi deserialize dataobject
— by ID

JSON string

If present and “true”, the CDMI server supports
deserializating serialized data objects when creating a
new data object by ID via POST to
“/cdmi_objectid/”.

cdmi deserialize queue by ID

JSON string

If present and “true”, the CDMI server supports
deserializating serialized queue objects when creating a
new queue object by ID via POST to
“/cdmi_objectid/”.

continues on next page

© SNIA 2020

SNIA Technical Position 196

Cloud Data Management Interface 2.0.0

Table 124 — continued from previous page

Capability name Type Definition

cdmi_ serialize dataobject JSON string If present and “true”, the CDMI server supports

— to_ID serializing data objects when creating a new data object
by ID via POST to “/cdmi_objectid/”.

cdmi serialize domain to ID JSON string If present and “t rue”, the CDMI server supports
serializing domain objects when creating a new data
object by ID via POST to “/cdmi_objectid/”.

cdmi serialize container JSON string If present and “t rue”, the CDMI server supports

— to_ID serializing container objects when creating a new data
object by ID via POST to “/cdmi_objectid/”.

cdmi_serialize queue to ID JSON string If present and “true”, the CDMI server supports
serializing queue objects when creating a new data
object by ID via POST to “/cdmi_objectid/”.

cdmi copy dataobject by ID JSON string If present and “true”, the CDMI server supports
copying an existing data object when creating a new
data object by ID via POST to “/cdmi_objectid/".

cdmi_copy queue by ID JSON string If present and “true”, the CDMI server supports
copying an existing queue object when creating a new
queue object by ID via POST to “/cdmi_objectid/”.

cdmi_ create reference by ID JSON string If present and “t rue”, the CDMI server supports
creating a new reference via POST to
“/cdmi_objectid/”.

cdmi_copy dataobject JSON string If present and “true”, the CDMI server supports the

— from queue ability to copy to a data object from a queue object.

cdmi multipart mime JSON string If present and “true”, the CDMI server supports storing
and retrieving the value of data and queue objects
using multi-part MIME.

cdmi create value range JSON string If present and “t rue”, the CDMI server supports a new

— by ID data object’s value to be created with byte ranges
through “/cdmi_objectid/”.

cdmi_dac JSON string If present and “true”, the CDMI server supports

delegated access control.

cdmi dac methods

JSON array of
JSON strings

If present, this capability contains a list of URI schemes
supported for DAC URIs, as specified in the IANA URI
Schemes registry.
The following schemes shall be supported:

* “https” — mandatory for all DAC implementations
The following schemes may be supported:

* “http” — optional for DAC implementations

* “mailto” — optional for DAC implementations

cdmi enc_cms

JSON string

If present and “true”, the CDMI server supports
operations against the contents of CMS encrypted
objects.

cdmi enc jwe

JSON string

If present and “true”, the CDMI server supports
operations against the contents of JWE encrypted
objects.

cdmi_enc_inplace

JSON string

If present and “true”, the CDMI server supports
operations to encrypt and decrypt objects in place,
including updates.

cdmi enc access

JSON string

If present and “true”, the CDMI server supports
operations to decrypt objects on access.

cdmi cms encryption

JSON array of
JSON strings

If present, this capability lists which CMS
ContentEncryptionAlgorithmIdentifier
encryption algorithms are supported for operations
against the contents of CMS encrypted objects.

continues on next page

© SNIA 2020

SNIA Technical Position 197

Cloud Data Management Interface 2.0.0

Table 124 — continued from previous page
Capability name Type Definition
cdmi cms_digest JSON array of | If present, this capability lists which CMS
JSON strings MessageAuthenticationCodeAlgorithm digest

algorithms are supported for operations against the
contents of CMS encrypted objects.

cdmi_cms_signature JSON array of | If present, this capability lists which CMS

JSON strings SignatureAlgorithmIdentifier signature
algorithms are supported for operations against the
contents of CMS encrypted objects.

cdmi jwe_enc JSON array of | If present, this capability lists which JOSE “enc”
JSON strings encryption algorithms are supported for operations
against the contents of JWE encrypted objects, as
defined in RFC 7518 [15].

cdmi jwe alg JSON array of | If present, this capability lists which JOSE “alg”
JSON strings encryption algorithms are supported for operations
against the contents ofIWE encrypted objects, as
defined in RFC 7518 [15].

cdmi jws_alg JSON array of | If present, this capability lists which JOSE “alg”
JSON strings encryption algorithms are supported for operations
against the contents of JWS signatures, as defined in
RFC 7518 [15].

cdmi_ valuetransferencoding JSON string If present and “true”, the CDMI server supports JSON
— Jjson value transfer encodings.

© SNIA 2020 SNIA Technical Position 198

2818

2819
2820
2821

Cloud Data Management Interface 2.0.0

12.2.8 Storage system metadata capabilities

Table 125 defines the capabilities for storage system metadata in a cloud storage system. These capabilities are found in
the capabilities objects for domain objects, data objects, container objects, and queue objects. See 16.2 for a description
of these storage system metadata items.

Table 125: Capabilities for storage system metadata

Capability name Type Definition

cdmi_acl JSON string If present and “true”, the CDMI server supports ACLs.
When a CDMI implementation supports ACLs for the
purpose of access control, the system-wide capability of
cdmi_ security access_ control specified in
12.2.7 of 12.2.7 shall also be set to “t rue”.

If not present, there is no support for ACL-based access
control.

cdmi_size JSON string If present and “true”, the CDMI server shall generate a
cdmi_size storage system metadata for each stored
object.

cdmi ctime JSON string If present and “true”, the CDMI server shall generate a
cdmi_ctime storage system metadata for each stored
object.

cdmi_atime JSON string If present and “true”, the CDMI server shall generate a
cdmi_atime storage system metadata for each stored
object.

cdmi mtime JSON string If present and “true”, the CDMI server shall generate a
cdmi_mtime storage system metadata for each stored
object.

cdmi_acount JSON string If present and “true”, the CDMI server shall generate a
cdmi_acount storage system metadata for each
stored object.

cdmi mcount JSON string If present and “true”, the CDMI server shall generate a
cdmi_mcount storage system metadata for each
stored object.

cdmi_dac_uri JSON string If present and “true”, the CDMI server supports
delegated access control metadata.

cdmi_dac_certificate JSON string If present and “true”, the CDMI server supports
delegated access control metadata.

cdmi_enc_signature JSON string If present and “true”, the CDMI server shall generate a

cdmi_signature storage system metadata for each
stored object when a corresponding sign id data
system metadata item is present.

cdmi_version object JSON string If present and “true”, the CDMI server shall generate a
cdmi version object storage system metadata for
each version-enabled data object and data object
version.

cdmi_version current JSON string If present and “true”, the CDMI server shall generate a
cdmi_ version current storage system metadata
for each version-enabled data object and data object
version.

cdmi_version oldest JSON array of | If present and “true”, the CDMI server shall generate a
JSON strings cdmi version oldest storage system metadata for
each version-enabled data object and data object
version.

cdmi_version parent JSON string If present and “true”, the CDMI server shall generate a
cdmi version parent storage system metadata for
each data object version that has a previous version.

continues on next page

© SNIA 2020 SNIA Technical Position 199

Cloud Data Management Interface 2.0.0

Table 125 — continued from previous page

Capability name Type Definition

cdmi version children JSON array of | If present and “true”, the CDMI server shall generate a
JSON strings cdmi version children storage system metadata
for each data object version.

© SNIA 2020 SNIA Technical Position 200

2822

2823
2824
2825
2826

Cloud Data Management Interface 2.0.0

12.2.9 Data system metadata capabilities

tbl capabilities for data system metadata defines the capabilities that indicate which data system meta-
data items are interpreted for objects stored in a cloud storage system. These capabilities are found in the capabilities
objects for domains, data objects, containers, and queues. See 16.3 for a description of the meaning of the correspond-

ing data system metadata items.

Table 126: Capabilities for data system metadata

Capability name

Type

Definition

cdmi assignedsize

JSON string

If present and “true”, the CDMI server supports the
cdmi_ assignedsize data system metadata as
defined in 16.3.

cdmi data redundancy

JSON string

If present, the CDMI server supports the

cdmi data redundancy data system metadata as
defined in 16.3. The value of the capability shall be set
to a positive numeric string representing the maximum
value that the server supports.

cdmi data dispersion

JSON string

If present and “t rue”, the CDMI server supports the
cdmi data_dispersion data system metadata as
defined in 16.3.

cdmi data retention

JSON string

If present and “true”, the CDMI server supports both
the cdmi retention idand

cdmi_ retention period data system metadata as
defined in 16.3.

cdmi data autodelete

JSON string

If present and “true”, the CDMI server supports the
cdmi data autodelete data system metadata as
defined in 16.3.

cdmi data holds

JSON string

If present and “t rue”, the CDMI server supports the
cdmi_hold id data system metadata as defined in
16.3.

When a cloud storage system supports holds for the
purpose of making data immutable, the system-wide
capability of cdmi security immutability
specified in tbl system wide capabilities of
12.2.7 shall be present and set to “true”.

cdmi encryption

JSON array of
JSON strings

If present, the CDMI server supports the
cdmi_encryption data system metadata as defined
in 16.3.

When present, this capability shall contain one or more
JSON strings, each string corresponding to an
algorithm/mode/length value as described in the
cdmi_encryption data system metadata in 16.3.

When a cloud storage system supports at-rest
encryption, the system-wide capability of

cdmi_ security_ encryption specified in

tbl system wide capabilities of 12.2.7 shall be
present and set to “true”.

cdmi geographic placement

JSON string

If present and “true”, the CDMI server supports the
cdmi_ geographic placement data system
metadata as defined in 16.3.

cdmi immediate redundancy

JSON string

If present, the CDMI server supports the
cdmi immediate redundancy data system
metadata as defined in 16.3.

When present, this capability shall contain a string set
to a positive numeric string representing the maximum
value that the server supports.

continues on next page

© SNIA 2020

SNIA Technical Position 201

Cloud Data Management Interface 2.0.0

Table 126 — continued from previous page

Capability name Type Definition
cdmi_infrastructure JSON string If present, the CDMI server supports the
<~ redundancy cdmi infrastructure redundancy data system

metadata as defined in 16.3.

When present, this capability shall contain a string set
to a positive numeric string representing the maximum
value that the server supports.

cdmi_latency JSON string If present and “true”, the CDMI server supports the
cdmi_latency data system metadata as defined in
16.3.

cdmi_ RPO JSON string If present and “true”, the CDMI server supports the
cdmi_RPO data system metadata as defined in 16.3.

cdmi_ RTO JSON string If present and “true”, the CDMI server supports the
cdmi_RTO data system metadata as defined in 16.3

cdmi_sanitization method JSON array of | If present, the CDMI server supports the

JSON strings cdmi_ sanitization method data system metadata
as defined in 16.3.

When present, this capability shall contain one or more
JSON strings, each string corresponding to a
sanitization method as described in the

cdmi_ sanitization method data system metadata
in 16.3.

When a cloud storage system supports sanitization, the
system-wide capability of

cdmi_security sanitization specifiedin

tbl system wide capabilities of 12.2.7 shall be
present and set to “true”.

cdmi_throughput JSON string If present and “true”, the CDMI server supports the
cdmi_throughput data system metadata as defined in
16.3.
cdmi_value hash JSON array of | If present, the CDMI server supports the
JSON strings cdmi_value_hash data system metadata as defined in
16.3.

When present, this capability shall contain one or more
JSON strings, each string corresponding to an
algorithm/length value as described in the

cdmi_ value hash data system metadata in 16.3.

When a cloud storage system supports value hashing,
the system-wide capability of
cdmi_security data_ integrity specified in

tbl system wide capabilities of 12.2.7 shall be
present and set to “true”.

cdmi enc_key id JSON string When the cloud storage system supports the
cdmi_enc key id data system metadata as defined
in clause 16.3, the cdmi_enc_key_id capability shall
be present and set to the string value “true”. When
this capability is absent, or present and set to the string
value “false”, cdmi enc key id data system
metadata shall not be used.

cdmi enc value sign id JSON string When the cloud storage system supports the
cdmi_enc_value sign_id data system metadata as
defined in clause 16.3, the

cdmi_enc_value sign_id capability shall be
present and set to the string value “true”. When this
capability is absent, or present and set to the string
value “false”, cdmi_enc value sign_id data
system metadata shall not be used.

continues on next page

© SNIA 2020 SNIA Technical Position 202

Cloud Data Management Interface 2.0.0

Table 126 — continued from previous page
Capability name Type Definition
cdmi enc_value verify id JSON string When the cloud storage system supports the
cdmi_enc_value verify id data system metadata
as defined in clause 16.3, the
cdmi_enc_value verify id capability shall be
present and set to the string value “true”. When this
capability is absent, or present and set to the string
value “false”, cdmi enc value verify iddata
system metadata shall not be used.

cdmi enc object sign id JSON string When the cloud storage system supports the

cdmi enc_object sign_ id data system metadata
as defined in clause 16.3, the

cdmi enc_object sign_ id capability shall be
present and set to the string value “true”. When this
capability is absent, or present and set to the string
value “false”, cdmi_enc_object sign_ id data
system metadata shall not be used.

cdmi enc object verify id JSON string When the cloud storage system supports the

cdmi enc_object verify id data system
metadata as defined in clause 16.3, the

cdmi _enc_object verify id capability shall be
present and set to the string value “true”. When this
capability is absent, or present and set to the string
value “false”, cdmi_enc object verify id data
system metadata shall not be used.

cdmi versioning JSON array of | If present, this capability indicates that the cloud
JSON strings storage system shall support versioning of data objects
and contains a list of which versioning behaviors are
supported. The following values are defined:
+ “value” indicates that the system shall support the
versioning of the object value.
+ “user” indicates that the system shall support the
versioning of the object value and user metadata.
+ “all” indicates that the system shall support the
versioning of all updates made to a data object.
When present, the system shall support the following
storage system metadata: cdmi_version object,
cdmi version current, cdmi version oldest,
cdmi version parent, and
cdmi version children as indicated by the
corresponding storage system metadata capabilities.

cdmi_versions_count JSON string If present, this capability specifies the maximum
number of historical versions that may be specified. If
absent, restrictions on the number of historical versions
specified shall be ignored.

cdmi version age JSON string If present, this capability specifies the maximum age of
historical versions that may be specified. If absent,
restrictions on the age of historical versions specified
shall be ignored.

cdmi versions size JSON string If present, this capability specifies the maximum total
size of historical versions that may be specified. If
absent, restrictions on the size of historical versions
specified shall be ignored.

© SNIA 2020 SNIA Technical Position 203

2827

2828

Cloud Data Management Interface 2.0.0

12.2.10 Data object capabilities

tbl capabilities for data objects defines the capabilities for data objects in a cloud storage system.

Table 127: Capabilities for data objects

Capability name Type Definition

cdmi_read value JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to read the object’s
value.

cdmi read value range JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to read the object’s
value with byte ranges.

cdmi_read metadata JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to read the object’s
metadata.

cdmi modify value JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to modify the
object’s value.

cdmi_modify value range JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to modify the
object’s value with byte ranges.

cdmi modify metadata JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to modify the
object’'s metadata.

cdmi modify deserialize JSON string If present and “t rue”, this capability indicates that the

— dataobject CDMI server shall support the ability of the data object
to deserialize a serialized data object into the data
object as an update.

cdmi_delete dataobject JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to delete the
object.

© SNIA 2020 SNIA Technical Position 204

Cloud Data Management Interface 2.0.0

0 12.2.11 Container object capabilities
2 tbl capabilities for containers defines the capabilities for containers in a cloud storage system.

Table 128: Capabilities for container objects
Capability name Type Definition
cdmi_list children JSON string If present and “true”, this capability indicates that the

CDMI server shall support the ability to list the
container’s children.

cdmi list children range JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to list the
container’s children with ranges.

cdmi_read metadata JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to read the
container’s metadata.

cdmi modify metadata JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to modify the
container’s metadata.

cdmi_modify deserialize JSON string If present and “true”, this capability indicates that the
— container CDMI server shall support the ability of the container
object to deserialize a serialized container object into
the container object as an update.

cdmi_snapshot JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability of the container
object to create a new snapshot.

cdmi_serialize dataobject JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to serialize a data
object.

cdmi_serialize container JSON string If present and “true”, this capability indicates that the

CDMI server shall support the ability to serialize the
container and all children’s contents.

cdmi_serialize queue JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to serialize a
queue object.

cdmi_serialize domain JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to serialize the
domain and all child domains.

cdmi deserialize container JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability of the container to
deserialize the serialized containers and associated
serialized children into the container.

cdmi deserialize queue JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability of the container to
deserialize the serialized queue objects into the
container.

cdmi deserialize dataobject JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability of the container to
deserialize the serialized data objects into the container.

cdmi_create dataobject JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability of the container to
add a new data object.

cdmi post dataobject JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability of the container to
add a new data object via POST.

cdmi_post_queue JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability of the container to
add a new queue object via POST.

continues on next page

© SNIA 2020 SNIA Technical Position 205

Cloud Data Management Interface 2.0.0

Table 128 — continued from previous page

Capability name

Type

Definition

cdmi create container

JSON string

If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to create a new
container object via PUT.

cdmi create queue

JSON string

If present and “true”, this capability indicates that the
CDMI server shall support the ability to create new
queue objects..

cdmi create reference

JSON string

If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to create a new
child reference via PUT.

cdmi export container smb

JSON string

If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to export a
container as a file system via SMB.

cdmi export container nfs

JSON string

If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to export a
container as a file system via NFS.

cdmi export container iscsi

JSON string

If present and “true”, this capability indicates that the
CDMI server shall support the ability to export a
container as a file system via iSCSI.

cdmi export container occi

JSON string

If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to export a
container as a file system via OCCI.

cdmi export container webdav

JSON string

If present and “true”, this capability indicates that the
CDMI server shall support the ability to export a
container as a file system via WebDAV.

cdmi delete container

JSON string

If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to delete a
container.

cdmi move container

JSON string

If present and “true”, this capability indicates that the
CDMI server shall support the ability to move a
container object into a container.

cdmi copy container

JSON string

If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to copy a container
object into a container.

cdmi move dataobject

JSON string

If present and “true”, this capability indicates that the
CDMI server shall support the ability to move a data
object into a container.

cdmi copy dataobject

JSON string

If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to copy a data
object into a container.

cdmi create value range

JSON string

If present and “true”, this capability indicates that the
container allows a new data object’s value to be created
with byte ranges.

© SNIA 2020

SNIA Technical Position 206

Cloud Data Management Interface 2.0.0

= 12.2.12 Domain object capabilities

22 Table 129 defines the capabilities for domains in a cloud storage system. (All capabilities refer to what may be done via
23 CDMI content-type operations.

Table 129: Capabilities for domain objects

Capability name Type Definition

cdmi create domain JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to add a new
subdomain.

cdmi_delete domain JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to delete a domain.

cdmi_move domain JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to move a domain.

cdmi_domain_ summary JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to support domain
summaries.

cdmi domain members JSON string If present and “t rue”, this capability indicates that the

CDMI server shall support the ability to support domain
user management.

cdmi_list children JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to list the domain’s
children.

cdmi read metadata JSON string If present and “t rue”, this capability indicates that the

CDMI server shall support the ability to read the
domain’s metadata.

cdmi_modify metadata JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to modify the
domain’s metadata.

cdmi modify deserialize JSON string If present and “t rue”, this capability indicates that the

— domain CDMI server shall support the ability to deserialize a
serialized domain object into the domain object as an
update.

cdmi copy domain JSON string If present and “t rue”, this capability indicates that the

CDMI server shall support the ability to copy the domain
(via PUT) to another URI.

cdmi_deserialize domain JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to deserialize
serialized domains and associated serialized children
into the domain.

continues on next page

© SNIA 2020 SNIA Technical Position 207

Cloud Data Management Interface 2.0.0

Table 129 — continued from previous page

Capability name

Type

Definition

cdmi authentication methods

JSON array of
JSON strings

If present, the CDMI server supports authentication
methods that are supported by a domain.

When present, this capability shall contain one or more
of the following JSON strings:

+ “anonymous” - Absence of authentication
supported

* “basic” - HTTP basic authentication supported
(RFC 2617 [8])

+ “digest” - HTTP digest authentication supported
(RFC 2617 [8])

» “krb5” - Kerberos authentication supported, using
the Kerberos domain specified in the CDMI
domain (RFC 4559 [14])

+ “x509” - certificate-based authentication via TLS
(RFC 5246 [25], RFC 8446 [24])

+ “s3” - S3 API signed header authentication
supported

» “openstack” - OpenStack Identity APl header
authentication supported

Interoperability with these authentication methods are
not defined by this International Standard. Servers may
include other authentication methods not included in the
above list. In these cases, it is up to the CDMI client
and CDMI server to ensure interoperability.

© SNIA 2020

SNIA Technical Position 208

Cloud Data Management Interface 2.0.0

= 12.2.13 Queue object capabilities
235 1able 130 defines the capabilities for queue objects in a cloud storage system.

Table 130: Capabilities for queue objects

Capability name Type Definition

cdmi_read value JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to read a queue’s
value.

cdmi read metadata JSON string If present and “t rue”, this capability indicates that the

CDMI server shall support the ability to read the
queue’s metadata.

cdmi_modify value JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to modify the
queue’s value.

cdmi modify metadata JSON string If present and “t rue”, this capability indicates that the

CDMI server shall support the ability to modify the
queue’s metadata.

cdmi_modify deserialize JSON string If present and “true”, this capability indicates that the
— queue CDMI server shall support the ability to deserialize a
serialized queue into the queue as an update.
cdmi_delete queue JSON string If present and “t rue”, this capability indicates that the
CDMI server shall support the ability to delete a queue.
cdmi move queue JSON string If present and “t rue”, this capability indicates that the

CDMI server shall support the ability to move a queue
to another URI.

cdmi_copy_ queue JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to copy a queue to
another URI.

cdmi_reference queue JSON string If present and “t rue”, this capability indicates that the

CDMI server shall support the ability to reference a
queue from another queue.

© SNIA 2020 SNIA Technical Position 209

Cloud Data Management Interface 2.0.0

= 12.3 Read a capabilities object using CDMI

= 12.3.1 Synopsis

208 10 read an existing capability object, the following requests shall be performed:

2839 * GET <root URI>/cdmi_ capabilities/<Capability>/<TheCapability>/

2840 * GET <root URI>/cdmi capabilities/<Capability>/<TheCapability>/?
2841 <fieldname>&<fieldname>¢. ..

2842 * GET <root URI>/cdmi capabilities/<Capability>/<TheCapability>/?children=<range>s..
2843

2844 * GET <root URI>/cdmi objectid/<CapabilityObjectID>/

2845 * GET <root URI>/cdmi_ objectid/<CapabilityObjectID>/?<fieldname>&<fieldname>s...

2846 * GET <root URI>/cdmi_objectid/<CapabilityObjectID>/?children=<range>&. ..

2007 Where:

2848 * <root URI> is the path to the CDMI cloud.

2849 * <Capability> is zero or more parent capabilities.

2850 * <TheCapability> is the name specified for the capability to be read from.

2851 * <fieldname> is the name of a field.

2852 * <range> is a numeric range within the list of children.

2853 + <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

2854 * <CapabilityObjectID> is the ID of the capability object to be read from.

w55 12.3.2 Capabllltles
26 Capabilities that indicate which operations are supported are shown in Table 131.

Table 131: Capabilities - Read a capabilities object using CDMI

Capability Location Description
cdmi object access by ID System wide Ability to access the object by ID
capability

»7 12.3.3 Request headers
28 1he HTTP request headers for reading a CDMI capabilities object using CDMI are shown in Table 132.

Table 132: Request headers - Read a capabilities object using CDMI

Header Type Description Requirement
Accept Header ‘application/cdmi-capability” or a consistent value Optional
string as described in 5.5.2

© SNIA 2020 SNIA Technical Position 210

Cloud Data Management Interface 2.0.0

= 12.3.4 Request message body

260 A request body shall not be provided.

= 12.3.5 Response headers
22 The HTTP response headers for reading a CDMI capabilities object using CDMI are shown in Table 133.

Table 133: Response headers - Read a capabilities object Using CDMI

Header Type Description Requirement
Content-Type Header ‘application/cdmi-capability” Mandatory
string

= 12.3.6 Response message body

s The response message body fields for reading a CDMI capabilities object using CDMI are shown in
285 tbl cdmi capability object read response message body.

Table 134: Response message body - Read a capabilities object using

CDMI
Field name Type Description Requirement
objectType JSON “application/cdmi-capability” Mandatory
string
objectID JSON Object ID of the object Mandatory
string
objectName JSON Name of the object Mandatory
string
parentURI JSON URI for the parent object Mandatory
string Appending the “objectName” to the “parentURI” shall
always produce a valid URI for the object.
parentID JSON Object ID of the parent capability object. Mandatory
string
capabilities JSON The capabilities supported by the corresponding object. Mandatory
object Capabilities in the “/cdmi capabilities/” object are
system-wide capabilities. Capabilities found in children
objects under “/cdmi_capabilities/” correspond to the
capabilities of a specific subset of objects.
childrenrange JSON The child capabilities of the capability expressed as a range. Mandatory
string If a range of child capabilities is requested, this field indicates
the children returned as a range.
children JSON Names of the children capabilities objects. Mandatory
3rsrg¥\lof For the root container capabilities, this includes “domain/”,
strinas “container/”, “dataobject/”, and “queue/”. Within each
Ing of these capabilities objects, further more specialized
capabilities profiles may be specified by the CDMI server.

x66 If individual fields are specified in the GET request, only these fields are returned in the result body. Optional fields that
267 are requested but do not exist are omitted from the result body.

© SNIA 2020 SNIA Technical Position 211

2868

2869

2870

2871

2872

2873

2874

Cloud Data Management Interface 2.0.0

12.3.7 Response status

Table 135 describes the HTTP status codes that occur when reading a capabilities object using CDMI.

Table 135: HTTP status codes - Read a capabilities object using CDMI

HTTP status

Description

200 OK

The capabilities object content was returned in the response.

400 Bad Request

The request contains invalid parameters or field names.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization to perform this request.

404 Not Found

The resource was not found at the specified URI.

406 Not Acceptable

The server is unable to provide the object in the content type specified in the
Accept header.

12.3.8 Examples

EXAMPLE 1: GET to the root container capabilities URI to read all fields of the container:

-=> GET /cdmi/2.0.0/cdmi capabilities/ HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-capability

<-- HTTP/1.1 200 OK
<-- Content-Type:

<__

<=={

<=- "objectType": "application/cdmi-capability",
<-= "objectID": "00007E7F00104BE66AB53A9572F9F51E",
<-= "objectName": "cdmi capabilities/",

<-- "parentURI": "/",

<-= "parentID": "00007E7F0010128E42D87EE34F5A6560",
<-- "capabilities": {

<—- "cdmi domains": "true",

<-= "cdmi export nfs": "true",

<-- "cdmi export iscsi": "true",

<-- "cdmi queues": "true",

<-- "cdmi notification": "true",

<-- "cdmi query": "true",

<-- "cdmi metadata maxsize": "4096",

<-- "cdmi metadata maxitems": "1024"

<-- }r

<-- "childrenrange": "0-3",

<-= "children": [

<-= "domain/",

<-- "container/",

<-- "dataobject/",

<-- "queue/"

<-=]

<--}

application/cdmi-capability

EXAMPLE 2: GET to the root container capabilities URI to read the capabilities and children of the container:

--> GET /cdmi/2.0.0/cdmi capabilities/?capabilities&children HTTP/1.1
-—-> Host: cloud.example.com
--> Accept: application/cdmi-capability

<-- HTTP/1.1 200 OK
<-- Content-Type:

<--{

<-- "capabilities": {

<-- "cdmi domains": "true",

<-= "cdmi export nfs": "true",
<-- "cdmi export iscsi": "true",

application/cdmi-capability

(continues on next page)

© SNIA 2020

SNIA Technical Position

212

Cloud Data Management Interface 2.0.0

(continued from previous page)

<-= "cdmi queues": "true",
<-- "cdmi notification": "true",
<-- "cdmi query": "true",
<-- "cdmi metadata maxsize": "4096",
<-- "cdmi metadata maxitems": "1024"
<-- }r
<-- "children": [
<-- "domain/",
<-- "container/",
<-- "dataobject/",
<-- "queue/"
<-- 1
<-- 1}
© SNIA 2020 SNIA Technical Position 213

2875

Cloud Data Management Interface 2.0.0

EXAMPLE 3: GET to the root container capabilities URI to read the first two children contained within a domain:

-=> GET /cdmi/2.0.0/cdmi capabilities/?childrenrange&children=0-1 HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-capability

<-- HTTP/1.1 200 OK
<-- Content-Type: application/cdmi-capability

<__

<--

<-- "childrenrange" : "0-1",
<-- "children" : [

<-- "domain/",

<-- "container/"

<=]

<-- 1}

© SNIA 2020 SNIA Technical Position

214

2876

2877

2878

2879
2880
2881

2882

2883

2884

2885

2886
2887

2888

2889

2890

2891
2892
2893

2894

2895

Cloud Data Management Interface 2.0.0

Clause 13

Exported protocols

13.1 Overview

Container objects can be exported via multiple storage protocols. This is specified by adding an exports field to the
container object. The exports field contains zero or more named exports, each of which has elements corresponding
to the export protocol type, such as:

The type of export protocol;

The user-facing identity of the exported container, where required by the export protocol (e.g. iSCSI target, NFS
directory);

The domain of the protocol name server for the clients being served, where required by the export protocol;

The list of who may mount that container via that protocol, as standardized by that protocol or optionally by
leveraging the name mapping protocol (see 13.2.3) and specifying CDMI-resolvable user or groupnames;

Required protocol-specific export parameters;
Optional protocol-specific export parameters; and
Export control parameters.

The ability to export containers via a specific protocol is determined by the presence or absence of a
cdmi_export <protocol> system wide capabilities, which are listed in 12.2.7. The ability to export a specific con-
tainer via a specific protocol is indicated by the cdmi_export <protocol> capability.

Exports are represented as a JSON object having zero or more named protocol-specific exports.

The meaning, use, and permitted values for the fields associated with each export type are described later in this clause.

© SNIA 2020 SNIA Technical Position 215

2896

2897

2898

2899

2900
2901

2902

2903

2904
2905
2906

2907
2908
2909

2910

2911
2912

2913
2914
2915
2916
2917

2918

2919
2920

2921
2922
2923
2924

2925
2926

2927

2928
2929

2930

2931
2932
2933
2934
2935
2936

2937
2938

2939
2940

2941
2942

Cloud Data Management Interface 2.0.0

13.2 Container object export details

13.2.1 Container object export addressing

Container object exports are addressed in CDMI in two ways:
* by name (e.g. https://cloud.example.com/cdmi/2.0.0/container/?exports); and

* by ID (e.g. https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/
< 00007ED900104E1D14771DC67C27BF8B/?exports).

See 9.1 for more details on container object addressing.

13.2.2 Container object export fields

The export of a container, via data path protocols other than CDMI, is accomplished by creating or updating a container
and supplying one or more export protocol structures, one for each such protocol. In this International standard, all such
protocols are referred to as foreign protocols.

This International standard defines JSON export structures for several well known foreign protocols. All depend on
the following user and groupname mapping feature in the case that multi-protocol access to the container is desired.
However, name mapping is not required if an external domain is used, or if CDMI is used only to provision containers
to be used exclusively by foreign protocols.

Implementations that support authenticated and authorized access to CDMI objects via both CDMI and foreign protocols
need a way to support the setting of security on a per-object basis. The numerous methods of doing this include:

+ Defining or adopting a security scheme and mapping all requests into that scheme. CDMI implementations that
adopt this scheme shall use a name mapping technique to accomplish it, as (a) this mapping is easier for admin-
istrators to manage than straight id-to-id mapping, and (b) it is desired that interoperable CDMI implementations
behave similarly in this respect. This means that the name of the principal in an incoming request is mapped to
the name of a principal in the security domain, and that principal’s id is acquired and used in the authorization
procedure.

+ Allowing each protocol to set its own security, which implies that an object might be accessible to a given user via
one protocol but not another.

» Using the security scheme of the last protocol that was used to set permissions on the object. This method also
requires mapping the principal in the incoming request to a principal in the security domain of the object. As in
the first case, the server shall use a name mapping procedure to obtain the id that is used to authorize the user
against the desired object’'s ACL.

CDMI does not mandate which method shall be used. It does, however, specify how users and groups shall be mapped
between protocols.

13.2.3 Mapping names from CDMI to another protocol

Clients wishing to restrict exports via foreign protocols to mounting only by certain users and groups may be required
to provide user and groupname mapping information to the server. This mapping information is also required if access
to the container is desired by multiple protocols, e.g., both CDMI and NFS. The mapping is done as follows.

1. When a CDMI container is exported, the server should use the appropriate mechanism, e.g., Powershell
WmiClass.Create() on the Windows platform or /etc/exports on Unix, to limit permitted mounts of the
share from other servers, as specified in the “root _hosts”, “rw_hosts”and “ro_hosts”lines of the “exports”
property. The syntax of each hosts line follows the syntax of /etc/exports in the Linux operating system, as
encoded in a JSON string. If the CDMI server is unable to limit mounts as specified by each hosts line, an error

shall result, but the success or failure of the operation depends on the implementation.

2. When possible, authentication credential resolution should be consistant across both CDMI and all exported
protocols.

3. Authentication credential resolution shall be performed in the following order: #. CDMI Domain membership
mapping (See 10.4), #. Delegated domain mapping (See 10.4), #. Export name mapping.

4. Implementations may ignore or override export name mapping as requried to enforce implementation-specific
security policies.

© SNIA 2020 SNIA Technical Position 216

Cloud Data Management Interface 2.0.0

2043 5. The usermap list for that protocol shall be searched, in order, for an entry matching the username obtained from
2044 the authentication credential resolution process (see 13.2.7 for details on the search).

2045 6. The CDMI principal name obtained from the first matching usermap entry during this search is then used to
2046 authorize the user request via the security mechanism of the protocol whose security governs access to the
2947 object.

2us Groupname mapping for each foreign protocol shall be specified in a groupname field of the foreign protocol export
249 Specification. Its syntax is identical to the syntax for the username field.

» 13.2.4 Administrative users

w51 By default, the following users shall be considered “root”, or administrative users, and equivalent to each other:

2952 « root (Unix/NFS/LDAP),
2953 + Administrator (Windows/AD/SMB), and
2054 + the domain owner (CDMI).

255 Servers shall automatically map these users to the root user of the target protocol unless otherwise instructed by the
2056 USermaps.

2057 As an automatic mapping does not meet strict security standards, servers shall override these built-in entries with any
2058 Usermap entries that apply to one or more root users.

250 In the following example, root gets mapped to nobody, and everyone else is mapped to a user of the same name in the
260 NFS domain and the CDMI domain.

261 EXAMPLE 1: NFS export user mapping

--> PUT /cdmi/2.0.0/MyContainer HTTP/1.1
-—-> Host: cloud.example.com

--> Accept: application/vnd.org.snia.cdmi.container+json
--> Content-Type: application/vnd.org.snia.cdmi.container+json
-=>

-—> {

-——> "exports": {

-——> "nfs": {

-—> "usermap": [

> [

-—> "nobody",

——> H<_ll,

-=> "root"

-——>] ’

- [

——> e

-=> "<—=>",

__> "k

-]

S]

__> }

- }

- }

x> 13.2.5 Mapping domains from CDMI to another protocol

263 The internet domain name corresponding to each exported CDMI container shall be described in the “domain” element
264 Of the protocol export specification as a JSON-formatted string . If the “domain” element is not present in the protocol
265 €xport specification, it shall be assumed the domain is the same as the server hosting the CDMI implementation.

© SNIA 2020 SNIA Technical Position 217

2966

2967
2968
2969

2970
2971

2972

2973

2974

2975
2976
2977

2978

2979
2980

2981
2982

2983
2984
2985

Cloud Data Management Interface 2.0.0

13.2.6 Permissions mapping

Security authorizations and entitlements may not directly correspond across users, groups, file system protocols, oper-
ating systems, enterprises or different cloud provider environments. CDMI’s primary area of concern is representing a
rich set of network files system authorizations and entitlements in a CDMI Access Control List (ACL).

As there are a number of possible ways to coordinate the permissions/ACLs and CDMI ACLs, this International specifi-
cation does not mandate a particular method. However, all mappings of user and groupnames between domains shall
use the name mapping mechanism specified in 13.2.7.

13.2.7 User and groupname mapping syntax and evaluation rules

A BNF-style grammar for name mapping is as follows:

name mapping list = protocol protocol mapping list

protocol = "cdmi" | "nfs" | "smb" | "ldap"

mapping list = name mapping operator name

name = pattern | utf8 name | quoted utf8 name

quoted utf8 name = " utf8 name "

utf8 name = <any legal utf8 character sequence not including the characters ",',6\,/,:,*,?>
pattern = <utf8 name> * | *

mapping operator = "<-=" | "<==>" | "-->"

To restate this in English, a mapping entry consists of two names separated by a directional indicator. As most en-
vironments use the same usernames and groupnames across administrative domains, the most common mapping is
“* <--> *” which maps any name to the same name in the foreign protocol domain, and vice versa. It is highly
recommended that this be both the default map and the last entry on all more complex maps.

CDMI specifies pattern matching on names in the name map, but only prefix matching is required. The symbol “*” at
the end of a character string shall match zero or more occurrences of any non-whitespace character.

Evaluation of the name mapping list shall proceed in order; once a match is made, evaluation shall cease and the result
of the match shall be returned.

If no matches are found on the match list, the result is system dependent. However, it is recommended that servers
either deny access altogether or map the user in question to the equivalent of “anonymous” on the destination protocol.
It is also recommended that an entry be devoted to the special user “EVERYONER”.

© SNIA 2020 SNIA Technical Position 218

2986

2987
2988

2989

Cloud Data Management Interface 2.0.0

13.3 NFS exported protocol

An NFS export specifes the information required by an NFS server to provide an NFS export. Normally, this information
is contained in the /etc/exports file on a server or the equivalent.

Elements for an NFS export are described in Table 136.

Table 136: Elements of the NFS protocol export structure

Element Type Description Requirement
type JSON The export type is set to “NFS” Mandatory
String
protocol JSON The protocol being requested. Values shall be “NFSv3”, Mandatory
String “NFsv4”, “NFsSv4.1”, or any subsequent NFS version
enshrined in an IETF RFC. Version 2 of NFS is not supported
by CDMI.
path JSON The pathname to which the export should be surfaced. This Mandatory
String value shall be a UTF8 string of the form
[<server>:]/<path>, where the <server> component is
optional, (e.g., “myserver:/lessons/numberl”). If
specified, the <server> component of the path must be
obtained from an administrator of the service running the
CDMI implementation.
usermap JSON Authentication credential mapping of user names, as Mandatory
Array of | specified in 13.2.3.
JSON
Arrays
groupmap JSON Authentication credential mapping of group names, as Mandatory
Array of | specified in 13.2.3.
JSON
Arrays
encryption JSON This value shall be “rpcsec_gss” or future TLS-based Optional
String transport security.
domain servers JSON A list of server names or IP addresses that function as name | Optional
Array of | servers for the domain given in “domain”. If given, this list
JSON shall override the names obtainable by the CDMI server via
Strings other programmatic means.
mount_name JSON The name the client should use to surface the export. This Optional
String name replaces the last name in the path string, (e.g.,
mounting “myserver:/lessons/numberl” with a
mountname of “1” over the directory
/somepath/lessons/numl should resultin a
/somepath/lessons/1 directory on the client).
root hosts JSON A list of names of hosts that may access the container in Optional
Array of | superuser mode. The default shall be an empty list.
JSON
Strings
rw_hosts JSON A list of names of hosts that may access the container in rw Optional
Array of | mode. The default shall be an empty list.
JSON
Strings
ro_hosts JSON A list of names of hosts that may access the container in ro Optional
Array of | mode only. The default shall be an empty list.
JSON
Strings
continues on next page
© SNIA 2020 SNIA Technical Position 219

2990
2991

2992
2993
2994

2995
2996

2997

Cloud Data Management Interface 2.0.0

Table 136 — continued from previous page

Element Type Description Requirement
recurse JSON This value shall be either “crue” or “false”. The default Optional
String shall be “true”. When true, recurse indicates that mounts
within the CDMI directory structure (presumably put there by
other NFS operations) shall be followed and the mounted
directory exposed as though it were part of the CDMI
container actually being exported. This parameter is
equivalent to the Linux “crossmnt” parameter.
parameters JSON A string containing NFS server-specific parameters to be Optional
String passed to the NFS server. The format of this string is
implementation specific. The default shall be an empty string.

Servers shall support wildcard matching on the “*” and “?” characters in the hosts lists, so that “*.cs.uscs.edu”
matches all servers in the cs.ucsc.edu department.

Servers may also support IP address ranges in the various lists of hosts. These IP addresses shall be augmented by
the same wildcard matching as is used for ordinary host names (e.g., “192.168.1.*” exports to all the machines on

local class C network).

Servers shall return an HTTP status code of 400 Bad Request when an export setting does not conform to an

allowable setting on the server.
EXAMPLE 2: NFS exports

{
"exports" : {
"1" : {
"type"

"path"

"protocol"
"/myexport",
"domain servers"
"root hosts"

"nfg" ,

"NEFSv4",

: "lab.example.com",
["admin.lab.example.com"],

"ro hosts" ["*.lab.example.com"],
"usermap" : [
{ ”jimsmith", ll<__>", "jims" },
{ ”*", "<__>ll, "k }
:I!
"groupmap" [
{ "admins", "<-", "wheel" },
{ "everyone", "<-='", "*x" }

© SNIA 2020

SNIA Technical Position

220

Cloud Data Management Interface 2.0.0

= 13.4 SMB exported protocol

200 An SMB export specifes the information required by an SMB server to provide an SMB export.

a0 Elements for an SMB export are described in Table 137

Table 137: Elements of the SMB protocol export structure

Element Type Description Requirement

type JSON The export type is set to “sMB” Mandatory
String

sharename JSON The name that SMB shall use to discover the share. Mandatory
String

usermap JSON Authentication credential mapping of user names, as Mandatory
Array of | specified in 13.2.3.
JSON
Arrays

groupmap JSON Authentication credential mapping of group names, as Mandatory
Array of | specified in 13.2.3.
JSON
Arrays

root hosts JSON A list of names of hosts that may access the container in Optional
Array of | superuser mode. The default shall be an empty list.
JSON
Strings

rw_hosts JSON A list of names of hosts that may access the container in rw Optional
Array of | mode. The default shall be an empty list.
JSON
Strings

ro_hosts JSON A list of names of hosts that may access the container in ro Optional
Array of | mode only. The default shall be an empty list.
JSON
Strings

domain_ servers JSON A list of server names or IP addresses that function as name | Optional
Array of | servers for the domain given in “domain”. If given, this list
JSON shall override the names obtainable by the CDMI server via
Strings other programmatic means.

comment JSON This value shall be JSON String containing a user-friendly Optional
String share name for the client.

parameters JSON A string containing SMB server-specific parameters to be Optional
String passed to the SMB server. The format of this string is

implementation specific. The default shall be an empty string.

w01 Servers shall return an HTTP status code of 400 Bad Request when an export setting does not conform to an
w2 allowable setting on the server.

ws EXAMPLE 3: SMB exports

{
"exports" : {
"t |
"type" : "Smb",
"rw _hosts" : ["*"],
"domain servers" : "lab.mycollege.edu",
"usermap" : [
{ "jimsmith", "<-->", "james.smith" },
{ "*"I "<__>"l e }
]l
"groupmap" : [
{ "admins", "<-", "Administrators" 1},
{ "everyone", "<-=", "¥" }
]
}

(continues on next page)

© SNIA 2020 SNIA Technical Position 221

Cloud Data Management Interface 2.0.0

(continued from previous page)

© SNIA 2020 SNIA Technical Position 222

Cloud Data Management Interface 2.0.0

« 13.5 iISCSI exported protocol

sos An iISCSI export specifes the information required by an iSCSI server (see RFC 7143 [4]) to provide an iSCSI export.
s Each container is exported as a single SCSI Logical Unit as a Logical Unit Number (LUN). One or more iSCSI initiators
a0z import the LUN through an iSCSI target node and port using one or more iSCSI network portals (IP addresses).

sos Elements for an iISCSI export are described in Table 138

Table 138: Elements of the iSCSI protocol export structure

Element Type Description Requirement
type JSON The export type is set to “iSCSI” Mandatory
String
permissions JSON One or more target identifiers for initiators that are permitted Optional
Array of | to access the iISCSI export. Target identifiers may be in ign,
JSON naa, or eui format and shall have the target portal group tag
Strings appended in hexadecimal. If absent, any initiator may access
the export.
parameters JSON A string containing iSCSI server-specific parameters to be Optional

String passed to the iSCSI server. The format of this string is
implementation specific. The default shall be an empty string.

target JSON iSCSI target information (IP addresses or fully qualified Read-Only
— identifier String domain names, target identifier, and LUN)
logical unit JSON iSCSI Logical Unit Number Read-Only
— number String
logical unit JSON iSCSI Logical Unit Name Read-Only
— name String
portals JSON One or more IP addresses or fully qualified domains names Read-Only
Array of | through which the iSCSI export may be accessed. This field
JSON is server populated.
Strings

aos Servers shall return an HTTP status code of 400 Bad Request when an export setting does not conform to an
a0 allowable setting on the server.

o1 EXAMPLE 4: iSCSI export creation

"exports" :
{
"1" : {
type: "iSCSI",
"permissions": [

"ign.2010-01.com.acme:hostl",
"ign.2010-01.com.acme:host2"

}

w2 EXAMPLE 5: Reading iSCSI export information after creation

"exports" :
{
"o |
type: "iSCSI",
"portals": [
"192.168.1.101",
"192.168.1.102"
] 14
"target identifier": "ign.2010-0l1.com.cloudprovider:acmeroot.containerl,t,0x0001",
"logical unit number": "3",
"logical unit name": "0x60012340000000000000000000000001",
"permissions": [

"ign.2010-01.com.acme:hostl",
"ign.2010-01.com.acme:host2"

(continues on next page)

© SNIA 2020 SNIA Technical Position 223

Cloud Data Management Interface 2.0.0

(continued from previous page)

© SNIA 2020 SNIA Technical Position 224

3013

3014

3015

3016

3017

3018

3019
3020

3021

Cloud Data Management Interface 2.0.0

13.6 WebDAV exported protocol

A WebDAV export specifes the information required by an WebDAV server (see RFC 4918 [6]) to provide an WebDAV

export.

Elements for an WebDAV export are described in Table 139

Table 139: Elements of the WebDAV protocol export structure

Element Type Description Requirement
type JSON The export type is set to “WebDAV” Mandatory
String
usermap JSON Authentication credential mapping of user names, as Mandatory
Array of | specified in 13.2.3.
JSON
Arrays
groupmap JSON Authentication credential mapping of group names, as Mandatory
Array of | specified in 13.2.3.
JSON
Arrays
parameters JSON A string containing WebDAV server-specific parameters to be | Optional
String passed to the WebDAV server. The format of this string is
implementation specific. The default shall be an empty string.

Servers shall return an HTTP status code of 400 Bad Request when an export setting does not conform to an
allowable setting on the server.

WebDAV supports locking, but it is up to implementations to support any locking of access through CDMI as a result,
and the interaction between the two protocols is purposely not described in this International Standard.

EXAMPLE 6: WebDAV export

"exports" :
{
"t |
type: "WebDAV",
"usermap" : [
{ "*"I "<__>"I
]I
"groupmap" : [
{ "*"r "<__>"r

]

nwxmn

"ok n

}

}

© SNIA 2020

SNIA Technical Position

225

Cloud Data Management Interface 2.0.0

- 13.7 OCCI exported protocol

w2z Container objects can be exported via multiple protocols. This is especially useful when CDMI is being used as a storage
s2s interface in a cloud computing environement, as illustrated in Fig. 9 below.

CDMI/OCCI Interface

Compute Resources

Virtual
Machine
Manager M M M
occl 2230 210 210 210 <2230 210
API occl iscs | | NFS | | NFs | | NFs | Hiscs | | Web
l l l l l l l l l l i DAV |
l___/l l\§__,' l\§__,' l\§__/l J___’I l\§__/l
Cloud Computing
Client Infrastructure
[OCCI_VMID]
[CDMI_OBJECTID] Private, Hidden Storage Network
for the Cloud
DMI
CAPI CDMI

iSCSI NFS WebDAV

Data Storage Resources

Fig. 9: CDMI and OCCI in an integrated cloud computing environment

s2s In this example, CDMI containers may also be used as virtual disks by virtual machines in the cloud computing envi-
aze ronement. The cloud computing infrastructure management is shown as implementing both an Open Cloud Computer
sz Interface (OCCI) and CDMI interfaces. With the internal knowledge of the network and the virtual machine manager’s
ss mapping of drives, this infrastructure may associate the CDMI containers to the guests using the appropriate exported
s protocol.

a0 TO support exported protocols and improve their interoperability with CDMI, CDMI provides a type of exported protocol
a1 that contains information obtained via the OCCl interface. In addition, OCCI provides a type of storage that corresponds

© SNIA 2020 SNIA Technical Position 226

Cloud Data Management Interface 2.0.0

w2 to a CDMI container that is exported with a specific type of protocol used by OCCI. A client of both interfaces performs
sz operations that align the architectures, including the following:

3034 » The client creates a CDMI container through the CDMI interface and exports it as an OCCI export protocol type.
3035 The CDMI container object ID is returned as a result.

3036 * The client creates a virtual machine through the OCCI interface and attaches a storage volume of type CDMI
3037 using the object ID and protocol type. The OCCI virtual machine ID is returned as a result.

3038 + The client updates the export protocol structure of the CDMI container object with the OCCI virtual machine ID to
3039 allow the virtual machine access to the container.

3040 » The client starts the virtual machine through the OCCI interface.

a1 CDMI defines an export protocol structure for the Open Cloud Computing Interface (13.7) as follows:

3042 * The type is “OCCI/<protocol standard>”(e.g., “OCCI/NFSv4”).
3043 + The identifier is the CDMI container ID.
3044 » A JSON array of URIs to OCCI compute resources shall have access (permissions) to the exported container.

sus EXAMPLE 5: OCCI export

"OCCI/isSCSI":
{
"identifier": "00007E7F00104BE66AB53A9572F9F51E",
"permissions":
[
"https://example.com/compute/0/",
"https://example.com/compute/1/"

}

sus For more detail on using the OCCI export protocol structure attributes, see 13.1. Because the actual networking and
a7 @ccess control is under the control of a hidden, common infrastructure that implements both OCCI and CDMI, the normal
sus permission structure shall not be provided.

© SNIA 2020 SNIA Technical Position 227

3049

3050

3051

3052
3053
3054
3055
3056
3057

Cloud Data Management Interface 2.0.0

Clause 14

CDMI snapshots

14.1 Overview

A snapshot is a point-in-time copy (image) of a container and all of its contents, including subcontainers and all data
objects and queue objects. The client names a snapshot of a container at the time the snapshot is requested. A snapshot
operation creates a new container to contain the point-in-time image. The first processing of a snapshot operation also

adds

a cdmi_snapshots child container to the source container. Each new snapshot container is added as a child of

the cdmi snapshots container. The snapshot does not include the cdmi snapshots child container or its contents
(see Fig. 10).

{

PUT /source/

“snapshot” : “snapshot b”

Source Container

———

https://example.com/source/

cdmi_snapshots https://example.com/source/cdmi_snapshots/

snapshot_a https://example.com/source/cdmi_snapshots/snapshot_a/

snapshot_b https://example.com/source/cdmi_snapshots/snapshot_b/

Fig. 10: Snapshot container structure

© SNIA 2020 SNIA Technical Position 228

3058

3059

3060
3061

3062
3063
3064

3065

3066

Cloud Data Management Interface 2.0.0

14.2 Creating a snapshot

14.2.1 Operation context

A snapshot operation is requested using the container update operation (see 9.5), in which the snapshot field specifies

the requested name of the snapshot.

A snapshot may be accessed in the same way that any other CDMI™ object is accessed. An important use of a snapshot
is to allow the contents of the source container to be restored to their values at a previous point in time using a CDMI

copy operation.

14.2.2 Example

EXAMPLE 1: PATCH to an existing container to create a snapshot:

--> Host: cloud.example.com

-—>
__> {
-——> "snapshot" : "MySnapshot"
—-_> }

<-- HTTP/1.1 201 Created

--> PATCH /cdmi/2.0.0/MyContainer/ HTTP/1.1

--> Content-Type: application/cdmi-container

© SNIA 2020

SNIA Technical Position

229

3067

3068

3069
3070

3071

3072

Cloud Data Management Interface 2.0.0

14.3 Deleting a snapshot

14.3.1 Operation context

A snapshot can be deleted by performing a CDMI container delete operation on the corresponding child container in the

cdmi_snapshots container, or by performing a CDMI container delete operation on the snapshot Object ID.

14.3.2 Example

EXAMPLE 1: DELETE to an existing snapshot:

--> Host: cloud.example.com

<-- HTTP/1.1 204 No Content

--> DELETE /cdmi/2.0.0/MyContainer/cdmi snapshots/MySnapshot HTTP/1.1

© SNIA 2020

SNIA Technical Position

230

3073

3074

3075

3076

3077

3078

3079

3080

3081
3082
3083

Cloud Data Management Interface 2.0.0

Clause 15

Serialization/deserialization

15.1 Overview

Bulk data movement is often needed between, into, or out of clouds. When moving bulk data, cloud serialization
operations provide a means to normalize data to a canonical, self-describing format, which includes:

+ data migration between clouds,
+ data migration during upgrades (or replacements) of cloud implementations, and
* robust backup.

The canonical format of serialized data describes how the data is to be represented in a byte stream. As long as this byte
stream is not changed during the transfer from source to destination, the data may be reconstituted on the destination
system.

© SNIA 2020 SNIA Technical Position 231

3084

3085

3086
3087

3088
3089
3090
3091
3092
3093

3094

3095

3096

3097

3098

3099

3100

3101

Cloud Data Management Interface 2.0.0

15.2 Canonical format

15.2.1 General requirements

Support for CDMI serialization using JSON as the canonical format requires the presence of the
cdmi_serialization_ json capability.

The canonical format shall represent specified data objects and container objects as they exist within the storage system.
Each object shall be represented by the metadata for the object, identifiers, and the data stream contents of the data
object. Because data and storage system metadata is inherited from enclosing container objects, all parent metadata
shall be represented in the top-level of the canonical format. To preserve the actual metadata values that apply to the
data object that is being serialized, the non-overridden metadata is included from both the immediate parent container
object of the specified object and from the parent of each higher-level container object.

The canonical format shall have the following characteristics:
« recursive JSON for the data object, consistent with the rest of CDMI;
+ user and data system metadata for each data object/container object;
 data stream contents for each data object and queue object;
* binary data represented using escaped JSON strings; and
« typing of data values consistent with CDMI JSON representations.

15.2.2 Example JSON canonical serialized format

EXAMPLE 1: In this example, a data object and a queue object in a container object have been selected for serialization:

{
"objectType": "application/cdmi-container",
"objectID": "00007E7F00102E230ED82694DAA975D2",
"objectName": "MyContainer/",
"parentURI": "/",
"parentID": "00007E7F0010128E42D87EE34F5A6560",
"domainURI": "/cdmi domains/MyDomain/",
"capabilitiesURI": "/cdmi capabilities/container/",
"completionStatus": "Complete",
"metadata": {

}I
"exports": {
"OCCI/iSCSI": {
"identifier": "00007E7F00104BE66AB53A9572F9F51E",
"permissions": [
"https://example.com/compute/0/",
"https://example.com/compute/1/"
]

}’
"Network/NFSv4": {

"identifier": "/users",
"permissions": "domain"
}
}I
"childrenrange": "0-1",
"children": [
{
"objectType": "application/cdmi-object",
"objectID": "00007ED900104F67307652BACIA37C93",
"objectName": "MyDataObject.txt",
"parentURI": "/MyContainer/",
"parentID": "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi domains/MyDomain/",
"capabilitiesURI": "/cdmi capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "text/plain",
"metadata": {

(continues on next page)

© SNIA 2020 SNIA Technical Position 232

Cloud Data Management Interface 2.0.0

(continued from previous page)

}I

"valuerange": "0-36",
"valuetransferencoding": "utf-8",
"value": "This is the Value of this Data Object"
}I
{
"objectType": "application/cdmi-queue",
"objectID": "00007E7F00104BE66AB53A9572F9F51E",
"objectName": "MyQueue",
"parentURI": "/MyContainer/",
"parentID": "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi domains/MyDomain/",
"capabilitiesURI": "/cdmi capabilities/queue/",
"completionStatus": "Complete",
"metadata": {
}l
"queueValues": "0-1",
"mimetype": [
"text/plain",
"text/plain"

]I
"valuetransferencoding": [
"utf—8",
"utf-8"

]l
"valuerange": [
uo_2vv’

"0_3"
]!
"value": [

"red",

"blue"

a2 To allow efficient deserialization in stream mode when serializing container objects to JSON, data object value fields
sws and container children arrays should be the last items in the canonical serialized JSON format.

© SNIA 2020 SNIA Technical Position 233

3104

3105
3106
3107
3108

3109
3110

3111
3112

3113
3114

3115

3116
3117
3118
3119

3120

3121

Cloud Data Management Interface 2.0.0

15.3 Exporting serialized data

A canonical encoding of the data is obtained by creating a new data object and specifying that the source for the creation
is to serialize a given CDMI™ data object, container object, or queue object. On a successful serialization, the result
shall be a data object that is created with the serialized data as its value. If a container object has an exported block
protocol, the serialized data may contain the block-by-block contents of that container object along with its metadata.

The resulting data object that is produced is the canonical representation of the selected data object, container object
and children, or queue object.

« If the source specified is a data object, the canonical format shall contain all data object fields, including the
value, valuetransferencoding, and metadata fields.

« If the source being specified is a queue object, the canonical format shall contain all queue object fields, including
the value and valuetransferencoding fields of enqueued items, along with the metadata of the queue object
itself.

« If the source being specified is a container object, the canonical format shall contain all container object fields,
recursively, including all children of the container object. If a user attempts to serialize a container object that
includes children that the user, who is performing the serialization operation, does not have permission to read,
these objects shall not be included in the resulting serialized object.

When performing a serialization operation, objects shall only be included if the principal initiating the serialization has
sufficient permissions to read those objects.

© SNIA 2020 SNIA Technical Position 234

3122

3123
3124

3125

3126
3127
3128
3129

3130
3131
3132
3133

3134

Cloud Data Management Interface 2.0.0

15.4 Importing serialized data

Canonical data may be deserialized back into the cloud by creating a new data object, container object, or queue object
and by specifying that the source for the creation is to deserialize a given CDMI data object or by specifying the serialized
data in base64 encoding in the deserializevalue field.

The destination may or may not exist previously. If not, a create operation is performed. If a container object already
exists, an update operation with serialized children shall update the container object and all children. If the serialized
container object does not contain children, only the container object is updated. Data objects are recreated as specified
in the canonical format, including all metadata and the data object ID.

Table 140: Serialization import behaviour

User has User specifies Description
cross_domain domainURT
No No The domainURI of the parent object shall match the domainURI in

each seralized object being deserialized.

If the domainURI in any serialize object does not match the
domainURI of the parent object, the entire deserialize operation
shall fail, and an HTTP status code of 400 Bad Request shall be
returned.

No Yes The specified domainURI shall be used, overriding the original
domainURT in each serialized object being deserialized.

If a domainURI other than the domainURT of the parent is
specified, the entire deserialize operation shall fail, and an HTTP
status code of 400 Bad Request shall be returned.

Yes No The original domainURI in each serialized object being
deserialized shall be used.

If any of the original domainURT in each serialized object being
deserialized is not valid in the context of the storage system on
which the deserialization operation is being performed, the entire
deserialize operation shall fail, and an HTTP status code of 400
Bad Request shall be returned.

Yes Yes The specified domainURTI shall be used, overriding the original
domainURI in each serialized object being deserialized.

If a domainURI that is specified is not valid in the context of the
storage system on which the deserialization operation is being
performed, the entire deserialize operation shall fail, and an HTTP
status code of 400 Bad Request shall be returned.

Deserialization operations shall restore all metadata from the specified source. If the original provider of the serialized
data-supported vendor extensions is through custom metadata keys and values, then these customized requirements
shall be restored when deserialized. However, the custom metadata keys and values may be treated as user metadata
(preserved, but not interpreted) by the destination provider. Preservation allows custom data requirements to move
between clouds without losing this information.

© SNIA 2020 SNIA Technical Position 235

3135

3136

3137

3138
3139
3140
3141
3142
3143

3144

3145

3146

3147

3148

3149

3150
3151

3152

3153

3154

Cloud Data Management Interface 2.0.0

Clause 16

Metadata

16.1 Overview

CDMI metadata allows for additional information to be associated with stored objects. JSON objects, strings and arrays
are used to transfer metadata in CDMI operations, which allows for metadata to be hierachical. CDMI servers may place
a restriction on the number of metadata items, maximum size per metadata item, and total size of metadata items, as
specified in the cdmi metadata maxitems, cdmi metadata maxsize, and cdmi metadata maxtotalsize
capabilities. CDMI servers shall not place a restriction on the depth of the metadata hierarchy and number of array
items, outside of the above restrictions.

When objects are created, object metadata is created according to the following process:
1. Metadata items specified in the create operation are added, overriding pre-existing metadata items

2. Storage System metadata items are added to the object, overriding pre-existing metadata items subject to the
restrictions described in Section 16.2

When objects are updated, object metadata is updated according to the following process:
1. Existing metadata items are deleted, changed and/or added, as specified in the update operation

2. Storage System metadata items are updated for the object, overriding pre-existing metadata items subject to the
restrictions described in Section 16.2

When objects are read, object metadata is returned according to the following process:
1. Data System Metadata items is inherited from the parent container
2. Metadata items stored with the object are returned, overriding any inherited Data System Metadata items

© SNIA 2020 SNIA Technical Position 236

3155

3156
3157

3158

3159
3160

Cloud Data Management Interface 2.0.0

16.2 Support for storage system metadata

After an object has been created or updated, the storage system metadata, as described in Table 141, shall be generated
or updated by the cloud storage system, and shall immediately be made available to a CDMI client in the metadata that
is returned as a result of the create operation and any subsequent retrievals.

Which storage system metadata is supported by the CDMI server defined in 12.2.8. Storage system metadata that is
not supported by the CDMI server shall be preserved.

Table 141: Storage system metadata

Metadata name Type Description Requirement
cdmi_size JSON The number of bytes consumed by the object. Optional
string

This storage system metadata item is computed by
the storage system, and any attempts to set or modify
it will be ignored.

cdmi_ctime JSON The time when the object was created, in ISO-8601 Optional
string point-in-time format, as described in 5.6.

For a newly created object, this value shall be set to
the creation time.

This metadata value may only be updated by a client
if it has the “backup operator” privilege. If a client
does not have the backup operator privilege, updates
of this metadata item shall be ignored.

cdmi_atime JSON The time when the object was last accessed in Optional
string 1ISO-8601 point-in-time format, as described in 5.6.
The access or modification of a child is not
considered an access of a parent container
(access/modify times do not propagate up the tree).

For a newly created object, this value shall be set to
the creation time.

This metadata value may only be updated by a client
if it has the “backup operator” privilege. If a client
does not have the backup operator privilege, updates
of this metadata item shall be ignored.

cdmi_mtime JSON The time when the object was last modified, in Optional
string ISO-8601 point-in-time format, as described in 5.6.
The modification of a child is not considered a
modification of a container object (modification times
do not propagate up the tree).

For a newly created object, this value shall be set to
the creation time.

This metadata value may only be updated by a client
if it has the “backup operator” privilege. If a client
does not have the backup operator privilege, updates
of this metadata item shall be ignored.

cdmi_ acount JSON The number of times that the object has been Optional

string accessed since it was originally created. Accesses
include all reads, writes, and lists.

For a newly created object, this value shall be set to
the value “0”.

This metadata value may only be updated by a client
if it has the “backup operator” privilege. If a client
does not have the backup operator privilege, updates
of this metadata item shall be ignored.

continues on next page

© SNIA 2020 SNIA Technical Position 237

Cloud Data Management Interface 2.0.0

Table 141 — continued from previous page

Metadata name

Type

Description

Requirement

cdmi mcount

JSON
string

The number of times that the object has been
modified since it was originally created. Modifications
include all value and metadata changes.
Modifications to metadata resulting from reads (such
as updates to atime) do not count as a modification.

For a newly created object, this value shall be set to
the value “0”.

This metadata value may only be updated by a client
if it has the “backup operator” privilege. If a client
does not have the backup operator privilege, updates
of this metadata item shall be ignored.

Optional

cdmi hash

JSON
string

The hash of the value of the object, encoded using
Base16 encoding rules described in RFC 4648 [19].
This metadata field shall be present when the
“cdmi_value hash” data system metadata for the
object or a parent object indicates that the value of
the object should be hashed.

This storage system metadata item is computed by
the storage system, and any attempts to set or modify
it will be ignored.

Optional

cdmi_ owner

JSON
string

The name of the principal that has owner privileges
for the object.

If not specified when the object is created, this
principal associated with the user creating the object
shall be used.

This metadata value can be updated by users with
appropriate permissions.

Optional

cdmi acl

JSON
array
of
JSON
objects

Standard ACL metadata as described in 17.1.

If not specified when the object is created, the ACL
metadata shall be generated in by the system.

This metadata value can be updated by users with
appropriate permissions.

Optional

cdmi dac_uri

JSON
string

Contains the URI used to submit a DAC request for
the data object.

URI schemes supported is defined in the

cdmi dac methods capability

Both cdmi dac_certificate and
cdmi_dac_uri shall be included for delegated
access control to be enabled for a given object.

Optional

cdmi dac certificate

JSON
object

A JSON object, containing a JWE JWK which shall
include a public key that is used to submit a DAC
request for the data object, and should contains a
X.509 certificate or certificate chain used to verify the
identity of the DAC provider.

Both cdmi dac_certificate and

cdmi dac_uri shall be included for delegated
access control to be enabled for a given object.

Optional

cdmi enc signature

JSON
object

Contains JWS compact serialization of a signature for
the entire object (value and metadata). See clause
23.7 for more details.

Optional

© SNIA 2020

SNIA Technical Position

238

3161

3162
3163

3164
3165
3166

3167
3168

Cloud Data Management Interface 2.0.0

16.3 Support for data system metadata

When specified, data system metadata, as described in tbl data system metadata, provides guidelines to the
cloud storage system on how to provide storage data services for data managed through the CDMI interface.

Data system metadata is inherited from parent objects to any children objects.

If a child object explicitly contains

data system metadata, the metadata value of the child object data system metadata shall override any corresponding
inherited metadata value of the parent object data system metadata.

Which data system metadata is supported by the CDMI server defined in 12.2.9. Data system metadata that is not
supported by a CDMI server shall be preserved.

Table 142: Data system metadata

Metadata name

Type

Description

Requirement

cdmi data redundancy

JSON
string

If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is requesting a desired number of complete copies.

Additional copies may be made to satisfy demand for
the value. When this data system metadata item is
absent, or is present and is not set to a positive
numeric string, this data system metadata item shall
not be used.

Optional

cdmi immediate
— redundancy

JSON
string

If this data system metadata item is present and set
to “t rue”, it indicates that the client is requesting that
at least the number of copies indicated in
cdmi_data_ redundancy contain the newly written
value before the operation completes. This metadata
is used to make sure that multiple copies of the data
are written to permanent storage to prevent possible
data loss. When this data system metadata item is
absent, or is present and is not set to “true”, this
data system metadata item shall not be used.

If the requested number of copies cannot be created
within the HTTP timeout period, the transaction shall
complete, but the

cdmi immediate redundancy provided data
system metadata shall be set to “false”.

Optional

cdmi assignedsize

JSON
string

If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is specifying the size in bytes that is desired to be
reported for a container object exported via other
protocols (see 9.2.3). The system is not required to
reserve this space and may thin-provision the
requested space. Thus, the requested value may be
greater than the actual storage space consumed.
When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

This data system metadata item is only applied
against container objects and is not inherited by child
objects.

Optional

continues on next page

© SNIA 2020

SNIA Technical Position

239

Cloud Data Management Interface 2.0.0

Table 142 — continued from previous page

Metadata name

Type

Description

Requirement

— redundancy

cdmi_ infrastructure

JSON
string

If this data system metadata item is present and set to
a positive numeric string, it indicates that the client is
requesting a desired number of independent storage
infrastructures supporting the multiple copies of data.
This metadata is used to convey that, of the copies
specified in cdmi_data_redundancy, these copies
shall be stored on this many separate infrastructures.

When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

cdmi data dispersion

JSON
string

If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is requesting a minimum desired distance (in km)
between the infrastructures supporting the multiple
copies of data. This metadata is used to separate the
(cdmi_infrastructure redundancy number of)
infrastructures by a minimum geographic distance to
prevent data loss due to site disasters.

When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

cdmi geographic
— placement

JSON
array
of
JSON
strings

If this data system metadata item is present and set
to zero or more geopolitical identifiers, it indicates
that the client is requesting restrictions on the
geographic regions where the object is permitted to
be stored. Each geopolitical identifier shall be in the
form of either a string containing a valid ISO 3166
country/country-subdivision code, which indicates
that storage is permitted within that geopolitical
region, or in the form of a string starting with the
character in front of a valid ISO 3166
country/country-subdivision code, which excludes
that country/country-subdivision from the previous list
of geopolitical regions.

“yn

The list is evaluated, in order, from left to right, with
evaluation of each candidate storage location
stopping when the candidate location is a permitted
or prohibited region or is contained within a permitted
or prohibited region. In addition to the ISO 3166
codes, “*” shall indicate all regions. If a candidate
location does not match any of the entries in the list,
the candidate location shall be considered to be
prohibited.

* When this data system metadata item is
absent, this data system metadata item shall
not be used.

* When this data system metadata item is
present and does not contain valid geopolitical
identifiers, the create, update, or deserialize
operation shall fail with an HTTP status code of
400 Bad Request.

* When this data system metadata item is
present and valid, but no available storage
locations are permitted, the create, update, or
deserialize operation shall fail with an HTTP
status code of 403 Forbidden.

Optional

continues on next page

© SNIA 2020

SNIA Technical Position

240

Cloud Data Management Interface 2.0.0

Table 142 — continued from previous page

Metadata name

Type

Description

Requirement

cdmi retention id

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the string be used to tag a given
object as being managed by a specific retention
policy. This data system metadata item is not
required to place an object under retention, but is
useful when needing to be able to perform a query to
find all objects under a specific retention policy.

When this data system metadata item is absent, or is
present and an empty string, this data system
metadata item shall not be used.

Optional

cdmi retention period

JSON
string

If this data system metadata item is present and
contains a valid ISO 8601:2004 time interval (as
described in), it indicates that the client is requesting
that an object be placed under retention (see 18.3).
When this data system metadata item is absent, this
data system metadata item shall not be used. When
this data system metadata item is present but does
not contain a valid ISO 8601:2004 time interval, the
create, update, or deserialize operation shall fail with
an HTTP status code of 400 Bad Request.

If this data system metadata item is updated and the
new end date is before the current end date, the
update operation shall fail with an HTTP status code
of 403 Forbidden

Optional

cdmi retention
— autodelete

JSON
string

If this data system metadata item is present and set
to “t rue”, it indicates that the client is requesting that
an object under retention be automatically deleted
when retention expires.

When this data system metadata item is absent, or is
present and is not set to “true”, this data system
metadata item shall not be used.

Optional

cdmi hold id

JSON
array
of
JSON
strings

If this data system metadata item is present and not
an empty array, it indicates that the client is
requesting that an object be placed under hold (see
18.4). Each string in the array shall contain a unique
user-specified hold identifier.

When this data system metadata item is absent, or is
present and is an empty JSON array, this data
system metadata item shall not be used.

If this data system metadata item is updated, and a
previously existing hold string has been removed or
changed in the update, the update operation shall fail
with an HTTP status code of 403 Forbidden. (See
18.4 concerning releasing holds.)

Optional

continues on next page

© SNIA 2020

SNIA Technical Position

241

Cloud Data Management Interface 2.0.0

Table 142 — continued from previous page

Metadata name Type Description Requirement
cdmi_encryption JSON If this data system metadata item is present and not Optional
string an empty string, it indicates that the client is

requesting that the object be encrypted while at rest.
If encrypted, all data and metadata related to the
object shall be encrypted. Supported
algorithm/mode/length values are provided by the
cdmi_encryption capability.

When this data system metadata item is absent, this
data system metadata item shall not be used.

If this data system metadata item is present but does
not contain a valid encryption algorithm/mode/length
string, the system is free to choose to ignore the data
system metadata, to fail with an HTTP status code of
400 Bad Request, or to select an encryption
algorithm/mode/length of the system’s choice.

Supported encryption algorithms are expressed as a
string in the form of
ALGORITHM_MODE_KEYLENGTH, where:

* “ALGORITHM is the encryption algorithm (e.g.,
“AES” or “3DES”).

+ “MODE” is the mode of operation (e.g., “XTS”,
“CBC”, or “CTR”).

* “KEYLENGTH” is the key size in bytes (e.g.,
“128”, 192", “256").

To improve interoperability between CDMI
implementations, the following designators should be
used for the more common encryption combinations:

* “3DES_ECB_168" for the three-key TripleDES
algorithm, the Electronic Code Book (ECB)
mode of operation, and a key size of 168 bits;

* “3DES_CBC_168” for the three-key TripleDES
algorithm, the Cipher Block Chaining (CBC)
mode of operation, and a key size of 168 bits;

* “AES_CBC_128" for the AES algorithm, the
CBC mode of operation, and a key size of 128
bits;

* “AES_CBC_256” for the AES algorithm, the
CBC mode of operation, and a key size of 256
bits;

* “AES XTS 128" for the AES algorithm, the
XTS mode of operation, and a key size of 128
bits; and

* “AES_XTsS 256" for the AES algorithm, the
XTS mode of operation, and a key size of 256
bits.

continues on next page

© SNIA 2020

SNIA Technical Position

242

Cloud Data Management Interface 2.0.0

Table 142 — continued from previous page

Metadata name

Type

Description

Requirement

cdmi value hash

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system hash the object value
using the hashing algorithm and length requested.
The result of the hash shall be provided in the
cdmi_hash storage system metadata item.
Supported algorithm/length values are provided by
the cdmi value hash storage system capability.

When this data system metadata item is absent, this
data system metadata item shall not be used.

If this data system metadata item is present but does
not contain a valid hash algorithm/length string, the
system is free to choose to ignore the data system
metadata, to fail with an HTTP status code of 400
Bad Request, or to select a hash algorithm/length
of the system’s choice.

Supported hash algorithms are expressed as a string
in the form of ALGORITHM LENGTH, where:
* “ALGORITHM is the hash algorithm (e.g.,
“SHA”).
* “LENGTH” is the hash size in bytes (e.g., “160”,
“256”).
To improve interoperability between CDMI
implementations, the following designators should be
used for the more common encryption combinations:
* “SHA160” for SHA-1, and
* “SHA256” for SHA-2.

Optional

cdmi latency

JSON
string

If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is requesting a desired maximum time to first byte, in
milliseconds. This metadata is the desired latency (in
milliseconds) to the first byte of data, as measured
from the edge of the cloud and factoring out any
propagation latency between the client and the cloud.
For example, this metadata may be used to
determine, in an interoperable way, from what type of
storage medium the data may be served.

When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

cdmi throughput

JSON
string

If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is requesting a desired maximum data rate on
retrieve, in bytes per second. This metadata is the
desired bandwidth to the data, as measured from the
edge of the cloud and factoring out any bandwidth
capability between the client and the cloud. This
metadata is used to stage the data in locations where
there is sufficient bandwidth to accommodate a
maximum usage.

When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

continues on next page

© SNIA 2020

SNIA Technical Position

243

Cloud Data Management Interface 2.0.0

Table 142 — continued from previous page

Metadata name

Type

Description

Requirement

cdmi sanitization
— method

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system use a specific sanitization
method to delete data such that the data is
unrecoverable after an update or delete operation.
Supported sanitization method values are provided
by the cdmi sanitization method capability.

When this data system metadata item is absent, this
data system metadata item shall not be used.

If this data system metadata item is present but does
not contain a valid sanitization method string, the
system is free to choose to ignore the data system
metadata, to fail with an HTTP status code of 400
Bad Request, or to select a sanitization method of
the system’s choice.

Supported sanitization methods are defined as
system-specific strings.

Optional

cdmi RPO

JSON
string

If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is requesting a largest acceptable duration in time
between an update or create and when the object
may be recovered, specified in seconds. This
metadata is used to indicate the desired backup
frequency from the primary copy or copies of the data
to the secondary copy or copies. It is the maximum
acceptable time period before a failure or disaster
during which changes to data may be lost as a
consequence of recovery.

When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

cdmi RTO

JSON
string

If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is requesting the largest acceptable duration in time
to restore data, specified in seconds. This metadata
is used to indicate the desired maximum acceptable
duration to restore the primary copy or copies of the
data from a secondary backup copy or copies.

When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

cdmi enc key id

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system associate with the object a
key identifier (e.g. KMIP Identifier) for the symmetric
key used to encrypt and decrypt the object.

Optional

cdmi enc value sign id

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system associate with the object a
key identifier (e.g. KMIP Identifier) for the private key
used for signing the value of the object.

Optional

cdmi enc value verify
— id

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system associate with the object a
key identifier (e.g. KMIP Identifier) for the public key
or certificate chain used for verifying the signature of
the value of the object.

Optional

continues on next page

© SNIA 2020

SNIA Technical Position

244

Cloud Data Management Interface 2.0.0

Table 142 — continued from previous page

Metadata name

Type

Description

Requirement

cdmi enc object sign
— _id

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system associate with the object a
key identifier (e.g. KMIP Identifier) for the private key
used for signing the entire object.

Optional

cdmi enc object verify
— id

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system associate with the object a
key identifier (.e.g. KMIP Identifier) for the public key
or certificate chain used for verifying the signature of
the entire object.

Optional

cdmi versioning

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that versioning be enabled for the data
object, and what level of versioning is requrested.

* If set to the value “value”, versions shall be
created when the value is updated.

« If set to the value “user”, versions shall be
created when the value and/or user metadata
is updated.

* If set to the value “a11”, versions shall be
created when any update is performed against
the version-enabled data object.

This data system metadata item shall not be present
in data object versions.

Optional

cdmi versions count

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting limits on the maximum number of
historical versions to be retained.

* If cdmi_versions_count is not present, no
limits should be placed on the number of
versions that are retained.

* If cdmi versions count is present and has
a value of zero, only the current version should
be retained.

* If cdmi_versions_count is present and has
a value greater than zero, up to the specified
number of historical versions should be
retained.

+ If the number of historical versions exceeds the
value specified, historical versions should be
deleted from the oldest to the newest until the
number of historical versions equals the value
contained in cdmi_versions count.

Optional

cdmi versions age

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting limits on the maximum age of the oldest
historical version requested to be retained.

* If cdmi_versions_age is not present, no
limit should be placed on the age of versions
that are retained.

* If cdmi versions_ age is present, historical
versions should be retained until their age in
seconds since creation is greater than the
value contained in cdmi_versions_age.

+ If the age of a historical version exceeds the
value specified, that historical version should
be deleted.

Optional

continues on next page

© SNIA 2020

SNIA Technical Position

245

Cloud Data Management Interface 2.0.0

Table 142 — continued from previous page

Metadata name Type Description Requirement
cdmi versions_size JSON If this data system metadata item is present and not Optional
string an empty string, it indicates that the client is

requesting limits on the maximum amount of space to
be used to retain historical versions.
* If cdmi_versions_size is not present, no

limit should be placed on the size of versions
that are retained.

If cdmi versions size is present, historic
versions should be retained until the total
storage consumption in bytes of the historical
versions exceeds the value contained in

cdmi versions size.

If the total size consumed by historical versions
exceeds the value specified, historical versions
should be deleted from the oldest to the
newest until the total storage consumption of
historical versions is equal or less than the
value contained in cdmi_versions_size.

© SNIA 2020

SNIA Technical Position

246

3169

3170
3171

3172

Cloud Data Management Interface 2.0.0

16.4 Support for provided data system metadata

For each metadata item in a data system, there is an actual value that the cloud service is able to achieve at this time, as
shown in tbl provided values of data systems metadata items. Data system-provided metadata items
are read only. Updates of these metadata items shall be ignored.

Table 143: Provided values of data system metadata

Metadata name Type Description Requirement
cdmi_ data_ redundancy provided JSON Contains the current number of complete Optional
string copies of the data object at this time
cdmi immediate redundancy JSON If present and set to “t rue”, indicates if Optional
— provided string immediate redundancy is provided for the
object
cdmi infrastructure JSON Contains the current number of Optional
— redundancy_ provided string independent storage infrastructures
supporting the data currently operating
cdmi data_ dispersion provided JSON Contains the current lowest distance (km) Optional
string between any two infrastructures hosting
the data
cdmi_geographic placement JSON Contains an 1ISO-3166 identifier that Optional
< provided array corresponds to a geopolitical region where
of the object is stored
JSON
strings
cdmi retention period provided | JSON Contains an ISO-8601 time interval (as Optional
string described in 5.6) specifying the period the
object is protected by retention
cdmi_retention autodelete JSON Contains “t rue” if the object will Optional
< provided string automatically be deleted when retention
expires
cdmi _hold id provided JSON Contains the user-specified hold identifiers | Optional
array for active holds
of
JSON
strings
cdmi_encryption provided JSON Contains the algorithm used for Optional
string encryption, the mode of operation, and the
key size. (See cdmi_encryptionin 16.3
for the format.)
cdmi_value hash provided JSON Contains the algorithm and length being Optional
string used to hash the object value. See
cdmi_value hash in 16.3 for the format.
cdmi latency provided JSON Contains the provided maximum time to Optional
string first byte
cdmi_ throughput provided JSON Contains the provided maximum data rate Optional
string on retrieve
cdmi sanitization method JSON Contains the sanitization method used. Optional
— provided string See cdmi_sanitization methodin
16.3 for the format.
cdmi RPO provided JSON Contains the provided duration, in Optional
string seconds, between an update and when
the update may be recovered
cdmi RTO_provided JSON Contains the provided duration, in Optional
string seconds, to restore data

continues on next page

© SNIA 2020

SNIA Technical Position

247

Cloud Data Management Interface 2.0.0

Table 143 — continued from previous page

Metadata name Type Description Requirement
cdmi_ authentication methods_ JSON Contains a list of authentication methods Optional
< provided array enabled for the domain. See
of cdmi_authentication methods in
JSON 16.3 for the format.
strings
cdmi_versioning provided JSON Contains the value “value”, “user”, or Optional
string “al1”if versioning is enabled for the data
object.
cdmi versions count provided JSON Contains the maximum number of Optional
string historical versions that will be retained.
cdmi versions_age provided JSON Contains the oldest age of a historical Optional
string version that will be retained, in seconds
before the current time.
cdmi versions size provided JSON Contains the maximum amount of space Optional
string that can be used to retain historical
versions, in bytes.

© SNIA 2020

SNIA Technical Position

248

3173

3174

3175

3176

3177

3178
3179

Cloud Data Management Interface 2.0.0

16.5 Support for user metadata

All CDMI objects that support metadata shall permit the inclusion of arbitrary user-defined metadata items, with the
restriction that the name of a user-defined metadata item shall not start with the prefix “cdmi_”.

» The maximum number of user-defined metadata items is specified by the capability cdmi metadata maxitems.
» The maximum size of each user-defined metadata item is specified by the capability cdmi metadata maxsize.

* The maximum total size of user-defined metadata items for an object is specified by the capability
cdmi metadata maxtotalsize.

© SNIA 2020 SNIA Technical Position 249

3180

3181
3182

3183
3184

3185
3186

3187
3188

3189
3190

3191
3192

3193

3194

Cloud Data Management Interface 2.0.0

16.6 Metadata update operations

CDMI permits a client to replace all metadata items or to perform operations against one or more individual metadata
items.

Replacing all metadata items is accomplished by including the metadata field in the update request body JSON and not
specifying specific metadata items in the update URI.

Adding, updating, and removing specific metadata items is accomplished by specifying the specific metadata item names
in the update URI:

+ To add a new metadata item to an existing object, the metadata item name shall be included in the update request
URI, and the metadata item shall be included in the metadata field in the update request body JSON.

» To update the value of an existing metadata item, the metadata item name shall be included in the update request
URI, and the metadata item shall be included in the metadata field in the update request body JSON.

+ To remove an existing metadata item, the metadata item name shall be included in the update request URI, and
the metadata item shall not be included in the metadata field in the update request body JSON.

When individual metadata items are specified in the update URI, metadata items included in the metadata field in the
request body JSON that are not referred to in the update URI shall be ignored.

© SNIA 2020 SNIA Technical Position 250

Cloud Data Management Interface 2.0.0

- Clause 17

.. Access control

« 17.1 Overview

as Access control defines the mechanisms by which access to objects are permitted or denied. The CDMI International
ae Standard supports the following options for access control:

3200 * No access control

3201 » Access Control List (ACL) based access control (See 17.2.1)
3202 + Domain based access control (See 10.2.5)

3203 » Delegated access control (See clause 24)

3204 » Vendor-defined access control extensions

3205 « Combinations of the above

© SNIA 2020 SNIA Technical Position 251

3206

3207
3208

3209

3210

3211
3212
3213

3214

3215
3216

3217

3218

3219

3220

3221

3222

3223
3224

3225

3226
3227

3228

3229

3230

3231

3232

3233

3234
3235
3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

Cloud Data Management Interface 2.0.0

17.2 Access control flow

Fig. 11 illustrates the control flow for access control in an example CDMI implementation. As every aspect of access
control is optional within a CDMI server, each different implementations will typically implement appropriate subsets of
the illustrated access control flow, in a manner approprate to the internal architecture of their implementation.

The full contol flow can include 24 steps:

1.

o ok w

The CDMI client initiates a CDMI operation by sending a CDMI request to a CDMI server. As part of the request,
the CDMI client includes information about its identity and information to prove this identity (credentials). The
method by which these credentials are presented and formatted is not specified in this International Standard,
however, some guidance is provided in 5.4.3.

If the CDMI server supports Domains (see clause 10), the CDMI server obtains the domain associated with the
object the CDMI operation is being performed against. If the CDMI system does not support domains, steps 2 -
8 are skipped.

The CDMI server obtains required information about the domain associated with the object.
Domain Information is returned for further use.
Domain information is used to resolve CDMI client credentials.

If the Domain is configured to delegate identity resolution to an external system (such as Active Directory), cre-
dentials are sent to this external system for resolution.

If the Domain is configured to use local membership, credentials are compared against the configured domain
members (see 10.4).

8. The resolved principle (user, group, indication of validity) is returned for further use.
9. If the CDMI server supports ACLs (see 17.2.1), the CDMI server evaluates the object ACL. If the CDMI system

10.
1.
12.
13.
14.
15.
16.

17.
18.
19.
20.
21.
22.
23.
24,

does not support ACLs, steps 9 - 15 are skipped.

The CDMI ACL processing subsystem obtains the ACL for the object.

The CDMI server obtains ACL metadata associated with the object.

If the object is in a container, the CDMI server obtains ACL metadata for parent containers.

The obtained ACL metadata is returned for further use.

The CDMI ACL processing subsystem evaluates the resolved principals against the resolved ACL.
The evaluated permission mask is returned for further use.

If the CDMI server supports Delegated Access Control (DAC) (see clause 24), the CDMI server obtains DAC
metadata associated with the object the CDMI operation is being performed against. If the CDMI system does
not support DAC, steps 16 - 22 are skipped.

The CDMI server obtains DAC metadata associated with the object.

DAC metadata is returned for further use.

If DAC metadata is present and indicates that DAC is to be used, the specified delegation is performed.
The external DAC provider is contacted, including the evaluated Object permission mask.

If a valid DAC response is received, the dac_applied_mask replaces the evaluated Object permission mask.
The DAC results and Object permission mask is returned for further use.

The Object permission mask is used to determine if the requested operation is permitted.

The operation is permitted or denied, and the corresponding response returend to the CDMI Client.

Steps 2 - 8, 9 - 15, and 16 - 18 may be performed in parallel.

© SNIA 2020 SNIA Technical Position 252

Cloud Data Management Interface 2.0.0

lllustrative Logical Subdivisions within an Example CDMI Server

| CDMI Request

Originating CDMI Metadata CDMI Domain CDMIACL
Client Processing Repository Processing Processing
>
>
1. CDMI Request »
2. If domains 3. Obtain Object
supported, get Object Domain
Domain
<
<
4. Object Domain
|-
>

<

delegation

Delegation Metadata
present, perform

5. If domains 6. If delegated to
supported, resolve external system,
principals perform lookup
7. If not delegated,
look up user identity in
local domain
membership
<
-
8. Resolved user/
group
»
»
9. If ACLs supported, 10. Obtain local ACL
get Object ACL
<
-
11. Obtain Object ACL
Metadata
12. Obtain Inherited
ACL Metadata
>
13. Object ACL 14. Evaluate ACL
Metadata against principal and
requested operation
<
-
15. Object
Permissions Mask
»
Ll . .
16. If delegated 17. Obtain Object
access control Delegation Metadata
supported, get
delegation metadata
«
18. Object Delegation
Metadata
»
»
19. If delegated
access control
supported, and Object

<
«

-
24. CDMI Response

23. Determine if
operation permitted

Fig. 11: Access control flow

22. Delegated Access
Control Response

CDMI Delegated
Access Control

20. Contact external
delegated access
control provider

21. Update Object
Permissions Mask

© SNIA 2020

SNIA Technical Position

253

3246

3247
3248

3249

3250
3251
3252
3253
3254

3255
3256
3257

3258

3259

3260
3261

3262
3263

3264

3265
3266
3267
3268

3269

Cloud Data Management Interface 2.0.0

17.2.1 General mechanisms

CDMI uses the well-known mechanism of an Access Control List (ACL) as defined in the NFSv4 standard (see RFC
3530 [1]). ACLs are lists of permissions-granting or permissions-denying entries called Access Control Entries (ACEs).

17.2.2 ACL and ACE structure

An ACL is an ordered list of ACEs. The two types of ACEs in CDMI are ALLOW and DENY. An ALLOW ACE grants some
form of access to a principal. Principals are either users or groups and are represented by identifiers. A DENY ACE
denies access of some kind to a principal. For instance, a DENY ACE may deny the ability to write the metadata or ACL
of an object but may remain silent on other forms of access. In that case, if another ACE ALLOWSs write access to the
object, the principal is allowed to write the object’s data, but nothing else.

ACEs are composed of four fields: type, who, flags and access mask, as per RFC 3530 [1]. The type, flags,
and access_mask shall be specified as either unsigned integers in hex string representation or as a comma-delimited
list of bit mask string form values taken from ACE types, ACE flags, and ACE masks bits.

17.2.3 ACE types
Table 144 defines the following ACE types, as specified in section 5.11.1 of RFC 3530 [1].

Table 144: ACE types

String Description Constant Bit mask

form

“ALLOW” | Allow access rights for a principal “CDMI_ACE ACCESS ALLOW 0x00000000

“DENY” Deny access rights for a principal “CDMI_ACE ACCESS_DENY” 0x00000001

“AUDIT” | Generate an audit record when the principal “CDMI_ACE SYSTEM AUDIT" 0x00000002
attempts to exercise the specified access rights

The reason that the string forms may be safely abbreviated is that they are local to the ACE structure type, as opposed
to constants, which are relatively global in scope.

The client is responsible for ordering the ACEs in an ACL. The server shall not enforce any ordering and shall store and
evaluate the ACEs in the order given by the client.

17.2.4 ACE who

The special “who” identifiers need to be understood universally, rather than in the context of a particular external security
domain (see Who identifiers). Some of these identifiers may not be understood when a CDMI client accesses the server,
but they may have meaning when a local process accesses the file. The ability to display and modify these permissions
is permitted over CDMI, even if none of the access methods on the server understands the identifiers.

Table 145: Who identifiers

Who Description

“OWNERQ” The owner of the file

“GRoUPR” The group associated with the file

“EVERYONEQ” The world

“ANONYMOUS@” Access without authentication

“AUTHENTICATEDQ” | Any authenticated user (opposite of “ANONYMOUSR”)
“ADMINISTRATORR” | A user with administrative status, e.g., “root”
“ADMINUSERS@” A group whose members are given administrative status

To avoid name conflicts, these special identifiers are distinguished by an appended “@” (with no domain name).

© SNIA 2020 SNIA Technical Position 254

3270

3271
3272
3273
3274

Cloud Data Management Interface 2.0.0

17.2.5 ACE flags

CDMI allows for nested containers and mandates that objects and subcontainers be able to inherit access permissions
from their parent containers. However, it is not enough to simply inherit all permissions from the parent; it might be
desirable, for example, to have different default permissions on child objects and subcontainers of a given container.
The flags in Table 146 govern this behavior.

Table 146: ACE flags

String form

Description

Constant

Bit mask

“NO_FLAGS”

No flags are set

‘CDMI_ACE FLAGS NONE”

0x00000000

“OBJECT INHERIT”

An ACE on which

“OBJECT INHERIT”is setis
inherited by objects as an effective
ACE: “OBJECT INHERIT" is
cleared on the child object. When
the ACE is inherited by a
container, “OBJECT_ INHERIT”is
retained for the purpose of
inheritance, and additionally,
“INHERIT ONLY”is set.

“CDMI_ACE FLAGS
OBJECT INHERIT ACE”

0x00000001

“CONTAINER INHERIT”

An ACE on which

“‘CONTAINER INHERIT”is setis
inherited by a subcontainer as an
effective ACE.

Both "INHERIT ONLY” and
“‘CONTAINER INHERIT” are
cleared on the child container.

“CDMI_ACE FLAGS
CONTAINER INHERIT ACE”

0x00000002

“NO_PROPAGATE”

An ACE on which
“NO_PROPAGATE” is set is not
inherited by any objects or
subcontainers. It applies only

to the container on which it is set.

“CDMI_ACE FLAGS
NO PROPAGATE ACE”

0x00000004

“INHERIT ONLY”

An ACE on which

“INHERIT ONLY”is setis
propagated to children during ACL
inheritance as specified

by "OBJECT INHERIT” and
“‘CONTAINER INHERIT”. The
ACE is ignored when

evaluating access to the container
on which it is set and is always
ignored when set on objects.

“CDMI_ACE FLAGS
INHERIT ONLY ACE

”»

0x00000008

“IDENTIFIER GROUP”

An ACE on which

“IDENTIFIER GROUP”is set
indicates that the “who” refers to a
group identifier.

“CDMI_ACE FLAGS
IDENTIFIER GROUP

0x00000040

“INHERITED”

An ACE on which “INHERITED” is
set indicates that this ACE is
inherited from a parent directory.
A server that supports automatic
inheritance will place this flag

on any ACEs inherited from the
parent directory when creating a
new object.

“CDMI_ACE_FLAGS_
INHERITED ACE”

0x00000080

© SNIA 2020

SNIA Technical Position

255

3275

3276
3277

Cloud Data Management Interface 2.0.0

17.2.6 ACE mask bits

The mask field of an ACE contains a 32 bit mask, as specified in section 5.11.2 of RFC 3530 [1]. Table 146 defines the
impact of each bit in an ACE mask field.

Table 147: ACE masks bits

String form

Description

Constant

Bit mask

“READ OBJECT”

If true, indicates permission to
read the value of an object.

If false:

+ A CDMI GET that requests
all fields shall return all
permitted fields with the
value field excluded.

* A CDMI GET that requests
specific fields shall return
requested permitted fields
with the value field
excluded.

» A CDMI GET for only the
value field shall return an
HTTP status code of 403
Forbidden.

* A non-CDMI GET shall
return an HTTP status code
of 403 Forbidden.

“CDMI_ACE READ OBJECT”

0x00000001

“LIST CONTAINER’

If true, indicates permission to list
the children of an object.

If false:

+ A CDMI GET that requests
all fields shall return all
permitted fields with the
children field and
childrenrange field
excluded.

+ A CDMI GET that requests
specific fields shall return
the requested permitted
fields with the children field
and childrenrange field
excluded.

» A CDMI GET for only the
children field and/or
childrenrange field shall
return an HTTP status code
of 403 Forbidden.

“CDMI_ACE LIST CONTAINER’

0x00000001

‘WRITE_OBJECT”

If true, indicates permission to
modify the value of an object

If false, a PUT that requests
modification of the value of an
object shall return an HTTP status
code of 403 Forbidden.

“CDMI_ACE WRITE OBJECT”

0x00000002

continues on next page

© SNIA 2020

SNIA Technical Position

256

Cloud Data Management Interface 2.0.0

Table 147 — continued from previous page

String form

Description

Constant

Bit mask

“ADD_OBJECT”

If true, indicates permission to add
a new child data object or queue
object.

If false, a PUT or POST that
requests creation of a new child
data object or new queue object
shall return an HTTP status code
of 403 Forbidden.

“CDMI_ACE_ADD OBJECT”

0x00000002

“APPEND_ DATA”

If true, indicates permission to
append data to the value of a data
object.

If “APPEND DATA” is true and
‘WRITE_OBJECT” is false, a PUT
that requests modification of any
existing part of the value of an
object shall return an HTTP status
code of 403 Forbidden.

“CDMI_ACE APPEND DATA”

0x00000004

“ADD SUBCONTAINER”

If true, indicates permission to
create a child container object or
domain object.

If false, a PUT that requests
creation of a new child container
object or new domain object shall
return an HTTP status code of
403 Forbidden.

“CDMI_ACE ADD
SUBCONTAINER”

0x00000004

“READ_METADATA”

If true, indicates permission to
read the metadata of an object.

If false:

+ A CDMI GET that requests
all fields shall return all
permitted fields with the
metadata field excluded.

» A CDMI GET that requests
specific fields shall return
the requested permitted
fields with the metadata
field excluded.

+ A CDMI GET for only the
metadata field shall return
an HTTP status code of
403 Forbidden.

‘CDMI_ACE READ METADATA”

0x00000008

‘WRITE_METADATA"

If true, indicates permission to
modify the metadata of an object.

If false, a CDMI PUT that requests
modification of the metadata field
of an object shall return an HTTP
status code of 403 Forbidden.

“‘CDMI_ACE_WRITE METADATA"

0x00000010

“EXECUTE”

If true, indicates permission to
execute an object.

“CDMI_ACE EXECUTE”

0x00000020

“TRAVERSE
CONTAINER”

If true, indicates permission to
traverse a container object or
domain object.

If false, all operations against all
children below the container shall
return an HTTP status code of
403 Forbidden.

“CDMI_ACE TRAVERSE
CONTAINER”

0x00000020

continues on next page

© SNIA 2020

SNIA Technical Position

257

Cloud Data Management Interface 2.0.0

Table 147 — continued from previous page

String form

Description

Constant

Bit mask

‘DELETE_OBJECT”

If true, indicates permission to
delete a child data object or child
queue object from a container
object.

If false, all DELETE operations
shall return an HTTP status code
of 403 Forbidden.

‘CDMI_ACE DELETE OBJECT”

0x00000040

“DELETE
SUBCONTAINER”

If true, indicates permission to
delete a child container object
from a container object or to
delete a child domain object from
a domain object.

If false, all DELETE operations
shall return an HTTP status code
of 403 Forbidden.

“CDMI_ACE DELETE
SUBCONTAINER”

0x00000040

“READ ATTRIBUTES”

If true, indicates permission to
read the attribute fields' of an
object.

If false:

+ A CDMI GET that requests
all fields shall return all
non-attribute fields and shall
not return any attribute
fields.

+ A CDMI GET that requests
at least one non-attribute
field shall only return the
requested non-attribute
fields.

+ A CDMI GET that requests
only non-attribute fields
shall return an HTTP status
code of 403 Forbidden.

“CDMI_ACE READ
ATTRIBUTES”

0x00000080

‘WRITE ATTRIBUTES”

If true, indicates permission to
change attribute fields[#a]_ of an
object.

If false, a CDMI PUT that requests
modification of any non-attribute
field shall return an HTTP status
code of 403 Forbidden.

“CDMI_ACE WRITE
ATTRIBUTES”

0x00000100

‘WRITE_RETENTION”

If true, indicates permission to
change retention attributes of an
object.

If false, a CDMI PUT that requests
modification of any non-hold
retention metadata items shall
return an HTTP status code of
403 Forbidden.

“CDMI_ACE WRITE
RETENTION”

0x00000200

‘WRITE_RETENTION
HOLD”

If true, indicates permission to
change retention hold attributes of
an object.

If false, a CDMI PUT that requests
modification of any retention hold
metadata items shall return an
HTTP status code of 403
Forbidden.

“CDMI_ACE WRITE
RETENTION HOLD”

0x00000400

continues on next page

© SNIA 2020

SNIA Technical Position

258

Cloud Data Management Interface 2.0.0

Table 147 — continued from previous page

String form

Description

Constant

Bit mask

“DELETE”

If true, indicates permission to
delete an object.

If false, all DELETE operations
shall return an HTTP status code
of 403 Forbidden.

“‘CDMI_ACE DELETE”

0x00010000

“READ_ACL”

If true, indicates permission to
read the ACL of an object.

If false:

+ A CDMI GET that requests
all metadata items shall
return all permitted
metadata items with the
‘cdmi_acl” metadata item
excluded.

+ A CDMI GET that requests
specific metadata items
shall return the requested
permitted metadata items
with the “cdmi_acl”
metadata item excluded.

+ A CDMI GET for only the
cdmi_acl metadata item
shall return an HTTP status
code of 403 Forbidden.

If “READ_ACL” is true and

“READ METADATA” is false, then
to read the ACL, a client CDMI
GET for only the “cdmi_acl”
metadata item shall be permitted.

“CDMI_ACE_READ ACL”

0x00020000

‘WRITE ACL”

If true, indicates permission to
write the ACL of an object.

If false:

* If'WRITE ACL’is false, a
CDMI PUT that requests
modification of the
‘cdmi_acl” metadata item
shall return an HTTP status
code of 403 Forbidden.

* If"WRITE ACL”is true and
“WRITE_METADATA” is
false, then to write the ACL,
a client CDMI PUT for only
the “cdmi_acl” metadata
item shall be permitted.

“CDMI_ACE WRITE ACL’

0x00040000

continues on next page

© SNIA 2020

SNIA Technical Position

259

3278
3279

3280

3281
3282
3283

3284
3285
3286

3287

3288
3289

3290
3291

3292
3293

3294

3295

3296
3297
3298
3299

3300
3301

Cloud Data Management Interface 2.0.0

Table 147 — continued from previous page
String form Description Constant Bit mask

‘WRITE OWNER” If true, indicates permission to “‘CDMI_ACE WRITE OWNER” 0x00080000
change the owner of an object.

If false:

+ If “WRITE OWNER” is false,
a CDMI PUT that requests
modification of the
‘cdmi_owner” metadata
item shall return an HTTP
status code of 403
Forbidden.

* If“WRITE OWNER”is true
and “WRITE METADATA” is
false, then to write the
owner, a client CDMI PUT
for only the “cdmi_owner”
metadata item shall be
permitted.

“SYNCHRONIZE" If true, indicates permission to “CDMI_ACE SYNCHRONIZE” 0x00100000
access an object locally at the
server with synchronous reads
and writes.

Implementations shall use the correct string form to display permissions, if the object type is known. If the object type
is unknown, the “object” version of the string shall be used.

17.2.7 ACL evaluation

When evaluating whether access to a particular object O by a principal P is to be granted, the server shall traverse
the object’s logical ACL (its ACL after processing inheritance from parent containers) in list order, using a temporary
permissions bitmask m, initially empty (all zeroes), and apply the following algorithm:

« If the object still does not contain an ACL, the algorithm terminates and access is denied for all users and groups.
This condition is not expected, as CDMI implementations should require an inheritable default ACL on all root
containers.

ACEs that do not refer to the principal P requesting the operation are ignored.

« If an ACE is encountered that denies access to P for any of the requested mask bits, access is denied and the
algorithm terminates.

« If an ACE is encountered that allows access to P, the permissions mask m for the operation is XORed with the
permissions mask from the ACE. If m is sufficient for the operation, access is granted and the algorithm terminates.

If the end of the ACL list is reached and permission has neither been granted nor explicitly denied, access is
denied and the algorithm terminates, unless the object is a container root. In this case, the server shall:

— allow access to the container owner, “ADMINISTRATORR”, and any member of “ADMINUSERSR”; and
— log an event indicating what has happened.

When permission for the desired access is not explicitly given, even “ADMINISTRATORR” and equivalents are denied
for objects that aren’t container roots. When an admin needs to access an object in such an instance, the root container
shall be accessed and its inheritable ACEs changed in a way as to allow access to the original object. The resulting log
entry then provides an audit trail for the access.

When a root container is created and no ACL is supplied, the server shall place an ACL containing the following ACEs
on the container:

" The value fields, children fields, and metadata field are considered to be non-attribute fields. All other fields are considered to be attribute
fields.

© SNIA 2020 SNIA Technical Position 260

3302

3303

3304
3305
3306
3307

3308
3309

Cloud Data Management Interface 2.0.0

"cdmi_acl":
[
{
"acetype": "ALLOW",
"identifier": "OWNERQ",
"aceflags": "OBJECT INHERIT, CONTAINER INHERIT",
"acemask": "ALL PERMS"
}I
{
"acetype": "ALLOW",
"identifier": "AUTHENTICATED@",
"aceflags": "OBJECT INHERIT, CONTAINER INHERIT",
"acemask": "READ"

As ACLs are storage system metadata, they are stored and retrieved through the metadata field included in a PUT or
GET request. The syntax is as follows, using the constant strings from ACE types, ACE flags, and ACE masks bits:

ACL = { ACE [, ACE ...] }

ACE = { acetype , identifier , aceflags , acemask }

acetype = uint t | acetypeitem

identifier = utf8string t

aceflags = uint t | aceflagsstring

acemask = uint t | acemaskstring

acetypeitem = aceallowedtype | acedeniedtype | aceaudittype
aceallowedtype = "CDMI_ACE ACCESS ALLOWED TYPE" | 0xO
acedeniedtype = "CDMI_ACE ACCESS DENIED TYPE" | 0x01
aceaudittype = "CDMI_ACE_SYSTEM AUDIT TYPE" | 0x02
aceflagsstring = aceflagsitem [| aceflagsitem ...]
aceflagsitem = aceobinherititem | acecontinherititem | acenopropagateitem |

—aceinheritonlyitem

aceobinherititem = "CDMI_ACE_OBJECT INHERIT ACE" | 0x01

acecontinherititem = "CDMI_ACE_CONTAINER INHERIT ACE" | 0x02

acenopropagateitem = "CDMI_ACE NO_PROPAGATE INHERIT ACE" | 0x04

aceinheritonlyitem = "CDMI ACE INHERIT ONLY ACE" | 0x08

acemaskstring = acemaskitem [| acemaskitem ...]

acemaskitem = acereaditem | acewriteitem | aceappenditem | acereadmetaitem |']

—acewritemetaitem | acedeleteitem | acedelselfitem | acereadaclitem | acewriteaclitem |
—aceexecuteitem | acereadattritem | acewriteattritem | aceretentionitem

acereaditem = "CDMI ACE READ OBJECT" | "CDMI_ACE LIST CONTAINER" | 0x01
acewriteitem = "CDMI_ACE WRITE OBJECT" | "CDMI_ACE ADD OBJECT" | 0x02
aceappenditem = "CDMI_ACE APPEND DATA" | "CDMI_ACE ADD SUBCONTAINER" | 0x04
acereadmetaitem = "CDMI_ACE_READ METADATA" | 0x08

acewritemetaitem = "CDMI_ACE WRITE METADATA" | 0x10

acedeleteitem = "CDMI ACE DELETE OBJECT" | "CDMI ACE DELETE SUBCONTAINER" | 0x40
acedelselfitem = "CDMI ACE DELETE" | 0x10000

acereadaclitem = "CDMI_ACE READ ACL" | 0x20000

acewriteaclitem = "CDMI ACE WRITE ACL"™ | 0x40000

aceexecuteitem = "CDMI_ACE EXECUTE" | 0x80000

acereadattritem = "CDMI_ACE_READ ATTRIBUTES" | 0x00080

acewriteattritem = "CDMI ACE WRITE ATTRIBUTES" | 0x00100

aceretentionitem = "CDMI ACE SET RETENTION" | 0x10000000

When ACE masks are presented in numeric format, they shall, at all times, be specified in hexadecimal notation with a
leading “0x”. This format allows both servers and clients to quickly determine which of the two forms of a given constant
is being used. When masks are presented in string format, they shall be converted to numeric format and then evaluated
using standard bitwise operators.

When an object is created, no ACL is supplied, and an ACL is not inherited from the parent container (or there is no
parent container), the server shall place an ACL containing the following ACEs on the object:

"cdmi acl":

[

(continues on next page)

© SNIA 2020 SNIA Technical Position 261

3310

3311

3312

3313

3314

3315

3316

3317

3318
3319
3320

3321

3322

3323

3324

3325

3326

3327
3328

3329

3330

Cloud Data Management Interface 2.0.0

(continued from previous page)

"acetype": "ALLOW",

"identifier": "OWNERE@",

"aceflags": "OBJECT_ INHERIT, CONTAINER INHERIT",
"acemask": "ALL PERMS"

17.2.8 Example ACE mask expressions

Example 1:

"READ ALL" | 0x02 ‘

evaluates to 0x09 | 0x02 == 0x0

Example 2:

’OxOOlFO7FF ‘

evaluates to 0x001F07FF == “ALL_PERMS”

Example 3:

’"RW_ALL" | DELETE

evaluates to 0x000601DF | 0x00100000 == 0x000701DF

17.2.9 Canonical format for ACE hexadecimal quantities

ACE mask expressions may be evaluated and converted to a string hexadecimal value before transmission in a CDMI
JSON body. Applications or utilities that display them to users should convert them into a text expression before display
and accept user input in text format as well.

The following technique should be used to decompose masks into strings. A table of masks and string equivalents
should be maintained and ordered from greatest to least:

Table 148: ACE bit mask/string

Hex form Object string form Container string form
0x001FO7FF ‘ALL_PERMS” ‘ALL PERMS”
0x0006006F “RW_ALL’ “RW_ALL”
0x0000001F “RW” “RW”

0x00000002 ‘WRITE OBJECT” “ADD OBJECT”
0x00000001 “READ OBJECT” “LIST CONTAINER’

Given an access mask M, the following is repeated until M == 0:

1. Select the highest mask m from the table such that M & m == m.

2. If the object is a container, select the string from the 3rd column; otherwise, select the string from the 2nd column.
3. Bitwise subtract m from M, i.e., set M = M xor m.
4

. The complete textual representation is then all the selected strings concatenated with“, " between them,
e.g., " 'ALL PERMS, WRITE OWNER”. The strings should appear in the order they are selected.

A similar technique should be used for all other sets of hex/string equivalents.
This algorithm, properly coded, requires only one (often partial) pass through the corresponding string equivalents table.

© SNIA 2020 SNIA Technical Position 262

3331

3332
3333
3334

3335

3336

Cloud Data Management Interface 2.0.0

17.2.10 JSON format for ACLs

ACE flags and masks are members of a 32-bit quantity that is widely understood in its hexadecimal representations.
The JSON data format does not support hexadecimal integers, however. For this reason, all hexadecimal integers in
CDMI ACLs shall be represented as quoted strings containing a leading “0x”.

ACLs containing one or more ACEs shall be represented in JSON as follows:

{

"cdmi acl" : [

{
"acetype" : "Oxnn",
"identifier" : "<user-or-group-name>",
"aceflags" : "Oxnn",
"acemask" : "Oxnn"

}I

{
"acetype" : "Oxnn",
"identifier" : "<user-or-group-name>",
"aceflags" : "Oxnn",
"acemask" : "Oxnn"

}

ACEs in such an ACL shall be evaluated in order as they appear.

EXAMPLE 1: An example of an ACL embedded in a response to a GET request is as follows:

HTTP/1.1 200 OK
Content-Type: application/cdmi-object

{

"objectType" : "/application/cdmi-object",
"objectID" : "00007ED9001086A99CC6487FEE373D82",
"objectName" : "MyDataltem.txt",
"parentURI" : "/MyContainer/",
"domainURI" : "/cdmi domains/MyDomain/",
"capabilitiesURI" : "/cdmi capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {
"cdmi_size" : "17",
"cdmi acl" : [
{
"acetype" : "0x00",
"identifier" : "EVERYONEQR",
"aceflags" : "0x00",
"acemask" : "0x00020089"
}
]l
}’
"valuerange" : "0-16",
"value" : "Hello CDMI World!"

© SNIA 2020 SNIA Technical Position 263

Cloud Data Management Interface 2.0.0

.- Clause 18

.. Retention and hold management

w 18.1 Overview

awo A cloud storage system may optionally implement retention management disciplines into the system management func-
= tionality of the cloud-based storage system. The implementation of retention and hold capabilities is indicated by the
w2 presence of the cloud storage system-wide capabilities for retention and hold capabilities.

sz Retention management includes implementing a retention policy, defining a hold policy to enable objects to be held
waa for specific purposes (e.g., litigation), and defining how the rules for deleting objects are affected by placing either a
sus retention policy and/or a hold on an object. CDMI™ object deletion is not a capability of retention management, per se,
sus but rather is a general system capability. However, this clause describes what happens when placing either a retention
sz policy and/or a hold on an object.

sus Retention management may be applied to the following object types:

3349 + data objects,
3350 * queue objects, and
3351 + container objects.

© SNIA 2020 SNIA Technical Position 264

3352

3353
3354
3355

3356

3357
3358
3359

3360

3361
3362

3363
3364

3365
3366
3367
3368

Cloud Data Management Interface 2.0.0

18.2 Retention management disciplines

CDMI retention, deletion, and hold management affect any CDMI client that creates or deletes CDMI objects, as these
disciplines mandate how a cloud storage system manages CDMI objects when they are created and until they are
deleted.

CDMI retention management is comprised of three management disciplines: retention, hold, and deletion:

CDMI retention uses retention time criteria to determine the time period during which object deletion from the
CDMI-based system is prohibited. No changes to the object are allowed, even after the retention period has
expired, except as specified below.

CDMI hold prohibits object deletion and modification until all holds on the object have been released.

A CDMI-based system shall not allow the deletion of a CDMI object before the CDMI retention time criteria are
met or while holds exist. Any deletion attempts (e.g., by a CDMI application) shall return an error.

After the CDMI retention time criteria have been met and all holds have been released, CDMI retention and holds
shall no longer be a reason to prohibit object deletion.

Once the retention period has started or if holds exist, changes to the object data and metadata shall not be
allowed, with the exception of extensions to the retention and hold data system metadata. The retention data
system metadata may be added or the retention period extended, and the hold data system metadata may be
added or extended with additional holds. Any other attempt to modify the object shall return an error.

© SNIA 2020 SNIA Technical Position 265

3369

3370

3371

3372

3373

3374
3375

3376
3377

3378
3379

3380
3381

3382
3383

3384

3385
3386

3387
3388

3389

3390

3391

Cloud Data Management Interface 2.0.0

18.3 CDMI retention

18.3.1 Overview

CDMI retention only allows one retention policy to be applied to an object at a time.

Retention management uses time criteria to determine the time period during which CDMI object deletion from the CDMI-
based system shall be prohibited. CDMI retention criteria shall be specified by the following data system metadata:

+ a retention criteria identifier—a CDMI client-specified string that shall identify the retention records class
(cdmi_retention id); and

+ a retention start time and retention period time—the start time, when used together with period, indicating when
retention shall no longer be enforced (cdmi retention period).

When a CDMI client attempts to delete an object, the cloud storage system shall evaluate all such retention criteria and
return an error, if any retention criteria have not been met.

When copying objects with a retention policy, retention properties shall not be transferred from the source CDMI object
to the destination object, and the destination object shall not have a retention policy.

Fig. 12 shows how to establish time-based retention with a retention identifier. The value of the object data system
metadata for the retention period shall not be reduced. Removing holds is outside the scope of the CDMI International
Standard.

Retention enabled,] Changes and
ID, start time, and Changes and deletions deletion are
duration set are not allowed allowed
2011-01-01 2012-01-01
2010-04-28 2012-04-27

Example: Retention start date of 2010-04-28 with a
duration of 730 days. No holds.

Fig. 12: Object retention

A specific HTTP error code (403) shall be returned on operations to objects that are under retention period when the
cloud storage system attempts to change or delete the object before the retention period criteria are met.

A cloud storage system shall not prevent metadata changes that increase the retention period, as there are valid busi-
ness reasons to change a retention period for an object.

18.3.2 Examples

EXAMPLE 1: Place an existing object under retention:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi retention ids&
—metadata=cdmi retention period HTTP/1.1

--> Host: cloud.example.com

--> Content-Type: application/cdmi-object

-—>
-—> {
—-—> "metadata" : {

-——> "cdmi_ retention_id" : "1",
-—> "cdmi retention period" :
—000000z"

——> }

-—> }

"2010-04-28T00:00:00.0000002/2012-04-27T00:00:00.

<-- HTTP/1.1 204 No Content

EXAMPLE 2: Increase the duration of retention on an existing object under retention:

© SNIA 2020 SNIA Technical Position 266

3392

Cloud Data Management Interface 2.0.0

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi retention period
—HTTP/1.1

--> Host: cloud.example.com

--> Content-Type: application/cdmi-object

-—>

- {

-—> "metadata" : {

-—> "cdmi retention period" : "2011-04-28T00:00:00.000000Z/2013-04-27T00:00:00.

—0000002"
—_—> }

<-- HTTP/1.1 204 No Content

EXAMPLE 3: Decrease the duration of retention on an existing object under retention:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi retention period
—HTTP/1.1

--> Host: cloud.example.com

--> Content-Type: application/cdmi-object

—_—> {
-——> "metadata" : {

-=> "cdmi retention period" : "2011-04-28T00:00:00.000000Z/2012-01-27T00:00:00.

—000000z"
- }
- }

<-- HTTP/1.1 403 Forbidden

© SNIA 2020 SNIA Technical Position

267

3393

3394

3395
3396
3397

3398
3399

3400
3401
3402
3403

3404
3405
3406

3407

3408
3409
3410
3411

3412

Cloud Data Management Interface 2.0.0

18.4 CDMI hold

18.4.1 Overview

CDMI hold enforces read-only data object access and prohibition of object deletion. A cloud storage system shall allow
multiple holds to be applied to a single object to satisfy multiple hold orders. While an object is on hold, a cloud storage
system shall strictly enforce read-only access to the object and prohibit object deletion.

When copying objects that are on hold, hold properties shall not be transferred from the source CDMI object to the
destination object, and the destination object shall not be on hold.

Hold management uses a hold indicator to determine the time periods during which CDMI object revision (data and
metadata) and deletion from the CDMI-based system shall be prohibited. CDMI hold criteria shall be specified by data
system metadata, specifically, a hold criteria identifier that is a client-specified string that shall identify the holds and
their order.

A CDMI client may place an object on hold by adding a hold identifier to the cdmi hold id data system metadata
item. When an object is on hold, CDMI clients shall be subject to failures or unexpected state changes on operations,
which would otherwise be successful if the object was not on hold.

Fig. 13 shows how placing a hold on an object affects its read-only and deletion capability.

Hold placed 2012-01-01 . o/ 10ld removed 2013-01-01

Object deleted on
2014-04-28

No retention Changes and Object is read only; Changes and
information is set; | deletion of object are deletion is not deletion of object are
object stored on allowed allowed allowed

2010-04-28 | |
2011-01-01 2012-01-01 2013-01-01 2014-01-01

2010-04-28 20141-04-2
8

Example: Hold placed on the object on 2012-01-01 and
removed on 2013-01-01

Fig. 13: Object hold

Fig. 14 shows how to establish time-based retention with a retention identifier that has a hold placed on the object. The
value of the object data system metadata for the retention period shall not be reduced, and the value of the object data
system metadata for hold identifiers shall not permit holds to be removed. Removing holds is outside the scope of the
CDMI International Standard.

Hold placed 20‘I1—‘IO—2‘I0 o/ 10ld removed 2013-10-21
Retention Changes and Object is read only; Changes and Object deleted on
enabled; ID, start deletion are not deletion is not deletion of object are | 2014-04-28
time, and allowed allowed allowed
duration set | | | |
2011-01-01 2012-01-01 2013-01-01 2014-01-01
2010-04-28 2014-04-28

Retention duration
completed 2012-04-27

Example: Start date of 2010-04-28 with a duration of 730
days; hold placed on the object

Fig. 14: Object hold on object with retention

Fig. 15 shows how placing multiple holds on an object affects its read-only and deletion capability.

© SNIA 2020 SNIA Technical Position 268

Cloud Data Management Interface 2.0.0

Hold #1 Hold #2 Hold #1 Hold #2
placed placed removed removed
2011-01-01 2012-03-01 2013-01-01 2014-01-01

3 ®
No retention | Changes & T X T] Changes & | Object deleted on
information is set; | deletion are Object is read only; deletion are | 2014-04-28
object stored on allowed deletion is not allowed allowed
2010-04-28 | |
2011-01-01 2012-01-01 2013-01-01 2014-01-01
2010-04-28 2014-04-28

Example: Start date of 2010-04-28 with a duration of 730
days; holds placed on the object

Fig. 15: Object with multiple holds

an A cloud storage system shall maintain an on-hold object in read-only mode with respect to the application access to
ue data and metadata and shall prohibit deletion, either automated or explicit.

aats « CDMI clients shall tolerate these object on-hold failures or state changes.
316 + Releases from hold are not part of this International Standard and are typically performed out of band using an
aa17 additionally secured non-CDMI mechanism provided by the implementation.

as A specific HTTP error code (403) shall be returned on operations to objects that are under a hold when the system
e attempts to change the object or attempts to delete the object before the hold is removed. This failure should be a an
uz error to the application.

w2 18.4.2 Examples

uz EXAMPLE 1: Place an existing object under hold:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi _hold id HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

- {

-—> "metadata": {

-=> "cdmi hold id": {
N "ease M e
> } -

—_> }

> }

<-- HTTP/1.1 204 No Content

s EXAMPLE 2: Attempt to remove a hold for an object under hold:

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi hold id HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: application/cdmi-object

-—> {
-——> "metadata": {

-—> "cdmi hold id": {}
—-_> } - -

- }

<-- HTTP/1.1 403 Forbidden

ua EXAMPLE 3: Add a second hold to an object under hold:

© SNIA 2020 SNIA Technical Position 269

Cloud Data Management Interface 2.0.0

--> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi hold id HTTP/1.1
--> Host: cloud.example.com

--> Content-Type: application/cdmi-object

-—>

-—> "metadata": {

-—> "cdmi_ hold id": {

- "Cage 7"? nn ,

s "ecase 15":

-—>}

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position

270

3425

3426

3427
3428
3429

3430
3431
3432
3433
3434
3435
3436

3437

Cloud Data Management Interface 2.0.0

18.5 CDMI auto-deletion

18.5.1 Overview

CDMI deletion controls cloud storage system actions with respect to object deletion. A cloud storage sys-
tem may automatically delete a CDMI object after the retention time and hold criteria have been met. (See
cdmi retention autodelete in tbl_data_system_metadata.)

CDMI objects shall be automatically deleted by the system at the retention period expiration by setting the
cdmi_ retention autodelete data system metadata item. The cdmi retention autodelete data system
metadata item indicates to the system that the object shall be made unavailable for access after the retention crite-
ria have been satisfied. The system shall ensure that the object is no longer available through the CDMI interface. If
the system has satisfied the retention requirement and a hold is established for the object, the object shall not be made
unavailable or deleted. When a hold and retention have been applied to an object, both need to be satisfied (retention
period expired and no holds existing) for objects to be automatically deleted from the system.

EXAMPLE 1: Place an object under retention with autodelete:

-=> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi retention periods
—metadata=cdmi retention autodelete HTTP/1.1

--> Host: cloud.example.com

--> Content-Type: application/cdmi-object

-—>

-——> "metadata":{

-=> "cdmi retention period": "2011-04-28T00:00:00.000000Z/2013-04-27T00:00:00.
—0000002Z",

-—> "cdmi retention autodelete": "true"

——> }

-—> }

<-- HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 271

3438

3439
3440
3441
3442

3443
3444
3445

3446
3447
3448
3449

3450
3451

3452

Cloud Data Management Interface 2.0.0

18.6 Retention security considerations

The accuracy and integrity of the retention start and elapsed times depend on the accuracy and integrity of the clock
that is used to set their values. Equally important is the relative accuracy and security of the clock that determines if
the retention period has elapsed when compared to the clock that sets the start time property. Relative time differences
between these two clocks may lead to undesirable retention and deletion management behavior.

It is important to have a reliable source from which the system clock is set. A stratum 1 time is directly connected to a
reference clock and is at the top of the time server hierarchy. Relative time differences between the system clock and
the reference clock may lead to undesirable retention timestamps and difficulties with time action events.

EXAMPLE 1: An object is created in a cloud storage system at time 0 with a period of 8 years and autodelete of
true. Attime 1 year, the system clock is adjusted forward to 9 years. Now, because the system time is 9 years, the
retention time criterion is satisfied, even though only 1 year has actually elapsed. And, since autodelete is true, the
system automatically deletes the object.

The specification for accuracy and integrity of timekeeping is not within the scope of CDMI. However, to prevent unde-
sirable retention and deletion management consequences, systems should maintain accurate clock time, with zero or
minimal deviation to clock integrity.

© SNIA 2020 SNIA Technical Position 272

3453

3454

3455

3456
3457
3458

3459
3460
3461
3462
3463

3464
3465

Cloud Data Management Interface 2.0.0

Clause 19

Scope specification

19.1 Overview

CDMI™ provides a standardized mechanism to define sets of objects that match certain characteristics. This mechanism
is known as a CDMI scope specification. Scope specifications are typically used to provide a CDMI client with a way to

indicate in what set of CDMI objects it is interested.

Each JSON object within the scope specification represents a set of conditions that shall all be true in order for an object
to be considered to match against the scope (a logical AND relationship). For queries, a matching object would be
returned in the query results. An empty scope specification is considered to evaluate to true. Multiple JSON objects are
used to express logical OR relationships, where if any JSON object in the scope evaluates to true, then the object shall

be considered to have matched against the scope.

Each JSON object is constructed using the same structure that CDMI objects use. To show this structure, assume the

following result from a GET for a data object:

HTTP/1.1 200 OK
Content-Type: application/cdmi-object

{

"objectType" : "application/cdmi-object",
"objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
"objectName" : "MyDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_ domains/MyDomain/",
"capabilitiesURI" : "/cdmi capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi size" : "108263",
}’
"valuerange" : "0-108262",
"value™ : "..."

© SNIA 2020 SNIA Technical Position

273

3466

3467

3468
3469

3470
3471

3472

3473

3474

3475

3476

3477
3478

3479
3480

3481
3482
3483

3484

Cloud Data Management Interface 2.0.0

19.2 Examples

Each field inside a scope specification JSON object represents a condition that shall be met for a field.

EXAMPLE 1: A query to find all objects belonging to the domain “/cdmi_domains/MyDomain/” is structured as
follows:

[
"domainURI" : "== /cdmi_domains/MyDomain/"

]

EXAMPLE 2: To query for all objects belonging to the domain “/cdmi domains/MyDomain/” AND are also located
within the container “MyContainer”, the scope specification is structured as follows:

[

"parentURI" : "== /MyContainer/",
"domainURI" : "== /cdmi domains/MyDomain/"

]

EXAMPLE 3: To query for all objects created within a certain time range, the scope specification is structured as follows:

[

"metadata": {
"cdmi_ ctime": [
">=2012-01-01T00:00:00",
"<=2013-01-01T00:00:00"

]

When multiple matching expressions are specified for a given field or metadata item, all matching expression must
evaluate true for an object to be considered a query result.

EXAMPLE 4: To query for all objects that belong to the domain “MyDomain” OR are located within the container
“MyContainer”, the query is structured as follows:

[
{
"parentURI" : "== /MyContainer/",
}I
{
"domainURI" : "== /cdmi domains/MyDomain/"
}
]

Queries may match on any field within an object that a cloud storage system is capable of returning as a result of an
object GET.

EXAMPLE 5: To query metadata items, the metadata object is included as an object within the query request. This
query is shown as follows:

[
"metadata" : {
"colour" : "== blue"

}

]

This approach allows matching against arbitrarily nested metadata structures. When a JSON object is included in
the scope specification, matches are performed within that object, and when a JSON array is included in the scope
specification, matches are performed within that array. Matching against the contents of arrays of objects is indicated
by having an object within the array, as illustrated in Example 5.

© SNIA 2020 SNIA Technical Position 274

3485

3486

3487

3488

Cloud Data Management Interface 2.0.0

EXAMPLE 6: To query all objects with an ACE associated with the user “jdoe”:

[

"metadata" : {
"cdmi acl" : [
{
"identifier" : "== jdoe"

}

]

EXAMPLE 7: To query the value of objects, the value field is included within the query request. Values are a

represented using base 64 encoding in queries.

Iways

"value": "== Ymx1ZQ=="

Query against the value of objects is optional and is indicated by the presence of the cdmi query value capability.

© SNIA 2020 SNIA Technical Position

275

3489

3490
3491

Cloud Data Management Interface 2.0.0

19.3 Query matching expressions

Query matching expressions are structured as “<operator>” or “<operator><sp><constant>", and are defined in Table

149.

Table 149: Query matching expressions

Matching Expression

Description

“field”:

“yn

The exists matching expression tests for the existence of the field. If the field is
present, even if empty, the condition shall be considered to be met.

“field”:

“x?

The not exists matching expression tests for the non-existence of the field. If
the field is absent, the condition shall be considered to be met.

“field”:

== constant”

The equals matching expression tests for the equality of the value of the field
and a specified constant value. The equality test is case sensitive. If the
constant value matches the value of the field, the condition shall be considered
to be met.

“field”:

“#== constant”

The numeric equals matching expression tests for the numeric equality of the
value of the field and a specified constant value.

“field”:

“I= constant”

The not equals matching expression tests for the non-equality of the value of
the field and a specified constant value. The not-equals test is case sensitive. If
the constant value does not match the value of the field, the condition shall be
considered to be met.

“field”

:“#1= constant”

The numeric equals matching expression tests for non-equality of the numeric
equality of the value of the field and a specified constant value.

“field”

. “> constant”

The greater than matching expression tests if the value of the field is
lexicographically greater than a specified constant value. The greater than test
is case sensitive. If the constant value is greater than the value of the field, the
condition shall be considered to be met.

“field”:

“#> constant”

The numeric greater than matching expression tests if the numeric value of the
field is greater than a specified constant value.

“field”:

“>= constant”

The greater than or equals to matching expression tests if the value of the field
is lexicographically greater than or equal to a specified constant value. The
greater than or equals to test is case sensitive. If the constant value is greater
than or equal to the value of the field, the condition shall be considered to be
met.

“field”:

“#>= constant”

The numeric greater than or equals to matching expression tests if the numeric
value of the field is greater than or equal to a specified constant value.

“field”:

“< constant”

The less than operator tests if the value of the field is lexicographically less than
a specified constant value. The less than test is case sensitive. If the constant
value is less than the value of the field, the condition shall be considered to be
met.

“field”:

“#< constant”

The numeric less than operator tests if the numeric value of the field is less than
a specified constant value.

“field”:

“<= constant”

The less than or equals to matching expression tests if the value of the field is
lexicographically less than or equal to a specified constant value. The less than
or equal test is case sensitive. If the constant value is less than or equal to the
value of the field, the condition shall be considered to be met.

“field”:

“#<= constant”

The numeric less than or equals to matching expression tests if the numeric
value of the field is less than or equal to a specified constant value.

“field”:

“starts constant”

The starts with matching expression tests if the field value starts with a
specified constant value. If the constant value is equal to the start of the value
of the field, the condition shall be considered to be met.

“field”:

“Istarts

constant”

The not starts with matching expression tests if the field value does not start
with a specified constant value. If the constant value is not equal to the start of
the value of the field, the condition shall be considered to be met.

“field”:

“ends constant”

The ends with matching expression tests if the field value ends with a specified
constant value. If the constant value is equal to the end of the value of the field,
the condition shall be considered to be met.

continues on next page

© SNIA 2020

SNIA Technical Position 276

3492

3493

3494

3495

3496

Cloud Data Management Interface 2.0.0

Table 149 — continued from previous page

Matching Expression

Description

“field”: “'ends constant”

The not ends with matching expression tests if the field value does not end with
a specified constant value. If the constant value is not equal to the end of the
value of the field, the condition shall be considered to be met.

“field”: “contains

The contains matching expression tests if the field value contains a specified

constant” constant value. If the constant value is found as a substring within the value of
the field, the condition shall be considered to be met. The contains operator is
only supported if the cdmi query contains capability is present.

“field”: “!contains The not contains matching expression tests if the field value does not contain a

constant” specified constant value. If the constant value is not found as a substring within

the value of the field, the condition shall be considered to be met. The not
contains operator is only supported if the cdmi_query contains capability is
present.

“field”: “tag constant”

The tag matching expression tests if the field value contains a specified
constant tag value.

The leading space character after the “tag” and before the constant value is
not included in the comparison. The tag test is not case sensitive.

If the constant value is found as a tag substring within the value of the field, the
condition shall be considered to be met. Tag substrings start at the beginning of
the value or a “,”, and end at the next “,” or the end of the string. Whitespace
before and after “, ” characters shall be stripped for the purpose of comparisons.
Tag matching expressions are only supported if the cdmi _query tags
capability is present.

“field”: “!tag constant”

The not tag matching expression tests if the field value does not contain a
specified constant tag value.

The leading space character after the “! tag” and before the constant value is
not included in the comparison. The not tag test is not case sensitive.

If the constant value is not found as a tag substring within the value of the field,
the condition shall be considered to be met. Tag substrings start at the
beginning of the value or a “,”, and end at the next “, ” or the end of the string.
Whitespace before and after “, ” characters shall be stripped for the purpose of
comparisons.

Tag matching expressions are only supported if the cdmi query tags
capability is present.

“field”: “=~ constant”

The regular expression matching expression tests if the field value matches a
specified constant regular expression value. If the regular expression evaluates
to true against the value, the condition shall be considered to be met.

Regular expression strings shall be processed according to the POSIX
Extended Regular Expression (ERE) standard, as specified in IEEE
1003.1-2017 [41].

Regex matching expressions are only supported if the cdmi query regex
capability is present.

“field”: “!'~ constant”

The not regular expression matching expression tests if the field value does not
match a specified constant regular expression value. If the regular expression
evaluates to false against the value, the condition shall be considered to be met.

Regular expression strings shall be processed according to the POSIX
Extended Regular Expression (ERE) standard, as specified in IEEE
1003.1-2017 [41].

Regex matching expressions are only supported if the “cdmi query regex”
capability is present.

Numeric constant strings shall be processed according to the JSON number representation described in RFC 4627 [5].
A numeric matching expression shall be considered to be non-matching against a non-numeric field value.

All fields in objects that are not included in the scope specification shall be ignored for the purpose of matching objects.

When a URI is used as the constant for the equals and not equals operators against the parentURI, domainURI, and
capabilitiesURI, either a URI by path or URI by object ID may be specified and are considered interchangeable.

© SNIA 2020

SNIA Technical Position 277

3497

3498
3499

3500

3501

3502

3503
3504

Cloud Data Management Interface 2.0.0

19.3.1 Examples

EXAMPLE 1: In a query to find all objects belonging to a specific domain, the following two query scopes are considered

identical:

[

"domainURI"

: "== /cdmi_ domains/MyDomain/"

]

"domainURI"

: "== /cdmi objectid/00007E7F001074C86AD256DA5C67180D/"

EXAMPLE 2: Likewise, a query to find all objects with a given parent container would have two equivalent forms:

[

"parentURI"

: "== /MyContainer/"

]

"parentURI"

: "== /cdmi_ objectid/00007ED900100E358C3B312DB652C201/"

If an object ID is used in a query scope in the objectID field or the parentID field, all object IDs shall be processed
such that they are case insensitive.

© SNIA 2020

SNIA Technical Position

278

3505

3506

3507

3508
3509
3510

3511

3512
3513

Cloud Data Management Interface 2.0.0

Clause 20

Results specification

20.1 Overview

CDMI™ provides a standardized mechanism to define subsets of object contents. This mechanism is known as a CDMI
results specification. Results specifications are typically used to provide a CDMI client with a way to indicate on what

subset of the contents of CDMI objects it intends to retrieve or operate.

Each JSON object within the results specification represents a set of fields that are returned for each matching object.

The results JSON object shall be constructed using the same structure as is used for CDMI objects. To show this,

assume the following result from a GET for a data object:

HTTP/1.1 200 OK
Content-Type: application/cdmi-object

{

"objectType" : "application/cdmi-object",
"objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
"objectName" : "MyDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi size" : "108263",
}’
"valuerange" : "0-108262",
"value" oLt

© SNIA 2020 SNIA Technical Position

279

3514

3515

3516
3517

3518

3519
3520
3521

3522

3523

3524
3525

3526
3527

Cloud Data Management Interface 2.0.0

20.2 Examples

Each field inside a results specification JSON object indicates that the field shall be included in the results.

EXAMPLE 1: The following results specification requests that the objectID and cdmi_size metadata fields be re-
turned in the results:

{

"cdmi results specification" : {
"objectID" : "",
"metadata" : {

wn

"cdmi_ size" :

}
}

EXAMPLE 2: If an object is matched, the result JSON is enqueued as follows:

{

"objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
"metadata" : {
"cdmi size" : "108263"

}
}

For most common use cases, clients request either the objectID, the objectName and parentURI, or all three
fieldsinthe cdmi_results_specification. Ifthe parentURI or objectName is requested, the field shall only be
returned for objects existing in a container object.

EXAMPLE 3: To request all metadata items be returned for each matching object, the following
cdmi_results specification shall be used:

{
"cdmi results_specification" : {
"metadata" : ""
}
}

EXAMPLE 4: To request all fields and all metadata items be returned for each matching object, the following
cdmi_results specification shall be used:

{

nn

"cdmi results specification" :

}

The value field is always returned in base 64 encoding when included in a query result, where the valuetransfer-
encoding field indicates the encoding that should be expected if a GET to read the object is performed.

© SNIA 2020 SNIA Technical Position 280

3528

3529

3530

3531
3532

3533
3534
3535
3536

3537

3538
3539
3540
3541

3542
3543

3544

3545
3546
3547

Cloud Data Management Interface 2.0.0

Clause 21

Notification queues

21.1 Overview

A cloud storage system may optionally implement notification functionality. The implementation of notification is indicated
by the presence of the cloud storage system-wide capabilities for notification, and requires support for CDOMI™ queues.

Notification queues allow CDMI clients to efficiently discover what changes have occurred to the system. As queue data
is persistent, no session state needs to be retained by the client. If different notification queues are used for different
clients, then each client operates independently from the others (e.g., a storage management application may use a
notification queue to keep its database current without having to do full scans of a container to discover what data objects
have been added, modified, or removed).

When a client wishes to receive natifications, it may first check if the system is capable of providing notifications by
checking for the presence of the cdmi notification capability in the root container capabilities. If this capability is
not present, creating a notification queue shall be successful, but no notifications shall be enqueued into the notification
queue.

To create a notification queue, the client creates a regular CDMI queue and adds metadata instructing the storage
system to treat the queue as a notification queue. This added metadata also instructs the system about what types of
notifications shall be generated and what information shall be included with each notification.

After the notification queue is created, all subsequent matching events after the queue creation time shall result in
notification results being enqueued into the queue. CDMI does not mandate any specific ordering of events, and clients
must be able to handle events that arrive out of order.

© SNIA 2020 SNIA Technical Position 281

3548

3549

3550
3551
3552
3553
3554

Cloud Data Management Interface 2.0.0

21.2 Metadata

21.2.1 Required metadata

When creating a notification queue, the metadata described in Table 150 shall be provided. Attempts to change metadata
in this table shall result in an HTTP status code of 403 Forbidden. After a naotification queue has been created, with
the exception of cdmi queue type, the metadata items in this table may not be changed. cdmi queue type may
only be removed, indicating to the system that the notification queue shall no longer receive notifications and shall be
treated as a regular CDMI queue object.

Table 150: Required metadata for a notification queue

Metadata name Type Description Requirement
cdmi queue_ type JSON Queue type indicates how the cloud storage system Mandatory
string shall manage the queue object. The type of

cdmi notification queue is defined for
notification queues.

continues on next page

© SNIA 2020 SNIA Technical Position 282

Cloud Data Management Interface 2.0.0

Table 150 — continued from previous page

Metadata name

Type

Description

Requirement

cdmi notification events

JSON
array
of
JSON
strings

The notification events metadata contains a JSON
array that indicates which events generate
notifications. Defined values are:

* cdmi_create processing - Notifications
are generated when a new object is created but
is still in the “Processing” completion status.

* cdmi_create complete - Notifications are
generated when a new object is created
immediately or when a new object in the
process of being created transitions from the
“Processing” completion status. When an
object transitions from “Processing” completion
status, the “cdmi_event result”is the
HTTP result code that would have been
returned if the create operation was not
delayed.

* cdmi_read - Notifications are generated when
an object is read.

* cdmi modify processing - Notifications
are generated when an existing object is
modified but is still in the “Processing”
completion status.

* cdmi modify complete - Notifications are
generated when an existing object is modified
and is in the “Complete” completion status.
This notification is also generated when an
existing object being modified transitions from
“Processing” to “Complete”. When an object
transitions from “Processing” completion
status, the “cdmi_event result”is the
HTTP result code that would have been
returned if the modify operation was not
delayed.

* cdmi_rename - Notifications are generated
when an object is renamed as part of a move
operation.

* cdmi_copy - Notifications are generated for
the newly created copied object when the copy
is completed.

* cdmi_reference - Notifications are
generated when a reference is created.

* cdmi_delete - Notifications are generated
when an object is deleted.

* cdmi_export - Notifications are generated
when a container is exported.

* cdmi_snapshot - Notifications are generated
when a container snapshot is created.

* <implementor-specific events>

Clients may include the desired notification event
types in the cdmi notification events JSON
array. If all notifications events are desired, an empty
JSON array shall be used.

Mandatory

cdmi scope specification

JSON
array
of
JSON
objects

The scope specification determines the set of objects
on which operations trigger the generation of
notifications. If notifications are desired for all
objects, include an empty JSON array.

See clause 19 for how to construct a scope
specification.

Mandatory

continues on next page

© SNIA 2020

SNIA Technical Position

283

3555

3556

3557
3558
3559

Cloud Data Management Interface 2.0.0

Table 150 — continued from previous page

Metadata name

Type Description Requirement

cdmi_ results_specificatijodSON

The results specification contains the JSON fields to
be returned for each object that matches the
notification scope specification. See clause 20 for
how to construct a results specification.

Mandatory
object

In addition to the fields defined in clause 20, for
notifications, four additional fields are defined:

+ cdmi_event - Indicates the event as specified
in the “cdmi_notification events” field
that triggered the notification;

» cdmi_event_result - Indicates the status result
of the event that triggered the notification. The
status is the same as the status that was
returned over the HTTP request, i.e., 200 OK,
404 Not Found, etc.;

» cdmi_event_time - Indicates the time of the
event that triggered the notification. The time
will be formatted in ISO-8601 time (see 5.6 and
ISo 8601-1:2019 [32]); and

» cdmi_event_user - Indicates the principal (ACL
name) of the user that caused the event that
triggered the notification. If the system
triggered the event, the name will be left as an
empty string.

21.2.2 Examples

EXAMPLE 1: The metadata associated with a notification queue is as follows:

{

"metadata" : {

"cdmi read",

:I ’
{

}
}
] 4

"objectID"
"metadata"

}

}

"cdmi queue type" :
"cdmi notification events" : [
"cdmi create complete",

"cdmi modify complete",
"cdmi delete"

"cdmi scope_ specification" : [

"domainURI" :

"parentURI" :

"metadata" : {
"cdmi size"

"cdmi results specification" : {
"cdmi event"
"cdmi event result"
"cdmi event time" :

"cdmi size" :

"cdmi notification queue",

"== /cdmi domains/MyDomain/",
"starts /sandbox",

">+100000"

nn
’
nn
’
nn
nn
’

{

nn

When notification results are stored in a notification queue, each enqueued value shall consist of a JSON ob-

ject of MIME type "application/json".

This JSON object contains the specified values requested in the

cdmi_results_specification of the notification queue metadata.

© SNIA 2020

SNIA Technical Position

284

3560

3561
3562

3563
3564
3565

3566

3567

Cloud Data Management Interface 2.0.0

EXAMPLE 2: A notification result JSON object is as follows:

{
"cdmi event" :
"cdmi event result" :
"cdmi event time"
"objectID" :
"metadata" : {
"cdmi_ size" :

"cdmi read",

"108263"
}
}

"200 OK",
: "2010-11-15T13:12:52.342324z7",
"00007E7F0010EB9092B29F6CD6AD6824",

Objects shall only be included in the notification results if the user who created the notification queue is able to read the

matching object.

If the administrator created the notification queue, then all matching objects that the administrator is allowed to read are
included in the results. If user “jdoe” created the notification queue, then only matching objects that “jdoe” is allowed

to read are included in the results.

21.2.3 System-created metadata

Table 151 describes the system-created metadata that provides details on the status of the notification queue.

Table 151: Notification status metadata

Metadata name Type

Description

Requirement

cdmi notification status| JSON
string

A string indicating the state of the notification queue.
Defined values are:
* Processing - Indicates that the notification

queue is scanning for results;

Halted - Indicates that new notifications will no
longer be enqueued;

Current - Indicates that the notification queue
contained all notifications that can be found at
this time; and

Error - Indicates that the notification queue
metadata is not valid, or other errors were
encountered that prevented notification
messages from being enqueued. Arbitrary
vendor-defined text may follow the string
“Error”.

If this metadata item does not exist, then notifications
have not yet started being enqueued.

Mandatory

© SNIA 2020

SNIA Technical Position

285

3568

3569

3570

3571
3572
3573

3574
3575
3576
3577
3578
3579
3580
3581

3582
3583
3584

3585
3586
3587
3588
3589
3590
3591
3592

Cloud Data Management Interface 2.0.0

Clause 22

Query queues

22.1 Overview

A cloud storage system may optionally implement metadata and/or full-text query functionality. The implementation
of query is indicated by the presence of the cloud storage system-wide capabilities for query and requires support for
CDMI™ queues.

Query queues allow CDMI clients to efficiently discover what content matches a given set of metadata query criteria or
full-content search criteria. Clients create or update a query queue by specifying metadata that defines the matching
criteria (known as the query scope), along with what results should be returned for matching objects (known as the
query results). The cloud service shall then perform the query using the content existing at the time the query is being
processed, storing the query results in the query queue. As query results are found, they are added to the queue, and
when the query is complete, the cdmi_query status metadata of the queue is changed to indicate that the query has
completed. Any matching objects created or modified while the query is being performed may or may not be included
in the query results (e.g., as a consequence of eventual consistency).

When a client wishes to perform queries, it may first check if the system is capable of providing query functionality by
checking for the presence of the cdmi_query capability in the root container capabilities. If this capability is not present,
creating a query queue shall be successful, but no query results shall be enqueued into the query queue.

When creating a query queue, the metadata described in Table 152 shall be provided. Attempts to change metadata in
this table shall result in an HTTP status code of 403 Forbidden. After a query queue has been created, with the ex-
ception of cdmi queue_ type, the metadata items in this table cannot be changed. If the value of cdmi queue type
is changed from “cdmi_query queue”, this change indicates to the system that an in-process query shall be stopped,
the query queue shall no longer receive query results, and the query queue shall be treated as a regular CDMI queue
object. To start a new query with an existing queue, the value of the cdmi_queue type shall be changed back to
“‘cdmi query queue”. This international standard does not define a mechanism to pause a running query or resume
a stopped query.

Table 152: Required metadata for a query queue
Metadata name Type Description Requirement

cdmi queue_ type JSON The queue type indicates how the cloud storage Mandatory
string system shall manage the queue object. The type of
“cdmi_query queue” is defined for query queues.

cdmi scope specification| JSON The scope specification determines which objects are | Mandatory
array included in the query results. This scope specification
of is similar to a “WHERE” clause in SQL-like languages.
JSON To query all objects, specify an empty JSON array.
objects | See Clause 19 for how to construct a scope
specification.

cdmi results specificatijodSON The results specification contains the JSON fields to Mandatory
object be returned for each object that matches the query.
This results specification is similar to a “SELECT”
clause in SQL-like languages. See Clause 20 for how
to construct a results specification.

© SNIA 2020 SNIA Technical Position 286

3593

3594

3595
3596
3597

3598

3599

Cloud Data Management Interface 2.0.0

22.1.1 Examples

EXAMPLE 1: An example of the metadata associated with a query queue is as follows:

{
"metadata" : {
"cdmi queue type" : "cdmi query queue",
"cdmi scope specification" : [

{

"domainURI" : "== /cdmi domains/MyDomain/",
"parentURI" : "starts /sandbox",
"metadata" : {
"cdmi size" : "#> 100000"
}
}
:I 4
"cdmi results_specification" : {
"objectID" : "",
"metadata" : {

"cdmi size™ : ""

}

}

When results are stored in a query queue,
MIME type “application/json”.
cdmi results specification of the query queue metadata.

EXAMPLE 2: An example of a query result JSON object is as follows:

each enqueued value shall consist of a JSON object of
This JSON object contains the specified values requested

{
"objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
"metadata" : {
"cdmi size" : "108263"
}

}

Table 153 describes the system-created metadata that provides details on the status of the query queue.

Table 153: Query status metadata

Metadata name Type Description Requirement
cdmi query status JSON When present, this metadata item indicates the state Mandatory
string of the query queue. Defined values are:

* Processing - Indicates that the query queue is
scanning for results;

+ Halted - Indicates that new query results will no
longer be enqueued;

» Current - Indicates that the query queue
contained all query results that can be found at
this time; and

» Error - Indicates that the query queue
metadata was not valid, or other errors were
encountered that prevented all query results
from being enqueued. Arbitrary vendor-defined
text may follow the string “Error”.

s Objects shall only be included in the query results if the user who created the query queue is able to read the matching
w0 objects or metadata.

w2 NOTE: If the administrator created the query queue, then all matching objects that the administrator is allowed to read
w3 are included in the results. If user “jdoe” created the query queue, then only matching objects that “jdoe” is allowed
su to read are included in the results.

© SNIA 2020 SNIA Technical Position 287

3605

3606
3607
3608

3609
3610

Cloud Data Management Interface 2.0.0

22.2 Extending CDMI query

An implementor of a CDMI server may extend CDMI query by adding vendor-specific matching expressions. When
an implementor adds vendor-specific metadata fields, these fields shall be queried using the standard query queue

functionality.

An implementor of a CDMI server may extend CDMI query by allowing the creation of vendor-specific query queues
with a type other than “cdmi query queue”.

© SNIA 2020

SNIA Technical Position

288

3611

3612

3613

3614
3615

3616
3617
3618

3619
3620
3621

3622
3623
3624

Cloud Data Management Interface 2.0.0

Clause 23

Encrypted objects

23.1 Overview

A cloud storage system may optionally implement additional operations against encrypted objects. Support for these
operations are indicated by the presence of the cloud storage system-wide capabilities for encrypted objects.

Encrypted object operations include the ability to encrypt, re-encrypt, and decrypt objects that are already stored in the
cloud (in-place), to sign and verify the signature of encrypted objects, and to access and update the plaintext associated
with encrypted objects.

The CDMI International Standard does not specify the method by which keys are managed. Key management services
are provided by an external key management system (KMS), and the use of the KMIP standard is given as an example
of how a CDMI server interacts with an external KMS.

CDMI objects may contain values that are encrypted. Operations against an encrypted CDMI object are only supported
if the encrypted object value is a valid CMS or JWE JSON format. The CMS or JWE JSON object shall include an
embedded mimetype of the encrypted object. For JWE, the “cty” header shall be used for this purpose.

© SNIA 2020 SNIA Technical Position 289

3625

3626

3627

3628

3629

3630
3631
3632

3633
3634
3635
3636

3637
3638

Cloud Data Management Interface 2.0.0

23.2 Encryption operations

23.2.1 State diagram

The state transition diagram for encrypted objects is shown in Fig. 16:

Update Plaintext
PUT

Create Non- Delete
Non Encrypted Encrypted Non Encrypted
Object Object DELETE Object

Decrypt
(Access to key
required)
Encrypt
(Access to key
required)

Create Delete
Encrypted Encrypted Encrypted
Object PUT Object DELETE Object
(Access to key not (Access to key not
required) required)

PUT

Update Ciphertext
(Access to key not required)

Update Plaintext
(Access to key required)

Re-encrypt
(Access to new and old keys required)

Fig. 16: Encrypted object state transistions

The eight encryption operations are defined in Section 23.2.2 through Section 23.2.9.

23.2.2 Create a new encrypted object

Client-encrypted objects shall be stored to a CDMI server using a standard HTTP or CDMI PUT operation, as described
in clauses 7.2 and 8.3. The client shall indicate that an object is encrypted by specifying a mimetype of “application/
cms” or “application/jose+json”.

A client may register an encryption key, signing keys and/or verification keys with a Key Management System (KMS),
and may indicate the Key IDs in cdmi_enc_key id, cdmi_enc value sign id, cdmi_enc_object sign_id,
cdmi_enc_value verify id, and/or cdmi enc object verify id metadata items. This allows the CDMI
server to access the keys from the KMS on behalf of a client, when needed.

Creating an encrypted objects on a CDMI server does not require any encryption-specific capabilities to be supported,
and is backwards compatible with earlier versions of the CDMI standard. This permits encrypted objects to be stored

© SNIA 2020 SNIA Technical Position 290

3639

3640

3641
3642
3643

3644

3645
3646
3647
3648
3649

3650
3651
3652
3653

3654

3655
3656
3657
3658

3659
3660
3661

3662

3663

3664
3665
3666
3667
3668

3669
3670
3671

3672

3673
3674
3675

Cloud Data Management Interface 2.0.0

and transferred by CDMI servers that do not support encryption-specific functionality.

23.2.3 Delete an encrypted object

Encrypted objects shall be deleted using a standard HTTP or CDMI DELETE operation, as described in clause 7.5 and
clause 8.6. Any client with sufficient permissions shall be permitted to delete an encrypted object, regardless of if they
can access the decryption keys.

23.2.4 Encrypt an unencrypted object

Existing unencrypted objects shall be encrypted in-place by performing a CDMI PATCH operation, as described in
clause 8.5, that changes the object mimetype to “application/cms” or “application/jose+json” and spec-
ifies @ cdmi_enc_key id metadata item. The client may also specify a cdmi_enc value sign_id and/or
cdmi_enc_value verify id metadata item to indicate that the object is to be signed, and to provide signature
verification information.

The CDMI Server shall use the client’s credentials (which are included in HTTP headers, and are out of scope of this
International Standard) to retreive the encryption and signing keys, and encryption and signing algorithm information
from the KMS, and shall use the keys to encrypt and sign the value of the object. The mimetype of the encrypted value
is stored in the CMS wrapper, or in a “cty” field of the JWE JSON.

23.2.5 Decrypt an encrypted object

Existing encrypted objects shall be decrypted in-place by performing a CDMI PATCH operation, as described in clause
8.5, that changes the object mimetype from “application/cms” or“application/jose+7json”to the original mime-
type as specified in the CMS wrapper, or in the “cty” field of the JWE JSON. Specifying any other fields or metadata
shall returna ° 400 Bad Request’ " result code.

The CDMI Server shall use the client’s credentials (which are included in HTTP headers, and are out of scope of this
International Standard) to retreive the encryption, signing and verification keys, and encryption, signing and verification
algorithm information from the KMS, and shall use the keys to decrypt and verify the encrypted value and user metadata
included in the object.

23.2.6 Re-encrypt an encrypted object

Existing encrypted objects shall be re-encrypted in-place by performing a CDMI PATCH operation, as described in clause
8.5, that retains the object mimetype of “application/cms” or “application/jose+7json”, or changes the object
mimetype from “application/cms”to“application/jose+json”, orvice-versa. The client shall also specify a new
cdmi_enc_key id, cdmi_enc value sign idand/or cdmi_enc value verify id metadata item to indicate
the new key(s) to be used. Specifying any other fields or metadata shall return a 400 Bad Request result code.

The CDMI Server shall use the client’s credentials (which are included in HTTP headers, and are out of scope of this
International Standard) to retreive both the original encryption and signing keys using the original metadata values, and
the new encryption and signing keys using the new metadata values from the KMS, and shall use these keys to decrypt,
verify, encrypt and sign the value of the object, as needed.

If an encrypted object does not have an existing cdmi_enc key id metadata item, does not have a “kid” header, and
no keys are associated with the Object ID, the specified metadata shall be added to the object, and no re-encryption
operation shall be performed.

© SNIA 2020 SNIA Technical Position 291

3676

3677
3678
3679

3680

3681

3682

3683
3684

3685

3686
3687
3688
3689

3690

3691

3692
3693
3694
3695

3696
3697
3698
3699

3700

3701

3702

3703

Cloud Data Management Interface 2.0.0

23.2.7 Access ciphertext of an encrypted object

The ciphertext content of an encrypted object shall be read by performing an HTTP GET operation, as described in
clause 6.3, with an Accept header value of “application/cms” or “application/jose+json”, depending on the
mimetype of the encrypted object.

The ciphertext content of an encrypted object shall also be read by performing a CDMI GET operation, as described in
clause 8.4.

23.2.8 Access plaintext of an encrypted object

The plaintext value of an encrypted object shall be read by performing an HTTP GET operation, as described in clause
6.3, with an Accept header value other than “application/cms” or “application/jose+json”, typically “*/*".
Object plaintext cannot be transparently accessed using a CDMI GET.

The CDMI Server shall use the client’s credentials (which are included in HTTP headers, and are out of scope of this
International Standard) to retreive the encryption, signing and verification keys, and encryption, signing and verification
algorithm information from the KMS, and shall use the keys to decrypt and verify the encrypted value included in the
object.

When an encrypted object is decrypted for access, the plaintext shall not be retained or cached by the CDMI server.

23.2.9 Update plaintext of an encrypted object

The plaintext value of an encrypted object shall be modified by performing an HTTP PATCH operation, as described
in clause 6.4, with an Content-Type header value other than “application/cms” or “application/jose+json”,
typically “x/*”., depending on the mimetype of the encrypted object. Object plaintext cannot be transparently modified
using a CDMI GET.

The CDMI Server shall use the client’s credentials (which are included in HTTP headers, and are out of scope of this
International Standard) to retreive the encryption, signing and verification keys, and encryption, signing and verification
algorithm information from the KMS, and shall use the keys to decrypt and verify the encrypted value, update the value,
and re-encrypt/re-sign the updated value.

When an encrypted object is decrypted for update, the plaintext shall not be retained or cached by the CDMI server.

23.2.10 Other CDMI operations

Other operations specifed by this International Standard (such as copying, serializing, querying, etc.) treat an encrypted
value the same way as a non-encrypted value.

© SNIA 2020 SNIA Technical Position 292

3704

3705

3706
3707
3708
3709

3710
3711
3712
3713

3714

3715
3716
3717

3718

3719
3720
3721

3722
3723

3724

3725
3726
3727

Cloud Data Management Interface 2.0.0

23.3 Example uses of encrypted objects

Encrypted objects can be used with CDMI systems in the following ways:

Passthrough — A client may store an encrypted object in any format in a CDMI server, with the ciphertext being
accessible to the server and to other authorized clients. No access to the plaintext is provided. Passthrough use
is compatible with all CDMI systems and is useful when the clients manage all security-related operations and
want to protect against potentially untrustworthy clouds.

Server-side encryption and signing — A client may instruct a CDMI server that supports encrypted object op-
erations to take an existing CDMI object and encrypt or encrypt and sign it in place into CMS or JWE JSON
representation, where the value of the object is persistently stored from that point on in an encrypted format.
Server-side encryption and signing is useful when clients trust the CDMI server and want to increase object se-
curity without having to re-upload the data.

Server-side decryption — A client may instruct a CDMI server that supports encrypted object operations to take
an existing CDMI object and decrypt it in place from a CMS or JWE JSON representation, where the value of
the object is persistently stored from that point on in a decrypted format. Server-side decryption is useful when a
client trusts the CDMI server and wants to decrease object security without having to re-upload the data.

Client access decryption — A CDMI server may automatically attempt to decrypt an encrypted object when
accessed via HTTP. Client access decryption is useful to provide transparent access to authorized HTTP clients
without requiring modifications to the HTTP clients.

Cloud access decryption — A CDMI server may automatically decrypt encrypted objects when it has access to
the decryption keys. Cloud access decryption is useful for cloud-resident data processing performed by the CDMI
server, such as virus scanning, query, and analytics.

Signature verification — A CDMI server can automatically verify signatures that are attached to encrypted objects
that include a signature. Signature verification is useful for detecting corruption or alteration before delivering data
to a client.

© SNIA 2020 SNIA Technical Position 293

3728

3729
3730

3731

3732
3733
3734
3735
3736

3737
3738
3739

3740
3741

3742

Cloud Data Management Interface 2.0.0

23.4 KMS integration

The encryption key is obtained from the KMS using a unique identifier that is stored inthe cdmi_enc_key id metadata
item associated with the encrypted object. If this metadata item is not present, the CDMI object ID shall be used to locate
the key.

When a client requests that an operation be performed that requires accessing the key for the object, the CDMI server
evaluates the credentials provided by the client to determine if the client is authorized to perform the requested operation.
If the operation is permitted, the CDMI server retrieves the key from the KMS to complete the requested operation. To
retrieve the key, the client may be required to provide additional information in the HTTP request that the CDMI server
can then use to authenticate to the KMS.

The CDMI International Standard does not specify the mechanism by which the CDMI server communicates with the
KMS. In this International Standard, the KMIP protocol is used as an example. CMS and JWE strings for algorithms,
key lengths, etc., need to be mapped to the strings used by the KMS (see KMIP clause 9.1.3.2.7).

All keys are created and managed externally to the CDMI server, typically by the client or a system operating on behalf
of the client. As a consequence, the CDMI server requires read-only access to the KMS. The CDMI server shall not
cache keys.

© SNIA 2020 SNIA Technical Position 294

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

Cloud Data Management Interface 2.0.0

23.5 CMS format

Any valid CMS-formatted data may be stored to a CDMI server. However, encrypted object operations are only defined
for the following subset of valid CMS-formatted data.

For encryption operations, the CDMI server shall support the following:

* EnvelopedData
¢ EncryptedContentInfo

* contentEncryptionAlgorithm value listed in the cdmi cms encryption capability of that CDMI server

For signature operations, the CDMI server shall support the following:

* AuthenticatedData

* SignedData

* digestAlgorithms value listed in the cdmi cms digest capability of that CDMI server

* SignerInfo

* signatureAlgorithm value listed in the cdmi_cms_signature capability of that CDMI server

The following CMS-formatted data may be ignored: recipientInfos

© SNIA 2020

SNIA Technical Position

295

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

Cloud Data Management Interface 2.0.0

23.6 JOSE format

Any valid JWE-formatted data may be stored to a CDMI server. However, encrypted object operations are only defined
for a small subset of valid JWE-formatted data.

For encryption operations, the CDMI server shall support the following:

» JWE with Direct Encryption (Symmetric Key from KMS)
+ JWE with Key Encryption (Public Key from KMS)
For signature operations, the CDMI server shall support the following:

* JWS RSA (Private Key from KMS)
+ JWS ECDSA (Private Key from KMS)

* JWS HMAC-SHA2 (Symmetric Key from KMS)
The following JOSE-formatted data may be ignored:

+ Multiple recipients, and

* Multiple signatures.

© SNIA 2020

SNIA Technical Position

296

Cloud Data Management Interface 2.0.0

- 23.7 Signature/digest verification

s If a signature is present as part of the CMS or JWE JSON value, the CDMI server shall verify that the signature of the
sz value is valid before allowing plaintext access or modification.

sms If @ whole-object signature is present, the CDMI server shall verify that the signature contained in the
s#m cdmi_enc_signature metadata item is valid before allowing any read operations for the object. Write operations
srs - are permitted for an object with an invalid or unverifiable whole-object signature.

ss When present, a whole-object signature shall be attached asa “cdmi_enc_signature” metadataitemin JWS compact
s format, with the second field (the JWS payload field) replaced with an empty string as described in Appendix F of RFC
as 1515 [17].

sre - For signature creation and verification, payload field shall be computed using the following process:

a780 1. Create a serialized representation of the CDMI object, as described in clause 15

a8t 2. Remove the following metadata items, if present:

3782 * cdmi atime

3783 * cdmi_acount

3784 * cdmi_enc signature

3785 * Any * provided metadata items

3786 3. Sort all JSON objects in the serialized CDMI object according to the following rules:

3787 » Within each JSON object, name/value pair entries shall be sorted lexicographically by name
a7ss » Within each JSON array, the initial order shall be preserved

a789 4. Remove all JSON whitespace

3790 5. Base64 URL encode, according to the JWS RFC 7515 [17]

© SNIA 2020 SNIA Technical Position 297

3791

3792

3793

3794
3795
3796

3797
3798
3799

3800
3801
3802

3803
3804

3805

Cloud Data Management Interface 2.0.0

23.8 Error handling

If a decryption or signature validation operation is requested against a CDMI object containing an invalid CMS or JWE
JSON representation, an HTTP status code of 500 Internal Error shall be returned to the client.

If a decryption or signature validation operation is requested against a CDMI object containing a valid CMS or JWE
JSON representation that uses an unsupported algorithm or feature, an HTTP status code of 501 Not Implemented
shall be returned to the client.

If a decryption or signature validation operation is requested against a CDMI object containing a valid CMS or JWE JSON
representation, but the required keys are temporarily unavailable given the credentials presented, an HTTP status code
of 408 Request Timeout shall be returned to the client.

If a decryption or signature validation operation is requested against a CDMI object containing a valid CMS or JWE
JSON representation, but the required keys are unavailable given the credentials presented, an HTTP status code of
401 Unauthorized shall be returned to the client.

If a decryption or signature validation operation is requested against a CDMI object containing a valid CMS or JWE JSON
representation, valid keys are available, and signature verification fails, an HTTP status code of 403 Forbidden shall
be returned to the client.

© SNIA 2020 SNIA Technical Position 298

3806

3807

3808

3809
3810
3811
3812

3813

3814
3815

3816

Cloud Data Management Interface 2.0.0

Clause 24

Delegated access control

24.1 Overview

CDMI access control is based around Access Control Lists (ACLs) that are stored as object metadata. When a client
requests to perform an operation against a CDMI object, the CDMI server shall validate the client’s identity and cre-
dentials against the object ACL to determine if the operation is allowed. This request assumes that the CDMI server is

trusted and capable of making these access control decisions.
Fig. 17 illustrates an ACL-based access control request:

Originating Originating Key Management Intermediary Remote
Client CDMI Server System CDMI Server CDMI Server

1. Create Object

2. CDMI PUT Request

4. CDMI PUT
Response

3. Check for DAC
Metadata (not found)

4. Check for ACL
Metadata (found)
5. Determine if

Operation Permitted
(based on ACL)

Fig. 17: Non-delegated (ACL-based) access control data flow

Requesting
Client

1. Request Object

Contents

2. GET Request

6. GET Response

When an access control decision needs to be made by a third party (such as by the originating CDMI server in Fig.
17), access control is delegated. When cdmi dac uri and cdmi dac certificate object metadata is present, as

specified in clause 16.2, Delegated Access Control (DAC) shall be used.

© SNIA 2020 SNIA Technical Position

299

3817

3818
3819
3820
3821
3822

Cloud Data Management Interface 2.0.0

An example of an object with DAC metadata is shown below:

{

"objectType": "application/cdmi-object",
"objectName": "MyObject.txt",
"capabilitiesURI": "/cdmi capabilities/dataobject/",
"objectID": "0000000800182ADB37303732323136662D343564622D3462",
"mimetype": "text/plain",
"metadata": {
"cdmi size": "33",
"cdmi ctime": "2017-04-05T11:01:25",
"cdmi atime": "2017-04-05T11:44:28",
"cdmi_dac_uri": "https://cloud.example.com/dac/",
"cdmi dac certificate": {
"kty": "EC",
"x": "goghRgM4hyEhlp-fD1oUl5QAgdKXsBZTQ O0B-IgSz6M",
"y": "cd8RTm8uLTGblIzioAzv8dzIkM85c08023eksJrDt2Y",
"crv": "P-256"
}
}l
"valueTransferEncoding": "utf-8",
"valueRange": "33",
"value": "This i1s an unencrypted text file."

}

The process by which objects are federated between systems is outside the scope of access control delegation and
involves how objects are replicated, synchronized, mirrored, or migrated between CDMI servers. These processes
are typically under the control of policies or external policy management systems. Federation is typically performed by
third-party systems that use CDMI features including notification, serialization, and the preservation of globally unique

object identifiers, which forms the basis for client-transparent interoperability.

© SNIA 2020 SNIA Technical Position

300

3823

3824

3825

3826
3827
3828
3829
3830

3831
3832

Cloud Data Management Interface 2.0.0

24.2 Delegated access control (DAC)

A cloud storage system may implement support for DAC, which is indicated by the presence of the cdmi_dac system-
wide capability.

DAC enables requests for operations against an object to be allowed or denied by a third-party DAC provider, in addition
to ACL access control. When required by object metadata, DAC access control verification shall be performed after
ACL evaluation, but before ACL enforcement, as the DAC provider may overrule local ACL evaluation results. When an
encrypted object is accessed, the DAC provider may provide the decryption key. The decryption key enables access to
encrypted objects, even if the CDMI server cannot access the keys directly.

Clients often have different degrees to which they trust the CDMI server with which they are interacting. Table 154
describes the four ways that DAC shall interact with stored objects.

Table 154: Access modes for DAC

Mode of access Degree of trust

Client-side decryption CDMI server is not trusted with keys or to make delegated access
control decisions.

Client requests encrypted object from CDMI Server

Client receives ciphertext from the CDMI Server

Client is responsible for getting decryption keys out of band
Client verifies signatures (if present)

Client verifies correct object

Client decrypts object

This mode of access does not use any functionality indicated by the
cdmi_dac capability and is supported by all CDMI servers.

Client-side decryption with DAC CDMI server is not trusted with keys and is used to establish an
opaque channel of communication between the client and the DAC
provider for key delivery.

1. Client requests encrypted object from the CDMI Server, and
includes custom DAC headers specifying information
required for secure delivery of decryption key

2. Client receives ciphertext from the CDMI Server, along with

custom DAC header from the DAC provider for the decryption
key

Client is extracts decryption key from DAC provider headers
Client verifies signatures (if present)

Client verifies correct object

Client decrypts object

This mode of access requires the cdmi_dac capability but does not
require encrypted object support.

In this mode, data is exchanged between the client and the DAC
provider using one or more “CDMI-DAC-" headers, as described in
clause 24 .4.

Direct Client DAC CDMI server is not trusted with keys, and client establishes channel
of communication between the client and the DAC provider for key
delivery.

Client requests encrypted object from CDMI Server

Client receives ciphertext from CDMI Server

Client sends DAC request directly to DAC Provider

Client receive DAC response directly from DAC Provider
Client verifies signatures (if present)

Client verifies correct object

Client decrypts object

This mode of access requires the cdmi_dac capability but does not
require encrypted object support.

ookrobd=

o0 kW

Nogakrwb=

continues on next page

© SNIA 2020 SNIA Technical Position 301

3833
3834
3835

3836

3837
3838
3839

3840
3841
3842

3843
3844
3845
3846
3847

3848
3849
3850

3851

Cloud Data Management Interface 2.0.0

Table 154 — continued from previous page

Mode of access Degree of trust

oA w

Server-side decryption with DAC CDMI server is trusted with keys and to delegate access control
decisions. DAC message exchange is used to get the decryption
keys to decrypt the contents of the object, and keys are not
revealed to the client.
1.
2.

Client requests encrypted object from CDMI Server

CDMI server contacts the DAC Provider to determine access
control decision and gets decryption keys, where the keys
are not revealed to the client.

CDMI server verifies signatures (if present)

CDMI server verifies correct object

CDMI server decrypts object

Client receives plaintext

This mode of access requires DAC and encrypted object support.

5.

3.
4.

Plaintext objects with DAC CDMI server is trusted with plaintext and to not bypass delegated
access control decisions.
1.
2.

Client requests non-encrypted object from CDMI Server
CDMI server contacts DAC provider to determine access
control decision

CDMI server verifies signatures (if present)

CDMI server verifies correct object

Client receives plaintext

This mode of access requires DAC support.

The cdmi dac uri metadata item indicates where delegated access control requests shall be submitted, and the
cdmi dac certificate metadata item indicates how securely communication with the delegated access control
provider shall be established. Both of these metadata items shall be present for DAC to be enabled for a given object.

DAC requests are submitted to a DAC provider using two typical methods:

* Direct - The DAC request shall be submitted directly to the absolute URI specified in the cdmi_dac_uri meta-
data item. This approach requires the host specified in the URI to be accessible from the CDMI server, and for
the CDMI server making the request to have sufficient permissions to PUT the DAC request to that location.

Indirect - The DAC request shall be sent to the DAC provider using an indirect route. Indirect routing is useful

when the cdmi_dac_uri does not specify a host. An example of indirect routing is when the cdmi_dac_uri
contains a mailto URI; the Internet mail system is then responsible for delivering the DAC request.

In other cases, the certificate included with the DAC request (taken from the cdmi_dac_certificate metadata)
may be used by intermediary CDMI servers to determine the further routing of the DAC request. For example,
DAC requests using a E.U.-issued certificate can be forwarded to a different intermediary CDMI server to those
requests using a U.S.-issued certificate. How certificate fields are used to determine routing is not defined in this

International Standard.

Both direct and indirect routing may be synchronous or asynchronous. If a DAC response is not received within the CDMI
server or client timeout windows, the client request may time out; however a subsequent request may be processed
locally if the DAC response allows response caching. When the CDMI server times out while waiting for a DAC response,
it shall return an HTTP status code of 504 Gateway Timeout.

© SNIA 2020 SNIA Technical Position 302

3852

3853
3854
3855

3856
3857

3858
3859
3860
3861

Cloud Data Management Interface 2.0.0

24.3 Delegated access control message exchange

When a client requests to access or modify an object containing DAC metadata on a CDMI server that supports DAC,
the CDMI server shall create and send a DAC request as specified in clause 24.5. Upon receiving a DAC response as
specified in clause 24.7, the CDMI server shall allow or deny the operation based on the contents of the response.

Fig. 18 provides an example of access control delegation for a non-encrypted object. The black solid lines show indirect
routing, and gray dashed lines show direct routing.

Originating Originating Key Management Intermediary Remote Requesting
Client CDMI Server System CDMI Server CDMI Server Client
]- 1. Create Object
(with DAC metadata)
—m
2. CDMI PUT Request
—————————————————————— » ,
3. Federate Object 1. Request Object
Contents
4. CDMI PUT
T Response
3. Check for DAC 2. GET Request
Metadata (found)
4. Create DAC
Request
5.Extract Request URI
6. Determine if
Intermediary
e - 8. Determine 7. PUT DAC Request
e ° destination based on
f' . DACR Request URI
10. Decrypt and Verify 9. PUT DAC Request
DAC Request
11. Make Access
Control Decision
12. Create DAC
Response
13. Determine if
Intermediary | [= e« e e = =2 e ecccecpecececnn-an. -
14. PUT DAC 15. Determine
Response destination based on
DACI Response URI
16. PUT DAC 17. Decrypt and Verify
Response DAC Response
-
18. GET Response

Fig. 18: Delegated access control data flow example for non-encrypted object

For non-encrypted objects, an originating client indicates that DAC is requested by including the DAC metadata items.
It is important to emphasize that for non-encrypted objects, DAC cannot be guaranteed to be enforced, as when an
object with DAC metadata is accessed from a CDMI server that does not support DAC; only ACL-based access control
shall be evaluated.

© SNIA 2020 SNIA Technical Position 303

3862
3863

3864
3865

3866
3867
3868

Cloud Data Management Interface 2.0.0

Fig. 19 provides a second example of access control delegation for an encrypted object. The black solid lines show
indirect routing, and gray dashed lines show direct routing.

Originating Originating Key Management Intermediary Remote Requesting
Client CDMI Server System CDMI Server CDMI Server Client
]- 1. Create Object
(with DAC metadata)
2. Encrypt Object
value
3. CDMI PUT Request
______________________ ES
4. Federate Object 1. Request Object
Contents (Plaintext)
5. CDMI PUT
Response
3. Check for DAC 2. GET Request
s Metadata (found)
6. Store Keys 7. Store Keys
4. Create DAC
Request
g 5.Extract Request URI

10. Decrypt and Verify

DAC Request

11. Make Access
Control Decision

15. Create DAC
Response

16. Determine if
Intermediary

6. Indicate Result

8. Determine
destination based on
DACR Request URI

6. Determine if
Intermediary

7. PUT DAC Request

12. Get Key

—

9. PUT DAC Request

13. Get Key

14. Receive Key

17. PUT DAC
Response

18. Determine
destination based on
DACI Response URI

19. PUT DAC
Response

20. Decrypt and Verify
DAC Response

21. Extract Key

'

22. GET Response
(Decrypt Plaintext)

Fig. 19: Delegated access control data flow example for encrypted object

I

For encrypted objects, as access to the decryption keys are provided in the DAC response, the plaintext is inaccessible
unless the CDMI server supports DAC.

When the DAC provider processes the DAC request, if the operation is allowed and the key is requested by the CDMI
server, the object key, if present, shall be obtained and sent back as part of the DAC response. Upon receiving the DAC
response, the CDMI server shall extract the key to perform the client operation.

© SNIA 2020

SNIA Technical Position

304

3869

3870
3871

3872

3873
3874
3875

3876
3877
3878
3879
3880
3881

Cloud Data Management Interface 2.0.0

24.4 Client header passthrough

The Delegated Access Control extension provides facilities to allow client-provided HTTP request headers to be passed
through to the DAC provider, and for the DAC provider to pass HTTP response headers back to the client. These
headers are identified by the “CDMI-DAC-" prefix.

The contents and full names of these headers are not defined in this International Standard. However, it is anticipated
that these headers shall be used to allow the client to provide additional information that may be required for the access
control decision-making process, for audit purposes, or for secure key exchange.

For example, when an operation is allowed by a DAC provider, the object key may be encrypted using the public key
from a client-provided certificate (verified by the DAC provider), which is included in a “CDMI-DAC-" request header,
with the encrypted object key being sent back to the client in a “CDMI-DAC-" response header. In this scenario, the
CDMI server cannot decrypt the ciphertext but can securely pass on the encrypted object key to the client. The client
can then use its private key to decrypt the response header to get the object key, which can then be used to decrypt the
object.

© SNIA 2020 SNIA Technical Position 305

3882

3883
3884

Cloud Data Management Interface 2.0.0

24.5 DAC request

When a CDMI server that supports DAC needs to contact the DAC provider as specified in the DAC metadata, it shall
construct a DAC request, as specified in Table 155.

Table 155: DAC request

Field name

Type

Description

Requirement

dac_request version

JSON
string

Indicates the version of the DAC request. This field
shall be set to the value “1”.

Mandatory

dac_request id

JSON
string

Contains a system-specified identifier that is used to
match up the corresponding DAC response. This
identifier shall be unique within the window that
multiple DAC responses may be received.

Mandatory

server identity

JSON
object

A JSON object, containing a JWE JWK which shall
include a public key that is used to submit a DAC
response, and should contains a X.509 certificate or
certificate chain used to verify the identity of the
CDMI server that is generating the DAC request.
This ensures that only the CDMI Server that
generated the DAC request can read the DAC
response.

Mandatory

client identity

JSON
object

A JSON object containing the following JSON
entities:

JSON String, “acl_name”, containing the ACL name
of the client requesting the operation.

JSON Array, “acl_group”, containing the ACL
group(s) of the client requesting the operation.

Optional

acl effective mask

JSON
string

A text or hexadecimal string representation of the
ACE mask determined by ACL evaluation for the
requested operation, as defined in 17.2.6.

Mandatory

client headers

JSON
object

A JSON object containing a JSON string for each
HTTP header in the operation request that starts with
“cDMI-DAC-“, where the JSON string name is the
header name, and the JSON string value is the
header value.

These headers can be used for tunneling information
from the client to the DAC provider.

Mandatory

cdmi objectID

JSON
string

Contains the object ID of the object the operation is
performed against.

Mandatory

cdmi enc_key id

JSON
string

Contains the encryption key identifier (for example, a
KMIP identifier) for the symmetric key that is used to
encrypt and decrypt the object, which is used to
indicate that the CDMI server is requesting the
encryption key.

Optional

cdmi operation

JSON
string

Contains a string indicating which operation is being
requested to be performed against the object.
The following operations are defined:

* “‘cdmi_read”

* “cdmi _modify”

* “‘cdmi_delete”

Mandatory

dac_response_uri

JSON
string

An optional URI that specifies where to send the DAC
response. This URI is required for asynchronous
DAC requests, such as when sent via email URlIs.

If this field is omitted, the DAC response shall be
based on the context of the request, for example, as
a message body returned for the request PUT when
using HTTPS, or an email reply when using a mailto
URI.

Optional

© SNIA 2020

SNIA Technical Position

306

3885

Cloud Data Management Interface 2.0.0

An example of a DAC request is shown below:

{

"dac request version": "1",
"dac_ request id": "037130fa-da72-44f0-8a31-62073263ac95",
"server identity": {
"kty": "EC",
"x": "joyfiO5KEI3hcOhJeOfny TWsZ9FFS1zUydFQhm3G78",
"y": "Nsk3jX1phOFH8APR2k0XSu6bpDZYyF7f Okplf7hZ 8k",
"ery": "pP-256" - -

}I
"client identity": {

"acl name": "anonymous",
"acl group": ["users"]
}I
"acl effective mask": "READ ALL",
"client headers": {
"cdmi-dac-headerl": "This is a test header"

}7
"cdmi objectID": "0000000800182ADB37303732323136662D343564622D3462",

"cdmi operation": "cdmi read"

© SNIA 2020 SNIA Technical Position

307

3886

3887
3888
3889
3890

3891

3892

Cloud Data Management Interface 2.0.0

24.6 Packaged DAC request

A JSON DAC request shall be encrypted in JWE format, where the recipient is the public key of the DAC provider
certificate (as specified in the DAC object cdmi_dac_certificate metadata), and is JWS signed using the private
key of the CDMI server that corresponds to the server identity certificate included in the DAC request. The certificate of
the DAC provider from the object is then attached as specified in Table 156.

Table 156: Packaged DAC request

Field name Type Description Requirement

dac_request JSON JOSE encrypted and signed request Mandatory
object

dac_request dest certificdSON The cdmi_dac_certificate metadata value, which is Mandatory

object used to indicate where the DAC request is being sent
via indirect routing.

dac_request dest uri JSON The cdmi_dac_uri metadata value, which is used Mandatory
string to indicate where the DAC request is being sent via
direct routing, or used to indicate the first location
when being sent via indirect routing.

An example of a packaged DAC request is shown below':

{
"dac_request": {
"protected":
"eyJqd2si0iJ7XCIrdHlcIjpcIkVDXCIsXCI4XCI6XCIgb31maTALSOVIM2h]T2hK
ZU9mbnlfVFdzWj1GR1MxelV5ZEZRaG0zRzc4XCIsXCIS5XCI6XCIOc2szalgxcGgw
Rkg4QVBSMmswWENINNBEW115RjdmX09rcGxmN2haXzhrXCIsXCJjcnZcIjpcIlAt
MjU2XCJ9TiwiYWxnIjoiRVMyNTYifQ",
"payload":
"eyJwcm90ZWNOZWQi01iJ1leUpoYkdjaU9pSkZRMFJJTFVWVElpd21avVzVgSWpvaVEU
STFOa2REVENJc01tVndheUk2ZX1KcmRIa21PaUpGUX1Jc01luz21PaUpuUkzZOeklF
CFRXbUSVVVRSWGVGWXRiRXhSVTJ4elFsY31XazFvImlkblJrcDITVmt4TWt4d1dW
T1JJaXdpZVNJINklsTkZNV1pXWkVkalZtdGtPVVZCVmpaVGMyeEONVzQyUkdsdlpV
dHVZV3BLWmpsdWVFOV1jRlpoYmtFaUxDSmpjbllpT21KUUxUSTFOaUo5Z1EiLCJL
bmNyeXBOZWRfa2V5IjoiliwiaXYi01iJLRDIGRIBOCFh2cWNIYTAITiwiY21lwaGVy
dGV4dCI6Im42N1pmUzBXRMhjN3ZzT3Rnclo5SXJtWUSpaDI4RDVzT1lpsTk96dEdO
TW5hakFRSGZTMGozcUhrMUxPME9IbFBYMnV{YXVIWcVN2aDF2Z1IxSF1nOE13TmFg
TFZ£S29ZMndGXz1kaDRtWFJ1VXA4R1hpbmOSMFEOZWZmY1BLRm1 IcEoOdE94TTVS
V31LN2VvdWNxSkxzczJKbHc1ZUJhOVQSWIFyS1lpvOmIxVURSLVVMRWO1QINZRFA3
NU11SEFRSWU4UW5qOW04QjFHb18tNTFPNndKb2d6cHh5U1lhpd3g2SWdoY1hSYmNX
MWQ5bVRtZkR3UFBoSE4zTUplUGUxbVBpelNLWnJI3NWNOM2 INZmhKWmNoT3gyZkZt
Q3NMME5zSkphQWo3WEsO0elFiMGVBAORSS1BzeTJI6MnZCZzFQT11hUHppOVPhNJjRK
RHgyZ3hWRTA2YOxERGx3TXY4dWICLFUITVAyZF9YRGAScUZsSF11T19aZEtxQkRp
MVQ1SW5HeDc2YzdCcmVObzFIbnVgV200MO0FsanpPRmIyTHBhdUSPOn1ET190VXFi
WGRISTZOWnZBUDUOMzVteHZDRi1SYUpMZGxFUENNeGhneXNFdyloRGxoQmtEFYUpf
U0JtZUZtem5ITGFkZUNDYzI3cWNuOU1ZV1ZBMHZMZVY2N2xzbnZMY3VyOHIOOF1t
SXRmZGNZbFVOLTh2c0xhS1ZzbHhMSzc0VidjdWNhbENubWIvYkKktWTIVVE6TnZuU2 9K
NHpldXBYZzItbl92WnIwbkZ1SUFWelIxZmJIJvUVAOClEF4bXNSUWINY2d4bmpSM21E
eTJsQzY5dFNITDIGYmlqUnZiYWM3XzFRa01CIiwidGFnIjoiNW1RcGVTAT1fb00y
X2UtSTM3NJJpQSJ9",
"signature":
"rGz9Cku3csTIJ p3gqmHzUrPSLb1ZSD3Z1faJDw0F-dNmJs6sgzizFC_ jf5VgDbVuo
GT—wH2b2ZVuP_OlHDcKPDQ"
}I

"dac request dest certificate": {
"Ety" . wpCn , -
"x": "goghRgM4hyEhlp-fD1oUl5QAgdKXsBZTQ 0B-IgSz6M",
"y": "cd8RTm8uLTGblIzioAzv8dzIkM85c08023eksJrDt2Y",
"crvll: HP_256"

}I

"dac request dest uri": "https://cloud.example.com/dac/"

Once created, the packaged DAC request shall be submitted using the DAC request URI specified in the DAC ob-

" Decrypt with "d": "NnUOIEyV4JSyLoKwIzKN1FAxXDvL6ggawAH1PkpwBMSY".

© SNIA 2020 SNIA Technical Position 308

Cloud Data Management Interface 2.0.0

s ject metadata, for example, as an HTTP PUT operation of type “application/json”, or via an SMTP email. The
s dac_request dest certificate and dac request dest uri may be used to route the request through inter-
aes Mmediary hops, as needed.

© SNIA 2020 SNIA Technical Position 309

3896

3897
3898
3899

3900
3901

3902

Cloud Data Management Interface 2.0.0

24.7 DAC response

When a DAC provider receives a DAC request, it shall decrypt the request using its private key, verify the signature of
the CDMI server, and shall evaluate the request. Based on the information provided, the DAC provider shall allow or
deny operations by modifying or replacing the ACL mask that was initially determined by the CDMI server.

To indicate the result of the DAC request to the requesting CDMI server, the DAC provider shall construct a DAC
response, as specified in Table 157.

Table 157: DAC response

Field name Type Description Requirement
dac_response version JSON Indicates the version of the DAC response. This field | Mandatory
string shall be set to the value “1”.
dac_response id JSON Contains the system-specified identifier specified in Mandatory
string the corresponding dac_request_id.
dac_applied mask JSON A text or hexadecimal string representation of the Mandatory
string ACE mask that shall be used, as defined in 17.2.6.
dac_object key JSON The key for the object in JWK format (See RFC 7517 | Optional
object [16]). This key is only disclosed when
cdmi_enc key idisincluded in the DAC request
and the DAC provider allows access.
dac_response headers JSON A series of headers that start with “CDMI-DAC-"to be | Optional
object returned to the client.
These headers can be used to pass information from
the DAC provider back to the client.
dac_key cache expiry JSON The complete date/time when the object key is no Optional
string longer to be cached, specified in ISO 8601 date/time
format.
If this field is not included, the key shall not be
cached.
dac_response cache expiryJSON The complete date/time when the DAC response is Optional
string no longer to be cached, specified in ISO 8601
date/time format.
If this field is not included, the response shall not be
cached.
dac_redirect objectID JSON Indicates an alternate CDMI Object ID used to Optional
string access the requested object. If present, the CDMI
server shall send an HTTP Redirect to the client.
dac_audit_uri JSON Indicates a URI to a CDMI queue where audit logging | Optional
string messages associated with the operations shall be
submitted.
When present, audit logging messages shall be
generated for receiving the response, performing the
operation, and determining when to purge the key.
The format of these audit messages is not defined by
this International Standard.
An example of a DAC response is shown below:
{
"dac_response version": "1",
"dac_response_id": "037130fa-da72-44f0-8a31-62073263ac95",
"dac_applied mask": "ALL PERMS",
"dac response headers": {
"CDMI-DAC-AuthInfo": "No key requested."
} 4
"dac_response cache expiry": "2017-04-06T15:06:01.5542"
}
© SNIA 2020 SNIA Technical Position 310

3903

3904
3905
3906
3907

3908

3909

3910
3911
3912
3913

3914
3915
3916

3917

3918

Cloud Data Management Interface 2.0.0

24.8 Packaged DAC response

The above JSON (DAC response) shall be encrypted in JWE format where the recipient is the public key of the CDMI
server certificate (as specified in the DAC request), and is JWS-signed using the private key of the DAC provider that
corresponds to the DAC provider identity certificate associated with the object (cdmi dac certificate), or with a
different signing, included in a jku/jwk/x5u or x5¢ JOSE header to allow retrieval of the public signing verification key.

The certificate of the CDMI server is then attached as specified in Table 158.

Table 158: Packaged DAC response

Field name Type Description Requirement

dac_response JSON JOSE encrypted and signed response Mandatory
object

dac_response dest certiflidSON The contents of the DAC request Mandatory
object server identity field.

dac_response dest uri JSON The contents of the DAC request Optional
string dac_response_uri field, if present

An example of a packaged DAC response is shown below?:

{
"dac_ response": {
"protected":
"eyJqd2si0iJ7XCJIrdH1cIjpcIkVDXCIsXCJIJ4XCI6XCInb3FoUMdNNGh5RWgxcClm
RDEVVTE1UUFnZEtYc0JaVFFEMEItSWdTejZNXCIsXCJI5XCI6XCJ]jZDhSVG04dUxU
R2JsSXppb0F6djhkeklrTTglYzA4bzIzZWtzSnJEADJIZXCIsXCJjcnZcIjpcIlAt
MjU2XCJ9TiwiYWxnIjoiRVMyNTYifQ",
"payload":
"eyJwcm90ZWNOZWQi0iJ1leUpoYkdjaU9pSkZRMFJJTFVWVE1pd21laVzVgSWpvaVEU
STFOa2REVENJc01tVndheUk2ZX1KcmRIa21PaUpGUX1Jc01luZ21PaUpNVUVReWRX
WmlkMUpmTOhoU2FWRIRNMWN3YUZSbUStWn1XWEZDUOhWYU4xQTVUbEEZVFdaVFEy
MDRJaXdpZVNJINk1gWmhiMWgxUzJFeVVgZHNTMWI3Y1U5U1JUQMF1VOpQU2pKW1Yy
bzNOM113WmSGWULESnBiRESEVUVVaUxDSmpibllpT21KUUxUSTFOaUoS5Z1EiLCJIL
bmNyeXBOZWRfa2V5Ij0iliwiaXYi0iJYMFhTUDNZVTNBUkKIJwQIN1ITiwiY21lwaGVy
dGV4dCI6Ik5DOXE1dnBCeUVaVERJcHIWembGemxtbml1JUO9sVk5uNGpSUULKWIBS
c0s0dzZPcDYtNE94cGtvVVYSWUFvbDhmdUVOeFFMd] FBQUpDWXB3M0ZFel1RrMEPG
VmUINWEOUINIVkhnS1JImMEhiWjlxbk5a0HY0d1JUaXBGSO0RsakpvLUhXO0G82bz1M
czV2YmRVTGJIJPRkIDb3RTTGZuekdSQ31MV3Z2TUZaS3BHXzM1b21PeFpNcWloN2Ro
c3IxMmF6cHdkSnIKX084TTFkVHADaWZxeURIWWEPNGM4AM3U4TUhieDAET1dRWkhH
OnIzT1J0bDhaWGITQWIO0Q09fVWRpdU8zWXZmWmNiWUS1TTY2UXBZbDFobENSaDJO
eEZtLW12VUROalVoaXR5cTdyZ3BSbWZoYndKNk1CaGdpdyIsInRhZyI6IJh3YWx6
TOQ4U3hWTC1STXY30X1TZGcifQ",
"signature":
"8-09X1WUUDsXXgqoEhSEKIAYEOTR-vtAYgauWlaNfdv2Io9B4RCuAL13z17i27vbo
TYvHxnFa7K6HJPygsAVn5g "
} r

"dac response dest certificate": {
"kty": "ECT,
"x": "joyfiO5KEI3hcOhJeOfny TWsZ9FFS1zUydFQhm3G78",
"y": "Nsk3jX1phOFH8APR2k0XSubpDZYyF7f Okplf7hz 8k",
"crv": "P-256"

}

Once created, the packaged DAC response shall be returned as the response to the HTTPS/HTTP request, or submitted
using the DAC response URI specified in the DAC request, for example, as an HTTP PUT operation or via an SMTP
email. The dac_response dest certificate and dac_response dest uri may also be used to route the
request through intermediary hops if needed, as determined by the routing system, which is out of scope of this standard.

When the CDMI server receives a packaged DAC response message, it shall decrypt it using its private key and shall
verify the signature. If the decryption and signature verification are successful, the CDMI server shall use the provided
dac_applied mask in place of the ACL computed mask.

If the CDMI server supports key or DAC response caching, cache expiry values shall be honored. Cached responses
and keys may only be used for identical client operations, where the client identity, objectlD, operation, and “CDMI-

2 Decrypt with “d”: “huCoV1iC24rZ3uF5qg-1HHIGb2UcCB6Ue9oNezEQNzUBS”

© SNIA 2020 SNIA Technical Position 311

3919
3920

3921
3922

3923
3924
3925

Cloud Data Management Interface 2.0.0

DAC-" request headers are identical. Otherwise, the cached response shall be expired. If an audit URI is present in the
cached response, audit messages shall also be generated for all operations allowed using the cached response.

The CDMI server shall also implement audit logging when specified in the DAC response. If the CDMI server does not
support audit logging and it is required by a DAC response, the operation shall be denied.

Ifa dac redirect objectID field is returned in the DAC response, the CDMI server shall return an HTTP redirect
to the specified Object ID. This redirect allows a DAC provider to create a client-operation-specific instance of the object
that is encrypted with a single-use key.

© SNIA 2020 SNIA Technical Position 312

3926

3927

3928
3929

3930
3931

3932
3933
3934

3935
3936
3937

3938
3939

3940
3941

3942
3943

Cloud Data Management Interface 2.0.0

24.9 Error handling

In the following scenarios, the following HTTP response codes shall be returned to a client:

When a DAC response denies the requested operation, an HTTP status code of 403 Forbidden shall be
returned to the client along with any dac_response headers included in the response.

When a DAC response includes a dac_redirect objectID, an HTTP status code of 302 Found shall be
returned to the client along with any dac_response headers included in the response.

When a DAC request to access or modify an encrypted object is allowed, but the key is not included in the
DAC response, an HTTP status code of 401 Unauthorized shall be returned to the client along with any
dac_response headers included in the response.

When a DAC request to access or modify an encrypted object is allowed, but cannot be performed due to lack of
support for an encryption algorithm, signing algorithm, or key type, an HTTP status code of 501 Not Imple-
mented shall be returned along with any dac_response_headers included in the response.

When a DAC request times out, an HTTP status code of 500 Internal Server Error shall be returned to
the client.

When a DAC request cannot be sent or routed because the DAC metadata is not supported or valid, an HTTP
status code of 501 Not Implemented shall be returned to the client.

When a DAC request cannot be sent or routed because an upstream system is unavailable, an HTTP status code
of 500 Internal Server Error shall be returned to the client.

© SNIA 2020 SNIA Technical Position 313

3944

3945

3946

3947

3948

3949
3950

3951
3952

3953

3954

3955

3956

3957
3958

Cloud Data Management Interface 2.0.0

24.10 Examples

The following examples illustrate the primary ways that DAC requests are performed.
EXAMPLE 1: GET ciphertext of encrypted object with delegated access control

The following CDMI operation is performed against an encrypted CDMI object with delegated access control

metadata:

--> GET /MyContainer/MyEncryptedObject.txt HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cms, application/jose+json

The CDMI server verifies local access controls and determines that the request can proceed. The following

DAC request is generated:

{
"dac_request version": "1",
"dac_request_id": "5b801b19-479e-446d-882a-8483f7c4905c",
"server identity": {

llkty": "EC"’

"x": "joyfiO5KEI3hcOhJeOfny TWsZ9FFS1zUydFQhm3G78",
"y": "Nsk3jX1phOFH8APR2k0XSu6pDZYyF7f Okplf7hZ 8k",
"crv": "P-256"

}l
"client identity": {

"acl name": "anonymous",
"acl group": ["guest"]
}!
"acl effective mask": "READ ALL",
"client headers": {},
"cdmi objectID": "0000000800182F9E64313363323731622D363536662D3465",
"cdmi operation": "cdmi read"

}

This request is first JWE encrypted with the key in cdmi_dac_certificate. The result is JWS signed, using

either the key in server_identity, or a different key embedded in the JWS header.

The DAC provider verifies, decryptes and processes the request and returns the following DAC response:

{
"dac response version": "1",
"dac response id": "5b801b19-479%e-446d-882a-8483£7c4905c",
"dac applied mask": "ALL PERMS",
"dac_response headers": {
"CDMI-DAC-AuthInfo": "No key requested."
}

The CDMI-DAC-AuthInfo indicates a custom header.
Since the operation is allowed by the DAC provider, the following response is sent:

<-- HTTP/1.1 200 OK

<-- Content-Type: application/jose+json
<-- Content-Length: 290

<-- CDMI-DAC-AuthInfo: No key requested.

<-- <JOSE+JSON Encrypted Object>

EXAMPLE 2: GET ciphertext of encrypted object with passthrough key access

The following CDMI operation is performed against an encrypted CDMI object with delegated access control

metadata:

--> GET /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1

--> Host: cloud.example.com

--> Accept: application/cms, application/jose+json

--> Authorization: Basic am910nBhc3N3b3Jk

--> CDMI-DAC-N: <vendor-specific header that indicates key passthrough>

© SNIA 2020 SNIA Technical Position

314

3959
3960
3961

3962
3963
3964
3965

3966
3967
3968

3969
3970

3971

3972

3973

3974
3975

3976
3977

Cloud Data Management Interface 2.0.0

The CDMI server verifies local access controls and determines that the request can proceed. The following
DAC request is generated. The CDMI-DAC-N is a custom header that indicates that the client wants to
obtain the object decryption key via header pass-through.

To demonstrate the power of such custom headers: the CDMI-DAC-N request header could contain a cell
phone number. The matching response header would then contain a password-based encryption of the
object key, while the password will be delivered via a message to the cell phone. It is up to the vendor to
come up with and implement such mechanisms.

{
"dac request version": "1",
"dac_request 1id": "77b54650-183f-4053-8512-be08f7c6c50e",
"server identity": {

"kty": "EC",

"x": "joyfiO5KEI3hcOhJeOfny TWsZ9FFS1zUydFQhm3G78",
"y": "Nsk3jX1phOFH8APR2k0XSu6pDZYyF7f Okplf7hZ 8k",
"crv": "P-256"

}7
"client identity": {

"acl name": "joe",

"acl group": ["users"]
}l
"acl effective mask": "READ ALL",
"client headers": ({

"CDMI-DAC-N": "<copy from headers>"

}l
"cdmi_objectID": "0000000800182F9E64313363323731622D363536662D3465",
"cdmi operation": "cdmi read"

}

This request is first JWE encrypted with the key in cdmi_dac_certificate. The result is JWS signed,
either using the key in server identity, or a different key embedded in the JWS header. Replication
of these encrypted messages is not useful and will be skipped.

The DAC provider processes the request, obtains the object decryption key and embeds it as a
dac_response_header, then returns the following DAC response:

{

"dac response version": "1",
"dac_ response id": "5b801b19-479%e-446d-882a-8483£7c4905c",
"dac applied mask": "ALL PERMS",

"dac_response headers": {
"CDMI-DAC-AuthInfo": "Key successfully retrieved from keyserver."
"CDMI-DAC-N": "<vendor-specific decryption key info>"

}

Since the operation is allowed by the DAC provider, the following response is sent:

<-- HTTP/1.1 200 OK

<-- Content-Type: application/jose+json

<-- Content-Length: 290

<-- CDMI-DAC-AuthInfo: Key successfully retrieved from keyserver.
<-- CDMI-DAC-N: <vendor-specific decryption key info>

<-- <JOSE+JSON Encrypted Object>

The client can now parse the key in the CDMI-DAC-N header and use it to decrypt the ciphertext.

EXAMPLE 3: GET plaintext of encrypted object with delegated access control

The following CDMI operation is performed against an encrypted CDMI object with delegated access control
metadata:

--> GET /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
--> Host: cloud.example.com

--> Accept: */*

--> Authorization: Basic am910nBhc3N3b3Jk

The CDMI server verifies local access controls and determines that the request can proceed. The following
DAC request is generated:

© SNIA 2020 SNIA Technical Position

315

3978
3979

3980
3981

3982

3983
3984
3985
3986

3987

Cloud Data Management Interface 2.0.0

"dac request version": "1",
"dac_request id": "b79d7619-1bbd-45al-b2d3-5753f7£fc5155",
"server identity": {
"kty": "EC",
"x": "joyfiO5KEI3hcOhJeOfny TWsZ9FFS1zUydFQhm3G78",
"y": "Nsk3jX1phOFH8APR2k0XSubpDZYyF7f Okplf7hZz 8k",
"erv": "P-256" - -

}7
"client identity": {

"acl name": "joe",
"acl group": ["users"]
}l
"acl effective mask": "READ ALL",
"client headers": {},
"cdmi objectID": "0000000800182F9E64313363323731622D363536662D3465",
"cdmi operation": "cdmi read",

"cdmi enc_key id": "0000000800182F9E64313363323731622D363536662D3465"

The DAC provider processes the request, obtains the object decryption key and returns the following DAC
response:

{
"dac response version": "1",
"dac_response_id": "b79d7619-1bbd-45al-b2d3-5753f7£c5155",
"dac_applied mask": "ALL_PERMS",
"dac_object key": {

"kty": "oct",
"kid": "0000000800182F9E64313363323731622D363536662D3465",
"use": "enc",
"alg": "dir",

"k": "vBX811leh8ydyIO08by7L13kZKNmfRHTAMZa5vJIgMCHQU"
}l

"dac_response_headers": ({
"CDMI-DAC-AuthInfo": "Key successfully obtained from KMS."
}
"dac_ key cache expiry": "2017-04-05T14:58:582",
"dac_ response cache expiry": "2017-04-05T14:58:582Z"

Since the operation is allowed by the DAC provider and the key is provided, the object is decrypted by the
CDMI server and the following response is sent:

<-- HTTP/1.1 200 OK
<-- Content-Type: text/plain
<-- Content-Length: 252

<-- <Decrypted contents of Encrypted Value>

EXAMPLE 4: RSA Example

In this example, there are two hospitals (A and B), that both have CDMI servers, and federate objects
between them. At some point, the following encrypted object has been made at hospital A. It containts
a cdmi_dac_certificate and cdmi_dac_uri that indicate how access can be requested at hospital A. The
cerificate contains a 2048-bit RSA encryption key, with a matching X.509 certification chain that can be
used to verify the certificate.

{
"objectType": "application/cdmi-object",
"objectName": "MyEncryptedObject.txt",
"capabilitiesURI": "/cdmi capabilities/dataobject/",
"objectID": "000000080018F34436313131393061372D613735302D3438",
"mimetype": "application/jose+json",
"metadata": {
"cdmi size": "306",
"cdmi_dac_uri": "https://cdmi.hos-a.fr:9001/dac/",
"cdmi atime™: "2017-04-06T14:06:34",
"cdmi enc_key id": "encryption key 1",

(continues on next page)

© SNIA 2020 SNIA Technical Position

316

Cloud Data Management Interface 2.0.0

(continued from previous page)

"cdmi dac_certificate": {
"kty": "RSA",
"kid": "cdmi.hos-a.fr encrypt public",
"key ops": [
"wrapKey",
"unwrapKey",
"encrypt",
"decrypt"
]I
"n":
"uL7ANgD80H5sNgo3nHzovPRxgncQLhz00QvGMVVULCkrYXMaXZ5sNv7£T6UdAMSZ 1
T-e0sthapmEqrpeVIRKHsiF3COG1l2YndUHixpEkHp8ylggcH61iTzoBsgXMZ 70LW~
mJ2RW3rodT7k-tcozYYsTSM5egMPQSAKgtOnMnPmdNRnEyA2 NJ8Y71NkEXyja0Q
JLstzkP8-cKSOBkKEquLQEMbZVRM6USUuG69¢c)11i90WvuRzPoaATKyt6Cc4f6PUUIL
OyCBUAs9dXsRrt3B8H1ge7i07FAACOPCcUDKDNLEXS1THC37DK_ zEyKZcMttjCvEL
Ovt-cIlaokdnxJeggvIAFGQ",
"e" : HAQAB" ,
"y5c": [
"MIIDMDCCAhigAwIBAgIBBDANBgkghkiG9wOBAQsFADBCMQOswCQYDVQQGEwWJUbDER
MASGA1UEChMIbGl1c2RvbmsxDTALBgNVBASTBGNkbWkxETAPBgNVBAMTCHJzYS1y
b290MCAXDTE2MTAYNzZEYyNDUWMEFoYDzk50TkxMjMxMjMIOTUSWIAIMOswCQYDVQQG
EwJmcjEOMAWGA1UEChMFaG9zLWEXFjAUBgNVBAMTDWNkbWkuaG9zLWEuUZnIwggEi
MAOGCSgGSIb3DQEBAQUAA4 IBDWAWGGEKAOIBAQC4vsA2APzQfmw2gjecf0i89HGC
dxAUHPShC8YxW9QsKSthcxpdnmw?2 /t 9PpROxJIMIP57Sy2FamYSqul5X1EoeyIXcI
4aX71d1QeLGkSQenzLWCBwfqJPOgGyBcxns4tboYnZFbeuhlPuT61lyjNhixNIz16
AwIBIAQC3Scyc+Z01GcTIDb80nxjuU2QREKNrRAkuy30Q/ z5wpLQGQSq4 tAQxt 1V
EzpTm4brlyPWLO5a+5HM+hoBMrK30Jzh/09S70s7IIFQCz1llexGu3cHwEWp7uK]js
UABwW61xQMoOcsVdLVMdzfsMr/MTIplwy22MK8SU6+35whqiR2fE16CC/0AUZAGMB
AAG)PDA6MAWGA1UJEWER/wQCMAAWHQYDVROOBBYEFBAIGICMRS5H6KLKM1ZAEhCCC
KwE9MAsSGA1UdDWQEAWIEMDANBgkghkiG9wOBAQsFAAOCAQEAANYSSryUU6112pYM
r83M3GWnjzul 6B+4KgimZ8kbey94zNPdwmwQdSe0Xmg+10tc6VUB40ouNnwK8e fB
aWBtXwCA7Nb715nTqo2+rn+X+A0mGrYaKkToPEe8ZYwDcO1lOpNCOJFE+QgP9/CJa
RaWrf95W+4kra2WnA4Bhqu2WWXnQkL47/nKcGVZgQAH+mVnxPaI0gELYdonXU/S2
8HgxoyjpGL/vmyc46zUbxYsgx/jiE7J0£JVP6Yk/3d1INYCCpLtV8VmzFAQAeCcn8
AWowFcd09a4SY09rnl1MUv/rrvXpzflfn9j7PtRRFj2e/KhitmOH1zKDuYzREpUOuU
TD1PIQ==",
"MIIDQDCCA1igAwIBAgIBATANBgkghkiGI9wOBAQsSFADBCMQOswCQYDVQQGEwWJUbDER
MABGA1UEChMIbG1l1c2RvbmsxDTALBgNVBASTBGNkbWkxETAPBgNVBAMTCHJzYS1ly
b290MCAXDTE2MTAYNZEyNDQWMEFoYDzk50TkxMjMxMjMIOTUSWIBCMQOswCQYDVQQG
EwJubDERMASGAIUEChMIbG11c2RvbmsxDTALBgNVBASTBGNkbWkxETAPBgNVBAMT
CHJzYS1yb290MIIBIjANBgkghkiGO9wOBAQEFAAOCAQ8AMIIBCgKCAQEAsrUj46dx
50j1azk7YtOL6e+Q6J0G7gVMaXkdnlSz1x9ND/8widPe01SQ2skukdOHAIQRmxdft
zhccNTM5hmbcen8TAfWSYQQF1R7s78bVjtmat 6AQP1vSgiyZ8Ak+iYZEQ3c2zVyYQ
HKKxWxmFZt1HT8/H/B3bXveXQcERKE+Tqg66h8pgVcocQUtzRFsEYmvObRlrghtoq
H8nhB5xnebgV1XjApW+et2SE7roFjv1aAbGI890oudlgsMPeX56P8AUjacFtNKc44
Obu6HRXY/jm6f2mlEUM84EUsJ+9b5+S2x4qPttIJDESCasWYYz4mFJI8MwmEFiBGUwWE
geT2bUm6t7qqbQIDAQABOZz8WPTAPBgNVHRMBAL8EBTADAQH/MBOGA1UADgQWBBR+
tEB2udkEXxX0k15GztF/40103jALBgNVHQ8EBAMCAQYWDQYJKOZ IThvcNAQELBQAD
ggEBAIjx1f9rJ2B+mDSA3L2GRhjrPRIfI6UN3251CeWdgO9IPMQ5ws5pDIyB79dE/
Q8Ufle8pZyjchTsRa8GRAnKyndN2imayOVUvPoTd3/Z2Smfkurcbij3I4VW8sjHP7C
E8fmUS8Xprdpo2SxV7oneJCOvtSeyh8mgfJ/gSbwVaiXuH1lWxi6duAvdxddMXAxQ
KPG1KKVM7CYfCdpX/HagCOHzcto+374zFgqnQlKx5rbgvxNSgm/PDDOMwPO3+bbT
R63KSK1VbdtLBuS4jgaPabwyxQz/FciwTu/HLOQOn8TNgDWyoIbs+eQX2Mds2Apul
8XH2+CakiBLMLL3T1j2x+6tKR9o="
]
}I

"cdmi ctime": "2017-04-06T14:06:31"
by
"valueTransferEncoding”: "json",
"value": {

"protected":

"eyJraWQiOiJlbmNyeXB0aWouX2t1leV8xIiwiYWxnIjoiQTIINktXIiwiY3R5Ijo1
dGV4dCOwbGFpbiIsImVuYyI6IkEyNTZHQO01ifQ ™,

"encrypted key":
"329%9yyozE03JPCpXGPKyI fa5hhFHI9dmfB7kulglQ6NhoVAvdmbMclg",

"iv": "9Gr5Hxzcs9hxPmPM",

"ciphertext": "-sJkcHcdQUXChEB1Zm7UZyalRR2 IcpRocC-BmQfAuA3",

"tag": "VIFJDcMdZngtpLWWDX8vEwW"

(continues on next page)

© SNIA 2020 SNIA Technical Position

317

Cloud Data Management Interface 2.0.0

(continued from previous page)

3088 This encrypted object has been federated to the CDMI server at hospital B. Now, one of its clients wants to
3089 transparently access the plaintext of this object by performing the following operation:

--> GET /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
--> Host: cdmi.hos-b.us:9002
--> Accept: */*

3090 The CDMI server at hospital B will look up the object and find out that it is an encrypted object with DAC
3991 information attached. As a result it will generate the following (plain) DAC request:
{
"dac_request version": "1",

"dac_request 1id": "73da04el-2182-447e-8342-f4b9f06ec936",
"server identity": {
"kty": "RSA",
"kid": "cdmi.hos-b.us_encrypt public",
"key ops": [
"wrapKey",
"unwrapKey",
"encrypt",
"decrypt"
] r
lln" :
"oOMQOkY85UzwO7K6HOQONEAIRMN3ZfhK0aXEKx7YwvrCU9IKOquZl0YZ9Cv8556 8
E8yZm02JDWOB0aSsGHUB35)vXf12f4MywKGW]5Ft IGL-7 9kXF6SWg3zuLVY1XpMI
KsJngHMVFca -ZhZ2vLsrnDR1aCNEC48gR26ewp6WX1lptnSclW4x3Mj-ONMVzZxVE
TXN1wYysTgDtonmTQD-YG6 KhhAPx0YowMbUWv_cMQvXsi7MMDyZn6fxfqdzQmQ2
V5RtUy5msd6K3beDzS4LmZhsImjU7Ynh0j0pZby4Zckmd4 3npjXPAuwPhzK20W7gb
fkvOgm4rsFWUcuNh81BsDw",
" e " . "AQAB " ,
"x5c": [
"MIIDMDCCAhigAwIBAgIBBTANBgkghkiGO9wOBAQsFADBCMQOswCQYDVQQGEwWJUbDER
MASGA1UEChMIbGl1c2RvbmsxDTALBgNVBASTBGNkbWkxETAPBgNVBAMTCHJzYS1ly
b290MCAXDTE2MTAYNZEYyNDUWMEoYDzk50TkxMjMxMjMIOTUSWIAIMOswCQYDVQQG
EwJ1lczEOMAWGALUEChMFaG9zLWIXFjAUBgNVBAMTDWNkbWkuaG9zLWIudXMwggEi
MAOGCSgGSIb3DQEBAQUAA4A IBDWAWGOEKAOIBAQChAXCRI z1TPA7srofRBA18CJIEwW
3d1+ErRpcQrHtjC+sJT0go6g5nUShn0K\/znnr\/wTzJdmbTYKNY4ES5pKwYdTz fmO
9d\ /XZ\/gzLA0ZaPkW0gYv6P2RcXpJarf04tViVekwggwmeAcxUVxr\/SmFna8uy
UcNHVoIO0QL] yBHbp7CnpZfWm2dJzVbiHeyP440xXPFUTtCc2XBjKxOAO2ie ZNAPSy
br8gGEA\/HRijAxtRa\/9wxC9eyLswwPJImfp\/F+rjNCZDZX1G1TLmax30ordt4PN
LguZmGwmaNTtieE6PS11vLhlySbjeemNc8C7A+HMrYSbupt+S\/SgbiuwVZiRy42H
yUGWPAgMBAAG]) PDA6MAWGAIUJEWEB\ /wQCMAAWHQYDVROOBBYEFH7NJVMI £TQtZn
nyiIdLNkjCgwSIMASGA1UdDWQEAWIEMDANBgkghkiGOwOBAQSFAAOCAQEAdIADIV
0v09SUDcPL+BKysvchn\/Sgx5KBu7n9KFwE31Dhx2zvT6rul.8kXdekPH9cfrDafW
6I\/vnbzAVj021i5pM2cHayjl3fTOWSVwpcQuvkoIF9eVIWONkemMME M7 jpTw07z
752T5usaDmMNpg] 8y5pRpQo3PnBVxpEZJ0XaSdfuiHtVLDg8gDZCg6Hc2tt7IM3W
njnQgs+11SGRugWOcpmVONIogvhiolNDZV35Z7puRwqckl1N2f1qyHHGBWXECNOU4
ci6glBnWBIFV+hURge8NSbpgawolaNueUbTcKjN3JIsMC4ZxhMF9rN3uuPn+UAYkA
yQkcSmGSMMO 7wcAkMg==",
"MIIDQDCCA1igAwIBAgIBATANBgkghkiGI9wOBAQsSFADBCMQOswCQYDVQQGEwWJUbDER
MASGA1UEChMIbGl1c2RvbmsxDTALBgNVBASTBGNkbWkxETAPBgNVBAMTCHJzYS1ly
b290MCAXDTE2MTAYNzZEyNDQWMEFoYDzk50TkxMjMxMjMIOTUSWIBCMQOswCQYDVQQG
EwJubDERMASGAIUEChMIbG11c2RvbmsxDTALBgNVBASTBGNkbWkxETAPBgNVBAMT
CHJzYS1yb290MIIBIjANBgkaghkiGOwOBAQEFAAOCAQ8AMIIBCgKCAQEAsrUj46dx
5071azk7Yt0L6e+Q6J0G7gVMaxXkdnlSz1x9ND\/8w4Pe01SQ2skukdOHAIQRmxdf
tzhceNTM5hmben8TAfWSYgQF1R7s78bVjtmat 6AQP1vSgliyZ8Ak+iYZEq3c2zVyY
QHKKxWxmFZt1HT8\ /H\/B3bXveXQcERKE+Tg66h8pgqVcocQUtzRFsEYmvObR1rgh
togH8nhB5xnebgV1XjApW+et2SE7r6FjvliaAbGI890oudlgsMPeX56P8AUjacFtNK
c440bu6HRXY\/jm6£2m1EUM84EUsJ+9b5+52x4qPttJDfSCasWYYz4mFJI8MwmEF1iB
GUwfgeT2bUm6t7qqbQIDAQABOZ8wPTAPBgNVHRMBALSEBTADAQH\ /MBOGA1UdDgQ
WBBR+tEB2udkEXxX0k15GztF\/40103jALBgNVHQ8EBAMCAQYWDQYJK0oZ IhvcNAQ
ELBQADggEBAIjx1f9rJ2B+mDSA3L2GRhjrPRIfI6UNn3Z251CeW9g09PMQ5ws5pDdy
B79dE\/Q8Ufle8pZyjchTsRa8GRAnKyndN2imayOVUvPoTd3\/zSmfkurcbj3I4Vv
W8sJHP7CE8fmUS8Xprdpo2SxV7oneJCOvt5eyh8mgfd\/gSbwVaiXuHlWxi6duAv
dxddMXAxQKPG1KKVM7CYfCdpX\/HagCOHzcto+374zFqqnQlKx5rbgvxNSgm\ /PD

(continues on next page)

© SNIA 2020 SNIA Technical Position 318

Cloud Data Management Interface 2.0.0

(continued from previous page)

DOMwPO03+bbTR63KSK1VbdtLBuS4jgaPabwyxQz\/FciwTu\/HLOQn8TNgDWyoIbs
+eQX2Mds2Apul 8XH2+CakjBLMLL3T1j2x+6tKR90o="

]
}I
"client identity": {

"acl name": "anonymous",

"acl group": ["guests"]
}l
"acl effective mask": "READ ALL",
"client headers": ({},
"cdmi objectID": "000000080018F34436313131393061372D613735302D3438",
"cdmi operation": "cdmi read",
"cdmi enc _key id": "encryption key 1"

3092 This plain DAC request will be JWE encrypted using the key found in the object’s cdmi_dac_certificate
3093 (key id ‘cdmi.hos-a.fr_encrypt_public’). Then it will be JWS signed using hospital B’s private signing key.
3004 Since this signing key is not equal to the encryption key (in server identity) it is embedded in the
3095 JOSE protected header of the JWS (note: Base64 decode of the protected header reveals the signing key;
3996 Base64 decode of the payload reveals the JWE.)

{
"dac_request": {
"protected":
"eyJraWQiOiJjZGlpLlmhvecylilnVzX3NpZ25fcHIpdmF0Z2SIsImp3ayI6IntcImt0
eVwiOlwiUINBXCIsXCJraWRcIjpcImNkbWkuaG9zLWIudXNfc2lnbl9weml2YXR1
XCIsXCJrzX1fb3BzXCI6WlwidmVyaWz5XCIsXCJIJzaWduXCIdLFwiblwiOlwicEVR
aFFUMVFE6QmMdrV2RiVIW56eVkwbkZmWIRVYXInbFVPcGExeG1XYXk5cGhnQ0x6Tmt j
RHZ4eVdIdHFRSWEOZHpvMDVaXzBiOXhNTElrYUISMTJheV83M110ZHpmMIWV £aUVX
Mi10dVB4MHVSaFV3SzQ4WUo2MEF1wVTdpN2ZpQWNKeVJIoULld1lWGtnOXQyRndUYnkt
S31sNWIDV1dZemRfc0U3a2NMSkcO0QmkwSELQbVhrUEVwbXpOamhsUOVsdnlodHFL
djRERG1JRk1JTDNrUGJueGNfX0RwenAyaVVpdGhvUFhpY1pJQXMtUDIybGRGMkKRE
X0tzbWISU3RQORZ2NUTEVYDLWpKcXhoRU13Qm5UZEL14TjdONnh6bk51QVNtdXNnR21F
XzJXdVUyS09yLVBtYm5wTnNLcml4SHRhT2trc2pZdjFyVGhzRmkxNUZmSVQyQ1dU
MnVRXCIsXCJ1XCI6XCJIJBUUFCXCIsXCJIANWNCIjpbXCINSULIETURDQOFoaWdBd01C
QWAJIQkF6QU5SCZ2txaGtpRz13MEJBUXNGQURCQO1Rc3dDUVIEVIFRROV3SnViREVS
TUE4ROExVUVDaE1JYkdsbGMyUnZibXN4RFRBTEJnT1ZCQXNUQkdOa2JXa3hFVEFQ
OmdOVkJBTVRDSEp 6WVMxeWIyOTBNQOFYRFREFMk1UQX10ekV5TkRVAO1Gbl1lEems1
T1RreE1gTXhNakO0xT1RVNVAgQTFNUXN3Q1FZRFZRUUAFdOoxY3pFT01Bd0dBMVVFE
Q2hNRmFHOXpMVO14RmpBVUJINnT1ZCQUIURFdOa2JXa3VhRz16TFAJAWRYTXdnZ0Vp
TUEWRONTcUdTSWIzZRFFFQkFRVUFBNE1CRHABA2dnRUtBb01CQVEFDalJDRkJQVKRN
RONSWIFOU2ZQSmpTY1Y5bmhScXVDV1E2bHFyROpackwybUdBSXZNM1J3Ty9IS111
MnBBaHJoM09qVGxuL1lJ2M0V3c21Sb0gzWFpyTC92WmcxM04vVjcrSVIiYjQyNCOI
UzVHR1RBcmp4Z25yUmlsVHVMACtJIOnduSkdGS1ol ZVNBQzNZWEJOdkwObj JYbWAK
WlpgTiMrdlR1Undza2JnROXRY28rWmVROFNtYkOyTOdWSVNXLOtHMmMIxL2dNT11n
VXdndmVROXVmMRNovOE9uT25hS1INLMkdnOWVKeGtnQ300L2JhVIBYWUIQOHEFS5YWhG
SzA4WnljclJlYUltckdFUXpBR2ROMHPpFM3MvckhPYzFzQkthNnl1BYV1UL1phNVRZ
bzZ2NCtadWVrMndxdWJFZTFvNINTeU5SpL1d0T0d3V0xYalY4aFBZS1pQYTVBZ01C
QUFHalBEQTZNQXdHQTEFVZEV3RUIVA1FDTUFBAOhRWURWU]BPQkJZRUZCeHdnVzB4
TFV3Q1RSaUl1TMVZ2di 9KVmNPM1IFNQXNHQTFVZER3UUVBAO1IZ0RBTkJna3Foa2lH
OXcwQkFRc0ZBQUIDQVFFQVIShbzMxQOmRONO80d21GcFEOeEZjalFkSktSaFBiNndk
RHdyOTM50Xd50FUxVOVFOEPEQOFvbWInakJ1Q2RLUWVGWE1oViR1Vkx1Y11pSit]
WVRXZXhONTINbOpJRmUySnozNCOLbFVkYUSENESJdm5teCImWS 830k SgQWEKY 2Ny
LONQVUxmczES50HUYbGIGNUVSYWtPM21GajhwWEFY1Mj1DSFFmekpsaGhOcOVoL3p2
TXgydXpNT1paWF1kViWxyQONBZGFGbWt FRDBHUHM4 SGZDR1VXUyt1QVNiN1ZnQXBC
NONYb12zJLzVKa2JzL0ZreEF3TW1xSmE2RUpyYkRkSF10N2prVktwemVpMWl xRVB]
Ri9MUOPNZXhGVSJIVcDVISk9OMG1OMGFDc1YwbFE2Nys3Mjg2MkwlVmFiMOtjQTkO
dVBZVTUxVEJITENBVXRLTDI5Uk90Zz09XCIsXCINSUIEUURDQOFpaWdBd01CQWdJT
QkFUQU5CZ2txaGtpRz13MEJBUXNGQURCQO1Rc3dDUVIEVIFRROV3SnViREVSTUE4
ROExVUVDaE1JYkdsbGMyUnZibXN4RFRBTEJnT1ZCQOXNUQkdOa2JXa3hFVEFQQOmdO
VkJBTVRDSEp6WVMxeWIyOTBNQOFYRFREMk1UQX10ekV5TkRRAO1Gbl11Eems1T1Rr
eE1gTXhNakOxT1RVNVAgQkNNUXN3Q1FZRFZRUUAFdOplYkRFUk1BOEABMVVEFQ2hN
SWJIHbGxjM1J2Ym1zeERUQUxCZO05WQkFzZVEJHTmt 1iV2t4RVRBUEJNnT1ZCQU1UQOhK
ellTMX1iMjkwTUlJQk1gQUSCZ2txaGtpRz13MEJBUUVGQUFPQOFROEFNSULCQ2dL
QOFRRUFzclVgNDZkeDVvamxhWms3WXRPTDZ1K1E2SmIHN2dWTWEYa0puMVN6obHg5
TkQvOHcOUGVPMVNRMNNrdWt kTOhBOFFSbXhkZnR6aGNjT1RNNWht YmNuOFRBZ1dT
WXFRRJ FSN3M30GJWanRt YXQ2QVFQMXZTZ215WjhBaytpWVpFcTNIMnpWeVIRSELL
eFd4bUZadDFIVDgvSCICM2JIYdmVYUWNFUkt FK1RxNj ZoOHBxVmMNvY1FVdHpSRNNFE

(continues on next page)

© SNIA 2020 SNIA Technical Position 319

Cloud Data Management Interface 2.0.0

(continued from previous page)

WW12MGJISMXJnaHRvcUg4bmhCNXhuZWInVmxYakFwVyt1dDJTRTdyNkZgdjFhQWJH
STg5b3VKMWdzTVB1WDU2UDhBVWphYO0Z0Tkt JNDRPYNU2SFJIYWS OgbTZmMmOxXRVVE
ODRFVXNKKz1iNStTMngOcVBOdEPEZINDYXNXWV16NG1GSjhNd21GaUJHVXdmZ2VU
MmJIVbTZON3FxY1FJREFRQUJIvejh3UFRBUEJNT1ZIUk1CQWY4RUJUQURBUUgVTUIwW
ROEXVWREZ1FXQkJSK3RFQjJ1ZGtFWHhYMGsxNUd6dEYVNG9sMDNgQUxCZ05WSFE4
RUJBTUNBUV13RFFZSktviWklodmNOQVFFTEJRQURNZOVCQU1geDFMOXJKMkIrbURT
QTNMMkdSaGpyUFJqZkk2VIW4 zWjUxQ2VXOWAPOVBNUTV3czVWREP5Q7 c5ZEUVUThV
ZjF1OHBaeWpjaFRzUME4R1 Jkbkt S5bmROMmM1tYX1PV1V2UGOUZDMVvIWINtZmt1lcmNi
ajNJINFZXOHNgSFA3Q0U4Zml1VUzhYcHIkcG8yU3hWN29uZUpDMHZONWV5aDhtZ2ZK
L3FTYndWYW1YdUgxV3hpNmR10XZkeGRkTVhBeFFLUECcxSOtWITADWWZDZHBYLOhh
ZONPSHpjdG8rMzc0ekZxcWS5RMUt4NXJ1Z3Z4T1NnbS9QRERPTXAQMDMrYmJUUj Yz
SINLMVZ1iZHRMONVTINGpnYVBhYnd5eFF6L0Z7aXdUdS9ITEIRbJhUTnFEV31vSWJIz
K2VRWDJINZHMyQXB1bDhYSDIrQ2FrakJMTUxMM1RsajJ4KzZz0S1I5bz1cI119Tiwi
YWxnIjoiUIMyNTYifQ",
"payload":

"eyJwcm90ZWNOZWQi01iJ1leUpyYVdRaU9pSmpaRzFwTGlodmNSMWhMbVpSWDJIWdVkz
S3VSFIMY0hWaWJIHbGpJaXdpWVdadbklgb21VbESCTFUSQ1 JWQW1MQOps YmlNaU9p
SkJINalUyUjBOTk1uMCIsImVuY3J5cHR1IZFOrZXkiOiJOWkQ4ZkpUT1hGZ3NTVill
RXN1ZS1VYURNVVPQX3FFZWEVUFFyQmpObUF3U1pMSX10Nk1Uc3hhclRgbDR3YjdH
UX1tNOprOWw4QX11d0FkakltbylyOUNULUhSbmR5N1c2Nkd4bW1l1TGhwOVIOncjl2
WEt]jeXh3QUhHeGIyZGo3dmlIQjlIREINazZEQzB1RilnaWZ1M3VaeEhjdVVEYkRG
VGZBUOM2TEwWyLT1IQ290Mz1SM2VZcClFeWcO0clhwZ2t6SkpnLTdRSUpHV3pVvRFFE1
d2VEeEM3Vmh5025vdDc2bWIRPEPSMIIS5Snh6M2M4ATES6ckpO0YTY3YjdhS3Zodzk5
eUNPX3REb3d0WDZpNUd1lcmZVbESGN2VucmUwOWd3cULLT3ZxQWRDTVA1SUSYWnVO
WIL1ZX3YS5RIJVVWIFIM21BcEdib0dVAVRVRWXUMFFKd1dwaURG6DUEILCIpdiI6InVJ
ODQyQ3ZsRUpBYTd4Y1YiLCJjaXBozZXJ0ZXh0IjoiViBCcWtLTVI3TmV6UVIUOGXV
b3VOdFhPem9tSjJLbE1YaUINTOVQSkINTVZpdO1lKYO5IWHABVO1lwUnBoM1RrMnlS
dUoweHBZbmRPAVBtUHAPVG1jMWR4YXZvaGIJEdHIOoTEFQSO9TNWIZzSk91Q0TgxbWU3
enRaeFdxOFRDVVRFVKkhBVTMS5dERzZUQyZ0tUMEOyOFR1IAXpEZHhJcEtUMXJQRXZr
WThIQVBjakhzQ2pTeVpmcEhIS1pkUUhEc1lo0YUZBNOXETkkxWkxPOEhXMmt JoFB6
UzQOWFdKQzYwS243THIVSXRYZOhCWnIfZEFpNW1IQTAmUOVCSFVSRFpPQOpfdzlr
T1dLMDZfVTN3S2xVNU9DeFFYNzZFMRGxXxCQ11EN1paa2lwaExoR191RUxvZFdKREOL
Zmg4VnhDRUJ6ZVdqckR1IM3UzMXN1dHIEbMRIaFNST2VyeESwNFZuQXNET1czRXNT
a2twlLXp5cFh4d2ZBRVQOVIWx1R3VOUVIFX2xsX2M4VVZ])SnIJhRXJoZFgzX2VNajdsS
YThud2VEdGxZW]j1DLWV1QkdJYzE1O0TZLaVZzzQ1lJ0c1ldPZm5SLWQzdVZFREMWZn Vv
alplU3M1MmlImWih5dUlyeESQWDJodzFVVG1CeHRUODAyQjRNclppSkwwc2VIelIz
T3d4eEFMUFJRSzFzQVNweXJRaWljTVIBSUtGVzJUUDFjSIJRmYT1 IdmNTbzNOeTUx
CENSVGImUVICSF1IMO01LaGdWMWVNnZ0I2Mmw4 SEs2NkEOdF1pcjJyUnhkNEZPb1UO
bXNObVQ3aFpmOVhBRzZFBMzNWwSHNxSEFINNg4LVIDcOFwOH1GeHd1SHg3X0s2ZzNo
ZzJINSTNHZUpBTGxMRXhyeUJS5NEF40XQ5ZEg0SWkzZWZjZ1h2LVROcmEFISO0tHA3VM
QUItbyljVGIWUWZfU3dGSEtHZGNT SWgwazFYT3VXdkFmekducj JKMnhBV3BUQzdz
YWNyZHBWNZzgyWkM2T2dSSV11iTESORNhUYXpuMxY1d1ZjRms4dU40NFgxV2VuMO0 9 f
RmRI1ULI1LZOZPbUFyTHd4WXBMYXJISS1Q0zX3FPcjlOOnYtQ3FycEJPV2EWV1VtaXFE>b
TWxTb2VHR2plaHcwLVNUMVBTa3dWb25jNTVYTWxYcEVZc2hIJb3dHNOxnb0dBakx1l
MU13cikxNWxmWnZsajFpckljbGkOMGtIWVBKTJdZVTIEMVhaM2hEV3FLTTRLWG1w
RnJaVk5qgdiOyUWNOZGt1Vk1MaHQWN2JESU51aUpDZENSsSO11bWVVZ1hZMWl IakxB
N1J6Tjg0SIN4UTIzVXNSeFAWLTEFYRTJueEFmemY zMGSKZG5HT 1 1KbEhgdFMEQWSE
cX1jUGQ4VihBcUw5S5UURrUml t ZmsxRnBwTUJEaW9XS11VM2JTTGhyTHhORzMweUQ2
bzV1b0UtUEFN0aW9XcGVsN11ZcVg0aGx1INGNONWVhWkQyRFI3N11VOUXLbmQ2NnZq
OVptNjU2YVZrYylSSGhNWEpQczhMeE1CM2hrQ1BSMi1KN21UaTBZYTh2d0160FJ5
LVQ27285pb3VVU2F3MHIYbi OwNmIHNC00aXZhMnZ2UkZGaXFOS25KYTdrM1BrWDF2
CXVgQUIS5TilESkI2cmZNZnZxT1ZmVOphNXBUNTZLY1g4TFBPeUF1iSGo4WUNWT3Fo
QldtbGt1SiMAWUtpY1dWRkJET1pSZEpPpseDRTUXdoQ2pLY1JtdmxENXJqeEk4NTRY
NTdzQkNQbmpaTzdvZDRpz21Vbnl fZjNyRkzQd11ieVFmdWxkM3hMRVASWWZ CWUpu
YWRvNzBOS1VXM110cWFzUzR3SWIibFhFSnR5a2RPTHAQLVkybGRVMXdVbThsUHdp
VXpNZGtrY2xDWkQ2Wkx6LU9GADALaEIELbUXxPTUAPNWlhcz1zeG9DaG4zYzFMcnFQ
amdlUi1RWENoaUZrNmtYVUSCMn1IVEL3dmZZT0ZjUjhEbDd1eVICQ3NVUUY4STAT
ZkFWNkJrMm82ZU1ljdEJGTX1uWFgydUInWXEWOWLtUMOppckhzbG1l3dThZbzM1bHpW
ZGViWnlgREIxbW12LUNKRO91ZjRxbEZxRzNiYVBCQOmMhNaOZFS21WUOFJZmdDaFlu
dUc3WkxvNmVWMIW4 zMnRGeDFzdEdUcnpuMk13alNzekt PMTJIY3VkcUZnTUREQZ2 8w
T190REZ40mh1RFB3aVNadnBGNHJIWV201QktEbjBOQzNFcylzOExGaDZJUFVTMW1 1
VFB2Umx0cERJZT1jQTZgdHhCQURacVphdGtreXB5ZzZGRDZzUJhUQVRDRGOOWWhT
Rzk4MVBmMRFZ1S09FV]jlgqaTdzd31kLWOST2Q1UXZCallKUkxhckpEOGhEdWZ IcHdy
M1ViNENBb1lJIJKcnJIWAGM4TmIDem]l LbmZGWVBQal 8 yN3plRFZKZXBxQTdpOVVTY0ZD
T25VUEx3NEFpVmxgQVRPVU93MmMNzZROFgM1 9t LThPR2cxM3BTUHNIWD1SUmMSTV11Y
cjdFdnFJaUVXNDZaNTR6N1JTNHg0Z1dgZWFzNUpHdmRsQkhoQk42bFd4QTFLa0Vs
e€l90N1VOSVhGSWpZRTdAyVF90UzJIsWms tWGNPelZuMOgxT11ZU3NpTVVLVDNvIWm4 t
UmliVVhoMGZjbVNWTHFRMNVuX2dQV3MyTO0VUeHB3U1Y2dk91eWRjOFcwQVdhSVph

(continues on next page)

© SNIA 2020 SNIA Technical Position

320

Cloud Data Management Interface 2.0.0

(continued from previous page)

b

Vm43bW1IMNNnY2aEctTVFLS192S3pfaTNxbkRxRUVzVIhDQVE3NTN1cWpHUVBEMUs4
VGtZeTNucnhncEh10DY3UDJINUGPVOWExeldTVIANN2FQeVhCTkZNeFQ5V3Q5ZmVw
VEFheDdhLVolVGcwS1lpxS01DQVVNYU0o40WIveGlncGO9rcGFRVWEQS1pFMjR2NGph
ZES5pT21SSHIMeE11VzVrdG5kQk5Bb0OdHbMIHRTNZYWZ1c24wX2NPc3M2TTVXcEhR
Z1N6VWxacF9aREJ5Q091dFolTmEWMjVEb2t1T2drUk1KViN4MMZPbWM2UOwwU3Fy
R11WSEhORmMZKN21LeVNXTk5Sdk14UmhWTmJIYVXFMR1 90YUMxZDANQmpkTHY3W1Ep
YmOyT3BmSWtmSINNUzZFKcFVwSVNRakR4djk2TFhIOHBhQXBTVDZtWn1EaOVrTW10
b272XSktwMOPQNUFTTXZ%2S3dsbkgxQUIrSWIYZjdRLX1yYkthY1BtWEhkZ2hjRmZa
VilldU9ERzhfdTRWAGZwOEFOLVBRSkJyX1V0cVZJIbHpReDBnUESMVVdMbzdlRmlv
dEtPTEx3Vjh2MGpxcDdUU1BIVzBHc3pVWMFZbOR)YUZMaXZDaFJwVDktQks3d2 9w
RXhEN1FxUWUxSVhuMVNKQWRt ZFpvZmdfSF9ZeWUOMVJI]SnZGeWp6SmZBOGlranBs
STMxVWOWSzVaTllXSVExZ21vUFh3U3JUVIW1GeE45X3Z0aH15Z21pYTXQzVkZiUTNB
eFBBZj1SSESEN1pBOGEValk2R0OpNb1BvX3FySkMyLWOhQzd0cTcO0SURBekk3bmpM
SO09VMGOIZ3RtaGhGUVB6cloyWjZOYULlLaTIJIWmIyLWc3LWctNIN3ZGRxdORDSn10
ZXJEb3pJIN3NNRFM3XzM1RkoydnRnaGZLUHFTLWhFd3J1Z2GtaNE1ORUg1dnRXU3F3
NHRmZDFrOmNROExXtR1ZmM2hfV1FWZjVgQO01lGcEZNOVIOMYNnV6eWVmeUSIMENSLX1J
Y1EOQXF1leS1ZclAOYWITAXF2VXBIMEFyVEdZS3pMWkS5FZHhFVz1liemxsYUVJIavVNU
MTRBNXAzam9CUVNOQmt LRUAPMVh2RTdSVNnJI3T1kyemI tWWFIRkxjUOgzdDRtMF1Z
aVducFZ1RnBRZIEXWV1gbTgzLXFELDHZUYUNST19GOXBTMy1SRnhrVTZEVzRYcDZ3
eV1xNDF1lamxGVHp4Q1lRnNMExXek1lgTGlyRml1VSGpKZU1hR31VSzZ5TGpkYkhtRONs
LW15T3FZR3hwNERybHVITHBkaWZHenhmQnd60UM4AMXNNbk Fx YmMNRWGMwcXdIMVAO
al9uX0tMblJFdUhRWEFB1eDV2VmZ 6eWR1ZUZfNE93WExSAXZ1M3Z1M3Z3V1dWamRP
ZWN2a05nbkVFUDdocVhkbXpRbV1KZndxSGRWZNNSREXESD10OWpRCEIOLTNMRj g4
U2NSalRteF1NU291bFVgcHdia25hTWZQRVMtZkgt TjVWwQXNQVEOwWOVFTVOY SNENE
bHAZR1ZhZzY2UkdLcGAdwUlptMGF1dGNsSG1KOGVRMjRURZNKAEF6bGNkVCOzNXNC
T1FsZHRkY1hkRzFxb2Z10UpUNE51S111VXdweml hNnJYNGQ5NkRgdmlVdWpganNL
NjhCYkx2bzJQM1VyTkxUWDBINmUtb31HbzcwdURTN11xb2ZIUUxhUOSORHRNZ3d1
V1IyZFRVUDALRkk5N290b0Z1X1J3jS3BQVVU4cDZsTjIJRYkVOYy0OTWN1eWJYVS1U
ODR1ZnpgZkJkdHdAMdkYtQ3d6Nk91S1VINNBPeVN2ZMGVNbENJUW1Imb3JPU3FGV1Oy
QWAvX3NuUNDVHVVhKUOANcOFFTONXNO1QX0E4Y1hvaFpGbi INNW1UTU83b01£SWN1
Q0dVc1INuUREV2X3NNAXFLAFkOCEXLOHRMT2 tCTXVHU292Mm1 DVHBmMQjVnVnBvaGZf
UzBaUWICW1V2UDkwU3ZLUVRUTG120nZnVTd30VVmY1dRTzBrNUZZSIJNfREZxXNHVL
VWIpNXB5cFVCTO0txd0Z21a31jLXZXVGRPTGALOW40Z2kdUcjlz0G9ZejczdCltVXZ5
a3pfdkRzWWEFpWHZQbkd3My00SDhVW11XZyl1GSHIfSHILTIFONk1GSTVGAEFneWSs
QjF6SEQ2a0xXbGtGaWdfb0FjdXJ6enE3WXJJaUlOcnZFUzFUZUgwRXBwczV]j ZHpF
WWhOM3ZHNEMtQTJIgcESPN1pJUk]1l zUmFUMHkxbFBOLVZEAWJIxXOHBEF ZmhyX1B0ZVMO0
T21zNGNvLWx1iOUJNR1BmeEpOcVRDUWIGSNILTFBDbDJKNkKSVVGtnTy0zV1gzUkIw
RkOuUMdWR196avVQ0amF1UFFxZDRsSQ3BOME12S2RCb29BWGtYNzkxU2JjbmJoMUKhS
cF1hbINVZENiZmZ5MGg3NTJ1IM1dmV3JjSUVDa2 9GWkRgelUtbG04bnFO00TZnS1ZH
OFpHejF1bGhIZzVfVVIxVnlZNE1IROVBINHVCTk1yazRUVThNRjF6R1RsalhnT25t
UVZ1d0tPWmtkcFB4eWhGdExtalUzeWtoejBKMm9oMzIpaVhpbHFFeVQyQjM2Nzhz
NHE3NHNkalNTdAXdCWXZZZmtRN180SnIzNnNrUm5CQ1ZLa21lmdlFtb1d4S3NheWQ2
WnRPcllwZ1lhjT1REfOUpYXzES5RFZiekdYbW1zTExONZRPQWg0QjZUVXciLCJOYWci
0iJnblQzT0V0XzZ5eVIXdEtPAFJpUTdBINO",
"signature":

"a9idglHP1sfvg7IEKECE XNeKKpU5JjiolcQTxvpQywpT8DMS5M7sy0PfrOSEL4iKJ
hGd32xQ-JwaIgT5RROQWAM3cyl5y0IMh-KkHh1H3Amsy2RIsi2jkZVpIN240F0T4
WE6fXfuuXjBydT-PjIjQako2Lsic-nKAJukmOf3uwHxGXN3JG1Izi4 QrYeRjI4V
b9ymaZW6soF1lVaDgXulfaL7RtN_ B46-Yg N8XKS5XWulWS5PZ1ZEkYFagGzPaoMi3l
ipAlvx-V1QdVxCATOx2uQOT-um6NJAlvAigyWn45CRM5ETXja V8WkpDP1HH4ASG
SEzKUGz3tYC85Agd0-Aoig"

"dac_request dest certificate": {

"kty": "RSA",
"kid": "cdmi.hos-a.fr encrypt public",
"key ops": [
"wrapKey",
"unwrapKey",
"encrypt",
"decrypt"
]l
lln":
"uL7ANgD80H5sNgo3nHzovPRxgncQLhz00QvGMVVvULCkrYXMaXZ5sNv7£T6UdMSZ1
T-eOsthapmEqrpeVIRKHsiF3COGl2YndUHixpEkHp8ylggcH61TzoBsgXMZ 70LW~
mJ2RW3rodT7k-tcozYYsTSM5egMPQSAKgtOnMnPmdNRnEyA2 NJ8Y71NkEXyja0Q
JLstzkP8-cKSOBkEquLQEMbZVRM6USuG69¢c711i90WvuRzPoaATKyt6Cc4£6PUUIL
OyCBUAs9dXsRrt3B8H1ge7i07FAACOpcUDKDNLFXS1THc37DK zEyKZcMttjCvEL
Ovt-claokdnxJeggv9AFGQ",

(continues on next page)

© SNIA 2020 SNIA Technical Position

321

3997
3998
3999

4000

Cloud Data Management Interface 2.0.0

(continued from previous page)

"e": "AQAB",
"x5c¢c": [
"MIIDMDCCAhigAwIBAgIBBDANBgkghkiGI9wOBAQsFADBCMQOswCQYDVQQOGEwJubDER
MA8GAIUEChMIbG1l1lc2RvbmsxDTALBgNVBASTBGNkbWkxETAPBgNVBAMTCHJzYS1y
P290MCAXDTE2MTAYNZEYNDUWMFoYDzk50TkxMjMxMjMIOTUSWIAIMOswCQYDVQQG
EwJmcjEOMAWGAIUEChMFaG9zLWEXFjJAUBgNVBAMTDWNkbWkuaG9zLWEUZnIwggEi
MAOGCSgGSIb3DQEBAQUAAAIBDWAWGYEKAOIBAQC4AvVvSA2APzOfmw2gjecfOi89HGC
dxAuHPShC8YxW9QsKSthecxpdnmw?2 /t 9PpROxIMIP57Sy2FqmYSqul5X1EoeyIXcI
4aX7i1d1QeLGkSQenzLWCBwfqJPOgGyBcxns4tb6YnZFbeuhlPuT61yjNhixNIz16
Aw9BIAQC3Scyc+Z01GcTIDb80nxjuU2QREKNrRAkuy30Q/z5wpLOGOSq4tAQxt1V
EzpTmdbrlyPWL05a+5HM+hoBMrK3o0Jzh/09S70s7IIFQCz1llexGu3cHwiWp7uK]s
UABW61xQMoOcsVdLVMdz fsMr/MTIplwy22MK8SU6+35whqiR2fE16CC/0AUZAGMB
AAGJPDA6MAWGA1UJEWEB/wWQCMAAWHQYDVROOBBYEFBAIGICMRS5H6KLKM1 ZAEhCCC
KwEOMASGA1UdDWQEAWIEMDANBgkahkiGOwOBAQsSFAAOCAQEAANYSSryUU6112pYM
r83M3GWnjzul 6B+4KgimZ8kbey94 zNPdwmwQdSe0Xmg+10tc6VUB40ouNnwK8efB
aWBtXwCATNb715nTgo2+rn+X+A0mGrYaKkToPEe8ZYwDcO1lOpNCOJFE+QgP9/CJa
AaWrf95W+4kra2WnA4Bhqu2WWXnQkL47/nKcGVZgQAH+mVnxPaI0gELYdonXU/S2
8HgxoyjpGL/vmyc46zUbxYsgx/JiE7J0£IJVP6Yk/3d1INYCCpLtV8VmzFAQAeCcn8
AWowFcd09a45Y09rn1MUV/rrvXpzflfn9j7PtRRFj2e/KhitmOH1zKDuYzREpUOuU
TD1PIQ==",
"MIIDQDCCAiigAwIBAgIBATANBgkghkiGI9wOBAQsSFADBCMQOswCQYDVQQGEwJubDER
MA8GA1UEChMIbG1l1lc2RvbmsxDTALBgNVBASTBGNkbWkxETAPBgNVBAMTCHJzYS1y
P290MCAXDTE2MTAYNzZEyNDQWMEF0oYDzk50TkxMIMxMjMIOTUSW)BCMQswCQYDVQQG
EwJubDERMABGA1IUEChMIbG1l1c2RvbmsxDTALBgNVBAs TBGNkbWkxETAPBgNVBAMT
CHJzYS1yb290MIIBIjANBgkghkiGI9wOBAQEFAAOCAQ8AMIIBCgKCAQEAsrUj46dx
50j1azk7Yt0L6e+Q6J0G7gVMaxXkdnlSz1x9ND/8wdPe01SQ2skukdOHALIQRmxdft
zhccNTM5hmbcn8TAfWSYgQF1R7s78bVjtmat 6AQP1vSgiyZ8Ak+1iYZEQ3c2zVyYQ
HKKxWxmFZt1HT8/H/B3bXveXQcERKE+Tg66h8pgqVcocQUtzRFsEYmvObR1rghtog
H8nhB5xnebgV1XjApW+et2SE7r6FjvliaAbGI8%0oudlgsMPeX56P8AUjacFtNKc44
Obu6HRXY/Jm6f2m1EUM84EUsJ+9b5+S2x4qPttIDESCasWYYz4mFJ8MwmEF1BGUwWE
geT2bUm6t7qqbQIDAQAROZ8WPTAPBGNVHRMBAf8EBTADAQH/MBOGA1UdDgQWBBR+
tEB2udkEXxX0k15GztF/4010337ALBgNVHQ8EBAMCAQYWDQYJK0oZ IThveNAQELBQAD
ggEBAIjx1f9rJ2B+mDSA3L2GRhjrPRIfI6Un3251CeWIgO9PMQ5ws5pDIyB79dE/
Q8Ufle8pZyjchTsRa8GRAnKyndN2imayOVUvPoTd3/ZSmfkurcbj3I4VW8sjHP7C
E8fmUS8Xprdpo2SxV7onedCOvt5eyh8mgfJ/gSbwVaiXuHlWxi6duAvdxddMXAxQ
KPG1KKVM7CY fCdpX/HagCOHzcto+3742FqqnQlKx5rbgvxNSgm/PDDOMwP03+bbT
R63KSK1VbdtLBuS4jgaPabwyxQz/FciwTu/HLOQn8TNgDWyoIbs+eQX2Mds2Apul
8XH2+CakjBLMLL3T1j2x+6tKR90="
]
} ’
"dac_request_dest_uri": "https://cdmi.hos-a.fr:9001/dac/"

The DAC provider at hospital A will retrieve the signing key from the JOSE protected header, validate it using
the included X.509 certificates, and then verify/decrypt. It creates the following (plain) DAC response. Note

that it included the object decryption key.

{
"dac_response version": "1",
"dac_response_id": "73da04el1-2182-447e-8342-f4b9f06ec936",
"dac_applied mask": "ALL_ PERMS",
"dac object key": {

"Kty": "oct",
"kid": "encryption key 1",
"use": "enc",
"alg": "A256KW",
"k": "lmk 8n9GZJTLDUEuxBYT-9GO8bC fR2qqt03rVSRFak"
}!
"dac_response headers": {
"CDMI-DAC-AuthInfo": "Key successfully obtained from KMS."
}l
"dac_key cache expiry": "2017-04-06T14:42:47.393z2",
"dac response cache expiry": "2017-04-06T14:42:47.3932"

As before, DAC response will be JWE encrypted using the key in server_identity. The result will be:

{

(continues on next page)

© SNIA 2020 SNIA Technical Position

322

Cloud Data Management Interface 2.0.0

(continued from previous page)

"dac_response": {
"protected":
"eyJraWQiOiJjZGlpLmhvecylhImZyX3NpZ25fcHIpdmF0ZSIsImp3ayI6IntcImtO
eVwiOlwiUINBXCIsXCJraWRcIjpcImNkbWkuaG9zLWEuZnJdfc2lnbl9weml2YXR1
XCIsXCJrzX1fb3BzXCI6WlwidmVyaWz5XCIsXCJIzaWduXCIdLFwiblwiOlwiblQ2
RjclaVvVzGzkdQLXdramdneVhacFAdvRWhxNmZTWKkNfRENTYXNLLUdAVAXdWaUhETUJG
cXVreUM4ZmsxajNBYOJyTT1IZERIbnFrVzRfM2YZzOVAZMIMtREYS5YJhkWWpRRHJI L
TDFfcHBNRVg2enInN1hBWEJJalViT2h1dXJOTVNBNEN1QX1CY2xgWUJpQ3dvTWxv
aUNGb2RsbFYzUDZwekVLNjduTHNEYWVETHVaUmRzaFhXakotYm9gQzZiNGhJcWVx
UFhO0dXBPek1l5MDBKLVZydHNGUTBZaDN2dWRmbVVJITkZSTEF16cl11zY1Y3TVR4TUdS
S1hIMXEOekdHSHZmS1pTSOMxTEtYYk9Dc3JhaHVrUFVhYOtBSFBgbTNKaHpONTR6
amVYTGxnaDZPT2x4X2EzalVAY1BFT18zYJhHTDhOVUhuWF1jcUNJVDVXUUV2ZUZwW
OF1RXCIsXCJ1XCI6XCJIBUUFCXCIsSXCJ4NWNcCIjpbXCINSULETURDQOFoaWdBd01C
QWAJIQkFgQU5CZ2txaGtpRz13MEJBUXNGQURCQO1Rc3dDUVIEVIFRROV3SnViREVS
TUE4ROExVUVDaE1JYkdsbGMyUnZibXN4RFRBTEJnT1ZCQXNUQkdOa2JXa3hFVEFQ
OmdOVkJBTVRDSEp 6WVMxeWIyOTBNQOFYRFRFMk1UQX10ekV5TkRVAO1Gbl1lEems1
T1RreE1gTXhNakOxT1RVNVAgQTENUXN3Q1FZRFZRUUAFdAOptY2pFT01Bd0dBMVVE
Q2hNRmFHOXpMVOV4RmpBVUJINT1ZCQUIURFdOa2JXa3VhRz16TFdFdVpuSXdnZ0Vp
TUEWRONTcUdTSWIzZRFFFQkFRVUFBNE1CRHABA2dnRUtBbO1CQVEFDZFBVWHZ tS1VIW
OFkvNONTTONESmMRtbGFnUOdycD1KaOw4TUpKcXdyNFpTNOJIXSWNNAOVXcTZUSUx4
K1RXUGNCdOdzejBkME11ZXFSYmovZCImMVpgWkw0TlgxdngxaUSBT3Q0d1lgrbWt3
UmZyT3VEAGNCYOVpUlJzNkc2NnMweE1EZO0oORE1GeVdOZ0dJTENneVdpSUlXaDJX
V1hjL3FuTVFycnVjdXo5cDc4dTVsRIJISRMRhTW4 1dWINTHB2aUVpcDZvOWUyNms 3
TWpMVEFFuNVd1MndWRFJpSGUrNTErWlFnMFZFdGpPeGl4eFhzeFBFd2JJcGNmV3Jg
TV1ZZTk4bGxIb0xVc3BkczRLeXRxRZZROVIWd2 9BYyt PYmNt SEQ zbmpPTjVjdvdD
SG8ON1hIOXJ1U1RGczhRMy9kdndZdncxUWVkZGh5b0p4UGxaQVMSNFdueGhBZ01C
QUFHalBEQTZNQXdHQTFVZEV3RUIVA1FDTUFBAOhRWURWU]BPQkJZRUZNWThmOW9h
aXhYTkFWSW1Nby9heE9kN205c1FNOXNHQTFVZER3UUVBAO1IZ0ORBTkJna3Foa2lH
OXcwQkFRc0ZBQUIDQVFFQWJIPejR5akdLektpMOpVQTIOWVVOeFhoQl1RKbnBVUGZB
WDhRAGSS5ZEJXTzZhVXNsSzJ1Tkh1TzZjL2tKMGOvKzR4LzJiczJ1lUOAISMR1dU9w
dzd30mQOwTDB6L1hUeStFVHROMOk1TEovVY zhNdAmN6NTQyZCtMQUPpXd1ZtU1lhIQU82
QjZRZDJItSkJI5aGFMU3k2YWUXK3BwcmESYk1aYJFTVWVXC3ZtZ1R5Z22h2Y3NkVzky
TUhBUH1xUlhxTmtha TNhNW5kbE14YjdgqcWFhMzNCZkxTOHhVCcE1FQOwvaGJ4L0dH
WXcxZXIzSUFCVDBCeGI9JQXpO0cOtHQTFUOWh2cnA4NCtENjJhenZrUl11HUk8z0Ompu
SGRHcGAnRUKRRMmMhGNkRIUFIVRGVYV2d2ROMyRENOCFNxVzJTTklaUFprb2tsZ3pE
OnVXdV1HYj14d1RWaOpsWVRpSzFOdz09XCIsXCINSULEUURDQOFpaWdBd01CQWdT
QkFUQU5CZ2txaGtpRz13MEJBUXNGQURCQO1Rc3dDUVIEVIFRROV3SnViREVSTUE4
ROExVUVDaE1JYkdsbGMyUnZibXN4RFRBTEJnT1ZCQOXNUQkdOa2JXa3hFVEFQQmdO
VkJBTVRDSEp6WVMxeWIyOTBNQOFYRFREMk1UQX10ekV5TkRRAO1Gbl11Eems1T1Rr
eE1gTXhNakOxT1RVNVAgQkNNUXN3Q1FZRFZRUUAFdOplYkRFUk1BOEABMVVEFQ2hN
SWIHbGxIM1J2Y¥m1lzeERUQUxXCZ05WQkFzVEJHTMt1V2t4RVRBUEJNT1ZCQU1UQOhK
ellTMX1iMJjkwTUlJQk1gQU5CZ2txaGtpRz13MEJBUUVGQUFPQOFROEFNSULCQ2dL
QOFRRUFzclVgNDZkeDVvamxhWms3WXRPTDZ1K1E2SmOHN2dWTWEYaOpuMVN6bHg5
TkQvOHcOUGVPMVNRMNNrdWt kTOhBObFFSbXhkZnR6aGNjT1RNNWht YmNuOFRBZ1dT
WXFRRJFSN3M30GJIWanRt YXQ2QVFQMXZTZ215WihBaytpWVpFcTNIMnpWeV1RSELL
eFd4bUZadDFIVDgvSCICM2JYdmVYUWNFUkt FK1RxNjZoOHBxVmMNvY1FVdHpSRNNFE
WW12MGJISMXJnaHRvcUg4bmhCNXhuZWInVmxYakFwVyt1dDJTRTdyNkZgd]jFhQWJH
STgS5b3VKMWdzTVB1WDU2UDhBVWphY0Z0Tkt jNDRPYNU2SFJIYWS 9gbTZmMmOxXRVVt
ODRFVXNKKz1iNStTMngO0cVBOJEPEZINDYXNXWV16NG1GSjhNd21GaUJHVXdmZ2VU
MmJVbTZON3FxY1FJREFRQUJve jJh3UFRBUEJNT1ZIUk1CQWY4RUJUQURBUUgVTUIwW
ROEXVWREZ1FXQkJSK3RFQjJ1ZGtFWHhYMGsxNUd6dEYVNG9IsMDNgQUxCZ0O5WSFE4
RUJBTUNBUV13RFFZSktvitklodmNOQVFFTEJRQURNZ0OVCQU1geDFMOXJKMkIrbURT
QTNMMkdSaGpyUFJqzkk2VW4 zWj UxQ2VXOWAPOVBNUTV3czVWREP5Q] c5ZEUVUThV
ZjF1OHBaeWpjaFRzUmME4R1 Jkbkt S5bmROMm1tYX1PV1V2UGOUZDMVvIWINtZmtlcmNi
ajNJINFZXOHNgSFA3Q0U4Zml1VUzhYcHIkcG8yU3hWN29uZUpDMHZONWV5abDhtZ2ZK
L3FTYndWYW1YdUgxV3hpNmR1QXZkeGRkTVhBeFFLUECXSOtWTTADWWZDZHBYLOhh
ZONPSHpjdG8rMzcO0ekZxcWS5RMUt4NXJ1Z3Z4TINnbS9QRERPTXAQOMDMrYmJUUF Yz
SINLMVZ1iZHRMONVTINGpnYVBhYnd5eFF6L0Z7aXdUdS9ITEORbJhUTnFEV31vSWJIz
K2VRWDJINZHMyQXB1bDhYSDIrQ2FrakJMTUxMM1RsajJ4KzZ0S1I5bz1cI119Tiwi
YWxnIjoiUlMyNTYifQ",
"payload":

"eyJwcm90ZWNOZWQi0iJ1leUpyYVdRaU9pSmpaRzFwTGlodmNSMW1Mb1Z6WDJIWdVkz
S§VJSFIMYOhWaWJIHbGpJaXdpWVd4bklgb2 1VbESCTFU5Q1 JWQW1MQOpsYm1NaU9p
SkJINalUyUjBOTk1luMCIsImVuY3J5cHR1ZF9rZXkiOiJLZ11XVDVDOVBiNOFEOVZH
bTczSDROSkFJUHNNbTN2 ampNbmZ JcXZBOEFLOEtNREowMT1NQkVHeCltTUpIQTBO
dGhyb1lFOUXA3Nk1DRO9GLXJIaNnBxajNTYm1iNFNUc3FhUjQ5aTN2Y2x1dUhRS1ZM
WVNOVk1WOHBJYZzZLb11DWENGMzN1dH1IZ0pObFZjXzE2RTIYUGXEVESIWIhPRzZz
dk1lWalolcktnLVNGS1ZZbV1WeCO5UC04NUlueThRMkYtR3VBCcDNiOHVZZzhFNXdx

(continues on next page)

© SNIA 2020 SNIA Technical Position

323

Cloud Data Management Interface 2.0.0

(continued from previous page)

Z1AWY2NHYVNJZF82cFUzdk83aUZGW1VLLV8ycH1 zQWARM103Z2k10a01lSWnVPAFF £
RkpNaThLcFdKc31MNENDanZSNkxFSVBIekdTMUtkTmNEVTVrU28yc3pkanQOWENH
SkOWSkc4dFhfWmZRTJhoRzdpTktJcXhiTVYWRUZVOWR]jUzBkeWciLCJpdiI6Im9n
Z3hKM3g4YjBhb2x1SDQiLCJIjaXBozXJ0ZXh0IjoiLWhkM1A3UGMS5emtpQOhhynda
ZVhWU29rYmNXcmdqQlQyUOFZaFFGY zNMNFY4b2ZLYVNYR3UtazF3T0140HhZY1FH
S104Mk12b2tEUXNGRNZaQjBNUGOhdELjQWtmTms OVURGRECxN1i1zVGc3QURKeVIp
TkdmzZ1dkUylXU3QxWW1PZW5HaXBYNEZWM3ZyNUQURIE4X3hCRHAYSHRIUOSKX3Jy
RIVWX2R3TnJQdUdiS1YzSXhOYi01RFJ1IRk11Z0ptY0IXelJYRW1LeUEYZEdZTG1V
eEF3WFpWT18wYmlKVkxzZz1KalpuczU3YXNgR1Fna0c4ZzhCNDInTEL1OQWRFQXpJ
SF1rNTVpUkKRVQkIWRNhGR284V1cl1ZEFNrM051dilmz1JIxYzFDZEdodEZuTnlzUjUy
akhtMFprMzRoeTIJRLWZVNNNTVXBWMUSvVmMw3YTd1INWMxdEVZSGRNVUI fWWEtHVOg0
dFIxeWdmbG94dFY30DRMYXJAObGNCY1VeONFpvWXFKeXg2amEzdGxHaUpxaWdLZ043
WENTTOR6RXFOQVRQeXBITnVEYXJHRMILNmMk3cGAKZXcwYUXMOQWIQOFAOSFJIHTVZ6
Q1V6edktDbDAKYS1IXTE81ULUwSOViLVhJZGdHX195a005WTJqUVQzdi IMUJNNRG1 g
W1EOZDM4cG9BS11£SHICWDglZ1dMOXFzY3MyRHhwRT1IZm9%aXk0T2tscV1aa3Jds
MUPNT1dTQVZkWWNgckhjc3Y3ViZGSUIGV2VIclNwb1852UsxOCIsInRhZyI6TkJI6
NFZZeHdtNFkyUlY4bDVUcCkMwUEEL1£Q",
"signature":

"RJUCI3Q zfBJyeH]jYfldsd6MppSDNUAIzC771sbMIMiKfLDi8oN0999gpByS75Sx6
kCXgsNkV4T0z gaqy4UY9JrdjMRTNFPXIMwhgbBem-s6dJT6VquF3GBQTU8wWb40K
SE8rGvTcWw-HAOSfpjGoJtgv5Rmpz fVgdvANZcIfST-rOra3EnPit0£f8dJ95Db3t
78mEbMfgdoobklDnc39DvpnzD61TIoxWoZj3UGcBcvNPs12X1ijS6yZ1gAsrQbGnX
xWx-PCWEACZoVekzt-YV5QUFH2JgblpGeUUCWOEFVvION90iXVusIdWWnJO51gSKwg
180Zx0OSSBWF6b9WIeXHe5g"

} 4

"dac_response dest certificate": {
"kty": "RSA",
"kid": "cdmi.hos-b.us_encrypt public",
"key ops": [

"wrapKey",

"unwrapKey",

"encrypt",

"decrypt"

] ’
"n":

"oOMQkY85UzwO7K6HOQONfAIRMN3ZfhK0aXEKx7YwvrCU9IKOquZzl0YZ9Cv8556 8
E8yZm02JDWOB0aSsGHUB35)vXf12f4MywKGW]5Ft IGL-J 9kXF6SWg3zuLVY1XpMI
KsJngHMVFca -ZhZ2vLsrnDR1aCNEC48gR26ewp6WX1lptnSclW4x3Mj-ONMVzZxVE
TXN1wYysTgDtonmTQD-YG6 KhhAPx0YowMbUWv cMQvXsi7MMDyZn6fxfq4zQmQ2
V5RtUy5msd6K3beDzS4LmZhsImjU7YnhOj0pZby4Zckmd4 3npjXPAuwPhzK20W7gb
fkvOgm4rsFWUcuNh81BsDw",

lle" . "AQAB " ,
"x5c": [

"MIIDMDCCAhigAwIBAgIBBTANBgkghkiG9wOBAQSFADBCMQOswCQYDVQQGEwWJUbDER
MASGA1UEChMIbGl1c2RvbmsxDTALBgNVBASTBGNkbWkxETAPBgNVBAMTCHJzYS1ly
b290MCAXDTE2MTAYNzZEyNDUWMEFoYDzk50TkxMjMxMjMIOTUSWIAIMOswCQYDVQQG
EwJ1lczEOMAWGA1UEChMFaG9zLWIXFjAUBgNVBAMTDWNkbWkuaG9zLWIudXMwggEil
MAOGCSgGSIb3DQEBAQUAA4 IBDWAWGGEKAOIBAQChAXCR]jz1TPA7srofRBA18CJIEwW
3d1+ErRpcQrHtjC+sJT0go6g5nUShn0K\ /znnr\ /wTzJmbTYKNY4ES5pKwYdTz fmO
9d\/XZ\/gzLA0oZaPkW0gYv6P2RcXpJarf04tVivVekwggwmeAcxUVxr\/5mFna8uy
ucNHVoIOQLjyBHbp7CnpZ fWm2dJzVbjHcyP440xXPFUTtc2XBjKxOAO02ieZNAPSg
br8gGEA\ /HRijAxtRa\/9wxC9eyLswwPJIJmfp\/F+rjNCZDzX1G1TLmax3ordt4PN
LguZmGwmaNTtieE6PS11vLhlySbjeemNc8C7A+HMrYSbupt+S\/SgbiuwVZRy42H
yUGWPAgMBAAG]) PDA6MAWGAIUJEWEB\ /wQCMAAWHQYDVROOBBYEFH7NJVMI £TQtZn
nyiIdLNkjCgwSIMASGA1UdDWQEAWIEMDANBgkaghkiGOwOBAQSFAAOCAQEAdIADIV
0v09SUDcPL+BKysvchn\/Sgx5KBu7n9KFwE31Dhx2zvT6ruL8kXdekPH9cfrDafiWw
6I\/vnbzAVi02i5pM2cHay]jl3fTOWSVwpcQuvkoIF9eVIWONkemMME7M7jpTw07z
752T5usabDmMNpg] 8y5pRpQo3PnBVxpEZJ0XaSdfuiHtVLDg8gDZCg6Hc2tt7IM3W
njnQgs+11SGRugWOcpmVONIogvhiolNDZV35Z7puRwqckl1N2f1qyHHGBWXECNOU4
ci16glBnWBIFV+hURge8NSbpgawolaNueUbTcKjN3JsMC4ZxhMFOrN3uuPn+UAYKA
yQkcSmGSMMO 7wcAkMg==",

"MIIDQDCCA1igAwIBAgIBATANBgkghkiGI9wOBAQsSFADBCMQOswCQYDVQQGEwWJUbDER
MASGAIUEChMIbG1l1c2RvbmsxDTALBgNVBASTBGNkbWkxETAPBgNVBAMTCHJzYS1y
b290MCAXDTE2MTAYNZEyNDQWMEoYDzk50TkxMjMxMjMIOTUSWIBCMOswCQYDVQQG
EwJubDERMASGAIUEChMIbG11c2RvbmsxDTALBgNVBASTBGNkbWkxETAPBgNVBAMT
CHJzYS1yb290MIIBIjANBgkghkiGO9wOBAQEFAAOCAQ8AMIIBCgKCAQEASsrUj46dx
50j1azk7Yt0OL6e+Q6J0G7gVMaXkdnlSz1x9ND\ /8w4dPe01SQ2skukdOHALIQRmxdf
tzhccNTM5hmbcen8TAfWSYQQF1R7s78bV]jtmat 6AQP1vSgiyZ8Ak+iYZEq3c2zVyY

(continues on next page)

© SNIA 2020 SNIA Technical Position

324

4001
4002

Cloud Data Management Interface 2.0.0

(continued from previous page)

QHKKxWxmFZt1HT8\ /H\/B3bXveXQcERKE+Tg66h8pgqVcocQUtzRFsEYmvObR1rgh
togH8nhB5xnebgV1XjApW+et2SE7r6FjvliaAbGI890oudlgsMPeX56P8AUjacFtNK
c440bu6HRXY\/jm6£2m1EUM84EUsJ+90b5+52x4qPttIDESCasWYYz4mFJ8MwmF1iB
GUwfgeT2bUm6t7qqbQIDAQABOZ8wPTAPBgNVHRMBALSEBTADAQH\ /MBOGA1UdDgQ
WBBR+tEB2udkEXxX0k15GztF\/401037JALBgNVHQ8EBAMCAQYWDQYJKoZIhvcNAQ
ELBQADggEBAIjx1f9rJ2B+mDSA3L2GRhjrPRIfI6UNn3Z251CeW9g09PMQ5ws5pDdy
B79dE\/Q8Ufle8pZyjchTsRa8GRAnKyndN2imayOVUvPoTd3\/zSmfkurcbj3I4Vv
W8sJHP7CE8fmUS8Xprdpo2SxV7oneJCOvt5eyh8mgfJd\/gSbwVaiXuHlWxi6duAv
dxddMXAxQKPG1KKVM7CYfCdpX\/HagCOHzcto+374zFqqnQlKx5rbgvxNSgm\ /PD
DOMwPO03+bbTR63KSK1VbdtLBuS4jgaPabwyxQz\/FciwTu\/HLOQn8TNgDWyoIbs
+eQX2Mds2Apul 8XH2+CakjBLMLL3T1j2x+6tKR90o="

The CDMI server at Hospital B can now decrypt this message, process the access control decision, and
use the object key to decrypt the encrypted object:

<-- HTTP/1.1 200 OK

<-- Content-Type: text/plain

<-- Content-Length: 33

<—

<-- This is an unencrypted text file.

© SNIA 2020 SNIA Technical Position

325

Cloud Data Management Interface 2.0.0

«~ Clause 25

.. Data object versions

ws 25.1 Overview

sw0s Data object versioning supports multiple client use cases:

4007 « Clients can preserve all data written to a data object over time by using versions to retain all updates made to a
4008 data object.

4009 Clients can control how long and much many historical versions are retained by specifying constraints in data
4010 system metadata.

Clients can restore the contents of a historical version by copying it into the version-enabled data object.

4011

4012 Clients can consistently retrieve data object values using multiple parallel or sequential transactions without wor-
4013 ring about corruption due to concurrent updates by using the current version data object.

4014 Clients can detect where concurrent updates have occurred and can access any overwritten data by iterating
4015 through historical versions.

4016 Distributed CDMI implementations can merge concurrent changes made on different, eventually consistent nodes
4017 without resulting in data loss.

w1 Version-enabled data objects allow the previous state of a data object to be retained when an update is performed. In a
a019 Non-version-enabled data object, each update changes the state of the object and the previous state is lost. This mode
a0 Of operation is shown in Fig. 20.

CDMI CDMI
Client Server

W PUT /2 Non-Versioned-Enabled

% Data Object

wrTe 20t CREATED }

w PUT
Valygn |2t

TP 204 }
‘;TO coNTENT

/atxt
/cdmi_objectid/00007ED. ..211
"value" : "First"

Jatxt
/cdmi_objectid/00007ED...211
"value" : "Second"

Py
el UT

w‘

TP 204 }
::O CONTENT e cecccccccccaann

Jaitxt
/edmi_objectid/00007ED...211
“value" : "Third"

Fig. 20: Updates to a non-version-enabled data object

© SNIA 2020 SNIA Technical Position 326

4021
4022
4023
4024
4025

4026
4027

4028

4029

4030
4031

4032

4033
4034

4035
4036
4037

4038

Cloud Data Management Interface 2.0.0

When a data object has versioning enabled, each update creates a new “current version” with the same contents of
the version-enabled data object, with the previous current version becoming a historical version. The current version
and all historical versions can be accessed by ID, and are immutable. The version-enabled data object continues to be
mutable and has the same behaviors to clients as a non-version-enabled data object. This behavior is shown in Fig. 21
from the perspective of a client.

CDMI
Client

CDMI
Server

Version-Enabled Current Version Historical Versions

Data Object

/b.txt
/cdmi_objectid/00007ED...38F
“value" : "First"

* | /cdmi_objectid/00007ED...8EA

“"value" : "First"

PUT

aiul T/ txt

e ot \
04 }

TP 2
S GONTENT

/b.txt
/cdmi_objectid/00007ED...38F | ** = **
"value" : "Second"

. PUTy
04 }

TP 2
NG CONTENT

/cdmi_objectid/00007ED...552

/cdmi_objectid/00007ED...8EA
"value" : "Second" irst”

“value" : "First

/b.txt
/cdmi_objectid/00007ED...38F | == = **
“value" : "Third"

/cdmi_objectid/00007ED...D21
"value" : “Third"

/cdmi_objectid/00007ED...552
"value" : "Second"

/cdmi_objectid/00007ED...8EA
"value" : "First"

Fig. 21: Updates to a version-enabled data object

Using this approach, CDMI clients that are not aware of versioning can continue to access version-enabled data objects
the same way as non-version-enabled data objects, while CDMI clients that are aware of versioning can access and
manage the immutable versions associated with the version-enabled data object.

Versioning is enabled for a data object by adding a data system metadata item that indicates that versioning is desired.

Version-enabled data objects and all associated versions contain additional storage system metadata items. These
metadata items allow a client to discover the versions that are associated with a version-enabled data object and to
iterate through these versions.

The maximum number of versions to be retained, maximum age of versions to be retained, and the maximum space
that can be consumed by versions is controlled by data system metadata.

When a data object is version enabled, it always contains at least one version, the “current version”. The current version
has the same contents as the version-enabled data object but has a different identifier (URI and Object Identifier) and is
immutable. When a version-enabled data object is changed, a new current version is created, and the previous current
version becomes a historical version.

© SNIA 2020 SNIA Technical Position 327

4039

4040

4041

4042

4043
4044

4045
4046

4047

4048
4049

Cloud Data Management Interface 2.0.0

25.2 Traversing version-enabled data objects

Version-enabled data objects have additional metadata items that allow a client to discover and traverse historical
versions.

Version-enabled data objects shall contain the following metadata items, as shown in Table 159.

Table 159: Version-enabled data object metadata items

Metadata Item Name Type Description Requirement
cdmi_version current JSON The URI of the current version of the version-enabled | Conditional
String data object. This metadata item shall be present in
the version-enabled data object and all historical

versions.
cdmi_version oldest JSON One or more URIs of the oldest version(s). This Conditional
Array metadata item shall be present in the version-enabled
of data object, the current version and all historical
JSON versions except the oldest historical versions.
Strings
cdmi version object JSON The URI of the version-enabled data object. This Conditional

String metadata item shall be present in the current version
and all historical versions.

cdmi_version parent JSON The URI of the previous historical version. This Conditional
String metadata item shall be present in the current version
and all historical versions except the oldest historical

versions.
cdmi_version children JSON One or more URIs of historical versions (or the Conditional
Array current version) created by updating a given historical
of version. This metadata item shall be present in all
JSON historical versions.

Strings

Situations where a version-enabled data object or a historical data object may have multiple oldest versions or multiple
children is explained in 25.3.

To visualize how these metadata items allow a client to traverse data object versions, the linkages between the version-
enabled data object and data object versions in the final state of Fig. 21 is shown in Fig. 22.

cdmi_version_object

cdmi_version_current cdmi_version_current
/b.txt
i i i cdm ersion_children
/odmi_objectid/00007ED. .38F cdni_version children | ersen e
"value" : "First" 4— 4—
| /cdmi_objectid/00007ED...D21 /cdmi_objectid/00007ED...552 /cdmi_objectid/00007ED...8EA
"value" : "Third" » “value" : "Second" _> "value" : "First"

cdmi_version_parent cdmi_version parent

cdmi_version_oldest

Fig. 22: Linkages between a version-enabled data object and data object versions

A client accessing the version-enabled data object (/b . txt) can traverse to the current version and to the oldest version.

A client accessing a data object version can traverse to the version-enabled data object, to the current version, to the
parent version, to child versions, and to the oldest version.

© SNIA 2020 SNIA Technical Position 328

4050

4051
4052

4053

4054

4055

4056
4057
4058
4059

Cloud Data Management Interface 2.0.0

25.3 Concurrent updates and version-enabled data objects

When multiple concurrent updates are performed against a version-enabled data object, each update is performed
against the state of the object at the time the update starts. The change to the state resulting from the update to the
object becomes visible to clients at the time the update completes.

Two different types of concurrent updates can occur: overlapping updates and nested updates.
Fig. 23 and Fig. 24 show the update sequence and resulting version linkages for overlapping updates:

CDMI CDMI CDMI
Client A Server Client B

PUT 11 Version-Enabled Current Version Historical Versions
) .tx

%’ Data Object

TP 201 CREATED }-
Ioixt

/cdmi_objectid/00007ED...38F | ** = ** | /cdmi_objectid/00007ED...8EA
"value" : "First" "value" : “First"
w_ PUT b4
Valuyer . ng Xt UT I
‘Secongr PUT IO
M; walue' © Thire
TP 204
‘;TO CONTENT e e e eccccan [
b.txt
/cdmi_objectid/00007ED...38F | ** = ** | /cdmi_objectid/00007ED...552 /edmi_objectid/00007ED...8EA
"value" : "Second" "value" : "Second” "value" : "First"
NoO COnTy /b.txt
ENT /edmi_obiectid/00007ED...38F | ** = ** | /cdmi_objectid/00007ED...D21 /cdmi_objectid/00007ED..552 /cdmi_objectid/00007ED...8EA
"value" : "Third" "value" : “Third" “value" : "Second" “value" : "First"

Fig. 23: Overlapping concurrent updates

cdmi_version_object

cdmi_version_current cdmi_version_current

(cdmi_version_children

/b.txt
/cdmi_objectid/00007ED...38F
"value" : "First" !

/cdmi_objectid/00007ED...8EA
"value" : "First"

/cdmi_objectid/00007ED...D21
"value" : "Third"

/cdmi_objectid/00007ED...552
"value" : "Second"

cdmi_version_parent

cdmi_version_oldest

Fig. 24: Linkages for overlapping updates

In the sequence shown in Fig. 23, both the “Second” and “Third” updates are performed against the “First” state. As
the “Third” update completes last, it becomes the current version. In this example, historical version 00007ED. . .
8EA would have two children, versions 00007ED. . .552 and 00007ED. . .D21. Both versions 00007ED. . .552 and
00007ED. . .D21 would have the same parent 00007ED. . . 8EA.

© SNIA 2020 SNIA Technical Position 329

4060

4061
4062
4063

4064

4065

Cloud Data Management Interface 2.0.0

Fig. 25 and Fig. 26 show the update sequence and resulting version linkages for nested updates:

CDMI CDMI
Client A Server

CDMI
Client B

PUT s,
"Valygr 1 i Xt

“““‘*-lzﬂl_.>

TP 200 CREATED }

puT b3
e’ =T

rd"

WTTP 20

4
o QONTENT

Version-Enabled
Data Object

Current Version

Historical Versions

/b.txt
/cdmi_objectid/00007ED...38F

** = ** | /cdmi_objectid/00007ED...8EA

“value" : “First" "value" : “First"

/b.txt

/cdmi_objectid/00007ED...38F | ** = ** | /cdmi_objectid/00007ED...D21 /cdmi_objectid/00007ED...8EA
“value" : “Third” “value" : “Third" “value" : “First"

/b.txt
/cdmi_objectid/00007ED...38F
“value" : “Second”

** = ** | /cdmi_objectid/00007ED...552
“value" : "Second”

/cdmi_objectid/00007ED...D21
"value" : “Third"

/cdmi_objectid/00007ED...8EA
“value" : "First"

Fig. 25: Nested concurrent updates

cdmi_version_object

cdmi_version_current

S

cdmi_version_current

~

/b.txt

/cdmi_objectid/00007ED...38F
"value" : "First"

~

cdmi_version_children

/cdmi_objectid/00007ED...552
"value" : "Second"

\ "value" : "Third"

/cdmi_objectid/00007ED...D21

/cdmi_objectid/00007ED...8EA

"value" : "First"

cdmi_version_parent

cdmi_version oldest

Fig. 26: Linkages for nested updates

In the sequence shown in these figures, both the “Second” and “Third” updates are performed against the “First” state.
As the “Second” update completes last, it becomes the current version. In this example, historical version 00007ED. .
. 8EA would have two children, versions 00007ED. . .552 and 00007ED. . .D21. Both versions 00007ED. . .552 and
00007ED. . .D21 would have the same parent 00007ED. . . 8EA.

Both of these data structures are equivalent, with the only difference being which update completed last.

© SNIA 2020

SNIA Technical Position

330

Cloud Data Management Interface 2.0.0

« 25.4 Capabilities for version-enabled data objects

w67 The relationship between version-enabled data objects, data object versions, and capabilities is shown in Fig. 27.

“I” Root URI

capabilitiesURI

»| “cdmi_cababilities/*

I

/b.txt
/cdmi_objectid/00007ED...38F

capabilitiesURI k « T
~ dataobject/

.

/cdmi_objectid/00007ED...D21

capabilitiesURI

/cdmi_objectid/00007ED...552

capabilitiesURI

cdmi_objectid/00007ED...8EA

capabilitiesURI

Fig. 27: Version to capabilityURI relationships

“dataobject_version/*

«wss Data object versions are immutable but may be deleted by a client or by the system, depending on the data system
s Metadata specified.

© SNIA 2020

SNIA Technical Position

331

4070

4071

4072

4073

4074

4075

4076
4077

4078

4079

4080

4081

4082

4083

4084
4085
4086

4087

4088

Cloud Data Management Interface 2.0.0

25.5 Updates triggering version creation

If versioning is enabled by setting the value of the cdmi_versions metadata item in the version-enabled data object
to “value”, the following updates will trigger the creation of a new version:

» changing the mimetype,
* changing the value, or
* changing the valuetransferencoding.

If versioning is enabled by setting the value of the cdmi versions metadata item in the version-enabled data object
to “user”, the following updates will trigger the creation of a new version:

+ changing the mimetype,

» changing the value,

» changing the valuetransferencoding, or
 adding, modifying, or removing user metadata.

If versioning is enabled by setting the value of the cdmi_versions metadata item in the version-enabled data object
to “a11”, then all updates to the data object will trigger the creation of a new version.

While ACLs for historical versions are left unchanged, the effective ACL, owner, and domain of historical versions shall
be the ACL, owner, and domain of the current version-enabled data object. This means that changing the ACL of a
versioned data object also overrides the historical version ACL for all previous versions.

Modifications performed with the Xx-CDMI-Partial header shall not trigger the creation of a new version until the
completionStatus is changed from “Processing” to “Complete”.

© SNIA 2020 SNIA Technical Position 332

4089

4090

4091

4092
4093
4094

4095
4096

4097

4098
4099
4100

4101

4102

4103
4104
4105
4106
4107

Cloud Data Management Interface 2.0.0

25.6 Operations on version-enabled data objects

Moving a version-enabled data object within a system is considered to be an update to the name and/or parentURI
fields.

Moving a version-enabled data object between systems moves all data object versions associated with the version-
enabled data object and preserves all identifiers. If the destination name and/or URI are different, the move is considered
to be an update to the name and/or parentURI fields.

Copying a version-enabled data object shall only copy the current version of the version-enabled data object. Versions
of the version-enabled data object are not copied.

Deleting a version-enabled data object shall also delete all versions associated with that version-enabled data object.

Disabling versioning for a version-enabled data object shall preserve all versions. Previously existing versioning meta-
data shall remain present while versioning is disabled. Re-enabling versioning for a data object that previously was
version-enabled shall result in the creation of a new current version.

If a version-enabled data object is placed under retention or hold, the retention behaviors of the version-enabled data
object shall be applied to the data object versions.

No additional notifications are defined for version-enabled data objects. When a version-enabled data object is updated,
an additional creation notification message shall be generated for the created data object version. Likewise, when a
data object version is accessed or deleted, a notification message is generated. If a limited number, size, or age for
versions is requested and a change to a version-enabled data object results in a version being automatically deleted,
then the system shall generate a corresponding deletion notification message for the deleted data object version.

© SNIA 2020 SNIA Technical Position 333

4108

4109

4110
4111

4112
4113

4114

4115

4116
4117

4118

4119

4120

4121

4122
4123

4124

4125

Cloud Data Management Interface 2.0.0

25.7 Operations on data object versions

A data object version is presented to the client as a standard CDMI data object.

Moving, copying over, deserializing over, and updating a data object version shall not be permitted and shall result in
an HTTP status code of 403 Forbidden.

Copying a data object version is permitted. For example, to promote a version to become the current version of a
version-enabled data object, the URI of the data object version is used in the copy field when performing an update to
the URI of the version-enabled data object. Updates may also be performed as part of the copy operation.

Deleting the current version or historical versions shall maintain the relationships in Table 159.

Deleting the current version shall revert the current version to the parent. If there is no parent version, deleting the
current version shall result in an HTTP status code of 403 Forbidden.

Deleting a historical version shall only be permitted when the client has ACL permissions to delete the historical version
and has ACL permissions to delete the version-enabled data object.

Deleting a historical version shall use the domainURI metadata of the version-enabled data object.
Reading a historical version shall update the cdmi_acount and cdmi_atime of the historical version, when present.

Reading a historical version shall only be permitted when the client has ACL permissions to read the historical version
and has ACL permissions to read the version-enabled data object.

Reading a historical version shall use the domainURI metadata of the version-enabled data object.
Standard notification messages are sent when data object versions are read or deleted.

© SNIA 2020 SNIA Technical Position 334

4126

4127

4128

4129

4130

4131

4132

Cloud Data Management Interface 2.0.0

25.8 Query of data object versions

Data object versions are regular CDMI objects, consequently they will be included in query results unless explicitly

excluded.
Querying for data object versions is performed by including the scope:

"metadata" : {
"cdmi version children" : "*"

}

Querying for version-enabled data objects (but not their versions) is performed by including the scope:

"metadata" : {
"cdmi versioning" : "*x"

}

Querying for non-versioned data objects with no versions is performed by including the scope:

"metadata" : {
"cdmi version current" : "!*"

}

Querying for non-versioned data objects with versions is performed by including the scope:

"metadata" : {
"cdmi versioning" : "!*",
"cdmi version current" : "*"

© SNIA 2020 SNIA Technical Position

335

4133

4134

4135

4136

4137

4138

4139

4140

4141

Cloud Data Management Interface 2.0.0

25.9 Version-enabled data object serialization

Version-enabled data objects are serialized by performing the following steps:
+ Serialize the current version and all historical versions as described in 15.2.
* Place the serialized current version and historical versions into a JSON Array.
« Serialize the version-enabled data object as described in 15.2.

» Replace the value field in the serialized version-enabled data object with the JSON Array containing the serialized

current version and historical versions.

Serializing a non-version-enabled data object that has versions shall follow the same process.
EXAMPLE 1: A version-enabled data object with two historical versions is serialized.

{

"cdmi version oldest" : [
"/cdmi objectid/00007ED90010512EB55A9304EACS5D4AA"

—~00007ED90010F077F4EB1C99C87524CC",
"cdmi version oldest" : [
"/cdmi_objectid/00007ED90010512EB55A9304EACS5D4AA"

] 4

"cdmi version parent" : "/cdmi_ objectid/
—00007ED9001005192891EEBRE599D94BR",
"cdmi version children" : [],
}l
"valuerange" : "0-32",
"valuetransferencoding" : "utf-8",
"value" : "Third version of this Data Object"
}I
{
"objectType" : "application/cdmi-object",

"objectType" : "application/cdmi-object",
"objectID" : "00007EDS00100DA32EC94351F8970400",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI"™ : "/cdmi_domains/MyDomain/",
"capabilitiesURI"™ : "/cdmi capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {
"cdmi size" : "33",
"cdmi versioning" : "user",
"cdmi_version_object” : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
"cdmi version current" : "/cdmi objectid/00007ED90010F077F4EB1C99C87524CC",

"value" : [
{

"objectType" : "application/cdmi-object",
"objectID" : "00007ED90010F077F4EB1C99C87524cCcC",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAAS75D2",
"domainURI" : "/cdmi domains/MyDomain/",
"capabilitiesURI" : "/cdmi capabilities/dataobject/dataobject version/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi_ size" : "33",

"cdmi_version_object" : "/cdmi_objectid/

—00007ED900100DA32EC94351F8970400",
"cdmi version current" : "/cdmi objectid/

(continues on next page)

© SNIA 2020 SNIA Technical Position

336

4142
4143

4144

4145
4146

Cloud Data Management Interface 2.0.0

(continued from previous page)

"objectID" : "00007ED9001005192891EEBE599D94BB",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",

"parentID" : "00007E7F00102E230ED82694DAAS75D2",
"domainURI" : "/cdmi domains/MyDomain/",

"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {
"cdmi size" : "34",
"cdmi version object" : "/cdmi objectid/
—00007ED900100DA32EC94351F8970400",
"cdmi_version current" : "/cdmi objectid/
—00007ED90010F077F4EB1C99C87524CC",
"cdmi version oldest" : [
"/cdmi objectid/00007ED90010512EB55A9304EACS5D4AA"
:IV
"cdmi version parent" : "/cdmi objectid/
—00007ED90010512EB55A9304EAC5D4AA",
"cdmi version children" : [
"/cdmi objectid/00007ED90010F077F4EB1C99C87524CC"
]I

}!

"valuerange" : "0-33",

"valuetransferencoding" : "utf-8",

"value" : "Second version of this Data Object"

"objectType" : "application/cdmi-object",
"objectID" : "00007ED90010512EB55A9304EACS5D4AA",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",

"parentID" : "00007E7F00102E230ED82694DAAS75D2",
"domainURI" : "/cdmi domains/MyDomain/",

"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {
"cdmi_ size" : "33",
"cdmi version object" : "/cdmi objectid/
—00007ED900100DA32EC94351F8970400",
"cdmi version current" : "/cdmi_ objectid/
—00007ED90010F077F4EB1C99C87524CC",
"cdmi version oldest" : [
"/cdmi objectid/00007ED90010512EB55A9304EACS5D4AA"
:II
"cdmi version children" : [
"/cdmi_ objectid/00007ED9001005192891EEBE599D94BB"
:IV

}I

"valuerange" : "0-32",
"valuetransferencoding" : "utf-8",
"value" : "First version of this Data Object"

"capabilitiesURI" : "/cdmi capabilities/dataobject/dataobject version/",

"capabilitiesURI" : "/cdmi capabilities/dataobject/dataobject version/",

Deserializing a version-enabled data object or a non-version-enabled data object with versions shall restore the data

object and all serialized versions.

Individually serializing and deserializing current versions or historical versions shall not be permitted.

Deserializing a serialized any data object with versions onto a system that does not support versions shall result in an

HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position

337

Cloud Data Management Interface 2.0.0

Part V

CDMI Annexes

© SNIA 2020 SNIA Technical Position 338

4149

4150

4151

4152
4153

4154

4155
4156
4157

4158
4159
4160
4161

Cloud Data Management Interface 2.0.0

Clause 26

Extensions

26.1 Overview

CDMI extensions describe non-normative additional functionality for extending the CDMI International Standard. Each
extension is first written as a standalone document that describes the changes that are required to implement the
functionality being added into this International Standard.

When one or more vendors have implemented a CDMI extension, it is eligible to be added to this annex. When multiple
vendors have implemented a CDMI extension and demonstrated interoperability, the extension is eligible to be merged
into the CDMI International Standard itself, at which point it becomes normative.

CDMI extensions shall not break or modify existing functionality, and thus do not result in compatibility problems with
existing clients. Compatibility is typically accomplished by relaxing restrictions imposed in the current CDMI International
Standard, adding new fields, or using reserved names for metadata. The clients that are using CDMI capabilities can
identify the functionality that is associated with these CDMI extensions.

© SNIA 2020 SNIA Technical Position 339

4162

4163

4164
4165
4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

Cloud Data Management Interface 2.0.0

26.2 Summary metadata for bandwidth

26.2.1 Overview

Domain summaries provide summary measurement information about domain usage and billing. Some systems may
track additional usage and billing information related to network bandwidth. This extension proposes a set of additional,
optional contents for domain summary objects.

26.2.2 Changes to specification

Add new terms to clause 3:

private network segment a single IP address or range of IP addresses that are considered internal (e.g., LAN)

public network segment a single IP address or range of IP addresses that are considered external (e.g., WAN)

Add table entries to end of Table 79 in 10.3:

Metadata name Type Description Requirement
cdmi_summary network bytes JSON Total number of bytes read/written to/from Optional
string public/private network segments
cdmi_summary reads private JSON Total number of bytes read from private Optional
string network segment
cdmi_summary reads private min | JSON Minimum number of bytes read from Optional
string private network segment for the given
interval
cdmi summary reads private max | JSON Maximum number of bytes read from Optional
string private network segment for the given
interval
cdmi_summary reads private avg | JSON Average number of bytes read from private | Optional
string network segment for the given interval
cdmi_summary writes private JSON Total number of bytes written to private Optional
string network segment
cdmi_ summary writes private min | JSON Minimum number of bytes written to private | Optional
string network segment for the given interval
cdmi summary writes private max | JSON Maximum number of bytes written to Optional
string private network segment for the given
interval
cdmi summary writes private avg | JSON Average number of bytes written to private | Optional
string network segment for the given interval
cdmi_ summary reads public JSON Total number of bytes read from public Optional
string network segment
cdmi summary reads public min JSON Minimum number of bytes read from public | Optional
string network segment for the given interval
cdmi_ summary reads public max JSON Maximum number of bytes read from Optional
string public network segment for the given
interval
cdmi_summary reads public_avg JSON Average number of bytes read from public | Optional
string network segment for the given interval
cdmi_summary writes public JSON Total number of bytes written to public Optional
string network segment

continues on next page

© SNIA 2020

SNIA Technical Position

340

Cloud Data Management Interface 2.0.0

Table 160 — continued from previous page

Metadata name Type Description Requirement

cdmi summary writes public min | JSON Minimum number of bytes written to public | Optional
string network segment for the given interval

cdmi summary writes public max | JSON Maximum number of bytes written to public | Optional
string network segment for the given interval

cdmi summary writes public avg JSON Average number of bytes written to public Optional
string network segment for the given interval

cdmi summary reads_total JSON Total number of bytes read from both Optional
string public and private network segments

cdmi_ summary writes total JSON Total number of bytes written to both public | Optional
string and private network segments

© SNIA 2020

SNIA Technical Position

341

4176

477

4178
4179
4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195
4196
4197

Cloud Data Management Interface 2.0.0

26.3 Expiring access control entries (ACEs)

26.3.1 Overview

A common ftrait of cloud storage services is the ability to share an object with other clients for a limited time. This
extension adds an attribute of ACEs used in ACLs that imposes a time limit (expiration) on the ACE. Once the ACE
expires, the ACE is no longer valid or included in the authorization calculation for the object.

26.3.2 Changes to specification

Insert into 17.2.7:
After the bullet item:
» ACEs that do not refer to the principal P requesting the operation are ignored.
Insert bullet:
» ACEs that have an expiration value less than the current time are ignored.
Change 17.2.7:
Original text:

’ACE = { acetype , identifier , aceflags , acemask , acetime } ‘

Revised text:

’ACE = { acetype , identifier , aceflags , acemask , acetime, expiration } ‘

Insertinto 17.2.7 after “acemask = uint t | acemaskstring”

’expiration = uint t

Insert into 17.2.7 after “When ACE masks...”:

When ACE expiration is presented in string format, it shall be specified in ISO-8601 point-in-time format as
described in 5.6.

Insert a new sub-clause after 17.2.10: “ACE expiration”

An ACE may have an optional expiration associated with it. The expiration is a point-in-time value, in ISO-
8601 point-in-time format, as described in 5.6, which specifies that the ACE is no longer valid and shall be
ignored after the time specified.

© SNIA 2020 SNIA Technical Position 342

4198

4199

4200
4201
4202

4203

4204

4205

4206

4207

4208

4209
4210

4211

4212

4213

4214

4215

Cloud Data Management Interface 2.0.0

26.4 Group storage system metadata

26.4.1 Overview

ACLs in CDMI can refer to the owner of an object by specifying an ACE Who of "OWNER@". This reference corresponds
to the contents of the cdmi_owner storage system metadata. However, no cdmi_group storage system metadata
corresponds to an ACE Who of "GROUP@".

This extension defines a new storage system metadata item, cdmi_group, that allows an object to be associated with
a group for ACL evaluation purposes.

26.4.2 Changes to specification

Add a new row at end of table tbl capabilities for data system metadatain 12.2.9:

Capability name

Type

Definition

cdmi group

JSON string

If present and "true™", this capability indicates that the
cloud storage system supports group storage system
metadata to indicate a group associated with the object.

Add a new row below "cdmi_owner" in Table 141 of 16.2:

Metadata name Type Description Requirement
cdmi_group JSON The name of the group that is associated with the Optional
string object.
© SNIA 2020 SNIA Technical Position 343

4216

4217

4218
4219
4220

4221

4222

4223

4224

4225

4226

4227
4228

4229

4230

4231

4232
4233

4234

4235

Cloud Data Management Interface 2.0.0

26.5 Header-based metadata

26.5.1 Overview

The CDMI protocol enables CDMI-aware clients to store and retrieve structured metadata using JSON bodies, but does
not permit HTTP-based clients to access this metadata. This extension extends CDMI metadata to permit HTTP header
metadata to be stored and retrieved as a subset of CDMI metadata.

Due to limitations associated with HTTP headers, certain restrictions must be placed on metadata that is accessible via

headers.

26.5.2 Changes to specification

Add a new row at end of table Table 9 in 6.2:

Header Type Description Requirement
x-*-meta-* Header If the “cdmi_header_metadata” capability is present, for each | Conditional
string request header matching the pattern "x-*-meta-*", a new
user metadata item shall be created, with the metadata name
set to the header field-name, and the metadata value set to
the header field-value.
If the number of headers, the length of any of the headers, or
the total size of the headers exceeds the limits specified in
RFC 2616, or specified by the
cdmi header metadata maxitems,
cdmi_header metadata maxsize, or the
cdmi_header metadata maxtotalsize capabilities, a
400 Bad Request shall be returned to the client.
Add new example at end of 6.2:
EXAMPLE 1: PUT to the container URI the data object name, contents, and metadata:
--> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: text/plain;charset=utf-8
--> X-CDMI-Meta-Colour: Yellow
--> X-Object-Meta-Shape: Square
--> Content-Length: 37
-—>
--> This is the Value of this Data Object
<-- HTTP/1.1 201 Created
After 6.2, add a new clause “Inspect a Data Object using HTTP”:
© SNIA 2020 SNIA Technical Position 344

4236

4237

4238

4239

4240

4241
4242

4243

4244

4245

4246

4247

4248
4249

4250

4251

4252

4253

4254

4255

4256

4257

Cloud Data Management Interface 2.0.0

26.5.3 Synopsis

To check for the presence of a data object, the following request shall be performed:
* HEAD <root URI>/<ContainerName>/<DataObjectName>

Where:
* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., " /") between
each pair of container names.

* <DataObjectName> is the name specified for the data object to be checked.
The object shall also also be able to be checked at <root URI>/cdmi objectid/<objectID>.
26.5.4 Capabilities
The following capabilities describe the supported operations that may be performed when reading an existing data

object:

« Support for the ability to read the metadata of an existing data object is indicated by the presence of the
cdmi_read metadata capability in the specified object.

26.5.5 Request headers

Request headers may be provided as per RFC 2616.

26.5.6 Request message body

A request message body shall not be provided.

26.5.7 Response headers
The HTTP response headers for checking for the presence of a data object using HTTP are shown in Table 161.

Table 161: Response headers - Inspect a data object using HTTP

Header Type Description Requirement

Content-Type Header The content type returned shall be the mimetype field in the Mandatory
string data object.

Location Header The server shall respond with the URI that the reference Conditional
string redirects to if the object is a reference.

x-*-meta-* Header If the "cdmi header metadata" capability is present, for Conditional
string each user metadata item in the “metadata” field with a

metadata name that is a case-insensitive match to the pattern
"x-*-meta-*", a corresponding response header shall be
returned to the client where the header field-name shall be
the metadata item name, and the header field-value shall be
the metadata item value.

If a header value to be return is not conformant with RFC
2616, the server may omit the field from the response
headers.

© SNIA 2020 SNIA Technical Position 345

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271
4272

4273

4274

4275

Cloud Data Management Interface 2.0.0

26.5.8 Response message body

No response body shall be provded, as per RFC 2616.

26.5.9 Response status

The HTTP status codes that occur when checking the presence of a data object using HTTP are described in Table 162.

Table 162:

HTTP status codes - Inspect a data object using HTTP

HTTP status Description

200 OK The queue object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.

26.5.10 Example

EXAMPLE 1: HEAD to the data object URI to check for the presence of a data object with header metadata:

--> HEAD /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com

-—>

<—=
<—=
<—=
<—=
<—=

HTTP/1.1 200 OK

Content-Type: text/plain

Content-Length: 37

X-CDMI-Meta-Colour: Yellow

X-Object-Meta-Shape:

Square

Add a new row at end of table Table 13 in 6.3:

Header

Type

Description

Requirement

x-*-meta-* Header

string

If the "cdmi_ header metadata" capability is present, for
each user metadata item in the “metadata” field with a
metadata name that is a case-insensitive match to the pattern
"x-*-meta-*", a corresponding response header shall be
returned to the client where the header field-name shall be
the metadata item name, and the header field-value shall be
the metadata item value.

If a header value to be return is not conformant with RFC
2616, the server may omit the field from the response
headers.

Conditional

Add new example at end of 6.3:

EXAMPLE 6: GET to the data object URI to read the value of the data object with header metadata:

© SNIA 2020

SNIA Technical Position

346

4276
4277

4278

4279

4280

4281
4282

4283

4284

4285

4286
4287

4288

4289

Cloud Data Management Interface 2.0.0

--> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 200 OK

<-- Content-Type: text/plain
<-- Content-Length: 37

<-- X-CDMI-Meta-Colour: Yellow
<-- X-Object-Meta-Shape: Square

<-- This is the Value of this Data Object

Add a new row at end of table Table 16 in 6.4:

Header Type Description Requirement
x-*-meta-* Header Ifthe "cdmi header metadata" capability is present, for Conditional
string each request header matching the pattern "x-*-meta-*", a
new user metadata item shall be created, or an existing
metadata item shall be updated, with the metadata name set
to the header field-name, and the metadata value set to the
header field- value.
If a metadata item already exists where the metadata name
and the header field-name differ only in case, the existing
metadata item value shall be updated.
If an empty header field-value is specified, the corresponding
metadata item shall be removed from the object.
If the number of headers, the length of any of the headers, or
the total size of the headers exceeds the limits specified in
RFC 2616, or specified by the
cdmi header metadata maxitems,
cdmi_header metadata maxsize, or the
cdmi_header metadata maxtotalsize capabilities, a
400 Bad Request shall be returned to the client.
Add new example at end of 6.4:
EXAMPLE 3: PUT to the data object URI to update the value and metadata of the data object:
--> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
--> Host: cloud.example.com
--> Content-Type: text/plain;charset=utf-8
--> X-CDMI-Meta-Colour: Green
--> Content-Length: 41
-—>
--> This is the new Value of this Data Object
<-- HTTP/1.1 204 No Content
Add a new table to Request Headers in 7.2:
© SNIA 2020 SNIA Technical Position 347

4290

4291

4292
4293

4294

4295

4296

4297
4298

4299

4300

4301

4302

4303

4304

4305

4306
4307

4308

4309

Cloud Data Management Interface 2.0.0

Table 163: Request headers - Create a container object using HTTP

user metadata item shall be created, with the metadata name
set to the header field-name, and the metadata value set to
the header field-value.

If the number of headers, the length of any of the headers, or
the total size of the headers exceeds the limits specified in
RFC 2616, or specified by the

cdmi header metadata maxitems,
cdmi_header metadata maxsize, or the
cdmi_header metadata maxtotalsize capabilities, a
400 Bad Request shall be returned to the client.

Header Type Description Requirement
x-*-meta-* Header If the “cdmi_header_metadata” capability is present, for each Conditional
string request header matching the pattern "x-*-meta-*", a new

Add new example at end of 7.2:

EXAMPLE 2: PUT to the URI the container object name and metadata:

--> Host:

<-- HTTP/1.1 201 Created

--> PUT /cdmi/2.0.0/MyContainer/ HTTP/1.1
cloud.example.com

--> X-CDMI-Meta-Colour: Yellow

After 7.2, add a new sub-clause “Inspect a container object using HTTP”:

26.5.11 Synopsis

To check for the presence of a container object, the following request shall be performed:

* HEAD <root URI>/<ContainerName>/<TheContainerName>/

Where:

* <root URI> is the path to the CDMI cloud.

* <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., " /") between

each pair of container names.

* <TheContainerName> is the name specified for the container object to be checked.

The container object shall also also be able to be checked at <root URI>/cdmi objectid/<objectID>.

© SNIA 2020

SNIA Technical Position

348

4310

4311
4312

4313

4314

4315

4316

4317

4318

4319

4320
4321

4322

4323

4324

4325

4326

4327

4328

Cloud Data Management Interface 2.0.0

26.5.12 Capabilities
The following capabilities describe the supported operations that may be performed when reading an existing container
object:

» Support for the ability to read the metadata of an existing conatiner object is indicated by the presence of the
cdmi_ read metadata capability in the specified container object.

26.5.13 Request headers

Request headers may be provided as per RFC 2616.

26.5.14 Request message body

A request message body shall not be provided.

26.5.15 Response headers

The HTTP response headers for checking for the presence of a CDMI container object using HTTP are shown in Table
164.

Table 164: Response Headers - Inspect a container object using HTTP

Header Type Description Requirement

Content-Type Header "application/cdmi-container" Mandatory
string

Location Header The server shall respond with the URI that the reference Conditional
string redirects to if the object is a reference.

x-*-meta-* Header If the "cdmi header metadata" capability is present, for Conditional
string each user metadata item in the “metadata” field with a

metadata name that is a case-insensitive match to the pattern
"x-*-meta-*", a corresponding response header shall be
returned to the client where the header field-name shall be
the metadata item name, and the header field-value shall be
the metadata item value.

If a header value to be return is not conformant with RFC
2616, the server may omit the field from the response
headers.

26.5.16 Response message body

No response body shall be provded, as per RFC 2616.

26.5.17 Response status

The HTTP status codes that occur when checking the presence of a container object using HTTP are described in Table
165.

© SNIA 2020 SNIA Technical Position 349

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338
4339

4340
4341

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351
4352

4353

4354

4355
4356

4357

Cloud Data Management Interface 2.0.0

Table 165: HTTP status codes - Inspect a container object using HTTP

HTTP Status Description

200 OK The queue object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.

26.5.18 Example

EXAMPLE 1: HEAD to the container object URI to check for the presence of a container object with header metadata:

--> HEAD /cdmi/2.0.0/MyContainer/ HTTP/1.1
--> Host: cloud.example.com

<-- HTTP/1.1 200 OK
<-- Content-Type: application/cdmi-container
<-- X-CDMI-Meta-Colour: Yellow

Replace contents of 7.3 with:

26.5.19 Synopsis

Reading a container object using HTTP is not defined by this version of this international standard. 9.4 describes how
to read a container object using CDMI.

A server implementation is free to respond to HTTP GETs for Container Objects in any way that conforms with RFC
2616.

If container object metadata items matching the pattern "x-*-meta-*" are present, these metadata items shall be
returned as response headers as per 9.4.

Replace contents of 7.4 with:

26.5.20 Synopsis

Updating a container object using HTTP is not defined by this version of this international standard. clause 9.5 describes
how to update a container object using CDMI.

A server implementation is free to respond to HTTP PUTs for existing Container Objects in any way that conforms with
RFC 2616.

If container object metadata items matching the pattern "x-*-meta-*" are present, these metadata items shall be
returned as response headers as per 9.5.

Add new rows to end of tbl system wide capabilitiesin 12.2.7:

© SNIA 2020 SNIA Technical Position 350

4358

4359
4360

4361

4362

4363
4364
4365

4366

4367

4368
4369

4370

4371

4372
4373

Cloud Data Management Interface 2.0.0

Capability name Type Definition

cdmi_header_metadata JSON string If present and "true™", this capability indicates that the

cloud storage system supports header-visible metadata.

cdmi header metadata maxitems| JSON string If present, this capability indicates the maximum number

of user-defined header metadata items supported per
object. If absent, there is no additional limit placed on
the number of user-defined metadata items.

cdmi header metadata maxsize | JSON string If present, this capability indicates the maximum size, in

bytes, of each user-defined header metadata item. If
absent, there is no additional limit placed on the size of
user-defined metadata items.

cdmi header metadata maxtotalpsis&ON string If present, this capability indicates the maximum size, in

bytes, of all user-defined header metadata per object. If
absent, there is no additional limit placed on the size of
user-defined metadata.

Add to end of 16.5:

If metadata items with a name is a case-insensitive match to the pattern "x-*-meta-*" are created or updated through
a CDMI request, the following conditions shall be true, or else a 400 Bad Request result code shall be returned to
the client:

The metadata name shall be a valid HTTP header field-name
The metadata value that is a valid HTTP header field-value

The number of matching headers shall not exceed the limits specified by RFC 2616, and shall not exceed the
number specified in the cdmi _header metadata maxitems capability.

The size of each matching header shall not exceed the limits specified by RFC 2616, and shall not exceed the
number specified in the cdmi header metadata maxsize capability.

The total size of all of the matching headers shall not exceed the limits specified by RFC 2616, and shall not
exceed the number specified in the cdmi header metadata maxtotalsize capability.

© SNIA 2020 SNIA Technical Position 351

4374

4375

4376
4377
4378

4379
4380

4381

4382
4383
4384

4385
4386

4387

4388

4389

4390

4391
4392

4393

4394

4395

4396

4397

4398

4399

4400
4401
4402

4403
4404

4405

4406

4407
4408
4409

4410

Cloud Data Management Interface 2.0.0

26.6 Immediate query

26.6.1 Overview

CDMI provides a query mechanism based around the concept of persistance. A query queue is created, metadata
is specified that defines the query operation, the query is performed asynchronously, and results are populated in the
queue and then read by the client as separate operations.

This architecture, while providing significant value, is complex for clients that do not need to persist the results of a
query. Specifically, a client must: a) asynchronously poll the query queue to determine when results are present and
when the query has completed, and b) delete the queue when results are no longer needed.

To provide a simpler interface for simple queries where a small number of results are expected and persistence is not
required, the TWG has proposed the following approach to allow query queues to optionally not be persistent, with the
results being returned immediately as the response to the initial query queue creation.

In addition, functionality that permits results to be returned immediately has been added to creating asynchronous query
queues.

26.6.2 Changes to specification

Modify existing cdmi_query entryin tbl system wide capabilitiesin 12.2.7:

Capability name Type Definition

cdmi query JSON string If present and “t rue”, the CDMI server supports
persistent query queues.

Add a new row at end of table tbl system wide capabilitiesin 12.2.7:

Capability name Type Definition

cdmi_query immediate JSON string If present and “true”, the CDMI server supports
immediate query queues.

Replace the first paragraph of Overview in clause 22 with:

A cloud storage system may optionally implement metadata and/or full-text query functionality. The implementation of
query is indicated by the presence of the cloud storage system-wide capabilities for query and requires support for CDMI
queues when persisting query results.

Replace the third paragraph of Overview in clause 22 with:

When a client wishes to perform queries, it shall first determine if the system is capable of providing query functionality
by checking to see if the cdmi query or cdmi query immediate capabilities are present in the root container
capabilities. If these capabilities are not present and queues are supported, creating a query queue shall be successful,
but no query results shall be enqueued into the query queue.

© SNIA 2020 SNIA Technical Position 352

4411
4412

4413

4414

4415
4416

4417

4418

4419
4420

4421

Cloud Data Management Interface 2.0.0

Modify existing cdmi queue type entry in Table 152 in 22:

Table 167: Required metadata for a query queue

Metadata name Type Description Requirement
cdmi queue type JSON Queue type indicates how the cloud storage system Mandatory
string shall manage the queue object. The defined values
are:

* "cdmi_query queue" — Perform an
asynchronous query, which may return none,
some, or all results in the request response
body. A new queue object shall be created.

* "cdmi query immediate" —Performa
synchronous query, returning all matching
results in the request response body. The

completes.

query queue object may not be accessible and
shall be automatically deleted when the query

Add new clause “Immediate Queries” to end of 22:

If "cdmi query immediate" is specified in cdmi queue type, all query results shall be immediately returned in

the response body as shown in the following example.
EXAMPLE 3: Perform an Immediate Query:

--> PUT /cdmi/2.0.0/MyContainer/myQuery HTTP/1.1
--> Host: cloud.example.com

--> Accept: application/cdmi-queue

--> Content-Type: application/cdmi-queue

-—>

—_> {

-—> "metadata" : {

-—> "cdmi queue type" : "cdmi query immediate",
-=> "cdmi scope specification" : [

> I B

-——> "domainURI" : "== /cdmi domains/MyDomain/",
-—> "parentURI" : "starts /sandbox",

-—> "metadata" : {

-—> "cdmi size™ : "#> 100000"

- }

——> }

-—=> :II

-=> "cdmi results_specification" : {

——> "objectID" : "',

-—> "metadata" : {

__> "Cdmiisize" B m"wn

—_> }

—_> }

<-- HTTP/1.1 201 Created

<-- Content-Type: application/cdmi-queue

<-- Location: https://cloud.example.com/cdmi/2.0.0/MyContainer/myQuery
<__

(continues on next page)

© SNIA 2020 SNIA Technical Position

353

4422

4423

Cloud Data Management Interface 2.0.0

(continued from previous page)

<=={

<-- "objectType" : "application/cdmi-queue",

<-- "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
<== "objectName" : "myQuery",

<-- "parentURI " : "/MyContainer/",

<-= "parentID" : "0000706D0010B84FAD185C425D8B537E",
<-- "domainURI" : "/cdmi_domains/MyDomain/",

<-- "capabilitiesURI" : "/cdmi capabilities/queue/",
<-- "completionStatus" : "Complete",

<-- "metadata" : {

<-- "cdmi queue type" : "cdmi query immediate",

<-- "cdmi scope specification" : [

<-= {

<-- "domainURI" : "== /cdmi_domains/MyDomain/",
<-- "parentURI" : "starts /sandbox",

<-- "metadata" : {

<-- "cdmi size" : "#> 100000"

<-= }

<-= }

<-- 1,

<-- "cdmi results_ specification" : {

<-- "objectID" : "",

<-- "metadata" : {

<-- "cdmi size" : ""

<-= }

<-= }

<-= }I

<-= "queueValues" : "0-0",

<-- "mimetype": ["application/json" 1,

<== "valuerange": ["O0-111"],

<-= "valuetransferencoding": ["base64d"],

<-- "value": "ewOKCQkJIm9iamVidEIETIiA6ICIWMDAWNOU3RJAWMTBFQjkwOTJ
<-- CMj1GNKNENKFEN]gyNCIsDQoJCQkibWVOYWRhAGELIDogew0KCQ
<-- kJCSJJZG1lpX3NpemUiIDogIjEwWODI2MyINCgkJCXONCgkJ£QOK"
<==}

Where the value of the above base64 encoded value is:
EXAMPLE 4: An example of the metadata associated with a query queue is as follows:

{

"objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
"metadata" : {
"cdmi size" : "108263"

}

© SNIA 2020 SNIA Technical Position

354

Cloud Data Management Interface 2.0.0

Part VI

References

© SNIA 2020 SNIA Technical Position 355

4426

4427
4428
4429

4430
4431

4432

4433

4434
4435
4436

4437

4438

4439
4440

4441
4442

4443
4444
4445

4446
4447
4448

4449

4450

4451
4452

4453

4454

4455
4456
4457

4458

4459

4460
4461

4462

4463

4464
4465

4466
4467

Cloud Data Management Interface 2.0.0

Bibliography

(1]

(2]
(3]

[4]

(3]
[6]
[7]

(8]

(9]

[10]
(1]
[12]

(13]

[14]
[19]
[16]
(171

(18]

Carl Beame, Robert Thurlow, Brent Callaghan, David Robinson, David Noveck, Mike Eisler, and Spencer Shepler.
Network File System (NFS) version 4 Protocol. RFC 3530, April 2003. URL: https://rfc-editor.org/rfc/rfc3530.1xt,
doi:10.17487/RFC3530.

Tim Berners-Lee, Roy T. Fielding, and Larry M Masinter. Uniform Resource Identifier (URI): Generic Syntax. RFC
3986, January 2005. URL: https://rfc-editor.org/rfc/rfc3986.txt, doi:10.17487/RFC3986.

Scott O. Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119, March 1997. URL: https:
/Irfc-editor.org/rfc/rfc2119.1xt, doi:10.17487/RFC2119.

Mallikarjun Chadalapaka, Julian Satran, Kalman Meth, and David L. Black. Internet Small Computer Sys-
tem Interface (iSCSI) Protocol (Consolidated). RFC 7143, April 2014. URL: https://rfc-editor.org/rfc/rfc7143.txt,
doi:10.17487/RFC7143.

Douglas Crockford. The application/json Media Type for JavaScript Object Notation (JSON). RFC 4627, July 2006.
URL: https://rfc-editor.org/rfc/rfc4627.txt, doi:10.17487/RFC4627.

Lisa M. Dusseault. HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV). RFC 4918, June
2007. URL: https://rfc-editor.org/rfc/rfc4918.txt, doi:10.17487/RFC4918.

Roy Thomas Fielding. REST: Architectural Styles and the Design of Network-based Software Architectures. PhD
thesis, University of California, Irvine, 2000. URL: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Professor John Franks, Phillip Hallam-Baker, Lawrence C. Stewart, Jeffery L. Hostetler, Scott Lawrence, Paul J.
Leach, and Ari Luotonen. HTTP Authentication: Basic and Digest Access Authentication. RFC 2617, June 1999.
URL: https://rfc-editor.org/rfc/rfc2617.txt, doi:10.17487/RFC2617.

Ned Freed and Dr. Nathaniel S. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One: For-
mat of Internet Message Bodies. RFC 2045, November 1996. URL: https:/rfc-editor.org/rfc/rfc2045.txt,
doi:10.17487/RFC2045.

Ned Freed and Dr. Nathaniel S. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types.
RFC 2046, November 1996. URL: https://rfc-editor.org/rfc/rfc2046.ixt, doi:10.17487/RFC2046.

Tony Hansen and Alexey Melnikov. Additional Media Type Structured Syntax Suffixes. RFC 6839, January 2013.
URL: https://rfc-editor.org/rfc/rfc6839.txt, doi:10.17487/RFC6839.

Russ Housley. Cryptographic Message Syntax (CMS). RFC 5652, September 2009. URL: https://rfc-editor.org/rfc/
rfc5652.txt, doi:10.17487/RFC5652.

Russ Housley, Tim Polk, Dr. Warwick S. Ford, and David Solo. Internet X.509 Public Key Infrastructure Certifi-
cate and Certificate Revocation List (CRL) Profile. RFC 3280, May 2002. URL: https://rfc-editor.org/rfc/rfc3280.txt,
doi:10.17487/RFC3280.

Karthik Jaganathan, Larry Zhu, and John Brezak. SPNEGO-based Kerberos and NTLM HTTP Authentication in
Microsoft Windows. RFC 4559, June 2006. URL: https://rfc-editor.org/rfc/rfc4559.txt, doi:10.17487/RFC4559.

Michael Jones. JSON Web Algorithms (JWA). RFC 7518, May 2015. URL: https://rfc-editor.org/rfc/rfc7518.txt,
doi:10.17487/RFC7518.

Michael Jones. JSON Web Key (JWK). RFC 7517, May 2015. URL: https://rfc-editor.org/rfc/rfc7517 .txt,
doi:10.17487/RFC7517.

Michael Jones, John Bradley, and Nat Sakimura. JSON Web Signature (JWS). RFC 7515, May 2015. URL: https:
/Irfc-editor.org/rfc/rfc7515.1xt, doi:10.17487/RFC7515.

Michael Jones and Joe Hildebrand. JSON Web Encryption (JWE). RFC 7516, May 2015. URL: https://rfc-editor.
org/rfc/rfc7516.txt, doi:10.17487/RFC7516.

© SNIA 2020 SNIA Technical Position 356

https://rfc-editor.org/rfc/rfc3530.txt
https://doi.org/10.17487/RFC3530
https://rfc-editor.org/rfc/rfc3986.txt
https://doi.org/10.17487/RFC3986
https://rfc-editor.org/rfc/rfc2119.txt
https://rfc-editor.org/rfc/rfc2119.txt
https://rfc-editor.org/rfc/rfc2119.txt
https://doi.org/10.17487/RFC2119
https://rfc-editor.org/rfc/rfc7143.txt
https://doi.org/10.17487/RFC7143
https://rfc-editor.org/rfc/rfc4627.txt
https://doi.org/10.17487/RFC4627
https://rfc-editor.org/rfc/rfc4918.txt
https://doi.org/10.17487/RFC4918
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://rfc-editor.org/rfc/rfc2617.txt
https://doi.org/10.17487/RFC2617
https://rfc-editor.org/rfc/rfc2045.txt
https://doi.org/10.17487/RFC2045
https://rfc-editor.org/rfc/rfc2046.txt
https://doi.org/10.17487/RFC2046
https://rfc-editor.org/rfc/rfc6839.txt
https://doi.org/10.17487/RFC6839
https://rfc-editor.org/rfc/rfc5652.txt
https://rfc-editor.org/rfc/rfc5652.txt
https://rfc-editor.org/rfc/rfc5652.txt
https://doi.org/10.17487/RFC5652
https://rfc-editor.org/rfc/rfc3280.txt
https://doi.org/10.17487/RFC3280
https://rfc-editor.org/rfc/rfc4559.txt
https://doi.org/10.17487/RFC4559
https://rfc-editor.org/rfc/rfc7518.txt
https://doi.org/10.17487/RFC7518
https://rfc-editor.org/rfc/rfc7517.txt
https://doi.org/10.17487/RFC7517
https://rfc-editor.org/rfc/rfc7515.txt
https://rfc-editor.org/rfc/rfc7515.txt
https://rfc-editor.org/rfc/rfc7515.txt
https://doi.org/10.17487/RFC7515
https://rfc-editor.org/rfc/rfc7516.txt
https://rfc-editor.org/rfc/rfc7516.txt
https://rfc-editor.org/rfc/rfc7516.txt
https://doi.org/10.17487/RFC7516

4468
4469

4470

4471

4472
4473

4474

4475

4476
4477
4478

4479

4480

4481
4482

4483
4484

4485
4486

4487
4488
4489

4490
4491

4492

4493
4494

4495
4496

4497
4498
4499

4500
4501
4502

4503
4504
4505

4506
4507

4508
4509

4510

451
4512
4513

4514

4515

4516
4517

4518

4519
4520
4521

Cloud Data Management Interface 2.0.0

[19] Simon Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648, October 2006. URL: https:
lIrfc-editor.org/rfc/rfc4648.txt, doi:10.17487/RFC4648.

[20] Larry M Masinter and Ernesto Nebel. Form-based File Upload in HTML. RFC 1867, November 1995. URL: https:
/Irfc-editor.org/rfc/rfc1867.txt, doi:10.17487/RFC1867.

[21] Keith McCloghrie, Jirgen Schonwalder, David T. Perkins, and Keith McCloghrie. Structure of Management Infor-
mation Version 2 (SMIv2). RFC 2578, April 1999. URL.: https://rfc-editor.org/rfc/rfc2578.txt, doi:10.17487/RFC2578.

[22] Keith Moore. MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-
ASCII Text. RFC 2047, November 1996. URL: https://rfc-editor.org/rfc/rfc2047.txt, doi:10.17487/RFC2047.

[23] Henrik Frystyk Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys, Paul J. Leach, and Tim
Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1. RFC 2616, June 1999. URL: https://rfc-editor.org/rfc/
rfc2616.txt, doi:10.17487/RFC2616.

[24] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August 2018. URL: https:
/Irfc-editor.org/rfc/rfc8446.txt, doi:10.17487/RFC8446.

[25] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, August 2008.
URL: https://rfc-editor.org/rfc/rfc5246.txt, doi:10.17487/RFC5246.

[26] Krishna Sankar and Arnold Jones. Cloud Data Management Interface (CDMI) Media Types. RFC 6208, April 2011.
URL: https://rfc-editor.org/rfc/rfc6208.txt, doi:10.17487/RFC6208.

[27] Jamie Zawinski, Larry M Masinter, and Martin J. Dirst. The ‘mailto’ URI Scheme. RFC 6068, October 2010. URL:
https://rfc-editor.org/rfc/rfc6068.txt, doi:10.17487/RFC6068.

[28] ISO/IEC Joint Directives Maintenance Team. ISO/IEC directives, part 2 — principles and rules for the structure
and drafting of ISO and IEC documents. ISO/IEC Directives, Part 2, 2018, 2018. URL: https://www.iso.org/
directives-and-policies.html.

[29] ISO/IEC JTC 1/SC 25 Interconnection of information technology equipment. Information technology — small com-
puter system interface (SCSI) — part 414: SCSI architecture model-4 (sam-4). ISO/IEC 14776-414:2009, June
2009. URL: https://www.iso.org/standard/53961.html.

[30] ISO/IEC JTC 1/SC 27 Information security, cybersecurity and privacy protection. Information technology — security
techniques — storage security. ISO/IEC 27040:2015, January 2015. URL: https://www.iso.org/standard/44404 .html.

[31] ISO/IEC JTC 1/SC 38 Cloud Computing and Distributed Platforms. Information technology — cloud computing —
overview and vocabulary. ISO/IEC 17788:2014, October 2014. URL: https://www.iso.org/standard/60544 .html.

[32] ISO/TC 154 Processes, data elements and documents in commerce, industry and administration. Date and time
— representations for information interchange — part 1: basic rules. ISO 8601-1:2019, February 2019. URL: https:
Ilwww.iso.org/standard/70907 .html.

[33] ISO/TC 154 Processes, data elements and documents in commerce, industry and administration. Date and time
— representations for information interchange — part 2: extensions. ISO 8601-2:2019, February 2019. URL: https:
/Iwww.iso.org/standard/70907.html.

[34] ISO/TC 20/SC 13 Space data and information transfer systems. Space data and information transfer systems —
open archival information system (OAIS) — reference model. ISO 14721:2012, August 2012. URL: https://www.iso.
org/standard/57284.html.

[35] ISO/TC 46 Information and documentation. Codes for the representation of names of countries and their subdivi-
sions — part 1: country codes. ISO 3166-1:2013, November 2013. URL: https://www.iso.org/standard/63545.html.

[36] ISO/TC 46 Information and documentation. Codes for the representation of names of countries and their subdivi-
sions — part 2: country subdivision code. ISO 3166-2:2013, November 2013. URL: https://www.iso.org/standard/
63546.html.

[37] ISO/TC 46 Information and documentation. Codes for the representation of names of countries and their sub-
divisions — part 3: code for formerly used names of countries. ISO 3166-3:2013, November 2013. URL: https:
/lwww.iso.org/standard/63547 .html.

[38] ISO/TC 68/SC 8 Reference data for financial services. Codes for the representation of currencies. ISO 4217:2015,
August 2015. URL: https://www.iso.org/standard/64758.html.

[39] ISO/TC JTC 1/SC 27 Information security, cybersecurity and privacy protection. TLS specification for storage sys-
tems. ISO 20648:2016, August 2016. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec:20648:ed-1:v1:en.

[40] Open Grid Forum. Open cloud computing interface v1.1. June 2011. URL: http://occi-wg.org/about/specification/.

[41] POSIX - Austin Joint Working Group. IEEE standard for information technology—portable operating system inter-
face (POSIX(r)) base specifications, issue 7. IEEE 1003.1-2017, December 2017. URL: https://standards.ieee.org/
standard/1003_1-2017.html.

© SNIA 2020 SNIA Technical Position 357

https://rfc-editor.org/rfc/rfc4648.txt
https://rfc-editor.org/rfc/rfc4648.txt
https://rfc-editor.org/rfc/rfc4648.txt
https://doi.org/10.17487/RFC4648
https://rfc-editor.org/rfc/rfc1867.txt
https://rfc-editor.org/rfc/rfc1867.txt
https://rfc-editor.org/rfc/rfc1867.txt
https://doi.org/10.17487/RFC1867
https://rfc-editor.org/rfc/rfc2578.txt
https://doi.org/10.17487/RFC2578
https://rfc-editor.org/rfc/rfc2047.txt
https://doi.org/10.17487/RFC2047
https://rfc-editor.org/rfc/rfc2616.txt
https://rfc-editor.org/rfc/rfc2616.txt
https://rfc-editor.org/rfc/rfc2616.txt
https://doi.org/10.17487/RFC2616
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.17487/RFC8446
https://rfc-editor.org/rfc/rfc5246.txt
https://doi.org/10.17487/RFC5246
https://rfc-editor.org/rfc/rfc6208.txt
https://doi.org/10.17487/RFC6208
https://rfc-editor.org/rfc/rfc6068.txt
https://doi.org/10.17487/RFC6068
https://www.iso.org/directives-and-policies.html
https://www.iso.org/directives-and-policies.html
https://www.iso.org/directives-and-policies.html
https://www.iso.org/standard/53961.html
https://www.iso.org/standard/44404.html
https://www.iso.org/standard/60544.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/57284.html
https://www.iso.org/standard/57284.html
https://www.iso.org/standard/57284.html
https://www.iso.org/standard/63545.html
https://www.iso.org/standard/63546.html
https://www.iso.org/standard/63546.html
https://www.iso.org/standard/63546.html
https://www.iso.org/standard/63547.html
https://www.iso.org/standard/63547.html
https://www.iso.org/standard/63547.html
https://www.iso.org/standard/64758.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:20648:ed-1:v1:en
http://occi-wg.org/about/specification/
https://standards.ieee.org/standard/1003_1-2017.html
https://standards.ieee.org/standard/1003_1-2017.html
https://standards.ieee.org/standard/1003_1-2017.html

Cloud Data Management Interface 2.0.0

522 [42] Storage Networking Industry Association. TLS specification for storage systems v1.1.0. November 2020. URL:
4523 https://www.snia.org/tech_activities/standards/curr_standards/tls.

w2 [43] Information technology — open systems interconnection — the directory — part 8: public-key and attribute certificate
4525 frameworks. ISO/IEC 9594-8:2017, May 2017. URL: https://www.iso.org/standard/72557 .html.

© SNIA 2020 SNIA Technical Position 358

https://www.snia.org/tech_activities/standards/curr_standards/tls
https://www.iso.org/standard/72557.html

	I CDMI Preamble
	Scope
	Normative references
	Terms, acronyms, and definitions
	Conventions
	Interface format
	Typographical conventions
	Request and response body requirements
	Key Word requirements

	Overview of Cloud Storage
	Overview
	Reference model for cloud storage interfaces
	Cloud data management interface
	Security
	Required HTTP support
	Time representations
	Backwards compatibility
	Object references

	II Basic Cloud Storage
	Data Object Resource Operations using HTTP
	Overview
	Create a data object using HTTP
	Read a data object using HTTP
	Update a data object using HTTP
	Delete a data object using HTTP

	Container Object Resource Operations using HTTP
	Overview
	Create a container object using HTTP
	Read a container object using HTTP
	Update a container object using HTTP
	Delete a container object using HTTP
	Create (POST) a new data object using HTTP

	III CDMI Core
	Data Object Resource Operations using CDMI
	Overview
	Data object details
	Create a data object using CDMI
	Read a data object using CDMI
	Update a data object using CDMI
	Delete a data object using CDMI

	Container Object Resource Operations using CDMI
	Overview
	Container object details
	Create a container object using CDMI
	Read a container object using CDMI
	Update a container object using CDMI
	Delete a container object using CDMI
	Create (POST) a new data object using CDMI
	Create (POST) a new queue object using CDMI

	IV CDMI Advanced
	Domain object resource operations using CDMI
	Overview
	Domain object details
	Domain object summaries
	Domain object membership
	Create a domain object using CDMI
	Read a domain object using CDMI
	Update a domain object using CDMI
	Delete a domain object using CDMI

	Queue object resource operations using CDMI
	Overview
	Queue object details
	Create a queue object using CDMI
	Read a queue object using CDMI
	Update a queue object using CDMI
	Delete a queue object using CDMI
	Enqueue a new queue object value using CDMI
	Delete a queue object value using CDMI

	Capability object resource operations using CDMI
	Overview
	Capability object details
	Read a capabilities object using CDMI

	Exported protocols
	Overview
	Container object export details
	NFS exported protocol
	SMB exported protocol
	iSCSI exported protocol
	WebDAV exported protocol
	OCCI exported protocol

	CDMI snapshots
	Overview
	Creating a snapshot
	Deleting a snapshot

	Serialization/deserialization
	Overview
	Canonical format
	Exporting serialized data
	Importing serialized data

	Metadata
	Overview
	Support for storage system metadata
	Support for data system metadata
	Support for provided data system metadata
	Support for user metadata
	Metadata update operations

	Access control
	Overview
	Access control flow

	Retention and hold management
	Overview
	Retention management disciplines
	CDMI retention
	CDMI hold
	CDMI auto-deletion
	Retention security considerations

	Scope specification
	Overview
	Examples
	Query matching expressions

	Results specification
	Overview
	Examples

	Notification queues
	Overview
	Metadata

	Query queues
	Overview
	Extending CDMI query

	Encrypted objects
	Overview
	Encryption operations
	Example uses of encrypted objects
	KMS integration
	CMS format
	JOSE format
	Signature/digest verification
	Error handling

	Delegated access control
	Overview
	Delegated access control (DAC)
	Delegated access control message exchange
	Client header passthrough
	DAC request
	Packaged DAC request
	DAC response
	Packaged DAC response
	Error handling
	Examples

	Data object versions
	Overview
	Traversing version-enabled data objects
	Concurrent updates and version-enabled data objects
	Capabilities for version-enabled data objects
	Updates triggering version creation
	Operations on version-enabled data objects
	Operations on data object versions
	Query of data object versions
	Version-enabled data object serialization

	V CDMI Annexes
	Extensions
	Overview
	Summary metadata for bandwidth
	Expiring access control entries (ACEs)
	Group storage system metadata
	Header-based metadata
	Immediate query

	VI References
	Bibliography

