
1

2

Cloud Data Management Interface3

(CDMITM)4

Version 2.0.05

ABSTRACT: This CDMI International Standard is intended for application developers who are implementing or using6

cloud storage. It documents how to access cloud storage and to manage the data stored there.7

This document has been released and approved by the SNIA. The SNIA believes that the ideas, methodologies, and8

technologies described in this document accurately represent the SNIA goals and are appropriate for widespread9

distribution. Suggestion for revision should be directed to http://www.snia.org/feedback/.10

SNIA Technical Position11

Sep 11, 202012

Cloud Data Management Interface 2.0.0

USAGE13

Copyright © 2020 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their14

respective owners.15

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and16

other business entities to use this document for internal use only (including internal copying, distribution, and display)17

provided that:18

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration, and,19

2. Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall20

acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permission for its reuse.21

Other than as explicitly provided above, you may not make any commercial use of this document, sell any excerpt or22

this entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved23

to SNIA.24

Permission to use this document for purposes other than those enumerated above may be requested by emailing25

tcmd@snia.org. Please include the identity of the requesting individual or company and a brief description of the pur­26

pose, nature, and scope of the requested use.27

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the following28

license:29

BSD 3­Clause Software License30

Copyright (c) 2020, The Storage Networking Industry Association.31

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following32

conditions are met:33

* Redistributions of source codemust retain the above copyright notice, this list of conditions and the following disclaimer.34

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following35

disclaimer in the documentation and/or other materials provided with the distribution.36

* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be37

used to endorse or promote products derived from this software without specific prior written permission.38

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EX­39

PRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER­40

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE41

COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,42

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB­43

STITUTEGOODSORSERVICES; LOSSOFUSE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER44

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD­45

ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF46

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.47

© SNIA 2020 SNIA Technical Position i

Cloud Data Management Interface 2.0.0

DISCLAIMER48

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any49

kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for50

a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages51

in connection with the furnishing, performance, or use of this specification.52

Suggestions for revisions should be directed to https://www.snia.org/feedback/.53

Copyright © 2020 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their54

respective owners.55

© SNIA 2020 SNIA Technical Position ii

Cloud Data Management Interface 2.0.0

Table of Contents:56

I CDMI Preamble 157

Clause 1: Scope 358

Clause 2: Normative references 459

Clause 3: Terms, acronyms, and definitions 660

Clause 4: Conventions 1261

4.1 Interface format . 1262

4.2 Typographical conventions . 1363

4.3 Request and response body requirements . 1464

4.4 Key Word requirements . 1565

Clause 5: Overview of Cloud Storage 1666

5.1 Overview . 1667

5.2 Reference model for cloud storage interfaces . 2068

5.3 Cloud data management interface . 2169

5.4 Security . 2570

5.5 Required HTTP support . 2771

5.6 Time representations . 3072

5.7 Backwards compatibility . 3173

5.8 Object references . 3274

II Basic Cloud Storage 3475

Clause 6: Data Object Resource Operations using HTTP 3576

6.1 Overview . 3577

6.2 Create a data object using HTTP . 3678

6.3 Read a data object using HTTP . 3879

6.4 Update a data object using HTTP . 4280

6.5 Delete a data object using HTTP . 4581

Clause 7: Container Object Resource Operations using HTTP 4782

7.1 Overview . 4783

7.2 Create a container object using HTTP . 4884

7.3 Read a container object using HTTP . 5085

7.4 Update a container object using HTTP . 5186

7.5 Delete a container object using HTTP . 5287

7.6 Create (POST) a new data object using HTTP . 5488

III CDMI Core 5789

Clause 8: Data Object Resource Operations using CDMI 5890

8.1 Overview . 5891

8.2 Data object details . 5992

8.3 Create a data object using CDMI . 6293

8.4 Read a data object using CDMI . 7394

8.5 Update a data object using CDMI . 8295

8.6 Delete a data object using CDMI . 9296

Clause 9: Container Object Resource Operations using CDMI 9497

© SNIA 2020 SNIA Technical Position iii

Cloud Data Management Interface 2.0.0

9.1 Overview . 9498

9.2 Container object details . 9599

9.3 Create a container object using CDMI . 97100

9.4 Read a container object using CDMI . 104101

9.5 Update a container object using CDMI . 109102

9.6 Delete a container object using CDMI . 115103

9.7 Create (POST) a new data object using CDMI . 117104

9.8 Create (POST) a new queue object using CDMI . 128105

IV CDMI Advanced 134106

Clause 10: Domain object resource operations using CDMI 135107

10.1 Overview . 135108

10.2 Domain object details . 137109

10.3 Domain object summaries . 140110

10.4 Domain object membership . 143111

10.5 Create a domain object using CDMI . 146112

10.6 Read a domain object using CDMI . 150113

10.7 Update a domain object using CDMI . 154114

10.8 Delete a domain object using CDMI . 158115

Clause 11: Queue object resource operations using CDMI 160116

11.1 Overview . 160117

11.2 Queue object details . 161118

11.3 Create a queue object using CDMI . 164119

11.4 Read a queue object using CDMI . 170120

11.5 Update a queue object using CDMI . 177121

11.6 Delete a queue object using CDMI . 181122

11.7 Enqueue a new queue object value using CDMI . 183123

11.8 Delete a queue object value using CDMI . 189124

Clause 12: Capability object resource operations using CDMI 191125

12.1 Overview . 191126

12.2 Capability object details . 192127

12.3 Read a capabilities object using CDMI . 210128

Clause 13: Exported protocols 215129

13.1 Overview . 215130

13.2 Container object export details . 216131

13.3 NFS exported protocol . 219132

13.4 SMB exported protocol . 221133

13.5 iSCSI exported protocol . 223134

13.6 WebDAV exported protocol . 225135

13.7 OCCI exported protocol . 226136

Clause 14: CDMI snapshots 228137

14.1 Overview . 228138

14.2 Creating a snapshot . 229139

14.3 Deleting a snapshot . 230140

Clause 15: Serialization/deserialization 231141

15.1 Overview . 231142

15.2 Canonical format . 232143

15.3 Exporting serialized data . 234144

15.4 Importing serialized data . 235145

Clause 16: Metadata 236146

16.1 Overview . 236147

16.2 Support for storage system metadata . 237148

16.3 Support for data system metadata . 239149

16.4 Support for provided data system metadata . 247150

16.5 Support for user metadata . 249151

16.6 Metadata update operations . 250152

© SNIA 2020 SNIA Technical Position iv

Cloud Data Management Interface 2.0.0

Clause 17: Access control 251153

17.1 Overview . 251154

17.2 Access control flow . 252155

Clause 18: Retention and hold management 264156

18.1 Overview . 264157

18.2 Retention management disciplines . 265158

18.3 CDMI retention . 266159

18.4 CDMI hold . 268160

18.5 CDMI auto­deletion . 271161

18.6 Retention security considerations . 272162

Clause 19: Scope specification 273163

19.1 Overview . 273164

19.2 Examples . 274165

19.3 Query matching expressions . 276166

Clause 20: Results specification 279167

20.1 Overview . 279168

20.2 Examples . 280169

Clause 21: Notification queues 281170

21.1 Overview . 281171

21.2 Metadata . 282172

Clause 22: Query queues 286173

22.1 Overview . 286174

22.2 Extending CDMI query . 288175

Clause 23: Encrypted objects 289176

23.1 Overview . 289177

23.2 Encryption operations . 290178

23.3 Example uses of encrypted objects . 293179

23.4 KMS integration . 294180

23.5 CMS format . 295181

23.6 JOSE format . 296182

23.7 Signature/digest verification . 297183

23.8 Error handling . 298184

Clause 24: Delegated access control 299185

24.1 Overview . 299186

24.2 Delegated access control (DAC) . 301187

24.3 Delegated access control message exchange . 303188

24.4 Client header passthrough . 305189

24.5 DAC request . 306190

24.6 Packaged DAC request . 308191

24.7 DAC response . 310192

24.8 Packaged DAC response . 311193

24.9 Error handling . 313194

24.10Examples . 314195

Clause 25: Data object versions 326196

25.1 Overview . 326197

25.2 Traversing version­enabled data objects . 328198

25.3 Concurrent updates and version­enabled data objects . 329199

25.4 Capabilities for version­enabled data objects . 331200

25.5 Updates triggering version creation . 332201

25.6 Operations on version­enabled data objects . 333202

25.7 Operations on data object versions . 334203

25.8 Query of data object versions . 335204

25.9 Version­enabled data object serialization . 336205

© SNIA 2020 SNIA Technical Position v

Cloud Data Management Interface 2.0.0

V CDMI Annexes 338206

Clause 26: Extensions 339207

26.1 Overview . 339208

26.2 Summary metadata for bandwidth . 340209

26.3 Expiring access control entries (ACEs) . 342210

26.4 Group storage system metadata . 343211

26.5 Header­based metadata . 344212

26.6 Immediate query . 352213

VI References 355214

Bibliography 356215

© SNIA 2020 SNIA Technical Position vi

Cloud Data Management Interface 2.0.0

List of Figures216

Fig. 1: Existing data storage interface standards . 17217

Fig. 2: Storage interfaces for object storage client data . 18218

Fig. 3: Cloud storage reference model . 20219

Fig. 4: CDMI object model . 22220

Fig. 5: Object transitions between named and ID­only . 23221

Fig. 6: CDMI URI Components . 28222

Fig. 7: Hierarchy of domains . 135223

Fig. 8: Hierarchy of capabilities . 193224

Fig. 9: CDMI and OCCI in an integrated cloud computing environment 226225

Fig. 10: Snapshot container structure . 228226

Fig. 11: Access control flow . 253227

Fig. 12: Object retention . 266228

Fig. 13: Object hold . 268229

Fig. 14: Object hold on object with retention . 268230

Fig. 15: Object with multiple holds . 269231

Fig. 16: Encrypted object state transistions . 290232

Fig. 17: Non­delegated (ACL­based) access control data flow . 299233

Fig. 18: Delegated access control data flow example for non­encrypted object 303234

Fig. 19: Delegated access control data flow example for encrypted object 304235

Fig. 20: Updates to a non­version­enabled data object . 326236

Fig. 21: Updates to a version­enabled data object . 327237

Fig. 22: Linkages between a version­enabled data object and data object versions 328238

Fig. 23: Overlapping concurrent updates . 329239

Fig. 24: Linkages for overlapping updates . 329240

Fig. 25: Nested concurrent updates . 330241

Fig. 26: Linkages for nested updates . 330242

Fig. 27: Version to capabilityURI relationships . 331243

© SNIA 2020 SNIA Technical Position vii

Cloud Data Management Interface 2.0.0

List of Tables244

Table 1: Overview of this document . 2245

Table 2: Interface format . 12246

Table 3: Key word requirements . 15247

Table 4: Types of resources in the CDMI object model . 22248

Table 5: Creation/consumption of storage system metadata . 23249

Table 6: Object ID format . 24250

Table 7: Relative URIs resolved against root URIs . 29251

Table 8: Capabilities ­ Create a CDMI data object using HTTP . 36252

Table 9: Request headers ­ Create a CDMI data object using HTTP . 36253

Table 10: HTTP status codes ­ Create a data object using HTTP . 37254

Table 11: Capabilities ­ Read a CDMI data object using HTTP . 38255

Table 12: Request header ­ Read a CDMI data object using HTTP . 39256

Table 13: Response headers ­ Read a CDMI Data Object using HTTP . 39257

Table 14: HTTP status codes ­ Read a CDMI data object using HTTP . 40258

Table 15: Capabilities ­ Update a CDMI data object using HTTP . 42259

Table 16: Request headers ­ Update a CDMI data object using HTTP . 42260

Table 17: Response header ­ Update a CDMI data object using HTTP . 43261

Table 18: HTTP status codes ­ Update a CDMI data object using HTTP . 43262

Table 19: Capabilities ­ Delete a CDMI data object using HTTP . 45263

Table 20: HTTP status codes ­ Delete a CDMI data object using HTTP . 46264

Table 21: Capabilities ­ Create a CDMI container object using HTTP . 48265

Table 22: HTTP status codes ­ Create a container object using HTTP . 49266

Table 23: Capabilities ­ Delete a CDMI container object using HTTP . 52267

Table 24: HTTP status codes ­ Delete a CDMI container object using HTTP 53268

Table 25: Capabilities ­ Create a CDMI data object using HTTP POST . 54269

Table 26: Request header ­ Create a new data object using HTTP . 55270

Table 27: Response header ­ Create a new data object using HTTP . 55271

Table 28: HTTP status codes ­ Create a new data object using HTTP . 55272

Table 29: Capabilities ­ Create a CDMI data object using CDMI . 63273

Table 30: Request headers ­ Create a CDMI data object using CDMI . 63274

Table 31: Request message body ­ Create a data object using CDMI . 64275

Table 32: Response headers ­ Create a data object using CDMI . 67276

Table 33: Response message body ­ Create a data object using CDMI . 67277

Table 34: HTTP status codes ­ Create a data object using CDMI . 68278

Table 35: Capabilities ­ Read a CDMI data object using CDMI . 73279

Table 36: Request headers ­ Read a CDMI data object using CDMI . 73280

Table 37: Response headers ­ Read a CDMI data object using CDMI . 74281

Table 38: Response message body ­ Read a CDMI data object using CDMI 74282

Table 39: HTTP status codes ­ Read a CDMI data object using CDMI . 76283

Table 40: Capabilities ­ Update a CDMI data object using CDMI . 82284

Table 41: Request headers ­ Update a CDMI data object using CDMI . 83285

Table 42: Request message body ­ Update a CDMI data object using CDMI 84286

Table 43: Response header ­ Update a CDMI data object using CDMI . 87287

Table 44: HTTP status codes ­ Update a CDMI data object using CDMI . 88288

Table 45: Capabilities ­ Delete a CDMI data object using CDMI . 92289

Table 46: HTTP status codes ­ Delete a CDMI data object using CDMI . 93290

Table 47: Container metadata . 96291

© SNIA 2020 SNIA Technical Position viii

Cloud Data Management Interface 2.0.0

Table 48: Capabilities ­ Create a CDMI container object using CDMI . 98292

Table 49: Request headers ­ Create a container object using CDMI . 98293

Table 50: Request message body ­ Create a container object using CDMI 98294

Table 51: Response headers ­ Create a container object using CDMI . 100295

Table 52: Response message body ­ Create a container object using CDMI 100296

Table 53: HTTP status codes ­ Create a CDMI container object using CDMI 101297

Table 54: Capabilities ­ Read a CDMI Container Object using CDMI . 104298

Table 55: Request headers ­ Read a container object using CDMI . 104299

Table 56: Response headers ­ Read a container object using CDMI . 105300

Table 57: Response message body ­ Read a container object using CDMI 105301

Table 58: HTTP status codes ­ Read a container object using CDMI . 107302

Table 59: Capabilities ­ Update a CDMI container object using CDMI . 110303

Table 60: Request headers ­ Update a container object using CDMI . 110304

Table 61: Request message body ­ Update a container object using CDMI 110305

Table 62: Response header ­ Update a container object using CDMI . 113306

Table 63: HTTP status codes ­ Update a container object using CDMI . 113307

Table 64: Capabilities ­ Delete a CDMI container object using CDMI . 115308

Table 65: HTTP status codes ­ Delete a container object using CDMI . 116309

Table 66: Capabilities ­ Create a CDMI data object using CDMI . 118310

Table 67: Request headers ­ Create a new data object Using CDMI . 119311

Table 68: Request message body ­ Create a new data object Using CDMI 119312

Table 69: Response headers ­ Create a new data object using CDMI . 123313

Table 70: Response message body ­ Create a new data object using CDMI 123314

Table 71: HTTP status codes ­ Create a new data object using CDMI . 124315

Table 72: Capabilities ­ Create a CDMI Queue object using CDMI . 129316

Table 73: Request headers ­ Create a new queue object using CDMI . 129317

Table 74: Request message body ­ Create a new queue object using CDMI 130318

Table 75: Response headers ­ Create a new queue object using CDMI . 131319

Table 76: Response message body ­ Create a new queue object using CDMI 131320

Table 77: HTTP status codes ­ Create a new queue object using CDMI . 132321

Table 78: Required metadata for a domain object . 138322

Table 79: Contents of domain summary objects . 141323

Table 80: Required settings for domain member user objects . 143324

Table 81: Required settings for domain member delegation objects . 144325

Table 82: Capabilities ­ Create a CDMI domain object using CDMI . 146326

Table 83: Request headers ­ Create a domain object using CDMI . 146327

Table 84: Request message body ­ Create a domain object using CDMI . 147328

Table 85: Response headers ­ Create a domain object using CDMI . 148329

Table 86: Response message body ­ Create a domain object using CDMI 148330

Table 87: HTTP status codes ­ Create a domain object using CDMI . 149331

Table 88: Capabilities ­ Read a CDMI domain object using CDMI . 150332

Table 89: Request headers ­ Read a domain object using CDMI . 150333

Table 90: Response headers ­ Read a domain object using CDMI . 151334

Table 91: Response message body ­ Read a domain object using CDMI . 151335

Table 92: HTTP status codes ­ Read a domain object using CDMI . 152336

Table 93: Capabilities ­ Update a CDMI domain object using CDMI . 154337

Table 94: Request headers ­ Update a domain object using CDMI . 154338

Table 95: Request message body ­ Update a domain object using CDMI . 155339

Table 96: Response header ­ Update a domain object using CDMI . 156340

Table 97: HTTP status codes ­ Update a domain object using CDMI . 156341

Table 98: Capabilities ­ Delete a CDMI domain object using CDMI . 158342

Table 99: HTTP status codes ­ Delete a domain object using CDMI . 159343

Table 100: Capabilities ­ Create a CDMI queue object using CDMI . 164344

Table 101: Request headers ­ Create a queue object Using CDMI . 165345

Table 102: Request message body ­ Create a queue object using CDMI . 165346

Table 103: Response headers ­ Create a queue object Using CDMI . 167347

Table 104: Response message body ­ Create a queue object using CDMI . 167348

Table 105: HTTP status codes ­ Create a queue object using CDMI . 168349

Table 106: Capabilities ­ Read a CDMI queue object using CDMI . 170350

Table 107: Request headers ­ Read a queue object using CDMI . 171351

Table 108: Response headers ­ Read a queue object using CDMI . 171352

Table 109: Response message body ­ Read a queue object using CDMI . 171353

Table 110: HTTP status codes ­ Read a queue object using CDMI . 174354

© SNIA 2020 SNIA Technical Position ix

Cloud Data Management Interface 2.0.0

Table 111: Capabilities ­ Update a queue object using CDMI . 177355

Table 112: Request headers ­ Update a queue object Using CDMI . 177356

Table 113: Request message body ­ Update a queue object Using CDMI . 177357

Table 114: Response header ­ Update a queue object Using CDMI . 179358

Table 115: HTTP status codes ­ Update a queue object using CDMI . 179359

Table 116: Capabilities ­ Delete a queue object using CDMI . 181360

Table 117: HTTP status codes ­ Delete a queue object Using CDMI . 182361

Table 118: Capabilities ­ Enqueue a new queue object value using CDMI . 183362

Table 119: Request headers ­ Enqueue a new queue object value using CDMI 183363

Table 120: Request message body ­ Enqueue a new queue object value using CDMI 184364

Table 121: HTTP status codes ­ Enqueue a new queue object value Using CDMI 186365

Table 122: Capabilities ­ Delete a queue object value using CDMI . 189366

Table 123: HTTP status codes ­ Delete a queue object value using CDMI . 190367

Table 124: System­wide capabilities . 195368

Table 125: Capabilities for storage system metadata . 199369

Table 126: Capabilities for data system metadata . 201370

Table 127: Capabilities for data objects . 204371

Table 128: Capabilities for container objects . 205372

Table 129: Capabilities for domain objects . 207373

Table 130: Capabilities for queue objects . 209374

Table 131: Capabilities ­ Read a capabilities object using CDMI . 210375

Table 132: Request headers ­ Read a capabilities object using CDMI . 210376

Table 133: Response headers ­ Read a capabilities object Using CDMI . 211377

Table 134: Response message body ­ Read a capabilities object using CDMI 211378

Table 135: HTTP status codes ­ Read a capabilities object using CDMI . 212379

Table 136: Elements of the NFS protocol export structure . 219380

Table 137: Elements of the SMB protocol export structure . 221381

Table 138: Elements of the iSCSI protocol export structure . 223382

Table 139: Elements of the WebDAV protocol export structure . 225383

Table 140: Serialization import behaviour . 235384

Table 141: Storage system metadata . 237385

Table 142: Data system metadata . 239386

Table 143: Provided values of data system metadata . 247387

Table 144: ACE types . 254388

Table 145: Who identifiers . 254389

Table 146: ACE flags . 255390

Table 147: ACE masks bits . 256391

Table 148: ACE bit mask/string . 262392

Table 149: Query matching expressions . 276393

Table 150: Required metadata for a notification queue . 282394

Table 151: Notification status metadata . 285395

Table 152: Required metadata for a query queue . 286396

Table 153: Query status metadata . 287397

Table 154: Access modes for DAC . 301398

Table 155: DAC request . 306399

Table 156: Packaged DAC request . 308400

Table 157: DAC response . 310401

Table 158: Packaged DAC response . 311402

Table 159: Version­enabled data object metadata items . 328403

Table 161: Response headers ­ Inspect a data object using HTTP . 345404

Table 162: HTTP status codes ­ Inspect a data object using HTTP . 346405

Table 163: Request headers ­ Create a container object using HTTP . 348406

Table 164: Response Headers ­ Inspect a container object using HTTP . 349407

Table 165: HTTP status codes ­ Inspect a container object using HTTP . 350408

© SNIA 2020 SNIA Technical Position x

Cloud Data Management Interface 2.0.0

Table 167: Required metadata for a query queue . 353409

© SNIA 2020 SNIA Technical Position xi

Cloud Data Management Interface 2.0.0

Part I410

CDMI Preamble411

© SNIA 2020 SNIA Technical Position 1

Cloud Data Management Interface 2.0.0

This Cloud Data Management Interface (CDMI™) International Standard is intended for application developers who are412

implementing or using cloud storage. It documents how to access cloud storage and to manage the data stored there.413

This document is organized as follows:414

Table 1: Overview of this document
415

Clause 1 Scope Defines the scope of this document
Clause 2 Normative references Lists the normative references for this document
Clause 3 Terms Provides terminology used in this document
Clause 4 Conventions Describes the conventions used in presenting the interfaces and the

typographical conventions used in this document
Clause 5 Overview of Cloud

Storage
Provides a brief overview of cloud storage and details the philosophy
behind this International Standard as a model for the operations

Clause 6 Data Object Resource
Operations using HTTP

Provides the normative standard of data object resource operations
using HTTP

Clause 7 Container Object
Resource Operations
using HTTP

Provides the normative standard of container object resource
operations using HTTP

Clause 8 Data Object Resource
Operations using CDMI

Provides the normative standard of data object resource operations
using CDMI

Clause 9 Container Object
Resource Operations
using CDMI

Provides the normative standard of container object resource
operations using CDMI

Clause 10 Domain Object Resource
Operations using CDMI

Provides the normative standard of domain object resource
operations using CDMI

Clause 11 Queue Object Resource
Operations using CDMI

Provides the normative standard of queue object resource operations
using CDMI

Clause 12 Capability Object
Resource Operations
using CDMI

Provides the normative standard of capability object resource
operations using CDMI

Clause 13 Exported Protocols Discusses how virtual machines in the cloud computing environment
can use the exported protocols from CDMI containers

Clause 14 Snapshots Discusses how snapshots are accessed under CDMI containers
Clause 15 Serialization/

Deserialization
Discusses serialization and deserialization, including import and
export of serialized data under CDMI

Clause 16 Metadata Provides the normative standard of the metadata used in the interface
Clause 18 Retention and Hold

Management
Describes the optional retention management disciplines to be
implemented into the system management functions

Clause 19 Scope Specification Describes the structure of the scope specification for JSON objects
Clause 20 Results Specification Provides a standardized mechanism to define subsets of CDMI object

contents
Clause 21 Notification Queues Describes how CDMI clients can efficiently discover what changes

have occurred to the system
Clause 22 Query Queues Describes how CDMI clients can efficiently discover what content

matches a given set of metadata query criteria or full­content search
criteria

Clause 23 Encrypted Objects Describes how to work with transparently encrypted objects
Clause 24 Delegated Access Control Describes how to delegate access control to external systems
Clause 25 Data Object Versions Describes how to work with versioned data objects
Clause 26 Extensions Provides informative vendor extensions. Each extension is added to

the standard when at least two vendors implement the extension.

416

© SNIA 2020 SNIA Technical Position 2

Cloud Data Management Interface 2.0.0

Clause 1417

Scope418

This CDMI™ International Standard specifies the interface to access cloud storage and to manage the data stored419

therein. This International Standard applies to developers who are implementing or using cloud storage.420

© SNIA 2020 SNIA Technical Position 3

Cloud Data Management Interface 2.0.0

Clause 2421

Normative references422

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for423

its application. For dated references, only the edition cited applies. For undated references, the latest edition of the424

referenced document (including any amendments) applies.425

The provisions of the referenced specifications other than ISO/IEC, IEC, ISO, and ITU documents, as identified in this426

clause, are valid within the context of this International Standard. The reference to such a specification within this427

International Standard does not give it any further status within ISO/IEC. In particular, it does not give the referenced428

specifications the status of an International Standard.429

ISO 3166:2013, Codes for the representation of names of countries and their subdivisions (Parts 1, 2 and 3) ­ see430

[35][36][37]431

ISO 4217:2015, Codes for the representation of currencies and funds ­ see [38]432

ISO 8601:2019, Data elements and interchange formats – Information interchange – Representation of dates and times433

­ see [32][33]434

ISO/IEC 9594­8:2017, Information technology –Open Systems Interconnection – The Directory: Public­key and attribute435

certificate frameworks ­ see [43]436

ISO 14721:2012, Space data and information transfer systems – Open archival information system (OAIS) – Reference437

model ­ see [34]438

ISO/IEC 14776­414:2009, SCSI Architecture Model ­ 4 (SAM­4) ­ see [29]439

ISO/IEC 17788:2014, Information technology – Cloud computing – Overview and vocabulary ­ see [31]440

ISO/IEC 20648, TLS specification for storage systems ­ see [39]441

ISO/IEC 27040:2015, Information technology – Security techniques – Storage security ­ see [30]442

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 6th edition, 2011* ­ see [28]443

IEEE 1003.1­2017, IEEE Standard for Information Technology–Portable Operating System Interface (POSIX(R)) Base444

Specifications, Issue 7 ­ see [41]445

RFC 1867, Form­based File Upload in HTML ­ see [20]446

RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies ­ see [9]447

RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types ­ see [10]448

RFC 2119, Key Words for Use in RFCs to Indicate Requirement Levels ­ see [3]449

RFC 2578, Structure of Management Information Version 2 (SMIv2) ­ see [21]450

RFC 2616, Hypertext Transfer Protocol – HTTP/1.1 ­ see [23]451

RFC 2617, HTTP Authentication: Basic and Digest Access Authentication ­ see [8]452

RFC 3280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile ­ see [13]453

RFC 3530, Network File System (NFS) Version 4 Protocol ­ see [1]454

RFC 7143, Internet Small Computer System Interface (iSCSI) Protocol (Consolidated) ­ see [4]455

RFC 3986, Uniform Resource Identifier (URI): Generic Syntax ­ see [2]456

© SNIA 2020 SNIA Technical Position 4

Cloud Data Management Interface 2.0.0

RFC 4627, The Application/JSON Media Type for JavaScript Object Notation (JSON) ­ see [5]457

RFC 4648, The Base16, Base32, and Base64 Data Encodings ­ see [19]458

RFC 4918, HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV) ­ see [6]459

RFC 5246, The Transport Layer Security (TLS) Protocol Version 1.2 ­ see [25]460

RFC 6068, The ‘mailto’ URI Scheme ­ see [27]461

RFC 5652, Cryptographic Message Syntac (CMS) ­ see [12]462

RFC 6208, Cloud Data Management Interface (CDMI) Media Types ­ see [26]463

RFC 6839, Additional Media Type Structured Syntax Suffixes ­ see [11]464

RFC 7515, JSON Web Signatures ­ see [17]465

RFC 7516, JSON Web Encryption ­ see [18]466

RFC 7518, JSON Web Algorithms ­ see [15]467

RFC 8446, The Transport Layer Security (TLS) Protocol Version 1.3 ­ see [24]468

SNIA TLS, TLS Specification for Storage Systems, version 1.1.0 ­ see [42]469

© SNIA 2020 SNIA Technical Position 5

Cloud Data Management Interface 2.0.0

Clause 3470

Terms, acronyms, and definitions471

For the purposes of this document, the terms and definitions given in Rec. ITU­T Y.3500 | ISO/IEC 17788:2014 and the472

following apply.473

3.1474

Access Control List (ACL)475

a persistent list, commonly composed of Access Control Entries (ACEs), that enumerates the rights of principals (users476

and groups) to access resources477

478

3.2479

API480

Application Programming Interface481

482

3.3483

CDMI™484

Cloud Data Management Interface485

486

3.4487

CDMI capabilities488

an object that describes what operations are supported for a given cloud or cloud object489

The mimetype for this object is application/cdmi­capability.490

491

3.5492

CDMI container493

an object that stores zero or more children objects and associated metadata494

The mimetype for this object is application/cdmi­container.495

496

3.6497

CDMI data object498

an object that stores an array of bytes (value) and associated metadata499

The mimetype for this object is application/cdmi­object.500

501

3.7502

CDMI domain503

an object that stores zero or more children domains and associated metadata describing object administrative ownership504

The mimetype for this object is application/cdmi­domain.505

506

507

508

© SNIA 2020 SNIA Technical Position 6

Cloud Data Management Interface 2.0.0

3.8509

CDMI object510

one of CDMI capabilities, CDMI container, CDMI data object, CDMI domain, or CDMI queue511

512

3.9513

CDMI queue514

an object that stores a first­in, first­out set of values and associated metadata515

The mimetype for this object is application/cdmi­queue.516

517

3.10518

CIFS519

Common Internet File System (See SMB)520

521

3.11522

cloud storage523

See Data storage as a Service524

525

3.12526

CRC527

cyclic redundancy check528

529

3.13530

current data object version531

the most recent version of a version­enabled data object532

533

3.14534

data object version535

either the current data object version or an historical data object version536

537

3.15538

Data Storage as a Service (DSaaS)539

delivery of appropriately configured virtual storage and related data services over a network, based on a request for a540

given service level541

542

3.16543

delegated access control (DAC)544

the process of delegating an access control decision to a third party545

546

3.17547

delegated access control provider (DAC provider)548

a third­party system that is capable of making access control decisions549

550

3.18551

delegated access control request (DAC request)552

a request made to a DAC provider for an access control decision553

554

3.19555

delegated access control response (DAC response)556

a response from a DAC provider indicating the result of a request for an access control decision557

558

559

560

© SNIA 2020 SNIA Technical Position 7

Cloud Data Management Interface 2.0.0

3.20561

domain562

a shared user authorization database that contains users, groups, and their security policies and associated accounting563

information564

Each CDMI object belongs to a single domain, and each domain provides user mapping and accounting information.565

566

3.21567

eventual consistency568

a behavior of transactional systems that does not provide immediate consistency guarantees to provide enhanced569

system availability and tolerance to network partitioning570

571

3.22572

FC573

Fibre Channel574

575

3.23576

FCoE577

Fibre Channel over Ethernet578

579

3.24580

historical data object version581

a non­current state of a version­enabled data object582

583

3.25584

HTTP585

HyperText Transfer Protocol586

587

3.26588

Infrastructure as a Service (IaaS)589

delivery over a network of an appropriately configured virtual computing environment, based on a request for a given590

service level591

Typically, IaaS is either self­provisioned or provisionless and is billed based on consumption.592

593

3.27594

intermediary CDMI server595

a CDMI server that is capable of forwarding DAC requests and responses596

597

3.28598

iSCSI599

Internet Small Computer Systems Interface (see RFC 7143 [4])600

601

3.29602

JOSE603

JavaScript Object Signing and Encryption604

605

3.30606

JWA607

JSON Web Algorithm608

609

610

611

612

613

© SNIA 2020 SNIA Technical Position 8

Cloud Data Management Interface 2.0.0

3.31614

JWE615

JSON Web Encryption616

617

3.32618

JWS619

JSON Web Signing620

621

3.33622

JSON623

JavaScript Object Notation624

625

3.34626

LDAP627

Lightweight Directory Access Protocol628

629

3.35630

LUN631

Logical Unit Number (see ISO/IEC 14776­414)632

633

3.36634

metadata635

data about other data (see [34])636

637

3.37638

MIME639

Multipurpose Internet Mail Extensions (see RFC 2045 [9])640

641

3.38642

NFS643

Network File System (see RFC 3530 [1])644

645

3.39646

object647

an entity that has an object ID, has a unique URI, and contains state648

Types of CDMI objects include data objects, container objects, capability objects, domain objects, and queue objects.649

650

3.40651

object identifier652

a globally­unique value assigned at creation time to identify an object653

654

3.41655

OCCI656

Open Cloud Computing Interface (see [40])657

658

3.42659

Platform as a Service (PaaS)660

delivery over a network of a virtualized programming environment, consisting of an application deployment stack based661

on a virtual computing environment662

Typically, PaaS is based on IaaS, is either self­provisioned or provisionless, and is billed based on consumption.663

664

665

© SNIA 2020 SNIA Technical Position 9

Cloud Data Management Interface 2.0.0

3.43666

POSIX667

Portable Operating System Interface (see IEEE Std 1003.1)668

669

3.44670

private cloud671

delivery of SaaS, PaaS, IaaS, and/or DaaS to a restricted set of customers, usually within a single organization672

Private clouds are created due to issues of trust.673

674

3.45675

public cloud676

delivery of SaaS, PaaS, IaaS, and/or DaaS to, in principle, a relatively unrestricted set of customers677

678

3.46679

Representational State Transfer (REST)680

a specific set of principles for defining, addressing, and interacting with resources addressable by URIs (see [7])681

682

3.47683

RPO684

recovery point objective685

686

3.48687

RTO688

recovery time objective689

690

3.49691

service level692

performance targets for a service693

694

3.50695

Server Message Block696

A network file system access protocol designed primarily used by Windows clients to communicate file access requests697

to Windows servers. (Also see CIFS)698

699

3.51700

SNMP701

Simple Network Management Protocol702

703

3.52704

Software as a Service (SaaS)705

delivery over a network, on demand, of the use of an application706

technology that allocates the physical capacity of a volume or file system as applications write data, rather than707

pre­allocating all the physical capacity at the time of provisioning.708

709

3.53710

Uniform Resource Identifier (URI)711

compact sequence of characters that identifies an abstract or physical resource (see RFC 3986 [2])712

713

3.54714

version­enabled data object715

a CDMI data object with versioning enabled716

717

© SNIA 2020 SNIA Technical Position 10

Cloud Data Management Interface 2.0.0

3.55718

virtualization719

presentation of resources as if they are physical, when in fact, they are decoupled from the underlying physical resources720

721

3.56722

WebDAV723

Web Distributed Authoring and Versioning (see RFC 4918 [6])724

725

© SNIA 2020 SNIA Technical Position 11

Cloud Data Management Interface 2.0.0

Clause 4726

Conventions727

4.1 Interface format728

Each interface description has nine components, as described in Table 2.729

Table 2: Interface format
730

Component Description
Synopsis The GET, PUT, POST, PATCH, and DELETE semantics
Delayed completion For long­running operations, a description of behavior when the operation does

not immediately complete
Capabilities A description of the supported operations
Request headers The request headers, such as Accept, Authorization, Content­Length, Content­

Type
Request message body A description of the message body contents
Response headers The response headers, such as Content­Length, Content­Type
Response message body A description of the message body contents
Response Status A list of HTTP status codes
Example An example of the operation

731

© SNIA 2020 SNIA Technical Position 12

Cloud Data Management Interface 2.0.0

4.2 Typographical conventions732

All code text and HTTP status codes are shown in a fixed­width font.733

API resquests also include a prefix to indicate the source of the request or reply:734

• Client­initiated requests are prefixed with ‘–>’735

• Server­initiated replies are prefixed with ‘<–’736

An example is included below:737

­­> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype" : "text/plain",
­­> "metadata" : {
­­> ...
­­> },
­­> "value" : "This is the Value of this Data Object"
­­> }

<­­ HTTP/1.1 202 Accepted
<­­ Location: https://cloud.example.com/cdmi/2.0.0/MyContainer/MyDataObject.txt

Similarly, HTTP status codes are shown in a fixed­width font, as in:738

Requesting an optional field that is not present shall result in an HTTP status code of 404 Not Found.739

© SNIA 2020 SNIA Technical Position 13

Cloud Data Management Interface 2.0.0

4.3 Request and response body requirements740

In request and response body tables, the Requirement column contains one of the following three values:741

• Mandatory. The value specified in this row shall be provided.742

• Conditional. If the conditions specified in the Description cell is met, the value specified in this row shall be743

provided. Otherwise, it may be provided unless the Description specifically prohibits it, in which case it shall not744

be provided.745

• Optional. The value specified in this row may be provided.746

© SNIA 2020 SNIA Technical Position 14

Cloud Data Management Interface 2.0.0

4.4 Key Word requirements747

In this International Standard, the key words in Table 3 shall be interpreted as described in ISO/IEC Directives, Part 2.748

Table 2 — Key word requirements749

Table 3: Key word requirements
Key words Denotes Description Equivalent expressions

(for exception cases only)
shall requirement An action that is unconditionally required.

• Do not use must as an alternative to
shall.

• To express a direct instruction, for
example, when referring to steps to
be taken in a test method, use the
imperative mood in English.

• EXAMPLE: Switch on the recorder.

• is to
• is required to
• it is required that
• has to
• only … is permitted
• it is necessary

shall not requirement An action that is unconditionally prohibited.
Do not use may not instead of shall not to
express a prohibition.

• is not allowed
[permitted]
[acceptable]
[permissible]

• is required to be not
• is required that …
be not

• is not to be

should recommendation An action that is recommended when
choosing among several possibilities, or an
action that is preferred but not necessarily
required.

• it is recommended
that

• ought to

should not recommendation An action or certain possibility or course of
action that is deprecated but not prohibited. • it is not

recommended that
• ought not to

may permission An action that indicates what is allowed
within the limits of the document.
Do not use possible or can in this context.
May signifies permission expressed by the
document, whereas can refers to the ability
of a user of the document or to a possibility
open to him or her.

• is permitted
• is allowed
• is permissible

need not permission An action that indicates what is not required
within the limits of the document.
Do not use impossible in this context.

• it is not required
that

• no … is required

© SNIA 2020 SNIA Technical Position 15

Cloud Data Management Interface 2.0.0

Clause 5750

Overview of Cloud Storage751

5.1 Overview752

5.1.1 General Context753

When discussing cloud storage and standards, it is important to distinguish the various resources that are being offered754

as services. These resources are exposed to clients as functional interfaces (i.e., data paths) and are managed by755

management interfaces (i.e., control paths). This International Standard explores the various types of interfaces that756

are part of cloud services today and shows how they are related. This International Standard defines a model for the757

interfaces that can be mapped to the various cloud services and a model that forms the basis for cloud storage interfaces758

into the future.759

Another important concept in this International Standard is that of metadata. When managing large amounts of data760

with differing requirements, metadata is a convenient mechanism to express those requirements in such a way that761

underlying data services can differentiate their treatment of the data to meet those requirements.762

The appeal of cloud storage is due to some of the same attributes that define other cloud services: pay as you go, the763

illusion of infinite capacity (elasticity), and the simplicity of use/management. It is therefore important that any interface764

for cloud storage support these attributes, while allowing for a multitude of business use cases.765

5.1.2 What is Cloud Storage?766

The use of the term cloud in describing these new models arose from architecture drawings that typically used a cloud767

as the icon for a network. The cloud represents any­to­any network connectivity in an abstract way. In this abstraction,768

the network connectivity in the cloud is represented without concern for how it is made to happen.769

The cloud abstraction of complexity produces a simple base on which other features can be built. The general cloud770

model extends this base by adding a pool of resources. An important part of the cloud model is the concept of a pool of771

resources that is drawn from, on demand, in small increments. A relatively recent innovation that has made this possible772

is virtualization.773

Thus, cloud storage is simply the delivery of virtualized storage on demand. The formal term that is used for this is Data774

storage as a Service (DaaS).775

© SNIA 2020 SNIA Technical Position 16

Cloud Data Management Interface 2.0.0

5.1.3 Data Storage as a Service776

By abstracting data storage behind a set of service interfaces and delivering it on demand, a wide range of actual cloud777

services and implementations are possible. The only type of storage that is excluded from this definition is that which778

is delivered in fixed­capacity increments instead of that which is based on demand.779

An important part of any DaaS system is the support of legacy clients. Support is accommodated with existing standard780

protocols such as iSCSI (and others) for block network storage and SMB/NFS or WebDAV for file network storage, as781

shown in Fig. 1.782

Fig. 1: Existing data storage interface standards

The difference between purchasing a dedicated appliance or purchasing cloud storage is not the functional interface,783

but the fact that the storage is delivered on demand. Customers pay for either what they actually use or what they have784

allocated for use. For block storage, a Logical Unit Number (LUN), or virtual volume, is the granularity of allocation. For785

file protocols, a file system is the unit of granularity. In either case, the actual storage space may be thin­provisioned786

and billed for based on actual usage. Data services, such as compression and deduplication, can be used to further787

reduce the actual space consumed.788

Managing this storage is typically done out of band for these standard data storage interfaces, either through an API,789

or more commonly, through an administrative browser­based user interface. This out­of­band interface can be used to790

invoke other data services as well (e.g., snapshots or cloning).791

In this model, the underlying storage space that has been exposed by the out­of­band interfaces is abstracted and792

exposed using the notion of a container. A container is not only a useful abstraction for storage space, but also serves793

as a grouping of the data stored in it and a point of control for applying data services in the aggregate.794

Each data object is created, retrieved, updated, and deleted as a separate resource. In this type of interface, a container,795

if used, is a simple grouping of data objects for convenience. Nothing prevents the concept of containers from being796

hierarchical, although any given implementation might support only a single level (see Fig. 2).797

© SNIA 2020 SNIA Technical Position 17

Cloud Data Management Interface 2.0.0

Fig. 2: Storage interfaces for object storage client data

5.1.4 Data management for cloud storage798

Many of the initial implementations of cloud storage focused on a kind of best effort quality of storage service and ignored799

most other types of data services. To address the needs of enterprise applications with cloud storage, however, there800

is an increasing need to offer better quality of service and to deploy additional data services.801

Cloud storage can lose its abstraction and simplicity benefits if new data services that require complex management802

are added. Cloud storage customers are likely to resist new demands on their time (e.g., setting up backup schedules803

through dedicated interfaces, deploying data services individually for stored objects).804

By supporting metadata in a cloud storage interface and prescribing how the storage system and data system metadata805

is interpreted to meet the requirements of the data, the simplicity required by the cloud storage model can be maintained806

while still addressing the requirements of enterprise applications and their data.807

User metadata is retained by the cloud and can be used to find the data objects and containers by performing a query808

for specific metadata values. The schema for this metadata may be determined by each application, domain, or user.809

For more information on support for user metadata, see 16.5.810

Storage system metadata is produced/interpreted by the cloud service provider and basic storage functions (e.g., mod­811

ification and access statistics, access control). For more information on support for storage system metadata, see812

16.2.813

Data system metadata is interpreted by the cloud service provider as data requirements that control the operation of814

underlying data services for that data. Depending on the level of granularity supported by the cloud, data system815

metadata may apply to an aggregation of data objects in a container or to individual data objects, if the cloud service816

provider supports this level of granularity. For more information on support for data system metadata, see 16.3.817

© SNIA 2020 SNIA Technical Position 18

Cloud Data Management Interface 2.0.0

5.1.5 Data and container management818

There is no reason that managing data and managing containers should involve different interfaces. Therefore, the use819

of metadata is extended from applying to individual objects to applying to containers of objects as well. Thus, any data820

placed into a container inherits the data system metadata of the container into which it was placed. When creating a821

new container within an existing container, the new container would similarly inherit the metadata settings of its parent’s822

data system metadata. After an object is created, the data system metadata may be overridden at the container or823

individual object level, as desired.824

Even if the provided interface does not support setting metadata on individual objects, metadata can still be applied825

to the containers. In such a case, the interface does not provide a mechanism to override metadata that an individual826

object inherits from its parent container. For file­based interfaces that support extended attributes (e.g., SMB, NFSv4),827

these extended attributes may be used to specify the data system metadata to override that specified for the container.828

© SNIA 2020 SNIA Technical Position 19

Cloud Data Management Interface 2.0.0

5.2 Reference model for cloud storage interfaces829

The cloud storage reference model is shown in Fig. 3.830

Fig. 3: Cloud storage reference model

This model shows multiple types of cloud data storage interfaces that are able to support both legacy and new appli­831

cations. All of the interfaces allow storage to be provided on demand, drawn from a pool of resources. The storage832

capacity is drawn from a pool of storage capacity provided by storage services. The data services are applied to indi­833

vidual objects, as determined by the data system metadata. Metadata specifies the data requirements on the basis of834

individual objects or for groups of objects (containers).835

© SNIA 2020 SNIA Technical Position 20

Cloud Data Management Interface 2.0.0

5.3 Cloud data management interface836

The Cloud Data Management Interface (CDMI™) shown in Fig. 3 may be used to create, retrieve, update, and delete837

objects in a cloud. The features of the CDMI include functions that:838

• allow clients to discover the capabilities available by the cloud service provider,839

• manage containers and the data that is placed in them, and840

• allow metadata to be associated with containers and the objects they contain.841

This International Standard divides operations into two types: those that use a CDMI content type in the HTTP body842

and those that do not. While much of the same data is available via both types, providing both allows for CDMI­aware843

clients and non­CDMI­aware clients to interact with a CDMI provider.844

CDMI can also be used by administrative and management applications to manage containers, domains, security ac­845

cess, and monitoring/billing information, even for storage that is functionally accessible by legacy or proprietary pro­846

tocols. The capabilities of the underlying storage and data services are exposed so that clients can understand what847

services the cloud service provider provides.848

Conformant cloud service providers may support a subset of the CDMI, as long as they expose the limitations in the849

capabilities reported via the interface.850

This International Standard uses RESTful principles in the interface design where possible (see [7]).851

CDMI defines both a means to manage the data as well as a means to store and retrieve the data. The means by which852

the storage and retrieval of data is achieved is termed a data path. The means by which the data is managed is termed853

a control path. CDMI specifies both a data path and control path interface.854

CDMI does not need to be used as the only data path and is able to manage cloud storage properties for any data path855

interface (e.g., standardized or vendor specific).856

Container metadata is used to configure the data requirements of the storage provided through the exported protocol857

(e.g., block protocol or file protocol) that the container exposes. When an implementation is based on an underlying file858

system to store data for a block protocol (e.g., iSCSI), the CDMI container provides a useful abstraction for representing859

the data system metadata for the data and the structures that govern the exported protocols.860

A cloud service may also support domains that allow administrative ownership to be associated with stored objects.861

Domains allow this International Standard to (among other things):862

• determine how user credentials are mapped to principals used in an Access Control List (ACL),863

• allow granting of special cloud­related privileges, and864

• allow delegation to external user authorization systems (e.g., LDAP or Active Directory).865

Domains may also be hierarchical, allowing for corporate domains with multiple children domains for departments or866

individuals. The domain concept is also used to aggregate usage data that is used to bill, meter, and monitor cloud use.867

Finally, capabilities allow a client to discover the capabilities of a CDMI implementation. Requirements throughout this868

International Standard shall be understood in the context of CDMI capabilities. Mandatory requirements on functionality869

that is conditioned on a CDMI capability shall not be interpreted to require implementation of that capability, but rather870

shall be interpreted to apply only to implementations that support the functionality required by that capability.871

For example, in 5.3.3, this International Standard states, “Every cloud storage system shall allow object ID­based access872

to stored objects.” This requirement shall be understood in the context that access by object ID is predicated on the873

presence of the cdmi_object_access_by_ID capability.874

5.3.1 Object model for CDMI875

The model for CDMI is shown in Fig. 4.876

The five types of resources defined are shown in Table 4. The content type in any given operation is specific to each877

type of resource.878

© SNIA 2020 SNIA Technical Position 21

Cloud Data Management Interface 2.0.0

Fig. 4: CDMI object model

Table 4: Types of resources in the CDMI object model
879

Resource type Description Reference
Data objects Data objects are used to store data and associated metadata, and

provide functionality similar to files in a file system.
See clause 8.

Container objects Container objects have zero or more children objects, and store
metadata associated with the container as a whole. Container
objects do not store data directly. They provide functionality similar
to directories in a file system.

See clause 9.

Domain objects Domain objects represent administrative groupings for user
authentication and accounting purposes.

See clause 10.

Queue objects Queue objects store zero or more pieces of data, and store
metadata associated with the queue as a whole. Enqueued values
are accessed in a first­in­first­out manner.

See clause 11.

Capability objects Capability objects describe the functionality implemented by a CDMI
server and are used by a client to discover supported functionality.

See clause 12.

880

For data storage operations, the client of the interface only needs to know about container objects and data objects. All881

data path implementations are required to support at least one level of containers (see 5.1.5). Using the CDMI object882

model (see Fig. 4), the client can send a PUT via CDMI (see Fig. 3) to the new container URI and create a new container883

with the specified name. Container metadata are optional and are expressed as a series of name­value pairs. After a884

container is created, a client can send a PUT to create a data object within the newly created container.885

Queue objects are also defined (see Fig. 4) and provide in­order­first in­first­out access to enqueued objects. More886

information on queues can be found in clause 11.887

CDMI defines two namespaces that can be used to access stored objects, a flat object ID namespace and a hierar­888

chical path­based namespace. Support for objects accessed by object ID is indicated by the system­wide capability889

cdmi_object_access_by_ID, and support for objects accessed by hierarchical path is indicated by the container890

capability cdmi_create_dataobject found on the root container (and any subcontainers).891

Objects are created by ID by performing an HTTP POST against a special URI, designated as /cdmi_objectid/892

(see 9.7). Subsequent to creation, objects are modified by performing PUTs using the object ID assigned by the CDMI893

server, using the “/cdmi_objectid/” URI (see 8.5). The same URI is used to retrieve and delete objects by ID.894

Objects are created by name by performing an HTTP PUT to the desired path URI (see 8.3). Subsequent to creation,895

objects are modified by performing PUTs using the object path specified by the client (see 8.5). The same URI is used896

to retrieve and delete objects by path.897

CDMI definesmechanisms so that objects having only an object ID can be assigned a path location within the hierarchical898

namespace, and so that objects having both an object ID and path can have their path dropped, such that the object899

only has an object ID. This function is accomplished by using a “move” modifier to a PUT or POST operation, as shown900

in Fig. 5.901

© SNIA 2020 SNIA Technical Position 22

Cloud Data Management Interface 2.0.0

Fig. 5: Object transitions between named and ID­only

5.3.2 CDMI metadata902

CDMI uses many different types of metadata, including HTTP metadata, data system metadata, user metadata, and903

storage system metadata.904

HTTP metadata is metadata that is related to the use of the HTTP protocol (e.g., Content­Length, Content­Type,905

etc.). HTTP metadata is not specifically related to this International Standard but needs to be discussed to explain how906

CDMI uses the HTTP standard.907

CDMI data system metadata, user metadata, and storage system metadata is defined in the form of name­value pairs.908

Vendor­defined data system metadata and storage system metadata names shall begin with the reverse domain name909

of the vendor.910

Data system metadata is metadata that is specified by a CDMI client and is a component of objects. Data system911

metadata abstractly specifies the data requirements associated with data services that are deployed in the cloud storage912

system.913

User metadata consists of client­defined JSON strings, arrays, and objects that are stored in the metadata field. The914

namespace used for user metadata names is self­administered (e.g., using the reverse domain name), and user meta­915

data names shall not begin with the prefix “cdmi_”.916

Storage system metadata is metadata that is generated by the storage services in the system (e.g., creation time, size)917

to provide useful information to a CDMI client.918

The matrix of the creation and consumption of storage system metadata is shown in Table 5.919

Table 5: Creation/consumption of storage system metadata
920

Created by user Created By system
Consumed by user User metadata Storage system metadata
Consumed by system Data system metadata N/A

921

5.3.3 CDMI object IDs922

Every object stored within a CDMI­compliant system shall have a globally unique object identifier (ID) assigned at923

creation time. The CDMI object ID is a string with requirements for how it is generated and how it obtains its uniqueness.924

Each cloud service that implements CDMI shall generate these identifiers such that the probability of conflicting with925

identifiers generated by other CDMI Servers and the probability of generating an identifier that has already been used926

is effectively zero.927

Every cloud storage system shall allow object ID­based access to stored objects by allowing the object’s ID to be928

appended to the root URI (see 5.5.5). If the data object “MyDataObject.txt”, stored in the root container “/” with a929

root path of “/cdmi/2.0.0/”, has an object ID of “00006FFD001001CCE3B2B4F602032653”, the following pair of930

URIs access the same data object:931

• https://cloud.example.com/cdmi/2.0.0/MyDataObject.txt932

• https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/00006FFD001001CCE3B2B4F602032653933

© SNIA 2020 SNIA Technical Position 23

Cloud Data Management Interface 2.0.0

If containers are supported, they shall also be accessible by object ID. If the container “MyContainer”, stored in the root934

container “/” with a root path of “/cdmi/2.0.0/”, has an object ID of “00006FFD0010AA33D8CEF9711E0835CA”,935

the following pairs of URIs access the same object:936

• https://cloud.example.com/cdmi/2.0.0/MyContainer/937

• https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA/938

939

• https://cloud.example.com/cdmi/2.0.0/MyContainer/MyDataObject.txt940

• https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA/941

MyDataObject.txt942

5.3.4 CDMI object ID format943

The CDMI Server shall create the object ID, which identifies an object. The object ID shall be globally unique and shall944

conform to the format defined in Table 6. The native format of an object ID is a variable­length byte sequence and shall945

be a maximum length of 40 bytes. A client should treat object IDs as opaque byte strings. However, the object ID format946

is defined such that its integrity may be validated, and independent CDMI Servers may assign unique object ID values947

independently.948

Table 6: Object ID format
949

0 1 2 3 4 5 6 7 8 9 10 … 38 39
Reserved
(zero)

Enterprise Number Reserved
(zero)

Length CRC Opaque Data

950

The fields shown in Table 6 are defined as follows:951

• The reserved bytes shall be set to zero.952

• The Enterprise Number field shall be the SNMP enterprise number of the offering organization that developed953

the system that created the object ID, in network byte order. See RFC 2578 [21] and https://www.iana.org/954

assignments/enterprise­numbers. 0 is a reserved value.955

• The byte at offset 5 shall contain the full length of the object ID, in bytes.956

• The CRC field shall contain a 2­byte (16­bit) CRC in network byte order. The CRC field enables the object ID to957

be validated for integrity. The CRC field shall be generated by running the CRC algorithm across all bytes of the958

object ID, as defined by the Length field, with the CRC field set to zero. The CRC function shall have the following959

fields:960

– Name : “CRC­16”,961

– Width : 16,962

– Poly : 0x8005,963

– Init : 0x0000,964

– RefIn : True,965

– RefOut : True,966

– XorOut : 0x0000, and967

– Check : 0xBB3D.968

This function defines a 16­bit CRC with polynomial 0x8005, reflected input, and reflected output.969

• Opaque data in each object ID shall be unique for a given Enterprise Number.970

The native format for an object ID is binary. When necessary, such as when included in URIs and JSON strings, the971

object ID textual representation shall be encoded using Base16 encoding rules described in RFC 4648 [19] and shall972

be case insensitive.973

© SNIA 2020 SNIA Technical Position 24

https://www.iana.org/assignments/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers

Cloud Data Management Interface 2.0.0

5.4 Security974

5.4.1 Security objectives975

Security, in the context of CDMI, refers to the protective measures employed in managing and accessing data and976

storage. The specific objectives to be addressed by security include providing a mechanism that:977

• assures that the communications between a CDMI client and server cannot be read or modified by a third party;978

• allows CDMI clients and servers to assure their identity;979

• allows control of the actions a CDMI client is permitted to perform on a CDMI server;980

• allows records to be generated for actions performed by a CDMI client on a CDMI server;981

• protects data at rest;982

• eliminates data in a controlled manner; and983

• discovers the security capabilities of of a particular implementation.984

Security measures within CDMI are summarized as:985

• transport security,986

• user and entity authentication,987

• authorization and access controls,988

• data integrity,989

• data and media sanitization,990

• data retention,991

• protections against malware,992

• data at­rest encryption, and993

• security capabilities.994

With the exception of both the transport security and the security capabilities, which shall be implmented, the security995

measures can vary significantly from implementation to implementation.996

When security is a concern, the CDMI client should begin with a series of security capability lookups (see 12.2.7 to997

determine the exact nature of the security features that are available. Based on the values of these capabilities, a998

risk­based decision should be made as to whether the CDMI server should be used. This is particularly true when the999

data to be stored in the cloud storage is sensitive or regulated in a way that requires stored data to be protected (e.g.,1000

encrypted) or handled in a particular manner (e.g., full accountability and traceability of management and access).1001

5.4.2 HTTP security1002

HTTP is the mandatory transport mechanism for this version of CDMI. It is important to note that HTTP, by itself, offers1003

no confidentiality or integrity protections. As CDMI is built on top of HTTP, HTTP over Transport Layer Security (TLS)1004

(i.e., HTTPS) is the mechanism that is used to secure the communications between CDMI clients and servers.1005

To ensure both security and interoperability, all CDMI implementations:1006

• shall implement the TLS protocol as described in the latest version of the “SNIA TLS Specification for Storage1007

Systems” [42]; with a six­month transition period for implementations. The TLS specification is updated when1008

new vulnerabilities are found, and CDMI implementations shall support the latest specification within six months1009

of its publication announcement;1010

• shall support both HTTP over TLS and HTTP without TLS; and1011

• shall allow HTTP without TLS to be disabled.1012

When TLS is used to secure HTTP, the client and server typically perform some form of entity authentication. However,1013

the specific nature of this entity authentication depends on the cipher suite negotiated; a cipher suite specifies the1014

encryption algorithm and digest algorithm to use on a TLS connection. A very common scenario involves using server­1015

side certificates, which the client trusts, as the basis for unidirectional entity authentication. It is possible that mutual1016

authentication involving both client­side and server­side certificates are required.1017

© SNIA 2020 SNIA Technical Position 25

Cloud Data Management Interface 2.0.0

5.4.3 Client Authentication1018

A CDMI client shall comply with all security requirements for HTTP that apply to clients.1019

CDMI clients shall be responsible for initiating user authentication for each CDMI operation that is performed. The CDMI1020

server functions as the authenticator and receives and validates authentication credentials from the client.1021

RFC 2616 [23] and RFC 2617 [8] define requirements for HTTP authentication, which generally starts with an HTTP1022

client request. If the client request does not include an Authorization header and authentication is required, the1023

server responds with an HTTP status code of 401 Unauthorized and a WWW­Authenticate response header. The1024

HTTP client shall then respond with the appropriate Authorization header in a subsequent request. The format of1025

the WWW­Authenticate and Authorization headers varies depending on the type of authentication required.1026

• HTTP basic authentication involves sending the user name and password in the clear, and it should only be used1027

on a secure network or in conjunction with TLS.1028

• HTTP digest authentication sends a secure digest of the user name and password (and other information such1029

as a nonce value), and can be used on an insecure network without TLS.1030

• HTTP status codes of 401 Unauthorized should not include a choice of authentication.1031

• HTTP basic authentication and/or HTTP digest authentication should be implemented.1032

• Authentication credentials used with one type of HTTP authentication (i.e., basic or digest) should never be sub­1033

sequently used with the other type of HTTP authentication.1034

Once a user is authenticated, the provided principal name shall be mapped by the CDMI domain to a domain user (or1035

used directly as the ACE “who” if domains are not supported). This mapping is then used to determine authorization.1036

A CDMI server typically relies on an authentication service (local and/or external) to validate client credentials. Differing1037

authentication schemes may be supported, including host­based authentication, Kerberos, PKI, or other; the authenti­1038

cation service is beyond the scope of this International Standard.1039

5.4.4 Use of TLS and HTTP1040

Recommendations for using HTTP and TLS are as follows:1041

• A client connecting to a CMDI server using TLS should use TCP port 443, and a client connecting without TLS1042

should use TCP port 80.1043

• A client that fails to connect to a CDMI server on port 443 should retry without TLS on TCP port 80 if their security1044

policy allows it.1045

• Servers may respond to HTTP requests on port 80 with an HTTP REDIRECT to the appropriate TLS URI (using1046

port 443). Clients should honor such redirects in this situation.1047

5.4.5 Further information1048

For further information pertaining to storage security techniques, see the latest version of ISO 20648.1049

© SNIA 2020 SNIA Technical Position 26

Cloud Data Management Interface 2.0.0

5.5 Required HTTP support1050

5.5.1 RFC 2616 support requirements1051

A conformant implementation of CDMI shall also be a conformant implementation of RFC 2616 [23] (i.e., HTTP 1.1).1052

The subclauses below list the sections of RFC 2616 [23] that shall be supported; however, this list is not comprehensive.1053

5.5.2 Content­Type negotiation1054

For CDMI operations, media types for CDMI objects are used as defined in RFC 6208 [26]. All CDMI representations1055

follow the rules established for application/json as defined in RFC 4627 [5]. The use of the CDMI media types1056

with the +json suffix shall be supported as defined in RFC 6839 [11].1057

A client can optionally supply an HTTP Accept header, as per section 14.1 of RFC 2616 [23]. If a client is restricting1058

the response to a specific CDMI media type, the corresponding media type shall be specified in the Accept header.1059

Otherwise, the Accept header can contain “*/*” or a list of media types, or it may be omitted.1060

If a request body is present, the client shall include a Content­Type header, as per section 14.17 of RFC 2616 [23]. If1061

the client does not provide a Content­Type header when required or provides a media type in the Content­Type header1062

that does not match with the existing resource media type, the server shall return an HTTP status code of 400 Bad1063

Request.1064

If a response body is present, the server shall provide a Content­Type header.1065

This International Standard may further qualify content negotiation (e.g., in 9.4, the absence of a Content­Type header1066

has a specific meaning).1067

5.5.3 Range support1068

The server shall support HTTP Range headers and partial content responses (see Section 14.16 of RFC 2616 [23]).1069

The values of the childrange, valuerange and queuerange fields are formatted based on the HTTP byte­range­1070

resp­spec, as defined in clause 14.16 of RFC 2616 [23].1071

5.5.4 URI escaping1072

Percent escaping of reserved characters specified in RFC 3986 [2] shall be applied to all text strings used in HTTP1073

request URIs and HTTP header URIs. This includes user­supplied field names, metadata names, data object names,1074

container object names, queue object names, and domain object names when used in HTTP request URIs and HTTP1075

header URIs.1076

Field names and values shall not be escaped when stored and when sent in request body and response bodies.1077

A client retrieving a metadata item named “@user” from a container object with the name of “@MyContainer” would1078

perform the following request and reply:1079

­­> GET /cdmi/2.0.0/%40MyContainer/?objectName&metadata=%40user HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­container

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­container
<­­
<­­ {
<­­ "objectName": "@MyContainer/",
<­­ "metadata": {
<­­ "@user": "test",
<­­ ...
<­­ }
<­­ }

© SNIA 2020 SNIA Technical Position 27

Cloud Data Management Interface 2.0.0

5.5.5 Use of URIs1080

The format and syntax of URIs are defined by RFC 3986 [2].1081

This International Standard splits the RFC 3986 path into two parts: The “root path” and the “CDMI path”, as shown in1082

Fig. 6. The URI containing only the root path is called the “root URI”.1083

 https://example.com:443/cdmi/2.0.0/myContainer/myDataObject?value
 ___/ _____________/__________|_______________________/ ___/
 | | | | |
 scheme authority root path CDMI path query
 | |
 __________________________/
 |
 root URI

Fig. 6: CDMI URI Components

The container at the start of the CDMI path is the root container. For example, in Fig. 6, the root container is named1084

“myContainer”.1085

All URIs in this International Standard are relative to the root URI unless otherwise noted. As a consequence, the1086

algorithm used for calculating the resolved URI is as described in Section 5.2 of RFC 3986 [2]. Every CDMI client shall1087

maintain one or more root URIs that each correspond to a root CDMI container on the CDMI server. Since all URIs to1088

CDMI containers end in a trailing slash, all root URIs will end in a trailing slash.1089

This International Standard places no additional restrictions on root URIs beyond those specified for the “path compo­1090

nent” in RFC 3986.1091

Industry conventions for RESTful APIs suggest root URIs end in “/cdmi/<version>/”, where <version> is in the form1092

of “<major>.<minor>.<micro>”, where <major>, <minor> and <micro> are integers indicating the version of the1093

CDMI interface specification. All examples in this specification use a root URI of https://cloud.example.com/1094

cdmi/2.0.0/.1095

The properties of the root URI determine the parentID and parentURI fields of an root CDMI container:1096

• If the root path is “/”, the root container shall not include the parentID field and shall populate an empty string1097

(“”) for the value of the parentURI field.1098

• If the root path is not “/” and the last entity in the root path is a CDMI container, the root container shall populate1099

parentID field with the CDMI object ID of the CDMI container corresponding to the parent path entity, and shall1100

populate the parentURI field with the URI of the parent path.1101

• If the root path is not “/” and the last entity in the root path is not a CDMI container, the root container shall not1102

include the parentID field, and shall populate the parentURI field with the URI of the parent path.1103

• If the root path is not “/” and the last entry in the root path is not accessible via the scheme, root container may1104

omit the parentID field and may populate parentURI field with an empty string (“”).1105

Table 7 shows how CDMI paths (relative URIs) are resolved with root URIs1106

© SNIA 2020 SNIA Technical Position 28

Cloud Data Management Interface 2.0.0

Table 7: Relative URIs resolved against root URIs
1107

Root URI + CDMI Path => Resolved URI
https://cloud.example.
com/

https://cloud.example.com/

https://cloud.example.
com/

/ https://cloud.example.com/

https://cloud.example.
com/

myCDMIcontainer/
testObject

https://cloud.example.com/
myCDMIcontainer/testObject

https://cloud.example.
com/

myCDMIcontainer/
testObject

https://cloud.example.com/container/
testObject

https://cloud.example.
com/myNonCDMIentity/

myCDMIcontainer/
testObject

https://cloud.example.com/
myNonCDMIentity/myCDMIcontainer/
testObject

https://cloud.example.
com/myNonCDMIentity/

myCDMIcontainer/
testObject

https://cloud.example.com/
myCDMIcontainer/testObject

https://cloud.example.
com/cdmi/2.0.0/

myCDMIcontainer/
testObject

https://cloud.example.com/cdmi/2.0.0/
myCDMIcontainer/testObject

https://cloud.example.
com/cdmi/2.0.0/

myCDMIcontainer/
testObject

https://cloud.example.com/
myCDMIcontainer/testObject

1108

5.5.6 Reserved characters1109

The name of CDMI data objects, container objects, queue objects, domain objects and capability objects shall not1110

contain the “/” or “?” characters, as these characters are reserved for delimiters.1111

© SNIA 2020 SNIA Technical Position 29

Cloud Data Management Interface 2.0.0

5.6 Time representations1112

Unless otherwise specified, all date/time values are in the ISO 8601:2004 extended representation (“YYYY­MM­1113

DDThh:mm:ss.ssssssZ”). The full precision shall be specified, the sub­second separator shall be a “.”, the “Z”1114

UTC zone indicator shall be included, and all timestamps shall be in UTC time zone. The “YYYY­MM­DDT24:00:00.1115

000000Z” hour shall not be used, and instead, it shall be represented as “YYYY­MM­DDT00:00:00.000000Z”.1116

Unless otherwise specified, all date/time intervals are in the ISO 8601:2004 start date/end date representation (“YYYY­1117

MM­DDThh:mm:ss.ssssssZ/YYYY­MM­DDThh:mm:ss.ssssssZ”). The end date shall be equal to or later than the1118

start date. The full precision shall be specified, the sub­second separator shall be a “.”, the “Z” UTC zone indicator shall1119

be included, and all timestamps shall be in UTC time zone. The “YYYY­MM­DDT24:00:00.000000Z hour shall not be1120

used, and instead, it shall be represented as “YYYY­MM­DDT00:00:00.000000Z”.1121

© SNIA 2020 SNIA Technical Position 30

Cloud Data Management Interface 2.0.0

5.7 Backwards compatibility1122

CDMI client and server implementations shall implement the following measures to ensure backwards compability with1123

earlier versions of this Interational Standard.1124

See the CDMI 1.1.1 Specification for details on backwards compatibility specific to the 1.x versions of CDMI.1125

5.7.1 Specification version detection1126

CDMI 2.x clients shall not include the X­CDMI­Specification­Version custom header. When a CDMI 2.x client1127

performs an operation against a CDMI 1.x Server, the absence of this header shall result in an error response from1128

the CDMI 1.x server. The client may use the presence of the X­CDMI­Specification­Version header in an error1129

response as an indication to use CDMI 1.x (which mandates the use of this custom header), if supported.1130

CDMI 2.x servers may use the presence of the X­CDMI­Specification­Version custom header from a CDMI 1.x1131

client as an indication to use CDMI 1.x, if supported.1132

5.7.2 JSON value transfer encoding1133

CDMI 2.x servers may support the “json” value transfer encoding. When a CDMI server supports both CDMI 2.x and1134

CDMI 1.x, data objects with a value transfer encoding of json shall be made accessible to CDMI 1.x clients using a value1135

transfer encoding of UTF­8, with the server adding in the required escaping.1136

© SNIA 2020 SNIA Technical Position 31

Cloud Data Management Interface 2.0.0

5.8 Object references1137

Object references are URIs within the cloud storage namespace that redirect to another URI within the same or another1138

cloud storage namespace. References are similar to soft links in a file system. The cloud does not guarantee that the1139

referenced URI will be valid after the time of creation.1140

References are visible as children in a container and are distinguished from non­references in container children listings1141

by the presence of a trailing “?” character added to the reference name. Performing an operation (with the exception1142

of create or delete) to a reference URI will result in an HTTP status code of 302 Found, with the HTTP Location1143

header containing the absolute redirect destination URI that was specified at the time the reference was created. The1144

reference’s destination URI shall not be changed after a reference has been created.1145

To continue, when CDMI clients receive an HTTP status code of 302 Found, they should retry the operation using the1146

URI contained within the `` Location`` header.1147

A delete operation on a reference URI shall delete the reference. References cannot be updated. To update the desti­1148

nation of a redirect, the client shall first delete the reference and then create a new reference to the desired destination.1149

EXAMPLE 1: GET to a URI, where the URI is a reference:1150

­­> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object

<­­ HTTP/1.1 302 Found
<­­ Location: https://cloud.example.com/cdmi/2.0.0/MyContainer/MyOtherDataObject.txt

References by object ID shall always redirect to a URI that ends with the same object ID as the request1151

URI.1152

EXAMPLE 2: GET to an object ID URI, where the URI is a reference:1153

­­> GET /cdmi/2.0.0/cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object

<­­ HTTP/1.1 302 Found
<­­ Location: https://archive.example.com/cdmi/2.0.0/cdmi_objectid/
↪→00006FFD0010AA33D8CEF9711E0835CA

EXAMPLE 3: PUT to create a reference:1154

­­> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com Accept: application/cdmi­object
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "reference": "https://cloud.example.com/cdmi/2.0.0/MyContainer/MyOtherDataObject.
↪→txt"
­­> }

<­­ HTTP/1.1 201 Created

© SNIA 2020 SNIA Technical Position 32

Cloud Data Management Interface 2.0.0

EXAMPLE 4: POST to create a reference:1155

­­> POST /cdmi/2.0.0/cdmi_objectid/ HTTP/1.1
­­> Host: cloud.example.com Accept: application/cdmi­object
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "reference": "https://cloud.example.com/cdmi/2.0.0/MyContainer/MyOtherDataObject.
↪→txt"</P>
­­> }

<­­ HTTP/1.1 201 Created
<­­ Location: https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/
↪→00007ED90010DF417BAD70A0C7F5CDDA

EXAMPLE 5: DELETE to delete a reference:1156

­­> DELETE /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 33

Cloud Data Management Interface 2.0.0

Part II1157

Basic Cloud Storage1158

© SNIA 2020 SNIA Technical Position 34

Cloud Data Management Interface 2.0.0

Clause 61159

Data Object Resource Operations using1160

HTTP1161

6.1 Overview1162

Data objects are the fundamental storage components within CDMI™, and is analogous to files in a file system.1163

As CDMI builds on top of, and is compatible with, the HTTP standard (RFC 2616 [23]), this allows unmodified HTTP1164

clients to communicate with a CDMI server. This also allows CDMI operations to coexist with other HTTP­based storage1165

protocols, such as WebDAV, S3, and OpenStack Swift.1166

ACDMI server differentiates between HTTP and CDMI operations using the standard Content­Type and Accept headers.1167

When CDMI MIME types defined in RFC 6208 [26] are used in these headers, this indicates that CDMI behaviors, as1168

described in clause 8, are used in addition to the standard HTTP behaviors.1169

In CDMI 1.0.2, basic HTTP operations were described as “Non­CDMI” operations to distinguish them from operations1170

using CDMI MIME types.1171

A CDMI implementation that supports data objects shall include support for basic data object HTTP operations corre­1172

sponding with the CDMI capabilities that are published by the implementation. Capabilities allow a client to discover1173

which operations (such as create, update, delete, etc.) are supported and are described in clause 9.1174

Ciphertext representation of encrypted objects are created, accessed, and updated by explicitelyspecifying a MIME type1175

“application/cms” or “application/jose+json”. Otherwise, a plaintext representation is created, accessed, and1176

updated. For more details on encrypted updates, see clause 23.1177

© SNIA 2020 SNIA Technical Position 35

Cloud Data Management Interface 2.0.0

6.2 Create a data object using HTTP1178

6.2.1 Synopsis1179

The following HTTP PUT operation creates a new data object in the specified container:1180

• PUT <root URI>/<ContainerName>/<DataObjectName>1181

Where:1182

• <root URI> is the path to the CDMI cloud.1183

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., "/") between1184

each pair of container names.1185

• <DataObjectName> is the name specified for the data object to be created.1186

After it is created, the data object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.1187

6.2.2 Capabilities1188

Capabilities that indicate which operations are supported are shown in Table 8.1189

Table 8: Capabilities ­ Create a CDMI data object using HTTP
Capability Location Description
cdmi_create_dataobject Parent Container Ability to create a new data object
cdmi_create_value_range System Wide

Capability
Ability to create a data object using a specified
byte range

6.2.3 Request headers1190

The HTTP request headers for creating a CDMI data object using HTTP are shown in Table 9.1191

Table 9: Request headers ­ Create a CDMI data object using HTTP
1192

Header Type Description Requirement
Content­Type Header

string
The content type of the data to be stored as a data object.
The value specified in this header shall be converted to lower
case and stored in the mimetype field of the CDMI data
object.

• If the Content­Type header includes the charset
parameter as defined in RFC 2616 [23] of “utf­8 (e.g.,
“;charset=utf­8”), the valuetransferencoding
field of the CDMI data object shall be set to “utf­8”.
Otherwise, the valuetransferencoding field of the
CDMI data object shall be set to “base64”.

• If not specified, the mimetype field shall be set to
“application/octet­stream”.

Optional

X­CDMI­Partial Header
String

Indicates that the newly created object is part of a series of
writes and has not yet been fully created. When set to
“true”, the completionStatus field shall be set to
“Processing”. X­CDMI­Partial works across CDMI and
non­CDMI operations.

Optional

Content­Range Header
String

A valid ranges­specifier (see RFC 2616 [23] Section 14.35.1) Optional

1193

© SNIA 2020 SNIA Technical Position 36

Cloud Data Management Interface 2.0.0

6.2.4 Request message body1194

The request message body contains the data to be stored in the value of the data object.1195

6.2.5 Response headers1196

No response headers are specified.1197

6.2.6 Response message body1198

No response message body fields are specified.1199

6.2.7 Response status1200

The HTTP status codes that occur when creating a data object using HTTP are described in Table 10.1201

Table 10: HTTP status codes ­ Create a data object using HTTP
1202

HTTP Status Description
201 Created The new data object was created.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

1203

6.2.8 Examples1204

EXAMPLE 1: PUT to the container URI the data object name and contents.1205

­­> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: text/plain;charset=utf­8
­­> Content­Length: 37
­­>
­­> This is the Value of this Data Object

<­­ HTTP/1.1 201 Created

EXAMPLE 2: Put to the container URI to create an encrypted object:1206

­­> PUT /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cms
­­> Content­Length: 1425
­­>
­­> <CMS Encrypted Object>

<­­ HTTP/1.1 201 Created

EXAMPLE 3: PUT to the container URI to create an encrypted object:1207

1208

© SNIA 2020 SNIA Technical Position 37

Cloud Data Management Interface 2.0.0

6.3 Read a data object using HTTP1209

6.3.1 Synopsis1210

The following HTTP GET operations read from an existing data object at the specified URI:1211

• GET <root URI>/<ContainerName>/<DataObjectName>1212

• GET <root URI>/cdmi_objectid/<DataObjectID>1213

Where:1214

• <root URI> is the path to the CDMI cloud.1215

• <ContainerName> is zero or more intermediate containers.1216

• <DataObjectName> is the name of the data object to be read from.1217

• <DataObjectID> is the ID of the data object to be read from.1218

6.3.2 Capabilities1219

Capabilities that indicate which operations are supported are shown in Table 11.1220

Table 11: Capabilities ­ Read a CDMI data object using HTTP
Capability Location Description
cdmi_read_value Data Object Ability to read the value of an existing data object
cdmi_read_value_range Data Object Ability to read a sub­range of the value of an

existing data object
cdmi_object_access_by_ID System Wide

Capability
Ability to access the object by ID

6.3.3 Request header1221

The HTTP request header for reading a CDMI data object using HTTP is shown in Table 12.1222

© SNIA 2020 SNIA Technical Position 38

Cloud Data Management Interface 2.0.0

Table 12: Request header ­ Read a CDMI data object using HTTP
1223

Header Type Description Requirement
Range Header

string
A valid ranges­specifier (see RFC 2616 [23] Section 14.35.1) Optional

Accept Header
string

“*/*” or a value as described in: 5.5.2.
• If the object has a mimetype of “application/cms”
or “application/jose+json”, and the mimetype
“application/cms” or “application/jose+json”
is included in the Accept header mimetype, the CDMI
server shall return the CMS or JOSE value in the
response message body.

• Otherwise, the decrypted plaintext shall be returned in
the response message body, along with the
encapsulated mimetype in the Content­Type response
header. If decryption is not possible, an error result
code shall be returned. (See clause 23 – Encrypted
Objects)

• If the Accept header mimetype list includes “*/*”
before “application/cms” and/or
“application/jose+json”, the server will first try to
return the decrypted plaintext, and shall return the CMS
or JOSE value when decryption fails.

• If the Accept header mimetype list excludes “*/*”,
decrypted plaintext shall only be returned if the
encapsulated mimetype is included in the Accept
header mimetype list.

Optional

1224

6.3.4 Request message body1225

A request body shall not be provided.1226

6.3.5 Response headers1227

The HTTP response headers for reading a data object using HTTP are shown in Table 13.1228

Table 13: Response headers ­ Read a CDMI Data Object using HTTP
1229

Header Type Description Requirement
Content­Type Header

string
The content type returned shall be the mimetype field in the
data object.

Mandatory

Location Header
string

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

1230

6.3.6 Response message body1231

When reading a data object using HTTP, the following applies:1232

• The response message body shall be the contents of the data object’s value field.1233

• When reading a value, zeros shall be returned for any gaps resulting from non­contiguous writes.1234

© SNIA 2020 SNIA Technical Position 39

Cloud Data Management Interface 2.0.0

6.3.7 Response status1235

The HTTP status codes that occur when reading a data object using HTTP are described in Table 14.1236

Table 14: HTTP status codes ­ Read a CDMI data object using HTTP
1237

HTTP Status Description
200 OK The data object content was returned in the response.
206 Partial Content A requested range of the data object content was returned in the response.
302 Found The resource is a reference to another resource.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI, or a requested field within the

resource was not found.

1238

6.3.8 Examples1239

EXAMPLE 1: GET to the data object URI to read the value of the data object:1240

­­> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 200 OK
<­­ Content­Type: text/plain
<­­ Content­Length: 37
<­­
<­­ This is the value of this data object

EXAMPLE 2: GET to the data object URI to read the first 11 bytes of the value of the data object:1241

­­> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Range: bytes=0­10

<­­ HTTP/1.1 206 Partial Content
<­­ Content­Type: text/plain
<­­ Content­Range: bytes 0­10/37
<­­ Content­Length: 11
<­­
<­­ This is the value of this data object

EXAMPLE 3: GET to the data object URI to always return the ciphertext of an encrypted object:1242

­­> GET /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cms, application/jose+json

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cms
<­­ Content­Length: 1425
<­­
<­­ <CMS Encrypted Object>

EXAMPLE 4: GET to the data object URI to read the plaintext of an encrypted object, if possible; otherwise, get the1243

ciphertext:1244

­­> GET /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: */*, application/cms, application/jose+json
­­> <Header credentials used to authenticate and access the decryptionkey>

<­­ HTTP/1.1 200 OK
<­­ Content­Type: text/plain

(continues on next page)

© SNIA 2020 SNIA Technical Position 40

Cloud Data Management Interface 2.0.0

(continued from previous page)
<­­ Content­Length: 252
<­­
<­­ <Decrypted contents of Encrypted Value>

EXAMPLE 5: GET to the data object URI to read the plaintext of an encrypted object:1245

­­> GET /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> <Header credentials used to authenticate and access the decryption key>

<­­ HTTP/1.1 200 OK
<­­ Content­Type: text/plain
<­­ Content­Length: 252
<­­
<­­ <Decrypted contents of Encrypted Value>

© SNIA 2020 SNIA Technical Position 41

Cloud Data Management Interface 2.0.0

6.4 Update a data object using HTTP1246

6.4.1 Synopsis1247

The following HTTP PATCH operation updates an existing data object at the specified URI:1248

• PATCH <root URI>/<ContainerName>/<DataObjectName>1249

• PATCH <root URI>/cdmi_objectid/<DataObjectID>1250

Where:1251

• <root URI> is the path to the CDMI cloud.1252

• <ContainerName> is zero or more intermediate containers.1253

• <DataObjectName> is the name of the data object to be updated.1254

• <DataObjectID> is the ID of the data object to be read from.1255

6.4.2 Capabilities1256

Capabilities that indicate which operations are supported are shown in Table 15.1257

Table 15: Capabilities ­ Update a CDMI data object using HTTP
Capability Location Description
cdmi_modify_value Data Object Ability to modify the value of an existing data

object
cdmi_modify_value_range Data Object Ability to modify a sub­range of the value of an

existing data object
cdmi_object_access_by_ID System Wide

Capability
Ability to access the object by ID

6.4.3 Request headers1258

The HTTP request headers for updating a CDMI data object using HTTP are shown in Table 16.1259

Table 16: Request headers ­ Update a CDMI data object using HTTP
Header Type Description Requirement
Content­Type Header

string
The content type of the data to be stored as a data object.
The value specified in this header shall be converted to lower
case and stored in the mimetype field of the CDMI data
object.

• If the Content­Type header includes the charset
parameter as defined in RFC 2616 [23] of “utf­8 (e.g.,
“;charset=utf­8”), the valuetransferencoding
field of the CDMI data object shall be set to “utf­8”.
Otherwise, the valuetransferencoding field of the
CDMI data object shall be set to “base64”.

• If not specified, the existing mimetype field value shall
be preserved.

Optional

Content­Range Header
string

A valid ranges­specifier (see RFC 2616 [23] Section 14.35.1) Optional

continues on next page

© SNIA 2020 SNIA Technical Position 42

Cloud Data Management Interface 2.0.0

Table 16 – continued from previous page
Header Type Description Requirement
X­CDMI­Partial Header

string
Indicates that the operation is part of a series of updates and
has not yet been fully created. When set to “true”, the
completionStatus field shall be set to “Processing”.
X­CDMI­Partial works across CDMI and non­CDMI
operations.
If the completionStatus field had previously been set to
“Processing” by including this header in a create or update,
the next update without this field shall change the
completionStatus field back to “Complete”.

Optional

6.4.4 Request message body1260

The request message body contains the data to be stored in the value of the data object.1261

6.4.5 Response header1262

The HTTP response header for updating a data object using HTTP is shown in Table 17.1263

Table 17: Response header ­ Update a CDMI data object using HTTP
1264

Header Type Description Requirement
Location Header

string
The server shall respond with the URI to which the reference
redirects if the object is a reference.

Conditional

1265

6.4.6 Response message body1266

A response body may be provided as per RFC 2616 [23].1267

6.4.7 Response status1268

The HTTP status codes that occur when updating a data object using HTTP are described in Table 18.1269

Table 18: HTTP status codes ­ Update a CDMI data object using HTTP
1270

HTTP Status Description
204 No Content The data object content was returned in the response.
302 Found The resource is a reference to another resource.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

1271

© SNIA 2020 SNIA Technical Position 43

Cloud Data Management Interface 2.0.0

6.4.8 Examples1272

EXAMPLE 1: PATCH to the data object URI to update the value of the data object:1273

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: text/plain
­­> Content­Length: 37
­­>
­­> This is the value of this data object

<­­ HTTP/1.1 204 No Content

EXAMPLE 2: PATCH to the data object URI to update four bytes within the value of the data object:1274

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Range: bytes 21­24/37
­­> Content­Type: text/plain
­­> Content­Length: 4
­­>
­­> that

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 44

Cloud Data Management Interface 2.0.0

6.5 Delete a data object using HTTP1275

6.5.1 Synopsis1276

The following HTTP DELETE operations delete an existing data object at the specified URI:1277

• DELETE <root URI>/<ContainerName>/<DataObjectName>1278

• DELETE <root URI>/cdmi_objectid/<DataObjectID>1279

Where:1280

• <root URI> is the path to the CDMI cloud.1281

• <ContainerName> is zero or more intermediate containers.1282

• <DataObjectName> is the name of the data object to be deleted.1283

• <DataObjectID> is the ID of the data object to be deleted.1284

6.5.2 Capability1285

Capabilities that indicate which operations are supported are shown in Table 19.1286

Table 19: Capabilities ­ Delete a CDMI data object using HTTP
Capability Location Description
cdmi_delete_dataobject Data Object Ability to delete an existing data object
cdmi_object_access_by_ID System Wide

Capability
Ability to access the object by ID

6.5.3 Request headers1287

Request headers may be provided as per RFC 2616 [23].1288

6.5.4 Request message body1289

A request body may be provided as per RFC 2616 [23].1290

6.5.5 Response headers1291

Response headers may be provided as per RFC 2616 [23].1292

6.5.6 Response message body1293

A response body may be provided as per RFC 2616 [23].1294

© SNIA 2020 SNIA Technical Position 45

Cloud Data Management Interface 2.0.0

6.5.7 Response status1295

Table 20 describes the HTTP status codes that occur when deleting a data object using HTTP.1296

Table 20: HTTP status codes ­ Delete a CDMI data object using HTTP
1297

HTTP Status Description
204 No Content The data object was successfully deleted.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock, has caused a

state transition error on the server, or the data object cannot be deleted.

1298

6.5.8 Example1299

EXAMPLE 1: DELETE to the data object URI:1300

­­> DELETE /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 46

Cloud Data Management Interface 2.0.0

Clause 71301

Container Object Resource Operations1302

using HTTP1303

7.1 Overview1304

Container objects are the fundamental grouping mechanism for stored data within CDMI, and is analogous to directories1305

in a file system. Each container object has zero or more child objects.1306

Following the URI conventions for hierarchical paths, container URIs shall consist of one or more container names that1307

are separated by forward slashes (“/”) and that end with a forward slash (“/”).1308

As basic HTTP operations do not use the CDMI MIME types that distinguish data object operations from container1309

object operations, a CDMI implementation shall use the presence or absence of a forward slash at the end of a URI to1310

distinguish between a container object create or a data object create, respectively.1311

If a basic HTTP read, update, or delete operation is performed against an existing container resource and the trailing1312

slash at the end of the URI is omitted, the server shall respond with an HTTP status code of 301 Moved Permanently.1313

In addition, a Location header containing the URI with the trailing slash added shall be returned.1314

ACDMI server differentiates between HTTP and CDMI operations using the standard Content­Type and Accept headers.1315

When CDMI MIME types defined in RFC 6208 [26] are used in these headers, this indicates that CDMI behaviors, as1316

described in Clause 9 are used in addition to the standard HTTP behaviors.1317

A CDMI implementation that supports container objects shall include support for basic container object HTTP operations1318

corresponding with the CDMI capabilities that are published by the implementation. Capabilities allow a client to discover1319

which operations (such as create, update, delete, etc.) are supported and are described in Clause 12.1320

© SNIA 2020 SNIA Technical Position 47

Cloud Data Management Interface 2.0.0

7.2 Create a container object using HTTP1321

7.2.1 Synopsis1322

To create a new container object, the following request shall be performed:1323

• PUT <root URI>/<ContainerName>/<ContainerObjectName>/1324

Where:1325

• <root URI> is the path to the CDMI cloud.1326

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash (i.e., “/”)1327

between each pair of container object names.1328

• <ContainerObjectName> is the name specified for the container object to be created.1329

After it is created, the container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.1330

The presence of a trailing slash at the end of the HTTP PUT URI indicates that a container object is being created and1331

distinguishes it from a request to create a data object.1332

7.2.2 Capabilities1333

Capabilities that indicate which operations are supported are shown in Table 21.1334

Table 21: Capabilities ­ Create a CDMI container object using HTTP
Capability Location Description
cdmi_create_container Parent Container Ability to create a new data object

7.2.3 Request headers1335

Request headers can be provided as per RFC 2616 [23].1336

7.2.4 Request message body1337

A request body shall not be provided.1338

7.2.5 Response headers1339

Response headers can be provided as per RFC 2616 [23].1340

7.2.6 Response message body1341

A response body can be provided as per RFC 2616 [23].1342

© SNIA 2020 SNIA Technical Position 48

Cloud Data Management Interface 2.0.0

7.2.7 Response status1343

Table 22 describes the HTTP status codes that occur when creating a container object using HTTP.1344

Table 22: HTTP status codes ­ Create a container object using HTTP
1345

HTTP Status Description
201 Created The new container object was created.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

1346

7.2.8 Example1347

EXAMPLE 1: PUT to the URI the container object name:1348

­­> PUT /cdmi/2.0.0/MyContainer/ HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 201 Created

© SNIA 2020 SNIA Technical Position 49

Cloud Data Management Interface 2.0.0

7.3 Read a container object using HTTP1349

Reading a container object using HTTP is not defined by this version of this International Standard. A server is allowed1350

to implement responses such as an Apache directory listing or an S3­style bucket listing.1351

To read a container object using CDMI, see 9.4.1352

© SNIA 2020 SNIA Technical Position 50

Cloud Data Management Interface 2.0.0

7.4 Update a container object using HTTP1353

Updating a container object using HTTP is not defined by this version of this International Standard.1354

To update a container object using CDMI, see 9.5.1355

© SNIA 2020 SNIA Technical Position 51

Cloud Data Management Interface 2.0.0

7.5 Delete a container object using HTTP1356

7.5.1 Synopsis1357

The following HTTP DELETE operations delete an existing container object at the specified URI, including all contained1358

children and snapshots:1359

• DELETE <root URI>/<ContainerName>/<ContainerObjectName>/1360

• DELETE <root URI>/cdmi_objectid/<ContainerObjectID>1361

Where:1362

• <root URI> is the path to the CDMI cloud.1363

• <ContainerName> is zero or more intermediate container objects.1364

• <ContainerObjectName> is the name of the container object to be deleted.1365

• <ContainerObjectID> is the ID of the container object to be deleted.1366

7.5.2 Capabilities1367

Capabilities that indicate which operations are supported are shown in Table 23.1368

Table 23: Capabilities ­ Delete a CDMI container object using HTTP
Capability Location Description
cdmi_delete_container Parent Container Ability to delete an existing container object
cdmi_object_access_by_ID System Wide

Capability
Ability to access the object by ID

7.5.3 Request headers1369

Request headers can be provided as per RFC 2616 [23].1370

7.5.4 Request message body1371

A request body can be provided as per RFC 2616 [23].1372

7.5.5 Response headers1373

Response headers can be provided as per RFC 2616 [23].1374

7.5.6 Response message body1375

A response body can be provided as per RFC 2616 [23].1376

© SNIA 2020 SNIA Technical Position 52

Cloud Data Management Interface 2.0.0

7.5.7 Response status1377

Table 24 describes the HTTP status codes that occur when deleting a container object using HTTP.1378

Table 24: HTTP status codes ­ Delete a CDMI container object using
HTTP

1379

HTTP Status Description
204 No Content The container object was successfully deleted.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

1380

7.5.8 Example1381

EXAMPLE 1: DELETE to the container object URI:1382

­­> DELETE /cdmi/2.0.0/MyContainer/ HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 53

Cloud Data Management Interface 2.0.0

7.6 Create (POST) a new data object using HTTP1383

7.6.1 Synopsis1384

To create a new data object in a specified container where the name of the data object is a server­assigned object1385

identifier, the following request shall be performed:1386

POST <root URI>/<ContainerName>/1387

Where:1388

• <root URI> is the path to the CDMI cloud.1389

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash (i.e., “/”)1390

between each pair of container object names.1391

The data object shall be accessible as a child of the container with a server­assigned name and shall also be accessible1392

at <root URI>/cdmi_objectid/<objectID>.1393

HTTP POST to a container is used to enable CDMI servers to support RFC 1867 [20] form­based file uploading. When1394

implementing RFC 1867 [20], the CDMI server­assigned name may be set to, or derived from, the user­provided file1395

name.1396

7.6.2 Capabilities1397

Capabilities that indicate which operations are supported are shown in Table 25.1398

Table 25: Capabilities ­ Create a CDMI data object using HTTP POST
Capability Location Description
cdmi_create_dataobject
cdmi_post_dataobject

Parent Container Ability to create a new data object

cdmi_post_dataobject_by_ID System Wide
Capability

Ability to create a data object in
"/cdmi_objectid/"

cdmi_create_value_range System Wide
Capability

Ability to create a data object using a specified
byte range

cdmi_create_value_range_by_ID System Wide
Capability

Ability to create a data object in
"/cdmi_objectid/" using a specified byte
range

cdmi_multipart_mime System Wide
Capability

Ability to create a data object using multi­part
MIME

7.6.3 Request headers1399

The HTTP request header for creating a new CDMI data object using HTTP is shown in Table 26.1400

© SNIA 2020 SNIA Technical Position 54

Cloud Data Management Interface 2.0.0

Table 26: Request header ­ Create a new data object using HTTP
1401

Header Type Description Requirement
Content­Type Header

String
The content type of the data to be stored as a data object.
The value specified here shall be converted to lower case and
stored in the mimetype field of the CDMI data object.

• If the content type includes the charset parameter as
defined in RFC 2616 [23] of “utf­8 (e.g.,
“;charset=utf­8”), the valuetransferencoding field
of the CDMI data object shall be set to “utf­8”.
Otherwise, the valuetransferencoding field of the CDMI
data object shall be set to “base64”.

• If not specified, the mimetype field shall be set to
“application/octet­stream”.

Optional

X­CDMI­Partial Header
String

Indicates that the newly created object is part of a series of
writes and has not yet been fully created. When set to
“true”, the completionStatus field shall be set to
“Processing”. X­CDMI­Partial works across CDMI and
non­CDMI operations.

Optional

1402

7.6.4 Request message body1403

The message body shall contain the contents (value) of the data object to be created.1404

7.6.5 Response headers1405

The HTTP response header for creating a new CDMI data object using HTTP is shown in Table 27.1406

Table 27: Response header ­ Create a new data object using HTTP
1407

Header Type Description Requirement
Location Header

string
The unique absolute URI for the new data object as assigned
by the system.
In the absence of file name information from the client, the
system shall assign the URI in the form:
http://host:port/<root
URI>/<ContainerName>/<ObjectID> or
https://host:port/<root
URI>/<ContainerName>/<ObjectID>.

Mandatory

1408

7.6.6 Response message body1409

A response body can be provided as per RFC 2616 [23].1410

7.6.7 Response status1411

Table 28 describes the HTTP status codes that occur when creating a new data object using HTTP.1412

Table 28: HTTP status codes ­ Create a new data object using HTTP
1413

HTTP Status Description
201 Created The new data object was created.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.

1414

© SNIA 2020 SNIA Technical Position 55

Cloud Data Management Interface 2.0.0

7.6.8 Examples1415

EXAMPLE 1: POST to the container object URI the data object contents:1416

­­> POST /cdmi/2.0.0/MyContainer/ HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: text/plain;charset=utf­8
­­>
­­> <object contents>

<­­ HTTP/1.1 201 Created
<­­ Location: https://cloud.example.com/cdmi/2.0.0/MyContainer/
↪→00007ED900104E1D14771DC67C27BF8B

© SNIA 2020 SNIA Technical Position 56

Cloud Data Management Interface 2.0.0

Part III1417

CDMI Core1418

© SNIA 2020 SNIA Technical Position 57

Cloud Data Management Interface 2.0.0

Clause 81419

Data Object Resource Operations using1420

CDMI1421

8.1 Overview1422

Data objects are the fundamental storage component within CDMI™ and are analogous to files within a file system.1423

Each data object has a set of well­defined fields that include:1424

• a mandatory value,1425

• mandatory fields generated by the cloud storage system,1426

• mandatory metadata items generated by the cloud storage system,1427

• optional metadata generated by the cloud storage system; and1428

• optional metadata specified by the cloud user.1429

All cloud storage systems shall support data objects, but the ability to create a data object is determiend by the presence1430

or absence of the cdmi_create_dataobject and cdmi_post_dataobject capabilities in the parent container, and1431

by the cdmi_post_dataobject_by_ID system­wide capability for creation by ID.1432

Each CDMI data object is represented as a JSON object, containing one or more “fields”. For example, the “metadata”1433

field contains metadata items.1434

EXAMPLE 1: CDMI Data Object1435

{
"objectType" : "application/cdmi­object",
"objectID" : "00007ED90010D891022876A8DE0BC0FD",
"objectName" : "MyDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi_size" : "37"
},
"valuetransferencoding" : "utf­8",
"valuerange" : "0­36",
"value" : "This is the Value of this Data Object"

}

The meaning, use, and permitted values of each field is described in each operation that creates, modifies or retreives1436

CDMI data objects.1437

© SNIA 2020 SNIA Technical Position 58

Cloud Data Management Interface 2.0.0

8.2 Data object details1438

8.2.1 Data object addressing1439

Data objects are addressed in CDMI in two ways:1440

• by name (e.g. https://cloud.example.com/cdmi/2.0.0/dataobject); and1441

• by ID (e.g. https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/1442

↪→ 00007ED90010D891022876A8DE0BC0FD).1443

Every data object has a single, globally­unique object identifier (ID) that remains constant for the life of the object. Each1444

data object shall have one or more URI addresses that allow the object to be accessed.1445

8.2.2 Data object fields1446

Individual fields within a data object can be accessed by specifying the field name after a question mark “?” that is1447

appended to the end of the data object URI.1448

EXAMPLE 2: The following URI returns the value field in the response body:1449

https://cloud.example.com/cdmi/2.0.0/dataobject?value1450

A list of unique fields, separated by an ampersand “&” can be specified, allowing multiple fields to be accessed in a1451

single request.1452

EXAMPLE 3: The following URI returns the value and metadata fields in the response body:1453

https://cloud.example.com/cdmi/2.0.0/dataobject?value&metadata1454

When a client provides fields that are not defined in this International Standard or deserializes an object containing fields1455

that are not defined in this International Standard, these fields shall be persisted, but shall not be interpreted.1456

8.2.3 Data Object Value1457

The encoding of the data transported in the data object value field depends on the data object valuetransferen­1458

coding field.1459

• If the value transfer encoding of the object is set to “utf­8”, the data stored in the value of the data object shall1460

be a valid UTF­8 string and shall be transported as a UTF­8 string in the value field.1461

• If the value transfer encoding of the object is set to “base64”, the data stored in the value of the data object can1462

contain arbitrary binary sequences, and it shall be transported as a base 64­encoded string in the value field.1463

• If the value transfer encoding of the object is set to “json”, the data stored in the value of the data object shall1464

contain a valid JSON object, and the value field shall contain a valid JSON object. The JSON stored and returned1465

shall be semantically equivalent but may not be syntactically identical. For example, whitespace outside of JSON­1466

quoted strings may be removed or added by either client libraries or by the server. This means that the number1467

of bytes sent may not be the same as the number of bytes stored.1468

Specific ranges of the value of a data object can be accessed by specifying a byte range after the value field name.1469

EXAMPLE 4: The following URI returns the first thousand bytes in the value field:1470

https://cloud.example.com/cdmi/2.0.0/dataobject?value=0­9991471

Because a byte range of a UTF­8 string is often not a valid UTF­8 string, the response to a range request shall always1472

be transported in the value field as a base 64­encoded string. Likewise, when updating a range of bytes within the value1473

of a data object, the contents of the value field shall be transported as a base 64­encoded string.1474

Byte ranges are specified as single inclusive byte ranges as per Section 14.35.1 of RFC 2616 [23].1475

The value of a data object can also be specified and retrieved usingmultipart MIME, where the CDMI JSON is transferred1476

in the first MIME part, and the raw object value is transferred in the second MIME part. Each MIME part, including any1477

header fields, shall conform to RFC 2045 [9], RFC 2046 [10], and RFC 2047 [22]. The length of each part can optionally1478

be specified by a Content­Length header in addition to the MIME boundary delimiter.1479

Multiple non­overlapping ranges of the value of a data object can also be accessed or updated in a multipart MIME1480

operation by transferring one MIME part for each range of the value. The byte ranges for these operations shall be1481

specified as per Section 14.35.1 of RFC 2616 [23].1482

© SNIA 2020 SNIA Technical Position 59

Cloud Data Management Interface 2.0.0

Multipart MIME enables the efficient transfer of binary data alongside CDMI object metadata without incurring the over­1483

head of the UTF­8 or Base64 encoding and validation required to represent binary data in JSON.1484

8.2.4 Data object metadata1485

Data object metadata can also include arbitrary user­supplied metadata, storage system metadata, and data system1486

metadata, as specified in clause 16. Metadata shall be stored as a valid UTF­8 string. Binary data stored in user1487

metadata shall be first encoded such that it can be contained in a UTF­8 string, with the use of base 64 encoding1488

recommended.1489

Every data object has a parent object from which the data object inherits data system metadata that is not explicitly1490

specified in the data object itself.1491

EXAMPLE 5: The “budget.xls” data object stored at the following URI would inherit data system metadata1492

from its parent container, “finance”:1493

https://cloud.example.com/cdmi/2.0.0/finance/budget.xls1494

8.2.5 Data object access control1495

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields shall be returned.1496

If no requested fields are permitted to be read, an HTTP status code of 403 Forbidden shall be returned to the client.1497

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be performed, and an1498

HTTP status code of 403 Forbidden shall be returned to the client.1499

8.2.6 Data object consistency1500

Writing to a data object is an atomic operation.1501

• If a client reads a data object simultaneously with a write to that same data object, the reading client shall get1502

either the old version or the new version, but not a mixture of both.1503

• If a write is terminated due to errors, the contents of the data object shall be as if the write never occurred (i.e.,1504

writes are atomic in the face of errors).1505

Create and update timestamps that are returned in response to multiple client writes to a given object can indicate that1506

a specific write is the newest (i.e., the write whose data is expected to be returned to subsequent reads until another1507

write is processed). However, there is no guarantee that the write with the latest timestamp is the one whose data is1508

returned on subsequent reads.1509

Range writes can result in a gap in an object value that have had no data written to them. Reading from a gap in a data1510

object value shall return zero for each byte read.1511

Implementations of this International Standard shall provide the atomicity features described in this subclause for data1512

objects that are accessed via CDMI. The atomicity properties of data objects that are accessed by protocols other than1513

CDMI are outside the scope of this International Standard.1514

8.2.7 Data object representations1515

The representations in this clause are shown using JSON notation. Both clients and servers shall support UTF­8 JSON1516

representation. The request and response body JSON fieldsmay be specified or returned in any order, with the exception1517

that, if present, for data objects, the “valuerange” and “value” fields shall appear last and in that order.1518

© SNIA 2020 SNIA Technical Position 60

Cloud Data Management Interface 2.0.0

8.2.8 Encrypted objects1519

CDMI data object operations only permit management operations and access to the ciphertext of encrypted objects.1520

For more details on encrypted objects, see clause 23.1521

© SNIA 2020 SNIA Technical Position 61

Cloud Data Management Interface 2.0.0

8.3 Create a data object using CDMI1522

8.3.1 Synopsis1523

To create a new data object, the following request shall be performed:1524

• PUT <root URI>/<ContainerName>/<DataObjectName>1525

To create a new data object by ID, see 9.7.1526

Where:1527

• <root URI> is the path to the CDMI cloud.1528

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., “/”) between1529

each pair of container names.1530

• <DataObjectName> is the name specified for the data object to be created.1531

After it is created, the data object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.1532

8.3.2 Delayed completion of create1533

In response to a create operation for a data object, the server may return an HTTP status code of 202 Accepted to1534

indicate that the object is in the process of being created. This response is useful for long­running operations (e.g.,1535

copying a large data object from a source URI). Such a response has the following implications.1536

• The server shall return a Location header with an absolute URI to the object to be created along with an HTTP1537

status code of 202 Accepted.1538

• With an HTTP status code of 202 Accepted, the server implies that the following checks have passed:1539

– user authorization for creating the object;1540

– user authorization for read access to any source object for move, copy, serialize, or deserialize; and1541

– availability of space to create the object or at least enough space to create a URI to report an error.1542

• A client might not be able to immediately access the created object, e.g., due to delays resulting from the imple­1543

mentation’s use of eventual consistency.1544

The client performs GET operations to the URI to track the progress of the operation. In response, the server returns1545

two fields in its response body to indicate progress.1546

• A mandatory completionStatus text field contains either “Processing”, “Complete”, or an error string start­1547

ing with the value “Error”.1548

• An optional percentComplete field contains the percentage of the operation that has completed (0 to 100).1549

GET shall not return any value for the data object when completionStatus is not “Complete”. If the final result of1550

the create operation is an error, the URI is created with the completionStatus field set to the error message. It is1551

the client’s responsibility to delete the URI after the error has been noted.1552

© SNIA 2020 SNIA Technical Position 62

Cloud Data Management Interface 2.0.0

8.3.3 Capabilities1553

Capabilities that indicate which operations are supported are shown in Table 29.1554

Table 29: Capabilities ­ Create a CDMI data object using CDMI
Capability Location Description
cdmi_create_dataobject Parent Container Ability to create a new data object
cdmi_create_reference Parent Container Ability to create a new reference
cdmi_copy_dataobject Parent Container Ability to create a data object that is a copy of

another data object
cdmi_move_dataobject Parent Container Ability to move a data object from another

container
cdmi_deserialize_dataobject Parent Container Ability to create a data object that is deserialized

from the contents of the PUT or the contents of
another data object

cdmi_serialize_dataobject
cdmi_serialize_container
cdmi_serialize_domain
cdmi_serialize_queue

Parent Container Ability to create a data object that contains a
serialized representation of an existing data
object, container, domain or queue

cdmi_create_value_range Parent Container Ability to create a data object using a specified
byte range

cdmi_multipart_mime System Wide
Capability

Ability to create a data object using multi­part
MIME

8.3.4 Request headers1555

The HTTP request headers for creating a CDMI data object using CDMI are shown in Table 30.1556

Table 30: Request headers ­ Create a CDMI data object using CDMI
Header Type Description Requirement
Accept Header

string
“application/cdmi­object” or a consistent value
defined in 5.5.2

Optional

Content­Type Header
string

“application/cdmi­object” or “multipart/mixed”
• If “multipart/mixed” is specified, the body shall
consist of at least two MIME parts, where the first part
shall contain a body of content­type
“application/cdmi­object”, and the second and
subsequent parts shall contain one or more byte
ranges of the value.

• If multiple byte ranges are included and the
Content­Range header is omitted for a part, the data
in the part shall be appended to the data in the
preceding part, with the first part having a byte offset of
zero.

Mandatory

X­CDMI­Partial Header
string

Indicates that the newly created object is part of a series of
writes and has not yet been fully created. When set to
“true”, the completionStatus field shall be set to
“Processing”. X­CDMI­Partial works across CDMI and
non­CDMI operations.

Optional

© SNIA 2020 SNIA Technical Position 63

Cloud Data Management Interface 2.0.0

8.3.5 Request message body1557

The request message body fields for creating a data object using CDMI are shown in1558

tbl_cdmi_data_object_create_request_message_body.1559

Table 31: Request message body ­ Create a data object using CDMI
Field Name Type Description Requirement
mimetype JSON

string
MIME type of the data contained within the value field of the
data object

• This field may be included when creating by value or
when deserializing, serializing, copying, and moving a
data object.

• If this field is not included and multi­part MIME is not
being used, the value of “text/plain” shall be
assigned as the field value.

• If this field is not included and multi­part MIME is being
used, the value of the Content­Type header of the
second MIME part shall be assigned as the field value.

• This field field value shall be converted to lower case
before being stored.

Optional

metadata JSON
object

Metadata for the data object
• If this field is included, the contents of the JSON object
provided in this field shall be used as data object
metadata.

• If this field is included when deserializing, serializing,
copying, or moving a data object, the contents of the
JSON object provided in this field shall be used as
object metadata instead of the metadata from the
source URI.

• If this field is not included, no user­specified metadata
shall be added to the object.

• If this field is not included when deserializing,
serializing, copying, or moving a data object, metadata
from the source URI shall be used.

• This field shall not be included when creating a
reference to a data object.

Optional

domainURI JSON
string

URI of the owning domain
• If different from the parent domain, the user shall have
the “cross­domain” privilege (see
cdmi_member_privileges in Table 80 .

• If not specified, the domain of the parent container shall
be used.

Optional

deserialize JSON
string

URI of a CDMI data object with a value that contains a data
object serialized as specified in clause 15. The serialized data
object shall be deserialized to create the new data object.

Optional1

serialize JSON
String

URI of a CDMI object that shall be serialized into the new
data object

Optional1

continues on next page

© SNIA 2020 SNIA Technical Position 64

Cloud Data Management Interface 2.0.0

Table 31 – continued from previous page
Field Name Type Description Requirement
copy JSON

string
URI of a source CDMI data object or queue object that shall
be copied into the new destination data object.

• If the destination data object URI and the copy source
object URI both do not specify individual fields, the
destination data object shall be a complete copy of the
source data object.

• If the destination data object URI or the copy source
object URI specifies individual fields, only the fields
specified shall be used to create the destination data
object. If specified fields are not present in the source,
default field values shall be used.

• If the destination data object URI and the copy source
object URI both specify fields, an HTTP status code of
400 Bad Request shall be returned to the client.

• If the copy source object URI points to a queue object,
as part of the copy operation, multiple queue values
shall be concatenated into a single data object value.

• If the copy source object URI points to one or more
queue object values, as part of the copy operation, the
specified queue values shall be concatenated into a
single data object value.

• If there are insufficient permissions to read the data
object at the source URI or create the data object at the
destination URI, or if the read operation fails, the copy
shall return an HTTP status code of 400 Bad
Request, and the destination object shall not be
created.

Optional1

move JSON
string

URI of an existing local or remote CDMI data object (source
URI) that shall be relocated to the URI specified in the PUT.
The contents of the object, including the object ID, shall be
preserved by a move, and the data object at the source URI
shall be removed after the data object at the destination has
been successfully created.
If there are insufficient permissions to read the data object at
the source URI, write the data object at the destination URI,
or delete the data object at the source URI, or if any of these
operations fail, the move shall return an HTTP status code of
400 Bad Request, and the source and destination are left
unchanged.

Optional1

reference JSON
string

URI of a CDMI data object that shall be redirected to by a
reference. If any other fields are supplied when creating a
reference, the server shall respond with an HTTP status code
of 400 Bad Request.

Optional1

deserializevalue JSON
string

A data object serialized as specified in clause 15 and encoded
using base 64 encoding rules described in RFC 4648 [19],
that shall be deserialized to create the new data object.

• If multi­part MIME is being used and this field contains
the value of the MIME boundary parameter, the
contents of the second MIME part shall be assigned as
the field value.

• If the serialized data object in the second MIME part
does not include a value field, the contents of the third
MIME part shall be assigned as the field value of the
value field.

Optional1

continues on next page

© SNIA 2020 SNIA Technical Position 65

Cloud Data Management Interface 2.0.0

Table 31 – continued from previous page
Field Name Type Description Requirement
valuetransfer
↪→ encoding

JSON
string

The value transfer encoding used for the data object value.
Three value transfer encodings are defined.

• “utf­8” indicates that the data object contains a valid
UTF­8 string, and it shall be transported as a UTF­8
string in the value field.

• “base64” indicates that the data object may contain
arbitrary binary sequences, and it shall be transported
as a base 64­encoded string in the value field. Setting
the contents of the data object value field to any value
other than a valid base 64 string shall result in an HTTP
status code of 400 Bad Request being returned to
the client.

• “json” indicates that the data object contains a valid
JSON object, and the value field shall be a JSON
object containing valid JSON data. If the contents of
the value field are set to any value other than a valid
JSON object, an HTTP status code of 400 Bad
Request shall be returned to the client.

• This field shall only be included when creating a data
object by value.

• If this field is not included and multi­part MIME is not
being used, the value of “utf­8” shall be assigned as
the field value.

• If this field is not included and multi­part MIME is being
used, the value of “utf­8” shall be assigned as the
field value if the Content­Type header of the second
and all MIME parts includes the charset parameter as
defined in RFC 2046 of “utf­8” (e.g.,
“;charset=utf­8”). Otherwise, the value of
“base64” shall be assigned as the field value. This
field applies only to the encoding of the value when
represented in CDMI; the
Content­Transfer­Encoding header of the part
specifies the encoding of the value within a multi­part
MIME request, as defined in RFC 2045 [9].

Optional1

value JSON
string

The data object value
• If this field is not included and multi­part MIME is not
being used, an empty JSON String (i.e., “”) shall be
assigned as the field value.

• If this field is not included and multi­part MIME is being
used, the contents of the second MIME part shall be
assigned as the field value.

• If the valuetransferencoding field indicates UTF­8
encoding, the value shall be a UTF­8 string escaped
using the JSON escaping rules described in RFC 4627
[5].

• If the valuetransferencoding field indicates base
64 encoding, the value shall be first encoded using the
base 64 encoding rules described in RFC 4648 [19].

• If the valuetransferencoding field indicates JSON
encoding, the value shall contain a valid JSON object.

Optional1

1 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 66

Cloud Data Management Interface 2.0.0

8.3.6 Response headers1560

The HTTP response headers for creating a data object using CDMI are shown in Table 32.1561

Table 32: Response headers ­ Create a data object using CDMI
1562

Header Type Description Requirement
Content­Type Header

string
“application/cdmi­object” Mandatory

Location Header
string

When an HTTP status code of 202 Accepted is returned,
the server shall respond with the absolute URL of the object
that is in the process of being created.

Conditional

1563

8.3.7 Response message body1564

The response message body fields for creating a data object using CDMI are shown in Table 33.1565

Table 33: Response message body ­ Create a data object using CDMI
Field Name Type Description Requirement
objectType JSON

string
“application/cdmi­object” Mandatory

objectID JSON
string

Object ID of the object Mandatory

objectName JSON
string

Name of the object Mandatory

parentURI JSON
string

URI for the parent object.
Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Mandatory

parentID JSON
string

Object ID of the parent container object Mandatory

domainURI JSON
string

URI of the owning domain Mandatory

capabilitiesURI JSON
string

URI to the capabilities for the object Mandatory

completionStatus JSON
string

A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully created
or updated or if an error occurred.
The value shall be the string “Processing”, the string
“Complete”, or an error string starting with the value “Error”.

Mandatory

percentComplete JSON
string

A string indicating the percentage of completion if the object is
still in the process of being created or updated by another
operation.

• When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from “0” through “100”.

• When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

• When the value of completionStatus is “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

Optional

mimetype JSON
string

MIME type of the value of the data object Mandatory

continues on next page

© SNIA 2020 SNIA Technical Position 67

Cloud Data Management Interface 2.0.0

Table 33 – continued from previous page
Field Name Type Description Requirement
metadata JSON

object
Metadata for the data object. This field includes any user and
data system metadata specified in the request body metadata
field, along with storage system metadata generated by the
cloud storage system. See clause 16 for a further description
of metadata.

Mandatory

8.3.8 Response status1566

The HTTP status codes that occur when creating a data object using CDMI are described in Table 34.1567

Table 34: HTTP status codes ­ Create a data object using CDMI
1568

HTTP Status Description
201 Created The new data object was created.
202 Accepted The data object is in the process of being created. The CDMI client should

monitor the completionStatus and percentComplete fields to determine
the current status of the operation.

400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

1569

8.3.9 Examples1570

EXAMPLE 1: PUT to the container URI the data object name and contents:1571

­­> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype" : "text/plain",
­­> "metadata" : {
­­>
­­> },
­­> "value" : "This is the Value of this Data Object"
­­> }

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "objectType" : "application/cdmi­object",
<­­ "objectID" : "00007ED90010D891022876A8DE0BC0FD",
<­­ "objectName" : "MyDataObject.txt",
<­­ "parentURI" : "/MyContainer/",
<­­ "parentID" : "00007E7F00102E230ED82694DAA975D2",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
<­­ "completionStatus" : "Complete",
<­­ "mimetype" : "text/plain",
<­­ "metadata" : {
<­­ "cdmi_size" : "37"
<­­ }
<­­ }

© SNIA 2020 SNIA Technical Position 68

Cloud Data Management Interface 2.0.0

EXAMPLE 2: PUT to the container URI the data object name and binary contents:1572

­­> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype" : "text/plain",
­­> "metadata" : { },
­­> "valuetransferencoding" : "base64"
­­> "value" : "VGhpcyBpcyB0aGUgVmFsdWUgb2YgdGhpcyBEYXRhIE9iamVjdA=="
­­> }

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "objectType": "application/cdmi­object",
<­­ "objectID": "00007ED9001008C174ABCE6AC3287E5F",
<­­ "objectName": "MyDataObject.txt",
<­­ "parentURI": "/MyContainer/",
<­­ "parentID" : "00007E7F00102E230ED82694DAA975D2",
<­­ "domainURI": "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI": "/cdmi_capabilities/dataobject/",
<­­ "completionStatus": "Complete",
<­­ "mimetype": "text/plain",
<­­ "metadata": {
<­­ "cdmi_size": "37"
<­­ }
<­­ }

EXAMPLE 3: PUT to the container URI the data object name and binary contents using multi­part MIME:1573

­­> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object
­­> Content­Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "domainURI": "/cdmi_domains/MyDomain/",
­­> "metadata": {
­­> "colour": "blue"
­­> }
­­> }
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/octet­stream
­­> Content­Transfer­Encoding: binary
­­>
­­> <37 bytes of binary data>
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p­­

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "objectType": "application/cdmi­object",
<­­ "objectID": "00007ED900103ADE9DE3A8D1CF5436A3",
<­­ "objectName": "MyDataObject.txt",
<­­ "parentURI": "/MyContainer/",
<­­ "parentID" : "00007E7F00102E230ED82694DAA975D2",
<­­ "domainURI": "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI": "/cdmi_capabilities/dataobject/",
<­­ "completionStatus": "Complete",
<­­ "mimetype": "application/octet­stream",

(continues on next page)

© SNIA 2020 SNIA Technical Position 69

Cloud Data Management Interface 2.0.0

(continued from previous page)
<­­ "metadata": {
<­­ "cdmi_size": "37",
<­­ "colour": "blue",
<­­ ...
<­­ }
<­­ }

EXAMPLE 4: PUT to the container URI the data object name and binary contents using multi­part MIME with optional1574

content­lengths for the parts:1575

­­> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object
­­> Content­Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/cdmi­object
­­> Content­Length: 82
­­>
­­> {
­­> "domainURI": "/cdmi_domains/MyDomain/",
­­> "metadata": {
­­> "colour": "blue"
­­> }
­­> }
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/octet­stream
­­> Content­Transfer­Encoding: binary
­­> Content­Length: 37
­­>
­­> <37 bytes of binary data>
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p­­

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "objectType": "application/cdmi­object",
<­­ "objectID": "00007ED900103ADE9DE3A8D1CF5436A3",
<­­ "objectName": "MyDataObject.txt",
<­­ "parentURI": "/MyContainer/",
<­­ "parentID" : "00007E7F00102E230ED82694DAA975D2",
<­­ "domainURI": "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI": "/cdmi_capabilities/dataobject/",
<­­ "completionStatus": "Complete",
<­­ "mimetype": "application/octet­stream",
<­­ "metadata": {
<­­ "cdmi_size": "37",
<­­ "colour": "blue",
<­­ }
<­­ }

EXAMPLE 5: PUT to the container URI the data object name and JSON contents:1576

­­> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype" : "text/plain",
­­> "metadata" : { },
­­> "valuetransferencoding" : "json"
­­> "value" : {
­­> "test" : "value"
­­> }

(continues on next page)

© SNIA 2020 SNIA Technical Position 70

Cloud Data Management Interface 2.0.0

(continued from previous page)
­­> }

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "objectType": "application/cdmi­object",
<­­ "objectID": "0000706D0010374085EF1A5C7018D774",
<­­ "objectName": "MyDataObject.txt",
<­­ "parentURI": "/MyContainer/",
<­­ "parentID" : "00007ED90010067404EDED32860C086A",
<­­ "domainURI": "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI": "/cdmi_capabilities/dataobject/",
<­­ "completionStatus": "Complete",
<­­ "mimetype": "text/plain",
<­­ "metadata": {
<­­ "cdmi_size": "21"
<­­ }
<­­ }

EXAMPLE 6: PUT to the container URI to create an encrypted object:1577

­­> PUT /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype" : "application/cms",
­­> "metadata" : {
­­> "cdmi_enc_key_id" : "testkey"
­­> },
­­> "valuetransferencoding" : "base64"
­­> "value" : "<CMS Encrypted Object in Base64>"
­­> }

<­­ HTTP/1.1 201 Created

© SNIA 2020 SNIA Technical Position 71

Cloud Data Management Interface 2.0.0

EXAMPLE 7: PUT to the container URI to create an encrypted object:1578

­­> PUT /cdmi/2.0.0/MyContainer/MyEncryptedObject2.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype" : "application/jose+json",
­­> "metadata" : {
­­> "cdmi_enc_key_id" : "77c7e2b8­6e13­45cf­8672­617b5b45243a"
­­> },
­­> "valuetransferencoding" : "json",
­­> "value" : {
­­> "protected": "eyJhbGciOiJkaXIiLCJraWQiOiI3N2M3ZTJi
­­> OC02ZTEzLTQ1Y2YtODY3Mi02MTdiNWI0NTI0
­­> M2EiLCJlbmMiOiJBMTI4R0NNIn0",
­­> "iv": "refa467QzzKx6QAB",
­­> "ciphertext": "JW_i_f52hww_ELQPGaYyeAB6HYGcR559l9T
­­> YnSovc23XJoBcW29rHP8yZOZG7YhLpT1bjF
­­> uvZPjQS­m0IFtVcXkZXdH_lr_FrdYt9HRUY
­­> kshtrMmIUAyGmUnd9zMDB2n0cRDIHAzFVeJ
­­> UDxkUwVAE7_YGRPdcqMyiBoCO­FBdE­Nceb
­­> 4h3­FtBP­c_BIwCPTjb9o0SbdcdREEMJMyZ
­­> BH8ySWMVi1gPD9yxi­aQpGbSv_F9N4IZAxs
­­> cj5g­NJsUPbjk29­s7LJAGb15wEBtXphVCg
­­> yy53CoIKLHHeJHXex45Uz9aKZSRSInZI­wj
­­> sY0yu3cT4_aQ3i1o­tiE­F8Ios61EKgyIQ4
­­> CWao8PFMj8TTnp",
­­> "tag": "vbb32Xvllea2OtmHAdccRQ",
­­> "cty": "text/plain"
­­> }
­­> }

<­­ HTTP/1.1 201 Created

© SNIA 2020 SNIA Technical Position 72

Cloud Data Management Interface 2.0.0

8.4 Read a data object using CDMI1579

8.4.1 Synopsis1580

To read an existing data object, the following requests shall be performed:1581

• GET <root URI>/<ContainerName>/<DataObjectName>1582

• GET <root URI>/<ContainerName>/<DataObjectName>?<fieldname>&<fieldname>&...1583

• GET <root URI>/<ContainerName>/<DataObjectName>?value=<range>&...1584

• GET <root URI>/<ContainerName>/<DataObjectName>?metadata=<prefix>&...1585

• GET <root URI>/cdmi_objectid/<DataObjectID>1586

• GET <root URI>/cdmi_objectid/<DataObjectID>?<fieldname>&<fieldname>&...1587

• GET <root URI>/cdmi_objectid/<DataObjectID>?value=<range>&...1588

• GET <root URI>/cdmi_objectid/<DataObjectID>?metadata=<prefix>&...1589

Where:1590

• <root URI> is the path to the CDMI cloud.1591

• <ContainerName> is zero or more intermediate containers.1592

• <DataObjectName> is the name of the data object to be read from.1593

• <fieldname> is the name of a field.1594

• <range> is a byte range of the data object value to be returned in the value field.1595

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.1596

• <DataObjectID> is the ID of the data object to be read from.1597

8.4.2 Capabilities1598

Capabilities that indicate which operations are supported are shown in Table 35.1599

Table 35: Capabilities ­ Read a CDMI data object using CDMI
Capability Location Description
cdmi_read_metadata Data Object Ability to read the metadata of an existing data

object
cdmi_read_value Data Object Ability to read the value of an existing data object
cdmi_read_value_range Data Object Ability to read a sub­range of the value of an

existing data object
cdmi_multipart_mime System Wide

Capability
Ability to read a data object using multi­part MIME

cdmi_object_access_by_ID System Wide
Capability

Ability to access the object by ID

8.4.3 Request headers1600

The HTTP request headers for reading a CDMI data object using CDMI are shown in Table 36.1601

Table 36: Request headers ­ Read a CDMI data object using CDMI
1602

Header Type Description Requirement
Accept Header

string
“application/cdmi­object”, “multipart/mixed”, or a
consistent value defined in 5.5.2

Optional

1603

© SNIA 2020 SNIA Technical Position 73

Cloud Data Management Interface 2.0.0

8.4.4 Request message body1604

A request body shall not be provided.1605

8.4.5 Response headers1606

The HTTP response headers for reading a data object using CDMI are shown in Table 37.1607

Table 37: Response headers ­ Read a CDMI data object using CDMI
1608

Header Type Description Requirement
Content­Type Header

string
“application/cdmi­object” or “multipart/mixed”

• If “multipart/mixed”, the body shall consist of at
least two MIME parts, where the first part shall contain
a body of content­type “application/cdmi­object”
and the second and subsequent parts shall contain the
requested byte ranges of the value.

• If multiple byte ranges are included and the
Content­Range header is omitted for a part, the data in
the part shall be appended to the data in the preceding
part, with the first part having a byte offset of zero.

Mandatory

Location Header
string

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

1609

8.4.6 Response message body1610

The response message body fields for reading a CDMI data object using CDMI are shown in Table 38.1611

Table 38: Response message body ­ Read a CDMI data object using
CDMI

Field Name Type Description Requirement
objectType JSON

string
“application/cdmi­object” Mandatory

objectID JSON
string

Object ID of the object Mandatory

objectName JSON
string

Name of the object
• For objects in a container, the objectName field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the “objectName” field does not
exist and shall not be returned.

Conditional

parentURI JSON
string

URI for the parent object
• For objects in a container, the parentURI field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the “parentURI” field does not exist
and shall not be returned.

Appending the “objectName” to the “parentURI” shall
always produce a valid URI for the object.

Conditional

continues on next page

© SNIA 2020 SNIA Technical Position 74

Cloud Data Management Interface 2.0.0

Table 38 – continued from previous page
Field Name Type Description Requirement
parentID JSON

string
Object ID of the parent container object

• For objects in a container, the “parentID” field shall
be returned.

• For objects not in a container (objects that are only
accessible by ID), the “parentID” field does not exist
and shall not be returned.

Conditional

domainURI JSON
string

URI of the owning domain Mandatory

capabilitiesURI JSON
string

URI to the capabilities for the object Mandatory

completionStatus JSON
string

A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully created
or updated or if an error occurred.
The value shall be the string “Processing”, the string
“Complete”, or an error string starting with the value “Error”.

Mandatory

percentComplete JSON
string

A string indicating the percentage of completion if the object is
still in the process of bewing created or updated by another
operation.

• When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from 0 through 100.

• When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

• When the value of completionStatus is “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

Optional

mimetype JSON
string

MIME type of the value of the data object Mandatory

metadata JSON
object

Metadata for the data object. This field includes any user and
data system metadata specified in the request body metadata
field, along with storage system metadata generated by the
cloud storage system.
See clause 16 for a further description of metadata.

Mandatory

valuerange JSON
string

The range of bytes of the data object to be returned in the
value field

• If a specific value range has been requested, the
valuerange field shall correspond to the bytes
requested. If the request extends beyond the end of
the value, the valuerange field shall indicate the smaller
byte range returned.

• If the object value has gaps (due to PUTs with
non­contiguous value ranges), the value range will
indicate the range to the first gap in the object value.

• The cdmi_size storage system metadata of the data
object shall always indicate the complete size of the
object, including zero­filled gaps.

Mandatory

continues on next page

© SNIA 2020 SNIA Technical Position 75

Cloud Data Management Interface 2.0.0

Table 38 – continued from previous page
Field Name Type Description Requirement
valuetransfer
↪→ encoding

JSON
string

The value transfer encoding used for the data object value.
Three value transfer encodings are defined:

• “utf­8” indicates that the data object contains a valid
UTF­8 string, and it shall be transported as a UTF­8
string in the value field.

• “base64” indicates that the data object may contain
arbitrary binary sequences, and it shall be transported
as a base 64­encoded string in the value field.

• “json” indicates that the data object contains a valid
JSON object, and the value field shall contain a valid
JSON object.

Mandatory

value JSON
string

The data object value
• If the valuetransferencoding field indicates UTF­8
encoding, the value field shall contain a UTF­8 string
using JSON escaping rules described in RFC 4627 [5].

• If the valuetransferencoding field indicates base 64
encoding, the value field shall contain a base
64­encoded string as described in RFC 4648 [19].

• If the valuetransferencoding field indicates JSON
encoding, the value field shall contain a valid JSON
object.

• The value field shall not be provided when using
multi­part MIME.

• The value field shall only be provided when the
completionStatus field contains “Complete”.

• When reading a value, zeros shall be returned for any
gaps resulting from non­contiguous writes.

Conditional

If individual fields are specified in the GET request, only these fields are returned in the result body. Optional fields that1612

are requested but do not exist are omitted from the result body.1613

8.4.7 Response status1614

The HTTP status codes that occur when reading a data object using CDMI are described in Table 39.1615

Table 39: HTTP status codes ­ Read a CDMI data object using CDMI
1616

HTTP Status Description
200 OK The data object content was returned in the response.
202 Accepted The data object is in the process of being created. The CDMI client should

monitor the completionStatus and percentComplete fields to determine
the current status of the operation.

302 Found The resource is a reference to another resource.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
406 Not Acceptable The server is unable to provide the object in the specified in the Accept header.

1617

© SNIA 2020 SNIA Technical Position 76

Cloud Data Management Interface 2.0.0

8.4.8 Examples1618

EXAMPLE 1: GET to the data object URI to read all fields of the data object:1619

­­> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "objectType" : "application/cdmi­object",
<­­ "objectID" : "00007ED90010D891022876A8DE0BC0FD",
<­­ "objectName" : "MyDataObject.txt",
<­­ "parentURI" : "/MyContainer/",
<­­ "parentID" : "00007E7F00102E230ED82694DAA975D2",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
<­­ "completionStatus" : "Complete",
<­­ "mimetype" : "text/plain",
<­­ "metadata" : {
<­­ "cdmi_size" : "37"
<­­ },
<­­ "valuerange" : "0­36",
<­­ "valuetransferencoding" : "utf­8",
<­­ "value" : "This is the Value of this Data Object"
<­­ }

EXAMPLE 2: GET to the data object URI by ID to read all fields of the data object:1620

­­> GET /cdmi/2.0.0/cdmi_objectid/00007ED90010D891022876A8DE0BC0FD HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "objectType" : "application/cdmi­object",
<­­ "objectID" : "00007ED90010D891022876A8DE0BC0FD",
<­­ "objectName" : "MyDataObject.txt",
<­­ "parentURI" : "/MyContainer/",
<­­ "parentID" : "00007E7F00102E230ED82694DAA975D2",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
<­­ "completionStatus" : "Complete",
<­­ "mimetype" : "text/plain",
<­­ "metadata" : {
<­­ "cdmi_size" : "37"
<­­ },
<­­ "valuetransferencoding" : "utf­8",
<­­ "valuerange" : "0­36",
<­­ "value" : "This is the Value of this Data Object"
<­­ }

EXAMPLE 3: GET to the data object URI to read the value and mimetype fields of the data object:1621

­­> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt?value&mimetype HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "value" : "This is the Value of this Data Object",
<­­ "mimetype" : "text/plain"
<­­ }

© SNIA 2020 SNIA Technical Position 77

Cloud Data Management Interface 2.0.0

EXAMPLE 4: GET to the data object URI to read the first 11 bytes of the value of the data object:1622

­­> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt?valuerange&value=0­10 HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "valuerange" : "0­10",
<­­ "value" : "VGhpcyBpcyB0aGU="
<­­ }

EXAMPLE 5: GET to the data object URI to read the data object using multi­part MIME:1623

­­> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: multipart/mixed

<­­ HTTP/1.1 200 OK
<­­ Content­Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p
<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "objectType": "application/cdmi­object",
<­­ "objectID": "00007ED90010C2414303B5C6D4F83170",
<­­ "objectName": "MyDataObject.txt",
<­­ "parentURI": "/MyContainer/",
<­­ "parentID" : "00007E7F00102E230ED82694DAA975D2",
<­­ "domainURI": "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI": "/cdmi_capabilities/dataobject/",
<­­ "completionStatus": "Complete",
<­­ "mimetype": "application/octet­stream",
<­­ "metadata": {
<­­ "cdmi_size": "37",
<­­ "colour": "blue",
<­­ ...
<­­ },
<­­ "valuerange": "0­36",
<­­ "valuetransferencoding": "base64"
<­­ }
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p
<­­ Content­Type: application/octet­stream
<­­ Content­Transfer­Encoding: binary
<­­
<­­ <37 bytes of binary data>
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p—

EXAMPLE 6: GET to the data object URI to read the data object using multi­part MIME, with optional content­lengths1624

for the parts:1625

­­> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: multipart/mixed

<­­ HTTP/1.1 200 OK
<­­ Content­Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p
<­­ Content­Type: application/cdmi­object
<­­ Content­Length: 505
<­­
<­­ {
<­­ "objectType": "application/cdmi­object",
<­­ "objectID": "00007ED90010C2414303B5C6D4F83170",

(continues on next page)

© SNIA 2020 SNIA Technical Position 78

Cloud Data Management Interface 2.0.0

(continued from previous page)
<­­ "objectName": "MyDataObject.txt",
<­­ "parentURI": "/MyContainer/",
<­­ "parentID" : "00007E7F00102E230ED82694DAA975D2",
<­­ "domainURI": "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI": "/cdmi_capabilities/dataobject/",
<­­ "completionStatus": "Complete",
<­­ "mimetype": "application/octet­stream",
<­­ "metadata": {
<­­ "cdmi_size": "37",
<­­ "colour": "blue",
<­­ ...
<­­ },
<­­ "valuerange": "0­36",
<­­ "valuetransferencoding": "base64"
<­­ }
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p
<­­ Content­Type: application/octet­stream
<­­ Content­Transfer­Encoding: binary
<­­ Content­Length: 37
<­­
<­­ <37 bytes of binary data>
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p—

EXAMPLE 7: GET to the data object URI to read the metadata and multiple byte ranges of the binary contents using1626

multi­part MIME:1627

­­> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata&value=0­10&value=21­24�
↪→HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: multipart/mixed

<­­ HTTP/1.1 200 OK
<­­ Content­Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p
<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "metadata": {
<­­ "cdmi_size": "37",
<­­ "colour": "blue",
<­­ ...
<­­ }
<­­ }
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p
<­­ Content­Type: application/octet­stream
<­­ Content­Transfer­Encoding: binary
<­­ Content­Range: bytes 0­10/37
<­­
<­­ <11 bytes of binary data>
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p
<­­ Content­Type: application/octet­stream
<­­ Content­Transfer­Encoding: binary
<­­ Content­Range: bytes 21­24/37
<­­
<­­ <4 bytes of binary data>
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p­­

© SNIA 2020 SNIA Technical Position 79

Cloud Data Management Interface 2.0.0

EXAMPLE 8: GET to the data object URI to read the value and valuetransferencoding fields of a data object storing1628

JSON data:1629

­­> GET /cdmi/2.0.0/cdmi_objectid/0000706D0010374085EF1A5C7018D774?
↪→valuetransferencoding&value HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object

<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "valuetransferencoding" : "json"
<­­ "value" : {
<­­ "test" : "value"
<­­ }
<­­ }

EXAMPLE 9: GET to the data object URI to read a newly­created data object with a current version:1630

­­> GET /cdmi/2.0.0/MyContainer/MyVersionedDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object

<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­
<­­ "objectType" : "application/cdmi­object",
<­­ "objectID" : "00007ED900100DA32EC94351F8970400",
<­­ "objectName" : "MyVersionedDataObject.txt",
<­­ "parentURI" : "/MyContainer/",
<­­ "parentID" : "00007E7F00102E230ED82694DAA975D2",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
<­­ "completionStatus" : "Complete",
<­­ "mimetype" : "text/plain",
<­­ "metadata" : {
<­­ "cdmi_size" : "33",
<­­ "cdmi_versioning" : "user",
<­­ "cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
<­­ "cdmi_version_current" : "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA",
<­­ "cdmi_version_oldest" : [
<­­ "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
<­­],
<­­ ...
<­­ },
<­­ "valuerange" : "0­32",
<­­ "valuetransferencoding" : "utf­8",
<­­ "value" : "First version of this Data Object"
<­­ }

EXAMPLE 10: GET to the data object URI to read a data object with two historical versions:1631

­­> GET /cdmi/2.0.0/MyContainer/MyVersionedDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object

<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­
<­­ "objectType" : "application/cdmi­object",
<­­ "objectID" : "00007ED900100DA32EC94351F8970400",
<­­ "objectName" : "MyDataObject.txt",
<­­ "parentURI" : "/MyContainer/",
<­­ "parentID" : "00007E7F00102E230ED82694DAA975D2",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
<­­ "completionStatus" : "Complete",
<­­ "mimetype" : "text/plain",

(continues on next page)

© SNIA 2020 SNIA Technical Position 80

Cloud Data Management Interface 2.0.0

(continued from previous page)
<­­ "metadata" : {
<­­ "cdmi_size" : "33",
<­­ "cdmi_versioning" : "user",
<­­ "cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
<­­ "cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
<­­ "cdmi_version_oldest" : [
<­­ "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
<­­],
<­­ ...
<­­ },
<­­ "valuerange" : "0­32",
<­­ "valuetransferencoding" : "utf­8",
<­­ "value" : "Third version of this Data Object"
<­­ }

EXAMPLE 11: GET to the URI of a data object version:1632

­­> GET /cdmi/2.0.0/cdmi_objectid/00007ED9001005192891EEBE599D94BB HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object

<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "objectType" : "application/cdmi­object",
<­­ "objectID" : "00007ED9001005192891EEBE599D94BB",
<­­ "objectName" : "MyVersionedDataObject.txt",
<­­ "parentURI" : "/MyContainer/",
<­­ "parentID" : "00007E7F00102E230ED82694DAA975D2",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/dataobject/dataobject_version/",
<­­ "completionStatus" : "Complete",
<­­ "mimetype" : "text/plain",
<­­ "metadata" : {
<­­ "cdmi_size" : "34",
<­­ "cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
<­­ "cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
<­­ "cdmi_version_oldest" : [
<­­ "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
<­­],
<­­ "cdmi_version_parent" : "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA",
<­­ "cdmi_version_children" : [
<­­ "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC"
<­­],
<­­ ...
<­­ },
<­­ "valuerange" : "0­33",
<­­ "valuetransferencoding" : "utf­8",
<­­ "value" : "Second version of this Data Object"
<­­ }

© SNIA 2020 SNIA Technical Position 81

Cloud Data Management Interface 2.0.0

8.5 Update a data object using CDMI1633

8.5.1 Synopsis1634

To update part or all of an existing data object, the following requests shall be performed:1635

• PATCH <root URI>/<ContainerName>/<DataObjectName>1636

• PATCH <root URI>/<ContainerName>/<DataObjectName>?value=<range>1637

• PATCH <root URI>/<ContainerName>/<DataObjectName>?metadata=<metadataname>&....1638

• PATCH <root URI>/cdmi_objectid/<DataObjectID>1639

• PATCH <root URI>/cdmi_objectid/<DataObjectID>?value=<range>1640

• PATCH <root URI>/cdmi_objectid/<DataObjectID>?metadata=<metadataname>&....1641

Where:1642

• <root URI> is the path to the CDMI cloud.1643

• <ContainerName> is zero or more intermediate containers.1644

• <DataObjectName> is the name of the data object to be updated.1645

• <range> is a byte range for the data object value to be updated.1646

• <DataObjectID> is the ID of the data object to be updated.1647

8.5.2 Capabilities1648

Capabilities that indicate which operations are supported are shown in Table 40.1649

Table 40: Capabilities ­ Update a CDMI data object using CDMI
Capability Location Description
cdmi_modify_metadata Data Object Ability to modify the metadata of an existing data

object
cdmi_modify_value Data Object Ability to modify the value of an existing data

object
cdmi_modify_value_range Data Object Ability to modify a sub­range of the value of an

existing data object
cdmi_multipart_mime System Wide

Capability
Ability to modify a data object using multi­part
MIME

cdmi_object_access_by_ID System Wide
Capability

Ability to access the object by ID

© SNIA 2020 SNIA Technical Position 82

Cloud Data Management Interface 2.0.0

8.5.3 Request headers1650

The HTTP request headers for updating a CDMI data object using CDMI are shown in Table 41.1651

Table 41: Request headers ­ Update a CDMI data object using CDMI
Header Type Description Requirement
Content­Type Header

string
“application/cdmi­object” or “multipart/mixed”

• If “multipart/mixed” is specified, the body shall
consist of at least two MIME parts, where the first part
shall contain a body of content­type
“application/cdmi­object”, and the second and
subsequent parts shall contain one or more byte
ranges of the value.

• If multiple byte ranges are included and the
Content­Range header is omitted for a part, the data
in the part shall be appended to the data in the
preceding part, with the first part having a byte offset of
zero.

Mandatory

X­CDMI­Partial Header
string

Indicates that the newly created object is part of a series of
writes and has not yet been fully created. When set to
“true”, the completionStatus field shall be set to
“Processing”. X­CDMI­Partial works across CDMI and
non­CDMI operations.
If the completionStatus field had previously been set to
“Processing” by including this header in a create or update,
the next update without this field shall change the
completionStatus field back to “Complete”.

Optional

8.5.4 Request message body1652

The request message body fields for updating a data object using CDMI are shown in1653

tbl_cdmi_data_object_update_request_message_body.1654

© SNIA 2020 SNIA Technical Position 83

Cloud Data Management Interface 2.0.0

Table 42: Request message body ­ Update a CDMI data object using
CDMI

Field Name Type Description Requirement
mimetype JSON

string
MIME type of the data contained within the value field of the
data object. If present, this value replaces the existing
mimetype field value.

• This field may be included when updating by value,
deserializing, and copying a data object.

• If this field is not included, the existing value of the
mimetype field shall be left unchanged.

• This field field value shall be converted to lower case
before being stored.

If this field is set to “application/cms” or
“application/jose+json”, the CDMI server shall encrypt
or reencrypt the value of the object in place, using the key
specified by the “cdmi_enc_key_id” metadata item. If the
“cdmi_enc_key_id” metadata item is not present, the
object ID shall be used as the key identifier. The mimetype of
the plaintext shall be stored in the CMS or JWE JSON
representation.
If a “cdmi_enc_value_sign_id” metadata item is present,
the encrypted object shall also be signed.
If this field is changed from “application/cms” or
“application/jose+json” to any other mimetype, the
CDMI server shall decrypt the value of the object in place,
replacing the specified mimetype with the mimetype of the
encrypted object, if stored as part of the encrypted object.
For more details on encrypted objects, see clause 23.

Optional

metadata JSON
object

Metadata for the data object. If present, the new metadata
specified replaces the existing object metadata. If individual
metadata items are specified in the URI, only those items are
replaced; other items are preserved. See clause 16 for a
further description of metadata.

Optional

domainURI JSON
string

URI of the owning domain
• If different from the parent domain, the user shall have
the “cross­domain” privilege (see
cdmi_member_privileges in Table 80).

• If not specified, the existing domain shall be preserved.

Optional

deserialize JSON
string

URI of a CDMI data object with a value that contains a data
object serialized as specified in clause 15. The serialized data
object shall be deserialized to update the existing data object.
The object ID of the serialized data object shall match the
object ID of the destination data object. Otherwise, the server
shall return an HTTP status code of 400 Bad Request.

Optional1

continues on next page

© SNIA 2020 SNIA Technical Position 84

Cloud Data Management Interface 2.0.0

Table 42 – continued from previous page
Field Name Type Description Requirement
copy JSON

string
URI of a source CDMI data object or queue object that shall
be copied into an existing destination data object.

• If the destination data object URI and the copy source
object URI both do not specify individual fields, the
destination data object shall be replaced with the
source data object.

• If the destination data object URI or the copy source
object URI specifies individual fields, only the fields
specified shall be used to update the destination data
object. If specified fields are not present in the source,
these fields shall be ignored.

• If the destination data object URI and the copy source
object URI both specify fields, an HTTP status code of
400 Bad Request shall be returned to the client.

If the copy source object URI points to a queue object, as part
of the copy operation, multiple queue values shall be
concatenated into a single data object value.
If there are insufficient permissions to read the data object at
the source URI, update the data object at the destination URI,
or if the read operation fails, the copy shall return an HTTP
status code of 400 Bad Request, and the destination shall
be left unchanged.

Optional1

deserializevalue JSON
string

A data object serialized as specified in clause 15 and encoded
using base 64 encoding rules described in RFC 4648 [19],
that shall be deserialized to update the existing data object.
The object ID of the serialized data object shall match the
object ID of the destination data object. Otherwise, the server
shall return an HTTP status code of 400 Bad Request.

Optional1

continues on next page

© SNIA 2020 SNIA Technical Position 85

Cloud Data Management Interface 2.0.0

Table 42 – continued from previous page
Field Name Type Description Requirement
valuetransfer
↪→ encoding

JSON
string

The value transfer encoding used for the data object value.
Three value transfer encodings are defined:

• “utf­8” indicates that the data object contains a valid
UTF­8 string and shall be transported as a UTF­8 string
in the value field. If the contents of the data object
value field are set or updated to any value other than a
valid UTF­8 string, an HTTP status code of 400 Bad
Request shall be returned to the client.

• “base64” indicates that the data object may contain
arbitrary binary sequence and shall be transported as a
base 64 encoded string in the value field. Setting the
contents of the data object value field to any value
other than a valid base 64 string shall result in an HTTP
status code of 400 Bad Request being returned to
the client.

• “json” indicates that the data object contains a valid
JSON object and shall be transported as a JSON
object in the value field. If the contents of the data
object value field are set or updated to any value other
than a valid JSON object, an HTTP status code of 400
Bad Request shall be returned to the client.

This field shall only be included when updating a data object
by value.

• If this field is not included and multi­part MIME is not
being used, the existing value of
“valuetransferencoding” shall be left unchanged.

• If this field is not included and multi­part MIME is being
used, the value of “utf­8” shall be assigned as the
field value if the “Content­Type” header of the
second and all subsequent MIME parts includes the
charset parameter as defined in RFC 2046 of “utf­8”
(e.g., “;charset=utf­8”). Otherwise, the value of
“base64” shall be assigned as the field value. This
field applies only to the encoding of the value when
represented in JSON; the
“Content­Transfer­Encoding” header of the part
specifies the encoding of the value within a multi­part
MIME request, as defined in RFC 2045.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 86

Cloud Data Management Interface 2.0.0

Table 42 – continued from previous page
Field Name Type Description Requirement
value JSON

string
This field contains the new data for the object. If present, this
value replaces the existing value.

• If this field is not included and multi­part MIME is being
used, the contents of the second and subsequent
MIME parts shall be assigned to the corresponding
byte ranges of the field value.

• If the valuetransferencoding field indicates UTF­8
encoding, the value shall be a UTF­8 string escaped
using the JSON escaping rules described in RFC 4627
[5].

• If the valuetransferencoding field indicates base 64
encoding, the value shall be first encoded using the
base 64 encoding rules described in RFC 4648 [19].

• If the valuetransferencoding field indicates JSON
encoding, the value field shall contain a valid JSON
object.

• If a value range was specified in the request, the new
data shall be inserted at the location specified by the
range. Any resulting gaps between ranges shall be
treated as if zeros had been written and shall be
included when calculating the size of the value. When
storing a range, the value shall be encoded using base
64, and the valuetransferencoding field shall be set to
“base64”.

Optional1

8.5.5 Response header1655

The HTTP response header for updating a data object using CDMI is shown in Table 43.1656

Table 43: Response header ­ Update a CDMI data object using CDMI
1657

Header Type Description Requirement
Location Header

string
The server shall respond with the URI to which the reference
redirects if the object is a reference.

Conditional

1658

8.5.6 Response message body1659

A response body can be provided as per RFC 2616 [23].1660

8.5.7 Response status1661

The HTTP status codes that occur when updating a data object using CDMI are described in Table 44.1662

1 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 87

Cloud Data Management Interface 2.0.0

Table 44: HTTP status codes ­ Update a CDMI data object using CDMI
1663

HTTP Status Description
204 No Content The data object content was returned in the response.
302 Found The resource is a reference to another resource.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

1664

8.5.8 Examples1665

EXAMPLE 1: PATCH to the data object URI to set new field values:1666

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype" : "text/plain",
­­> "metadata" : {
­­> "colour" : "blue",
­­> "length" : "10"
­­> },
­­> "value" : "This is the Value of this Data Object"
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 2: PATCH to the data object URI to set a new MIME type:1667

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?mimetype HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype" : "text/plain"
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 3: PATCH to the data object URI to update a range of the value:1668

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?value=21­24 HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "value" : "dGhhdA=="
­­> }

<­­ HTTP/1.1 204 No Content

When updating a value without specifying a value transfer encoding, the client must be aware of the current value1669

transfer encoding of the object.1670

• If a client sends a value containing a UTF­8 string that is not a valid base 64 string to update an existing object1671

with a value transfer encoding of “base64”, the server shall return an error.1672

• If a client sends a value containing a base 64 string to update an existing object with a value transfer encoding of1673

“utf­8”, the server shall not return an error. Instead, the server shall store the literal base 64 character sequence1674

in the data object instead of the data encoded in the base 64 string.1675

© SNIA 2020 SNIA Technical Position 88

Cloud Data Management Interface 2.0.0

EXAMPLE 4: PATCH to the data object URI to replace all metadata with new metadata:1676

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata" : {
­­> "colour" : "red",
­­> "number" : "7"
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 5: PATCH to the data object URI to add a new metadata item while preserving existing metadata:1677

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=shape HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata" : {
­­> "shape" : "round"
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 6: PATCH to the data object URI to replace just one metadata item with a new value:1678

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=colour HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata" : {
­­> "colour" : "green"
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 7: Delete a single metadata item:1679

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=colour HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata": {}
­­> }

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 89

Cloud Data Management Interface 2.0.0

EXAMPLE 8: Add, update, and delete metadata items. Assume a starting condition where the object has a metadata1680

item “colour” with value “green” and a metadata item “shape” with value “round” and does not have a metadata item1681

“size”. After the update, “colour” has value “red”, “shape” is deleted, and “size” has been added with value “10”.1682

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=colour&metadata=shape&
↪→metadata=size HTTP/1.1
­­>
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata": {
­­> "colour": "red",
­­> "size": "10"
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 9: PATCH to the data object URI to set new field values and the binary contents using multi­part MIME:1683

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata": {
­­> "colour": "red",
­­> "number": "7"
­­> }
­­> }
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/octet­stream
­­> Content­Transfer­Encoding: binary
­­>
­­> <37 bytes of binary data>
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p­­

<­­ HTTP/1.1 204 No Content

EXAMPLE 10: PATCH to the data object URI to replace just one metadata item and update multiple byte ranges within1684

the binary contents of the data object using multi­part MIME:1685

­­> PATCH /cdmi/2.0.0/MyContainer/BinaryObject.txt?metadata=colour HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata": {
­­> "colour": "green"
­­> }
­­> }
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/octet­stream
­­> Content­Range: bytes 0­10/37
­­>
­­> <11 bytes of binary data>
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/octet­stream

(continues on next page)

© SNIA 2020 SNIA Technical Position 90

Cloud Data Management Interface 2.0.0

(continued from previous page)
­­> Content­Range: bytes 21­24/37
­­>
­­> <4 bytes of binary data>
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p­­

<­­ HTTP/1.1 204 No Content

EXAMPLE 11: PATCH to the data object URI to encrypt an existing object:1686

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype" : "application/cms",
­­> "metadata" : {
­­> "cdmi_enc_key_id" : "testkey"
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 12: PATCH to the data object URI to decrypt an existing encrypted object:1687

­­> PATCH /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype" : "text/plain"
­­> }

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 91

Cloud Data Management Interface 2.0.0

8.6 Delete a data object using CDMI1688

8.6.1 Synopsis1689

To delete an existing data object, the following requests shall be performed:1690

• DELETE <root URI>/<ContainerName>/<DataObjectName>1691

• DELETE <root URI>/cdmi_objectid/<DataObjectID>1692

Where:1693

• <root URI> is the path to the CDMI cloud.1694

• <ContainerName> is zero or more intermediate containers.1695

• <DataObjectName> is the name of the data object to be deleted.1696

• <DataObjectID> is the ID of the data object to be deleted.1697

8.6.2 Capabilities1698

Capabilities that indicate which operations are supported are shown in Table 45.1699

Table 45: Capabilities ­ Delete a CDMI data object using CDMI
Capability Location Description
cdmi_delete_dataobject Data Object Ability to delete an existing data object
cdmi_object_access_by_ID System Wide

Capability
Ability to access the object by ID

8.6.3 Request headers1700

Request headers can be provided as per RFC 2616 [23].1701

8.6.4 Request message body1702

A request body can be provided as per RFC 2616 [23].1703

8.6.5 Response headers1704

Response headers can be provided as per RFC 2616 [23].1705

8.6.6 Response message body1706

A response body can be provided as per RFC 2616 [23].1707

© SNIA 2020 SNIA Technical Position 92

Cloud Data Management Interface 2.0.0

8.6.7 Response status1708

Table 46 describes the HTTP status codes that occur when deleting a data object using CDMI.1709

Table 46: HTTP status codes ­ Delete a CDMI data object using CDMI
1710

HTTP Status Description
204 No Content The data object was successfully deleted.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server or the data object cannot be deleted.

1711

8.6.8 Example1712

EXAMPLE 1: DELETE by data object URI:1713

­­> DELETE /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
`

<­­ HTTP/1.1 204 No Content

EXAMPLE 2: DELETE by data object ID:1714

­­> DELETE /cdmi/2.0.0/cdmi_objectid/00007ED90010D891022876A8DE0BC0FD HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 93

Cloud Data Management Interface 2.0.0

Clause 91715

Container Object Resource Operations1716

using CDMI1717

9.1 Overview1718

Container objects are the fundamental grouping of stored data within CDMI™ and are analogous to directories within a1719

file system. Each container object has a set of well­defined fields that include:1720

• zero or more child objects,1721

• mandatory fields generated by the cloud storage system,1722

• mandatory metadata items generated by the cloud storage system,1723

• optional metadata generated by the cloud storage system; and1724

• optional metadata specified by the cloud user.1725

All cloud storage systems shall support containers, but the ability to create a containers is determiend by the presence1726

or absence of the cdmi_create_container capability in the parent container.1727

Each CDMI container object is represented as a JSON object, containing one or more “fields”. For example, the1728

“metadata” field contains metadata items.1729

EXAMPLE 1: CDMI Container Object1730

{
"objectType" : "application/cdmi­container",
"objectID" : "00007ED900104E1D14771DC67C27BF8B",
"objectName" : "MyContainer/",
"parentURI" : "/",
"parentID" : "00007E7F0010128E42D87EE34F5A6560",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/container/",
"completionStatus" : "Complete",
"metadata" : {

"cdmi_ctime" : "2018­05­16T08:01:02.353Z"
},
"childrenrange" : "0­4",
"children" : [

"red",
"green",
"yellow",
"orange/",
"purple/"

]
}

The meaning, use, and permitted values of each field is described in each operation that creates, modifies or retreives1731

CDMI container objects.1732

© SNIA 2020 SNIA Technical Position 94

Cloud Data Management Interface 2.0.0

9.2 Container object details1733

9.2.1 Container object addressing1734

Container objects are addressed in CDMI in two ways:1735

• by name (e.g. https://cloud.example.com/cdmi/2.0.0/container/); and1736

• by ID (e.g. https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/1737

↪→ 00007ED900104E1D14771DC67C27BF8B/).1738

Every container object has a single, globally­unique object ID that remains constant for the life of the object. Each1739

container object may also have one or more URI addresses that allow the container object to be accessed.1740

When a container object is addressed via more than one unique URIs, all operations may be performed through any of1741

these URIs. For example, a container object may be accessible via multiple virtual hosting paths, where https:/1742

/cloud.example.com/users/snia/cdmi/ is also accessible through https://snia.example.com/cdmi/.1743

Conflicting writes via different paths shall be managed the same way that conflicting writes via one path are managed,1744

via the principle of eventual consistency (see 9.3).1745

Following the URI conventions for hierarchical paths, container URIs shall consist of one or more container names that1746

are separated by forward slashes (“/”) and that end with a forward slash (“/”).1747

If a request is performed against an existing container resource and the trailing slash at the end of the URI is omitted,1748

the server shall respond with an HTTP status code of 301 Moved Permanently. In addition, a Location header1749

containing the URI with the trailing slash added shall be returned.1750

If a CDMI request is performed to create a new container resource and the trailing slash at the end of the URI is omitted,1751

the server shall respond with an HTTP status code of 400 Bad Request.1752

Non­CDMI requests to create a container resource shall include the trailing slash at the end of the URI; otherwise, the1753

request shall be considered a request to create a data object.1754

Containers may also be nested.1755

EXAMPLE 2: The following URI represents a nested container:1756

https://cloud.example.com/container/subcontainer/1757

A nested container has a parent container object, shall be included in the children field of the parent container object,1758

and shall inherit data system metadata and ACLs from its parent container.1759

This model allows direct mapping between CDMI­managed cloud storage and file systems (e.g., NFSv4 or WebDAV). If1760

a CDMI container object is exported as a file system, then the file system may make the CDMI metadata accessible via1761

file system­specific mechanisms. As files and directories are created by the file system, they become visible through the1762

CDMI interface acting as a data path. The mapping between file system constructs and CDMI data objects, container1763

objects, and metadata is outside the scope of this International Standard.1764

9.2.2 Container object fields1765

Individual fields within a container object may be accessed by specifying the field name after a question mark “?”1766

appended to the end of the container object URI.1767

EXAMPLE 3: The following URI returns just the children field in the response body:1768

https://cloud.example.com/cdmi/2.0.0/container/?children1769

EXAMPLE 4: By specifying a range after the children field name, specific ranges of the children field may1770

be accessed.1771

https://cloud.example.com/cdmi/2.0.0/container/?children=0­21772

Children ranges are specified in a way that is similar to byte ranges as per Section 14.35.1 of RFC 2616 [23]. A client can1773

determine the number of children present by requesting the childrenrange field without requesting a range of children.1774

A list of fields, separated by an ampersand “&” may be specified, allowing multiple fields to be accessed in a single1775

request.1776

EXAMPLE 5: The following URI would return the children and metadata fields in the response body:1777

https://cloud.example.com/cdmi/2.0.0/container/?children&metadata1778

© SNIA 2020 SNIA Technical Position 95

Cloud Data Management Interface 2.0.0

When a client provides fields that are not defined in this International Standard or deserializes an object containing fields1779

that are not defined in this International Standard, these fields shall be persisted, but shall not be interpreted.1780

9.2.3 Container object metadata1781

The following optional container­specific data system metadata may be provided (see Table 47).1782

Table 47: Container metadata
Metadata Name Type Description Requirement
cdmi_assignedsize JSON

string
The number of bytes that is reported via exported
protocols (e.g., the device may be thin provisioned).
This number may limit cdmi_size.

Optional

Container metadata may also include arbitrary user­supplied metadata, storage system metadata, and data system1783

metadata as described in clause 16.1784

9.2.4 Container object access control1785

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields shall be returned.1786

If no requested fields are permitted to be read, an HTTP status code of 403 Forbidden shall be returned to the client.1787

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be performed, and an1788

HTTP status code of 403 Forbidden shall be returned to the client.1789

9.2.5 Reserved container object names1790

This International Standard defines reserved container names that should not be used by clients when creating new1791

containers. These container names are reserved for use by this International Standard, and if an attempt is made to1792

create or delete them, an HTTP status code of 400 Bad Request shall be returned to the client.1793

Reserved container names defined in this specification include:1794

• “cdmi_objectid”1795

• “cdmi_domains”1796

• “cdmi_capabilities”1797

• “cdmi_snapshots “1798

• “cdmi_versions”1799

As additional namesmay be added in future versions of this International Standard, server implementations shall prevent1800

the creation of user­defined containers if the container name starts with “cdmi_”.1801

9.2.6 Container object representations1802

The representations in this clause are shown using JSON notation. Both clients and servers shall support UTF­8 JSON1803

representation. The request and response body JSON fieldsmay be specified or returned in any order, with the exception1804

that, if present, for container objects, the “childrenrange” and “children” fields shall appear last and in that order.1805

© SNIA 2020 SNIA Technical Position 96

Cloud Data Management Interface 2.0.0

9.3 Create a container object using CDMI1806

9.3.1 Synopsis1807

To create a new container object, the following request shall be performed:1808

• PUT <root URI>/<ContainerName>/<NewContainerName>/1809

Where:1810

• <root URI> is the path to the CDMI cloud.1811

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash (i.e., “/”)1812

between each pair of container object names.1813

• <NewContainerName> is the name specified for the container object to be created.1814

After it is created, the container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.1815

9.3.2 Delayed completion of create1816

In response to a create operation for a container object, the server may return an HTTP status code of 202 Accepted1817

to indicate that the object is in the process of being created. This response is useful for long­running operations (e.g.,1818

deserializing a source data object to create a large container object hierarchy). Such a response has the following1819

implications.1820

• The server shall return a Location header with an absolute URI to the object to be created along with an HTTP1821

status code of 202 Accepted.1822

• With an HTTP status code of 202 Accepted, the server implies that the following checks have passed:1823

– user authorization for creating the container object;1824

– user authorization for read access to any source object for move, copy, serialize, or deserialize; and1825

– availability of space to create the container object or at least enough space to create a URI to report an1826

error.1827

• A client might not be able to immediately access the created object, e.g., due to delays resulting from the imple­1828

mentation’s use of eventual consistency.1829

The client performs GET operations to the URI to track the progress of the operation. In response, the server returns1830

two fields in its response body to indicate progress.1831

• A mandatory completionStatus text field contains either “Processing”, “Complete”, or an error string start­1832

ing with the value “Error”.1833

• An optional percentComplete field contains the percentage that the accepted PUT has completed (0 to 100).1834

GET does not return any children for the container object when completionStatus is not “Complete”.1835

When the final result of the create operation is an error, the URI is created with the completionStatus field set to the1836

error message. It is the client’s responsibility to delete the URI after the error has been noted.1837

© SNIA 2020 SNIA Technical Position 97

Cloud Data Management Interface 2.0.0

9.3.3 Capabilities1838

Capabilities that indicate which operations are supported are shown in Table 48.1839

Table 48: Capabilities ­ Create a CDMI container object using CDMI
Capability Location Description
cdmi_create_container Parent container Ability to create a new container object
cdmi_create_reference Parent container Ability to create a new reference
cdmi_copy_container Parent container Ability to create a container object that is a copy

of another container object
cdmi_move_container Parent container Ability to move a container object from another

location
cdmi_deserialize_container Parent container Ability to create a container object that is

deserialized from the contents of the PUT or the
contents of a data object

9.3.4 Request headers1840

The HTTP request headers for creating a CDMI container object using CDMI are shown in Table 49.1841

Table 49: Request headers ­ Create a container object using CDMI
Header Type Description Requirement
Accept Header

string
“application/cdmi­container” or a consistent value described
in 5.5.2

Optional

Content­Type Header
string

“application/cdmi­container” Mandatory

9.3.5 Request message body1842

The request message body fields for creating a container object using CDMI are shown in1843

tbl_cdmi_container_object_create_request_message_body.1844

Table 50: Request message body ­ Create a container object using CDMI
Field Name Type Description Requirement
metadata JSON

object
Metadata for the container object

• If this field is included, the contents of the JSON object
provided in this field shall be used as container object
metadata.

• If this field is included when deserializing, serializing,
copying, or moving a container object, the contents of
the JSON object provided in this field shall be used as
object metadata instead of the metadata from the
source URI.

• If this field is not included, no user­specified metadata
shall be added to the object.

• If this field is not included when deserializing,
serializing, copying, or moving a container object,
metadata from the source URI shall be used.

• This field shall not be included when creating a
reference to a container object.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 98

Cloud Data Management Interface 2.0.0

Table 50 – continued from previous page
Field Name Type Description Requirement
domainURI JSON

string
URI of the owning domain

• If different from the parent domain, the user shall have
the “cross­domain” privilege (see
cdmi_member_privileges in Table 80 .

• If not specified, the existing domain shall be preserved.

Optional

exports JSON
object

A structure for each protocol enabled for this container object
(see clause 13). This field shall not be included when
referencing a container object.

Optional

deserialize JSON
string

URI of a CDMI data object with a value that contains a
container object serialized as specified in clause 15. The
serialized container object shall be deserialized to create the
new container object, including all child objects.
When deserializing a container object, any exported protocols
from the original serialized container object are not applied to
the newly created container object(s).

Optional1

copy JSON
string

URI of a source CDMI container object that shall be copied
into the new destination container object.

• If the destination container object URI and the copy
source object URI both do not specify individual fields,
the destination container object shall be a complete
copy of the source container object, including all child
objects under the source container object.

• If the destination container object URI or the copy
source object URI specifies individual fields, only the
fields specified shall be used to create the destination
container object. If specified fields are not present in
the source, default field values shall be used.

• If the destination container object URI and the copy
source object URI both specify fields, an HTTP status
code of 400 Bad Request shall be returned to the
client.

When copying a container object, exported protocols are not
preserved across the copy.
If there are insufficient permissions to read the container
object at the source URI or create the container object at the
destination URI, or if the read operation fails, the copy shall
return an HTTP status code of 400 Bad Request, and the
destination container object shall not be created.

Optional1

move JSON
string

URI of an existing local or remote CDMI container object
(source URI) that shall be relocated, along with all child
objects, to the URI specified in the PUT. The contents of the
container object and all children, including the object ID, shall
be preserved by a move, and the container object and all
children of the source URI shall be removed after the objects
at the destination have been successfully created.
If there are insufficient permissions to read the objects at the
source URI, write the objects at the destination URI, or delete
the objects at the source URI, or if any of these operations
fail, the move shall return an HTTP status code of 400 Bad
Request, and the source and destination are left unchanged.

Optional1

reference JSON
string

URI of a CDMI container object that shall be redirected to by
a reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status code
of 400 Bad Request.

Optional1

continues on next page

© SNIA 2020 SNIA Technical Position 99

Cloud Data Management Interface 2.0.0

Table 50 – continued from previous page
Field Name Type Description Requirement
deserializevalue JSON

string
A container object serialized as specified in clause 15 and
encoded using base 64 encoding rules described in RFC
4648 [19], that shall be deserialized to create the new
container object, including all child objects.

Optional1

9.3.6 Response headers1845

The HTTP response headers for creating a CDMI container object using CDMI are shown in Table 51.1846

Table 51: Response headers ­ Create a container object using CDMI
Header Type Description Requirement
Content­Type Header

string
“application/cdmi­container” Mandatory

Location Header
string

When an HTTP status code of 202 Accepted is returned,
the server shall respond with the absolute URL of the object
that is in the process of being created.

Conditional

9.3.7 Response message body1847

The response message body fields for creating a CDMI container object using CDMI are shown in Table 52.1848

Table 52: Response message body ­ Create a container object using
CDMI

Field Name Type Description Requirement
objectType JSON

string
“application/cdmi­container” Mandatory

objectID JSON
string

Object ID of the object Mandatory

objectName JSON
string

Name of the object Mandatory

parentURI JSON
string

URI for the parent object
Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Mandatory

parentID JSON
string

Object ID of the parent container object Mandatory

domainURI JSON
string

URI of the owning domain Mandatory

capabilitiesURI JSON
string

URI to the capabilities for the object Mandatory

completionStatus JSON
string

A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully created
or updated or if an error occurred.
The value shall be the string “Processing”, the string
“Complete”, or an error string starting with the value “Error”.

Mandatory

continues on next page

1 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 100

Cloud Data Management Interface 2.0.0

Table 52 – continued from previous page
Field Name Type Description Requirement
percentComplete JSON

string
A string indicating the percentage of completion if the object is
still in the process of bewing created or updated by another
operation.

• When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from “0” through “100”.

• When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

• When the value of completionStatus is “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

Optional

metadata JSON
object

Metadata for the container object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See clause 16 for a
further description of metadata.

Mandatory

exports JSON
object

A structure for each protocol that is enabled for this container
object. See clause 13.

Optional2

snapshots JSON
array of
JSON
strings

URI(s) of the snapshot container objects. See clause 14. Optional2

childrenrange JSON
string

The children of the container expressed as a range. If a range
of children is requested, this field indicates the children
returned as a range.
This field should not be returned in the response message
body that is associated with a copy, move, deserialize, or
deserialize value operation.

Optional

children JSON
array of
JSON
strings

Names of the children objects in the container object. Child
container objects end with “/”.
This field should not be returned in the response message
body that is associated with a copy, move, deserialize, or
deserialize value operation.

Optional

9.3.8 Response status1849

Table 53 describes the HTTP status codes that occur when creating a container object using CDMI.1850

Table 53: HTTP status codes ­ Create a CDMI container object using
CDMI

1851

HTTP status Description
201 Created The new container object was created.
202 Accepted The container is in the process of being created. The CDMI client should

monitor the completionStatus and percentComplete fields to determine
the current status of the operation.

400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or had caused a

state transition error on the server.

1852

2 Returned only if present.

© SNIA 2020 SNIA Technical Position 101

Cloud Data Management Interface 2.0.0

9.3.9 Examples1853

EXAMPLE 1: Create a new container with no metadata:1854

­­> PUT /cdmi/2.0.0/MyContainer/ HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­container
­­> Content­Type: application/cdmi­container
­­>
­­> {
­­> }

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­container
<­­
<­­ {
<­­ "objectType" : "application/cdmi­container",
<­­ "objectID" : "00007ED900104E1D14771DC67C27BF8B",
<­­ "objectName" : "MyContainer/",
<­­ "parentURI" : "/",
<­­ "parentID" : "00007E7F0010128E42D87EE34F5A6560",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/container/",
<­­ "completionStatus" : "Complete",
<­­ "metadata" : {
<­­ ...
<­­ },
<­­ "childrenrange": "",
<­­ "children": []
<­­ }

EXAMPLE 2: Create a container with metadata:1855

­­> PUT /cdmi/2.0.0/MyContainer/ HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­container
­­> Content­Type: application/cdmi­container
­­>
­­> {
­­> "metadata": {
­­> "Colour": "Yellow"
­­> }
­­> }

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­container
<­­
<­­ {
<­­ "objectType" : "application/cdmi­container",
<­­ "objectID" : "00007ED900104E1D14771DC67C27BF8B",
<­­ "objectName" : "MyContainer/",
<­­ "parentURI" : "/",
<­­ "parentID" : "00007E7F0010128E42D87EE34F5A6560",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/container/",
<­­ "completionStatus" : "Complete",
<­­ "metadata" : {
<­­ "Colour": "Yellow",
<­­ ...
<­­ },
<­­ "childrenrange": "",
<­­ "children": []
<­­ }

© SNIA 2020 SNIA Technical Position 102

Cloud Data Management Interface 2.0.0

EXAMPLE 3: Create a container that is a copy of a container:1856

­­> PUT /cdmi/2.0.0/MyContainerCopy/ HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­container
­­> Content­Type: application/cdmi­container
­­>
­­> {
­­> "copy": "/MyContainer/"
­­> }

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­container
<­­
<­­ {
<­­ "objectType" : "application/cdmi­container",
<­­ "objectID" : "00007ED900104E1D14771DC67C27BF8B",
<­­ "objectName" : "MyContainerCopy/",
<­­ "parentURI" : "/",
<­­ "parentID" : "00007E7F0010128E42D87EE34F5A6560",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/container/",
<­­ "completionStatus" : "Complete",
<­­ "metadata" : {
<­­ "Colour": "Yellow",
<­­ ...
<­­ }
<­­ }

EXAMPLE 4: Rename a container:1857

­­> PUT /cdmi/2.0.0/MyContainerRenamed/ HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­container
­­> Content­Type: application/cdmi­container
­­>
­­> {
­­> "move": "/MyContainer/"
­­> }

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­container
<­­
<­­ {
<­­ "objectType" : "application/cdmi­container",
<­­ "objectID" : "00007ED900104E1D14771DC67C27BF8B",
<­­ "objectName" : "MyContainerRenamed/",
<­­ "parentURI" : "/",
<­­ "parentID" : "00007E7F0010128E42D87EE34F5A6560",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/container/",
<­­ "completionStatus" : "Complete",
<­­ "metadata" : {
<­­ "Colour": "Yellow",
<­­ ...
<­­ }
<­­ }

© SNIA 2020 SNIA Technical Position 103

Cloud Data Management Interface 2.0.0

9.4 Read a container object using CDMI1858

9.4.1 Synopsis1859

To read an existing container object, the following requests shall be performed:1860

• GET <root URI>/<ContainerName>/<TheContainerName>/1861

• GET <root URI>/<ContainerName>/<TheContainerName>/?<fieldname>&<fieldname>&...1862

• GET <root URI>/<ContainerName>/<TheContainerName>/?children=<range>&...1863

• GET <root URI>/<ContainerName>/<TheContainerName>/?metadata=<prefix>&...1864

• GET <root URI>/cdmi_objectid/<ContainerObjectID>/1865

• GET <root URI>/cdmi_objectid/<ContainerObjectID>/?<fieldname>&<fieldname>&...1866

• GET <root URI>/cdmi_objectid/<ContainerObjectID>/?children=<range>&...1867

• GET <root URI>/cdmi_objectid/<ContainerObjectID>/?metadata=<prefix>&...1868

Where:1869

• <root URI> is the path to the CDMI cloud.1870

• <ContainerName> is zero or more intermediate container objects.1871

• <TheContainerName> is the name specified for the container object to be read from.1872

• <fieldname> is the name of a field.1873

• <range> is a numeric range within the list of children.1874

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.1875

• <ContainerObjectID> is the ID of the data object to be read from.1876

9.4.2 Capabilities1877

Capabilities that indicate which operations are supported are shown in Table 54.1878

Table 54: Capabilities ­ Read a CDMI Container Object using CDMI
Capability Location Description
cdmi_read_metadata Container object Ability to read the metadata of an existing

container object
cdmi_list_children Container object Ability to list the children of an existing container

object
cdmi_list_children_range Container object Ability to list a specific range of children of an

existing container object
cdmi_object_access_by_ID System wide

capability
Ability to access the object by ID

9.4.3 Request headers1879

The HTTP request headers for reading a CDMI container object using CDMI are shown in Table 55.1880

Table 55: Request headers ­ Read a container object using CDMI
Header Type Description Requirement
Accept Header

string
“application/cdmi­container” or a consistent value as
described in 5.5.2

Optional

© SNIA 2020 SNIA Technical Position 104

Cloud Data Management Interface 2.0.0

9.4.4 Request message body1881

A request body shall not be provided.1882

9.4.5 Response headers1883

The HTTP response headers for reading a CDMI container object using CDMI are shown in Response headers ­ Read1884

a container object using CDMI.1885

Table 56: Response headers ­ Read a container object using CDMI
Header Type Description Requirement
Content­Type Header

string
“application/cdmi­container” Mandatory

Location Header
string

The server shall respond with an absolute URI to which the
reference redirects if the object is a reference.

Conditional

9.4.6 Response message body1886

The response message body fields for reading a CDMI container object using CDMI are shown in Table 571887

Table 57: Response message body ­ Read a container object using CDMI
Field Name Type Description Requirement
objectType JSON

string
“application/cdmi­container” Mandatory

objectID JSON
string

Object ID of the object Mandatory

objectName JSON
string

Name of the object
• For objects in a container, the objectName field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the “objectName” field does not
exist and shall not be returned.

Conditional

parentURI JSON
string

URI for the parent object
• For objects in a container, the parentURI field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the “parentURI” field does not exist
and shall not be returned.

Appending the “objectName” to the “parentURI” shall
always produce a valid URI for the object.

Conditional

parentID JSON
string

Object ID of the parent container object
• For objects in a container, the “parentID” field shall
be returned.

• For objects not in a container (objects that are only
accessible by ID), the “parentID” field does not exist
and shall not be returned.

Conditional

domainURI JSON
string

URI of the owning domain Mandatory

capabilitiesURI JSON
string

URI to the capabilities for the object Mandatory

continues on next page

© SNIA 2020 SNIA Technical Position 105

Cloud Data Management Interface 2.0.0

Table 57 – continued from previous page
Field Name Type Description Requirement
completionStatus JSON

string
A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully created
or updated or if an error occurred.
The value shall be the string “Processing”, the string
“Complete”, or an error string starting with the value “Error”.

Mandatory

percentComplete JSON
string

A string indicating the percentage of completion if the object is
still in the process of bewing created or updated by another
operation.

• When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from 0 through 100.

• When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

• When the value of completionStatus is “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

Optional

metadata JSON
object

Metadata for the container object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See clause 16 for a
further description of metadata.

Mandatory

exports JSON
object

A structure for each protocol that is enabled for this container
object (see clause 13)

Optional1

snapshots JSON
array of
JSON
strings

URIs of the snapshot container objects Optional1

childrenrange JSON
string

The children of the container expressed as a range. If a range
of children is requested, this field indicates the children
returned as a range.

Mandatory

children JSON
array of
JSON
strings

Names of the children objects in the container object. When a
client uses a child name in a request URI or a header URI,
the client shall escape reserved characters according to RFC
3986 [2], e.g., a “%” character in a child name shall be
replaced with “%25”.

• Children that are container objects shall have “/”
appended to the child name.

• Children that are references shall have “?” appended to
the child name.

Mandatory

If individual fields are specified in the GET request, only these fields are returned in the result body. Optional fields that1888

are requested but do not exist are omitted from the result body.1889

1 Returned only if present.

© SNIA 2020 SNIA Technical Position 106

Cloud Data Management Interface 2.0.0

9.4.7 Response status1890

Table 58 describes the HTTP status codes that occur when reading a container object using CDMI.1891

Table 58: HTTP status codes ­ Read a container object using CDMI
1892

HTTP status Description
200 OK The metadata for the container object is provided in the message body.
302 Found The resource is a reference to another resource.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
406 Not Acceptable The server is unable to provide the object in the content type specified in the

Accept header.

1893

9.4.8 Examples1894

EXAMPLE 1: GET to the container object URI to read all the fields of the container object:1895

­­> GET /cdmi/2.0.0/MyContainer/ HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­container

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­container
<­­
<­­ {
<­­ "objectType" : "application/cdmi­container",
<­­ "objectID" : "00007ED900104E1D14771DC67C27BF8B",
<­­ "objectName" : "MyContainer/",
<­­ "parentURI" : "/",
<­­ "parentID" : "00007E7F0010128E42D87EE34F5A6560",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/container/",
<­­ "completionStatus" : "Complete",
<­­ "metadata" : {
<­­ ...
<­­ },
<­­ "exports" : {
<­­ "OCCI/iSCSI": {
<­­ "identifier": "00007E7F00104BE66AB53A9572F9F51E",
<­­ "permissions": [
<­­ "https://example.com/compute/0/",
<­­ "https://example.com/compute/1/"
<­­]
<­­ },
<­­ "Network/NFSv4" : {
<­­ "identifier" : "/users",
<­­ "permissions" : "domain"
<­­ },
<­­ "childrenrange" : "0­4",
<­­ "children" : [
<­­ "red",
<­­ "green",
<­­ "yellow",
<­­ "orange/",
<­­ "purple/"
<­­]
<­­ }
<­­ }

© SNIA 2020 SNIA Technical Position 107

Cloud Data Management Interface 2.0.0

EXAMPLE 2: GET to the container object URI to read parentURI and children of the container object:1896

­­> GET /cdmi/2.0.0/MyContainer/?parentURI&children HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­container

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­container
<­­
<­­ {
<­­ "parentURI" : "/",
<­­ "children" : [
<­­ "red",
<­­ "green",
<­­ "yellow",
<­­ "orange/",
<­­ "purple/"
<­­]
<­­ }

EXAMPLE 3: GET to the container object URI to read children 0..2 and childrenrange of the container object:1897

­­> GET /cdmi/2.0.0/MyContainer/?childrenrange&children=0­2 HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­container

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­container
<­­
<­­ {
<­­ "childrenrange" : "0­2",
<­­ "children" : [
<­­ "red",
<­­ "green",
<­­ "yellow"
<­­]
<­­ }

EXAMPLE 4: GET to the container object by ID to read children 0..2 and childrenrange of the container object:1898

­­> GET /cdmi/2.0.0/cdmi_objectid/0000706D0010B84FAD185C425D8B537E/?childrenrange&
↪→children=0­2 HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­container

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­container
<­­
<­­ {
<­­ "childrenrange": "0­2",
<­­ "children": [
<­­ "red",
<­­ "green",
<­­ "yellow"
<­­]
<­­ }

© SNIA 2020 SNIA Technical Position 108

Cloud Data Management Interface 2.0.0

9.5 Update a container object using CDMI1899

9.5.1 Synopsis1900

To update part or all of an existing container object, the following requests shall be performed:1901

• PATCH <root URI>/<ContainerName>/<TheContainerName>1902

• PATCH <root URI>/<ContainerName>/<TheContainerName>?metadata=<metadataname>&....1903

• PATCH <root URI>/cdmi_objectid/<ContainerObjectID>1904

• PATCH <root URI>/cdmi_objectid/<ContainerObjectID>?metadata=<metadataname>&....1905

Where:1906

• <root URI> is the path to the CDMI cloud.1907

• <ContainerName> is zero or more intermediate container objects.1908

• <TheContainerName> is the name of the container object to be updated.1909

• <ContainerObjectID> is the ID of the data object to be updated.1910

9.5.2 Delayed completion of snapshot1911

If the creation of a snapshot (see clause 14) is requested by including a snapshot field in the request message body,1912

the server may return an HTTP status code of 202 Accepted. Such a response has the following implications:1913

• With an HTTP status code of 202 Accepted, the server implies that the following checks have passed:1914

– user authorization for creating the snapshot,1915

– user authorization for read access to the container object, and1916

– availability of space to create the snapshot or at least enough space to create a URI to report an error.1917

• A client might not be able to immediately access the snapshot, e.g., due to delays resulting from the implemen­1918

tation’s use of eventual consistency.1919

The client performs GET operations to the snapshot URI to track the progress of the operation. In particular, the server1920

returns two fields in its response body to indicate progress:1921

• A completionStatus field contains either “Processing”, “Complete”, or an error string starting with the value1922

“Error”.1923

• An optional percentComplete field contains the percentage that the accepted PATCH has completed (“0” to1924

“100”). GET does not return any value for the object when completionStatus is not “Complete”.1925

When the final result of the snapshot operation is an error, the snapshot URI is created with the completionStatus1926

field set to the error message. It is the client’s responsibility to delete the URI after the error has been noted.1927

© SNIA 2020 SNIA Technical Position 109

Cloud Data Management Interface 2.0.0

9.5.3 Capabilities1928

Capabilities that indicate which operations are supported are shown in Table 59.1929

Table 59: Capabilities ­ Update a CDMI container object using CDMI
Capability Location Description
cdmi_modify_metadata Container object Ability to modify the metadata of an existing

container object
cdmi_snapshot Container object Ability to create a new snapshot of an existing

container object
cdmi_export_<protocol> Container object Ability to add and modify exports for an existing

container object
cdmi_object_access_by_ID System wide

capability
Ability to access the object by ID

9.5.4 Request headers1930

The HTTP request headers for updating a CDMI container object using CDMI are shown in Table 60.1931

Table 60: Request headers ­ Update a container object using CDMI
Header Type Description Requirement
Content­Type Header

string
“application/cdmi­container” Mandatory

9.5.5 Request message body1932

The request message body fields for updating a container object using CDMI are shown in1933

tbl_cdmi_container_object_update_request_message_body.1934

Table 61: Request message body ­ Update a container object using CDMI
Field Name Type Description Requirement
metadata JSON

object
Metadata for the container object. If present, the new
metadata specified replaces the existing object metadata. If
individual metadata items are specified in the URI, only those
items are replaced; other items are preserved.
See clause 16 for a further description of metadata.

Optional

domainURI JSON
string

URI of the owning domain
• If different from the parent domain, the user shall have
the “cross­domain” privilege (see
cdmi_member_privileges in Table 80).

• If not specified, the parent domain shall be used.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 110

Cloud Data Management Interface 2.0.0

Table 61 – continued from previous page
Field Name Type Description Requirement
snapshot JSON

string
Name of the snapshot to be taken. This is not a URL, but
rather, the final component of the absolute URL where the
snapshot will exist when the snapshot operation successfully
completes.

• If a snapshot is added or changed, the PATCH
operation only returns after the snapshot is added to
the snapshot list.

• After they are created, snapshots may be accessed as
children container objects under the cdmi_snapshots
child container object of the container object receiving a
snapshot.

• When creating a snapshot with the same name as an
existing snapshot, the new snapshot will replace the
existing snapshot.

Optional

deserialize JSON
string

URI of a CDMI data object with a value that contains a
container object serialized as specified in clause 15. The
serialized container object shall be deserialized to update the
existing container object.
The object ID of the serialized container object shall match
the object ID of the destination container object. Otherwise,
the server shall return an HTTP status code of 400 Bad
Request.

• If the serialized container object does not contain
children, the update is applied only to the container
object, and any existing children are left as is.

• If the serialized container object does contain children,
then creates, updates, and deletes are recursively
applied for each child, depending on the differences
between the provided serialized state and the current
state of the child.

Optional1

copy JSON
string

URI of a CDMI container object that shall be copied into the
existing container object. Only the contents of the container
object itself shall be copied, not any children of the container
object.

• If the destination container object URI and the copy
source object URI both do not specify individual fields,
the destination container object shall be replaced with
the source container object, including all child objects
under the source container object.

• If the destination container object URI or the copy
source object URI specifies individual fields, only the
fields specified shall be used to update the destination
container object. If specified fields are not present in
the source, these fields shall be ignored.

• If the destination container object URI and the copy
source object URI both specify fields, an HTTP status
code of 400 Bad Request shall be returned to the
client.

When copying a container object, exported protocols are not
preserved across the copy.
If there are insufficient permissions to read the container
object at the source URI or create the container object at the
destination URI, or if the read operation fails, the copy shall
return an HTTP status code of 400 Bad Request, and the
destination container object shall not be updated.

Optional1

continues on next page

© SNIA 2020 SNIA Technical Position 111

Cloud Data Management Interface 2.0.0

Table 61 – continued from previous page
Field Name Type Description Requirement
deserializevalue JSON

sting
A container object serialized as specified in clause 15 and
encoded using base 64 encoding rules described in RFC
4648 [19], that shall be deserialized to update the existing
container object.
The object ID of the serialized container object shall match
the object ID of the destination container object. Otherwise,
the server shall return an HTTP status code of 400 Bad
Request.

• If the serialized container object does not contain
children, the update is applied only to the container
object, and any existing children are left as is.

• If the serialized container object does contain children,
then creates, updates, and deletes are recursively
applied for each child, depending on the differences
between the provided serialized state and the current
state of the children.

Optional1

exports JSON
object

A structure for each protocol that is enabled for this container
object (see clause 13). If an exported protocol is added or
changed, the PATCH operation only returns after the export
operation has completed.

Optional

1 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored.

© SNIA 2020 SNIA Technical Position 112

Cloud Data Management Interface 2.0.0

9.5.6 Response headers1935

The HTTP response header for updating a CDMI container object using CDMI is shown in Table 62.1936

Table 62: Response header ­ Update a container object using CDMI
Header Type Description Requirement
Location Header

string
The server shall respond with an absolute URI to which the
reference redirects if the object is a reference.

Conditional

9.5.7 Response message body1937

A response body can be provided as per RFC 2616 [23].1938

9.5.8 Response status1939

Table 63 describes the HTTP status codes that occur when updating a container object using CDMI.1940

Table 63: HTTP status codes ­ Update a container object using CDMI
1941

HTTP status Description
204 No Content The data object content was returned in the response.
202 Accepted The container or snapshot (subcontainer object) is in the process of being

created. The CDMI client should montitor the completionStatus and
percentComplete fields to determine the current status of the operation.

302 Found The resource is a reference to another resource.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

1942

9.5.9 Examples1943

EXAMPLE 1: PATCH to the container object URI to replace all metadata with new metadata:1944

­­> PATCH /cdmi/2.0.0/MyContainer/ HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­container
­­>
­­> {
­­> "metadata" : {
­­> "colour" : "red",
­­> "number" : "7"
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 113

Cloud Data Management Interface 2.0.0

EXAMPLE 2: PATCH to the container object URI to set a new exported protocol value:1945

­­> PATCH /cdmi/2.0.0/MyContainer/?exports HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­container
­­>
­­> {
­­> "exports" : {
­­> "OCCI/iSCSI" : {
­­> "identifier" : "00007ED900104E1D14771DC67C27BF8B",
­­> "permissions" : "00007E7F00104EB781F900791C70106C"
­­> },
­­> "Network/NFSv4" : {
­­> "identifier" : "/users",
­­> "permissions" : "domain"
­­> }
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 114

Cloud Data Management Interface 2.0.0

9.6 Delete a container object using CDMI1946

9.6.1 Synopsis1947

To delete an existing container object, including all contained children and snapshots, the following requests shall be1948

performed:1949

• DELETE <root URI>/<ContainerName>/<TheContainerName>1950

• DELETE <root URI>/cdmi_objectid/<ContainerObjectID>1951

Where:1952

• <root URI> is the path to the CDMI cloud.1953

• <ContainerName> is zero or more intermediate container objects.1954

• <TheContainerName> is the name of the container object to be deleted.1955

• <ContainerObjectID> is the ID of the container object to be deleted.1956

9.6.2 Capabilities1957

Capabilities that indicate which operations are supported are shown in Table 64.1958

Table 64: Capabilities ­ Delete a CDMI container object using CDMI
Capability Location Description
cdmi_delete_container Container object Ability to delete an existing container object
cdmi_object_access_by_ID System wide

capability
Ability to access the object by ID

9.6.3 Request headers1959

Request headers can be provided as per RFC 2616 [23].1960

9.6.4 Request message body1961

A request body can be provided as per RFC 2616 [23].1962

9.6.5 Response headers1963

Response headers can be provided as per RFC 2616 [23].1964

9.6.6 Response message body1965

A response body can be provided as per RFC 2616 [23].1966

© SNIA 2020 SNIA Technical Position 115

Cloud Data Management Interface 2.0.0

9.6.7 Response status1967

Table 65 describes the HTTP status codes that occur when deleting a container object using CDMI.1968

Table 65: HTTP status codes ­ Delete a container object using CDMI
1969

HTTP status Description
204 No Content The container object was successfully deleted.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

1970

9.6.8 Example1971

EXAMPLE 1: DELETE to the container object URI:1972

­­> DELETE /cdmi/2.0.0/MyContainer/ HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 204 No Content

EXAMPLE 2: DELETE by container object ID:1973

­­> DELETE /cdmi/2.0.0/cdmi_objectid/00007ED900104E1D14771DC67C27BF8B/ HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 116

Cloud Data Management Interface 2.0.0

9.7 Create (POST) a new data object using CDMI1974

9.7.1 Synopsis1975

To create a new data object in a specified container, the following request shall be performed:1976

• POST <root URI>/<ContainerName>/1977

To create a new data object where the data object does not belong to a container and is only accessible by ID (see1978

5.3.1), the following request shall be performed:1979

• POST <root URI>/cdmi_objectid/1980

Where:1981

• <root URI> is the path to the CDMI cloud.1982

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash (i.e., “/”)1983

between each pair of container object names.1984

• <DataObjectName> is the name specified for the data object to be created.1985

If created in a container, the data object shall be accessible as a child of the container with a server­assigned name,1986

and shall also be accessible at <root URI>/cdmi_objectid/<objectID>.1987

If created in “/cdmi_objectid/”, the data object shall only be accessible at <root URI>/cdmi_objectid/1988

<objectID>.1989

9.7.2 Delayed completion of create1990

In response to a create operation for a data object, the server may return an HTTP status code of 202 Accepted to1991

indicate that the object is in the process of being created. This response is useful for long­running operations (e.g.,1992

copying a large data object from a source URI). Such a response has the following implications.1993

• The server shall return a Location header with an absolute URI to the object to be created along with an HTTP1994

status code of 202 Accepted.1995

• With an HTTP status code of 202 Accepted, the server implies that the following checks have passed:1996

– user authorization for creating the object;1997

– user authorization for read access to any source object for move, copy, serialize, or deserialize; and1998

– availability of space to create the object or at least enough space to create a URI to report an error.1999

• A client might not be able to immediately access the created object, e.g., due to delays resulting from the imple­2000

mentation’s use of eventual consistency.2001

The client performs GET operations to the URI to track the progress of the operation. In response, the server returns2002

two fields in its response body to indicate progress.2003

• A mandatory completionStatus text field contains either “Processing”, “Complete”, or an error string start­2004

ing with the value “Error”.2005

• An optional percentComplete field contains the percentage of the operation that has completed (0 to 100).2006

GET shall not return any value for the data object when completionStatus is not “Complete”. If the final result of2007

the create operation is an error, the URI is created with the completionStatus field set to the error message. It is2008

the client’s responsibility to delete the URI after the error has been noted.2009

© SNIA 2020 SNIA Technical Position 117

Cloud Data Management Interface 2.0.0

9.7.3 Capabilities2010

Capabilities that indicate which operations are supported are shown in Table 66.2011

Table 66: Capabilities ­ Create a CDMI data object using CDMI
Capability Location Description
cdmi_post_dataobject
cdmi_create_dataobject

Parent container Ability to create a new data object

cdmi_create_reference Parent container Ability to create a new reference
cdmi_copy_dataobject Parent container Ability to create a data object that is a copy of

another data object
cdmi_move_dataobject Parent container Ability to move a data object from another

container
cdmi_deserialize_dataobject Parent container Ability to create a data object that is deserialized

from the contents of the PUT or the contents of
another data object

cdmi_serialize_dataobject
cdmi_serialize_container
cdmi_serialize_domain
cdmi_serialize_queue

Parent container Ability to create a data object that contains a
serialized representation of an existing data
object, container, domain or queue

cdmi_create_value_range Parent container Ability to create a data object using a specified
byte range

cdmi_post_dataobject_by_ID System wide
capability

Ability to create a new data object in
“/cdmi_objectid/”

cdmi_create_reference_by_ID System wide
capability

Ability to create a new reference in
“/cdmi_objectid/”

cdmi_copy_dataobject_by_ID System wide
capability

Ability to create a data object in
“/cdmi_objectid/” that is a copy of another
data object

cdmi_object_move_to_ID System wide
capability

Ability to move a data object to
“/cdmi_objectid/” from another container

cdmi_deserialize_dataobject_by_IDSystem wide
capability

Ability to create a data object in
“/cdmi_objectid/” that is deserialized from
the contents of the PUT or the contents of another
data object

cdmi_serialize_dataobject_to_ID
cdmi_serialize_container_to_ID
cdmi_serialize_domain_to_ID
cdmi_serialize_queue_to_ID

System wide
capability

Ability to create a data object in
“/cdmi_objectid/” that contains a serialized
representation of an existing data object,
container, domain or queue

cdmi_create_value_range_by_ID System wide
capability

Ability to create a data object in
“/cdmi_objectid/” using a specified byte
range

cdmi_multipart_mime System wide
capability

Ability to create a data object using multi­part
MIME

© SNIA 2020 SNIA Technical Position 118

Cloud Data Management Interface 2.0.0

9.7.4 Request headers2012

The HTTP request headers for creating a new CDMI data object using CDMI are shown in Table 67.2013

Table 67: Request headers ­ Create a new data object Using CDMI
Header Type Description Requirement
Accept Header

string
“application/cdmi­object” or a consistent value as
described in 5.5.2

Optional

Content­Type Header
string

“application/cdmi­object” or “multipart/mixed”
• If “multipart/mixed” is specified, the body shall
consist of at least two MIME parts, where the first part
shall contain a body of content­type
“application/cdmi­object”, and the second and
subsequent parts shall contain one or more byte
ranges of the value.

• If multiple byte ranges are included and the
Content­Range header is omitted for a part, the data
in the part shall be appended to the data in the
preceding part, with the first part having a byte offset of
zero.

Mandatory

X­CDMI­Partial Header
string

Indicates that the newly created object is part of a series of
writes and has not yet been fully created. When set to
“true”, the completionStatus field shall be set to
“Processing”. X­CDMI­Partial works across CDMI and
non­CDMI operations.

Optional

9.7.5 Request message body2014

The request message body fields for creating a new data object using CDMI are shown in2015

tbl_cdmi_post_object_create_request_message_body.2016

Table 68: Request message body ­ Create a new data object Using CDMI
Field Name Type Description Requirement
mimetype JSON

string
MIME type of the data contained within the value field of the
data object

• This field may be included when creating by value or
when deserializing, serializing, copying, and moving a
data object.

• If this field is not included and multi­part MIME is not
being used, the value of “text/plain” shall be
assigned as the field value.

• If this field is not included and multi­part MIME is being
used, the value of the Content­Type header of the
second MIME part shall be assigned as the field value.

• This field field value shall be converted to lower case
before being stored.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 119

Cloud Data Management Interface 2.0.0

Table 68 – continued from previous page
Field Name Type Description Requirement
metadata JSON

object
Metadata for the data object

• If this field is included, the contents of the JSON object
provided in this field shall be used as data object
metadata.

• If this field is included when deserializing, serializing,
copying, or moving a data object, the contents of the
JSON object provided in this field shall be used as
object metadata instead of the metadata from the
source URI.

• If this field is not included, no user­specified metadata
shall be added to the object.

• If this field is not included when deserializing,
serializing, copying, or moving a data object, metadata
from the source URI shall be used.

• This field shall not be included when creating a
reference to a data object.

Optional

domainURI JSON
string

URI of the owning domain
• If different from the parent domain, the user shall have
the “cross­domain” privilege (see
cdmi_member_privileges in Table 80 .

• If not specified, the domain of the parent container shall
be used.

Optional

deserialize JSON
string

URI of a CDMI data object with a value that contains a data
object serialized as specified in clause 15. The serialized data
object shall be deserialized to create the new data object.

Optional1

serialize JSON
string

URI of a CDMI object that shall be serialized into the new
data object

Optional1

copy JSON
string

URI of a source CDMI data object or queue object that shall
be copied into the new destination data object.

• If the destination data object URI and the copy source
object URI both do not specify individual fields, the
destination data object shall be a complete copy of the
source data object.

• If the destination data object URI or the copy source
object URI specifies individual fields, only the fields
specified shall be used to create the destination data
object. If specified fields are not present in the source,
default field values shall be used.

• If the destination data object URI and the copy source
object URI both specify fields, an HTTP status code of
400 Bad Request shall be returned to the client.

• If the copy source object URI points to a queue object,
as part of the copy operation, multiple queue values
shall be concatenated into a single data object value.

• If the copy source object URI points to one or more
queue object values, as part of the copy operation, the
specified queue values shall be concatenated into a
single data object value.

• If there are insufficient permissions to read the data
object at the source URI or create the data object at the
destination URI, or if the read operation fails, the copy
shall return an HTTP status code of 400 Bad
Request, and the destination object shall not be
created.

Optional1

continues on next page

© SNIA 2020 SNIA Technical Position 120

Cloud Data Management Interface 2.0.0

Table 68 – continued from previous page
Field Name Type Description Requirement
move JSON

string
URI of an existing local or remote CDMI data object (source
URI) that shall be relocated to the URI specified in the PUT.
The contents of the object, including the object ID, shall be
preserved by a move, and the data object at the source URI
shall be removed after the data object at the destination has
been successfully created.
If there are insufficient permissions to read the data object at
the source URI, write the data object at the destination URI,
or delete the data object at the source URI, or if any of these
operations fail, the move shall return an HTTP status code of
400 Bad Request, and the source and destination are left
unchanged.

Optional1

reference JSON
string

URI of a CDMI data object that shall be redirected to by a
reference. If any other fields are supplied when creating a
reference, the server shall respond with an HTTP status code
of 400 Bad Request.

Optional1

deserializevalue JSON
string

A data object serialized as specified in clause 15 and encoded
using base 64 encoding rules described in RFC 4648 [19],
that shall be deserialized to create the new data object.

• If multi­part MIME is being used and this field contains
the value of the MIME boundary parameter, the
contents of the second MIME part shall be assigned as
the field value.

• If the serialized data object in the second MIME part
does not include a value field, the contents of the third
MIME part shall be assigned as the field value of the
value field.

Optional1

continues on next page

© SNIA 2020 SNIA Technical Position 121

Cloud Data Management Interface 2.0.0

Table 68 – continued from previous page
Field Name Type Description Requirement
valuetransfer
↪→ encoding

JSON
string

The value transfer encoding used for the data object value.
Three value transfer encodings are defined:

• “utf­8” indicates that the data object contains a valid
UTF­8 string, and it shall be transported as a UTF­8
string in the value field.

• “base64” indicates that the data object may contain
arbitrary binary sequences, and it shall be transported
as a base 64­encoded string in the value field. Setting
the contents of the data object value field to any value
other than a valid base 64 string shall result in an HTTP
status code of 400 Bad Request being returned to
the client.

• “json” indicates that the data object contains a valid
JSON object, and the value field shall be a JSON
object containing valid JSON data. If the contents of
the value field are set to any value other than a valid
JSON object, an HTTP status code of 400 Bad
Request shall be returned to the client.

• This field shall only be included when creating a data
object by value.

• If this field is not included and multi­part MIME is not
being used, the value of “utf­8” shall be assigned as
the field value.

• If this field is not included and multi­part MIME is being
used, the value of “utf­8” shall be assigned as the
field value if the Content­Type header of the second
and all MIME parts includes the charset parameter as
defined in RFC 2046 of “utf­8” (e.g.,
“;charset=utf­8”). Otherwise, the value of
“base64” shall be assigned as the field value. This
field applies only to the encoding of the value when
represented in JSON; the
Content­Transfer­Encoding header of the part
specifies the encoding of the value within a multi­part
MIME request, as defined in RFC 2045 [9].

Optional1

value JSON
string

The data object value
• If this field is not included and multi­part MIME is not
being used, an empty JSON String (i.e., “”) shall be
assigned as the field value.

• If this field is not included and multi­part MIME is being
used, the contents of the second MIME part shall be
assigned as the field value.

• If the valuetransferencoding field indicates UTF­8
encoding, the value shall be a UTF­8 string escaped
using the JSON escaping rules described in RFC 4627
[5].

• If the valuetransferencoding field indicates base
64 encoding, the value shall be first encoded using the
base 64 encoding rules described in RFC 4648 [19].

• If the valuetransferencoding field indicates JSON
encoding, the value shall contain a valid JSON object.

Optional1

1 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 122

Cloud Data Management Interface 2.0.0

9.7.6 Response headers2017

The HTTP response headers for creating a new CDMI data object using CDMI are shown in Table 69.2018

Table 69: Response headers ­ Create a new data object using CDMI
2019

Header Type Description Requirement
Content­Type Header

string
“application/cdmi­object” Mandatory

Location Header
string

The unique absolute URI for the new data object as assigned
by the system. In the absence of file name information from
the client, the system shall assign the URI in the form:
http://host:port/<root
URI>/<ContainerName>/<ObjectID> or
https://host:port/<root
URI>/<ContainerName>/<ObjectID>.

Mandatory

2020

9.7.7 Response message body2021

The response message body fields for creating a new CDMI data object using CDMI are shown in Table 70.2022

Table 70: Response message body ­ Create a new data object using
CDMI

Field Name Type Description Requirement
objectType JSON

string
“application/cdmi­object” Mandatory

objectID JSON
string

Object ID of the object Mandatory

objectName JSON
string

Name of the object
• For objects in a container, the objectName field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the objectName field does not exist
and shall not be returned.

Conditional

parentURI JSON
string

URI for the parent object
• For objects in a container, the parentURI field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist
and shall not be returned.

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Conditional

parentID JSON
string

Object ID of the parent container object
• For objects in a container, the parentID field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist and
shall not be returned.

Conditional

domainURI JSON
string

URI of the owning domain Mandatory

capabilitiesURI JSON
string

URI to the capabilities for the object Mandatory

continues on next page

© SNIA 2020 SNIA Technical Position 123

Cloud Data Management Interface 2.0.0

Table 70 – continued from previous page
Field Name Type Description Requirement
completionStatus JSON

string
A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully created
or updated or if an error occurred.
The value shall be the string “Processing”, the string
“Complete”, or an error string starting with the value “Error”.

Mandatory

percentComplete JSON
string

A string indicating the percentage of completion if the object is
still in the process of bewing created or updated by another
operation.

• When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from “0” through “100”.

• When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

• When the value of completionStatus is “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

Optional

mimetype JSON
string

MIME type of the value of the data object Mandatory

metadata JSON
object

Metadata for the data object. This field includes any user and
data system metadata specified in the request body metadata
field, along with storage system metadata generated by the
cloud storage system. See clause 16 for a further description
of metadata.

Mandatory

9.7.8 Response status2023

Table 71 describes the HTTP status codes that occur when creating a new data object using CDMI.2024

Table 71: HTTP status codes ­ Create a new data object using CDMI
2025

HTTP status Description
201 Created The new data object was created.
202 Accepted The data object is in the process of being created. The CDMI client should

monitor the completionStatus and percentComplete fields to determine
the current status of the operation.

400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

2026

© SNIA 2020 SNIA Technical Position 124

Cloud Data Management Interface 2.0.0

9.7.9 Examples2027

EXAMPLE 1: POST to the container object URI the data object contents:2028

­­> POST /cdmi/2.0.0/MyContainer/ HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype" : "text/plain",
­­> "metadata" : {
­­>
­­> },
­­> "value" : "This is the Value of this Data Object"
­­> }

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­object
<­­ Location: https://cloud.example.com/cdmi/2.0.0/MyContainer/
↪→00007ED900104E1D14771DC67C27BF8B
<­­
<­­ {
<­­ "objectType" : "application/cdmi­object",
<­­ "objectID" : "00007ED900104E1D14771DC67C27BF8B",
<­­ "objectName" : "00007ED900104E1D14771DC67C27BF8B",
<­­ "parentURI" : "/MyContainer/",
<­­ "parentID" : "00007ED900104E1D14771DC67C27BF8B",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
<­­ "completionStatus" : "Complete",
<­­ "mimetype" : "text/plain",
<­­ "metadata" : {
<­­ ...
<­­ }
<­­ }

EXAMPLE 2: POST to the object ID URI the data object contents:2029

­­> POST /cdmi/2.0.0/cdmi_objectid/ HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype": "text/plain",
­­> "domainURI": "/cdmi_domains/MyDomain/",
­­> "value": "This is the Value of this Data Object"
­­> }

<­­ HTTP/1.1 201 Created
<­­ Location: https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/
↪→00007ED900104E1D14771DC67C27BF8B
<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "objectType": "application/cdmi­object",
<­­ "objectID": "00007ED900104E1D14771DC67C27BF8B",
<­­ "domainURI": "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI": "/cdmi_capabilities/dataobject/",
<­­ "completionStatus": "Complete",
<­­ "mimetype": "text/plain",
<­­ "metadata": {
<­­ "cdmi_acl": [
<­­ {
<­­ "acetype": "ALLOW",
<­­ "identifier": "OWNER@",
<­­ "aceflags": "NO_FLAGS",
<­­ "acemask": "ALL_PERMS"

(continues on next page)

© SNIA 2020 SNIA Technical Position 125

Cloud Data Management Interface 2.0.0

(continued from previous page)
<­­ }
<­­],
<­­ ...
<­­ }
<­­ }

© SNIA 2020 SNIA Technical Position 126

Cloud Data Management Interface 2.0.0

EXAMPLE 3: POST to the object ID URI the data object fields and binary contents using multi­part MIME:2030

­­> POST /cdmi/2.0.0/cdmi_objectid/ HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­object
­­> Content­Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "domainURI": "/cdmi_domains/MyDomain/",
­­> "metadata": {
­­> "colour": "blue"
­­> }
­­> }
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/octet­stream
­­> Content­Transfer­Encoding: binary
­­>
­­> <37 bytes of binary data>
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p­­

<­­ HTTP/1.1 201 Created
<­­ Location: https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/
↪→00007ED90010C2414303B5C6D4F83170
<­­ Content­Type: application/cdmi­object
<­­
<­­ {
<­­ "objectType": "application/cdmi­object",
<­­ "objectID": "00007ED90010C2414303B5C6D4F83170",
<­­ "domainURI": "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI": "/cdmi_capabilities/dataobject/",
<­­ "completionStatus": "Complete",
<­­ "mimetype": "application/octet­stream",
<­­ "metadata": {
<­­ "cdmi_size": "37",
<­­ "colour": "blue",
<­­ ...
<­­ }
<­­ }

© SNIA 2020 SNIA Technical Position 127

Cloud Data Management Interface 2.0.0

9.8 Create (POST) a new queue object using CDMI2031

9.8.1 Synopsis2032

To create a new queue object (see clause 11) in a specified container where the name of the queue object is a server­2033

assigned object identifier, the following request shall be performed:2034

• POST <root URI>/<ContainerName>/2035

To create a new queue object where the queue object does not belong to a container and is only accessible by ID (see2036

5.3.1), the following request shall be performed:2037

• POST <root URI>/cdmi_objectid/2038

Where:2039

• <root URI> is the path to the CDMI cloud.2040

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash (i.e., “/”)2041

between each pair of container object names.2042

If created in a container, the queue object shall be accessible as a child of the container with a server­assigned name,2043

and shall also be accessible at <root URI>/cdmi_objectid/<objectID>.2044

If created in “/cdmi_objectid/”, the queue object shall only be accessible at <root URI>/cdmi_objectid/2045

<objectID>.2046

9.8.2 Delayed completion of create2047

In response to a create operation for a queue object, the server may return an HTTP status code of 202 Accepted2048

to indicate that the object is in the process of being created. This response is useful for long­running operations (e.g.,2049

copying a large number of queue values from a source URI). Such a response has the following implications.2050

• The server shall return a Location header with an absolute URI to the object to be created along with an HTTP2051

status code of 202 Accepted.2052

• With an HTTP status code of 202 Accepted, the server implies that the following checks have passed:2053

– user authorization for creating the object;2054

– user authorization for read access to any source object for move, copy, serialize, or deserialize; and2055

– availability of space to create the object or at least enough space to create a URI to report an error.2056

• A client might not be able to immediately access the created object, e.g., due to delays resulting from the imple­2057

mentation’s use of eventual consistency.2058

The client performs GET operations to the URI to track the progress of the operation. In response, the server returns2059

two fields in its response body to indicate progress.2060

• A mandatory completionStatus text field contains either “Processing”, “Complete”, or an error string start­2061

ing with the value “Error”.2062

• An optional percentComplete field contains the percentage of the operation that has completed (0 to 100).2063

GET shall not return any value for the queue object when completionStatus is not “Complete”. If the final result of2064

the create operation is an error, the URI is created with the completionStatus field set to the error message. It is2065

the client’s responsibility to delete the URI after the error has been noted.2066

© SNIA 2020 SNIA Technical Position 128

Cloud Data Management Interface 2.0.0

9.8.3 Capabilities2067

Capabilities that indicate which operations are supported are shown in Table 72.2068

Table 72: Capabilities ­ Create a CDMI Queue object using CDMI
Capability Location Description
cdmi_post_queue
cdmi_create_queue

Parent container Ability to create a new queue object

cdmi_create_reference Parent container Ability to create a new reference
cdmi_copy_queue Parent container Ability to create a queue object that is a copy of

another queue object
cdmi_move_queue Parent container Ability to move a queue object from another

container
cdmi_deserialize_queue Parent container Ability to create a queue object that is

deserialized from the contents of the PUT or the
contents of another queue object

cdmi_post_queue_by_ID System wide
capability

Ability to create a new queue object in
“/cdmi_objectid/”

cdmi_create_reference_by_ID System wide
capability

Ability to create a new reference in
“/cdmi_objectid/”

cdmi_copy_queue_by_ID System wide
capability

Ability to create a queue object in
“/cdmi_objectid/” that is a copy of another
queue object

cdmi_object_move_to_ID System wide
capability

Ability to move a queue object to
“/cdmi_objectid/” from another container

cdmi_deserialize_queue_by_ID System wide
capability

Ability to create a queue object in
“/cdmi_objectid/” that is deserialized from
the contents of the PUT or the contents of another
data object

cdmi_serialize_dataobject_to_ID
cdmi_serialize_container_to_ID
cdmi_serialize_domain_to_ID
cdmi_serialize_queue_to_ID

System wide
capability

Ability to create a data object in
“/cdmi_objectid/” that contains a serialized
representation of an existing data object,
container, domain or queue

9.8.4 Request headers2069

The HTTP request headers for creating a new CDMI queue object using CDMI are shown in Table 73.2070

Table 73: Request headers ­ Create a new queue object using CDMI
2071

Header Type Description Requirement
Accept Header

string
“application/cdmi­object” or a consistent value as
described in 5.5.2

Optional

Content­Type Header
string

“application/cdmi­queue” Mandatory

Content­Range Header
string

A valid ranges­specifier (see RFC 2616 [23] Section 14.35.1) Optional

2072

© SNIA 2020 SNIA Technical Position 129

Cloud Data Management Interface 2.0.0

9.8.5 Request message body2073

The request message body fields for creating a new queue object using CDMI are shown in2074

tbl_cdmi_queue_object_create_post_request_message_body.2075

Table 74: Request message body ­ Create a new queue object using
CDMI

Field Name Type Description Requirement
metadata JSON

object
Metadata for the queue object

• If this field is included, the contents of the JSON object
provided in this field shall be used as queue object
metadata.

• If this field is included when deserializing, serializing,
copying, or moving a queue object, the contents of the
JSON object provided in this field shall be used as
object metadata instead of the metadata from the
source URI.

• If this field is not included, no user­specified metadata
shall be added to the object.

• If this field is not included when deserializing,
serializing, copying, or moving a queue object,
metadata from the source URI shall be used.

• This field shall not be included when creating a
reference to a queue object.

Optional

domainURI JSON
string

URI of the owning domain
• If different from the parent domain, the user shall have
the “cross­domain” privilege (see
cdmi_member_privileges in Table 80 .

• If not specified, the domain of the parent container shall
be used.

Optional

deserialize JSON
string

URI of a CDMI data object with a value that contains a queue
object serialized as specified in clause 15. The serialized
queue object shall be deserialized to create the new queue
object.

Optional1

copy JSON
string

URI of a CDMI queue object that will be copied into the new
queue object

Optional1

move JSON
string

URI of a CDMI queue object that will be copied into the new
queue object. When the copy is successfully completed, the
queue object at the source URI is removed.

Optional1

reference JSON
string

URI of a CDMI queue object that shall be redirected to by a
reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status code
of 400 Bad Request.

Optional1

deserializevalue JSON
string

A queue object serialized as specified in clause 15 and
encoded using base 64 encoding rules described in RFC
4648 [19], that shall be deserialized to create the new queue
object.

Optional1

1 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 130

Cloud Data Management Interface 2.0.0

9.8.6 Response headers2076

The response headers for creating a new CDMI queue object using CDMI are shown in Table 75.2077

Table 75: Response headers ­ Create a new queue object using CDMI
2078

Header Type Description Requirement
Content­Type Header

string
“application/cdmi­queue” Mandatory

Location Header
string

The unique absolute URI for the new queue object as
assigned by the system.

Mandatory

2079

9.8.7 Response message body2080

The response message body fields for creating a new CDMI queue object using CDMI are shown in Table 76.2081

Table 76: Response message body ­ Create a new queue object using
CDMI

Field Name Type Description Requirement
objectType JSON

string
“application/cdmi­queue” Mandatory

objectID JSON
string

Object ID of the object Mandatory

objectName JSON
string

Name of the object
• For objects in a container, the objectName field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the objectName field does not exist
and shall not be returned.

Conditional

parentURI JSON
string

URI for the parent object
• For objects in a container, the parentURI field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist
and shall not be returned.

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Conditional

parentID JSON
string

Object ID of the parent container object
• For objects in a container, the parentID field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist and
shall not be returned.

Conditional

domainURI JSON
string

URI of the owning domain Mandatory

capabilitiesURI JSON
string

URI to the capabilities for the object Mandatory

completionStatus JSON
string

A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully created
or updated or if an error occurred.
The value shall be the string “Processing”, the string
“Complete”, or an error string starting with the value “Error”.

Mandatory

continues on next page

© SNIA 2020 SNIA Technical Position 131

Cloud Data Management Interface 2.0.0

Table 76 – continued from previous page
Field Name Type Description Requirement
percentComplete JSON

string
A string indicating the percentage of completion if the object is
still in the process of bewing created or updated by another
operation.

• When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from “0” through “100”.

• When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

• When the value of completionStatus is “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

Optional

metadata JSON
object

Metadata for the queue object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See clause 16 for a
further description of metadata.

Mandatory

queueValues JSON
string

The range of designators for enqueued values. Every
enqueued value shall be assigned a unique,
monotonically­incrementing positive integer designator,
starting from 0. If no values are enqueued, an empty string
shall be returned. If values are enqueued, the lowest
designator, followed by a hyphen (“­“), followed by the
highest designator shall be returned.

Mandatory

9.8.8 Response status2082

Table 77 describes the HTTP status codes that occur when creating a new queue object using CDMI.2083

Table 77: HTTP status codes ­ Create a new queue object using CDMI
2084

HTTP status Description
201 Created The new queue object was created.
202 Accepted The queue object is in the process of being created. The CDMI client should

monitor the completionStatus and percentComplete fields to determine
the current status of the operation.

400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

2085

© SNIA 2020 SNIA Technical Position 132

Cloud Data Management Interface 2.0.0

9.8.9 Example2086

EXAMPLE 1: POST to the container object URI the queue object contents:2087

­­> POST /cdmi/2.0.0/MyContainer/ HTTP/1.1
­­> Host: cloud.example.com
­­> ``Content­Type: application/cdmi­queue``
­­> Accept: application/cdmi­queue
­­>
­­> {
­­> }

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­queue
<­­ Location: https://cloud.example.com/cdmi/2.0.0/MyContainer/
↪→00007ED900104E1D14771DC67C27BF8B
<­­
<­­ {
<­­ "objectType" : "application/cdmi­queue",
<­­ "objectID" : "00007ED900104E1D14771DC67C27BF8B",
<­­ "objectName" : "00007ED900104E1D14771DC67C27BF8B",
<­­ "parentURI" : "/MyContainer/",
<­­ "parentID" : "00007ED900104E1D14771DC67C27BF8B",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/queue/",
<­­ "completionStatus" : "Complete",
<­­ "metadata" : {
<­­ ...
<­­ },
<­­ "queueValues" : ""
<­­ }

© SNIA 2020 SNIA Technical Position 133

Cloud Data Management Interface 2.0.0

Part IV2088

CDMI Advanced2089

© SNIA 2020 SNIA Technical Position 134

Cloud Data Management Interface 2.0.0

Clause 102090

Domain object resource operations using2091

CDMI2092

10.1 Overview2093

Domain objects represent the concept of administrative ownership of stored data within a CDMI™ storage system. Each2094

object may be owned and managed by a different administrative entity, which is expressed as a domain.2095

If a cloud storage system supports domains, the cdmi_domains system­wide capability shall be present, and the2096

cdmi_domains container shall be present in the CDMI root container.2097

A cloud storage system may include a hierarchy of domains that provide access to domain­related information within a2098

CDMI context. This domain hierarchy is a series of CDMI objects that correspond to parent and child domains, with each2099

domain corresponding to logical groupings of objects that are to be managed together. Domain measurement informa­2100

tion about objects that are associated with each domain flow up to parent domains, facilitating billing and management2101

operations that are typical for a cloud storage environment.2102

Fig. 7 shows the hierarchy of domains and shows how the domainURI links data objects, container objects and queue2103

objects into the domain hierachy.2104

cdmi_domains/

domain1/

domain2/

subdomain/

domainURI

domainURI

domainURI

“/” Root URI

mydataobject/

mycontainer/

myqueue/

Summary
aggegratedInherited

Fig. 7: Hierarchy of domains

Each CDMI domain object is represented as a JSON object, containing one or more “fields”. For example, the2105

“metadata” field contains metadata items.2106

EXAMPLE 1: CDMI domain object2107

{
"objectType" : "application/cdmi­domain",
"objectID" : "00007E7F00104BE66AB53A9572F9F51E",
"objectName" : "MyDomain/",
"parentURI" : "/cdmi_domains/",
"parentID" : "00007E7F0010C058374D08B0AC7B3550",

(continues on next page)

© SNIA 2020 SNIA Technical Position 135

Cloud Data Management Interface 2.0.0

(continued from previous page)
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/domain/",
"metadata" : {

"cdmi_domain_enabled": "true",
"cdmi_authentication_methods": "anonymous, basic",
...

},
"childrenrange" : "0­1",
"children" : [

"cdmi_domain_summary/",
"cdmi_domain_members/"

]
}

The meaning, use, and permitted values of each field is described in each operation that creates, modifies or retreives2108

CDMI domain objects.2109

© SNIA 2020 SNIA Technical Position 136

Cloud Data Management Interface 2.0.0

10.2 Domain object details2110

10.2.1 Domain object addressing2111

Domain objects are created as children of a special cdmi_domains container object, which is present in the root URI2112

for the cloud storage system when domains are supported. The cdmi_domains container object is system­generated,2113

read­only, cannot be deleted, and only permits the creation of children domain objects, as indicated by the presence of2114

the cdmi_create_domain capability. The ability to create a sub­domain under an existing domain object is indicated2115

by the presence of the cdmi_create_domain capability for a given domain object.2116

Domain objects are addressed in CDMI in two ways:2117

• by name (e.g., https://cloud.example.com/cdmi/2.0.0/cdmi_domains/myDomain/); and2118

• by ID (e.g., https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/2119

↪→ 00007ED90010329E642EBFBC8B57E9AD/).2120

Every domain object has a single, globally­unique object ID that remains constant for the life of the object. Each domain2121

object shall also have at least one URI address that allows the domain object to be accessed. Following the URI2122

conventions for hierarchical paths, domain URIs shall start with “<root URI>/cdmi_domains/” and consist of one2123

or more domain names that are separated by forward slashes (“/”) and that end with a forward slash (“/”).2124

If a request is performed against an existing domain resource and the trailing slash at the end of the URI is omitted, the2125

server shall respond with an HTTP status code of 301 Moved Permanently, and a ‘’Location’’ header containing the2126

URI with the trailing slash will be added.2127

If a CDMI request is performed to create a new domain resource and the trailing slash at the end of the URI is omitted,2128

the server shall respond with an HTTP status code of 400 Bad Request.2129

Domain objects may also be nested.2130

EXAMPLE 2: The following URI represents a nested domains:2131

https://cloud.example.com/cdmi/2.0.0/cdmi_domains/myDomain/subDomain/2132

A sub­domain has a parent domain object, shall be included in the children field of the parent domain object, and shall2133

inherit Domain Membership from its parent domain (if not specified in the sub­domain).2134

10.2.2 Domain object fields2135

Individual fields within a domain object may be accessed by specifying the field name after a question mark “?” appended2136

to the end of the domain object URI.2137

EXAMPLE 3: The following URI returns just the children field in the response message body:2138

https://cloud.example.com/cdmi/2.0.0/cdmi_domains/myDomain/?children2139

EXAMPLE 4: By specifying a range after the children field name, specific ranges of the children field may2140

be accessed.2141

https://cloud.example.com/cdmi/2.0.0/cdmi_domains/myDomain/?2142

children=0­22143

Children ranges are specified in a way that is similar to byte ranges as per Section 14.35.1 of RFC 2616 [23]. A client can2144

determine the number of children present by requesting the childrenrange field without requesting a range of children.2145

A list of fields separated by an ampersand “&” may be specified, allowing multiple fields to be accessed in a single2146

request.2147

EXAMPLE 5: The following URI would return the children and metadata fields in the response body:2148

https://cloud.example.com/cdmi/2.0.0/cdmi_domains/myDomain/?children;2149

metadata2150

When a client provides fields that are not defined in this International Standard or deserializes an object containing fields2151

that are not defined in this International Standard, these fields shall be persisted, but shall not be interpreted.2152

© SNIA 2020 SNIA Technical Position 137

Cloud Data Management Interface 2.0.0

10.2.3 Domain object metadata2153

The following domain­specific field shall be present for each domain (see Table 78).2154

Table 78: Required metadata for a domain object
Metadata name Type Description Requirement
cdmi_domain_enabled JSON

string
Indicates if the domain is enabled and specified at the
time of creation. Values shall be “true” or “false”.

• If this metadata item is not present at the time
of domain creation, the value is set to “false”.

• If a domain is disabled, the cloud storage
system shall not permit any operations to be
performed against any URI managed by that
domain.

• When a domain is disabled, all operations that
are performed against URIs that are managed
by a disabled domain shall return an HTTP
status code of 403 Forbidden.

Mandatory

cdmi_domain_delete_
↪→ reassign

JSON
string

If the domain is deleted, indicates to which domain
the objects that belong to the domain shall be
reassigned.

• To delete a domain that contains objects, this
metadata item shall be present.

• If this metadata item is not present or does not
contain the URI of a valid domain that is
different from the URI of the domain being
deleted, an attempt to delete a domain that has
objects shall result in an HTTP status code of
400 Bad Request.

Conditional

cdmi_authentication_
↪→ methods

JSON
array
of
JSON
strings

Indicates a list of which authentication methods are
enabled for the domain.
Supported authentication method values are
indicated by the cdmi_authentication_methods
capability.

Optional

Domains may also contain domain­specific data system metadata items as defined in 16.3 and 16.4. Domain data2155

system metadata shall be inherited to child domain objects.2156

10.2.4 Domain object access control2157

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields shall be returned.2158

If no requested fields are permitted to be read, an HTTP status code of 403 Forbidden shall be returned to the client.2159

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be performed, and an2160

HTTP status code of 403 Forbidden shall be returned to the client.2161

10.2.5 Domain usage in access control2162

When a transaction is performed against a CDMI object, the associated domain object (i.e., the domain object indicated2163

by the domainURI) specifies the authentication context. The user identity and credentials presented as part of the2164

transaction are compared to the domain membership list to determine if the user is authorized within the domain and2165

to resolve the user’s principal. If resolved, the user’s principal is evaluated against the object’s ACL to determine if the2166

transaction is permitted.2167

When evaluating members within a domain, delegations are evaluated first, in any order, followed by user records, in2168

any order. If there is at least one matching record and none of the matching records indicate that the user is disabled,2169

the user is considered to be a member of the domain.2170

© SNIA 2020 SNIA Technical Position 138

Cloud Data Management Interface 2.0.0

When a sub­domain is initially created, the membership container contains one member record that is a delegation in2171

which the delegation URI is set to the URI of the parent domain.2172

10.2.6 Domain object representations2173

The representations in this clause are shown using JSON notation. Both clients and servers shall support UTF­8 JSON2174

representation. The request and response body JSON fieldsmay be specified or returned in any order, with the exception2175

that, if present, for domain objects, the childrenrange and children fields shall appear last and in that order.2176

© SNIA 2020 SNIA Technical Position 139

Cloud Data Management Interface 2.0.0

10.3 Domain object summaries2177

Domain object summaries provide summary measurement information about domain usage and billing. If supported, a2178

domain summary container named “cdmi_domain_summary” shall be present under each domain container. Like any2179

container, the domain summary subcontainer may have an Access Control List (ACL) (see 17.1) that restricts access2180

to this information.2181

Within each domain summary container are a series of domain summary data objects that are generated by the cloud2182

storage system. The “yearly”, “monthly”, and “daily” containers of these data objects contain domain summary2183

data objects corresponding to each year, month, and day, respectively. These containers are organized into the following2184

structures:2185

https://example.com/cdmi/2.0.0/cdmi_domains/domain/2186

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_summary/2187

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_summary/2188

cumulative2189

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_summary/daily/2190

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_summary/daily/2191

2009­07­012192

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_summary/daily/2193

2009­07­022194

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_summary/daily/2195

2009­07­032196

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_summary/2197

monthly/2198

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_summary/2199

monthly/2009­072200

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_summary/2201

monthly/2009­082202

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_summary/2203

monthly/2009­102204

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_summary/2205

yearly/2206

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_summary/2207

yearly/20092208

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_summary/2209

yearly/20102210

The “cumulative” summary data object covers the entire time period, from the time the domain is created to the time2211

it is accessed. Each data object at the daily, monthly, and yearly level contains domain summary information for the2212

time period specified, bounded by domain creation time and access time.2213

If a time period extends earlier than the domain creation time, the summary information includes the time from when the2214

domain was created until the end of the time period.2215

EXAMPLE 1: If a domain were created on July 4, 2009, at noon, the daily summary “2009­07­04” would contain2216

information from noon until midnight, the monthly summary “2009­07” would contain information from noon on July 42217

until midnight on July 31, and the yearly summary “2009” would contain information from noon on July 4 until midnight2218

on December 31.2219

If a time period starts after the time when the domain was created and ends earlier than the time of access, the summary2220

data object contains complete information for that time period.2221

EXAMPLE 2: If a domain were created on July 4, 2009, and on July 10, the “2009­07­06” daily summary data object2222

was accessed, it would contain information for the complete day.2223

If a time period ends after the current access time, the domain summary data object contains partial information from2224

the start of the time period (or the time the domain was created) until the time of access.2225

EXAMPLE 3: If a domain were created on July 4, 2009, and at noon on July 10, the “2009­07­10” daily summary data2226

object was accessed, it would contain information from the beginning of the day until noon.2227

© SNIA 2020 SNIA Technical Position 140

Cloud Data Management Interface 2.0.0

The information in Table 79 shall be present within the contents of each domain summary object, which are in JSON2228

representation.2229

Table 79: Contents of domain summary objects
Metadata name Type Description Requirement
cdmi_domainURI JSON

string
Domain name corresponding to the
domain that is summarized

Mandatory

cdmi_summary_start JSON
string

An ISO­8601 time indicating the start of
the time range that the summary
information is presenting

Mandatory

cdmi_summary_end JSON
string

An ISO­8601 time indicating the end of the
time range that the summary information is
presenting

Mandatory

cdmi_summary_objecthours JSON
string

The sum of the time each object belonging
to the domain existed during the summary
time period

Optional

cdmi_summary_objectsmin JSON
string

The minimum number of objects belonging
to the domain during the summary time
period

Optional

cdmi_summary_objectsmax JSON
string

The maximum number of objects
belonging to the domain during the
summary time period

Optional

cdmi_summary_objectsaverage JSON
string

The average number of objects belonging
to the domain during the summary time
period

Optional

cdmi_summary_puts JSON
string

The number of objects written to the
domain

Optional

cdmi_summary_gets JSON
string

The number of objects read from the
domain

Optional

cdmi_summary_bytehours JSON
string

The sum of the time each byte belonging
to the domain existed during the summary
time period

Optional

cdmi_summary_bytesmin JSON
string

The minimum number of bytes belonging
to the domain during the summary time
period

Optional

cdmi_summary_bytesmax JSON
string

The maximum number of bytes belonging
to the domain during the summary time
period

Optional

cdmi_summary_bytesaverage JSON
string

The average number of bytes belonging to
the domain during the summary time
period

Optional

cdmi_summary_writes JSON
string

The number of bytes written to the domain Optional

cdmi_summary_reads JSON
string

The number of bytes read from the domain Optional

cdmi_summary_charge JSON
string

An ISO 4217 currency code (see [38]) that
is followed or preceded by a numeric value
and separated by a space, where the
numeric value represents the closing
charge in the indicated currency for the
use of the service associated with the
domain over the summary time period

Optional

cdmi_summary_kwhours JSON
string

The sum of energy consumed (in kilowatt
hours) by the domain during the summary
time period

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 141

Cloud Data Management Interface 2.0.0

Table 79 – continued from previous page
Metadata name Type Description Requirement
cdmi_summary_kwmin JSON

string
The minimum rate at which energy is
consumed (in kilowatt hours per hour) by
the domain during the summary time
period

Optional

cdmi_summary_kwmax JSON
string

The maximum rate at which energy is
consumed (in kilowatt hours per hour) by
the domain during the summary time
period

Optional

cdmi_summary_kwaverage JSON
string

The average rate at which energy is
consumed (in kilowatt hours per hour) by
the domain during the summary time
period

Optional

EXAMPLE 4: An example of a daily domain summary object is as follows:2230

{
"cdmi_domainURI" : "/cdmi_domains/MyDomain/",
"cdmi_summary_start" : "2009­12­10T00:00:00",
"cdmi_summary_end" : "2009­12­10T23:59:59",
"cdmi_summary_objecthours" : "382239734",
"cdmi_summary_puts" : "234234",
"cdmi_summary_gets" : "489432",
"cdmi_summary_bytehours" : "334895798347",
"cdmi_summary_writes" : "7218368343",
"cdmi_summary_reads" : "11283974933",
"cdmi_summary_charge" : "4289.23 USD"

}

If the charge value is provided, the value is for the operational cost (excluding fixed fees) of service already performed2231

and storage and bandwidth already consumed. Pricing of services is handled separately.2232

Domain summary information may be extended by vendors to include additional metadata or domain reports beyond2233

the metadata items specified by this International Standard, as long as the field names for those metadata items do not2234

begin with “cdmi_”.2235

© SNIA 2020 SNIA Technical Position 142

Cloud Data Management Interface 2.0.0

10.4 Domain object membership2236

In cloud storage environments, in the same way that domains are often created programmatically, domain user member­2237

ship and credential mapping also shall be populated using such interfaces. By providing access to user membership, this2238

capability enables self­enrollment, automatic provisioning, and other advanced self­service capabilities, either directly2239

using CDMI or through software systems that interface with CDMI.2240

The domain membership capability provides information about, and allows the specification of, end users and groups of2241

users that are allowed to access the domain via CDMI and other access protocols. The concept of domain membership2242

is not intended to replace or supplant ACLs (see 17.1), but rather to provide a single, unified place to map identities and2243

credentials to principals used by ACLs within the context of a domain (see model described in 10.2.5). It also provides2244

a place for authentication mappings to external authentication providers, such as LDAP and Active Directory, to be2245

specified.2246

If supported, a domain membership container named cdmi_domain_members shall be present under each domain.2247

Like any container, the domain membership container has an Access Control List (see 17.1) that restricts access to this2248

information.2249

Within each domain membership container are a series of user objects that are specified through CDMI to define each2250

user known to the domain. These objects are formatted into the following structure:2251

https://example.com/cdmi/2.0.0/cdmi_domains/domain/2252

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_members/2253

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_members/2254

john_doe2255

https://example.com/cdmi/2.0.0/cdmi_domains/domain/cdmi_domain_members/2256

john_smith2257

The domain membership container may also contain subcontainers with data objects. Data objects in these subcon­2258

tainers are treated the same as data objects in the domain membership container, and no meaning is inferred from the2259

subcontainer name. This organization is used to create different access security relationships for groups of user objects2260

and to allow delegation to a common set of members.2261

Table 80 lists the domain settings that shall be present within each domain member user object.2262

Table 80: Required settings for domain member user objects
Metadata name Type Description Requirement
cdmi_member_enabled JSON

string
If true, this field indicates that requests
associated with this domain member are
allowed. If false, all requests performed by
this domain member shall result in an
HTTP status code of 403 Forbidden.

Mandatory

cdmi_member_type JSON
string

This field indicates the type of member
record. Values include “user”, “group”,
and “delegation”.

Mandatory

cdmi_member_name JSON
string

This field contains the user or group name
as presented by the client. This will
normally be the standard full name of the
principal.

Mandatory

cdmi_member_credentials JSON
string

This field contains credentials to be
matched against the credentials as
presented by the client. If this field is not
present, one or more delegations shall be
present and shall be used to resolve user
credentials. As one cannot log in as a
group but only as a member of a group,
the “group” type member records shall
not have credentials.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 143

Cloud Data Management Interface 2.0.0

Table 80 – continued from previous page
Metadata name Type Description Requirement
cdmi_member_principal JSON

string
This field indicates to which principal name
(used in ACLs) the user or group is
mapped. If this field is not present, one or
more delegations shall be present and
shall be used to resolve the principal.

Optional

cdmi_member_privileges JSON
array
of
JSON
strings

This field explicitly confers zero or more
special privileges to a user or group. When
delegated, privileges are conferred based
on the information returned from the
external system to which the delegation
points. The following privileges are
defined:

• “administrator”. Allows the
principal to take ownership of any
object/container.

• “backup_operator”. Bypass
regular ACL checks to allow backup
and restore of objects and
containers, including all associated
attributes, metadata, ACLs and
ownership.

• “cross_domain”. Operations
specifying a domain other than the
domain of the parent object are
permitted. Unless this privilege is
conferred by the user record or a
group (possibly nested) to which the
user or group belongs, all attempts
to change the domain of objects to a
domain other than the parent
domain shall fail.

Mandatory

cdmi_member_groups JSON
array
of
JSON
strings

This field contains a JSON array of group
names to which the user or group belongs.

Optional

Table 81 lists the domain settings that shall be present within each domain member delegation object.2263

Table 81: Required settings for domain member delegation objects
Metadata name Type Description Requirement
cdmi_member_enabled JSON

string
If true, this field indicates that requests
associated with this domain member are
allowed. If false, all requests performed by
this domain member shall result in an
HTTP status code of 403 Forbidden.

Mandatory

cdmi_member_type JSON
string

This field indicates the type of member
record. Values include “user” and
“delegation”.

Mandatory

cdmi_delegation_URI JSON
string

This field contains the URI of an external
identity resolution provider (such as LDAP
or Active Directory) or the URI of a domain
membership container object.
External delegations are expressed in the
form of ldap://<uri> or ad://<uri>.

Mandatory

© SNIA 2020 SNIA Technical Position 144

Cloud Data Management Interface 2.0.0

EXAMPLE 1: An example of a domain membership object for a user is as follows:2264

{
"cdmi_member_enabled" : "true",
"cdmi_member_type" : "user",
"cdmi_member_name" : "John Doe",
"cdmi_member_credentials" : "p+5/oX1cmExfOIrUxhX1lw==",
"cdmi_member_groups" : [

"users"
],
"cdmi_member_principal" : "jdoe",
"cdmi_privileges" : [

"administrator",
"cross_domain"

]
}

EXAMPLE 2: An example of a domain membership object for a delegation is as follows:2265

{
"cdmi_member_enabled" : "true",
"cdmi_member_type" : "delegation",
"cdmi_delegation_URI" : "/cdmi_domains/MyDomain/"

}

© SNIA 2020 SNIA Technical Position 145

Cloud Data Management Interface 2.0.0

10.5 Create a domain object using CDMI2266

10.5.1 Synopsis2267

To create a new domain object, the following request shall be performed:2268

• PUT <root URI>/cdmi_domains/<DomainName>/<NewDomainName>/2269

Where:2270

• <root URI> is the path to the CDMI cloud.2271

• <DomainName> is zero or more intermediate domains that already exist, with one slash (i.e., “/”) between each2272

pair of domain names.2273

• <NewDomainName> is the name specified for the domain to be created.2274

After it is created, the domain shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.2275

10.5.2 Delayed completion of create2276

Delayed completion shall not be supported for creating domain objects.2277

10.5.3 Capabilities2278

Capabilities that indicate which operations are supported are shown in Table 82.2279

Table 82: Capabilities ­ Create a CDMI domain object using CDMI
Capability Location Description
cdmi_create_domain Parent container Ability to create a new domain object
cdmi_copy_domain Parent container Ability to create a domain object that is a copy of

another domain object
cdmi_deserialize_domain Parent container Ability to create a domain object that is

deserialized from the contents of the PUT or the
contents of another data object

10.5.4 Request headers2280

The HTTP request headers for creating a CDMI domain object using CDMI are shown in Table 832281

Table 83: Request headers ­ Create a domain object using CDMI
Header Type Description Requirement
Accept Header

string
“application/cdmi­domain” or a consistent
value as described in 5.5.2

Optional

Content­Type Header
string

“application/cdmi­domain” Mandatory

© SNIA 2020 SNIA Technical Position 146

Cloud Data Management Interface 2.0.0

10.5.5 Request message body2282

The request message body fields for creating a domain object using CDMI are shown in Table 84.2283

Table 84: Request message body ­ Create a domain object using CDMI
Field Name Type Description Requirement
metadata JSON

object
Metadata for the domain object

• If this field is included, the contents of the
JSON object provided in this field shall be used
as domain object metadata.

• If this field is included when deserializing,
serializing, copying, or moving a domain object,
the contents of the JSON object provided in
this field shall be used as object metadata
instead of the metadata from the source URI.

• If this field is not included, no user­specified
metadata shall be added to the object.

• If this field is not included when deserializing,
serializing, copying, or moving a domain object,
metadata from the source URI shall be used.

Optional

copy JSON
string

URI of a CDMI domain that shall be copied into the
new domain, including all child domains and
membership from the source domain

Optional1

move JSON
string

URI of an existing local CDMI domain object (source
URI) that shall be relocated, along with all child
domains, to the URI specified in the PUT. The
contents of the domain and all sub­domains,
including the object ID, shall be preserved by a move,
and the domain and sub­domains of the source URI
shall be removed after the objects at the destination
have been successfully created.
If there are insufficient permissions to read the
objects at the source URI, write the objects at the
destination URI, or delete the objects at the source
URI, or if any of these operations fail, the move shall
return an HTTP status code of 400 Bad Request,
and the source and destination are left unchanged.

Optional1

deserialize JSON
string

URI of a CDMI data object with a value that contains
a domain object serialized as specified in clause 15.
The serialized domain object shall be deserialized to
create the new domain object, including all child
objects.

Optional1

deserializevalue JSON
string

A domain object serialized as specified in clause 15
and encoded using base 64 encoding rules described
in RFC 4648 [19], that shall be deserialized to create
the new domain object, including all child objects.

Optional1

1 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 147

Cloud Data Management Interface 2.0.0

10.5.6 Response headers2284

The HTTP response headers for creating a domain object using CDMI are shown in Table 852285

Table 85: Response headers ­ Create a domain object using CDMI
Header Type Description Requirement
Content­Type Header

string
“application/cdmi­domain” Mandatory

10.5.7 Response message body2286

The response message body fields for creating a domain object using CDMI are shown in Table 862287

Table 86: Response message body ­ Create a domain object using CDMI
Field Name Type Description Requirement
objectType JSON

string
“application/cdmi­domain” Mandatory

objectID JSON
string

Object ID of the domain Mandatory

objectName JSON
string

Name of the object Mandatory

parentURI JSON
string

URI for the parent object
Appending the objectName to the parentURI shall
always produce a valid URI for the object.

Mandatory

parentID JSON
string

Object ID of the parent container object Mandatory

domainURI JSON
string

URI of the owning domain. A domain object is always
owned by itself.

Mandatory

capabilitiesURI JSON
string

URI to the capabilities for the object Mandatory

metadata JSON
object

Metadata for the domain object. This field includes
any user and data system metadata specified in the
request body metadata field, along with storage
system metadata generated by the cloud storage
system. See clause 16 for a further description of
metadata.

Mandatory

childrenrange JSON
string

The sub­domains of the domain expressed as a
range. If a range of sub­domains is requested, this
field indicates the children returned as a range.

Mandatory

children JSON
array
of
JSON
strings

Names of the children domains in the domain. Child
containers end with “/”.

Mandatory

© SNIA 2020 SNIA Technical Position 148

Cloud Data Management Interface 2.0.0

10.5.8 Response status2288

Table 87 describes the HTTP status codes that occur when creating a domain object using CDMI.2289

Table 87: HTTP status codes ­ Create a domain object using CDMI
HTTP Status Description
201 Created The new domain object was created.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

10.5.9 Examples2290

EXAMPLE 1: PUT to the domain URI the domain name and metadata:2291

­­> PUT /cdmi/2.0.0/cdmi_domains/MyDomain/ HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­domain
­­> Content­Type: application/cdmi­domain
­­>
­­> "metadata":
­­> {
­­> "cdmi_domain_enabled": "true"
­­> }

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­domain
<­­
<­­ {
<­­ "objectType" : "application/cdmi­domain",
<­­ "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
<­­ "objectName" : "MyDomain/",
<­­ "parentURI" : "/cdmi_domains/",
<­­ "parentID" : "00007E7F0010C058374D08B0AC7B3550",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/domain/",
<­­ "metadata" : {
<­­ "cdmi_domain_enabled": "true",
<­­ "cdmi_authentication_methods": "anonymous, basic",
<­­ ...
<­­ },
<­­ "childrenrange" : "0­1",
<­­ "children" : [
<­­ "cdmi_domain_summary/",
<­­ "cdmi_domain_members/"
<­­]
<­­ }

© SNIA 2020 SNIA Technical Position 149

Cloud Data Management Interface 2.0.0

10.6 Read a domain object using CDMI2292

10.6.1 Synopsis2293

To read an existing domain object, the following requests shall be performed:2294

• GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/2295

• GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/?<fieldname>&<fieldname>&.2296

..2297

• GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/?children=<range>&...2298

• GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/?metadata=<prefix>&...2299

• GET <root URI>/cdmi_objectid/<DomainObjectID>/2300

• GET <root URI>/cdmi_objectid/<DomainObjectID>/?<fieldname>&<fieldname>&...2301

• GET <root URI>/cdmi_objectid/<DomainObjectID>/?children=<range>&...2302

• GET <root URI>/cdmi_objectid/<DomainObjectID>/?metadata=<prefix>&...2303

Where:2304

• <root URI> is the path to the CDMI cloud.2305

• <DomainName> is zero or more parent domains.2306

• <TheDomainName> is the name specified for the domain to be read from.2307

• <fieldname> is the name of a field.2308

• <range> is a numeric range within the list of children.2309

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.2310

• <DomainObjectID> is the ID of the domain object to be read from.2311

10.6.2 Capabilities2312

Capabilities that indicate which operations are supported are shown in Table 88.2313

Table 88: Capabilities ­ Read a CDMI domain object using CDMI
Capability Location Description
cdmi_read_metadata Domain object Ability to read the metadata of an existing domain

object
cdmi_list_children Domain object Ability to list the children of an existing domain

object
cdmi_object_access_by_ID System wide

capability
Ability to access the object by ID

10.6.3 Request headers2314

The HTTP request headers for reading a CDMI domain object using CDMI are shown in Table 89.2315

Table 89: Request headers ­ Read a domain object using CDMI
Header Type Description Requirement
Accept Header

string
“application/cdmi­domain” or a consistent value as
described in 5.5.2

Optional

© SNIA 2020 SNIA Technical Position 150

Cloud Data Management Interface 2.0.0

10.6.4 Request message body2316

A request body shall not be provided.2317

10.6.5 Response headers2318

The HTTP response headers for reading a CDMI domain object using CDMI are shown in Table 90.2319

Table 90: Response headers ­ Read a domain object using CDMI
Header Type Description Requirement
Content­Type Header

string
“application/cdmi­domain” Mandatory

Location Header
string

The server shall respond with an absolute URI to which the
reference redirects if the object is a reference.

Conditional

10.6.6 Response message body2320

The response message body fields for reading a CDMI domain object using CDMI are shown in Table 912321

Table 91: Response message body ­ Read a domain object using CDMI
Field Name Type Description Requirement
objectType JSON

string
“application/cdmi­domain” Mandatory

objectID JSON
string

Object ID of the domain Mandatory

objectName JSON
string

Name of the object Mandatory

parentURI JSON
string

URI for the parent object
Appending the “objectName” to the “parentURI” shall
always produce a valid URI for the object.

Mandatory

parentID JSON
string

Object ID of the parent domain object
• For domain objects directly under “cdmi_domains”,
the object ID of “cdmi_domains” container shall be
returned.

• For domain objects under another domain, the object
ID of the parent domain shall be returned.

Mandatory

domainURI JSON
string

URI of the owning domain. A domain object shall always be
owned by itself.

Mandatory

capabilitiesURI JSON
string

URI to the capabilities for the object Mandatory

metadata JSON
object

Metadata for the domain object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See clause 16 for a
further description of metadata.

Mandatory

childrenrange JSON
string

The sub­domains of the domain expressed as a range. If a
range of sub­domains is requested, this field indicates the
children returned as a range.

Mandatory

children JSON
array of
JSON
strings

The children of the domain. Sub­domains end with “/”. Mandatory

If individual fields are specified in the GET request, only these fields are returned in the result body. Optional fields that2322

are requested but do not exist are omitted from the result body.2323

© SNIA 2020 SNIA Technical Position 151

Cloud Data Management Interface 2.0.0

10.6.7 Response status2324

Table 92 describes the HTTP status codes that occur when reading a domain object using CDMI.2325

Table 92: HTTP status codes ­ Read a domain object using CDMI
2326

HTTP Status Description
200 OK The domain object content was returned in the response.
302 Found The resource is a reference to another resource.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
406 Not Acceptable The server is unable to provide the object in the content type specified in the

Accept header.

2327

10.6.8 Examples2328

EXAMPLE 1: GET to the domain URI to read all the fields of the domain:2329

­­> GET /cdmi/2.0.0/cdmi_domains/MyDomain/ HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­domain

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­domain
<­­
<­­ {
<­­ "objectType": "application/cdmi­domain",
<­­ "objectID": "00007E7F00104BE66AB53A9572F9F51E",
<­­ "objectName": "MyDomain/",
<­­ "parentURI": "/cdmi_domains/",
<­­ "parentID": "00007E7F0010C058374D08B0AC7B3550",
<­­ "domainURI": "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI": "/cdmi_capabilities/domain/",
<­­ "metadata": {
<­­ "cdmi_domain_enabled": "true",
<­­ "cdmi_authentication_methods": "anonymous, basic",
<­­ ...
<­­ },
<­­ "childrenrange": "0­1",
<­­ "children": [
<­­ "cdmi_domain_summary/",
<­­ "cdmi_domain_members/"
<­­]
<­­ }

EXAMPLE 2: GET to the domain URI to read the parentURI and children of the domain:2330

­­> GET /cdmi/2.0.0/MyDomain/?parentURI&children HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­domain

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­domain
<­­
<­­ {
<­­ "parentURI" : "/cdmi_domains/",
<­­ "children" : [
<­­ "cdmi_domain_summary/",
<­­ "cdmi_domain_members/"
<­­]
<­­ }

© SNIA 2020 SNIA Technical Position 152

Cloud Data Management Interface 2.0.0

EXAMPLE 3: GET to the domain URI to read the first two children of the domain:2331

­­> GET /cdmi/2.0.0/MyDomain/?childrenrange&children=0­1 HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­domain

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­domain
<­­
<­­ {
<­­ "childrenrange" : "0­1",
<­­ "children" : [
<­­ "cdmi_domain_summary/",
<­­ "cdmi_domain_members/"
<­­]
<­­ }

© SNIA 2020 SNIA Technical Position 153

Cloud Data Management Interface 2.0.0

10.7 Update a domain object using CDMI2332

10.7.1 Synopsis2333

To update part or all of an existing domain object, the following requests shall be performed:2334

• PATCH <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/2335

• PATCH <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/?2336

metadata=<metadataname>&...2337

• PATCH <root URI>/cdmi_objectid/<DomainObjectID>2338

• PATCH <root URI>/cdmi_objectid/<DomainObjectID>?metadata=<metadataname>&...2339

Where:2340

• <root URI> is the path to the CDMI cloud.2341

• <DomainName> is zero or more parent domains.2342

• <TheDomainName> is the name specified for the domain to be read from.2343

• <DomainObjectID> is the ID of the data object to be read from.2344

10.7.2 Delayed completion of update2345

Delayed completion shall not be supported for creating domain objects.2346

10.7.3 Capabilities2347

Capabilities that indicate which operations are supported are shown in Table 93.2348

Table 93: Capabilities ­ Update a CDMI domain object using CDMI
Capability Location Description
cdmi_modify_metadata Domain object Ability to modify the metadata of an existing

domain object
cdmi_object_access_by_ID System wide

capability
Ability to access the object by ID

10.7.4 Request headers2349

The HTTP request headers for updating a CDMI domain object using CDMI are shown in Table 94.2350

Table 94: Request headers ­ Update a domain object using CDMI
2351

Header Type Description Requirement
Content­Type Header

string
“application/cdmi­domain” Mandatory

2352

© SNIA 2020 SNIA Technical Position 154

Cloud Data Management Interface 2.0.0

10.7.5 Request message body2353

The request message body fields for updating a domain object using CDMI are shown in Table 95.2354

Table 95: Request message body ­ Update a domain object using CDMI
Field Name Type Description Requirement
metadata JSON

object
Metadata for the domain object. If present, the new metadata
specified replaces the existing object metadata. If individual
metadata items are specified in the URI, only those items are
replaced; other items are preserved.
See clause 16 for a further description of metadata.

Optional

copy JSON
string

URI of a CDMI domain object that shall be copied into the
existing domain object. Only the metadata and membership
of the domain object itself shall be copied, not any
sub­domains of the domain object.

• If the destination domain object URI and the copy
source domain object URI both do not specify individual
fields, the destination domain object metadata and
membership shall be replaced with the source domain
object metadata and membership.

• If the destination domain object URI or the copy source
domain object URI specifies individual fields, only the
fields specified shall be used to update the destination
domain object. If specified fields are not present in the
source, these fields shall be ignored.

• If the destination domain object URI and the copy
source domain object URI both specify fields, an HTTP
status code of 400 Bad Request shall be returned to
the client.

If there are insufficient permissions to read the domain object
at the source URI or create the domain object at the
destination URI, or if the read operation fails, the copy shall
return an HTTP status code of 400 Bad Request, and the
destination domain object shall not be updated.

Optional2

deserialize JSON
string

URI of a CDMI data object with a value that contains a
domain object serialized as specified in clause 15. The
serialized domain object shall be deserialized to update the
existing domain object.
The object ID of the serialized domain object shall match the
object ID of the destination domain object. Otherwise, the
server shall return an HTTP status code of 400 Bad
Request.

• If the serialized domain object does not contain
sub­domains, the update is applied only to the domain
object, and any existing sub­domains are left as is.

• If the serialized domain object does contain
sub­domains, then creates, updates, and deletes are
recursively applied for each sub­domain, depending on
the differences between the provided serialized state
and the current state of the sub­domains.

Optional2

continues on next page

© SNIA 2020 SNIA Technical Position 155

Cloud Data Management Interface 2.0.0

Table 95 – continued from previous page
Field Name Type Description Requirement
deserializevalue JSON

string
A domain object serialized as specified in clause 15 and
encoded using base 64 encoding rules described in RFC
4648 [19], that shall be deserialized to update the existing
domain object.
The object ID of the serialized domain object shall match the
object ID of the destination domain object. Otherwise, the
server shall return an HTTP status code of 400 Bad
Request.

• If the serialized domain object does not contain
sub­domains, the update is applied only to the domain
object, and any existing sub­domains are left as is.

• If the serialized domain object does contain
sub­domains, then creates, updates, and deletes are
recursively applied for each sub­domain, depending on
the differences between the provided serialized state
and the current state of the sub­domains.

Optional2

10.7.6 Response header2355

The HTTP response header for updating a CDMI domain object using CDMI is shown in Table 962356

Table 96: Response header ­ Update a domain object using CDMI
2357

Header Type Description Requirement
Location Header

string
The server shall respond with an absolute URI to which the
reference redirects if the object is a reference.

Conditional

2358

10.7.7 Response message body2359

A response body may be provided as per RFC 2616 [23].2360

10.7.8 Response status2361

Table 97 describes the HTTP status codes that occur when updating a domain object using CDMI.2362

Table 97: HTTP status codes ­ Update a domain object using CDMI
2363

HTTP Status Description
204 No Content The data object content was returned in the response.
302 Found The resource is a reference to another resource.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

2364

2 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored.

© SNIA 2020 SNIA Technical Position 156

Cloud Data Management Interface 2.0.0

10.7.9 Example2365

EXAMPLE 1: PATCH to the domain URI to set new field values:2366

­­> PATCH /cdmi/2.0.0/cdmi_domains/MyDomain/ HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­domain
­­>
­­> {
­­> "metadata" : {
­­> "test" : "value"
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 157

Cloud Data Management Interface 2.0.0

10.8 Delete a domain object using CDMI2367

10.8.1 Synopsis2368

To delete an existing domain object, and transfer all objects associated with that domain to another domain (to preserve2369

access), the following request shall be performed:2370

• DELETE <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/2371

• DELETE <root URI>/cdmi_objectid/<DomainObjectID>2372

Where:2373

• <root URI> is the path to the CDMI cloud.2374

• <DomainName> is zero or more parent domains.2375

• <TheDomainName> is the name specified for the domain to be deleted.2376

• <DomainObjectID> is the ID of the domain object to be deleted.2377

10.8.2 Capabilities2378

Capabilities that indicate which operations are supported are shown in Table 98.2379

Table 98: Capabilities ­ Delete a CDMI domain object using CDMI
Capability Location Description
cdmi_delete_domain Domain object Ability to delete an existing domain object
cdmi_object_access_by_ID System wide

capability
Ability to access the object by ID

10.8.3 Request headers2380

Request headers may be provided as per RFC 2616 [23].2381

10.8.4 Request message body2382

A request body may be provided as per RFC 2616 [23].2383

10.8.5 Response headers2384

Response headers may be provided as per RFC 2616 [23].2385

10.8.6 Response message body2386

A response body may be provided as per RFC 2616 [23].2387

© SNIA 2020 SNIA Technical Position 158

Cloud Data Management Interface 2.0.0

10.8.7 Response status2388

Table 99 describes the HTTP status codes that occur when deleting a domain object using CDMI.2389

Table 99: HTTP status codes ­ Delete a domain object using CDMI
2390

HTTP Status Description
204 No Content The domain object was successfully deleted.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

2391

10.8.8 Example2392

EXAMPLE 1: DELETE to the domain object URI:2393

­­> DELETE /cdmi/2.0.0/cdmi_domains/MyDomain/ HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 159

Cloud Data Management Interface 2.0.0

Clause 112394

Queue object resource operations using2395

CDMI2396

11.1 Overview2397

Queue objects are similar to data objects, only with first­in, first­out access “queue”­style accesse semantics when2398

storing and retrieving value data.2399

If a cloud storage system supports queues, the cdmi_queues system­wide capability shall be present. The ability to2400

create a queue object is determiend by the presence or absence of the cdmi_create_queue and cdmi_post_queue2401

capabilities in the parent container, and by the cdmi_post_queue_by_ID system­wide capability for creation by ID.2402

A queue object writer POSTs data into a queue object, and a queue object reader GETs value(s) from the queue object2403

and subsequently deletes the value(s) to acknowledge receipt of the value(s) that it received. Queues provides a simple2404

mechanism for one or more writers to send data to a single reader in a reliable way. If supported by the cloud storage2405

system, cloud clients create the queue objects by using the mechanism described in 9.8 and this clause.2406

EachCDMI queue object is represented as a JSONobject, containing one ormore “fields”. For example, the “metadata”2407

field contains metadata items.2408

EXAMPLE 1: CDMI queue object2409

{
"objectType": "application/cdmi­queue",
"objectID": "00007E7F00104BE66AB53A9572F9F51E",
"objectName": "MyQueue",
"parentURI": "/MyContainer/",
"parentID" : "00007ED900104F67307652BAC9A37C93",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/queue/",
"completionStatus": "Complete",
"metadata": {},
"queueValues": "1­1",
"mimetype": [

"text/plain"
],
"valuerange": [

"0­19"
],
"valuetransferencoding": [

"utf­8"
],
"value": [

"First Enqueued Value"
]

}

The meaning, use, and permitted values of each field are described in each operation that creates, modifies or retreives2410

CDMI queue objects.2411

© SNIA 2020 SNIA Technical Position 160

Cloud Data Management Interface 2.0.0

11.2 Queue object details2412

11.2.1 Queue object addressing2413

Queue objects are addressed in CDMI in two ways:2414

• by name (e.g., https://cloud.example.com/cdmi/2.0.0/queueobject); and2415

• by ID (e.g., https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/2416

↪→ 00007ED900104F67307652BAC9A37C93/).2417

Every queue object has a single, globally­unique object ID that remains constant for the life of the object. Each queue2418

object may also have one or more URI addresses that allow the queue object to be accessed.2419

11.2.2 Queue object fields2420

Individual fields within a queue object can be accessed by specifying the field name after a question mark “?” appended2421

to the end of the queue object URI.2422

EXAMPLE 2: The following URI returns just the number of values stored in the queue object in the response2423

body:2424

https://cloud.example.com/cdmi/2.0.0/queueobject?queueValues2425

A list of unique fields, separated by an ampersand “&” can be specified, allowing multiple fields to be accessed in a2426

single request.2427

EXAMPLE 3: The following URI returns the number of values stored and metadata fields in the response2428

body:2429

https://cloud.example.com/cdmi/2.0.0/queueobject?queueValues&metadata2430

When a client provides fields that are not defined in this International Standard or deserializes an object containing fields2431

that are not defined in this International Standard, these fields shall be persisted, but shall not be interpreted.2432

11.2.3 Queue object value2433

The encoding of the data stored in the queue object value field depends on the queue object valuetransferencoding2434

field:2435

• If the value transfer encoding of the object is set to “utf­8”, the data stored in the value of the queue object shall2436

be a valid UTF­8 string, and it shall be transported as a UTF­8 string in the value field.2437

• If the value transfer encoding of the object is set to “base64”, the data stored in the value of the queue object2438

may contain arbitrary binary sequences, and it shall be transported as a base 64­encoded string in the value field.2439

• If the value transfer encoding of the object is set to “json”, the data stored in the value of the queue object shall2440

be a valid JSON object, and the value field shall contain a valid JSON object.2441

Specific ranges of the value of a queue object can be accessed by specifying a byte range after the value field name.2442

EXAMPLE 4: The following URI returns the first thousand bytes of the oldest value enqueued:2443

https://cloud.example.com/cdmi/2.0.0/queueobject?value=0­9992444

Because a byte range of a UTF­8 string is often not a valid UTF­8 string, the response to a range request shall always2445

be transported in the value field as a base 64­encoded string.2446

Byte ranges are specified as single, inclusive byte ranges as per Section 14.35.1 of RFC 2616 [23].2447

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields shall be returned.2448

If no requested fields are permitted to be read, an HTTP status code of 403 Forbidden shall be returned to the client.2449

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be performed, and an2450

HTTP status code of 403 Forbidden shall be returned to the client.2451

When a client provides or includes deserialization fields that are not defined in this International Standard, these fields2452

shall be stored as part of the object.2453

The value of a queue object may also be specified and retrieved using multi­part MIME, where the CDMI JSON is2454

transferred in the first MIME part and the raw queue values are transferred in the subsequent MIME parts. Each MIME2455

© SNIA 2020 SNIA Technical Position 161

Cloud Data Management Interface 2.0.0

part, including any header fields, shall conform to RFC 2045 [9], RFC 2046 [10], and RFC 2616 [23], and the length of2456

each part may optionally be specified by a ‘’Content­Length’’ header in addition to the MIME boundary delimiter.2457

Multiple non­overlapping ranges of the value of a queue object may also be accessed or updated in a multi­part MIME2458

operation by transferring one MIME part for each range of the value. The byte ranges for these operations shall be2459

specified as per Section 14.35.1 of RFC 2616 [23].2460

Multi­part MIME enables the efficient transfer of binary data alongside CDMI object metadata without incurring the2461

overhead of the UTF­8 or Base64 encoding and validation required to represent binary data in JSON.2462

11.2.4 Queue object metadata2463

Queue object metadata may also include arbitrary user­supplied metadata, storage system metadata, and data system2464

metadata, as specified in clause 16. Metadata shall be stored as a valid UTF­8 string. Binary data stored in user2465

metadata shall be first encoded such that it can be contained in a UTF­8 string, with the use of base 64 encoding2466

recommended.2467

Every queue object has a parent object from which the queue object inherits data system metadata that is not explicitly2468

specified in the data object itself.2469

EXAMPLE 5: The “pages” queue object stored at the following URI would inherit data system metadata2470

from its parent container, “OCR”:2471

https://cloud.example.com/cdmi/2.0.0/OCR/pages2472

11.2.5 Queue object access control2473

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields shall be returned.2474

If no requested fields are permitted to be read, an HTTP status code of 403 Forbidden shall be returned to the client.2475

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be performed, and an2476

HTTP status code of 403 Forbidden shall be returned to the client.2477

11.2.6 Queue object consistency2478

Writing to a queue object is an atomic operation.2479

For non­value­related fields:2480

• If a client reads a queue object simultaneously with a write to that same queue object, the reading client shall get2481

either the old version or the new version, but not a mixture of both.2482

• If a write is terminated due to errors, the contents of the queue object shall be as if the write never occurred (i.e.,2483

writes are atomic in the face of errors).2484

For value­related fields:2485

• If a client dequeues or deletes one or more queue values simultaneously with one or more queue values being2486

enqueued to that same queue object, the order of operations shall be as if the dequeue/delete operation happens2487

before the enqueue operation.2488

• If a dequeue, delete or enqueue is terminated due to errors, the contents of the queue object shall be as if the2489

dequeue/delete/enqueue never occurred (i.e., writes are atomic in the face of errors).2490

Create and update timestamps that are returned in response to multiple client writes to a given object may indicate that2491

a specific write is the newest (i.e., the write whose data is expected to be returned to subsequent reads until another2492

write is processed). However, there is no guarantee that the write with the latest timestamp is the one whose data is2493

returned on subsequent reads.2494

Implementations of this International Standard shall provide the atomicity features described in this subclause for queue2495

objects that are accessed via CDMI. The atomicity properties of queue objects that are accessed by protocols other2496

than CDMI are outside the scope of this International Standard.2497

© SNIA 2020 SNIA Technical Position 162

Cloud Data Management Interface 2.0.0

11.2.7 Queue object representations2498

The representations in this clause are shown using JSON notation. Both clients and servers shall support UTF­8 JSON2499

representation. The request and response body JSON fieldsmay be specified or returned in any order, with the exception2500

that, if present, for queue objects, the “valuerange” and “value” fields shall appear last and in that order.2501

© SNIA 2020 SNIA Technical Position 163

Cloud Data Management Interface 2.0.0

11.3 Create a queue object using CDMI2502

11.3.1 Synopsis2503

To create a new queue object, the following request shall be performed:2504

• PUT <root URI>/<ContainerName>/<QueueName>2505

To create a new queue object by ID, see 9.8.2506

Where:2507

• <root URI> is the path to the CDMI cloud.2508

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., “/”) between2509

each pair of container names.2510

• <QueueName> is the name specified for the queue object to be created.2511

After it is created, the object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.2512

The newly created queue shall have no values unless the queue is created as a result of copying or moving a source2513

queue that has values or as a result of deserializing a serialized queue that has values.2514

11.3.2 Delayed completion of create2515

In response to a create operation for a queue object, the server may return an HTTP status code of 202 Accepted2516

to indicate that the object is in the process of being created. This response is useful for long­running operations (e.g.,2517

copying a large queue object from a source URI). Such a response has the following implications.2518

• The server shall return a ‘’Location’’ header with an absolute URI to the object to be created along with an HTTP2519

status code of 202 Accepted.2520

• With an HTTP status code of 202 Accepted, the server implies that the following checks have passed:2521

– user authorization for creating the object;2522

– user authorization for read access to any source object for move, copy, serialize, or deserialize; and2523

– availability of space to create the object or at least enough space to create a URI to report an error.2524

• A client might not be able to immediately access the created object, e.g., due to delays resulting from the imple­2525

mentation’s use of eventual consistency.2526

The client performs GET operations to the URI to track the progress of the operation. In response, the server returns2527

two fields in its response body to indicate progress.2528

• A mandatory completionStatus text field contains either “Processing”, “Complete”, or an error string start­2529

ing with the value “Error”.2530

• An optional percentComplete field contains the percentage of the operation that has completed (0 to 100).2531

GET shall not return any value for the queue object when completionStatus is not “Complete”. If the final result of2532

the create operation is an error, the URI is created with the completionStatus field set to the error message. It is2533

the client’s responsibility to delete the URI after the error has been noted.2534

11.3.3 Capabilities2535

Capabilities that indicate which operations are supported are shown in Table 100.2536

Table 100: Capabilities ­ Create a CDMI queue object using CDMI
Capability Location Description
cdmi_create_queue Parent container Ability to create a new queue object
cdmi_create_reference Parent container Ability to create a new reference
cdmi_copy_queue Parent container Ability to create a queue object that is a copy of

another queue object
continues on next page

© SNIA 2020 SNIA Technical Position 164

Cloud Data Management Interface 2.0.0

Table 100 – continued from previous page
Capability Location Description
cdmi_move_queue Parent container Ability to move a queue object from another

queue object
cdmi_deserialize_queue Parent container Ability to create a queue object that is

deserialized from the contents of the PUT or the
contents of another data object

11.3.4 Request headers2537

The HTTP request headers for creating a CDMI queue object using CDMI are shown in Table 1012538

Table 101: Request headers ­ Create a queue object Using CDMI
2539

Header Type Description Requirement
Accept Header

string
“application/cdmi­queue” Mandatory

Content­Type Header
string

“application/cdmi­queue” Mandatory

2540

11.3.5 Request message body2541

The request message body fields for creating a queue object using CDMI are shown in2542

tbl_cdmi_queue_object_create_request_message_body.2543

Table 102: Request message body ­ Create a queue object using CDMI
Field Name Type Description Requirement
metadata JSON

object
Metadata for the queue object

• If this field is included, the contents of the JSON object
provided in this field shall be used as queue object
metadata.

• If this field is included when deserializing, serializing,
copying, or moving a queue object, the contents of the
JSON object provided in this field shall be used as
object metadata instead of the metadata from the
source URI.

• If this field is not included, no user­specified metadata
shall be added to the object.

• If this field is not included when deserializing,
serializing, copying, or moving a queue object,
metadata from the source URI shall be used.

• This field shall not be included when creating a
reference to a queue object.

Optional

domainURI JSON
string

URI of the owning domain
• If different from the parent domain, the user shall have
the “cross_domain” privilege (see
cdmi_member_privileges in Table 80).

• If not specified, the domain of the parent container shall
be used.

Optional

deserialize JSON
string

URI of a CDMI data object with a value that contains a queue
object serialized as specified in clause 15. The serialized
queue object shall be deserialized to create the new queue
object.

Optional1

continues on next page

© SNIA 2020 SNIA Technical Position 165

Cloud Data Management Interface 2.0.0

Table 102 – continued from previous page
Field Name Type Description Requirement
copy JSON

string
URI of a source CDMI queue object that shall be copied into
the new destination queue object.

• If the destination queue object URI and the copy source
queue object URI both do not specify individual fields,
the destination queue object shall be a complete copy
of the source queue object, including all enqueued
values.

• If the destination queue object URI or the copy source
queue object URI specifies individual fields, only the
fields specified shall be used to create the destination
queue object. If specified fields are not present in the
source, default field values shall be used.

• If the destination queue object URI and the copy source
queue object URI both specify fields, an HTTP status
code of 400 Bad Request shall be returned to the
client.

If there are insufficient permissions to read the queue object
at the source URI or create the queue object at the
destination URI, or if the read operation fails, the copy shall
return an HTTP status code of 400 Bad Request, and the
destination queue object shall not be created.

Optional1

move JSON
string

URI of an existing local or remote CDMI queue object (source
URI) that shall be relocated to the URI specified in the PUT.
The contents of the queue object, including the object ID,
shall be preserved by a move, and the queue object at the
source URI shall be removed after the queue object at the
destination has been successfully created.
If there are insufficient permissions to read the queue object
at the source URI, write the queue object at the destination
URI, or delete the queue object at the source URI, or if any of
these operations fail, the move shall return an HTTP status
code of 400 Bad Request, and the source and destination
are left unchanged.

Optional1

reference JSON
string

URI of a CDMI queue object that shall be redirected to by a
reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status code
of 400 Bad Request.

Optional1

deserializevalue JSON
string

A queue object serialized as specified in clause 15 and
encoded using base 64 encoding rules described in RFC
4648 [19], that shall be deserialized to create the new queue
object.

Optional1

1 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 166

Cloud Data Management Interface 2.0.0

11.3.6 Response status2544

The HTTP response headers for creating a CDMI queue object using CDMI are shown in Table 1032545

Table 103: Response headers ­ Create a queue object Using CDMI
2546

Header Type Description Requirement
Content­Type Header

string
“application/cdmi­queue” Mandatory

Location Header
string

When an HTTP status code of 202 Accepted is returned,
the server shall respond with the absolute URL of the object
that is in the process of being created.

Conditional

2547

11.3.7 Response message body2548

The response message body fields for creating a CDMI queue object using CDMI are shown in Table 1042549

Table 104: Response message body ­ Create a queue object using CDMI
Field Name Type Description Requirement
objectType JSON

string
“application/cdmi­queue” Mandatory

objectID JSON
string

Object ID of the object Mandatory

objectName JSON
string

Name of the object Mandatory

parentURI JSON
string

URI for the parent object
Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Mandatory

parentID JSON
string

Object ID of the parent container object Mandatory

domainURI JSON
string

URI of the owning domain. Mandatory

capabilitiesURI JSON
string

URI to the capabilities for the object Mandatory

completionStatus JSON
string

A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully created
or updated or if an error occurred.
The value shall be the string “Processing”, the string
“Complete”, or an error string starting with the value “Error”.

Mandatory

percentComplete JSON
string

A string indicating the percentage of completion if the object is
still in the process of bewing created or updated by another
operation.

• When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from “0” through “100”.

• When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

• When the value of completionStatus is “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 167

Cloud Data Management Interface 2.0.0

Table 104 – continued from previous page
Field Name Type Description Requirement
metadata JSON

object
Metadata for the queue object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See clause 16 for a
further description of metadata.

Mandatory

queueValues JSON
string

The range of designators for enqueued values. Every
enqueued value shall be assigned a unique,
monotonically­incrementing positive integer designator,
starting from 0. If no values are enqueued, an empty string
shall be returned. If values are enqueued, the lowest
designator, followed by a hyphen (“­“), followed by the
highest designator shall be returned.

Mandatory

11.3.8 Response status2550

The HTTP status codes that occur when creating a queue object using CDMI are described in Table 105.2551

Table 105: HTTP status codes ­ Create a queue object using CDMI
2552

HTTP Status Description
201 Created The new queue object was created.
202 Accepted The queue object is in the process of being created. The CDMI client should

monitor the completionStatus and percentComplete fields to determine
the current status of the operation.

400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

2553

11.3.9 Examples2554

Example 1: PUT to the queue URI the queue object name and contents:2555

­­> PUT /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­queue
­­> Content­Type: application/cdmi­queue
­­>
­­> {
­­> "metadata" : {
­­>
­­> }
­­> }

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­queue
<­­
<­­ {
<­­ "objectType" : "application/cdmi­queue",
<­­ "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
<­­ "objectName" : "MyQueue",
<­­ "parentURI " : "/MyContainer/",
<­­ "parentID" : "00007ED900104F67307652BAC9A37C93",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/queue/",
<­­ "completionStatus" : "Complete",

(continues on next page)

© SNIA 2020 SNIA Technical Position 168

Cloud Data Management Interface 2.0.0

(continued from previous page)
<­­ "metadata" : {
<­­ ...
<­­ },
<­­ "queueValues" : ""
<­­ }

EXAMPLE 2: PUT to the queue object URI to create a new queue, copying from another queue:2556

­­> PUT /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­queue
­­>
­­> {
­­> "copy": "/MyContainer/SourceQueue?value=0­9"
­­> }

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­queue
<­­
<­­ {
<­­ "objectType": "application/cdmi­queue",
<­­ "objectID": "00007E7F00104BE66AB53A9572F9F51E",
<­­ "objectName": "MyQueue",
<­­ "parentURI ": "/MyContainer/",
<­­ "parentID": "00007ED900104F67307652BAC9A37C93",
<­­ "domainURI": "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI": "/cdmi_capabilities/queue/",
<­­ "completionStatus": "Complete",
<­­ "metadata": {
<­­ ...
<­­ },
<­­ "queueValues": "0­9"
<­­ }

© SNIA 2020 SNIA Technical Position 169

Cloud Data Management Interface 2.0.0

11.4 Read a queue object using CDMI2557

11.4.1 Synopsis2558

To read all fields from an existing queue object, the following request shall be performed:2559

• GET <root URI>/<ContainerName>/<QueueName>2560

• GET <root URI>/<ContainerName>/<QueueName>?<fieldname>&<fieldname>&...2561

• GET <root URI>/<ContainerName>/<QueueName>?value=<range>&...2562

• GET <root URI>/<ContainerName>/<QueueName>?metadata=<prefix>&...2563

• GET <root URI>/<ContainerName>/<QueueName>?values=<count>2564

• GET <root URI>/cdmi_objectid/<QueueObjectID>2565

• GET <root URI>/cdmi_objectid/<QueueObjectID>?<fieldname>&<fieldname>&...2566

• GET <root URI>/cdmi_objectid/<QueueObjectID>?value=<range>&...2567

• GET <root URI>/cdmi_objectid/<QueueObjectID>?metadata=<prefix>&...2568

• GET <root URI>/cdmi_objectid/<QueueObjectID>?values=<count>2569

Where:2570

• <root URI> is the path to the CDMI cloud.2571

• <ContainerName> is zero or more intermediate containers.2572

• <QueueName> is the name of the queue object to be read from.2573

• <fieldname> is the name of a field.2574

• <range> is a byte range of the queue object value to be returned in the value field. If a byte range is requested,2575

the range returned shall be from the oldest queue object value.2576

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.2577

• <count> is the number of values to be retrieved from the queue object. If more queue object entries are requested2578

to be retrieved than exist in the queue object, the count is processed as if it is equal to the number of entries in2579

the queue object.2580

• <QueueObjectID> is the ID of the queue object to be read from.2581

Reading a queue object shall, by default, return the complete value of the oldest item in the queue, unless the queue­2582

Values range is empty.2583

11.4.2 Capabilities2584

Capabilities that indicate which operations are supported are shown in Table 106.2585

Table 106: Capabilities ­ Read a CDMI queue object using CDMI
Capability Location Description
cdmi_read_metadata Queue object Ability to read the metadata of an existing queue

object
cdmi_read_value Queue object Ability to read the value of an existing queue

object
cdmi_multipart_mime Queue object Ability to read a queue object using multi­part

MIME
cdmi_object_access_by_ID System wide

capability
Ability to access the object by ID

© SNIA 2020 SNIA Technical Position 170

Cloud Data Management Interface 2.0.0

11.4.3 Request headers2586

The HTTP request headers for reading a CDMI queue object using CDMI are shown in Table 1072587

Table 107: Request headers ­ Read a queue object using CDMI
2588

Header Type Description Requirement
Accept Header

string
“application/cdmi­queue”, “multipart/mixed”, or a
consistent value as defined in 5.5.2
If “multipart/mixed”, the body shall consist of one or more
MIME parts, where the first part shall contain a body of
content­type “application/cdmi­queue”, and the second
and subsequent parts shall each contain the corresponding
queue value.

Optional

2589

11.4.4 Request message body2590

A request body shall not be provided.2591

11.4.5 Response status2592

The HTTP response headers for reading a CDMI queue object using CDMI are shown in Table 108.2593

Table 108: Response headers ­ Read a queue object using CDMI
2594

Header Type Description Requirement
Content­Type Header

string
“application/cdmi­queue” or “multipart/mixed” Mandatory

Location Header
string

The server shall respond with an absolute URI to which the
reference redirects if the object is a reference.

Conditional

2595

11.4.6 Response message body2596

The response message body fields for reading a CDMI queue object using CDMI are shown in Table 1092597

Table 109: Response message body ­ Read a queue object using CDMI
Field Name Type Description Requirement
objectType JSON

string
“application/cdmi­queue” Mandatory

objectID JSON
string

Object ID of the object Mandatory

objectName JSON
string

Name of the object
• For objects in a container, the objectName field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the “objectName” field does not
exist and shall not be returned.

Conditional

continues on next page

© SNIA 2020 SNIA Technical Position 171

Cloud Data Management Interface 2.0.0

Table 109 – continued from previous page
Field Name Type Description Requirement
parentURI JSON

string
URI for the parent object

• For objects in a container, the parentURI field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the “parentURI” field does not exist
and shall not be returned.

Appending the “objectName” to the “parentURI” shall
always produce a valid URI for the object.

Conditional

parentID JSON
string

Object ID of the parent container object
• For objects in a container, the “parentID” field shall
be returned.

• For objects not in a container (objects that are only
accessible by ID), the “parentID” field does not exist
and shall not be returned.

Conditional

domainURI JSON
string

URI of the owning domain Mandatory

capabilitiesURI JSON
string

URI to the capabilities for the object Mandatory

completionStatus JSON
string

A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully created
or updated or if an error occurred.
The value shall be the string “Processing”, the string
“Complete”, or an error string starting with the value “Error”.

Mandatory

percentComplete JSON
string

A string indicating the percentage of completion if the object is
still in the process of bewing created or updated by another
operation.

• When the value of completionStatus is
“Processing”, this field, if provided, shall indicate the
percentage of completion as a numeric integer value
from 0 through 100.

• When the value of completionStatus is
“Complete”, this field, if provided, shall contain the
value “100”.

• When the value of completionStatus is “Error”,
this field, if provided, may contain any integer value
from “0” through “100”.

Optional

metadata JSON
object

Metadata for the queue object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system.
See clause 16 for a further description of metadata.

Mandatory

queueValues JSON
string

The range of designators for enqueued values. Every
enqueued value shall be assigned a unique,
monotonically­incrementing positive integer designator,
starting from 0. If no values are enqueued, an empty string
shall be returned. If values are enqueued, the lowest
designator, followed by a hyphen (“­“), followed by the
highest designator shall be returned.

• This field shall only be provided when
completionStatus is “Complete” and when one or
more values are enqueued.

Mandatory

continues on next page

© SNIA 2020 SNIA Technical Position 172

Cloud Data Management Interface 2.0.0

Table 109 – continued from previous page
Field Name Type Description Requirement
mimetype JSON

array of
JSON
strings

MIME types for each queue object value * The MIME types of
the values are returned, each corresponding to the value in
the same position in the JSON array. * This field shall only be
provided when completionStatus is “Complete” and
when one or more values are enqueued.

Optional

valuerange JSON
array of
JSON
strings

The range of bytes of the queue object values to be returned
in the value field

• The value ranges of the values are returned, each
corresponding to the value in the same position in the
JSON array.

• If a specific value range has been requested, the entry
in the valuerange field shall correspond to the bytes
requested. If the request extends beyond the end of
the value, the valuerange field shall indicate the smaller
byte range returned.

• This field shall only be provided when
completionStatus is “Complete” and when one or
more values are enqueued.

Optional

valuetransfer
↪→ encoding

JSON
array of
JSON
strings

The value transfer encoding used for each queue object
value. Two value transfer encodings are defined:

• “utf­8” indicates that the queue object value contains
a valid UTF­8 string, and it shall be transported as a
UTF­8 string in the value field.

• “base64” indicates that the queue object value may
contain arbitrary binary sequences, and it shall be
transported as a base 64­encoded string in the value
field.

• “json” indicates that the queue object value contains a
valid JSON object, and the value field shall contain a
JSON object.

The value transfer encodings are returned, each
corresponding to the value in the same position in the JSON
array.

• This field shall only be provided when
completionStatus is “Complete” and when one or
more values are enqueued.

Optional

value JSON
array of
JSON
strings

The oldest enqueued queue object values
• The values in the JSON array are returned in order
from oldest to newest.

• If the valuetransferencoding field indicates UTF­8
encoding, the corresponding value field shall contain a
UTF­8 string using JSON escaping rules described
in RFC 4627 [5].

• If the valuetransferencoding field indicates base
64 encoding, the corresponding value field shall contain
a base 64­encoded string as described in RFC RFC
4648 [19].

• If the valuetransferencoding field indicates JSON
encoding, the corresponding value field shall contain a
JSON object.

• The value field shall not be provided when using
multi­part MIME.

• The value field shall only be provided when the
completionStatus field contains “Complete”.

Conditional

If individual fields are specified in the GET request, only these fields are returned in the result body. Optional fields that2598

are requested but do not exist are omitted from the result body.2599

© SNIA 2020 SNIA Technical Position 173

Cloud Data Management Interface 2.0.0

11.4.7 Response status2600

The HTTP status codes that occur when reading a queue object using CDMI are described in Table 110.2601

Table 110: HTTP status codes ­ Read a queue object using CDMI
2602

HTTP Status Description
200 OK The queue object content was returned in the response.
302 Found The resource is a reference to another resource.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
406 Not Acceptable The server is unable to provide the object in the content type specified in the

Accept header.

2603

11.4.8 Examples2604

EXAMPLE 1: GET to the queue object URI to read all fields of the queue object:2605

­­> GET /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­queue

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­queue
<­­
<­­ {
<­­ "objectType": "application/cdmi­queue",
<­­ "objectID": "00007E7F00104BE66AB53A9572F9F51E",
<­­ "objectName": "MyQueue",
<­­ "parentURI": "/MyContainer/",
<­­ "parentID" : "00007ED900104F67307652BAC9A37C93",
<­­ "domainURI": "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI": "/cdmi_capabilities/queue/",
<­­ "completionStatus": "Complete",
<­­ "metadata": {},
<­­ "queueValues": "1­1",
<­­ "mimetype": [
<­­ "text/plain"
<­­],
<­­ "valuerange": [
<­­ "0­19"
<­­],
<­­ "valuetransferencoding": [
<­­ "utf­8"
<­­],
<­­ "value": [
<­­ "First Enqueued Value"
<­­]
<­­ }

EXAMPLE 2: GET to the queue object URI to read the value and queue items of the queue object:2606

­­> GET /cdmi/2.0.0/MyContainer/MyQueue?value&queueValues HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­queue

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­queue
<­­
<­­ {
<­­ "queueValues" : "1­1",
<­­ "value" : [

(continues on next page)

© SNIA 2020 SNIA Technical Position 174

Cloud Data Management Interface 2.0.0

(continued from previous page)
<­­ "First Enqueued Value"
<­­]
<­­ }

EXAMPLE 3: GET to the queue object URI to read the first five bytes of the value of the queue object:2607

­­> GET /cdmi/2.0.0/MyContainer/MyQueue?value:0­4 HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­queue

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­queue
<­­
<­­ {
<­­ "value" : [
<­­ "First"
<­­]
<­­ }

EXAMPLE 4: GET to the queue object URI to read two values of the queue object:2608

­­> GET /cdmi/2.0.0/MyContainer/MyQueue?mimetype&valuerange&values=2 HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­queue

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­queue
<­­
<­­ {
<­­ "mimetype" : [
<­­ "text/plain",
<­­ "text/plain"
<­­],
<­­ "valuerange" : [
<­­ "0­19",
<­­ "0­20"
<­­],
<­­ "value" : [
<­­ "First Enqueued Value",
<­­ "Second Enqueued Value"
<­­]
<­­ }

EXAMPLE 5: GET to the queue object URI to read the queue object using multi­part MIME:2609

­­> GET /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: multipart/mixed

<­­ HTTP/1.1 200 OK
<­­ Content­Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p
<­­ Content­Type: application/cdmi­queue
<­­
<­­ {
<­­ "objectType": "application/cdmi­queue",
<­­ "objectID": "00007ED9001035E14BD1BA70C2EE98FC",
<­­ "objectName": "MyQueue",
<­­ "parentURI": "/MyContainer/",
<­­ "parentID" : " 00007ED90010C2414303B5C6D4F83170",
<­­ "domainURI": "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI": "/cdmi_capabilities/queue/",
<­­ "completionStatus": "Complete",
<­­ "metadata": {
<­­ ...
<­­ },
<­­ "queueValues": "1­2",

(continues on next page)

© SNIA 2020 SNIA Technical Position 175

Cloud Data Management Interface 2.0.0

(continued from previous page)
<­­ "mimetype": [
<­­ "application/octet­stream",
<­­ "application/octet­stream"
<­­],
<­­ "valuerange": [
<­­ "0­19",
<­­ "0­36"
<­­],
<­­ "valuetransferencoding": [
<­­ "base64",
<­­ "base64"
<­­]
<­­ }
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p
<­­ Content­Type: application/octet­stream
<­­ Content­Transfer­Encoding: binary
<­­
<­­ <20 bytes of binary data>
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p
<­­ Content­Type: application/octet­stream
<­­ Content­Transfer­Encoding: binary
<­­
<­­ <37 bytes of binary data>
<­­
<­­ ­­gc0p4Jq0M2Yt08j34c0p­­

© SNIA 2020 SNIA Technical Position 176

Cloud Data Management Interface 2.0.0

11.5 Update a queue object using CDMI2610

11.5.1 Synopsis2611

To update some or all fields in an existing queue object (excluding the enqueueing of values), the following request shall2612

be performed:2613

• PATCH <root URI>/<ContainerName>/<QueueName>2614

• PATCH <root URI>/<ContainerName>/<QueueName>?metadata=<metadataname>&...2615

• PATCH <root URI>/cdmi_objectid/<QueueObjectID>2616

• PATCH <root URI>/cdmi_objectid/<QueueObjectID>?metadata=<metadataname>&...2617

Where:2618

• <root URI> is the path to the CDMI cloud.2619

• <ContainerName> is zero or more intermediate containers.2620

• <QueueName> is the name of the queue object to be updated.2621

• <QueueObjectID> is the ID of the queue object to be updated.2622

11.5.2 Capabilities2623

Capabilities that indicate which operations are supported are shown in Table 111.2624

Table 111: Capabilities ­ Update a queue object using CDMI
Capability Location Description
cdmi_modify_metadata Queue object Ability to modify the metadata of an existing

queue object
cdmi_object_access_by_ID System wide

capability
Ability to access the object by ID

11.5.3 Request headers2625

The HTTP request headers for updating a CDMI queue object using CDMI are shown in Table 1122626

Table 112: Request headers ­ Update a queue object Using CDMI
2627

Header Type Description Requirement
Content­Type Header

string
“application/cdmi­queue” Mandatory

2628

11.5.4 Request message body2629

The request message body fields for updating a queue object using CDMI are shown in2630

tbl_cdmi_queue_object_update_request_message_body.2631

Table 113: Request message body ­ Update a queue object Using CDMI
Field Name Type Description Requirement
metadata JSON

object
Metadata for the queue object. If present, the new metadata
specified replaces the existing object metadata. If individual
metadata items are specified in the URI, only those items are
replaced; other items are preserved. See clause 16 for a
further description of metadata.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 177

Cloud Data Management Interface 2.0.0

Table 113 – continued from previous page
Field Name Type Description Requirement
domainURI JSON

string
URI of the owning domain

• If different from the parent domain, the user shall have
the “cross­domain” privilege (see
cdmi_member_privileges in Table 80).

• If not specified, the existing domain shall be preserved.

Optional

deserialize JSON
string

URI of a CDMI data object with a value that contains a queue
object serialized as specified in clause 15. The serialized
queue object shall be deserialized to update the existing
queue object.

• If the destination queue object URI and the source
serialized queue object URI both do not specify
individual fields, the destination queue object shall be
replaced with the contents of the serialized source
queue object, with the exception that the destination
queue values shall be preserved. See 11.7 to
deserailize enqueued items.

• If the destination queue object URI or the source
serialized queue object URI specifies individual fields,
only the fields specified shall be used to update the
destination queue object. If specified fields are not
present in the source, these fields shall be ignored. If
the value field is specified, it shall be ignored.

• If the destination queue object URI and the source
serialized queue object URI both specify fields, an
HTTP status code of 400 Bad Request shall be
returned to the client.

If there are insufficient permissions to read the serialized
queue object at the source URI or update the queue object at
the destination URI, or if the read operation fails, the update
shall return an HTTP status code of 400 Bad Request, and
the destination queue object shall not be updated.

Optional2

copy JSON
string

URI of a source CDMI queue object that shall be copied into
the existing destination queue object.

• If the destination queue object URI and the copy source
queue object URI both do not specify individual fields,
the destination queue object shall be replaced with the
source queue object, with the exception that the
destination queue values shall be preserved. See 11.7
to copy enqueued items.

• If the destination queue object URI or the copy source
queue object URI specifies individual fields, only the
fields specified shall be used to update the destination
queue object. If specified fields are not present in the
source, these fields shall be ignored. If the value field is
specified, it shall be ignored.

• If the destination queue object URI and the copy source
queue object URI both specify fields, an HTTP status
code of 400 Bad Request shall be returned to the
client.

If there are insufficient permissions to read the queue object
at the source URI or update the queue object at the
destination URI, or if the read operation fails, the update shall
return an HTTP status code of 400 Bad Request, and the
destination queue object shall not be updated.

Optional2

continues on next page

© SNIA 2020 SNIA Technical Position 178

Cloud Data Management Interface 2.0.0

Table 113 – continued from previous page
Field Name Type Description Requirement
deserializevalue JSON

string
A queue object serialized as specified in clause 15 and
encoded using base 64 encoding rules described in RFC
4648 [19], that shall be deserialized to update the existing
queue object.
The object ID of the serialized queue object shall match the
object ID of the destination queue object. Otherwise, the
server shall return an HTTP status code of 400 Bad
Request.

• If the destination queue object URI does not specify
individual fields, the destination queue object shall be
replaced with the contents of the serialized source
queue object, with the exception that the destination
queue values shall be preserved. See 11.7 to
deserailize enqueued items.

• If the destination queue object URI specifies individual
fields, only the fields specified shall be used to update
the destination queue object. If specified fields are not
present in the source, these fields shall be ignored. If
the value field is specified, it shall be ignored.

If there are insufficient permissions update the queue object
at the destination URI, the update shall return an HTTP status
code of 400 Bad Request, and the destination queue
object shall not be updated.

Optional2

11.5.5 Response header2632

The HTTP response header for updating a CDMI queue object using CDMI is shown in Table 1142633

Table 114: Response header ­ Update a queue object Using CDMI
2634

Header Type Description Requirement
Location Header

string
The server shall respond with an absolute URI to which the
reference redirects if the object is a reference.

Conditional

2635

11.5.6 Response message body2636

A response body can be provided as per RFC 2616 [23].2637

11.5.7 Response status2638

Table 115 describes the HTTP status codes that occur when updating a queue object using CDMI.2639

Table 115: HTTP status codes ­ Update a queue object using CDMI
2640

HTTP Status Description
204 No Content The data object content was returned in the response.
302 Found The resource is a reference to another resource.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

2641

2 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored.

© SNIA 2020 SNIA Technical Position 179

Cloud Data Management Interface 2.0.0

11.5.8 Examples2642

EXAMPLE 1: PATCH to the queue object URI to set new metadata:2643

­­> PATCH /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­queue
­­>
­­> {
­­> "metadata" : {
­­>
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 2: PATCH to the queue object URI to move six queue values from another queue:2644

­­> PATCH /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­queue
­­>
­­> {
­­> "move": "/MyContainer/SourceQueue?value:10­15"
­­> }

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 180

Cloud Data Management Interface 2.0.0

11.6 Delete a queue object using CDMI2645

11.6.1 Synopsis2646

To delete an existing queue object, along with all enqueued values, the following request shall be performed:2647

• DELETE <root URI>/<ContainerName>/<QueueName>2648

• DELETE <root URI>/cdmi_objectid/<QueueObjectID>2649

Where:2650

• <root URI> is the path to the CDMI cloud.2651

• <ContainerName> is zero or more intermediate containers.2652

• <QueueName> is the name of the queue object to be deleted.2653

• <QueueObjectID> is the ID of the queue object to be deleted.2654

11.6.2 Capability2655

Capabilities that indicate which operations are supported are shown in Table 116.2656

Table 116: Capabilities ­ Delete a queue object using CDMI
Capability Location Description
cdmi_delete_queue Queue object Ability to delete an existing queue object
cdmi_object_access_by_ID System wide

capability
Ability to access the object by ID

11.6.3 Request header2657

Request headers can be provided as per RFC 2616 [23].2658

11.6.4 Request message body2659

A request body can be provided as per RFC 2616 [23].2660

11.6.5 Response headers2661

Response headers can be provided as per RFC 2616 [23].2662

11.6.6 Response message body2663

A response body can be provided as per RFC 2616 [23].2664

© SNIA 2020 SNIA Technical Position 181

Cloud Data Management Interface 2.0.0

11.6.7 Response status2665

Table 117 describes the HTTP status codes that occur when deleting a queue object using CDMI.2666

Table 117: HTTP status codes ­ Delete a queue object Using CDMI
2667

HTTP Status Description
204 No Content The queue object was successfully deleted.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

2668

11.6.8 Example2669

EXAMPLE 1: DELETE to the queue object URI:2670

­­> DELETE /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 182

Cloud Data Management Interface 2.0.0

11.7 Enqueue a new queue object value using CDMI2671

11.7.1 Synopsis2672

To enqueue one or more values into an existing queue object, the following request shall be performed:2673

• POST <root URI>/<ContainerName>/<QueueName>2674

• POST <root URI>/cdmi_objectid/<QueueObjectID>2675

Where:2676

• <root URI> is the path to the CDMI cloud.2677

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., “/”) between2678

each pair of container names.2679

• <QueueName> is the name of the queue object to be enqueued into.2680

• <QueueObjectID> is the ID of the queue object to be enqueued into.2681

11.7.2 Capabilities2682

Capabilities that indicate which operations are supported are shown in Table 118.2683

Table 118: Capabilities ­ Enqueue a new queue object value using CDMI
Capability Location Description
cdmi_modify_value Queue object Ability to enqueue a value into an existing queue

object
cdmi_multipart_mime System wide

capability
Ability to modify a queue object using multi­part
MIME

cdmi_object_access_by_ID System wide
capability

Ability to access the object by ID

11.7.3 Request headers2684

The HTTP request headers for enqueuing a new CDMI queue object value using CDMI are shown in Table 1192685

Table 119: Request headers ­ Enqueue a new queue object value using
CDMI

2686

Header Type Description Requirement
Content­Type Header

string
“application/cdmi­queue” or “multipart/mixed”
If “multipart/mixed”, the first part shall contain a body of
content­type “application/cdmi­queue”, and the
subsequent parts shall contain the queue values as described
in 8.4.

Mandatory

2687

© SNIA 2020 SNIA Technical Position 183

Cloud Data Management Interface 2.0.0

11.7.4 Request message body2688

The request message body fields for enqueuing a new queue object value using CDMI are shown in Table 120.2689

Table 120: Request message body ­ Enqueue a new queue object value
using CDMI

Field Name Type Description Requirement
mimetype JSON

array of
JSON
strings

MIME type(s) of the data value(s) to be enqueued into the
queue object.

• If this field is not included and multi­part MIME is not
being used, the value of “text/plain” shall be
assigned as the field value.

• If this field is not included and multi­part MIME is being
used, the value of the “Content­Type” header of the
corresponding MIME part shall be assigned as the field
value.

• The same number of array elements shall be present
as is present in the value field, and the mimetype field
shall be associated with the value in the corresponding
position.

• This mimetype field value shall be converted to lower
case before being stored.

Optional

copy JSON
string

URI of a source CDMI data object or queue object from which
the value shall be copied and enqueued.

• If a copy source object URI to a data object is provided,
the value, mimetype, and valuetransferencoding field
values from the source data object are used to enqueue
the new item into the destination queue object.

• If a copy source object URI to a queue object is
provided, the corresponding value, mimetype, and
valuetransferencoding field values of the specified
number of enqueued items in the source queue object
are copied to the destination queue object.

Optional3

move JSON
string

URI of a source CDMI data object or queue object from which
the value shall be moved and enqueued.

• If a move source object URI to a data object is provided,
the value, mimetype, and valuetransferencoding field
values from the source data object are used to
enqueue the new item into the destination queue
object, and the source data object is atomically deleted.

• If a move source object URI to a queue object is
provided, the corresponding value, mimetype, and
valuetransferencoding field values of the specified
number of enqueued items in the source queue object
are transferred to the destination queue object and
atomically removed from the source queue object.

Optional3

continues on next page

© SNIA 2020 SNIA Technical Position 184

Cloud Data Management Interface 2.0.0

Table 120 – continued from previous page
Field Name Type Description Requirement
valuetransfer
↪→ encoding

JSON
array of
JSON
strings

The value transfer encoding used for the queue object value.
Two value transfer encodings are defined:

• “utf­8” indicates that the queue object value contains
a valid UTF­8 string, and shall be transported as a
UTF­8 string in the value field.

• “base64” indicates that the queue object value may
contain arbitrary binary sequences, and shall be
transported as a base 64 encoded string in the value
field. Setting the contents of the queue object value
field to any value other than a valid base 64 string shall
result in an HTTP status code of 400 Bad Request
being returned to the client.

• “json” indicates that the queue object value contains a
valid JSON object, and the value field shall contain a
JSON object. Setting the contents of the queue object
value field to any value other than a valid JSOM object
shall result in an HTTP status code of 400 Bad
Request being returned to the client.

• If this field is not included and multi­part MIME is not
being used, the value of “utf­8” shall be assigned as
the field value.

• If this field is not included and multi­part MIME is being
used, the value of “utf­8” shall be assigned as the
field value if the “Content­Type” header of the
corresponding MIME part includes the charset
parameter as defined in RFC 2046 of “utf­8” (e.g.,
“;charset=utf­8”). Otherwise, the value of
“base64” shall be assigned as the field value. This
field applies only to the encoding of the value when
represented in JSON; the
“Content­Transfer­Encoding” header of the part
specifies the encoding of the value within a multi­part
MIME request, as defined in RFC 2045 [9].

Optional

value JSON
array of
JSON
strings

Data to be enqueued into the queue object.
• If this field is not included and multi­part MIME is being
used, the contents of the MIME parts shall be assigned
as the field value.

• If the corresponding valuetransferencoding field
indicates UTF­8 encoding, the value shall be a UTF­8
string escaped using the JSON escaping rules
described in RFC 4627 [5].

• If the corresponding valuetransferencoding field
indicates base 64 encoding, the value shall be first
encoded using the base 64 encoding rules as
described in RFC 4648 [19].

• If the corresponding valuetransferencoding field
indicates JSON encoding, the value shall contain a
JSON object.

Optional3

3 Only one of these fields shall be specified in any given operation. Except for value, these fields shall not be stored. If more than one of
these fields is supplied, the server shall respond with an HTTP status code of 400 Bad Request.

© SNIA 2020 SNIA Technical Position 185

Cloud Data Management Interface 2.0.0

11.7.5 Response headers2690

Response headers can be provided as per RFC 2616 [23].2691

11.7.6 Response message body2692

A response body can be provided as per RFC 2616 [23].2693

11.7.7 Response status2694

Table 121 describes the HTTP status codes that occur when enqueuing a new queue object using CDMI.2695

Table 121: HTTP status codes ­ Enqueue a new queue object value Using
CDMI

2696

HTTP Status Description
204 No Content The new queue object values were enqueued.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

2697

11.7.8 Examples2698

EXAMPLE 1: POST to the queue object URI a new value:2699

­­> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­queue
­­>
­­> {
­­> "mimetype" : [
­­> "text/plain"
­­>],
­­> "value" : [
­­> "Value to Enqueue"
­­>]
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 2: POST to the queue object URI to copy an existing value:2700

­­> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "copy" : "/MyContainer/MyDataObject.txt"
­­> }

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 186

Cloud Data Management Interface 2.0.0

EXAMPLE 3: POST to the queue object URI to transfer 20 values from another queue object:2701

­­> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "move" : "/MyContainer/FirstQueue?values=20"
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 4: POST to the queue object URI two new values:2702

­­> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype" : [
­­> "text/plain",
­­> "text/plain"
­­>],
­­> "value" : [
­­> "First",
­­> "Second"
­­>]
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 5: POST to the queue object URI two new values, one with base 64 transfer encoding and one with utf­82703

transfer encoding:2704

­­> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "mimetype": [
­­> "text/plain",
­­> "text/plain",
­­> "application/json"
­­>],
­­> "valuetransferencoding": [
­­> "utf­8",
­­> "base64",
­­> "json"
­­>],
­­> "value": [
­­> "First",
­­> "U2Vjb25k",
­­> {
­­> "value" : "test"
­­> }
­­>]
­­> }

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 187

Cloud Data Management Interface 2.0.0

EXAMPLE 6: POST to the queue object URI the binary contents of two new values using multi­part MIME:2705

­­> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/cdmi­queue
­­>
­­> {}
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/octet­stream
­­> Content­Transfer­Encoding: binary
­­>
­­> <20 bytes of binary data>
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/octet­stream
­­> Content­Transfer­Encoding: binary
­­>
­­> <37 bytes of binary data>
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p­­

<­­ HTTP/1.1 204 No content

EXAMPLE 7: POST to the queue object URI the mime types and binary contents of two new values using multi­part2706

MIME:2707

­­> POST /cdmi/2.0.0/MyContainer/MyQueue HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/cdmi­queue
­­>
­­> {
­­> "mimetype" : [
­­> "application/pdf",
­­> "image/jpeg"
­­>]
­­> }
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/octet­stream
­­> Content­Transfer­Encoding: binary
­­>
­­> <20 bytes of binary data>
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p
­­> Content­Type: application/octet­stream
­­> Content­Transfer­Encoding: binary
­­>
­­> <37 bytes of binary data>
­­>
­­> ­­gc0p4Jq0M2Yt08j34c0p­­

<­­ HTTP/1.1 204 No content

© SNIA 2020 SNIA Technical Position 188

Cloud Data Management Interface 2.0.0

11.8 Delete a queue object value using CDMI2708

11.8.1 Synopsis2709

To delete one or more of the oldest enqueued values in an existing queue, the following request shall be performed:2710

• DELETE <root URI>/<ContainerName>/<QueueName>?value2711

• DELETE <root URI>/<ContainerName>/<QueueName>?values=<count>2712

• DELETE <root URI>/<ContainerName>/<QueueName>?values=<range>2713

• DELETE <root URI>/cdmi_objectid/<QueueObjectID>?value2714

• DELETE <root URI>/cdmi_objectid/<QueueObjectID>?values=<count>2715

• DELETE <root URI>/cdmi_objectid/<QueueObjectID>?values=<range>2716

Where:2717

• <root URI> is the path to the CDMI cloud.2718

• <ContainerName> is zero or more intermediate containers.2719

• <QueueName> is the name of the queue object to be deleted from.2720

• <QueueObjectID> is the ID of the queue object to be deleted from.2721

• <count> is the number of values, starting from the oldest, to be removed from the queue object. If more queue2722

object entries are requested to be deleted than exist in the queue object, the count shall be considered equal to2723

the number of entries in the queue object.2724

• <range> is the lowest to highest numbers as found in the queueValues field that are to be removed from the2725

queue object. The first range value shall be smaller or equal to the lowest queue value. If the first range value2726

is smaller than the lowest queue value, the lowest existing queue value shall be used. If the first range value is2727

larger than the lowest queue value, an HTTP status code of 400 Bad Request shall be returned to the client.2728

If the second range value is higher than the highest existing queue value, the highest existing queue value shall2729

be used, which allows for idempotent queue value deletion.2730

The “?value” suffix at the end of the queue resource URI shall be included to distinguish the deletion of the oldest value2731

from the deletion of the queue object itself, as described in 11.6 (which deletes all enqueued values).2732

11.8.2 Capabilities2733

Capabilities that indicate which operations are supported are shown in Table 122.2734

Table 122: Capabilities ­ Delete a queue object value using CDMI
Capability Location Description
cdmi_modify_value Queue object Ability to delete a value from an existing queue

object
cdmi_object_access_by_ID System wide

capability
Ability to access the object by ID

11.8.3 Request header2735

Request headers can be provided as per RFC 2616 [23].2736

© SNIA 2020 SNIA Technical Position 189

Cloud Data Management Interface 2.0.0

11.8.4 Request message body2737

A request body can be provided as per RFC 2616 [23].2738

11.8.5 Response headers2739

Response headers can be provided as per RFC 2616 [23].2740

11.8.6 Response message body2741

A response body can be provided as per RFC 2616 [23].2742

11.8.7 Response status2743

Table 123 describes the HTTP status codes that occur when deleting a queue object value using CDMI.2744

Table 123: HTTP status codes ­ Delete a queue object value using CDMI
2745

HTTP Status Description
204 No Content The queue object value was successfully deleted.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
409 Conflict The operation conflicts with a non­CDMI access protocol lock or has caused a

state transition error on the server.

2746

11.8.8 Examples2747

EXAMPLE 1: DELETE to the queue object URI value to delete the oldest enqueued value:2748

­­> DELETE /cdmi/2.0.0/MyContainer/MyQueue?value HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 204 No Content

EXAMPLE 2: DELETE to the queue object URI value to remove the ten oldest values:2749

­­> DELETE /cdmi/2.0.0/MyContainer/MyQueue?values=10 HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 204 No Content

EXAMPLE 3: DELETE to the queue object URI value to remove queue values 10 through 19:2750

­­> DELETE /cdmi/2.0.0/MyContainer/MyQueue?values=10­19 HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 190

Cloud Data Management Interface 2.0.0

Clause 122751

Capability object resource operations using2752

CDMI2753

12.1 Overview2754

Capability objects indicate what specific functionality and operations are supported by a given CDMI server, and allow2755

CDMI clients to discover what subset of this International Standard is implemented.2756

All CDMI servers shall support capabilities and the ability for CDMI clients to read capabilities.2757

Each CDMI capability object is represented as a JSON object, containing one or more “fields”. For example, the2758

“capabilities” field contains specific capability items.2759

EXAMPLE 1: CDMI capability object2760

{
"objectType": "application/cdmi­capability",
"objectID": "00007E7F00104BE66AB53A9572F9F51E",
"objectName": "cdmi_capabilities/",
"parentURI": "/",
"parentID": "00007E7F0010128E42D87EE34F5A6560",
"capabilities": {

"cdmi_domains": "true",
"cdmi_export_nfs": "true",
"cdmi_export_iscsi": "true",
"cdmi_queues": "true",
"cdmi_notification": "true",
"cdmi_query": "true",
"cdmi_metadata_maxsize": "4096",
"cdmi_metadata_maxitems": "1024"

},
"childrenrange": "0­3",
"children": [
"domain/",
"container/",
"dataobject/",
"queue/"

]
}

The meaning, use, and permitted values of each field is described in 12.3.2761

© SNIA 2020 SNIA Technical Position 191

Cloud Data Management Interface 2.0.0

12.2 Capability object details2762

12.2.1 Capability object addressing2763

Capability objects are addressed in CDMI in two ways:2764

• by name (e.g. https://cloud.example.com/cdmi/2.0.0/cdmi_capabilities/); and2765

• by ID (e.g. https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/2766

↪→ 00007E7F00104BE66AB53A9572F9F51E/).2767

Every capability object has a single, globally­unique object ID that remains constant for the life of the object. Each2768

capability object may also have one or more URI addresses that allow the capability object to be accessed.2769

When a capability object is addressed via more than one unique URIs, all operations may be performed through2770

any of these URIs. For example, a capability object may be accessible via multiple virtual hosting paths,2771

where https://cloud.example.com/cdmi/2.0.0/users/snia/cdmi/cdmi_capabilities/ is also acces­2772

sible through https://snia.example.com/cdmi/2.0.0/cdmi_cabilities/.2773

Following the URI conventions for hierarchical paths, capability URIs shall consist of one or more capability names that2774

are separated by forward slashes (“/”) and that end with a forward slash (“/”).2775

If a request is performed against an existing capability resource and the trailing slash at the end of the URI is omitted,2776

the server shall respond with an HTTP status code of 301 Moved Permanently. In addition, a Location header2777

containing the URI with the trailing slash added shall be returned.2778

Capabilities may also be nested.2779

EXAMPLE 2: The following URI represents a nested capability:2780

https://cloud.example.com/cdmi/2.0.0/cdmi_capabilities/container/2781

A nested capability has a parent capability object, and shall be included in the children field of the parent capability2782

object.2783

12.2.2 Capability object fields2784

Every CDMI object (excluding capability objects) includes a server­generated “capabilitiesURI” field that contains2785

the URI of the capabilities object that describes which operations are permitted for that CDMI object.2786

Fig. 8 (shown on the next page) shows the hierarchy of capabilities and shows how the capabilitiesURI links data objects,2787

container objects, queue objects and domain objects into the capabilities tree.2788

System­wide capabilities are described by the root capabilities object, which is accessible at “<root URI>/2789

cdmi_capabilities/”.2790

Capabilities cannot be altered by clients, but may be changed by the CDMI server to reflect configuration changes or2791

operational changes. For example, if a CDMI server is upgraded or reconfigured, additional capabilities may become2792

present, or existing capabilties may no longer be present. In practice, capabilities rarely change, and a client can assume2793

that they shall remain constant for the duration of a client­server HTTP/HTTPS session.2794

Cloud clients should use capabilities to discover what operations are supported. If an operation is attempted on a CDMI2795

object that does not have a corresponding capability, an HTTP status code of 400 Bad Request shall be returned to2796

the client.2797

The capabilities defined as part of this International Standard are described starting in 12.2.7. Vendor­defined capabili­2798

ties not specified in this International Standard shall not start with “cdmi_”.2799

© SNIA 2020 SNIA Technical Position 192

Cloud Data Management Interface 2.0.0

“cdmi_cababilities/“

“domain/“

“container/“

“gold_container/“

“dataobject/“

“immutable/“

“queue/“

capabilitiesURI

capabilitiesURI

capabilitiesURI

capabilitiesURI

capabilitiesURI

capabilitiesURI

capabilitiesURI

“/” Root URI

myimmutabledataobject

mydomain/

mycontainer/

mygoldcontainer/

mydataobject

myqueue

Fig. 8: Hierarchy of capabilities

12.2.3 Capability object metadata2800

Capability objects do not have metadata.2801

12.2.4 Capability object access control2802

Capability objects are not subject to CDMI ACLs. Any authenticated CDMI client shall be capable of reading all Capability2803

objects1 .2804

Capabilities may differ from the operations permitted by an Access Control List (ACL) (see 17.1) associated with a given2805

object. For example, a read­only cloud may not permit write access to a container or object, despite the presence of an2806

ACL allowing write access.2807

12.2.5 Queue object consistency2808

Capabilitiy objects are read­only.2809

1 A CDMI Server may filter the visibility of capability objects and/or capability items for security purposes, for example, to prevent the client
discovery of the names and characteristics of classification levels above the client’s maximum classification level. Such filtering is out of scope
of this International Standard.

© SNIA 2020 SNIA Technical Position 193

Cloud Data Management Interface 2.0.0

12.2.6 Capability object representations2810

The representations in this clause are shown using JSON notation. Both clients and servers shall support UTF­8 JSON2811

representation. The request and response body JSON fieldsmay be specified or returned in any order, with the exception2812

that, if present, for capability objects, the “childrenrange” and “children fields” shall appear last and in that2813

order.2814

© SNIA 2020 SNIA Technical Position 194

Cloud Data Management Interface 2.0.0

12.2.7 Cloud storage system­wide capabilities2815

tbl_system_wide_capabilities defines the system­wide capabilities in a cloud storage system. These capabili­2816

ties, which are found in the capabilities object, are referred to by the root URI (root capabilities).2817

Table 124: System­wide capabilities
Capability name Type Definition
cdmi_domains JSON string If present and “true”, the CDMI server supports

domains.
If not present, the domainURI field shall not be present
in response bodies and the “cdmi_domains” URI shall
not be present.

cdmi_export_smb JSON string If present and “true”, the CDMI server supports SMB
exports.

cdmi_dataobjects JSON string If present and “true”, the CDMI server supports data
objects.

cdmi_export_iscsi JSON string If present and “true”, the CDMI server supports iSCSI
exports.

cdmi_export_nfs JSON string If present and “true”, the CDMI server supports NFS
protocol exports.

cdmi_export_occi_iscsi JSON string If present and “true”, the CDMI server supports
OCCI/iSCSI exports.

cdmi_export_webdav JSON string If present and “true”, the CDMI server supports
WebDAV exports.

cdmi_metadata_maxitems JSON string If present, this capability indicates the maximum number
of user­defined metadata items supported per object.
If not present, there is no limit placed on the number of
user­defined metadata items.

cdmi_metadata_maxsize JSON string If present, this capability indicates the maximum size, in
bytes, of each user­defined metadata item supported
per object.
If not present, there is no limit placed on the size of
user­defined metadata items.

cdmi_metadata_maxtotalsize JSON string If present, this capability indicates the maximum size, in
bytes, of user­defined metadata supported by the CDMI
server.
If not present, there is no limit placed on the size of
user­defined metadata.

cdmi_notification JSON string If present and “true”, the CDMI server supports
notification queues.

cdmi_logging JSON string If present and “true”, the CDMI server supports
logging queues.

cdmi_query JSON string If present and “true”, the CDMI server supports query
queues.

cdmi_query_regex JSON string If present and “true”, the CDMI server supports query
with regular expressions.

cdmi_query_contains JSON string If present and “true”, the CDMI server supports query
with “contains” expressions.

cdmi_query_tags JSON string If present and “true”, the CDMI server supports query
with tag­matching expressions.

cdmi_query_value JSON string If present and “true”, the CDMI server supports query
of value fields.

cdmi_queues JSON string If present and “true”, the CDMI server supports queue
objects.

cdmi_security_access_control JSON string If present and “true”, the CDMI server supports ACLs.
See 12.2.9 for additional information.

continues on next page

© SNIA 2020 SNIA Technical Position 195

Cloud Data Management Interface 2.0.0

Table 124 – continued from previous page
Capability name Type Definition
cdmi_security_data_integrity JSON string If present and “true”, the CDMI server supports data

integrity/authenticity. See 12.2.9 for additional
information.

cdmi_security_encryption JSON string If present and “true”, the CDMI server supports data
at­rest encryption. See 12.2.9 for additional information.

cdmi_security_immutability JSON string If present and “true”, the CDMI server supports data
immutability/retentions. See 12.2.9 for additional
information.

cdmi_security_sanitization JSON string If present and “true”, the CDMI server supports
data/media sanitization. See 12.2.9 for additional
information.

cdmi_serialization_json JSON string If present and “true”, the CDMI server supports JSON
as a serialization format.

cdmi_snapshots JSON string If present and “true”, the CDMI server supports
snapshots.

cdmi_references JSON string If present and “true”, the CDMI server supports
references.

cdmi_object_move_from_local JSON string If present and “true”, the CDMI server supports
moving CDMI objects from URIs within the same
storage system.

cdmi_object_move_from_remote JSON string If present and “true”, the CDMI server supports
moving CDMI objects from URIs within other CDMI
storage systems.

cdmi_object_move_from_ID JSON string If present and “true”, the CDMI server supports
moving CDMI objects without a path from a
/cdmi_objectid/ URI within the same storage
system. This effectively adds a path, allowing the object
to be accessed by ID and by path.

cdmi_object_move_to_ID JSON string If present and “true”, the CDMI server supports
moving CDMI objects with a path to a
/cdmi_objectid/ URI within the same storage
system. This effectively removes the path, leaving the
object only accessible by ID.

cdmi_object_copy_from_local JSON string If present and “true”, the CDMI server supports
copying CDMI objects from URIs within the same
storage system.

cdmi_object_copy_from_remote JSON string If present and “true”, the CDMI server supports
copying CDMI objects from URIs within other CDMI
storage systems.

cdmi_object_access_by_ID JSON string If present and “true”, the CDMI server supports
accessing, updating, and deleting objects through
/cdmi_objectid/.

cdmi_post_dataobject_by_ID JSON string If present and “true”, the CDMI server supports adding
a new data object by ID via POST to
“/cdmi_objectid/”.

cdmi_post_queue_by_ID JSON string If present and “true”, the CDMI server supports adding
a new queue object by ID via POST to
“/cdmi_objectid/”.

cdmi_deserialize_dataobject_
↪→ by_ID

JSON string If present and “true”, the CDMI server supports
deserializating serialized data objects when creating a
new data object by ID via POST to
“/cdmi_objectid/”.

cdmi_deserialize_queue_by_ID JSON string If present and “true”, the CDMI server supports
deserializating serialized queue objects when creating a
new queue object by ID via POST to
“/cdmi_objectid/”.

continues on next page

© SNIA 2020 SNIA Technical Position 196

Cloud Data Management Interface 2.0.0

Table 124 – continued from previous page
Capability name Type Definition
cdmi_serialize_dataobject_
↪→ to_ID

JSON string If present and “true”, the CDMI server supports
serializing data objects when creating a new data object
by ID via POST to “/cdmi_objectid/”.

cdmi_serialize_domain_to_ID JSON string If present and “true”, the CDMI server supports
serializing domain objects when creating a new data
object by ID via POST to “/cdmi_objectid/”.

cdmi_serialize_container_
↪→ to_ID

JSON string If present and “true”, the CDMI server supports
serializing container objects when creating a new data
object by ID via POST to “/cdmi_objectid/”.

cdmi_serialize_queue_to_ID JSON string If present and “true”, the CDMI server supports
serializing queue objects when creating a new data
object by ID via POST to “/cdmi_objectid/”.

cdmi_copy_dataobject_by_ID JSON string If present and “true”, the CDMI server supports
copying an existing data object when creating a new
data object by ID via POST to “/cdmi_objectid/”.

cdmi_copy_queue_by_ID JSON string If present and “true”, the CDMI server supports
copying an existing queue object when creating a new
queue object by ID via POST to “/cdmi_objectid/”.

cdmi_create_reference_by_ID JSON string If present and “true”, the CDMI server supports
creating a new reference via POST to
“/cdmi_objectid/”.

cdmi_copy_dataobject_
↪→ from_queue

JSON string If present and “true”, the CDMI server supports the
ability to copy to a data object from a queue object.

cdmi_multipart_mime JSON string If present and “true”, the CDMI server supports storing
and retrieving the value of data and queue objects
using multi­part MIME.

cdmi_create_value_range_
↪→ by_ID

JSON string If present and “true”, the CDMI server supports a new
data object’s value to be created with byte ranges
through “/cdmi_objectid/”.

cdmi_dac JSON string If present and “true”, the CDMI server supports
delegated access control.

cdmi_dac_methods JSON array of
JSON strings

If present, this capability contains a list of URI schemes
supported for DAC URIs, as specified in the IANA URI
Schemes registry.
The following schemes shall be supported:

• “https” – mandatory for all DAC implementations
The following schemes may be supported:

• “http” – optional for DAC implementations
• “mailto” – optional for DAC implementations

cdmi_enc_cms JSON string If present and “true”, the CDMI server supports
operations against the contents of CMS encrypted
objects.

cdmi_enc_jwe JSON string If present and “true”, the CDMI server supports
operations against the contents of JWE encrypted
objects.

cdmi_enc_inplace JSON string If present and “true”, the CDMI server supports
operations to encrypt and decrypt objects in place,
including updates.

cdmi_enc_access JSON string If present and “true”, the CDMI server supports
operations to decrypt objects on access.

cdmi_cms_encryption JSON array of
JSON strings

If present, this capability lists which CMS
ContentEncryptionAlgorithmIdentifier
encryption algorithms are supported for operations
against the contents of CMS encrypted objects.

continues on next page

© SNIA 2020 SNIA Technical Position 197

Cloud Data Management Interface 2.0.0

Table 124 – continued from previous page
Capability name Type Definition
cdmi_cms_digest JSON array of

JSON strings
If present, this capability lists which CMS
MessageAuthenticationCodeAlgorithm digest
algorithms are supported for operations against the
contents of CMS encrypted objects.

cdmi_cms_signature JSON array of
JSON strings

If present, this capability lists which CMS
SignatureAlgorithmIdentifier signature
algorithms are supported for operations against the
contents of CMS encrypted objects.

cdmi_jwe_enc JSON array of
JSON strings

If present, this capability lists which JOSE “enc”
encryption algorithms are supported for operations
against the contents of JWE encrypted objects, as
defined in RFC 7518 [15].

cdmi_jwe_alg JSON array of
JSON strings

If present, this capability lists which JOSE “alg”
encryption algorithms are supported for operations
against the contents ofJWE encrypted objects, as
defined in RFC 7518 [15].

cdmi_jws_alg JSON array of
JSON strings

If present, this capability lists which JOSE “alg”
encryption algorithms are supported for operations
against the contents of JWS signatures, as defined in
RFC 7518 [15].

cdmi_valuetransferencoding_
↪→ json

JSON string If present and “true”, the CDMI server supports JSON
value transfer encodings.

© SNIA 2020 SNIA Technical Position 198

Cloud Data Management Interface 2.0.0

12.2.8 Storage system metadata capabilities2818

Table 125 defines the capabilities for storage systemmetadata in a cloud storage system. These capabilities are found in2819

the capabilities objects for domain objects, data objects, container objects, and queue objects. See 16.2 for a description2820

of these storage system metadata items.2821

Table 125: Capabilities for storage system metadata
Capability name Type Definition
cdmi_acl JSON string If present and “true”, the CDMI server supports ACLs.

When a CDMI implementation supports ACLs for the
purpose of access control, the system­wide capability of
cdmi_security_access_control specified in
12.2.7 of 12.2.7 shall also be set to “true”.
If not present, there is no support for ACL­based access
control.

cdmi_size JSON string If present and “true”, the CDMI server shall generate a
cdmi_size storage system metadata for each stored
object.

cdmi_ctime JSON string If present and “true”, the CDMI server shall generate a
cdmi_ctime storage system metadata for each stored
object.

cdmi_atime JSON string If present and “true”, the CDMI server shall generate a
cdmi_atime storage system metadata for each stored
object.

cdmi_mtime JSON string If present and “true”, the CDMI server shall generate a
cdmi_mtime storage system metadata for each stored
object.

cdmi_acount JSON string If present and “true”, the CDMI server shall generate a
cdmi_acount storage system metadata for each
stored object.

cdmi_mcount JSON string If present and “true”, the CDMI server shall generate a
cdmi_mcount storage system metadata for each
stored object.

cdmi_dac_uri JSON string If present and “true”, the CDMI server supports
delegated access control metadata.

cdmi_dac_certificate JSON string If present and “true”, the CDMI server supports
delegated access control metadata.

cdmi_enc_signature JSON string If present and “true”, the CDMI server shall generate a
cdmi_signature storage system metadata for each
stored object when a corresponding sign_id data
system metadata item is present.

cdmi_version_object JSON string If present and “true”, the CDMI server shall generate a
cdmi_version_object storage system metadata for
each version­enabled data object and data object
version.

cdmi_version_current JSON string If present and “true”, the CDMI server shall generate a
cdmi_version_current storage system metadata
for each version­enabled data object and data object
version.

cdmi_version_oldest JSON array of
JSON strings

If present and “true”, the CDMI server shall generate a
cdmi_version_oldest storage system metadata for
each version­enabled data object and data object
version.

cdmi_version_parent JSON string If present and “true”, the CDMI server shall generate a
cdmi_version_parent storage system metadata for
each data object version that has a previous version.

continues on next page

© SNIA 2020 SNIA Technical Position 199

Cloud Data Management Interface 2.0.0

Table 125 – continued from previous page
Capability name Type Definition
cdmi_version_children JSON array of

JSON strings
If present and “true”, the CDMI server shall generate a
cdmi_version_children storage system metadata
for each data object version.

© SNIA 2020 SNIA Technical Position 200

Cloud Data Management Interface 2.0.0

12.2.9 Data system metadata capabilities2822

tbl_capabilities_for_data_system_metadata defines the capabilities that indicate which data system meta­2823

data items are interpreted for objects stored in a cloud storage system. These capabilities are found in the capabilities2824

objects for domains, data objects, containers, and queues. See 16.3 for a description of the meaning of the correspond­2825

ing data system metadata items.2826

Table 126: Capabilities for data system metadata
Capability name Type Definition
cdmi_assignedsize JSON string If present and “true”, the CDMI server supports the

cdmi_assignedsize data system metadata as
defined in 16.3.

cdmi_data_redundancy JSON string If present, the CDMI server supports the
cdmi_data_redundancy data system metadata as
defined in 16.3. The value of the capability shall be set
to a positive numeric string representing the maximum
value that the server supports.

cdmi_data_dispersion JSON string If present and “true”, the CDMI server supports the
cdmi_data_dispersion data system metadata as
defined in 16.3.

cdmi_data_retention JSON string If present and “true”, the CDMI server supports both
the cdmi_retention_id and
cdmi_retention_period data system metadata as
defined in 16.3.

cdmi_data_autodelete JSON string If present and “true”, the CDMI server supports the
cdmi_data_autodelete data system metadata as
defined in 16.3.

cdmi_data_holds JSON string If present and “true”, the CDMI server supports the
cdmi_hold_id data system metadata as defined in
16.3.
When a cloud storage system supports holds for the
purpose of making data immutable, the system­wide
capability of cdmi_security_immutability
specified in tbl_system_wide_capabilities of
12.2.7 shall be present and set to “true”.

cdmi_encryption JSON array of
JSON strings

If present, the CDMI server supports the
cdmi_encryption data system metadata as defined
in 16.3.
When present, this capability shall contain one or more
JSON strings, each string corresponding to an
algorithm/mode/length value as described in the
cdmi_encryption data system metadata in 16.3.
When a cloud storage system supports at­rest
encryption, the system­wide capability of
cdmi_security_encryption specified in
tbl_system_wide_capabilities of 12.2.7 shall be
present and set to “true”.

cdmi_geographic_placement JSON string If present and “true”, the CDMI server supports the
cdmi_geographic_placement data system
metadata as defined in 16.3.

cdmi_immediate_redundancy JSON string If present, the CDMI server supports the
cdmi_immediate_redundancy data system
metadata as defined in 16.3.
When present, this capability shall contain a string set
to a positive numeric string representing the maximum
value that the server supports.

continues on next page

© SNIA 2020 SNIA Technical Position 201

Cloud Data Management Interface 2.0.0

Table 126 – continued from previous page
Capability name Type Definition
cdmi_infrastructure_
↪→ redundancy

JSON string If present, the CDMI server supports the
cdmi_infrastructure_redundancy data system
metadata as defined in 16.3.
When present, this capability shall contain a string set
to a positive numeric string representing the maximum
value that the server supports.

cdmi_latency JSON string If present and “true”, the CDMI server supports the
cdmi_latency data system metadata as defined in
16.3.

cdmi_RPO JSON string If present and “true”, the CDMI server supports the
cdmi_RPO data system metadata as defined in 16.3.

cdmi_RTO JSON string If present and “true”, the CDMI server supports the
cdmi_RTO data system metadata as defined in 16.3

cdmi_sanitization_method JSON array of
JSON strings

If present, the CDMI server supports the
cdmi_sanitization_method data system metadata
as defined in 16.3.
When present, this capability shall contain one or more
JSON strings, each string corresponding to a
sanitization method as described in the
cdmi_sanitization_method data system metadata
in 16.3.
When a cloud storage system supports sanitization, the
system­wide capability of
cdmi_security_sanitization specified in
tbl_system_wide_capabilities of 12.2.7 shall be
present and set to “true”.

cdmi_throughput JSON string If present and “true”, the CDMI server supports the
cdmi_throughput data system metadata as defined in
16.3.

cdmi_value_hash JSON array of
JSON strings

If present, the CDMI server supports the
cdmi_value_hash data system metadata as defined in
16.3.
When present, this capability shall contain one or more
JSON strings, each string corresponding to an
algorithm/length value as described in the
cdmi_value_hash data system metadata in 16.3.
When a cloud storage system supports value hashing,
the system­wide capability of
cdmi_security_data_integrity specified in
tbl_system_wide_capabilities of 12.2.7 shall be
present and set to “true”.

cdmi_enc_key_id JSON string When the cloud storage system supports the
cdmi_enc_key_id data system metadata as defined
in clause 16.3, the cdmi_enc_key_id capability shall
be present and set to the string value “true”. When
this capability is absent, or present and set to the string
value “false”, cdmi_enc_key_id data system
metadata shall not be used.

cdmi_enc_value_sign_id JSON string When the cloud storage system supports the
cdmi_enc_value_sign_id data system metadata as
defined in clause 16.3, the
cdmi_enc_value_sign_id capability shall be
present and set to the string value “true”. When this
capability is absent, or present and set to the string
value “false”, cdmi_enc_value_sign_id data
system metadata shall not be used.

continues on next page

© SNIA 2020 SNIA Technical Position 202

Cloud Data Management Interface 2.0.0

Table 126 – continued from previous page
Capability name Type Definition
cdmi_enc_value_verify_id JSON string When the cloud storage system supports the

cdmi_enc_value_verify_id data system metadata
as defined in clause 16.3, the
cdmi_enc_value_verify_id capability shall be
present and set to the string value “true”. When this
capability is absent, or present and set to the string
value “false”, cdmi_enc_value_verify_id data
system metadata shall not be used.

cdmi_enc_object_sign_id JSON string When the cloud storage system supports the
cdmi_enc_object_sign_id data system metadata
as defined in clause 16.3, the
cdmi_enc_object_sign_id capability shall be
present and set to the string value “true”. When this
capability is absent, or present and set to the string
value “false”, cdmi_enc_object_sign_id data
system metadata shall not be used.

cdmi_enc_object_verify_id JSON string When the cloud storage system supports the
cdmi_enc_object_verify_id data system
metadata as defined in clause 16.3, the
cdmi_enc_object_verify_id capability shall be
present and set to the string value “true”. When this
capability is absent, or present and set to the string
value “false”, cdmi_enc_object_verify_id data
system metadata shall not be used.

cdmi_versioning JSON array of
JSON strings

If present, this capability indicates that the cloud
storage system shall support versioning of data objects
and contains a list of which versioning behaviors are
supported. The following values are defined:

• “value” indicates that the system shall support the
versioning of the object value.

• “user” indicates that the system shall support the
versioning of the object value and user metadata.

• “all” indicates that the system shall support the
versioning of all updates made to a data object.

When present, the system shall support the following
storage system metadata: cdmi_version_object,
cdmi_version_current, cdmi_version_oldest,
cdmi_version_parent, and
cdmi_version_children as indicated by the
corresponding storage system metadata capabilities.

cdmi_versions_count JSON string If present, this capability specifies the maximum
number of historical versions that may be specified. If
absent, restrictions on the number of historical versions
specified shall be ignored.

cdmi_version_age JSON string If present, this capability specifies the maximum age of
historical versions that may be specified. If absent,
restrictions on the age of historical versions specified
shall be ignored.

cdmi_versions_size JSON string If present, this capability specifies the maximum total
size of historical versions that may be specified. If
absent, restrictions on the size of historical versions
specified shall be ignored.

© SNIA 2020 SNIA Technical Position 203

Cloud Data Management Interface 2.0.0

12.2.10 Data object capabilities2827

tbl_capabilities_for_data_objects defines the capabilities for data objects in a cloud storage system.2828

Table 127: Capabilities for data objects
Capability name Type Definition
cdmi_read_value JSON string If present and “true”, this capability indicates that the

CDMI server shall support the ability to read the object’s
value.

cdmi_read_value_range JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to read the object’s
value with byte ranges.

cdmi_read_metadata JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to read the object’s
metadata.

cdmi_modify_value JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to modify the
object’s value.

cdmi_modify_value_range JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to modify the
object’s value with byte ranges.

cdmi_modify_metadata JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to modify the
object’s metadata.

cdmi_modify_deserialize_
↪→ dataobject

JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability of the data object
to deserialize a serialized data object into the data
object as an update.

cdmi_delete_dataobject JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to delete the
object.

© SNIA 2020 SNIA Technical Position 204

Cloud Data Management Interface 2.0.0

12.2.11 Container object capabilities2829

tbl_capabilities_for_containers defines the capabilities for containers in a cloud storage system.2830

Table 128: Capabilities for container objects
Capability name Type Definition
cdmi_list_children JSON string If present and “true”, this capability indicates that the

CDMI server shall support the ability to list the
container’s children.

cdmi_list_children_range JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to list the
container’s children with ranges.

cdmi_read_metadata JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to read the
container’s metadata.

cdmi_modify_metadata JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to modify the
container’s metadata.

cdmi_modify_deserialize_
↪→ container

JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability of the container
object to deserialize a serialized container object into
the container object as an update.

cdmi_snapshot JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability of the container
object to create a new snapshot.

cdmi_serialize_dataobject JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to serialize a data
object.

cdmi_serialize_container JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to serialize the
container and all children’s contents.

cdmi_serialize_queue JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to serialize a
queue object.

cdmi_serialize_domain JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to serialize the
domain and all child domains.

cdmi_deserialize_container JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability of the container to
deserialize the serialized containers and associated
serialized children into the container.

cdmi_deserialize_queue JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability of the container to
deserialize the serialized queue objects into the
container.

cdmi_deserialize_dataobject JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability of the container to
deserialize the serialized data objects into the container.

cdmi_create_dataobject JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability of the container to
add a new data object.

cdmi_post_dataobject JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability of the container to
add a new data object via POST.

cdmi_post_queue JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability of the container to
add a new queue object via POST.

continues on next page

© SNIA 2020 SNIA Technical Position 205

Cloud Data Management Interface 2.0.0

Table 128 – continued from previous page
Capability name Type Definition
cdmi_create_container JSON string If present and “true”, this capability indicates that the

CDMI server shall support the ability to create a new
container object via PUT.

cdmi_create_queue JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to create new
queue objects..

cdmi_create_reference JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to create a new
child reference via PUT.

cdmi_export_container_smb JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to export a
container as a file system via SMB.

cdmi_export_container_nfs JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to export a
container as a file system via NFS.

cdmi_export_container_iscsi JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to export a
container as a file system via iSCSI.

cdmi_export_container_occi JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to export a
container as a file system via OCCI.

cdmi_export_container_webdav JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to export a
container as a file system via WebDAV.

cdmi_delete_container JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to delete a
container.

cdmi_move_container JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to move a
container object into a container.

cdmi_copy_container JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to copy a container
object into a container.

cdmi_move_dataobject JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to move a data
object into a container.

cdmi_copy_dataobject JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to copy a data
object into a container.

cdmi_create_value_range JSON string If present and “true”, this capability indicates that the
container allows a new data object’s value to be created
with byte ranges.

© SNIA 2020 SNIA Technical Position 206

Cloud Data Management Interface 2.0.0

12.2.12 Domain object capabilities2831

Table 129 defines the capabilities for domains in a cloud storage system. (All capabilities refer to what may be done via2832

CDMI content­type operations.2833

Table 129: Capabilities for domain objects
Capability name Type Definition
cdmi_create_domain JSON string If present and “true”, this capability indicates that the

CDMI server shall support the ability to add a new
subdomain.

cdmi_delete_domain JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to delete a domain.

cdmi_move_domain JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to move a domain.

cdmi_domain_summary JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to support domain
summaries.

cdmi_domain_members JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to support domain
user management.

cdmi_list_children JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to list the domain’s
children.

cdmi_read_metadata JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to read the
domain’s metadata.

cdmi_modify_metadata JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to modify the
domain’s metadata.

cdmi_modify_deserialize_
↪→ domain

JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to deserialize a
serialized domain object into the domain object as an
update.

cdmi_copy_domain JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to copy the domain
(via PUT) to another URI.

cdmi_deserialize_domain JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to deserialize
serialized domains and associated serialized children
into the domain.

continues on next page

© SNIA 2020 SNIA Technical Position 207

Cloud Data Management Interface 2.0.0

Table 129 – continued from previous page
Capability name Type Definition
cdmi_authentication_methods JSON array of

JSON strings
If present, the CDMI server supports authentication
methods that are supported by a domain.
When present, this capability shall contain one or more
of the following JSON strings:

• “anonymous” ­ Absence of authentication
supported

• “basic” ­ HTTP basic authentication supported
(RFC 2617 [8])

• “digest” ­ HTTP digest authentication supported
(RFC 2617 [8])

• “krb5” ­ Kerberos authentication supported, using
the Kerberos domain specified in the CDMI
domain (RFC 4559 [14])

• “x509” ­ certificate­based authentication via TLS
(RFC 5246 [25], RFC 8446 [24])

• “s3” ­ S3 API signed header authentication
supported

• “openstack” ­ OpenStack Identity API header
authentication supported

Interoperability with these authentication methods are
not defined by this International Standard. Servers may
include other authentication methods not included in the
above list. In these cases, it is up to the CDMI client
and CDMI server to ensure interoperability.

© SNIA 2020 SNIA Technical Position 208

Cloud Data Management Interface 2.0.0

12.2.13 Queue object capabilities2834

Table 130 defines the capabilities for queue objects in a cloud storage system.2835

Table 130: Capabilities for queue objects
Capability name Type Definition
cdmi_read_value JSON string If present and “true”, this capability indicates that the

CDMI server shall support the ability to read a queue’s
value.

cdmi_read_metadata JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to read the
queue’s metadata.

cdmi_modify_value JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to modify the
queue’s value.

cdmi_modify_metadata JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to modify the
queue’s metadata.

cdmi_modify_deserialize_
↪→ queue

JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to deserialize a
serialized queue into the queue as an update.

cdmi_delete_queue JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to delete a queue.

cdmi_move_queue JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to move a queue
to another URI.

cdmi_copy_queue JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to copy a queue to
another URI.

cdmi_reference_queue JSON string If present and “true”, this capability indicates that the
CDMI server shall support the ability to reference a
queue from another queue.

© SNIA 2020 SNIA Technical Position 209

Cloud Data Management Interface 2.0.0

12.3 Read a capabilities object using CDMI2836

12.3.1 Synopsis2837

To read an existing capability object, the following requests shall be performed:2838

• GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/2839

• GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/?2840

<fieldname>&<fieldname>&...2841

• GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/?children=<range>&..2842

.2843

• GET <root URI>/cdmi_objectid/<CapabilityObjectID>/2844

• GET <root URI>/cdmi_objectid/<CapabilityObjectID>/?<fieldname>&<fieldname>&...2845

• GET <root URI>/cdmi_objectid/<CapabilityObjectID>/?children=<range>&...2846

Where:2847

• <root URI> is the path to the CDMI cloud.2848

• <Capability> is zero or more parent capabilities.2849

• <TheCapability> is the name specified for the capability to be read from.2850

• <fieldname> is the name of a field.2851

• <range> is a numeric range within the list of children.2852

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.2853

• <CapabilityObjectID> is the ID of the capability object to be read from.2854

12.3.2 Capabilities2855

Capabilities that indicate which operations are supported are shown in Table 131.2856

Table 131: Capabilities ­ Read a capabilities object using CDMI
Capability Location Description
cdmi_object_access_by_ID System wide

capability
Ability to access the object by ID

12.3.3 Request headers2857

The HTTP request headers for reading a CDMI capabilities object using CDMI are shown in Table 132.2858

Table 132: Request headers ­ Read a capabilities object using CDMI
Header Type Description Requirement
Accept Header

string
“application/cdmi­capability” or a consistent value
as described in 5.5.2

Optional

© SNIA 2020 SNIA Technical Position 210

Cloud Data Management Interface 2.0.0

12.3.4 Request message body2859

A request body shall not be provided.2860

12.3.5 Response headers2861

The HTTP response headers for reading a CDMI capabilities object using CDMI are shown in Table 133.2862

Table 133: Response headers ­ Read a capabilities object Using CDMI
Header Type Description Requirement
Content­Type Header

string
“application/cdmi­capability” Mandatory

12.3.6 Response message body2863

The response message body fields for reading a CDMI capabilities object using CDMI are shown in2864

tbl_cdmi_capability_object_read_response_message_body.2865

Table 134: Response message body ­ Read a capabilities object using
CDMI

Field name Type Description Requirement
objectType JSON

string
“application/cdmi­capability” Mandatory

objectID JSON
string

Object ID of the object Mandatory

objectName JSON
string

Name of the object Mandatory

parentURI JSON
string

URI for the parent object
Appending the “objectName” to the “parentURI” shall
always produce a valid URI for the object.

Mandatory

parentID JSON
string

Object ID of the parent capability object. Mandatory

capabilities JSON
object

The capabilities supported by the corresponding object.
Capabilities in the “/cdmi_capabilities/” object are
system­wide capabilities. Capabilities found in children
objects under “/cdmi_capabilities/” correspond to the
capabilities of a specific subset of objects.

Mandatory

childrenrange JSON
string

The child capabilities of the capability expressed as a range.
If a range of child capabilities is requested, this field indicates
the children returned as a range.

Mandatory

children JSON
array of
JSON
strings

Names of the children capabilities objects.
For the root container capabilities, this includes “domain/”,
“container/”, “dataobject/”, and “queue/”. Within each
of these capabilities objects, further more specialized
capabilities profiles may be specified by the CDMI server.

Mandatory

If individual fields are specified in the GET request, only these fields are returned in the result body. Optional fields that2866

are requested but do not exist are omitted from the result body.2867

© SNIA 2020 SNIA Technical Position 211

Cloud Data Management Interface 2.0.0

12.3.7 Response status2868

Table 135 describes the HTTP status codes that occur when reading a capabilities object using CDMI.2869

Table 135: HTTP status codes ­ Read a capabilities object using CDMI
2870

HTTP status Description
200 OK The capabilities object content was returned in the response.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.
406 Not Acceptable The server is unable to provide the object in the content type specified in the

Accept header.

2871

12.3.8 Examples2872

EXAMPLE 1: GET to the root container capabilities URI to read all fields of the container:2873

­­> GET /cdmi/2.0.0/cdmi_capabilities/ HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­capability

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­capability
<­­
<­­ {
<­­ "objectType": "application/cdmi­capability",
<­­ "objectID": "00007E7F00104BE66AB53A9572F9F51E",
<­­ "objectName": "cdmi_capabilities/",
<­­ "parentURI": "/",
<­­ "parentID": "00007E7F0010128E42D87EE34F5A6560",
<­­ "capabilities": {
<­­ "cdmi_domains": "true",
<­­ "cdmi_export_nfs": "true",
<­­ "cdmi_export_iscsi": "true",
<­­ "cdmi_queues": "true",
<­­ "cdmi_notification": "true",
<­­ "cdmi_query": "true",
<­­ "cdmi_metadata_maxsize": "4096",
<­­ "cdmi_metadata_maxitems": "1024"
<­­ },
<­­ "childrenrange": "0­3",
<­­ "children": [
<­­ "domain/",
<­­ "container/",
<­­ "dataobject/",
<­­ "queue/"
<­­]
<­­ }

EXAMPLE 2: GET to the root container capabilities URI to read the capabilities and children of the container:2874

­­> GET /cdmi/2.0.0/cdmi_capabilities/?capabilities&children HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­capability

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­capability
<­­
<­­ {
<­­ "capabilities": {
<­­ "cdmi_domains": "true",
<­­ "cdmi_export_nfs": "true",
<­­ "cdmi_export_iscsi": "true",

(continues on next page)

© SNIA 2020 SNIA Technical Position 212

Cloud Data Management Interface 2.0.0

(continued from previous page)
<­­ "cdmi_queues": "true",
<­­ "cdmi_notification": "true",
<­­ "cdmi_query": "true",
<­­ "cdmi_metadata_maxsize": "4096",
<­­ "cdmi_metadata_maxitems": "1024"
<­­ },
<­­ "children": [
<­­ "domain/",
<­­ "container/",
<­­ "dataobject/",
<­­ "queue/"
<­­]
<­­ }

© SNIA 2020 SNIA Technical Position 213

Cloud Data Management Interface 2.0.0

EXAMPLE 3: GET to the root container capabilities URI to read the first two children contained within a domain:2875

­­> GET /cdmi/2.0.0/cdmi_capabilities/?childrenrange&children=0­1 HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­capability

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­capability
<­­
<­­ {
<­­ "childrenrange" : "0­1",
<­­ "children" : [
<­­ "domain/",
<­­ "container/"
<­­]
<­­ }

© SNIA 2020 SNIA Technical Position 214

Cloud Data Management Interface 2.0.0

Clause 132876

Exported protocols2877

13.1 Overview2878

Container objects can be exported via multiple storage protocols. This is specified by adding an exports field to the2879

container object. The exports field contains zero or more named exports, each of which has elements corresponding2880

to the export protocol type, such as:2881

• The type of export protocol;2882

• The user­facing identity of the exported container, where required by the export protocol (e.g. iSCSI target, NFS2883

directory);2884

• The domain of the protocol name server for the clients being served, where required by the export protocol;2885

• The list of who may mount that container via that protocol, as standardized by that protocol or optionally by2886

leveraging the name mapping protocol (see 13.2.3) and specifying CDMI­resolvable user or groupnames;2887

• Required protocol­specific export parameters;2888

• Optional protocol­specific export parameters; and2889

• Export control parameters.2890

The ability to export containers via a specific protocol is determined by the presence or absence of a2891

cdmi_export_<protocol> system wide capabilities, which are listed in 12.2.7. The ability to export a specific con­2892

tainer via a specific protocol is indicated by the cdmi_export_<protocol> capability.2893

Exports are represented as a JSON object having zero or more named protocol­specific exports.2894

The meaning, use, and permitted values for the fields associated with each export type are described later in this clause.2895

© SNIA 2020 SNIA Technical Position 215

Cloud Data Management Interface 2.0.0

13.2 Container object export details2896

13.2.1 Container object export addressing2897

Container object exports are addressed in CDMI in two ways:2898

• by name (e.g. https://cloud.example.com/cdmi/2.0.0/container/?exports); and2899

• by ID (e.g. https://cloud.example.com/cdmi/2.0.0/cdmi_objectid/2900

↪→ 00007ED900104E1D14771DC67C27BF8B/?exports).2901

See 9.1 for more details on container object addressing.2902

13.2.2 Container object export fields2903

The export of a container, via data path protocols other than CDMI, is accomplished by creating or updating a container2904

and supplying one or more export protocol structures, one for each such protocol. In this International standard, all such2905

protocols are referred to as foreign protocols.2906

This International standard defines JSON export structures for several well known foreign protocols. All depend on2907

the following user and groupname mapping feature in the case that multi­protocol access to the container is desired.2908

However, name mapping is not required if an external domain is used, or if CDMI is used only to provision containers2909

to be used exclusively by foreign protocols.2910

Implementations that support authenticated and authorized access to CDMI objects via both CDMI and foreign protocols2911

need a way to support the setting of security on a per­object basis. The numerous methods of doing this include:2912

• Defining or adopting a security scheme and mapping all requests into that scheme. CDMI implementations that2913

adopt this scheme shall use a name mapping technique to accomplish it, as (a) this mapping is easier for admin­2914

istrators to manage than straight id­to­id mapping, and (b) it is desired that interoperable CDMI implementations2915

behave similarly in this respect. This means that the name of the principal in an incoming request is mapped to2916

the name of a principal in the security domain, and that principal’s id is acquired and used in the authorization2917

procedure.2918

• Allowing each protocol to set its own security, which implies that an object might be accessible to a given user via2919

one protocol but not another.2920

• Using the security scheme of the last protocol that was used to set permissions on the object. This method also2921

requires mapping the principal in the incoming request to a principal in the security domain of the object. As in2922

the first case, the server shall use a name mapping procedure to obtain the id that is used to authorize the user2923

against the desired object’s ACL.2924

CDMI does not mandate which method shall be used. It does, however, specify how users and groups shall be mapped2925

between protocols.2926

13.2.3 Mapping names from CDMI to another protocol2927

Clients wishing to restrict exports via foreign protocols to mounting only by certain users and groups may be required2928

to provide user and groupname mapping information to the server. This mapping information is also required if access2929

to the container is desired by multiple protocols, e.g., both CDMI and NFS. The mapping is done as follows.2930

1. When a CDMI container is exported, the server should use the appropriate mechanism, e.g., Powershell2931

WmiClass.Create() on the Windows platform or /etc/exports on Unix, to limit permitted mounts of the2932

share from other servers, as specified in the “root_hosts”, “rw_hosts” and “ro_hosts” lines of the “exports”2933

property. The syntax of each hosts line follows the syntax of /etc/exports in the Linux operating system, as2934

encoded in a JSON string. If the CDMI server is unable to limit mounts as specified by each hosts line, an error2935

shall result, but the success or failure of the operation depends on the implementation.2936

2. When possible, authentication credential resolution should be consistant across both CDMI and all exported2937

protocols.2938

3. Authentication credential resolution shall be performed in the following order: #. CDMI Domain membership2939

mapping (See 10.4), #. Delegated domain mapping (See 10.4), #. Export name mapping.2940

4. Implementations may ignore or override export name mapping as requried to enforce implementation­specific2941

security policies.2942

© SNIA 2020 SNIA Technical Position 216

Cloud Data Management Interface 2.0.0

5. The usermap list for that protocol shall be searched, in order, for an entry matching the username obtained from2943

the authentication credential resolution process (see 13.2.7 for details on the search).2944

6. The CDMI principal name obtained from the first matching usermap entry during this search is then used to2945

authorize the user request via the security mechanism of the protocol whose security governs access to the2946

object.2947

Groupname mapping for each foreign protocol shall be specified in a groupname field of the foreign protocol export2948

specification. Its syntax is identical to the syntax for the username field.2949

13.2.4 Administrative users2950

By default, the following users shall be considered “root”, or administrative users, and equivalent to each other:2951

• root (Unix/NFS/LDAP),2952

• Administrator (Windows/AD/SMB), and2953

• the domain owner (CDMI).2954

Servers shall automatically map these users to the root user of the target protocol unless otherwise instructed by the2955

usermaps.2956

As an automatic mapping does not meet strict security standards, servers shall override these built­in entries with any2957

usermap entries that apply to one or more root users.2958

In the following example, root gets mapped to nobody, and everyone else is mapped to a user of the same name in the2959

NFS domain and the CDMI domain.2960

EXAMPLE 1: NFS export user mapping2961

­­> PUT /cdmi/2.0.0/MyContainer HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/vnd.org.snia.cdmi.container+json
­­> Content­Type: application/vnd.org.snia.cdmi.container+json
­­>
­­> {
­­> "exports": {
­­> "nfs": {
­­> "usermap": [
­­> [
­­> "nobody",
­­> "<­",
­­> "root"
­­>],
­­> [
­­> "*",
­­> "<­­>",
­­> "*"
­­>]
­­>]
­­> }
­­> }
­­> }

13.2.5 Mapping domains from CDMI to another protocol2962

The internet domain name corresponding to each exported CDMI container shall be described in the “domain” element2963

of the protocol export specification as a JSON­formatted string . If the “domain” element is not present in the protocol2964

export specification, it shall be assumed the domain is the same as the server hosting the CDMI implementation.2965

© SNIA 2020 SNIA Technical Position 217

Cloud Data Management Interface 2.0.0

13.2.6 Permissions mapping2966

Security authorizations and entitlements may not directly correspond across users, groups, file system protocols, oper­2967

ating systems, enterprises or different cloud provider environments. CDMI’s primary area of concern is representing a2968

rich set of network files system authorizations and entitlements in a CDMI Access Control List (ACL).2969

As there are a number of possible ways to coordinate the permissions/ACLs and CDMI ACLs, this International specifi­2970

cation does not mandate a particular method. However, all mappings of user and groupnames between domains shall2971

use the name mapping mechanism specified in 13.2.7.2972

13.2.7 User and groupname mapping syntax and evaluation rules2973

A BNF­style grammar for name mapping is as follows:2974

name_mapping_list = protocol protocol mapping_list
protocol = "cdmi" | "nfs" | "smb" | "ldap"
mapping_list = name mapping_operator name
name = pattern | utf8_name | quoted_utf8_name
quoted_utf8_name = " utf8_name "
utf8_name = <any legal utf8 character sequence not including the characters ",',\,/,:,*,?>
pattern = <utf8_name> * | *
mapping_operator = "<­­" | "<­­>" | "­­>"

To restate this in English, a mapping entry consists of two names separated by a directional indicator. As most en­2975

vironments use the same usernames and groupnames across administrative domains, the most common mapping is2976

“* <­­> *”, which maps any name to the same name in the foreign protocol domain, and vice versa. It is highly2977

recommended that this be both the default map and the last entry on all more complex maps.2978

CDMI specifies pattern matching on names in the name map, but only prefix matching is required. The symbol “*” at2979

the end of a character string shall match zero or more occurrences of any non­whitespace character.2980

Evaluation of the name mapping list shall proceed in order; once a match is made, evaluation shall cease and the result2981

of the match shall be returned.2982

If no matches are found on the match list, the result is system dependent. However, it is recommended that servers2983

either deny access altogether or map the user in question to the equivalent of “anonymous” on the destination protocol.2984

It is also recommended that an entry be devoted to the special user “EVERYONE@”.2985

© SNIA 2020 SNIA Technical Position 218

Cloud Data Management Interface 2.0.0

13.3 NFS exported protocol2986

An NFS export specifes the information required by an NFS server to provide an NFS export. Normally, this information2987

is contained in the /etc/exports file on a server or the equivalent.2988

Elements for an NFS export are described in Table 136.2989

Table 136: Elements of the NFS protocol export structure
Element Type Description Requirement
type JSON

String
The export type is set to “NFS” Mandatory

protocol JSON
String

The protocol being requested. Values shall be “NFSv3”,
“NFSv4”, “NFSv4.1”, or any subsequent NFS version
enshrined in an IETF RFC. Version 2 of NFS is not supported
by CDMI.

Mandatory

path JSON
String

The pathname to which the export should be surfaced. This
value shall be a UTF8 string of the form
[<server>:]/<path>, where the <server> component is
optional, (e.g., “myserver:/lessons/number1”). If
specified, the <server> component of the path must be
obtained from an administrator of the service running the
CDMI implementation.

Mandatory

usermap JSON
Array of
JSON
Arrays

Authentication credential mapping of user names, as
specified in 13.2.3.

Mandatory

groupmap JSON
Array of
JSON
Arrays

Authentication credential mapping of group names, as
specified in 13.2.3.

Mandatory

encryption JSON
String

This value shall be “rpcsec_gss” or future TLS­based
transport security.

Optional

domain_servers JSON
Array of
JSON
Strings

A list of server names or IP addresses that function as name
servers for the domain given in “domain”. If given, this list
shall override the names obtainable by the CDMI server via
other programmatic means.

Optional

mount_name JSON
String

The name the client should use to surface the export. This
name replaces the last name in the path string, (e.g.,
mounting “myserver:/lessons/number1” with a
mountname of “1” over the directory
/somepath/lessons/num1 should result in a
/somepath/lessons/1 directory on the client).

Optional

root_hosts JSON
Array of
JSON
Strings

A list of names of hosts that may access the container in
superuser mode. The default shall be an empty list.

Optional

rw_hosts JSON
Array of
JSON
Strings

A list of names of hosts that may access the container in rw
mode. The default shall be an empty list.

Optional

ro_hosts JSON
Array of
JSON
Strings

A list of names of hosts that may access the container in ro
mode only. The default shall be an empty list.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 219

Cloud Data Management Interface 2.0.0

Table 136 – continued from previous page
Element Type Description Requirement
recurse JSON

String
This value shall be either “true” or “false”. The default
shall be “true”. When true, recurse indicates that mounts
within the CDMI directory structure (presumably put there by
other NFS operations) shall be followed and the mounted
directory exposed as though it were part of the CDMI
container actually being exported. This parameter is
equivalent to the Linux “crossmnt” parameter.

Optional

parameters JSON
String

A string containing NFS server­specific parameters to be
passed to the NFS server. The format of this string is
implementation specific. The default shall be an empty string.

Optional

Servers shall support wildcard matching on the “*” and “?” characters in the hosts lists, so that “*.cs.uscs.edu”2990

matches all servers in the cs.ucsc.edu department.2991

Servers may also support IP address ranges in the various lists of hosts. These IP addresses shall be augmented by2992

the same wildcard matching as is used for ordinary host names (e.g., “192.168.1.*” exports to all the machines on2993

local class C network).2994

Servers shall return an HTTP status code of 400 Bad Request when an export setting does not conform to an2995

allowable setting on the server.2996

EXAMPLE 2: NFS exports2997

{
"exports" : {

"1" : {
"type" : "nfs",
"protocol" : "NFSv4",
"path" : "/myexport",
"domain_servers" : "lab.example.com",
"root_hosts" : ["admin.lab.example.com"],
"ro_hosts" : ["*.lab.example.com"],
"usermap" : [

{ "jimsmith", "<­­>", "jims" },
{ "*", "<­­>", "*" }

],
"groupmap" : [

{ "admins", "<­", "wheel" },
{ "everyone", "<­", "*" }

]
}

}

© SNIA 2020 SNIA Technical Position 220

Cloud Data Management Interface 2.0.0

13.4 SMB exported protocol2998

An SMB export specifes the information required by an SMB server to provide an SMB export.2999

Elements for an SMB export are described in Table 1373000

Table 137: Elements of the SMB protocol export structure
Element Type Description Requirement
type JSON

String
The export type is set to “SMB” Mandatory

sharename JSON
String

The name that SMB shall use to discover the share. Mandatory

usermap JSON
Array of
JSON
Arrays

Authentication credential mapping of user names, as
specified in 13.2.3.

Mandatory

groupmap JSON
Array of
JSON
Arrays

Authentication credential mapping of group names, as
specified in 13.2.3.

Mandatory

root_hosts JSON
Array of
JSON
Strings

A list of names of hosts that may access the container in
superuser mode. The default shall be an empty list.

Optional

rw_hosts JSON
Array of
JSON
Strings

A list of names of hosts that may access the container in rw
mode. The default shall be an empty list.

Optional

ro_hosts JSON
Array of
JSON
Strings

A list of names of hosts that may access the container in ro
mode only. The default shall be an empty list.

Optional

domain_servers JSON
Array of
JSON
Strings

A list of server names or IP addresses that function as name
servers for the domain given in “domain”. If given, this list
shall override the names obtainable by the CDMI server via
other programmatic means.

Optional

comment JSON
String

This value shall be JSON String containing a user­friendly
share name for the client.

Optional

parameters JSON
String

A string containing SMB server­specific parameters to be
passed to the SMB server. The format of this string is
implementation specific. The default shall be an empty string.

Optional

Servers shall return an HTTP status code of 400 Bad Request when an export setting does not conform to an3001

allowable setting on the server.3002

EXAMPLE 3: SMB exports3003

{
"exports" : {

"1" : {
"type" : "smb",
"rw_hosts" : ["*"],
"domain_servers" : "lab.mycollege.edu",
"usermap" : [

{ "jimsmith", "<­­>", "james.smith" },
{ "*", "<­­>", "*" }

],
"groupmap" : [

{ "admins", "<­", "Administrators" },
{ "everyone", "<­", "*" }

]
}

(continues on next page)

© SNIA 2020 SNIA Technical Position 221

Cloud Data Management Interface 2.0.0

(continued from previous page)
}

}

© SNIA 2020 SNIA Technical Position 222

Cloud Data Management Interface 2.0.0

13.5 iSCSI exported protocol3004

An iSCSI export specifes the information required by an iSCSI server (see RFC 7143 [4]) to provide an iSCSI export.3005

Each container is exported as a single SCSI Logical Unit as a Logical Unit Number (LUN). One or more iSCSI initiators3006

import the LUN through an iSCSI target node and port using one or more iSCSI network portals (IP addresses).3007

Elements for an iSCSI export are described in Table 1383008

Table 138: Elements of the iSCSI protocol export structure
Element Type Description Requirement
type JSON

String
The export type is set to “iSCSI” Mandatory

permissions JSON
Array of
JSON
Strings

One or more target identifiers for initiators that are permitted
to access the iSCSI export. Target identifiers may be in iqn,
naa, or eui format and shall have the target portal group tag
appended in hexadecimal. If absent, any initiator may access
the export.

Optional

parameters JSON
String

A string containing iSCSI server­specific parameters to be
passed to the iSCSI server. The format of this string is
implementation specific. The default shall be an empty string.

Optional

target_
↪→ identifier

JSON
String

iSCSI target information (IP addresses or fully qualified
domain names, target identifier, and LUN)

Read­Only

logical_unit_
↪→ number

JSON
String

iSCSI Logical Unit Number Read­Only

logical_unit_
↪→ name

JSON
String

iSCSI Logical Unit Name Read­Only

portals JSON
Array of
JSON
Strings

One or more IP addresses or fully qualified domains names
through which the iSCSI export may be accessed. This field
is server populated.

Read­Only

Servers shall return an HTTP status code of 400 Bad Request when an export setting does not conform to an3009

allowable setting on the server.3010

EXAMPLE 4: iSCSI export creation3011

"exports" :
{

"1" : {
type: "iSCSI",
"permissions": [

"iqn.2010­01.com.acme:host1",
"iqn.2010­01.com.acme:host2"

]
}

}

EXAMPLE 5: Reading iSCSI export information after creation3012

"exports" :
{

"1" : {
type: "iSCSI",
"portals": [

"192.168.1.101",
"192.168.1.102"

],
"target_identifier": "iqn.2010­01.com.cloudprovider:acmeroot.container1,t,0x0001",
"logical_unit_number": "3",
"logical_unit_name": "0x60012340000000000000000000000001",
"permissions": [

"iqn.2010­01.com.acme:host1",
"iqn.2010­01.com.acme:host2"

]
(continues on next page)

© SNIA 2020 SNIA Technical Position 223

Cloud Data Management Interface 2.0.0

(continued from previous page)
}

}

© SNIA 2020 SNIA Technical Position 224

Cloud Data Management Interface 2.0.0

13.6 WebDAV exported protocol3013

A WebDAV export specifes the information required by an WebDAV server (see RFC 4918 [6]) to provide an WebDAV3014

export.3015

Elements for an WebDAV export are described in Table 1393016

Table 139: Elements of the WebDAV protocol export structure
Element Type Description Requirement
type JSON

String
The export type is set to “WebDAV” Mandatory

usermap JSON
Array of
JSON
Arrays

Authentication credential mapping of user names, as
specified in 13.2.3.

Mandatory

groupmap JSON
Array of
JSON
Arrays

Authentication credential mapping of group names, as
specified in 13.2.3.

Mandatory

parameters JSON
String

A string containing WebDAV server­specific parameters to be
passed to the WebDAV server. The format of this string is
implementation specific. The default shall be an empty string.

Optional

Servers shall return an HTTP status code of 400 Bad Request when an export setting does not conform to an3017

allowable setting on the server.3018

WebDAV supports locking, but it is up to implementations to support any locking of access through CDMI as a result,3019

and the interaction between the two protocols is purposely not described in this International Standard.3020

EXAMPLE 6: WebDAV export3021

"exports" :
{

"1" : {
type: "WebDAV",
"usermap" : [

{ "*", "<­­>", "*" }
],
"groupmap" : [

{ "*", "<­­>", "*" }
]

}
}

© SNIA 2020 SNIA Technical Position 225

Cloud Data Management Interface 2.0.0

13.7 OCCI exported protocol3022

Container objects can be exported via multiple protocols. This is especially useful when CDMI is being used as a storage3023

interface in a cloud computing environement, as illustrated in Fig. 9 below.3024

CDMI/OCCI Interface

Cloud Computing
Infrastructure

[OCCI_VMID]
[CDMI_OBJECTID]

Client

OCCI
API

CDMI
API

OCCI

CDMI

Virtual
Machine
Manager VM

NFS NFS

VM

iSCSI NFS

VM

iSCSI Web
DAV

Compute Resources

Private, Hidden Storage Network
for the Cloud

Data
Obj

Data
Obj

Data
Obj

Data
Obj

Data
Obj

iSCSI NFS WebDAV

CDMI
Exports

Data Storage Resources

Fig. 9: CDMI and OCCI in an integrated cloud computing environment

In this example, CDMI containers may also be used as virtual disks by virtual machines in the cloud computing envi­3025

ronement. The cloud computing infrastructure management is shown as implementing both an Open Cloud Computer3026

Interface (OCCI) and CDMI interfaces. With the internal knowledge of the network and the virtual machine manager’s3027

mapping of drives, this infrastructure may associate the CDMI containers to the guests using the appropriate exported3028

protocol.3029

To support exported protocols and improve their interoperability with CDMI, CDMI provides a type of exported protocol3030

that contains information obtained via the OCCI interface. In addition, OCCI provides a type of storage that corresponds3031

© SNIA 2020 SNIA Technical Position 226

Cloud Data Management Interface 2.0.0

to a CDMI container that is exported with a specific type of protocol used by OCCI. A client of both interfaces performs3032

operations that align the architectures, including the following:3033

• The client creates a CDMI container through the CDMI interface and exports it as an OCCI export protocol type.3034

The CDMI container object ID is returned as a result.3035

• The client creates a virtual machine through the OCCI interface and attaches a storage volume of type CDMI3036

using the object ID and protocol type. The OCCI virtual machine ID is returned as a result.3037

• The client updates the export protocol structure of the CDMI container object with the OCCI virtual machine ID to3038

allow the virtual machine access to the container.3039

• The client starts the virtual machine through the OCCI interface.3040

CDMI defines an export protocol structure for the Open Cloud Computing Interface (13.7) as follows:3041

• The type is “OCCI/<protocol standard>” (e.g., “OCCI/NFSv4”).3042

• The identifier is the CDMI container ID.3043

• A JSON array of URIs to OCCI compute resources shall have access (permissions) to the exported container.3044

EXAMPLE 5: OCCI export3045

"OCCI/iSCSI":
{
"identifier": "00007E7F00104BE66AB53A9572F9F51E",
"permissions":

[
"https://example.com/compute/0/",
"https://example.com/compute/1/"

]
}

For more detail on using the OCCI export protocol structure attributes, see 13.1. Because the actual networking and3046

access control is under the control of a hidden, common infrastructure that implements both OCCI and CDMI, the normal3047

permission structure shall not be provided.3048

© SNIA 2020 SNIA Technical Position 227

Cloud Data Management Interface 2.0.0

Clause 143049

CDMI snapshots3050

14.1 Overview3051

A snapshot is a point­in­time copy (image) of a container and all of its contents, including subcontainers and all data3052

objects and queue objects. The client names a snapshot of a container at the time the snapshot is requested. A snapshot3053

operation creates a new container to contain the point­in­time image. The first processing of a snapshot operation also3054

adds a cdmi_snapshots child container to the source container. Each new snapshot container is added as a child of3055

the cdmi_snapshots container. The snapshot does not include the cdmi_snapshots child container or its contents3056

(see Fig. 10).3057

https://example.com/source/

snapshot_a

snapshot_b

https://example.com/source/cdmi_snapshots/

https://example.com/source/cdmi_snapshots/snapshot_a/

https://example.com/source/cdmi_snapshots/snapshot_b/

Source Container

cdmi_snapshots

PUT /source/

{
 “snapshot” : “snapshot_b”
}

Fig. 10: Snapshot container structure

© SNIA 2020 SNIA Technical Position 228

Cloud Data Management Interface 2.0.0

14.2 Creating a snapshot3058

14.2.1 Operation context3059

A snapshot operation is requested using the container update operation (see 9.5), in which the snapshot field specifies3060

the requested name of the snapshot.3061

A snapshot may be accessed in the same way that any other CDMI™ object is accessed. An important use of a snapshot3062

is to allow the contents of the source container to be restored to their values at a previous point in time using a CDMI3063

copy operation.3064

14.2.2 Example3065

EXAMPLE 1: PATCH to an existing container to create a snapshot:3066

­­> PATCH /cdmi/2.0.0/MyContainer/ HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­container
­­>
­­> {
­­> "snapshot" : "MySnapshot"
­­> }

<­­ HTTP/1.1 201 Created

© SNIA 2020 SNIA Technical Position 229

Cloud Data Management Interface 2.0.0

14.3 Deleting a snapshot3067

14.3.1 Operation context3068

A snapshot can be deleted by performing a CDMI container delete operation on the corresponding child container in the3069

cdmi_snapshots container, or by performing a CDMI container delete operation on the snapshot Object ID.3070

14.3.2 Example3071

EXAMPLE 1: DELETE to an existing snapshot:3072

­­> DELETE /cdmi/2.0.0/MyContainer/cdmi_snapshots/MySnapshot HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 230

Cloud Data Management Interface 2.0.0

Clause 153073

Serialization/deserialization3074

15.1 Overview3075

Bulk data movement is often needed between, into, or out of clouds. When moving bulk data, cloud serialization3076

operations provide a means to normalize data to a canonical, self­describing format, which includes:3077

• data migration between clouds,3078

• data migration during upgrades (or replacements) of cloud implementations, and3079

• robust backup.3080

The canonical format of serialized data describes how the data is to be represented in a byte stream. As long as this byte3081

stream is not changed during the transfer from source to destination, the data may be reconstituted on the destination3082

system.3083

© SNIA 2020 SNIA Technical Position 231

Cloud Data Management Interface 2.0.0

15.2 Canonical format3084

15.2.1 General requirements3085

Support for CDMI serialization using JSON as the canonical format requires the presence of the3086

cdmi_serialization_json capability.3087

The canonical format shall represent specified data objects and container objects as they exist within the storage system.3088

Each object shall be represented by the metadata for the object, identifiers, and the data stream contents of the data3089

object. Because data and storage system metadata is inherited from enclosing container objects, all parent metadata3090

shall be represented in the top­level of the canonical format. To preserve the actual metadata values that apply to the3091

data object that is being serialized, the non­overridden metadata is included from both the immediate parent container3092

object of the specified object and from the parent of each higher­level container object.3093

The canonical format shall have the following characteristics:3094

• recursive JSON for the data object, consistent with the rest of CDMI;3095

• user and data system metadata for each data object/container object;3096

• data stream contents for each data object and queue object;3097

• binary data represented using escaped JSON strings; and3098

• typing of data values consistent with CDMI JSON representations.3099

15.2.2 Example JSON canonical serialized format3100

EXAMPLE 1: In this example, a data object and a queue object in a container object have been selected for serialization:3101

{
"objectType": "application/cdmi­container",
"objectID": "00007E7F00102E230ED82694DAA975D2",
"objectName": "MyContainer/",
"parentURI": "/",
"parentID": "00007E7F0010128E42D87EE34F5A6560",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/container/",
"completionStatus": "Complete",
"metadata": {

...
},

"exports": {
"OCCI/iSCSI": {

"identifier": "00007E7F00104BE66AB53A9572F9F51E",
"permissions": [

"https://example.com/compute/0/",
"https://example.com/compute/1/"

]
},
"Network/NFSv4": {

"identifier": "/users",
"permissions": "domain"

}
},
"childrenrange": "0­1",
"children": [

{
"objectType": "application/cdmi­object",
"objectID": "00007ED900104F67307652BAC9A37C93",
"objectName": "MyDataObject.txt",
"parentURI": "/MyContainer/",
"parentID": "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "text/plain",
"metadata": {

(continues on next page)

© SNIA 2020 SNIA Technical Position 232

Cloud Data Management Interface 2.0.0

(continued from previous page)
...

},
"valuerange": "0­36",
"valuetransferencoding": "utf­8",
"value": "This is the Value of this Data Object"

},
{

"objectType": "application/cdmi­queue",
"objectID": "00007E7F00104BE66AB53A9572F9F51E",
"objectName": "MyQueue",
"parentURI": "/MyContainer/",
"parentID": "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/queue/",
"completionStatus": "Complete",
"metadata": {

...
},

"queueValues": "0­1",
"mimetype": [

"text/plain",
"text/plain"

],
"valuetransferencoding": [

"utf­8",
"utf­8"

],
"valuerange": [

"0­2",
"0­3"

],
"value": [

"red",
"blue"

]
}

]
}

To allow efficient deserialization in stream mode when serializing container objects to JSON, data object value fields3102

and container children arrays should be the last items in the canonical serialized JSON format.3103

© SNIA 2020 SNIA Technical Position 233

Cloud Data Management Interface 2.0.0

15.3 Exporting serialized data3104

A canonical encoding of the data is obtained by creating a new data object and specifying that the source for the creation3105

is to serialize a given CDMI™ data object, container object, or queue object. On a successful serialization, the result3106

shall be a data object that is created with the serialized data as its value. If a container object has an exported block3107

protocol, the serialized data may contain the block­by­block contents of that container object along with its metadata.3108

The resulting data object that is produced is the canonical representation of the selected data object, container object3109

and children, or queue object.3110

• If the source specified is a data object, the canonical format shall contain all data object fields, including the3111

value, valuetransferencoding, and metadata fields.3112

• If the source being specified is a queue object, the canonical format shall contain all queue object fields, including3113

the value and valuetransferencoding fields of enqueued items, along with themetadata of the queue object3114

itself.3115

• If the source being specified is a container object, the canonical format shall contain all container object fields,3116

recursively, including all children of the container object. If a user attempts to serialize a container object that3117

includes children that the user, who is performing the serialization operation, does not have permission to read,3118

these objects shall not be included in the resulting serialized object.3119

When performing a serialization operation, objects shall only be included if the principal initiating the serialization has3120

sufficient permissions to read those objects.3121

© SNIA 2020 SNIA Technical Position 234

Cloud Data Management Interface 2.0.0

15.4 Importing serialized data3122

Canonical data may be deserialized back into the cloud by creating a new data object, container object, or queue object3123

and by specifying that the source for the creation is to deserialize a given CDMI data object or by specifying the serialized3124

data in base64 encoding in the deserializevalue field.3125

The destination may or may not exist previously. If not, a create operation is performed. If a container object already3126

exists, an update operation with serialized children shall update the container object and all children. If the serialized3127

container object does not contain children, only the container object is updated. Data objects are recreated as specified3128

in the canonical format, including all metadata and the data object ID.3129

Table 140: Serialization import behaviour
User has
cross_domain

User specifies
domainURI

Description

No No The domainURI of the parent object shall match the domainURI in
each seralized object being deserialized.
If the domainURI in any serialize object does not match the
domainURI of the parent object, the entire deserialize operation
shall fail, and an HTTP status code of 400 Bad Request shall be
returned.

No Yes The specified domainURI shall be used, overriding the original
domainURI in each serialized object being deserialized.
If a domainURI other than the domainURI of the parent is
specified, the entire deserialize operation shall fail, and an HTTP
status code of 400 Bad Request shall be returned.

Yes No The original domainURI in each serialized object being
deserialized shall be used.
If any of the original domainURI in each serialized object being
deserialized is not valid in the context of the storage system on
which the deserialization operation is being performed, the entire
deserialize operation shall fail, and an HTTP status code of 400
Bad Request shall be returned.

Yes Yes The specified domainURI shall be used, overriding the original
domainURI in each serialized object being deserialized.
If a domainURI that is specified is not valid in the context of the
storage system on which the deserialization operation is being
performed, the entire deserialize operation shall fail, and an HTTP
status code of 400 Bad Request shall be returned.

Deserialization operations shall restore all metadata from the specified source. If the original provider of the serialized3130

data­supported vendor extensions is through custom metadata keys and values, then these customized requirements3131

shall be restored when deserialized. However, the custom metadata keys and values may be treated as user metadata3132

(preserved, but not interpreted) by the destination provider. Preservation allows custom data requirements to move3133

between clouds without losing this information.3134

© SNIA 2020 SNIA Technical Position 235

Cloud Data Management Interface 2.0.0

Clause 163135

Metadata3136

16.1 Overview3137

CDMI metadata allows for additional information to be associated with stored objects. JSON objects, strings and arrays3138

are used to transfer metadata in CDMI operations, which allows for metadata to be hierachical. CDMI servers may place3139

a restriction on the number of metadata items, maximum size per metadata item, and total size of metadata items, as3140

specified in the cdmi_metadata_maxitems, cdmi_metadata_maxsize, and cdmi_metadata_maxtotalsize3141

capabilities. CDMI servers shall not place a restriction on the depth of the metadata hierarchy and number of array3142

items, outside of the above restrictions.3143

When objects are created, object metadata is created according to the following process:3144

1. Metadata items specified in the create operation are added, overriding pre­existing metadata items3145

2. Storage System metadata items are added to the object, overriding pre­existing metadata items subject to the3146

restrictions described in Section 16.23147

When objects are updated, object metadata is updated according to the following process:3148

1. Existing metadata items are deleted, changed and/or added, as specified in the update operation3149

2. Storage System metadata items are updated for the object, overriding pre­existing metadata items subject to the3150

restrictions described in Section 16.23151

When objects are read, object metadata is returned according to the following process:3152

1. Data System Metadata items is inherited from the parent container3153

2. Metadata items stored with the object are returned, overriding any inherited Data System Metadata items3154

© SNIA 2020 SNIA Technical Position 236

Cloud Data Management Interface 2.0.0

16.2 Support for storage system metadata3155

After an object has been created or updated, the storage systemmetadata, as described in Table 141, shall be generated3156

or updated by the cloud storage system, and shall immediately be made available to a CDMI client in the metadata that3157

is returned as a result of the create operation and any subsequent retrievals.3158

Which storage system metadata is supported by the CDMI server defined in 12.2.8. Storage system metadata that is3159

not supported by the CDMI server shall be preserved.3160

Table 141: Storage system metadata
Metadata name Type Description Requirement
cdmi_size JSON

string
The number of bytes consumed by the object.
This storage system metadata item is computed by
the storage system, and any attempts to set or modify
it will be ignored.

Optional

cdmi_ctime JSON
string

The time when the object was created, in ISO­8601
point­in­time format, as described in 5.6.
For a newly created object, this value shall be set to
the creation time.
This metadata value may only be updated by a client
if it has the “backup_operator” privilege. If a client
does not have the backup operator privilege, updates
of this metadata item shall be ignored.

Optional

cdmi_atime JSON
string

The time when the object was last accessed in
ISO­8601 point­in­time format, as described in 5.6.
The access or modification of a child is not
considered an access of a parent container
(access/modify times do not propagate up the tree).
For a newly created object, this value shall be set to
the creation time.
This metadata value may only be updated by a client
if it has the “backup_operator” privilege. If a client
does not have the backup operator privilege, updates
of this metadata item shall be ignored.

Optional

cdmi_mtime JSON
string

The time when the object was last modified, in
ISO­8601 point­in­time format, as described in 5.6.
The modification of a child is not considered a
modification of a container object (modification times
do not propagate up the tree).
For a newly created object, this value shall be set to
the creation time.
This metadata value may only be updated by a client
if it has the “backup_operator” privilege. If a client
does not have the backup operator privilege, updates
of this metadata item shall be ignored.

Optional

cdmi_acount JSON
string

The number of times that the object has been
accessed since it was originally created. Accesses
include all reads, writes, and lists.
For a newly created object, this value shall be set to
the value “0”.
This metadata value may only be updated by a client
if it has the “backup_operator” privilege. If a client
does not have the backup operator privilege, updates
of this metadata item shall be ignored.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 237

Cloud Data Management Interface 2.0.0

Table 141 – continued from previous page
Metadata name Type Description Requirement
cdmi_mcount JSON

string
The number of times that the object has been
modified since it was originally created. Modifications
include all value and metadata changes.
Modifications to metadata resulting from reads (such
as updates to atime) do not count as a modification.
For a newly created object, this value shall be set to
the value “0”.
This metadata value may only be updated by a client
if it has the “backup_operator” privilege. If a client
does not have the backup operator privilege, updates
of this metadata item shall be ignored.

Optional

cdmi_hash JSON
string

The hash of the value of the object, encoded using
Base16 encoding rules described in RFC 4648 [19].
This metadata field shall be present when the
“cdmi_value_hash” data system metadata for the
object or a parent object indicates that the value of
the object should be hashed.
This storage system metadata item is computed by
the storage system, and any attempts to set or modify
it will be ignored.

Optional

cdmi_owner JSON
string

The name of the principal that has owner privileges
for the object.
If not specified when the object is created, this
principal associated with the user creating the object
shall be used.
This metadata value can be updated by users with
appropriate permissions.

Optional

cdmi_acl JSON
array
of
JSON
objects

Standard ACL metadata as described in 17.1.
If not specified when the object is created, the ACL
metadata shall be generated in by the system.
This metadata value can be updated by users with
appropriate permissions.

Optional

cdmi_dac_uri JSON
string

Contains the URI used to submit a DAC request for
the data object.
URI schemes supported is defined in the
cdmi_dac_methods capability.
Both cdmi_dac_certificate and
cdmi_dac_uri shall be included for delegated
access control to be enabled for a given object.

Optional

cdmi_dac_certificate JSON
object

A JSON object, containing a JWE JWK which shall
include a public key that is used to submit a DAC
request for the data object, and should contains a
X.509 certificate or certificate chain used to verify the
identity of the DAC provider.
Both cdmi_dac_certificate and
cdmi_dac_uri shall be included for delegated
access control to be enabled for a given object.

Optional

cdmi_enc_signature JSON
object

Contains JWS compact serialization of a signature for
the entire object (value and metadata). See clause
23.7 for more details.

Optional

© SNIA 2020 SNIA Technical Position 238

Cloud Data Management Interface 2.0.0

16.3 Support for data system metadata3161

When specified, data system metadata, as described in tbl_data_system_metadata, provides guidelines to the3162

cloud storage system on how to provide storage data services for data managed through the CDMI interface.3163

Data system metadata is inherited from parent objects to any children objects. If a child object explicitly contains3164

data system metadata, the metadata value of the child object data system metadata shall override any corresponding3165

inherited metadata value of the parent object data system metadata.3166

Which data system metadata is supported by the CDMI server defined in 12.2.9. Data system metadata that is not3167

supported by a CDMI server shall be preserved.3168

Table 142: Data system metadata
Metadata name Type Description Requirement
cdmi_data_redundancy JSON

string
If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is requesting a desired number of complete copies.
Additional copies may be made to satisfy demand for
the value. When this data system metadata item is
absent, or is present and is not set to a positive
numeric string, this data system metadata item shall
not be used.

Optional

cdmi_immediate_
↪→ redundancy

JSON
string

If this data system metadata item is present and set
to “true”, it indicates that the client is requesting that
at least the number of copies indicated in
cdmi_data_redundancy contain the newly written
value before the operation completes. This metadata
is used to make sure that multiple copies of the data
are written to permanent storage to prevent possible
data loss. When this data system metadata item is
absent, or is present and is not set to “true”, this
data system metadata item shall not be used.
If the requested number of copies cannot be created
within the HTTP timeout period, the transaction shall
complete, but the
cdmi_immediate_redundancy_provided data
system metadata shall be set to “false”.

Optional

cdmi_assignedsize JSON
string

If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is specifying the size in bytes that is desired to be
reported for a container object exported via other
protocols (see 9.2.3). The system is not required to
reserve this space and may thin­provision the
requested space. Thus, the requested value may be
greater than the actual storage space consumed.
When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.
This data system metadata item is only applied
against container objects and is not inherited by child
objects.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 239

Cloud Data Management Interface 2.0.0

Table 142 – continued from previous page
Metadata name Type Description Requirement
cdmi_infrastructure_
↪→ redundancy

JSON
string

If this data system metadata item is present and set to
a positive numeric string, it indicates that the client is
requesting a desired number of independent storage
infrastructures supporting the multiple copies of data.
This metadata is used to convey that, of the copies
specified in cdmi_data_redundancy, these copies
shall be stored on this many separate infrastructures.
When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

cdmi_data_dispersion JSON
string

If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is requesting a minimum desired distance (in km)
between the infrastructures supporting the multiple
copies of data. This metadata is used to separate the
(cdmi_infrastructure_redundancy number of)
infrastructures by a minimum geographic distance to
prevent data loss due to site disasters.
When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

cdmi_geographic_
↪→ placement

JSON
array
of
JSON
strings

If this data system metadata item is present and set
to zero or more geopolitical identifiers, it indicates
that the client is requesting restrictions on the
geographic regions where the object is permitted to
be stored. Each geopolitical identifier shall be in the
form of either a string containing a valid ISO 3166
country/country­subdivision code, which indicates
that storage is permitted within that geopolitical
region, or in the form of a string starting with the “!”
character in front of a valid ISO 3166
country/country­subdivision code, which excludes
that country/country­subdivision from the previous list
of geopolitical regions.
The list is evaluated, in order, from left to right, with
evaluation of each candidate storage location
stopping when the candidate location is a permitted
or prohibited region or is contained within a permitted
or prohibited region. In addition to the ISO 3166
codes, “*” shall indicate all regions. If a candidate
location does not match any of the entries in the list,
the candidate location shall be considered to be
prohibited.

• When this data system metadata item is
absent, this data system metadata item shall
not be used.

• When this data system metadata item is
present and does not contain valid geopolitical
identifiers, the create, update, or deserialize
operation shall fail with an HTTP status code of
400 Bad Request.

• When this data system metadata item is
present and valid, but no available storage
locations are permitted, the create, update, or
deserialize operation shall fail with an HTTP
status code of 403 Forbidden.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 240

Cloud Data Management Interface 2.0.0

Table 142 – continued from previous page
Metadata name Type Description Requirement
cdmi_retention_id JSON

string
If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the string be used to tag a given
object as being managed by a specific retention
policy. This data system metadata item is not
required to place an object under retention, but is
useful when needing to be able to perform a query to
find all objects under a specific retention policy.
When this data system metadata item is absent, or is
present and an empty string, this data system
metadata item shall not be used.

Optional

cdmi_retention_period JSON
string

If this data system metadata item is present and
contains a valid ISO 8601:2004 time interval (as
described in), it indicates that the client is requesting
that an object be placed under retention (see 18.3).
When this data system metadata item is absent, this
data system metadata item shall not be used. When
this data system metadata item is present but does
not contain a valid ISO 8601:2004 time interval, the
create, update, or deserialize operation shall fail with
an HTTP status code of 400 Bad Request.
If this data system metadata item is updated and the
new end date is before the current end date, the
update operation shall fail with an HTTP status code
of 403 Forbidden.

Optional

cdmi_retention_
↪→ autodelete

JSON
string

If this data system metadata item is present and set
to “true”, it indicates that the client is requesting that
an object under retention be automatically deleted
when retention expires.
When this data system metadata item is absent, or is
present and is not set to “true”, this data system
metadata item shall not be used.

Optional

cdmi_hold_id JSON
array
of
JSON
strings

If this data system metadata item is present and not
an empty array, it indicates that the client is
requesting that an object be placed under hold (see
18.4). Each string in the array shall contain a unique
user­specified hold identifier.
When this data system metadata item is absent, or is
present and is an empty JSON array, this data
system metadata item shall not be used.
If this data system metadata item is updated, and a
previously existing hold string has been removed or
changed in the update, the update operation shall fail
with an HTTP status code of 403 Forbidden. (See
18.4 concerning releasing holds.)

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 241

Cloud Data Management Interface 2.0.0

Table 142 – continued from previous page
Metadata name Type Description Requirement
cdmi_encryption JSON

string
If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the object be encrypted while at rest.
If encrypted, all data and metadata related to the
object shall be encrypted. Supported
algorithm/mode/length values are provided by the
cdmi_encryption capability.
When this data system metadata item is absent, this
data system metadata item shall not be used.
If this data system metadata item is present but does
not contain a valid encryption algorithm/mode/length
string, the system is free to choose to ignore the data
system metadata, to fail with an HTTP status code of
400 Bad Request, or to select an encryption
algorithm/mode/length of the system’s choice.
Supported encryption algorithms are expressed as a
string in the form of
ALGORITHM_MODE_KEYLENGTH, where:

• “ALGORITHM” is the encryption algorithm (e.g.,
“AES” or “3DES”).

• “MODE” is the mode of operation (e.g., “XTS”,
“CBC”, or “CTR”).

• “KEYLENGTH” is the key size in bytes (e.g.,
“128”, “192”, “256”).

To improve interoperability between CDMI
implementations, the following designators should be
used for the more common encryption combinations:

• “3DES_ECB_168” for the three­key TripleDES
algorithm, the Electronic Code Book (ECB)
mode of operation, and a key size of 168 bits;

• “3DES_CBC_168” for the three­key TripleDES
algorithm, the Cipher Block Chaining (CBC)
mode of operation, and a key size of 168 bits;

• “AES_CBC_128” for the AES algorithm, the
CBC mode of operation, and a key size of 128
bits;

• “AES_CBC_256” for the AES algorithm, the
CBC mode of operation, and a key size of 256
bits;

• “AES_XTS_128” for the AES algorithm, the
XTS mode of operation, and a key size of 128
bits; and

• “AES_XTS_256” for the AES algorithm, the
XTS mode of operation, and a key size of 256
bits.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 242

Cloud Data Management Interface 2.0.0

Table 142 – continued from previous page
Metadata name Type Description Requirement
cdmi_value_hash JSON

string
If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system hash the object value
using the hashing algorithm and length requested.
The result of the hash shall be provided in the
cdmi_hash storage system metadata item.
Supported algorithm/length values are provided by
the cdmi_value_hash storage system capability.
When this data system metadata item is absent, this
data system metadata item shall not be used.
If this data system metadata item is present but does
not contain a valid hash algorithm/length string, the
system is free to choose to ignore the data system
metadata, to fail with an HTTP status code of 400
Bad Request, or to select a hash algorithm/length
of the system’s choice.
Supported hash algorithms are expressed as a string
in the form of ALGORITHM LENGTH, where:

• “ALGORITHM” is the hash algorithm (e.g.,
“SHA”).

• “LENGTH” is the hash size in bytes (e.g., “160”,
“256”).

To improve interoperability between CDMI
implementations, the following designators should be
used for the more common encryption combinations:

• “SHA160” for SHA­1, and
• “SHA256” for SHA­2.

Optional

cdmi_latency JSON
string

If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is requesting a desired maximum time to first byte, in
milliseconds. This metadata is the desired latency (in
milliseconds) to the first byte of data, as measured
from the edge of the cloud and factoring out any
propagation latency between the client and the cloud.
For example, this metadata may be used to
determine, in an interoperable way, from what type of
storage medium the data may be served.
When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

cdmi_throughput JSON
string

If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is requesting a desired maximum data rate on
retrieve, in bytes per second. This metadata is the
desired bandwidth to the data, as measured from the
edge of the cloud and factoring out any bandwidth
capability between the client and the cloud. This
metadata is used to stage the data in locations where
there is sufficient bandwidth to accommodate a
maximum usage.
When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 243

Cloud Data Management Interface 2.0.0

Table 142 – continued from previous page
Metadata name Type Description Requirement
cdmi_sanitization_
↪→ method

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system use a specific sanitization
method to delete data such that the data is
unrecoverable after an update or delete operation.
Supported sanitization method values are provided
by the cdmi_sanitization_method capability.
When this data system metadata item is absent, this
data system metadata item shall not be used.
If this data system metadata item is present but does
not contain a valid sanitization method string, the
system is free to choose to ignore the data system
metadata, to fail with an HTTP status code of 400
Bad Request, or to select a sanitization method of
the system’s choice.
Supported sanitization methods are defined as
system­specific strings.

Optional

cdmi_RPO JSON
string

If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is requesting a largest acceptable duration in time
between an update or create and when the object
may be recovered, specified in seconds. This
metadata is used to indicate the desired backup
frequency from the primary copy or copies of the data
to the secondary copy or copies. It is the maximum
acceptable time period before a failure or disaster
during which changes to data may be lost as a
consequence of recovery.
When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

cdmi_RTO JSON
string

If this data system metadata item is present and set
to a positive numeric string, it indicates that the client
is requesting the largest acceptable duration in time
to restore data, specified in seconds. This metadata
is used to indicate the desired maximum acceptable
duration to restore the primary copy or copies of the
data from a secondary backup copy or copies.
When this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

cdmi_enc_key_id JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system associate with the object a
key identifier (e.g. KMIP Identifier) for the symmetric
key used to encrypt and decrypt the object.

Optional

cdmi_enc_value_sign_id JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system associate with the object a
key identifier (e.g. KMIP Identifier) for the private key
used for signing the value of the object.

Optional

cdmi_enc_value_verify
↪→ _id

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system associate with the object a
key identifier (e.g. KMIP Identifier) for the public key
or certificate chain used for verifying the signature of
the value of the object.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 244

Cloud Data Management Interface 2.0.0

Table 142 – continued from previous page
Metadata name Type Description Requirement
cdmi_enc_object_sign
↪→ _id

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system associate with the object a
key identifier (e.g. KMIP Identifier) for the private key
used for signing the entire object.

Optional

cdmi_enc_object_verify
↪→ _id

JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system associate with the object a
key identifier (.e.g. KMIP Identifier) for the public key
or certificate chain used for verifying the signature of
the entire object.

Optional

cdmi_versioning JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that versioning be enabled for the data
object, and what level of versioning is requrested.

• If set to the value “value”, versions shall be
created when the value is updated.

• If set to the value “user”, versions shall be
created when the value and/or user metadata
is updated.

• If set to the value “all”, versions shall be
created when any update is performed against
the version­enabled data object.

This data system metadata item shall not be present
in data object versions.

Optional

cdmi_versions_count JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting limits on the maximum number of
historical versions to be retained.

• If cdmi_versions_count is not present, no
limits should be placed on the number of
versions that are retained.

• If cdmi_versions_count is present and has
a value of zero, only the current version should
be retained.

• If cdmi_versions_count is present and has
a value greater than zero, up to the specified
number of historical versions should be
retained.

• If the number of historical versions exceeds the
value specified, historical versions should be
deleted from the oldest to the newest until the
number of historical versions equals the value
contained in cdmi_versions_count.

Optional

cdmi_versions_age JSON
string

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting limits on the maximum age of the oldest
historical version requested to be retained.

• If cdmi_versions_age is not present, no
limit should be placed on the age of versions
that are retained.

• If cdmi_versions_age is present, historical
versions should be retained until their age in
seconds since creation is greater than the
value contained in cdmi_versions_age.

• If the age of a historical version exceeds the
value specified, that historical version should
be deleted.

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 245

Cloud Data Management Interface 2.0.0

Table 142 – continued from previous page
Metadata name Type Description Requirement
cdmi_versions_size JSON

string
If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting limits on the maximum amount of space to
be used to retain historical versions.

• If cdmi_versions_size is not present, no
limit should be placed on the size of versions
that are retained.

• If cdmi_versions_size is present, historic
versions should be retained until the total
storage consumption in bytes of the historical
versions exceeds the value contained in
cdmi_versions_size.

• If the total size consumed by historical versions
exceeds the value specified, historical versions
should be deleted from the oldest to the
newest until the total storage consumption of
historical versions is equal or less than the
value contained in cdmi_versions_size.

Optional

© SNIA 2020 SNIA Technical Position 246

Cloud Data Management Interface 2.0.0

16.4 Support for provided data system metadata3169

For each metadata item in a data system, there is an actual value that the cloud service is able to achieve at this time, as3170

shown in tbl_provided_values_of_data_systems_metadata_items. Data system­provided metadata items3171

are read only. Updates of these metadata items shall be ignored.3172

Table 143: Provided values of data system metadata
Metadata name Type Description Requirement
cdmi_data_redundancy_provided JSON

string
Contains the current number of complete
copies of the data object at this time

Optional

cdmi_immediate_redundancy_
↪→ provided

JSON
string

If present and set to “true”, indicates if
immediate redundancy is provided for the
object

Optional

cdmi_infrastructure_
↪→ redundancy_provided

JSON
string

Contains the current number of
independent storage infrastructures
supporting the data currently operating

Optional

cdmi_data_dispersion_provided JSON
string

Contains the current lowest distance (km)
between any two infrastructures hosting
the data

Optional

cdmi_geographic_placement_
↪→ provided

JSON
array
of
JSON
strings

Contains an ISO­3166 identifier that
corresponds to a geopolitical region where
the object is stored

Optional

cdmi_retention_period_provided JSON
string

Contains an ISO­8601 time interval (as
described in 5.6) specifying the period the
object is protected by retention

Optional

cdmi_retention_autodelete_
↪→ provided

JSON
string

Contains “true” if the object will
automatically be deleted when retention
expires

Optional

cdmi_hold_id_provided JSON
array
of
JSON
strings

Contains the user­specified hold identifiers
for active holds

Optional

cdmi_encryption_provided JSON
string

Contains the algorithm used for
encryption, the mode of operation, and the
key size. (See cdmi_encryption in 16.3
for the format.)

Optional

cdmi_value_hash_provided JSON
string

Contains the algorithm and length being
used to hash the object value. See
cdmi_value_hash in 16.3 for the format.

Optional

cdmi_latency_provided JSON
string

Contains the provided maximum time to
first byte

Optional

cdmi_throughput_provided JSON
string

Contains the provided maximum data rate
on retrieve

Optional

cdmi_sanitization_method_
↪→ provided

JSON
string

Contains the sanitization method used.
See cdmi_sanitization_method in
16.3 for the format.

Optional

cdmi_RPO_provided JSON
string

Contains the provided duration, in
seconds, between an update and when
the update may be recovered

Optional

cdmi_RTO_provided JSON
string

Contains the provided duration, in
seconds, to restore data

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 247

Cloud Data Management Interface 2.0.0

Table 143 – continued from previous page
Metadata name Type Description Requirement
cdmi_authentication_methods_
↪→ provided

JSON
array
of
JSON
strings

Contains a list of authentication methods
enabled for the domain. See
cdmi_authentication_methods in
16.3 for the format.

Optional

cdmi_versioning_provided JSON
string

Contains the value “value”, “user”, or
“all” if versioning is enabled for the data
object.

Optional

cdmi_versions_count_provided JSON
string

Contains the maximum number of
historical versions that will be retained.

Optional

cdmi_versions_age_provided JSON
string

Contains the oldest age of a historical
version that will be retained, in seconds
before the current time.

Optional

cdmi_versions_size_provided JSON
string

Contains the maximum amount of space
that can be used to retain historical
versions, in bytes.

Optional

© SNIA 2020 SNIA Technical Position 248

Cloud Data Management Interface 2.0.0

16.5 Support for user metadata3173

All CDMI objects that support metadata shall permit the inclusion of arbitrary user­defined metadata items, with the3174

restriction that the name of a user­defined metadata item shall not start with the prefix “cdmi_”.3175

• Themaximumnumber of user­definedmetadata items is specified by the capability cdmi_metadata_maxitems.3176

• The maximum size of each user­defined metadata item is specified by the capability cdmi_metadata_maxsize.3177

• The maximum total size of user­defined metadata items for an object is specified by the capability3178

cdmi_metadata_maxtotalsize.3179

© SNIA 2020 SNIA Technical Position 249

Cloud Data Management Interface 2.0.0

16.6 Metadata update operations3180

CDMI permits a client to replace all metadata items or to perform operations against one or more individual metadata3181

items.3182

Replacing all metadata items is accomplished by including the metadata field in the update request body JSON and not3183

specifying specific metadata items in the update URI.3184

Adding, updating, and removing specific metadata items is accomplished by specifying the specific metadata item names3185

in the update URI:3186

• To add a new metadata item to an existing object, the metadata item name shall be included in the update request3187

URI, and the metadata item shall be included in the metadata field in the update request body JSON.3188

• To update the value of an existing metadata item, the metadata item name shall be included in the update request3189

URI, and the metadata item shall be included in the metadata field in the update request body JSON.3190

• To remove an existing metadata item, the metadata item name shall be included in the update request URI, and3191

the metadata item shall not be included in the metadata field in the update request body JSON.3192

When individual metadata items are specified in the update URI, metadata items included in the metadata field in the3193

request body JSON that are not referred to in the update URI shall be ignored.3194

© SNIA 2020 SNIA Technical Position 250

Cloud Data Management Interface 2.0.0

Clause 173195

Access control3196

17.1 Overview3197

Access control defines the mechanisms by which access to objects are permitted or denied. The CDMI International3198

Standard supports the following options for access control:3199

• No access control3200

• Access Control List (ACL) based access control (See 17.2.1)3201

• Domain based access control (See 10.2.5)3202

• Delegated access control (See clause 24)3203

• Vendor­defined access control extensions3204

• Combinations of the above3205

© SNIA 2020 SNIA Technical Position 251

Cloud Data Management Interface 2.0.0

17.2 Access control flow3206

Fig. 11 illustrates the control flow for access control in an example CDMI implementation. As every aspect of access3207

control is optional within a CDMI server, each different implementations will typically implement appropriate subsets of3208

the illustrated access control flow, in a manner approprate to the internal architecture of their implementation.3209

The full contol flow can include 24 steps:3210

1. The CDMI client initiates a CDMI operation by sending a CDMI request to a CDMI server. As part of the request,3211

the CDMI client includes information about its identity and information to prove this identity (credentials). The3212

method by which these credentials are presented and formatted is not specified in this International Standard,3213

however, some guidance is provided in 5.4.3.3214

2. If the CDMI server supports Domains (see clause 10), the CDMI server obtains the domain associated with the3215

object the CDMI operation is being performed against. If the CDMI system does not support domains, steps 2 ­3216

8 are skipped.3217

3. The CDMI server obtains required information about the domain associated with the object.3218

4. Domain Information is returned for further use.3219

5. Domain information is used to resolve CDMI client credentials.3220

6. If the Domain is configured to delegate identity resolution to an external system (such as Active Directory), cre­3221

dentials are sent to this external system for resolution.3222

7. If the Domain is configured to use local membership, credentials are compared against the configured domain3223

members (see 10.4).3224

8. The resolved principle (user, group, indication of validity) is returned for further use.3225

9. If the CDMI server supports ACLs (see 17.2.1), the CDMI server evaluates the object ACL. If the CDMI system3226

does not support ACLs, steps 9 ­ 15 are skipped.3227

10. The CDMI ACL processing subsystem obtains the ACL for the object.3228

11. The CDMI server obtains ACL metadata associated with the object.3229

12. If the object is in a container, the CDMI server obtains ACL metadata for parent containers.3230

13. The obtained ACL metadata is returned for further use.3231

14. The CDMI ACL processing subsystem evaluates the resolved principals against the resolved ACL.3232

15. The evaluated permission mask is returned for further use.3233

16. If the CDMI server supports Delegated Access Control (DAC) (see clause 24), the CDMI server obtains DAC3234

metadata associated with the object the CDMI operation is being performed against. If the CDMI system does3235

not support DAC, steps 16 ­ 22 are skipped.3236

17. The CDMI server obtains DAC metadata associated with the object.3237

18. DAC metadata is returned for further use.3238

19. If DAC metadata is present and indicates that DAC is to be used, the specified delegation is performed.3239

20. The external DAC provider is contacted, including the evaluated Object permission mask.3240

21. If a valid DAC response is received, the dac_applied_mask replaces the evaluated Object permission mask.3241

22. The DAC results and Object permission mask is returned for further use.3242

23. The Object permission mask is used to determine if the requested operation is permitted.3243

24. The operation is permitted or denied, and the corresponding response returend to the CDMI Client.3244

Steps 2 ­ 8, 9 ­ 15, and 16 ­ 18 may be performed in parallel.3245

© SNIA 2020 SNIA Technical Position 252

Cloud Data Management Interface 2.0.0

Originating
Client

CDMI Request
Processing

CDMI Metadata
Repository

CDMI Domain
Processing

CDMI ACL
Processing

CDMI Delegated
Access Control

1. CDMI Request

24. CDMI Response

2. If domains
supported, get Object
Domain

3. Obtain Object
Domain

4. Object Domain

5. If domains
supported, resolve
principals

6. If delegated to
external system,
perform lookup

8. Resolved user/
group

7. If not delegated,
look up user identity in
local domain
membership

19. If delegated
access control
supported, and Object
Delegation Metadata
present, perform
delegation

20. Contact external
delegated access
control provider

22. Delegated Access
Control Response

9. If ACLs supported,
get Object ACL

10. Obtain local ACL

15. Object
Permissions Mask

11. Obtain Object ACL
Metadata

13. Object ACL
Metadata

14. Evaluate ACL
against principal and
requested operation

23. Determine if
operation permitted

16. If delegated
access control
supported, get
delegation metadata

17. Obtain Object
Delegation Metadata

18. Object Delegation
Metadata

12. Obtain Inherited
ACL Metadata

21. Update Object
Permissions Mask

Illustrative Logical Subdivisions within an Example CDMI Server

Fig. 11: Access control flow

© SNIA 2020 SNIA Technical Position 253

Cloud Data Management Interface 2.0.0

17.2.1 General mechanisms3246

CDMI uses the well­known mechanism of an Access Control List (ACL) as defined in the NFSv4 standard (see RFC3247

3530 [1]). ACLs are lists of permissions­granting or permissions­denying entries called Access Control Entries (ACEs).3248

17.2.2 ACL and ACE structure3249

An ACL is an ordered list of ACEs. The two types of ACEs in CDMI are ALLOW and DENY. An ALLOW ACE grants some3250

form of access to a principal. Principals are either users or groups and are represented by identifiers. A DENY ACE3251

denies access of some kind to a principal. For instance, a DENY ACE may deny the ability to write the metadata or ACL3252

of an object but may remain silent on other forms of access. In that case, if another ACE ALLOWs write access to the3253

object, the principal is allowed to write the object’s data, but nothing else.3254

ACEs are composed of four fields: type, who, flags and access_mask, as per RFC 3530 [1]. The type, flags,3255

and access_mask shall be specified as either unsigned integers in hex string representation or as a comma­delimited3256

list of bit mask string form values taken from ACE types, ACE flags, and ACE masks bits.3257

17.2.3 ACE types3258

Table 144 defines the following ACE types, as specified in section 5.11.1 of RFC 3530 [1].3259

Table 144: ACE types
String
form

Description Constant Bit mask

“ALLOW” Allow access rights for a principal “CDMI_ACE_ACCESS_ALLOW” 0x00000000
“DENY” Deny access rights for a principal “CDMI_ACE_ACCESS_DENY” 0x00000001
“AUDIT” Generate an audit record when the principal

attempts to exercise the specified access rights
“CDMI_ACE_SYSTEM_AUDIT” 0x00000002

The reason that the string forms may be safely abbreviated is that they are local to the ACE structure type, as opposed3260

to constants, which are relatively global in scope.3261

The client is responsible for ordering the ACEs in an ACL. The server shall not enforce any ordering and shall store and3262

evaluate the ACEs in the order given by the client.3263

17.2.4 ACE who3264

The special “who” identifiers need to be understood universally, rather than in the context of a particular external security3265

domain (seeWho identifiers). Some of these identifiers may not be understood when a CDMI client accesses the server,3266

but they may have meaning when a local process accesses the file. The ability to display and modify these permissions3267

is permitted over CDMI, even if none of the access methods on the server understands the identifiers.3268

Table 145: Who identifiers
Who Description
“OWNER@” The owner of the file
“GROUP@” The group associated with the file
“EVERYONE@” The world
“ANONYMOUS@” Access without authentication
“AUTHENTICATED@” Any authenticated user (opposite of “ANONYMOUS@”)
“ADMINISTRATOR@” A user with administrative status, e.g., “root”
“ADMINUSERS@” A group whose members are given administrative status

To avoid name conflicts, these special identifiers are distinguished by an appended “@” (with no domain name).3269

© SNIA 2020 SNIA Technical Position 254

Cloud Data Management Interface 2.0.0

17.2.5 ACE flags3270

CDMI allows for nested containers and mandates that objects and subcontainers be able to inherit access permissions3271

from their parent containers. However, it is not enough to simply inherit all permissions from the parent; it might be3272

desirable, for example, to have different default permissions on child objects and subcontainers of a given container.3273

The flags in Table 146 govern this behavior.3274

Table 146: ACE flags
String form Description Constant Bit mask
“NO_FLAGS” No flags are set “CDMI_ACE_FLAGS_NONE” 0x00000000
“OBJECT_INHERIT” An ACE on which

“OBJECT_INHERIT” is set is
inherited by objects as an effective
ACE: “OBJECT_INHERIT” is
cleared on the child object. When
the ACE is inherited by a
container, “OBJECT_INHERIT” is
retained for the purpose of
inheritance, and additionally,
“INHERIT_ONLY” is set.

“CDMI_ACE_FLAGS_
OBJECT_INHERIT_ACE”

0x00000001

“CONTAINER_INHERIT” An ACE on which
“CONTAINER_INHERIT” is set is
inherited by a subcontainer as an
effective ACE.
Both ”INHERIT_ONLY” and
“CONTAINER_INHERIT” are
cleared on the child container.

“CDMI_ACE_FLAGS_
CONTAINER_INHERIT_ACE”

0x00000002

“NO_PROPAGATE” An ACE on which
“NO_PROPAGATE” is set is not
inherited by any objects or
subcontainers. It applies only
to the container on which it is set.

“CDMI_ACE_FLAGS_
NO_PROPAGATE_ACE”

0x00000004

“INHERIT_ONLY” An ACE on which
“INHERIT_ONLY” is set is
propagated to children during ACL
inheritance as specified
by ”OBJECT_INHERIT” and
“CONTAINER_INHERIT”. The
ACE is ignored when
evaluating access to the container
on which it is set and is always
ignored when set on objects.

“CDMI_ACE_FLAGS_
INHERIT_ONLY_ACE”

0x00000008

“IDENTIFIER_GROUP” An ACE on which
“IDENTIFIER_GROUP” is set
indicates that the “who” refers to a
group identifier.

“CDMI_ACE_FLAGS_
IDENTIFIER_GROUP”

0x00000040

“INHERITED” An ACE on which “INHERITED” is
set indicates that this ACE is
inherited from a parent directory.
A server that supports automatic
inheritance will place this flag
on any ACEs inherited from the
parent directory when creating a
new object.

“CDMI_ACE_FLAGS_
INHERITED_ACE”

0x00000080

© SNIA 2020 SNIA Technical Position 255

Cloud Data Management Interface 2.0.0

17.2.6 ACE mask bits3275

The mask field of an ACE contains a 32 bit mask, as specified in section 5.11.2 of RFC 3530 [1]. Table 146 defines the3276

impact of each bit in an ACE mask field.3277

Table 147: ACE masks bits
String form Description Constant Bit mask
“READ_OBJECT” If true, indicates permission to

read the value of an object.
If false:

• A CDMI GET that requests
all fields shall return all
permitted fields with the
value field excluded.

• A CDMI GET that requests
specific fields shall return
requested permitted fields
with the value field
excluded.

• A CDMI GET for only the
value field shall return an
HTTP status code of 403
Forbidden.

• A non­CDMI GET shall
return an HTTP status code
of 403 Forbidden.

“CDMI_ACE_READ_OBJECT” 0x00000001

“LIST_CONTAINER” If true, indicates permission to list
the children of an object.
If false:

• A CDMI GET that requests
all fields shall return all
permitted fields with the
children field and
childrenrange field
excluded.

• A CDMI GET that requests
specific fields shall return
the requested permitted
fields with the children field
and childrenrange field
excluded.

• A CDMI GET for only the
children field and/or
childrenrange field shall
return an HTTP status code
of 403 Forbidden.

“CDMI_ACE_LIST_CONTAINER” 0x00000001

“WRITE_OBJECT” If true, indicates permission to
modify the value of an object
If false, a PUT that requests
modification of the value of an
object shall return an HTTP status
code of 403 Forbidden.

“CDMI_ACE_WRITE_OBJECT” 0x00000002

continues on next page

© SNIA 2020 SNIA Technical Position 256

Cloud Data Management Interface 2.0.0

Table 147 – continued from previous page
String form Description Constant Bit mask
“ADD_OBJECT” If true, indicates permission to add

a new child data object or queue
object.
If false, a PUT or POST that
requests creation of a new child
data object or new queue object
shall return an HTTP status code
of 403 Forbidden.

“CDMI_ACE_ADD_OBJECT” 0x00000002

“APPEND_DATA” If true, indicates permission to
append data to the value of a data
object.
If “APPEND_DATA” is true and
“WRITE_OBJECT” is false, a PUT
that requests modification of any
existing part of the value of an
object shall return an HTTP status
code of 403 Forbidden.

“CDMI_ACE_APPEND_DATA” 0x00000004

“ADD_SUBCONTAINER” If true, indicates permission to
create a child container object or
domain object.
If false, a PUT that requests
creation of a new child container
object or new domain object shall
return an HTTP status code of
403 Forbidden.

“CDMI_ACE_ADD_
SUBCONTAINER”

0x00000004

“READ_METADATA” If true, indicates permission to
read the metadata of an object.
If false:

• A CDMI GET that requests
all fields shall return all
permitted fields with the
metadata field excluded.

• A CDMI GET that requests
specific fields shall return
the requested permitted
fields with the metadata
field excluded.

• A CDMI GET for only the
metadata field shall return
an HTTP status code of
403 Forbidden.

“CDMI_ACE_READ_METADATA” 0x00000008

“WRITE_METADATA” If true, indicates permission to
modify the metadata of an object.
If false, a CDMI PUT that requests
modification of the metadata field
of an object shall return an HTTP
status code of 403 Forbidden.

“CDMI_ACE_WRITE_METADATA” 0x00000010

“EXECUTE” If true, indicates permission to
execute an object.

“CDMI_ACE_EXECUTE” 0x00000020

“TRAVERSE_
CONTAINER”

If true, indicates permission to
traverse a container object or
domain object.
If false, all operations against all
children below the container shall
return an HTTP status code of
403 Forbidden.

“CDMI_ACE_TRAVERSE_
CONTAINER”

0x00000020

continues on next page

© SNIA 2020 SNIA Technical Position 257

Cloud Data Management Interface 2.0.0

Table 147 – continued from previous page
String form Description Constant Bit mask
“DELETE_OBJECT” If true, indicates permission to

delete a child data object or child
queue object from a container
object.
If false, all DELETE operations
shall return an HTTP status code
of 403 Forbidden.

“CDMI_ACE_DELETE_OBJECT” 0x00000040

“DELETE_
SUBCONTAINER”

If true, indicates permission to
delete a child container object
from a container object or to
delete a child domain object from
a domain object.
If false, all DELETE operations
shall return an HTTP status code
of 403 Forbidden.

“CDMI_ACE_DELETE_
SUBCONTAINER”

0x00000040

“READ_ATTRIBUTES” If true, indicates permission to
read the attribute fields1 of an
object.
If false:

• A CDMI GET that requests
all fields shall return all
non­attribute fields and shall
not return any attribute
fields.

• A CDMI GET that requests
at least one non­attribute
field shall only return the
requested non­attribute
fields.

• A CDMI GET that requests
only non­attribute fields
shall return an HTTP status
code of 403 Forbidden.

“CDMI_ACE_READ_
ATTRIBUTES”

0x00000080

“WRITE_ATTRIBUTES” If true, indicates permission to
change attribute fields[#a]_ of an
object.
If false, a CDMI PUT that requests
modification of any non­attribute
field shall return an HTTP status
code of 403 Forbidden.

“CDMI_ACE_WRITE_
ATTRIBUTES”

0x00000100

“WRITE_RETENTION” If true, indicates permission to
change retention attributes of an
object.
If false, a CDMI PUT that requests
modification of any non­hold
retention metadata items shall
return an HTTP status code of
403 Forbidden.

“CDMI_ACE_WRITE_
RETENTION”

0x00000200

“WRITE_RETENTION_
HOLD”

If true, indicates permission to
change retention hold attributes of
an object.
If false, a CDMI PUT that requests
modification of any retention hold
metadata items shall return an
HTTP status code of 403
Forbidden.

“CDMI_ACE_WRITE_
RETENTION_HOLD”

0x00000400

continues on next page

© SNIA 2020 SNIA Technical Position 258

Cloud Data Management Interface 2.0.0

Table 147 – continued from previous page
String form Description Constant Bit mask
“DELETE” If true, indicates permission to

delete an object.
If false, all DELETE operations
shall return an HTTP status code
of 403 Forbidden.

“CDMI_ACE_DELETE” 0x00010000

“READ_ACL” If true, indicates permission to
read the ACL of an object.
If false:

• A CDMI GET that requests
all metadata items shall
return all permitted
metadata items with the
“cdmi_acl” metadata item
excluded.

• A CDMI GET that requests
specific metadata items
shall return the requested
permitted metadata items
with the “cdmi_acl”
metadata item excluded.

• A CDMI GET for only the
cdmi_acl metadata item
shall return an HTTP status
code of 403 Forbidden.

If “READ_ACL” is true and
“READ_METADATA” is false, then
to read the ACL, a client CDMI
GET for only the “cdmi_acl”
metadata item shall be permitted.

“CDMI_ACE_READ_ACL” 0x00020000

“WRITE_ACL” If true, indicates permission to
write the ACL of an object.
If false:

• If “WRITE_ACL” is false, a
CDMI PUT that requests
modification of the
“cdmi_acl” metadata item
shall return an HTTP status
code of 403 Forbidden.

• If “WRITE_ACL” is true and
“WRITE_METADATA” is
false, then to write the ACL,
a client CDMI PUT for only
the “cdmi_acl” metadata
item shall be permitted.

“CDMI_ACE_WRITE_ACL” 0x00040000

continues on next page

© SNIA 2020 SNIA Technical Position 259

Cloud Data Management Interface 2.0.0

Table 147 – continued from previous page
String form Description Constant Bit mask
“WRITE_OWNER” If true, indicates permission to

change the owner of an object.
If false:

• If “WRITE_OWNER” is false,
a CDMI PUT that requests
modification of the
“cdmi_owner” metadata
item shall return an HTTP
status code of 403
Forbidden.

• If “WRITE_OWNER” is true
and “WRITE_METADATA” is
false, then to write the
owner, a client CDMI PUT
for only the “cdmi_owner”
metadata item shall be
permitted.

“CDMI_ACE_WRITE_OWNER” 0x00080000

“SYNCHRONIZE” If true, indicates permission to
access an object locally at the
server with synchronous reads
and writes.

“CDMI_ACE_SYNCHRONIZE” 0x00100000

Implementations shall use the correct string form to display permissions, if the object type is known. If the object type3278

is unknown, the “object” version of the string shall be used.3279

17.2.7 ACL evaluation3280

When evaluating whether access to a particular object O by a principal P is to be granted, the server shall traverse3281

the object’s logical ACL (its ACL after processing inheritance from parent containers) in list order, using a temporary3282

permissions bitmask m, initially empty (all zeroes), and apply the following algorithm:3283

• If the object still does not contain an ACL, the algorithm terminates and access is denied for all users and groups.3284

This condition is not expected, as CDMI implementations should require an inheritable default ACL on all root3285

containers.3286

• ACEs that do not refer to the principal P requesting the operation are ignored.3287

• If an ACE is encountered that denies access to P for any of the requested mask bits, access is denied and the3288

algorithm terminates.3289

• If an ACE is encountered that allows access to P, the permissions mask m for the operation is XORed with the3290

permissionsmask from the ACE. If m is sufficient for the operation, access is granted and the algorithm terminates.3291

• If the end of the ACL list is reached and permission has neither been granted nor explicitly denied, access is3292

denied and the algorithm terminates, unless the object is a container root. In this case, the server shall:3293

– allow access to the container owner, “ADMINISTRATOR@”, and any member of “ADMINUSERS@”; and3294

– log an event indicating what has happened.3295

When permission for the desired access is not explicitly given, even “ADMINISTRATOR@” and equivalents are denied3296

for objects that aren’t container roots. When an admin needs to access an object in such an instance, the root container3297

shall be accessed and its inheritable ACEs changed in a way as to allow access to the original object. The resulting log3298

entry then provides an audit trail for the access.3299

When a root container is created and no ACL is supplied, the server shall place an ACL containing the following ACEs3300

on the container:3301

1 The value fields, children fields, and metadata field are considered to be non­attribute fields. All other fields are considered to be attribute
fields.

© SNIA 2020 SNIA Technical Position 260

Cloud Data Management Interface 2.0.0

"cdmi_acl":
[

{
"acetype": "ALLOW",
"identifier": "OWNER@",
"aceflags": "OBJECT_INHERIT, CONTAINER_INHERIT",
"acemask": "ALL_PERMS"

},
{

"acetype": "ALLOW",
"identifier": "AUTHENTICATED@",
"aceflags": "OBJECT_INHERIT, CONTAINER_INHERIT",
"acemask": "READ"

}
]

As ACLs are storage system metadata, they are stored and retrieved through the metadata field included in a PUT or3302

GET request. The syntax is as follows, using the constant strings from ACE types, ACE flags, and ACE masks bits:3303

ACL = { ACE [, ACE ...] }
ACE = { acetype , identifier , aceflags , acemask }
acetype = uint_t | acetypeitem
identifier = utf8string_t
aceflags = uint_t | aceflagsstring
acemask = uint_t | acemaskstring

acetypeitem = aceallowedtype | acedeniedtype | aceaudittype
aceallowedtype = "CDMI_ACE_ACCESS_ALLOWED_TYPE" | 0x0
acedeniedtype = "CDMI_ACE_ACCESS_DENIED_TYPE" | 0x01
aceaudittype = "CDMI_ACE_SYSTEM_AUDIT_TYPE" | 0x02

aceflagsstring = aceflagsitem [| aceflagsitem ...]
aceflagsitem = aceobinherititem | acecontinherititem | acenopropagateitem |�
↪→aceinheritonlyitem

aceobinherititem = "CDMI_ACE_OBJECT_INHERIT_ACE" | 0x01
acecontinherititem = "CDMI_ACE_CONTAINER_INHERIT_ACE" | 0x02
acenopropagateitem = "CDMI_ACE_NO_PROPAGATE_INHERIT_ACE" | 0x04
aceinheritonlyitem = "CDMI_ACE_INHERIT_ONLY_ACE" | 0x08

acemaskstring = acemaskitem [| acemaskitem ...]
acemaskitem = acereaditem | acewriteitem | aceappenditem | acereadmetaitem |�
↪→acewritemetaitem | acedeleteitem | acedelselfitem | acereadaclitem | acewriteaclitem |�
↪→aceexecuteitem | acereadattritem | acewriteattritem | aceretentionitem

acereaditem = "CDMI_ACE_READ_OBJECT" | "CDMI_ACE_LIST_CONTAINER" | 0x01
acewriteitem = "CDMI_ACE_WRITE_OBJECT" | "CDMI_ACE_ADD_OBJECT" | 0x02
aceappenditem = "CDMI_ACE_APPEND_DATA" | "CDMI_ACE_ADD_SUBCONTAINER" | 0x04
acereadmetaitem = "CDMI_ACE_READ_METADATA" | 0x08
acewritemetaitem = "CDMI_ACE_WRITE_METADATA" | 0x10
acedeleteitem = "CDMI_ACE_DELETE_OBJECT" | "CDMI_ACE_DELETE_SUBCONTAINER" | 0x40
acedelselfitem = "CDMI_ACE_DELETE" | 0x10000
acereadaclitem = "CDMI_ACE_READ_ACL" | 0x20000
acewriteaclitem = "CDMI_ACE_WRITE_ACL" | 0x40000
aceexecuteitem = "CDMI_ACE_EXECUTE" | 0x80000
acereadattritem = "CDMI_ACE_READ_ATTRIBUTES" | 0x00080
acewriteattritem = "CDMI_ACE_WRITE_ATTRIBUTES" | 0x00100
aceretentionitem = "CDMI_ACE_SET_RETENTION" | 0x10000000

When ACE masks are presented in numeric format, they shall, at all times, be specified in hexadecimal notation with a3304

leading “0x”. This format allows both servers and clients to quickly determine which of the two forms of a given constant3305

is being used. When masks are presented in string format, they shall be converted to numeric format and then evaluated3306

using standard bitwise operators.3307

When an object is created, no ACL is supplied, and an ACL is not inherited from the parent container (or there is no3308

parent container), the server shall place an ACL containing the following ACEs on the object:3309

"cdmi_acl":
[

(continues on next page)

© SNIA 2020 SNIA Technical Position 261

Cloud Data Management Interface 2.0.0

(continued from previous page)
{

"acetype": "ALLOW",
"identifier": "OWNER@",
"aceflags": "OBJECT_INHERIT, CONTAINER_INHERIT",
"acemask": "ALL_PERMS"

}
]

17.2.8 Example ACE mask expressions3310

Example 1:3311

"READ_ALL" | 0x02

evaluates to 0x09 | 0x02 == 0x03312

Example 2:3313

0x001F07FF

evaluates to 0x001F07FF == “ALL_PERMS”3314

Example 3:3315

"RW_ALL" | DELETE

evaluates to 0x000601DF | 0x00100000 == 0x000701DF3316

17.2.9 Canonical format for ACE hexadecimal quantities3317

ACE mask expressions may be evaluated and converted to a string hexadecimal value before transmission in a CDMI3318

JSON body. Applications or utilities that display them to users should convert them into a text expression before display3319

and accept user input in text format as well.3320

The following technique should be used to decompose masks into strings. A table of masks and string equivalents3321

should be maintained and ordered from greatest to least:3322

Table 148: ACE bit mask/string
Hex form Object string form Container string form
0x001F07FF “ALL_PERMS” “ALL_PERMS”
0x0006006F “RW_ALL” “RW_ALL”
0x0000001F “RW” “RW”

… …
0x00000002 “WRITE_OBJECT” “ADD_OBJECT”
0x00000001 “READ_OBJECT” “LIST_CONTAINER”

Given an access mask M, the following is repeated until M == 0:3323

1. Select the highest mask m from the table such that M & m == m.3324

2. If the object is a container, select the string from the 3rd column; otherwise, select the string from the 2nd column.3325

3. Bitwise subtract m from M, i.e., set M = M xor m.3326

4. The complete textual representation is then all the selected strings concatenated with “, ``" between them,3327

e.g., "``ALL_PERMS, WRITE_OWNER”. The strings should appear in the order they are selected.3328

A similar technique should be used for all other sets of hex/string equivalents.3329

This algorithm, properly coded, requires only one (often partial) pass through the corresponding string equivalents table.3330

© SNIA 2020 SNIA Technical Position 262

Cloud Data Management Interface 2.0.0

17.2.10 JSON format for ACLs3331

ACE flags and masks are members of a 32­bit quantity that is widely understood in its hexadecimal representations.3332

The JSON data format does not support hexadecimal integers, however. For this reason, all hexadecimal integers in3333

CDMI ACLs shall be represented as quoted strings containing a leading “0x”.3334

ACLs containing one or more ACEs shall be represented in JSON as follows:3335

{
"cdmi_acl" : [

{
"acetype" : "0xnn",
"identifier" : "<user­or­group­name>",
"aceflags" : "0xnn",
"acemask" : "0xnn"

},
{

"acetype" : "0xnn",
"identifier" : "<user­or­group­name>",
"aceflags" : "0xnn",
"acemask" : "0xnn"

}
]

}

ACEs in such an ACL shall be evaluated in order as they appear.

EXAMPLE 1: An example of an ACL embedded in a response to a GET request is as follows:3336

HTTP/1.1 200 OK
Content­Type: application/cdmi­object

{
"objectType" : "/application/cdmi­object",
"objectID" : "00007ED9001086A99CC6487FEE373D82",
"objectName" : "MyDataItem.txt",
"parentURI" : "/MyContainer/",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi_size" : "17",
"cdmi_acl" : [

{
"acetype" : "0x00",
"identifier" : "EVERYONE@",
"aceflags" : "0x00",
"acemask" : "0x00020089"

}
],
...

},
"valuerange" : "0­16",
"value" : "Hello CDMI World!"

}

© SNIA 2020 SNIA Technical Position 263

Cloud Data Management Interface 2.0.0

Clause 183337

Retention and hold management3338

18.1 Overview3339

A cloud storage system may optionally implement retention management disciplines into the system management func­3340

tionality of the cloud­based storage system. The implementation of retention and hold capabilities is indicated by the3341

presence of the cloud storage system­wide capabilities for retention and hold capabilities.3342

Retention management includes implementing a retention policy, defining a hold policy to enable objects to be held3343

for specific purposes (e.g., litigation), and defining how the rules for deleting objects are affected by placing either a3344

retention policy and/or a hold on an object. CDMI™ object deletion is not a capability of retention management, per se,3345

but rather is a general system capability. However, this clause describes what happens when placing either a retention3346

policy and/or a hold on an object.3347

Retention management may be applied to the following object types:3348

• data objects,3349

• queue objects, and3350

• container objects.3351

© SNIA 2020 SNIA Technical Position 264

Cloud Data Management Interface 2.0.0

18.2 Retention management disciplines3352

CDMI retention, deletion, and hold management affect any CDMI client that creates or deletes CDMI objects, as these3353

disciplines mandate how a cloud storage system manages CDMI objects when they are created and until they are3354

deleted.3355

CDMI retention management is comprised of three management disciplines: retention, hold, and deletion:3356

• CDMI retention uses retention time criteria to determine the time period during which object deletion from the3357

CDMI­based system is prohibited. No changes to the object are allowed, even after the retention period has3358

expired, except as specified below.3359

• CDMI hold prohibits object deletion and modification until all holds on the object have been released.3360

• A CDMI­based system shall not allow the deletion of a CDMI object before the CDMI retention time criteria are3361

met or while holds exist. Any deletion attempts (e.g., by a CDMI application) shall return an error.3362

• After the CDMI retention time criteria have been met and all holds have been released, CDMI retention and holds3363

shall no longer be a reason to prohibit object deletion.3364

• Once the retention period has started or if holds exist, changes to the object data and metadata shall not be3365

allowed, with the exception of extensions to the retention and hold data system metadata. The retention data3366

system metadata may be added or the retention period extended, and the hold data system metadata may be3367

added or extended with additional holds. Any other attempt to modify the object shall return an error.3368

© SNIA 2020 SNIA Technical Position 265

Cloud Data Management Interface 2.0.0

18.3 CDMI retention3369

18.3.1 Overview3370

CDMI retention only allows one retention policy to be applied to an object at a time.3371

Retentionmanagement uses time criteria to determine the time period during which CDMI object deletion from the CDMI­3372

based system shall be prohibited. CDMI retention criteria shall be specified by the following data system metadata:3373

• a retention criteria identifier—a CDMI client­specified string that shall identify the retention records class3374

(cdmi_retention_id); and3375

• a retention start time and retention period time—the start time, when used together with period, indicating when3376

retention shall no longer be enforced (cdmi_retention_period).3377

When a CDMI client attempts to delete an object, the cloud storage system shall evaluate all such retention criteria and3378

return an error, if any retention criteria have not been met.3379

When copying objects with a retention policy, retention properties shall not be transferred from the source CDMI object3380

to the destination object, and the destination object shall not have a retention policy.3381

Fig. 12 shows how to establish time­based retention with a retention identifier. The value of the object data system3382

metadata for the retention period shall not be reduced. Removing holds is outside the scope of the CDMI International3383

Standard.3384

Changes and deletions
are not allowed

Retention enabled,
ID, start time, and

duration set

Changes and
deletion are
allowed

2010-04-28 2012-04-27

2011-01-01 2012-01-01

Example: Retention start date of 2010-04-28 with a
duration of 730 days. No holds.

Fig. 12: Object retention

A specific HTTP error code (403) shall be returned on operations to objects that are under retention period when the3385

cloud storage system attempts to change or delete the object before the retention period criteria are met.3386

A cloud storage system shall not prevent metadata changes that increase the retention period, as there are valid busi­3387

ness reasons to change a retention period for an object.3388

18.3.2 Examples3389

EXAMPLE 1: Place an existing object under retention:3390

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi_retention_id&
↪→metadata=cdmi_retention_period HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata" : {
­­> "cdmi_retention_id" : "1",
­­> "cdmi_retention_period" : "2010­04­28T00:00:00.000000Z/2012­04­27T00:00:00.
↪→000000Z"
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 2: Increase the duration of retention on an existing object under retention:3391

© SNIA 2020 SNIA Technical Position 266

Cloud Data Management Interface 2.0.0

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi_retention_period�
↪→HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata" : {
­­> "cdmi_retention_period" : "2011­04­28T00:00:00.000000Z/2013­04­27T00:00:00.
↪→000000Z"
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 3: Decrease the duration of retention on an existing object under retention:3392

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi_retention_period�
↪→HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata" : {
­­> "cdmi_retention_period" : "2011­04­28T00:00:00.000000Z/2012­01­27T00:00:00.
↪→000000Z"
­­> }
­­> }

<­­ HTTP/1.1 403 Forbidden

© SNIA 2020 SNIA Technical Position 267

Cloud Data Management Interface 2.0.0

18.4 CDMI hold3393

18.4.1 Overview3394

CDMI hold enforces read­only data object access and prohibition of object deletion. A cloud storage system shall allow3395

multiple holds to be applied to a single object to satisfy multiple hold orders. While an object is on hold, a cloud storage3396

system shall strictly enforce read­only access to the object and prohibit object deletion.3397

When copying objects that are on hold, hold properties shall not be transferred from the source CDMI object to the3398

destination object, and the destination object shall not be on hold.3399

Hold management uses a hold indicator to determine the time periods during which CDMI object revision (data and3400

metadata) and deletion from the CDMI­based system shall be prohibited. CDMI hold criteria shall be specified by data3401

system metadata, specifically, a hold criteria identifier that is a client­specified string that shall identify the holds and3402

their order.3403

A CDMI client may place an object on hold by adding a hold identifier to the cdmi_hold_id data system metadata3404

item. When an object is on hold, CDMI clients shall be subject to failures or unexpected state changes on operations,3405

which would otherwise be successful if the object was not on hold.3406

Fig. 13 shows how placing a hold on an object affects its read­only and deletion capability.3407

Object is read only;
deletion is not

allowed

No retention
information is set;

object stored on
2010-04-28

Object deleted on
2014-04-28

2010-04-28 20141-04-2
8

2011-01-01 2014-01-01

Example: Hold placed on the object on 2012-01-01 and
removed on 2013-01-01

Changes and
deletion of object are

allowed

Changes and
deletion of object are

allowed

2013-01-012012-01-01

Hold placed 2012-01-01 Hold removed 2013-01-01

Fig. 13: Object hold

Fig. 14 shows how to establish time­based retention with a retention identifier that has a hold placed on the object. The3408

value of the object data system metadata for the retention period shall not be reduced, and the value of the object data3409

system metadata for hold identifiers shall not permit holds to be removed. Removing holds is outside the scope of the3410

CDMI International Standard.3411

Object is read only;
deletion is not

allowed

Retention
enabled; ID, start

time, and
duration set

Object deleted on
2014-04-28

2010-04-28 2014-04-28

2011-01-01 2014-01-01

Example: Start date of 2010-04-28 with a duration of 730
days; hold placed on the object

Changes and
deletion of object are

allowed

2013-01-012012-01-01

Hold placed 2011-10-21 Hold removed 2013-10-21

Changes and
deletion are not

allowed

Retention duration
completed 2012-04-27

Fig. 14: Object hold on object with retention

Fig. 15 shows how placing multiple holds on an object affects its read­only and deletion capability.3412

© SNIA 2020 SNIA Technical Position 268

Cloud Data Management Interface 2.0.0

Object is read only;
deletion is not allowed

No retention
information is set;

object stored on
2010-04-28

Object deleted on
2014-04-28

2010-04-28 2014-04-28

2011-01-01 2014-01-01

Example: Start date of 2010-04-28 with a duration of 730
days; holds placed on the object

Changes &
deletion are

allowed

Changes &
deletion are

allowed

2013-01-01

Hold #1
placed

2011-01-01

Hold #2
placed

2012-03-01

Hold #1
removed

2013-01-01

Hold #2
removed

2014-01-01

2012-01-01

Fig. 15: Object with multiple holds

A cloud storage system shall maintain an on­hold object in read­only mode with respect to the application access to3413

data and metadata and shall prohibit deletion, either automated or explicit.3414

• CDMI clients shall tolerate these object on­hold failures or state changes.3415

• Releases from hold are not part of this International Standard and are typically performed out of band using an3416

additionally secured non­CDMI mechanism provided by the implementation.3417

A specific HTTP error code (403) shall be returned on operations to objects that are under a hold when the system3418

attempts to change the object or attempts to delete the object before the hold is removed. This failure should be a an3419

error to the application.3420

18.4.2 Examples3421

EXAMPLE 1: Place an existing object under hold:3422

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi_hold_id HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata": {
­­> "cdmi_hold_id": {
­­> "case_7": ""
­­> }
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

EXAMPLE 2: Attempt to remove a hold for an object under hold:3423

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi_hold_id HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata": {
­­> "cdmi_hold_id": {}
­­> }
­­> }

<­­ HTTP/1.1 403 Forbidden

EXAMPLE 3: Add a second hold to an object under hold:3424

© SNIA 2020 SNIA Technical Position 269

Cloud Data Management Interface 2.0.0

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi_hold_id HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata":{
­­> "cdmi_hold_id": {
­­> "case_7": "",
­­> "case_15": ""
­­> }
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 270

Cloud Data Management Interface 2.0.0

18.5 CDMI auto­deletion3425

18.5.1 Overview3426

CDMI deletion controls cloud storage system actions with respect to object deletion. A cloud storage sys­3427

tem may automatically delete a CDMI object after the retention time and hold criteria have been met. (See3428

cdmi_retention_autodelete in tbl_data_system_metadata.)3429

CDMI objects shall be automatically deleted by the system at the retention period expiration by setting the3430

cdmi_retention_autodelete data system metadata item. The cdmi_retention_autodelete data system3431

metadata item indicates to the system that the object shall be made unavailable for access after the retention crite­3432

ria have been satisfied. The system shall ensure that the object is no longer available through the CDMI interface. If3433

the system has satisfied the retention requirement and a hold is established for the object, the object shall not be made3434

unavailable or deleted. When a hold and retention have been applied to an object, both need to be satisfied (retention3435

period expired and no holds existing) for objects to be automatically deleted from the system.3436

EXAMPLE 1: Place an object under retention with autodelete:3437

­­> PATCH /cdmi/2.0.0/MyContainer/MyDataObject.txt?metadata=cdmi_retention_period&
↪→metadata=cdmi_retention_autodelete HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: application/cdmi­object
­­>
­­> {
­­> "metadata":{
­­> "cdmi_retention_period": "2011­04­28T00:00:00.000000Z/2013­04­27T00:00:00.
↪→000000Z",
­­> "cdmi_retention_autodelete": "true"
­­> }
­­> }

<­­ HTTP/1.1 204 No Content

© SNIA 2020 SNIA Technical Position 271

Cloud Data Management Interface 2.0.0

18.6 Retention security considerations3438

The accuracy and integrity of the retention start and elapsed times depend on the accuracy and integrity of the clock3439

that is used to set their values. Equally important is the relative accuracy and security of the clock that determines if3440

the retention period has elapsed when compared to the clock that sets the start time property. Relative time differences3441

between these two clocks may lead to undesirable retention and deletion management behavior.3442

It is important to have a reliable source from which the system clock is set. A stratum 1 time is directly connected to a3443

reference clock and is at the top of the time server hierarchy. Relative time differences between the system clock and3444

the reference clock may lead to undesirable retention timestamps and difficulties with time action events.3445

EXAMPLE 1: An object is created in a cloud storage system at time 0 with a period of 8 years and autodelete of3446

true. At time 1 year, the system clock is adjusted forward to 9 years. Now, because the system time is 9 years, the3447

retention time criterion is satisfied, even though only 1 year has actually elapsed. And, since autodelete is true, the3448

system automatically deletes the object.3449

The specification for accuracy and integrity of timekeeping is not within the scope of CDMI. However, to prevent unde­3450

sirable retention and deletion management consequences, systems should maintain accurate clock time, with zero or3451

minimal deviation to clock integrity.3452

© SNIA 2020 SNIA Technical Position 272

Cloud Data Management Interface 2.0.0

Clause 193453

Scope specification3454

19.1 Overview3455

CDMI™provides a standardizedmechanism to define sets of objects that match certain characteristics. This mechanism3456

is known as a CDMI scope specification. Scope specifications are typically used to provide a CDMI client with a way to3457

indicate in what set of CDMI objects it is interested.3458

Each JSON object within the scope specification represents a set of conditions that shall all be true in order for an object3459

to be considered to match against the scope (a logical AND relationship). For queries, a matching object would be3460

returned in the query results. An empty scope specification is considered to evaluate to true. Multiple JSON objects are3461

used to express logical OR relationships, where if any JSON object in the scope evaluates to true, then the object shall3462

be considered to have matched against the scope.3463

Each JSON object is constructed using the same structure that CDMI objects use. To show this structure, assume the3464

following result from a GET for a data object:3465

HTTP/1.1 200 OK
Content­Type: application/cdmi­object

{
"objectType" : "application/cdmi­object",
"objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
"objectName" : "MyDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi_size" : "108263",
...

},
"valuerange" : "0­108262",
"value" : "..."

}

© SNIA 2020 SNIA Technical Position 273

Cloud Data Management Interface 2.0.0

19.2 Examples3466

Each field inside a scope specification JSON object represents a condition that shall be met for a field.3467

EXAMPLE 1: A query to find all objects belonging to the domain “/cdmi_domains/MyDomain/” is structured as3468

follows:3469

[
{

"domainURI" : "== /cdmi_domains/MyDomain/"
}

]

EXAMPLE 2: To query for all objects belonging to the domain “/cdmi_domains/MyDomain/” AND are also located3470

within the container “MyContainer”, the scope specification is structured as follows:3471

[
{

"parentURI" : "== /MyContainer/",
"domainURI" : "== /cdmi_domains/MyDomain/"

}
]

EXAMPLE 3: To query for all objects created within a certain time range, the scope specification is structured as follows:3472

[
{

"metadata": {
"cdmi_ctime": [

">=2012­01­01T00:00:00",
"<=2013­01­01T00:00:00"

]
}

}
]

When multiple matching expressions are specified for a given field or metadata item, all matching expression must3473

evaluate true for an object to be considered a query result.3474

EXAMPLE 4: To query for all objects that belong to the domain “MyDomain” OR are located within the container3475

“MyContainer”, the query is structured as follows:3476

[
{

"parentURI" : "== /MyContainer/",
},
{

"domainURI" : "== /cdmi_domains/MyDomain/"
}

]

Queries may match on any field within an object that a cloud storage system is capable of returning as a result of an3477

object GET.3478

EXAMPLE 5: To query metadata items, the metadata object is included as an object within the query request. This3479

query is shown as follows:3480

[
{

"metadata" : {
"colour" : "== blue"

}
}

]

This approach allows matching against arbitrarily nested metadata structures. When a JSON object is included in3481

the scope specification, matches are performed within that object, and when a JSON array is included in the scope3482

specification, matches are performed within that array. Matching against the contents of arrays of objects is indicated3483

by having an object within the array, as illustrated in Example 5.3484

© SNIA 2020 SNIA Technical Position 274

Cloud Data Management Interface 2.0.0

EXAMPLE 6: To query all objects with an ACE associated with the user “jdoe”:3485

[
{

"metadata" : {
"cdmi_acl" : [

{
"identifier" : "== jdoe"

}
]

}
}

]

EXAMPLE 7: To query the value of objects, the value field is included within the query request. Values are always3486

represented using base 64 encoding in queries.3487

{
[

{
"value": "== Ymx1ZQ=="

}
]

}

Query against the value of objects is optional and is indicated by the presence of the cdmi_query_value capability.3488

© SNIA 2020 SNIA Technical Position 275

Cloud Data Management Interface 2.0.0

19.3 Query matching expressions3489

Query matching expressions are structured as “<operator>” or “<operator><sp><constant>”, and are defined in Table3490

149.3491

Table 149: Query matching expressions
Matching Expression Description
“field” : “*” The exists matching expression tests for the existence of the field. If the field is

present, even if empty, the condition shall be considered to be met.
“field” : “!*” The not exists matching expression tests for the non­existence of the field. If

the field is absent, the condition shall be considered to be met.
“field” : “== constant” The equals matching expression tests for the equality of the value of the field

and a specified constant value. The equality test is case sensitive. If the
constant value matches the value of the field, the condition shall be considered
to be met.

“field” : “#== constant” The numeric equals matching expression tests for the numeric equality of the
value of the field and a specified constant value.

“field” : “!= constant” The not equals matching expression tests for the non­equality of the value of
the field and a specified constant value. The not­equals test is case sensitive. If
the constant value does not match the value of the field, the condition shall be
considered to be met.

“field” : “#!= constant” The numeric equals matching expression tests for non­equality of the numeric
equality of the value of the field and a specified constant value.

“field” : “> constant” The greater than matching expression tests if the value of the field is
lexicographically greater than a specified constant value. The greater than test
is case sensitive. If the constant value is greater than the value of the field, the
condition shall be considered to be met.

“field” : “#> constant” The numeric greater than matching expression tests if the numeric value of the
field is greater than a specified constant value.

“field” : “>= constant” The greater than or equals to matching expression tests if the value of the field
is lexicographically greater than or equal to a specified constant value. The
greater than or equals to test is case sensitive. If the constant value is greater
than or equal to the value of the field, the condition shall be considered to be
met.

“field” : “#>= constant” The numeric greater than or equals to matching expression tests if the numeric
value of the field is greater than or equal to a specified constant value.

“field” : “< constant” The less than operator tests if the value of the field is lexicographically less than
a specified constant value. The less than test is case sensitive. If the constant
value is less than the value of the field, the condition shall be considered to be
met.

“field” : “#< constant” The numeric less than operator tests if the numeric value of the field is less than
a specified constant value.

“field” : “<= constant” The less than or equals to matching expression tests if the value of the field is
lexicographically less than or equal to a specified constant value. The less than
or equal test is case sensitive. If the constant value is less than or equal to the
value of the field, the condition shall be considered to be met.

“field” : “#<= constant” The numeric less than or equals to matching expression tests if the numeric
value of the field is less than or equal to a specified constant value.

“field” : “starts constant” The starts with matching expression tests if the field value starts with a
specified constant value. If the constant value is equal to the start of the value
of the field, the condition shall be considered to be met.

“field” : “!starts
constant”

The not starts with matching expression tests if the field value does not start
with a specified constant value. If the constant value is not equal to the start of
the value of the field, the condition shall be considered to be met.

“field” : “ends constant” The ends with matching expression tests if the field value ends with a specified
constant value. If the constant value is equal to the end of the value of the field,
the condition shall be considered to be met.

continues on next page

© SNIA 2020 SNIA Technical Position 276

Cloud Data Management Interface 2.0.0

Table 149 – continued from previous page
Matching Expression Description
“field” : “!ends constant” The not ends with matching expression tests if the field value does not end with

a specified constant value. If the constant value is not equal to the end of the
value of the field, the condition shall be considered to be met.

“field” : “contains
constant”

The contains matching expression tests if the field value contains a specified
constant value. If the constant value is found as a substring within the value of
the field, the condition shall be considered to be met. The contains operator is
only supported if the cdmi_query_contains capability is present.

“field” : “!contains
constant”

The not contains matching expression tests if the field value does not contain a
specified constant value. If the constant value is not found as a substring within
the value of the field, the condition shall be considered to be met. The not
contains operator is only supported if the cdmi_query_contains capability is
present.

“field” : “tag constant” The tag matching expression tests if the field value contains a specified
constant tag value.
The leading space character after the “tag” and before the constant value is
not included in the comparison. The tag test is not case sensitive.
If the constant value is found as a tag substring within the value of the field, the
condition shall be considered to be met. Tag substrings start at the beginning of
the value or a “,”, and end at the next “,” or the end of the string. Whitespace
before and after “,” characters shall be stripped for the purpose of comparisons.
Tag matching expressions are only supported if the cdmi_query_tags
capability is present.

“field” : “!tag constant” The not tag matching expression tests if the field value does not contain a
specified constant tag value.
The leading space character after the “!tag” and before the constant value is
not included in the comparison. The not tag test is not case sensitive.
If the constant value is not found as a tag substring within the value of the field,
the condition shall be considered to be met. Tag substrings start at the
beginning of the value or a “,”, and end at the next “,” or the end of the string.
Whitespace before and after “,” characters shall be stripped for the purpose of
comparisons.
Tag matching expressions are only supported if the cdmi_query_tags
capability is present.

“field” : “=~ constant” The regular expression matching expression tests if the field value matches a
specified constant regular expression value. If the regular expression evaluates
to true against the value, the condition shall be considered to be met.
Regular expression strings shall be processed according to the POSIX
Extended Regular Expression (ERE) standard, as specified in IEEE
1003.1­2017 [41].
Regex matching expressions are only supported if the cdmi_query_regex
capability is present.

“field” : “!~ constant” The not regular expression matching expression tests if the field value does not
match a specified constant regular expression value. If the regular expression
evaluates to false against the value, the condition shall be considered to be met.
Regular expression strings shall be processed according to the POSIX
Extended Regular Expression (ERE) standard, as specified in IEEE
1003.1­2017 [41].
Regex matching expressions are only supported if the “cdmi_query_regex”
capability is present.

Numeric constant strings shall be processed according to the JSON number representation described in RFC 4627 [5].3492

A numeric matching expression shall be considered to be non­matching against a non­numeric field value.3493

All fields in objects that are not included in the scope specification shall be ignored for the purpose of matching objects.3494

When a URI is used as the constant for the equals and not equals operators against the parentURI, domainURI, and3495

capabilitiesURI, either a URI by path or URI by object ID may be specified and are considered interchangeable.3496

© SNIA 2020 SNIA Technical Position 277

Cloud Data Management Interface 2.0.0

19.3.1 Examples3497

EXAMPLE 1: In a query to find all objects belonging to a specific domain, the following two query scopes are considered3498

identical:3499

[
{

"domainURI" : "== /cdmi_domains/MyDomain/"
}

]

and3500

[
{

"domainURI" : "== /cdmi_objectid/00007E7F001074C86AD256DA5C67180D/"
}

]

EXAMPLE 2: Likewise, a query to find all objects with a given parent container would have two equivalent forms:3501

[
{

"parentURI" : "== /MyContainer/"
}

]

and3502

[
{

"parentURI" : "== /cdmi_objectid/00007ED900100E358C3B312DB652C201/"
}

]

If an object ID is used in a query scope in the objectID field or the parentID field, all object IDs shall be processed3503

such that they are case insensitive.3504

© SNIA 2020 SNIA Technical Position 278

Cloud Data Management Interface 2.0.0

Clause 203505

Results specification3506

20.1 Overview3507

CDMI™ provides a standardized mechanism to define subsets of object contents. This mechanism is known as a CDMI3508

results specification. Results specifications are typically used to provide a CDMI client with a way to indicate on what3509

subset of the contents of CDMI objects it intends to retrieve or operate.3510

Each JSON object within the results specification represents a set of fields that are returned for each matching object.3511

The results JSON object shall be constructed using the same structure as is used for CDMI objects. To show this,3512

assume the following result from a GET for a data object:3513

HTTP/1.1 200 OK
Content­Type: application/cdmi­object

{
"objectType" : "application/cdmi­object",
"objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
"objectName" : "MyDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi_size" : "108263",
...

},
"valuerange" : "0­108262",
"value" : "..."

}

© SNIA 2020 SNIA Technical Position 279

Cloud Data Management Interface 2.0.0

20.2 Examples3514

Each field inside a results specification JSON object indicates that the field shall be included in the results.3515

EXAMPLE 1: The following results specification requests that the objectID and cdmi_size metadata fields be re­3516

turned in the results:3517

{
"cdmi_results_specification" : {

"objectID" : "",
"metadata" : {

"cdmi_size" : ""
}

}
}

EXAMPLE 2: If an object is matched, the result JSON is enqueued as follows:3518

{
"objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
"metadata" : {

"cdmi_size" : "108263"
}

}

For most common use cases, clients request either the objectID, the objectName and parentURI, or all three3519

fields in the cdmi_results_specification. If the parentURI or objectName is requested, the field shall only be3520

returned for objects existing in a container object.3521

EXAMPLE 3: To request all metadata items be returned for each matching object, the following3522

cdmi_results_specification shall be used:3523

{
"cdmi_results_specification" : {

"metadata" : ""
}

}

EXAMPLE 4: To request all fields and all metadata items be returned for each matching object, the following3524

cdmi_results_specification shall be used:3525

{
"cdmi_results_specification" : ""

}

The value field is always returned in base 64 encoding when included in a query result, where the valuetransfer­3526

encoding field indicates the encoding that should be expected if a GET to read the object is performed.3527

© SNIA 2020 SNIA Technical Position 280

Cloud Data Management Interface 2.0.0

Clause 213528

Notification queues3529

21.1 Overview3530

A cloud storage systemmay optionally implement notification functionality. The implementation of notification is indicated3531

by the presence of the cloud storage system­wide capabilities for notification, and requires support for CDMI™ queues.3532

Notification queues allow CDMI clients to efficiently discover what changes have occurred to the system. As queue data3533

is persistent, no session state needs to be retained by the client. If different notification queues are used for different3534

clients, then each client operates independently from the others (e.g., a storage management application may use a3535

notification queue to keep its database current without having to do full scans of a container to discover what data objects3536

have been added, modified, or removed).3537

When a client wishes to receive notifications, it may first check if the system is capable of providing notifications by3538

checking for the presence of the cdmi_notification capability in the root container capabilities. If this capability is3539

not present, creating a notification queue shall be successful, but no notifications shall be enqueued into the notification3540

queue.3541

To create a notification queue, the client creates a regular CDMI queue and adds metadata instructing the storage3542

system to treat the queue as a notification queue. This added metadata also instructs the system about what types of3543

notifications shall be generated and what information shall be included with each notification.3544

After the notification queue is created, all subsequent matching events after the queue creation time shall result in3545

notification results being enqueued into the queue. CDMI does not mandate any specific ordering of events, and clients3546

must be able to handle events that arrive out of order.3547

© SNIA 2020 SNIA Technical Position 281

Cloud Data Management Interface 2.0.0

21.2 Metadata3548

21.2.1 Required metadata3549

When creating a notification queue, themetadata described in Table 150 shall be provided. Attempts to changemetadata3550

in this table shall result in an HTTP status code of 403 Forbidden. After a notification queue has been created, with3551

the exception of cdmi_queue_type, the metadata items in this table may not be changed. cdmi_queue_type may3552

only be removed, indicating to the system that the notification queue shall no longer receive notifications and shall be3553

treated as a regular CDMI queue object.3554

Table 150: Required metadata for a notification queue
Metadata name Type Description Requirement
cdmi_queue_type JSON

string
Queue type indicates how the cloud storage system
shall manage the queue object. The type of
cdmi_notification_queue is defined for
notification queues.

Mandatory

continues on next page

© SNIA 2020 SNIA Technical Position 282

Cloud Data Management Interface 2.0.0

Table 150 – continued from previous page
Metadata name Type Description Requirement
cdmi_notification_events JSON

array
of
JSON
strings

The notification events metadata contains a JSON
array that indicates which events generate
notifications. Defined values are:

• cdmi_create_processing ­ Notifications
are generated when a new object is created but
is still in the “Processing” completion status.

• cdmi_create_complete ­ Notifications are
generated when a new object is created
immediately or when a new object in the
process of being created transitions from the
“Processing” completion status. When an
object transitions from “Processing” completion
status, the “cdmi_event_result” is the
HTTP result code that would have been
returned if the create operation was not
delayed.

• cdmi_read ­ Notifications are generated when
an object is read.

• cdmi_modify_processing ­ Notifications
are generated when an existing object is
modified but is still in the “Processing”
completion status.

• cdmi_modify_complete ­ Notifications are
generated when an existing object is modified
and is in the “Complete” completion status.
This notification is also generated when an
existing object being modified transitions from
“Processing” to “Complete”. When an object
transitions from “Processing” completion
status, the “cdmi_event_result” is the
HTTP result code that would have been
returned if the modify operation was not
delayed.

• cdmi_rename ­ Notifications are generated
when an object is renamed as part of a move
operation.

• cdmi_copy ­ Notifications are generated for
the newly created copied object when the copy
is completed.

• cdmi_reference ­ Notifications are
generated when a reference is created.

• cdmi_delete ­ Notifications are generated
when an object is deleted.

• cdmi_export ­ Notifications are generated
when a container is exported.

• cdmi_snapshot ­ Notifications are generated
when a container snapshot is created.

• <implementor­specific events>
Clients may include the desired notification event
types in the cdmi_notification_events JSON
array. If all notifications events are desired, an empty
JSON array shall be used.

Mandatory

cdmi_scope_specification JSON
array
of
JSON
objects

The scope specification determines the set of objects
on which operations trigger the generation of
notifications. If notifications are desired for all
objects, include an empty JSON array.
See clause 19 for how to construct a scope
specification.

Mandatory

continues on next page

© SNIA 2020 SNIA Technical Position 283

Cloud Data Management Interface 2.0.0

Table 150 – continued from previous page
Metadata name Type Description Requirement
cdmi_results_specificationJSON

object
The results specification contains the JSON fields to
be returned for each object that matches the
notification scope specification. See clause 20 for
how to construct a results specification.
In addition to the fields defined in clause 20, for
notifications, four additional fields are defined:

• cdmi_event ­ Indicates the event as specified
in the “cdmi_notification_events” field
that triggered the notification;

• cdmi_event_result ­ Indicates the status result
of the event that triggered the notification. The
status is the same as the status that was
returned over the HTTP request, i.e., 200 OK,
404 Not Found, etc.;

• cdmi_event_time ­ Indicates the time of the
event that triggered the notification. The time
will be formatted in ISO­8601 time (see 5.6 and
ISo 8601­1:2019 [32]); and

• cdmi_event_user ­ Indicates the principal (ACL
name) of the user that caused the event that
triggered the notification. If the system
triggered the event, the name will be left as an
empty string.

Mandatory

21.2.2 Examples3555

EXAMPLE 1: The metadata associated with a notification queue is as follows:3556

{
"metadata" : {

"cdmi_queue_type" : "cdmi_notification_queue",
"cdmi_notification_events" : [

"cdmi_create_complete",
"cdmi_read",
"cdmi_modify_complete",
"cdmi_delete"

],
"cdmi_scope_specification" : [

{
"domainURI" : "== /cdmi_domains/MyDomain/",
"parentURI" : "starts /sandbox",
"metadata" : {

"cdmi_size" : ">+100000"
}

}
],
"cdmi_results_specification" : {

"cdmi_event" : "",
"cdmi_event_result" : "",
"cdmi_event_time" : "",
"objectID" : "",
"metadata" : {

"cdmi_size" : ""
}

}
}

}

When notification results are stored in a notification queue, each enqueued value shall consist of a JSON ob­3557

ject of MIME type "application/json". This JSON object contains the specified values requested in the3558

cdmi_results_specification of the notification queue metadata.3559

© SNIA 2020 SNIA Technical Position 284

Cloud Data Management Interface 2.0.0

EXAMPLE 2: A notification result JSON object is as follows:3560

{
"cdmi_event" : "cdmi_read",
"cdmi_event_result" : "200 OK",
"cdmi_event_time" : "2010­11­15T13:12:52.342324Z",
"objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
"metadata" : {

"cdmi_size" : "108263"
}

}

Objects shall only be included in the notification results if the user who created the notification queue is able to read the3561

matching object.3562

If the administrator created the notification queue, then all matching objects that the administrator is allowed to read are3563

included in the results. If user “jdoe” created the notification queue, then only matching objects that “jdoe” is allowed3564

to read are included in the results.3565

21.2.3 System­created metadata3566

Table 151 describes the system­created metadata that provides details on the status of the notification queue.3567

Table 151: Notification status metadata
Metadata name Type Description Requirement
cdmi_notification_status JSON

string
A string indicating the state of the notification queue.
Defined values are:

• Processing ­ Indicates that the notification
queue is scanning for results;

• Halted ­ Indicates that new notifications will no
longer be enqueued;

• Current ­ Indicates that the notification queue
contained all notifications that can be found at
this time; and

• Error ­ Indicates that the notification queue
metadata is not valid, or other errors were
encountered that prevented notification
messages from being enqueued. Arbitrary
vendor­defined text may follow the string
“Error”.

If this metadata item does not exist, then notifications
have not yet started being enqueued.

Mandatory

© SNIA 2020 SNIA Technical Position 285

Cloud Data Management Interface 2.0.0

Clause 223568

Query queues3569

22.1 Overview3570

A cloud storage system may optionally implement metadata and/or full­text query functionality. The implementation3571

of query is indicated by the presence of the cloud storage system­wide capabilities for query and requires support for3572

CDMI™ queues.3573

Query queues allow CDMI clients to efficiently discover what content matches a given set of metadata query criteria or3574

full­content search criteria. Clients create or update a query queue by specifying metadata that defines the matching3575

criteria (known as the query scope), along with what results should be returned for matching objects (known as the3576

query results). The cloud service shall then perform the query using the content existing at the time the query is being3577

processed, storing the query results in the query queue. As query results are found, they are added to the queue, and3578

when the query is complete, the cdmi_query_statusmetadata of the queue is changed to indicate that the query has3579

completed. Any matching objects created or modified while the query is being performed may or may not be included3580

in the query results (e.g., as a consequence of eventual consistency).3581

When a client wishes to perform queries, it may first check if the system is capable of providing query functionality by3582

checking for the presence of the cdmi_query capability in the root container capabilities. If this capability is not present,3583

creating a query queue shall be successful, but no query results shall be enqueued into the query queue.3584

When creating a query queue, the metadata described in Table 152 shall be provided. Attempts to change metadata in3585

this table shall result in an HTTP status code of 403 Forbidden. After a query queue has been created, with the ex­3586

ception of cdmi_queue_type, the metadata items in this table cannot be changed. If the value of cdmi_queue_type3587

is changed from “cdmi_query_queue”, this change indicates to the system that an in­process query shall be stopped,3588

the query queue shall no longer receive query results, and the query queue shall be treated as a regular CDMI queue3589

object. To start a new query with an existing queue, the value of the cdmi_queue_type shall be changed back to3590

“cdmi_query_queue”. This international standard does not define a mechanism to pause a running query or resume3591

a stopped query.3592

Table 152: Required metadata for a query queue
Metadata name Type Description Requirement
cdmi_queue_type JSON

string
The queue type indicates how the cloud storage
system shall manage the queue object. The type of
“cdmi_query_queue” is defined for query queues.

Mandatory

cdmi_scope_specification JSON
array
of
JSON
objects

The scope specification determines which objects are
included in the query results. This scope specification
is similar to a “WHERE” clause in SQL­like languages.
To query all objects, specify an empty JSON array.
See Clause 19 for how to construct a scope
specification.

Mandatory

cdmi_results_specificationJSON
object

The results specification contains the JSON fields to
be returned for each object that matches the query.
This results specification is similar to a “SELECT”
clause in SQL­like languages. See Clause 20 for how
to construct a results specification.

Mandatory

© SNIA 2020 SNIA Technical Position 286

Cloud Data Management Interface 2.0.0

22.1.1 Examples3593

EXAMPLE 1: An example of the metadata associated with a query queue is as follows:3594

{
"metadata" : {

"cdmi_queue_type" : "cdmi_query_queue",
"cdmi_scope_specification" : [

{
"domainURI" : "== /cdmi_domains/MyDomain/",
"parentURI" : "starts /sandbox",
"metadata" : {

"cdmi_size" : "#> 100000"
}

}
],
"cdmi_results_specification" : {

"objectID" : "",
"metadata" : {

"cdmi_size" : ""
}

}
}

}

When results are stored in a query queue, each enqueued value shall consist of a JSON object of3595

MIME type “application/json”. This JSON object contains the specified values requested in the3596

cdmi_results_specification of the query queue metadata.3597

EXAMPLE 2: An example of a query result JSON object is as follows:3598

{
"objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
"metadata" : {

"cdmi_size" : "108263"
}

}

Table 153 describes the system­created metadata that provides details on the status of the query queue.3599

Table 153: Query status metadata
Metadata name Type Description Requirement
cdmi_query_status JSON

string
When present, this metadata item indicates the state
of the query queue. Defined values are:

• Processing ­ Indicates that the query queue is
scanning for results;

• Halted ­ Indicates that new query results will no
longer be enqueued;

• Current ­ Indicates that the query queue
contained all query results that can be found at
this time; and

• Error ­ Indicates that the query queue
metadata was not valid, or other errors were
encountered that prevented all query results
from being enqueued. Arbitrary vendor­defined
text may follow the string “Error”.

Mandatory

Objects shall only be included in the query results if the user who created the query queue is able to read the matching3600

objects or metadata.3601

NOTE: If the administrator created the query queue, then all matching objects that the administrator is allowed to read3602

are included in the results. If user “jdoe” created the query queue, then only matching objects that “jdoe” is allowed3603

to read are included in the results.3604

© SNIA 2020 SNIA Technical Position 287

Cloud Data Management Interface 2.0.0

22.2 Extending CDMI query3605

An implementor of a CDMI server may extend CDMI query by adding vendor­specific matching expressions. When3606

an implementor adds vendor­specific metadata fields, these fields shall be queried using the standard query queue3607

functionality.3608

An implementor of a CDMI server may extend CDMI query by allowing the creation of vendor­specific query queues3609

with a type other than “cdmi_query_queue”.3610

© SNIA 2020 SNIA Technical Position 288

Cloud Data Management Interface 2.0.0

Clause 233611

Encrypted objects3612

23.1 Overview3613

A cloud storage system may optionally implement additional operations against encrypted objects. Support for these3614

operations are indicated by the presence of the cloud storage system­wide capabilities for encrypted objects.3615

Encrypted object operations include the ability to encrypt, re­encrypt, and decrypt objects that are already stored in the3616

cloud (in­place), to sign and verify the signature of encrypted objects, and to access and update the plaintext associated3617

with encrypted objects.3618

The CDMI International Standard does not specify the method by which keys are managed. Key management services3619

are provided by an external key management system (KMS), and the use of the KMIP standard is given as an example3620

of how a CDMI server interacts with an external KMS.3621

CDMI objects may contain values that are encrypted. Operations against an encrypted CDMI object are only supported3622

if the encrypted object value is a valid CMS or JWE JSON format. The CMS or JWE JSON object shall include an3623

embedded mimetype of the encrypted object. For JWE, the “cty” header shall be used for this purpose.3624

© SNIA 2020 SNIA Technical Position 289

Cloud Data Management Interface 2.0.0

23.2 Encryption operations3625

23.2.1 State diagram3626

The state transition diagram for encrypted objects is shown in Fig. 16:3627

Update Plaintext

PUT

PUT

Create
Non Encrypted

Object

Delete
Non Encrypted

ObjectDELETE

Non-
Encrypted

Object

PUT PUT

Decrypt
(Access to key

required)

Encrypt
(Access to key

required)

Encrypt
(Access to key

required)

PUT

Create
Encrypted

Object
(Access to key not

required)

Delete
Encrypted

Object
(Access to key not

required)

DELETE
Encrypted

Object

PUT

Update Ciphertext
(Access to key not required)

Update Plaintext
(Access to key required)

Re-encrypt
(Access to new and old keys required)

Fig. 16: Encrypted object state transistions

The eight encryption operations are defined in Section 23.2.2 through Section 23.2.9.3628

23.2.2 Create a new encrypted object3629

Client­encrypted objects shall be stored to a CDMI server using a standard HTTP or CDMI PUT operation, as described3630

in clauses 7.2 and 8.3. The client shall indicate that an object is encrypted by specifying a mimetype of “application/3631

cms” or “application/jose+json”.3632

A client may register an encryption key, signing keys and/or verification keys with a Key Management System (KMS),3633

and may indicate the Key IDs in cdmi_enc_key_id, cdmi_enc_value_sign_id, cdmi_enc_object_sign_id,3634

cdmi_enc_value_verify_id, and/or cdmi_enc_object_verify_id metadata items. This allows the CDMI3635

server to access the keys from the KMS on behalf of a client, when needed.3636

Creating an encrypted objects on a CDMI server does not require any encryption­specific capabilities to be supported,3637

and is backwards compatible with earlier versions of the CDMI standard. This permits encrypted objects to be stored3638

© SNIA 2020 SNIA Technical Position 290

Cloud Data Management Interface 2.0.0

and transferred by CDMI servers that do not support encryption­specific functionality.3639

23.2.3 Delete an encrypted object3640

Encrypted objects shall be deleted using a standard HTTP or CDMI DELETE operation, as described in clause 7.5 and3641

clause 8.6. Any client with sufficient permissions shall be permitted to delete an encrypted object, regardless of if they3642

can access the decryption keys.3643

23.2.4 Encrypt an unencrypted object3644

Existing unencrypted objects shall be encrypted in­place by performing a CDMI PATCH operation, as described in3645

clause 8.5, that changes the object mimetype to “application/cms” or “application/jose+json” and spec­3646

ifies a cdmi_enc_key_id metadata item. The client may also specify a cdmi_enc_value_sign_id and/or3647

cdmi_enc_value_verify_id metadata item to indicate that the object is to be signed, and to provide signature3648

verification information.3649

The CDMI Server shall use the client’s credentials (which are included in HTTP headers, and are out of scope of this3650

International Standard) to retreive the encryption and signing keys, and encryption and signing algorithm information3651

from the KMS, and shall use the keys to encrypt and sign the value of the object. The mimetype of the encrypted value3652

is stored in the CMS wrapper, or in a “cty” field of the JWE JSON.3653

23.2.5 Decrypt an encrypted object3654

Existing encrypted objects shall be decrypted in­place by performing a CDMI PATCH operation, as described in clause3655

8.5, that changes the object mimetype from “application/cms” or “application/jose+json” to the original mime­3656

type as specified in the CMS wrapper, or in the “cty” field of the JWE JSON. Specifying any other fields or metadata3657

shall return a ``400 Bad Request`` result code.3658

The CDMI Server shall use the client’s credentials (which are included in HTTP headers, and are out of scope of this3659

International Standard) to retreive the encryption, signing and verification keys, and encryption, signing and verification3660

algorithm information from the KMS, and shall use the keys to decrypt and verify the encrypted value and user metadata3661

included in the object.3662

23.2.6 Re­encrypt an encrypted object3663

Existing encrypted objects shall be re­encrypted in­place by performing a CDMI PATCH operation, as described in clause3664

8.5, that retains the object mimetype of “application/cms” or “application/jose+json”, or changes the object3665

mimetype from “application/cms” to “application/jose+json”, or vice­versa. The client shall also specify a new3666

cdmi_enc_key_id, cdmi_enc_value_sign_id and/or cdmi_enc_value_verify_id metadata item to indicate3667

the new key(s) to be used. Specifying any other fields or metadata shall return a 400 Bad Request result code.3668

The CDMI Server shall use the client’s credentials (which are included in HTTP headers, and are out of scope of this3669

International Standard) to retreive both the original encryption and signing keys using the original metadata values, and3670

the new encryption and signing keys using the new metadata values from the KMS, and shall use these keys to decrypt,3671

verify, encrypt and sign the value of the object, as needed.3672

If an encrypted object does not have an existing cdmi_enc_key_idmetadata item, does not have a “kid” header, and3673

no keys are associated with the Object ID, the specified metadata shall be added to the object, and no re­encryption3674

operation shall be performed.3675

© SNIA 2020 SNIA Technical Position 291

Cloud Data Management Interface 2.0.0

23.2.7 Access ciphertext of an encrypted object3676

The ciphertext content of an encrypted object shall be read by performing an HTTP GET operation, as described in3677

clause 6.3, with an Accept header value of “application/cms” or “application/jose+json”, depending on the3678

mimetype of the encrypted object.3679

The ciphertext content of an encrypted object shall also be read by performing a CDMI GET operation, as described in3680

clause 8.4.3681

23.2.8 Access plaintext of an encrypted object3682

The plaintext value of an encrypted object shall be read by performing an HTTP GET operation, as described in clause3683

6.3, with an Accept header value other than “application/cms” or “application/jose+json”, typically “*/*”.3684

Object plaintext cannot be transparently accessed using a CDMI GET.3685

The CDMI Server shall use the client’s credentials (which are included in HTTP headers, and are out of scope of this3686

International Standard) to retreive the encryption, signing and verification keys, and encryption, signing and verification3687

algorithm information from the KMS, and shall use the keys to decrypt and verify the encrypted value included in the3688

object.3689

When an encrypted object is decrypted for access, the plaintext shall not be retained or cached by the CDMI server.3690

23.2.9 Update plaintext of an encrypted object3691

The plaintext value of an encrypted object shall be modified by performing an HTTP PATCH operation, as described3692

in clause 6.4, with an Content­Type header value other than “application/cms” or “application/jose+json”,3693

typically “*/*”., depending on the mimetype of the encrypted object. Object plaintext cannot be transparently modified3694

using a CDMI GET.3695

The CDMI Server shall use the client’s credentials (which are included in HTTP headers, and are out of scope of this3696

International Standard) to retreive the encryption, signing and verification keys, and encryption, signing and verification3697

algorithm information from the KMS, and shall use the keys to decrypt and verify the encrypted value, update the value,3698

and re­encrypt/re­sign the updated value.3699

When an encrypted object is decrypted for update, the plaintext shall not be retained or cached by the CDMI server.3700

23.2.10 Other CDMI operations3701

Other operations specifed by this International Standard (such as copying, serializing, querying, etc.) treat an encrypted3702

value the same way as a non­encrypted value.3703

© SNIA 2020 SNIA Technical Position 292

Cloud Data Management Interface 2.0.0

23.3 Example uses of encrypted objects3704

Encrypted objects can be used with CDMI systems in the following ways:3705

• Passthrough – A client may store an encrypted object in any format in a CDMI server, with the ciphertext being3706

accessible to the server and to other authorized clients. No access to the plaintext is provided. Passthrough use3707

is compatible with all CDMI systems and is useful when the clients manage all security­related operations and3708

want to protect against potentially untrustworthy clouds.3709

• Server­side encryption and signing – A client may instruct a CDMI server that supports encrypted object op­3710

erations to take an existing CDMI object and encrypt or encrypt and sign it in place into CMS or JWE JSON3711

representation, where the value of the object is persistently stored from that point on in an encrypted format.3712

Server­side encryption and signing is useful when clients trust the CDMI server and want to increase object se­3713

curity without having to re­upload the data.3714

• Server­side decryption – A client may instruct a CDMI server that supports encrypted object operations to take3715

an existing CDMI object and decrypt it in place from a CMS or JWE JSON representation, where the value of3716

the object is persistently stored from that point on in a decrypted format. Server­side decryption is useful when a3717

client trusts the CDMI server and wants to decrease object security without having to re­upload the data.3718

• Client access decryption – A CDMI server may automatically attempt to decrypt an encrypted object when3719

accessed via HTTP. Client access decryption is useful to provide transparent access to authorized HTTP clients3720

without requiring modifications to the HTTP clients.3721

• Cloud access decryption – A CDMI server may automatically decrypt encrypted objects when it has access to3722

the decryption keys. Cloud access decryption is useful for cloud­resident data processing performed by the CDMI3723

server, such as virus scanning, query, and analytics.3724

• Signature verification – A CDMI server can automatically verify signatures that are attached to encrypted objects3725

that include a signature. Signature verification is useful for detecting corruption or alteration before delivering data3726

to a client.3727

© SNIA 2020 SNIA Technical Position 293

Cloud Data Management Interface 2.0.0

23.4 KMS integration3728

The encryption key is obtained from the KMS using a unique identifier that is stored in the cdmi_enc_key_idmetadata3729

item associated with the encrypted object. If this metadata item is not present, the CDMI object ID shall be used to locate3730

the key.3731

When a client requests that an operation be performed that requires accessing the key for the object, the CDMI server3732

evaluates the credentials provided by the client to determine if the client is authorized to perform the requested operation.3733

If the operation is permitted, the CDMI server retrieves the key from the KMS to complete the requested operation. To3734

retrieve the key, the client may be required to provide additional information in the HTTP request that the CDMI server3735

can then use to authenticate to the KMS.3736

The CDMI International Standard does not specify the mechanism by which the CDMI server communicates with the3737

KMS. In this International Standard, the KMIP protocol is used as an example. CMS and JWE strings for algorithms,3738

key lengths, etc., need to be mapped to the strings used by the KMS (see KMIP clause 9.1.3.2.7).3739

All keys are created and managed externally to the CDMI server, typically by the client or a system operating on behalf3740

of the client. As a consequence, the CDMI server requires read­only access to the KMS. The CDMI server shall not3741

cache keys.3742

© SNIA 2020 SNIA Technical Position 294

Cloud Data Management Interface 2.0.0

23.5 CMS format3743

Any valid CMS­formatted data may be stored to a CDMI server. However, encrypted object operations are only defined3744

for the following subset of valid CMS­formatted data.3745

For encryption operations, the CDMI server shall support the following:3746

• EnvelopedData3747

• EncryptedContentInfo3748

• contentEncryptionAlgorithm value listed in the cdmi_cms_encryption capability of that CDMI server3749

For signature operations, the CDMI server shall support the following:3750

• AuthenticatedData3751

• SignedData3752

• digestAlgorithms value listed in the cdmi_cms_digest capability of that CDMI server3753

• SignerInfo3754

• signatureAlgorithm value listed in the cdmi_cms_signature capability of that CDMI server3755

The following CMS­formatted data may be ignored: recipientInfos3756

© SNIA 2020 SNIA Technical Position 295

Cloud Data Management Interface 2.0.0

23.6 JOSE format3757

Any valid JWE­formatted data may be stored to a CDMI server. However, encrypted object operations are only defined3758

for a small subset of valid JWE­formatted data.3759

For encryption operations, the CDMI server shall support the following:3760

• JWE with Direct Encryption (Symmetric Key from KMS)3761

• JWE with Key Encryption (Public Key from KMS)3762

For signature operations, the CDMI server shall support the following:3763

• JWS RSA (Private Key from KMS)3764

• JWS ECDSA (Private Key from KMS)3765

• JWS HMAC­SHA2 (Symmetric Key from KMS)3766

The following JOSE­formatted data may be ignored:3767

• Multiple recipients, and3768

• Multiple signatures.3769

© SNIA 2020 SNIA Technical Position 296

Cloud Data Management Interface 2.0.0

23.7 Signature/digest verification3770

If a signature is present as part of the CMS or JWE JSON value, the CDMI server shall verify that the signature of the3771

value is valid before allowing plaintext access or modification.3772

If a whole­object signature is present, the CDMI server shall verify that the signature contained in the3773

cdmi_enc_signature metadata item is valid before allowing any read operations for the object. Write operations3774

are permitted for an object with an invalid or unverifiable whole­object signature.3775

When present, a whole­object signature shall be attached as a “cdmi_enc_signature” metadata item in JWS compact3776

format, with the second field (the JWS payload field) replaced with an empty string as described in Appendix F of RFC3777

7515 [17].3778

For signature creation and verification, payload field shall be computed using the following process:3779

1. Create a serialized representation of the CDMI object, as described in clause 153780

2. Remove the following metadata items, if present:3781

• cdmi_atime3782

• cdmi_acount3783

• cdmi_enc_signature3784

• Any *_provided metadata items3785

3. Sort all JSON objects in the serialized CDMI object according to the following rules:3786

• Within each JSON object, name/value pair entries shall be sorted lexicographically by name3787

• Within each JSON array, the initial order shall be preserved3788

4. Remove all JSON whitespace3789

5. Base64 URL encode, according to the JWS RFC 7515 [17]3790

© SNIA 2020 SNIA Technical Position 297

Cloud Data Management Interface 2.0.0

23.8 Error handling3791

If a decryption or signature validation operation is requested against a CDMI object containing an invalid CMS or JWE3792

JSON representation, an HTTP status code of 500 Internal Error shall be returned to the client.3793

If a decryption or signature validation operation is requested against a CDMI object containing a valid CMS or JWE3794

JSON representation that uses an unsupported algorithm or feature, an HTTP status code of 501 Not Implemented3795

shall be returned to the client.3796

If a decryption or signature validation operation is requested against a CDMI object containing a valid CMS or JWE JSON3797

representation, but the required keys are temporarily unavailable given the credentials presented, an HTTP status code3798

of 408 Request Timeout shall be returned to the client.3799

If a decryption or signature validation operation is requested against a CDMI object containing a valid CMS or JWE3800

JSON representation, but the required keys are unavailable given the credentials presented, an HTTP status code of3801

401 Unauthorized shall be returned to the client.3802

If a decryption or signature validation operation is requested against a CDMI object containing a valid CMS or JWE JSON3803

representation, valid keys are available, and signature verification fails, an HTTP status code of 403 Forbidden shall3804

be returned to the client.3805

© SNIA 2020 SNIA Technical Position 298

Cloud Data Management Interface 2.0.0

Clause 243806

Delegated access control3807

24.1 Overview3808

CDMI access control is based around Access Control Lists (ACLs) that are stored as object metadata. When a client3809

requests to perform an operation against a CDMI object, the CDMI server shall validate the client’s identity and cre­3810

dentials against the object ACL to determine if the operation is allowed. This request assumes that the CDMI server is3811

trusted and capable of making these access control decisions.3812

Fig. 17 illustrates an ACL­based access control request:3813

Originating
Client

1. Create Object

Originating
CDMI Server

Key Management
System

Intermediary
CDMI Server

Remote
CDMI Server

Requesting
Client

2. CDMI PUT Request

3. Federate Object

4. CDMI PUT
Response

1. Request Object
Contents

2. GET Request
3. Check for DAC

Metadata (not found)

4. Check for ACL
Metadata (found)

5. Determine if
Operation Permitted

(based on ACL)

6. GET Response

Fig. 17: Non­delegated (ACL­based) access control data flow

When an access control decision needs to be made by a third party (such as by the originating CDMI server in Fig.3814

17), access control is delegated. When cdmi_dac_uri and cdmi_dac_certificate object metadata is present, as3815

specified in clause 16.2, Delegated Access Control (DAC) shall be used.3816

© SNIA 2020 SNIA Technical Position 299

Cloud Data Management Interface 2.0.0

An example of an object with DAC metadata is shown below:3817

{
"objectType": "application/cdmi­object",
"objectName": "MyObject.txt",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"objectID": "0000000800182ADB37303732323136662D343564622D3462",
"mimetype": "text/plain",
"metadata": {
"cdmi_size": "33",
"cdmi_ctime": "2017­04­05T11:01:25",
"cdmi_atime": "2017­04­05T11:44:28",
"cdmi_dac_uri": "https://cloud.example.com/dac/",
"cdmi_dac_certificate": {
"kty": "EC",
"x": "goqhRgM4hyEh1p­fD1oU15QAgdKXsBZTQ_0B­IgSz6M",
"y": "cd8RTm8uLTGblIzioAzv8dzIkM85c08o23eksJrDt2Y",
"crv": "P­256"

}
},
"valueTransferEncoding": "utf­8",
"valueRange": "33",
"value": "This is an unencrypted text file."

}

The process by which objects are federated between systems is outside the scope of access control delegation and3818

involves how objects are replicated, synchronized, mirrored, or migrated between CDMI servers. These processes3819

are typically under the control of policies or external policy management systems. Federation is typically performed by3820

third­party systems that use CDMI features including notification, serialization, and the preservation of globally unique3821

object identifiers, which forms the basis for client­transparent interoperability.3822

© SNIA 2020 SNIA Technical Position 300

Cloud Data Management Interface 2.0.0

24.2 Delegated access control (DAC)3823

A cloud storage system may implement support for DAC, which is indicated by the presence of the cdmi_dac system­3824

wide capability.3825

DAC enables requests for operations against an object to be allowed or denied by a third­party DAC provider, in addition3826

to ACL access control. When required by object metadata, DAC access control verification shall be performed after3827

ACL evaluation, but before ACL enforcement, as the DAC provider may overrule local ACL evaluation results. When an3828

encrypted object is accessed, the DAC provider may provide the decryption key. The decryption key enables access to3829

encrypted objects, even if the CDMI server cannot access the keys directly.3830

Clients often have different degrees to which they trust the CDMI server with which they are interacting. Table 1543831

describes the four ways that DAC shall interact with stored objects.3832

Table 154: Access modes for DAC
Mode of access Degree of trust
Client­side decryption CDMI server is not trusted with keys or to make delegated access

control decisions.
1. Client requests encrypted object from CDMI Server
2. Client receives ciphertext from the CDMI Server
3. Client is responsible for getting decryption keys out of band
4. Client verifies signatures (if present)
5. Client verifies correct object
6. Client decrypts object

This mode of access does not use any functionality indicated by the
cdmi_dac capability and is supported by all CDMI servers.

Client­side decryption with DAC CDMI server is not trusted with keys and is used to establish an
opaque channel of communication between the client and the DAC
provider for key delivery.

1. Client requests encrypted object from the CDMI Server, and
includes custom DAC headers specifying information
required for secure delivery of decryption key

2. Client receives ciphertext from the CDMI Server, along with
custom DAC header from the DAC provider for the decryption
key

3. Client is extracts decryption key from DAC provider headers
4. Client verifies signatures (if present)
5. Client verifies correct object
6. Client decrypts object

This mode of access requires the cdmi_dac capability but does not
require encrypted object support.
In this mode, data is exchanged between the client and the DAC
provider using one or more “CDMI­DAC­” headers, as described in
clause 24.4.

Direct Client DAC CDMI server is not trusted with keys, and client establishes channel
of communication between the client and the DAC provider for key
delivery.

1. Client requests encrypted object from CDMI Server
2. Client receives ciphertext from CDMI Server
3. Client sends DAC request directly to DAC Provider
4. Client receive DAC response directly from DAC Provider
5. Client verifies signatures (if present)
6. Client verifies correct object
7. Client decrypts object

This mode of access requires the cdmi_dac capability but does not
require encrypted object support.

continues on next page

© SNIA 2020 SNIA Technical Position 301

Cloud Data Management Interface 2.0.0

Table 154 – continued from previous page
Mode of access Degree of trust
Server­side decryption with DAC CDMI server is trusted with keys and to delegate access control

decisions. DAC message exchange is used to get the decryption
keys to decrypt the contents of the object, and keys are not
revealed to the client.

1. Client requests encrypted object from CDMI Server
2. CDMI server contacts the DAC Provider to determine access

control decision and gets decryption keys, where the keys
are not revealed to the client.

3. CDMI server verifies signatures (if present)
4. CDMI server verifies correct object
5. CDMI server decrypts object
6. Client receives plaintext

This mode of access requires DAC and encrypted object support.
Plaintext objects with DAC CDMI server is trusted with plaintext and to not bypass delegated

access control decisions.
1. Client requests non­encrypted object from CDMI Server
2. CDMI server contacts DAC provider to determine access

control decision
3. CDMI server verifies signatures (if present)
4. CDMI server verifies correct object
5. Client receives plaintext

This mode of access requires DAC support.

The cdmi_dac_uri metadata item indicates where delegated access control requests shall be submitted, and the3833

cdmi_dac_certificate metadata item indicates how securely communication with the delegated access control3834

provider shall be established. Both of these metadata items shall be present for DAC to be enabled for a given object.3835

DAC requests are submitted to a DAC provider using two typical methods:3836

• Direct ­ The DAC request shall be submitted directly to the absolute URI specified in the cdmi_dac_uri meta­3837

data item. This approach requires the host specified in the URI to be accessible from the CDMI server, and for3838

the CDMI server making the request to have sufficient permissions to PUT the DAC request to that location.3839

• Indirect ­ The DAC request shall be sent to the DAC provider using an indirect route. Indirect routing is useful3840

when the cdmi_dac_uri does not specify a host. An example of indirect routing is when the cdmi_dac_uri3841

contains a mailto URI; the Internet mail system is then responsible for delivering the DAC request.3842

In other cases, the certificate included with the DAC request (taken from the cdmi_dac_certificatemetadata)3843

may be used by intermediary CDMI servers to determine the further routing of the DAC request. For example,3844

DAC requests using a E.U.­issued certificate can be forwarded to a different intermediary CDMI server to those3845

requests using a U.S.­issued certificate. How certificate fields are used to determine routing is not defined in this3846

International Standard.3847

Both direct and indirect routing may be synchronous or asynchronous. If a DAC response is not received within the CDMI3848

server or client timeout windows, the client request may time out; however a subsequent request may be processed3849

locally if the DAC response allows response caching. When the CDMI server times out while waiting for a DAC response,3850

it shall return an HTTP status code of 504 Gateway Timeout.3851

© SNIA 2020 SNIA Technical Position 302

Cloud Data Management Interface 2.0.0

24.3 Delegated access control message exchange3852

When a client requests to access or modify an object containing DAC metadata on a CDMI server that supports DAC,3853

the CDMI server shall create and send a DAC request as specified in clause 24.5. Upon receiving a DAC response as3854

specified in clause 24.7, the CDMI server shall allow or deny the operation based on the contents of the response.3855

Fig. 18 provides an example of access control delegation for a non­encrypted object. The black solid lines show indirect3856

routing, and gray dashed lines show direct routing.3857

Originating
Client

1. Create Object
(with DAC metadata)

Originating
CDMI Server

Key Management
System

Intermediary
CDMI Server

Remote
CDMI Server

Requesting
Client

2. CDMI PUT Request

3. Federate Object

4. CDMI PUT
Response

1. Request Object
Contents

2. GET Request3. Check for DAC
Metadata (found)

4. Create DAC
Request

5.Extract Request URI

6. Determine if
Intermediary

7. PUT DAC Request8. Determine
destination based on
DACR Request URI

9. PUT DAC Request10. Decrypt and Verify
DAC Request

11. Make Access
Control Decision

12. Create DAC
Response

13. Determine if
Intermediary

15. Determine
destination based on
DACI Response URI

14. PUT DAC
Response

16. PUT DAC
Response

17. Decrypt and Verify
DAC Response

18. GET Response

Fig. 18: Delegated access control data flow example for non­encrypted object

For non­encrypted objects, an originating client indicates that DAC is requested by including the DAC metadata items.3858

It is important to emphasize that for non­encrypted objects, DAC cannot be guaranteed to be enforced, as when an3859

object with DAC metadata is accessed from a CDMI server that does not support DAC; only ACL­based access control3860

shall be evaluated.3861

© SNIA 2020 SNIA Technical Position 303

Cloud Data Management Interface 2.0.0

Fig. 19 provides a second example of access control delegation for an encrypted object. The black solid lines show3862

indirect routing, and gray dashed lines show direct routing.3863

Originating
Client

1. Create Object
(with DAC metadata)

Originating
CDMI Server

Key Management
System

Intermediary
CDMI Server

Remote
CDMI Server

Requesting
Client

3. CDMI PUT Request

4. Federate Object

5. CDMI PUT
Response

1. Request Object
Contents (Plaintext)

2. GET Request3. Check for DAC
Metadata (found)

4. Create DAC
Request

5.Extract Request URI

6. Determine if
Intermediary

7. PUT DAC Request8. Determine
destination based on
DACR Request URI

9. PUT DAC Request10. Decrypt and Verify
DAC Request

11. Make Access
Control Decision

15. Create DAC
Response

16. Determine if
Intermediary

18. Determine
destination based on
DACI Response URI

17. PUT DAC
Response

19. PUT DAC
Response

20. Decrypt and Verify
DAC Response

22. GET Response
(Decrypt Plaintext)

6. Store Keys 7. Store Keys

2. Encrypt Object
value

12. Get Key 13. Get Key

6. Indicate Result

14. Receive Key

21. Extract Key

Fig. 19: Delegated access control data flow example for encrypted object

For encrypted objects, as access to the decryption keys are provided in the DAC response, the plaintext is inaccessible3864

unless the CDMI server supports DAC.3865

When the DAC provider processes the DAC request, if the operation is allowed and the key is requested by the CDMI3866

server, the object key, if present, shall be obtained and sent back as part of the DAC response. Upon receiving the DAC3867

response, the CDMI server shall extract the key to perform the client operation.3868

© SNIA 2020 SNIA Technical Position 304

Cloud Data Management Interface 2.0.0

24.4 Client header passthrough3869

The Delegated Access Control extension provides facilities to allow client­provided HTTP request headers to be passed3870

through to the DAC provider, and for the DAC provider to pass HTTP response headers back to the client. These3871

headers are identified by the “CDMI­DAC­” prefix.3872

The contents and full names of these headers are not defined in this International Standard. However, it is anticipated3873

that these headers shall be used to allow the client to provide additional information that may be required for the access3874

control decision­making process, for audit purposes, or for secure key exchange.3875

For example, when an operation is allowed by a DAC provider, the object key may be encrypted using the public key3876

from a client­provided certificate (verified by the DAC provider), which is included in a “CDMI­DAC­” request header,3877

with the encrypted object key being sent back to the client in a “CDMI­DAC­” response header. In this scenario, the3878

CDMI server cannot decrypt the ciphertext but can securely pass on the encrypted object key to the client. The client3879

can then use its private key to decrypt the response header to get the object key, which can then be used to decrypt the3880

object.3881

© SNIA 2020 SNIA Technical Position 305

Cloud Data Management Interface 2.0.0

24.5 DAC request3882

When a CDMI server that supports DAC needs to contact the DAC provider as specified in the DAC metadata, it shall3883

construct a DAC request, as specified in Table 155.3884

Table 155: DAC request
Field name Type Description Requirement
dac_request_version JSON

string
Indicates the version of the DAC request. This field
shall be set to the value “1”.

Mandatory

dac_request_id JSON
string

Contains a system­specified identifier that is used to
match up the corresponding DAC response. This
identifier shall be unique within the window that
multiple DAC responses may be received.

Mandatory

server_identity JSON
object

A JSON object, containing a JWE JWK which shall
include a public key that is used to submit a DAC
response, and should contains a X.509 certificate or
certificate chain used to verify the identity of the
CDMI server that is generating the DAC request.
This ensures that only the CDMI Server that
generated the DAC request can read the DAC
response.

Mandatory

client_identity JSON
object

A JSON object containing the following JSON
entities:
JSON String, “acl_name”, containing the ACL name
of the client requesting the operation.
JSON Array, “acl_group”, containing the ACL
group(s) of the client requesting the operation.

Optional

acl_effective_mask JSON
string

A text or hexadecimal string representation of the
ACE mask determined by ACL evaluation for the
requested operation, as defined in 17.2.6.

Mandatory

client_headers JSON
object

A JSON object containing a JSON string for each
HTTP header in the operation request that starts with
“CDMI­DAC­“, where the JSON string name is the
header name, and the JSON string value is the
header value.
These headers can be used for tunneling information
from the client to the DAC provider.

Mandatory

cdmi_objectID JSON
string

Contains the object ID of the object the operation is
performed against.

Mandatory

cdmi_enc_key_id JSON
string

Contains the encryption key identifier (for example, a
KMIP identifier) for the symmetric key that is used to
encrypt and decrypt the object, which is used to
indicate that the CDMI server is requesting the
encryption key.

Optional

cdmi_operation JSON
string

Contains a string indicating which operation is being
requested to be performed against the object.
The following operations are defined:

• “cdmi_read”
• “cdmi_modify”
• “cdmi_delete”

Mandatory

dac_response_uri JSON
string

An optional URI that specifies where to send the DAC
response. This URI is required for asynchronous
DAC requests, such as when sent via email URIs.
If this field is omitted, the DAC response shall be
based on the context of the request, for example, as
a message body returned for the request PUT when
using HTTPS, or an email reply when using a mailto
URI.

Optional

© SNIA 2020 SNIA Technical Position 306

Cloud Data Management Interface 2.0.0

An example of a DAC request is shown below:3885

{
"dac_request_version": "1",
"dac_request_id": "037130fa­da72­44f0­8a31­62073263ac95",
"server_identity": {

"kty": "EC",
"x": "joyfi05KEI3hcOhJeOfny_TWsZ9FFS1zUydFQhm3G78",
"y": "Nsk3jX1ph0FH8APR2k0XSu6pDZYyF7f_Okplf7hZ_8k",
"crv": "P­256"

},
"client_identity": {

"acl_name": "anonymous",
"acl_group": ["users"]

},
"acl_effective_mask": "READ_ALL",
"client_headers": {

"cdmi­dac­header1": "This is a test header"
},
"cdmi_objectID": "0000000800182ADB37303732323136662D343564622D3462",
"cdmi_operation": "cdmi_read"

}

© SNIA 2020 SNIA Technical Position 307

Cloud Data Management Interface 2.0.0

24.6 Packaged DAC request3886

A JSON DAC request shall be encrypted in JWE format, where the recipient is the public key of the DAC provider3887

certificate (as specified in the DAC object cdmi_dac_certificate metadata), and is JWS signed using the private3888

key of the CDMI server that corresponds to the server identity certificate included in the DAC request. The certificate of3889

the DAC provider from the object is then attached as specified in Table 156.3890

Table 156: Packaged DAC request
Field name Type Description Requirement
dac_request JSON

object
JOSE encrypted and signed request Mandatory

dac_request_dest_certificateJSON
object

The cdmi_dac_certificate metadata value, which is
used to indicate where the DAC request is being sent
via indirect routing.

Mandatory

dac_request_dest_uri JSON
string

The cdmi_dac_uri metadata value, which is used
to indicate where the DAC request is being sent via
direct routing, or used to indicate the first location
when being sent via indirect routing.

Mandatory

An example of a packaged DAC request is shown below1:3891

{
"dac_request": {

"protected":
"eyJqd2siOiJ7XCJrdHlcIjpcIkVDXCIsXCJ4XCI6XCJqb3lmaTA1S0VJM2hjT2hK
ZU9mbnlfVFdzWjlGRlMxelV5ZEZRaG0zRzc4XCIsXCJ5XCI6XCJOc2szalgxcGgw
Rkg4QVBSMmswWFN1NnBEWll5RjdmX09rcGxmN2haXzhrXCIsXCJjcnZcIjpcIlAt
MjU2XCJ9IiwiYWxnIjoiRVMyNTYifQ",

"payload":
"eyJwcm90ZWN0ZWQiOiJleUpoYkdjaU9pSkZRMFJJTFVWVElpd2laVzVqSWpvaVFU
STFOa2REVFNJc0ltVndheUk2ZXlKcmRIa2lPaUpGUXlJc0luZ2lPaUpuUkZOek1F
cFRXbU5VVVRsWGVGWXRiRXhSVTJ4elFsY3lXazFvTm1kb1JrcDJTVmt4TWt4d1dW
TlJJaXdpZVNJNklsTkZNV1pXWkVkalZtdGtPVVZCVmpaVGMyeE9NVzQyUkdsdlpV
dHVZV3BLWmpsdWVFOVljRlpoYmtFaUxDSmpjbllpT2lKUUxUSTFOaUo5ZlEiLCJl
bmNyeXB0ZWRfa2V5IjoiIiwiaXYiOiJLRDlGRlBOcFh2cWNIYTdIIiwiY2lwaGVy
dGV4dCI6Im42NlpmUzBXRmhjN3ZzT3Rnc1o5SXJtWU5paDI4RDVzT1psTk96dEdO
TW5hakFRSGZTMGozcUhrMUxPME9IbFBYMnVfYXVWcVN2aDF2Z1IxSFlnOEl3TmFq
TFZfS29ZMndGXzlkaDRtWFJlVXA4R1hpbm05MFE0ZWZmY1BLRm1IcEo0dE94TTVS
VjlLN2VvdWNxSkxzczJKbHc1ZUJhOVQ5WjFyS1pvQmIxVURSLVVmRW9lQlNZRFA3
NUl1SEFRSWU4UW5qOW04QjFHb18tNTFPNndKb2d6cHh5Ulhpd3g2SWdoYlhSYmNX
MWQ5bVRtZkR3UFBoSE4zTUp1UGUxbVBpelNLWnJ3NWNQM21NZmhKWmNoT3gyZkZt
Q3NMME5zSkphQWo3WEs0elFiMGVBd0RSS1BzeTJ6MnZCZzFQT1lhUHppOVphNjRK
RHgyZ3hWRTA2Y0xERGx3TXY4dW9CbFU1TVdyZF9YRGdScUZsSFl1T19aZEtxQkRp
MVQ1SW5HeDc2YzdCcmVObzFIbnVqV200M0FsanpPRmIyTHBhdU5PQnlETl9oVXFi
WGRISTZOWnZBUDU0MzVteHZDRi1SYUpMZGxFUENNeGhneXNFdy1oRGxoQmtFYUpf
U0JtZUZtem5ITGFkZUNDYzI3cWNuOUlZVlZBMHZMZVY2N2xzbnZMY3VyOHI0OFlt
SXRmZGNZbFVOLTh2c0xhSlZzbHhMSzc0VjdjdWNhbFNubWJvYktWTVV6TnZuU29K
NHpldXBYZzItbl92WnIwbkZlSUFWelIxZmJvUVA0c1F4bXNSUWJNY2d4bmpSM21E
eTJsQzY5dFN1TDJGYm1qUnZiYWM3XzFRa01CIiwidGFnIjoiNWlRcGVTdTlfb00y
X2UtSTM3NjJpQSJ9",

"signature":
"rGz9Cku3csTIJ_p3qmHzUrPSLb1ZSD3ZlfaJDw0F­dNmJs6sgzizFC_jf5VgDVuo
GT­wH2b2zVuP_O1HDcKPDQ"

},
"dac_request_dest_certificate": {

"kty": "EC",
"x": "goqhRgM4hyEh1p­fD1oU15QAgdKXsBZTQ_0B­IgSz6M",
"y": "cd8RTm8uLTGblIzioAzv8dzIkM85c08o23eksJrDt2Y",
"crv": "P­256"

},
"dac_request_dest_uri": "https://cloud.example.com/dac/"

}

Once created, the packaged DAC request shall be submitted using the DAC request URI specified in the DAC ob­3892

1 Decrypt with "d": "NnU0IEyV4JSyLoKwIzKN1FAxDvL6qqawAHlPkpwBMSY".

© SNIA 2020 SNIA Technical Position 308

Cloud Data Management Interface 2.0.0

ject metadata, for example, as an HTTP PUT operation of type “application/json”, or via an SMTP email. The3893

dac_request_dest_certificate and dac_request_dest_uri may be used to route the request through inter­3894

mediary hops, as needed.3895

© SNIA 2020 SNIA Technical Position 309

Cloud Data Management Interface 2.0.0

24.7 DAC response3896

When a DAC provider receives a DAC request, it shall decrypt the request using its private key, verify the signature of3897

the CDMI server, and shall evaluate the request. Based on the information provided, the DAC provider shall allow or3898

deny operations by modifying or replacing the ACL mask that was initially determined by the CDMI server.3899

To indicate the result of the DAC request to the requesting CDMI server, the DAC provider shall construct a DAC3900

response, as specified in Table 157.3901

Table 157: DAC response
Field name Type Description Requirement
dac_response_version JSON

string
Indicates the version of the DAC response. This field
shall be set to the value “1”.

Mandatory

dac_response_id JSON
string

Contains the system­specified identifier specified in
the corresponding dac_request_id.

Mandatory

dac_applied_mask JSON
string

A text or hexadecimal string representation of the
ACE mask that shall be used, as defined in 17.2.6.

Mandatory

dac_object_key JSON
object

The key for the object in JWK format (See RFC 7517
[16]). This key is only disclosed when
cdmi_enc_key_id is included in the DAC request
and the DAC provider allows access.

Optional

dac_response_headers JSON
object

A series of headers that start with “CDMI­DAC­” to be
returned to the client.
These headers can be used to pass information from
the DAC provider back to the client.

Optional

dac_key_cache_expiry JSON
string

The complete date/time when the object key is no
longer to be cached, specified in ISO 8601 date/time
format.
If this field is not included, the key shall not be
cached.

Optional

dac_response_cache_expiryJSON
string

The complete date/time when the DAC response is
no longer to be cached, specified in ISO 8601
date/time format.
If this field is not included, the response shall not be
cached.

Optional

dac_redirect_objectID JSON
string

Indicates an alternate CDMI Object ID used to
access the requested object. If present, the CDMI
server shall send an HTTP Redirect to the client.

Optional

dac_audit_uri JSON
string

Indicates a URI to a CDMI queue where audit logging
messages associated with the operations shall be
submitted.
When present, audit logging messages shall be
generated for receiving the response, performing the
operation, and determining when to purge the key.
The format of these audit messages is not defined by
this International Standard.

Optional

An example of a DAC response is shown below:3902

{
"dac_response_version": "1",
"dac_response_id": "037130fa­da72­44f0­8a31­62073263ac95",
"dac_applied_mask": "ALL_PERMS",
"dac_response_headers": {

"CDMI­DAC­AuthInfo": "No key requested."
},
"dac_response_cache_expiry": "2017­04­06T15:06:01.554Z"

}

© SNIA 2020 SNIA Technical Position 310

Cloud Data Management Interface 2.0.0

24.8 Packaged DAC response3903

The above JSON (DAC response) shall be encrypted in JWE format where the recipient is the public key of the CDMI3904

server certificate (as specified in the DAC request), and is JWS­signed using the private key of the DAC provider that3905

corresponds to the DAC provider identity certificate associated with the object (cdmi_dac_certificate), or with a3906

different signing, included in a jku/jwk/x5u or x5c JOSE header to allow retrieval of the public signing verification key.3907

The certificate of the CDMI server is then attached as specified in Table 158.3908

Table 158: Packaged DAC response
Field name Type Description Requirement
dac_response JSON

object
JOSE encrypted and signed response Mandatory

dac_response_dest_certificateJSON
object

The contents of the DAC request
server_identity field.

Mandatory

dac_response_dest_uri JSON
string

The contents of the DAC request
dac_response_uri field, if present

Optional

An example of a packaged DAC response is shown below2:3909

{
"dac_response": {

"protected":
"eyJqd2siOiJ7XCJrdHlcIjpcIkVDXCIsXCJ4XCI6XCJnb3FoUmdNNGh5RWgxcC1m
RDFvVTE1UUFnZEtYc0JaVFFfMEItSWdTejZNXCIsXCJ5XCI6XCJjZDhSVG04dUxU
R2JsSXppb0F6djhkeklrTTg1YzA4bzIzZWtzSnJEdDJZXCIsXCJjcnZcIjpcIlAt
MjU2XCJ9IiwiYWxnIjoiRVMyNTYifQ",

"payload":
"eyJwcm90ZWN0ZWQiOiJleUpoYkdjaU9pSkZRMFJJTFVWVElpd2laVzVqSWpvaVFU
STFOa2REVFNJc0ltVndheUk2ZXlKcmRIa2lPaUpGUXlJc0luZ2lPaUpNVUVReWRX
WmlkMUpmT0hoU2FWRlRNMWN3YUZSbU5tWnlXWEZDU0hWYU4xQTVUbEEzVFdaVFEy
MDRJaXdpZVNJNklqWmhiMWgxUzJFeVVqZHNTMW93YlU5UlJUQmFlV0pQU2pKWlYy
bzNOM1l3Wm5GWU1ESnBiRE5EVUVVaUxDSmpjbllpT2lKUUxUSTFOaUo5ZlEiLCJl
bmNyeXB0ZWRfa2V5IjoiIiwiaXYiOiJYMFhTUDNZVTNBUkJwQ1NlIiwiY2lwaGVy
dGV4dCI6Ik5DQXE1dnBCeUVaVERJcHlWem5Gemxtbm1JU09sVk5uNGpSUUtKWjB5
c0s0dzZPcDYtNE94cGtvVVY5WUFvbDhmdUVOeFFMdjFBQUpDWXB3M0ZFelRrMEpG
VmU1NWE0UlNIVkhnSlJmMEhiWjlxbk5aOHY0d1JUaXBGS0RsakpvLUhXOG82bzlM
czV2YmRVTGJPRk9Db3RTTGZuekdSQ3lMV3Z2TUZaS3BHXzM1b21PeFpNcW1oN2Ro
c3IxMmF6cHdkSnJKX084TTFkVHdDaWZxeURlWWFpNGM4M3U4TUhieDdETldRWkhH
QnIzT1J0bDhaWGJTQW9OQ09fVWRpdU8zWXZmWmNiWU51TTY2UXBZbDFobENSaDJO
eEZtLW12VUR0a1VoaXR5cTdyZ3BSbWZoYndKNklCaGdpdyIsInRhZyI6Ijh3YWx6
T0Q4U3hWTC1STXY3OXlTZGcifQ",

"signature":
"8­09XlWUUDsXXqoEh5EKIAYEOTR­vtAYqauW1aNfdv2Io9B4RCuALl3zi7i27vbo
TYvHxnFa7K6HJPygsAVn5g "

},
"dac_response_dest_certificate": {

"kty": "EC",
"x": "joyfi05KEI3hcOhJeOfny_TWsZ9FFS1zUydFQhm3G78",
"y": "Nsk3jX1ph0FH8APR2k0XSu6pDZYyF7f_Okplf7hZ_8k",
"crv": "P­256"

}
}

Once created, the packaged DAC response shall be returned as the response to the HTTPS/HTTP request, or submitted3910

using the DAC response URI specified in the DAC request, for example, as an HTTP PUT operation or via an SMTP3911

email. The dac_response_dest_certificate and dac_response_dest_uri may also be used to route the3912

request through intermediary hops if needed, as determined by the routing system, which is out of scope of this standard.3913

When the CDMI server receives a packaged DAC response message, it shall decrypt it using its private key and shall3914

verify the signature. If the decryption and signature verification are successful, the CDMI server shall use the provided3915

dac_applied_mask in place of the ACL computed mask.3916

If the CDMI server supports key or DAC response caching, cache expiry values shall be honored. Cached responses3917

and keys may only be used for identical client operations, where the client identity, objectID, operation, and “CDMI­3918

2 Decrypt with “d”: “huCoV1iC24rZ3uF5q­1HHlGb2UcC6Ue9oNezEQNzUB8”

© SNIA 2020 SNIA Technical Position 311

Cloud Data Management Interface 2.0.0

DAC­” request headers are identical. Otherwise, the cached response shall be expired. If an audit URI is present in the3919

cached response, audit messages shall also be generated for all operations allowed using the cached response.3920

The CDMI server shall also implement audit logging when specified in the DAC response. If the CDMI server does not3921

support audit logging and it is required by a DAC response, the operation shall be denied.3922

If a dac_redirect_objectID field is returned in the DAC response, the CDMI server shall return an HTTP redirect3923

to the specified Object ID. This redirect allows a DAC provider to create a client­operation­specific instance of the object3924

that is encrypted with a single­use key.3925

© SNIA 2020 SNIA Technical Position 312

Cloud Data Management Interface 2.0.0

24.9 Error handling3926

In the following scenarios, the following HTTP response codes shall be returned to a client:3927

• When a DAC response denies the requested operation, an HTTP status code of 403 Forbidden shall be3928

returned to the client along with any dac_response_headers included in the response.3929

• When a DAC response includes a dac_redirect_objectID, an HTTP status code of 302 Found shall be3930

returned to the client along with any dac_response_headers included in the response.3931

• When a DAC request to access or modify an encrypted object is allowed, but the key is not included in the3932

DAC response, an HTTP status code of 401 Unauthorized shall be returned to the client along with any3933

dac_response_headers included in the response.3934

• When a DAC request to access or modify an encrypted object is allowed, but cannot be performed due to lack of3935

support for an encryption algorithm, signing algorithm, or key type, an HTTP status code of 501 Not Imple­3936

mented shall be returned along with any dac_response_headers included in the response.3937

• When a DAC request times out, an HTTP status code of 500 Internal Server Error shall be returned to3938

the client.3939

• When a DAC request cannot be sent or routed because the DAC metadata is not supported or valid, an HTTP3940

status code of 501 Not Implemented shall be returned to the client.3941

• When a DAC request cannot be sent or routed because an upstream system is unavailable, an HTTP status code3942

of 500 Internal Server Error shall be returned to the client.3943

© SNIA 2020 SNIA Technical Position 313

Cloud Data Management Interface 2.0.0

24.10 Examples3944

The following examples illustrate the primary ways that DAC requests are performed.3945

EXAMPLE 1: GET ciphertext of encrypted object with delegated access control3946

The following CDMI operation is performed against an encrypted CDMI object with delegated access control3947

metadata:3948

­­> GET /MyContainer/MyEncryptedObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cms, application/jose+json

The CDMI server verifies local access controls and determines that the request can proceed. The following3949

DAC request is generated:3950

{
"dac_request_version": "1",
"dac_request_id": "5b801b19­479e­446d­882a­8483f7c4905c",
"server_identity": {

"kty": "EC",
"x": "joyfi05KEI3hcOhJeOfny_TWsZ9FFS1zUydFQhm3G78",
"y": "Nsk3jX1ph0FH8APR2k0XSu6pDZYyF7f_Okplf7hZ_8k",
"crv": "P­256"

},
"client_identity": {

"acl_name": "anonymous",
"acl_group": ["guest"]

},
"acl_effective_mask": "READ_ALL",
"client_headers": {},
"cdmi_objectID": "0000000800182F9E64313363323731622D363536662D3465",
"cdmi_operation": "cdmi_read"

}

This request is first JWE encrypted with the key in cdmi_dac_certificate. The result is JWS signed, using3951

either the key in server_identity, or a different key embedded in the JWS header.3952

The DAC provider verifies, decryptes and processes the request and returns the following DAC response:3953

{
"dac_response_version": "1",
"dac_response_id": "5b801b19­479e­446d­882a­8483f7c4905c",

"dac_applied_mask": "ALL_PERMS",
"dac_response_headers": {

"CDMI­DAC­AuthInfo": "No key requested."
}

}

The CDMI­DAC­AuthInfo indicates a custom header.3954

Since the operation is allowed by the DAC provider, the following response is sent:3955

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/jose+json
<­­ Content­Length: 290
<­­ CDMI­DAC­AuthInfo: No key requested.
<­­
<­­ <JOSE+JSON Encrypted Object>

EXAMPLE 2: GET ciphertext of encrypted object with passthrough key access3956

The following CDMI operation is performed against an encrypted CDMI object with delegated access control3957

metadata:3958

­­> GET /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cms, application/jose+json
­­> Authorization: Basic am9lOnBhc3N3b3Jk
­­> CDMI­DAC­N: <vendor­specific header that indicates key passthrough>

© SNIA 2020 SNIA Technical Position 314

Cloud Data Management Interface 2.0.0

The CDMI server verifies local access controls and determines that the request can proceed. The following3959

DAC request is generated. The CDMI­DAC­N is a custom header that indicates that the client wants to3960

obtain the object decryption key via header pass­through.3961

To demonstrate the power of such custom headers: the CDMI­DAC­N request header could contain a cell3962

phone number. The matching response header would then contain a password­based encryption of the3963

object key, while the password will be delivered via a message to the cell phone. It is up to the vendor to3964

come up with and implement such mechanisms.3965

{
"dac_request_version": "1",
"dac_request_id": "77b54650­183f­4053­8512­be08f7c6c50e",
"server_identity": {

"kty": "EC",
"x": "joyfi05KEI3hcOhJeOfny_TWsZ9FFS1zUydFQhm3G78",
"y": "Nsk3jX1ph0FH8APR2k0XSu6pDZYyF7f_Okplf7hZ_8k",
"crv": "P­256"

},
"client_identity": {

"acl_name": "joe",
"acl_group": ["users"]

},
"acl_effective_mask": "READ_ALL",
"client_headers": {

"CDMI­DAC­N": "<copy from headers>"
},
"cdmi_objectID": "0000000800182F9E64313363323731622D363536662D3465",
"cdmi_operation": "cdmi_read"

}

This request is first JWE encrypted with the key in cdmi_dac_certificate. The result is JWS signed,3966

either using the key in server_identity, or a different key embedded in the JWS header. Replication3967

of these encrypted messages is not useful and will be skipped.3968

The DAC provider processes the request, obtains the object decryption key and embeds it as a3969

dac_response_header, then returns the following DAC response:3970

{
"dac_response_version": "1",
"dac_response_id": "5b801b19­479e­446d­882a­8483f7c4905c",
"dac_applied_mask": "ALL_PERMS",
"dac_response_headers": {

"CDMI­DAC­AuthInfo": "Key successfully retrieved from keyserver."
"CDMI­DAC­N": "<vendor­specific decryption key info>"

}
}

Since the operation is allowed by the DAC provider, the following response is sent:3971

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/jose+json
<­­ Content­Length: 290
<­­ CDMI­DAC­AuthInfo: Key successfully retrieved from keyserver.
<­­ CDMI­DAC­N: <vendor­specific decryption key info>
<­­
<­­ <JOSE+JSON Encrypted Object>

The client can now parse the key in the CDMI­DAC­N header and use it to decrypt the ciphertext.3972

EXAMPLE 3: GET plaintext of encrypted object with delegated access control3973

The following CDMI operation is performed against an encrypted CDMI object with delegated access control3974

metadata:3975

­­> GET /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: */*
­­> Authorization: Basic am9lOnBhc3N3b3Jk

The CDMI server verifies local access controls and determines that the request can proceed. The following3976

DAC request is generated:3977

© SNIA 2020 SNIA Technical Position 315

Cloud Data Management Interface 2.0.0

{
"dac_request_version": "1",
"dac_request_id": "b79d7619­1bbd­45a1­b2d3­5753f7fc5155",
"server_identity": {

"kty": "EC",
"x": "joyfi05KEI3hcOhJeOfny_TWsZ9FFS1zUydFQhm3G78",
"y": "Nsk3jX1ph0FH8APR2k0XSu6pDZYyF7f_Okplf7hZ_8k",
"crv": "P­256"

},
"client_identity": {

"acl_name": "joe",
"acl_group": ["users"]

},
"acl_effective_mask": "READ_ALL",
"client_headers": {},
"cdmi_objectID": "0000000800182F9E64313363323731622D363536662D3465",
"cdmi_operation": "cdmi_read",
"cdmi_enc_key_id": "0000000800182F9E64313363323731622D363536662D3465"

}

The DAC provider processes the request, obtains the object decryption key and returns the following DAC3978

response:3979

{
"dac_response_version": "1",
"dac_response_id": "b79d7619­1bbd­45a1­b2d3­5753f7fc5155",
"dac_applied_mask": "ALL_PERMS",
"dac_object_key": {

"kty": "oct",
"kid": "0000000800182F9E64313363323731622D363536662D3465",
"use": "enc",
"alg": "dir",
"k": "vBX811eh8ydyI08by7L13kZKNmfRHTAMZa5vJqMCHQU"

},
"dac_response_headers": {

"CDMI­DAC­AuthInfo": "Key successfully obtained from KMS."
}
"dac_key_cache_expiry": "2017­04­05T14:58:58Z",
"dac_response_cache_expiry": "2017­04­05T14:58:58Z"

}

Since the operation is allowed by the DAC provider and the key is provided, the object is decrypted by the3980

CDMI server and the following response is sent:3981

<­­ HTTP/1.1 200 OK
<­­ Content­Type: text/plain
<­­ Content­Length: 252
<­­
<­­ <Decrypted contents of Encrypted Value>

EXAMPLE 4: RSA Example3982

In this example, there are two hospitals (A and B), that both have CDMI servers, and federate objects3983

between them. At some point, the following encrypted object has been made at hospital A. It containts3984

a cdmi_dac_certificate and cdmi_dac_uri that indicate how access can be requested at hospital A. The3985

cerificate contains a 2048­bit RSA encryption key, with a matching X.509 certification chain that can be3986

used to verify the certificate.3987

{
"objectType": "application/cdmi­object",
"objectName": "MyEncryptedObject.txt",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"objectID": "000000080018F34436313131393061372D613735302D3438",
"mimetype": "application/jose+json",
"metadata": {

"cdmi_size": "306",
"cdmi_dac_uri": "https://cdmi.hos­a.fr:9001/dac/",
"cdmi_atime": "2017­04­06T14:06:34",
"cdmi_enc_key_id": "encryption_key_1",

(continues on next page)

© SNIA 2020 SNIA Technical Position 316

Cloud Data Management Interface 2.0.0

(continued from previous page)
"cdmi_dac_certificate": {

"kty": "RSA",
"kid": "cdmi.hos­a.fr_encrypt_public",
"key_ops": [
"wrapKey",
"unwrapKey",
"encrypt",
"decrypt"

],
"n":

"uL7ANgD80H5sNqo3nHzovPRxgncQLhz0oQvGMVvULCkrYXMaXZ5sNv7fT6UdMSZi
T­e0sthapmEqrpeV9RKHsiF3COGl2YndUHixpEkHp8y1ggcH6iTzoBsgXMZ7OLW­
mJ2RW3rodT7k­tcozYYsTSM5egMPQSAKgt0nMnPmdNRnEyA2_NJ8Y7lNkEXyja0Q
JLstzkP8­cKS0BkEquLQEMbZVRM6U5uG69cj1i9OWvuRzPoaATKyt6Cc4f6PUu9L
OyCBUAs9dXsRrt3B8H1qe7io7FAAcOpcUDKDnLFXS1THc37DK_zEyKZcMttjCvEl
Ovt­cIaokdnxJeggv9AFGQ",

"e": "AQAB",
"x5c": [

"MIIDMDCCAhigAwIBAgIBBDANBgkqhkiG9w0BAQsFADBCMQswCQYDVQQGEwJubDER
MA8GA1UEChMIbGllc2RvbmsxDTALBgNVBAsTBGNkbWkxETAPBgNVBAMTCHJzYS1y
b290MCAXDTE2MTAyNzEyNDUwMFoYDzk5OTkxMjMxMjM1OTU5WjA1MQswCQYDVQQG
EwJmcjEOMAwGA1UEChMFaG9zLWExFjAUBgNVBAMTDWNkbWkuaG9zLWEuZnIwggEi
MA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQC4vsA2APzQfmw2qjecfOi89HGC
dxAuHPShC8YxW9QsKSthcxpdnmw2/t9PpR0xJmJP57Sy2FqmYSqul5X1EoeyIXcI
4aXZid1QeLGkSQenzLWCBwfqJPOgGyBcxns4tb6YnZFbeuh1PuT61yjNhixNIzl6
Aw9BIAqC3Scyc+Z01GcTIDb80nxjuU2QRfKNrRAkuy3OQ/z5wpLQGQSq4tAQxtlV
EzpTm4br1yPWL05a+5HM+hoBMrK3oJzh/o9S70s7IIFQCz11exGu3cHwfWp7uKjs
UABw6lxQMoOcsVdLVMdzfsMr/MTIplwy22MK8SU6+35whqiR2fEl6CC/0AUZAgMB
AAGjPDA6MAwGA1UdEwEB/wQCMAAwHQYDVR0OBBYEFBAIGICMR5H6KLKMlZAEhCCc
KwE9MAsGA1UdDwQEAwIEMDANBgkqhkiG9w0BAQsFAAOCAQEAANYSSryUU6112pYM
r83M3GWnjzu16B+4KgimZ8kbey94zNPdwmwQdSe0Xmg+1Otc6VUB40ouNnwK8efB
aWBtXwCA7Nb715nTqo2+rn+X+A0mGrYaKkToPEe8ZYwDcOlOpNC9JFE+QgP9/CJa
AaWrf95W+4kra2WnA4Bhqu2WWXnQkL47/nKcGVZgQAH+mVnxPaI0gELYdonXU/S2
8HqxoyjpGL/vmyc46zUbxYsgx/jiE7J0fJVP6Yk/3dlNYCCpLtV8VmzFAQAeCcn8
AWowFcd09a4SY09rn1MUv/rrvXpzflfn9j7PtRRFj2e/KhitmOH1zKDuYzREpUOu
TDlPIQ==",

"MIIDQDCCAiigAwIBAgIBATANBgkqhkiG9w0BAQsFADBCMQswCQYDVQQGEwJubDER
MA8GA1UEChMIbGllc2RvbmsxDTALBgNVBAsTBGNkbWkxETAPBgNVBAMTCHJzYS1y
b290MCAXDTE2MTAyNzEyNDQwMFoYDzk5OTkxMjMxMjM1OTU5WjBCMQswCQYDVQQG
EwJubDERMA8GA1UEChMIbGllc2RvbmsxDTALBgNVBAsTBGNkbWkxETAPBgNVBAMT
CHJzYS1yb290MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsrUj46dx
5ojlaZk7YtOL6e+Q6JoG7gVMaXkJn1Szlx9ND/8w4PeO1SQ2skukdOHAlQRmxdft
zhccNTM5hmbcn8TAfWSYqQF1R7s78bVjtmat6AQP1vSgiyZ8Ak+iYZEq3c2zVyYQ
HKKxWxmFZt1HT8/H/B3bXveXQcERKE+Tq66h8pqVcocQUtzRFsEYmv0bR1rghtoq
H8nhB5xnebgVlXjApW+et2SE7r6Fjv1aAbGI89ouJ1gsMPeX56P8AUjacFtNKc44
Obu6HRXY/jm6f2m1EUm84EUsJ+9b5+S2x4qPttJDfSCasWYYz4mFJ8MwmFiBGUwf
geT2bUm6t7qqbQIDAQABoz8wPTAPBgNVHRMBAf8EBTADAQH/MB0GA1UdDgQWBBR+
tEB2udkEXxX0k15GztF/4ol03jALBgNVHQ8EBAMCAQYwDQYJKoZIhvcNAQELBQAD
ggEBAIjx1f9rJ2B+mDSA3L2GRhjrPRjfI6Un3Z51CeW9gO9PMQ5ws5pDJyB79dE/
Q8Uf1e8pZyjchTsRa8GRdnKyndN2imayOVUvPoTd3/ZSmfkurcbj3I4VW8sjHP7C
E8fmUS8Xprdpo2SxV7oneJC0vt5eyh8mgfJ/qSbwVaiXuH1Wxi6duAvdxddMXAxQ
KPG1KKVM7CYfCdpX/HagCOHzcto+374zFqqnQ1Kx5rbgvxNSgm/PDDOMwP03+bbT
R63KSK1VbdtLBuS4jgaPabwyxQz/FciwTu/HLOQn8TNqDWyoIbs+eQX2Mds2Apul
8XH2+CakjBLMLL3Tlj2x+6tKR9o="

]
},
"cdmi_ctime": "2017­04­06T14:06:31"

},
"valueTransferEncoding": "json",
"value": {

"protected":
"eyJraWQiOiJlbmNyeXB0aW9uX2tleV8xIiwiYWxnIjoiQTI1NktXIiwiY3R5Ijoi
dGV4dC9wbGFpbiIsImVuYyI6IkEyNTZHQ00ifQ ",

"encrypted_key":
"329yyozEo3JPCpXGPKyI_fa5hhFH9dmfB7kulg1Q6NhoVAvdmDMclg",

"iv": "9Gr5Hxzcs9hxPmPM",
"ciphertext": "­sJkcHcdQUXChEBlZm7UZya1RR2_IcpRocC­BmQfAuA3",
"tag": "VIFJDcMdZngtpLWWDX8vFw"

(continues on next page)

© SNIA 2020 SNIA Technical Position 317

Cloud Data Management Interface 2.0.0

(continued from previous page)
}

}

This encrypted object has been federated to the CDMI server at hospital B. Now, one of its clients wants to3988

transparently access the plaintext of this object by performing the following operation:3989

­­> GET /cdmi/2.0.0/MyContainer/MyEncryptedObject.txt HTTP/1.1
­­> Host: cdmi.hos­b.us:9002
­­> Accept: */*

The CDMI server at hospital B will look up the object and find out that it is an encrypted object with DAC3990

information attached. As a result it will generate the following (plain) DAC request:3991

{
"dac_request_version": "1",
"dac_request_id": "73da04e1­2182­447e­8342­f4b9f06ec936",
"server_identity": {

"kty": "RSA",
"kid": "cdmi.hos­b.us_encrypt_public",
"key_ops": [

"wrapKey",
"unwrapKey",
"encrypt",
"decrypt"

],
"n":

"oQMQkY85UzwO7K6H0QQNfAiRMN3ZfhK0aXEKx7YwvrCU9IKOquZ1OYZ9Cv8556_8
E8yZm02JDWOBOaSsGHU835jvXf12f4MywKGWj5FtIGL­j9kXF6SWq3zuLVYlXpMI
KsJngHMVFca_­ZhZ2vLsrnDR1aCNEC48gR26ewp6WX1ptnSc1W4x3Mj­ONMVzxVE
7XNlwYysTgDtonmTQD­YG6_KhhAPx0YowMbUWv_cMQvXsi7MMDyZn6fxfq4zQmQ2
V5RtUy5msd6K3beDzS4LmZhsJmjU7YnhOj0pZby4Zckm43npjXPAuwPhzK2OW7qb
fkv0qm4rsFWUcuNh8lBsDw",

"e": "AQAB",
"x5c": [

"MIIDMDCCAhigAwIBAgIBBTANBgkqhkiG9w0BAQsFADBCMQswCQYDVQQGEwJubDER
MA8GA1UEChMIbGllc2RvbmsxDTALBgNVBAsTBGNkbWkxETAPBgNVBAMTCHJzYS1y
b290MCAXDTE2MTAyNzEyNDUwMFoYDzk5OTkxMjMxMjM1OTU5WjA1MQswCQYDVQQG
EwJ1czEOMAwGA1UEChMFaG9zLWIxFjAUBgNVBAMTDWNkbWkuaG9zLWIudXMwggEi
MA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQChAxCRjzlTPA7srofRBA18CJEw
3dl+ErRpcQrHtjC+sJT0go6q5nU5hn0K\/znnr\/wTzJmbTYkNY4E5pKwYdTzfmO
9d\/XZ\/gzLAoZaPkW0gYv6P2RcXpJarfO4tViVekwgqwmeAcxUVxr\/5mFna8uy
ucNHVoI0QLjyBHbp7CnpZfWm2dJzVbjHcyP440xXPFUTtc2XBjKxOAO2ieZNAP5g
br8qGEA\/HRijAxtRa\/9wxC9eyLswwPJmfp\/F+rjNCZDZXlG1TLmax3ordt4PN
LguZmGwmaNTtieE6PSllvLhlySbjeemNc8C7A+HMrY5bupt+S\/SqbiuwVZRy42H
yUGwPAgMBAAGjPDA6MAwGA1UdEwEB\/wQCMAAwHQYDVR0OBBYEFH7NJvMIfTQtZn
nyiIdLNkjCgwSIMAsGA1UdDwQEAwIEMDANBgkqhkiG9w0BAQsFAAOCAQEAdiADIv
0v09SUDcPL+BKysvchn\/Sgx5KBu7n9KFwE31Dhx2zvT6ruL8kXdekPH9cfrDafW
6I\/vnbzAVj02i5pM2cHayj13fTOWSVwpcQuvkoIF9eVIWONkemMMf7M7jpTw07z
7S2T5usaDmMNpqj8y5pRpQo3PnBVxpEZJ0XaSdfuiHtVLDq8gDZCq6Hc2tt7JM3W
njnQgs+1lSGRuqWOcpmVONIoqvhiolNDZV35Z7puRwqck1N2f1qyHHGBWXfCN9U4
ci6q1BnWBIFV+hURge8NSbpqawolaNueUbTcKjN3JsMC4ZxhMF9rN3uuPn+UAYkA
yQkcSmGSMM07wcAkMg==",

"MIIDQDCCAiigAwIBAgIBATANBgkqhkiG9w0BAQsFADBCMQswCQYDVQQGEwJubDER
MA8GA1UEChMIbGllc2RvbmsxDTALBgNVBAsTBGNkbWkxETAPBgNVBAMTCHJzYS1y
b290MCAXDTE2MTAyNzEyNDQwMFoYDzk5OTkxMjMxMjM1OTU5WjBCMQswCQYDVQQG
EwJubDERMA8GA1UEChMIbGllc2RvbmsxDTALBgNVBAsTBGNkbWkxETAPBgNVBAMT
CHJzYS1yb290MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsrUj46dx
5ojlaZk7YtOL6e+Q6JoG7gVMaXkJn1Szlx9ND\/8w4PeO1SQ2skukdOHAlQRmxdf
tzhccNTM5hmbcn8TAfWSYqQF1R7s78bVjtmat6AQP1vSgiyZ8Ak+iYZEq3c2zVyY
QHKKxWxmFZt1HT8\/H\/B3bXveXQcERKE+Tq66h8pqVcocQUtzRFsEYmv0bR1rgh
toqH8nhB5xnebgVlXjApW+et2SE7r6Fjv1aAbGI89ouJ1gsMPeX56P8AUjacFtNK
c44Obu6HRXY\/jm6f2m1EUm84EUsJ+9b5+S2x4qPttJDfSCasWYYz4mFJ8MwmFiB
GUwfgeT2bUm6t7qqbQIDAQABoz8wPTAPBgNVHRMBAf8EBTADAQH\/MB0GA1UdDgQ
WBBR+tEB2udkEXxX0k15GztF\/4ol03jALBgNVHQ8EBAMCAQYwDQYJKoZIhvcNAQ
ELBQADggEBAIjx1f9rJ2B+mDSA3L2GRhjrPRjfI6Un3Z51CeW9gO9PMQ5ws5pDJy
B79dE\/Q8Uf1e8pZyjchTsRa8GRdnKyndN2imayOVUvPoTd3\/ZSmfkurcbj3I4V
W8sjHP7CE8fmUS8Xprdpo2SxV7oneJC0vt5eyh8mgfJ\/qSbwVaiXuH1Wxi6duAv
dxddMXAxQKPG1KKVM7CYfCdpX\/HagCOHzcto+374zFqqnQ1Kx5rbgvxNSgm\/PD

(continues on next page)

© SNIA 2020 SNIA Technical Position 318

Cloud Data Management Interface 2.0.0

(continued from previous page)
DOMwP03+bbTR63KSK1VbdtLBuS4jgaPabwyxQz\/FciwTu\/HLOQn8TNqDWyoIbs
+eQX2Mds2Apul8XH2+CakjBLMLL3Tlj2x+6tKR9o="

]
},
"client_identity": {

"acl_name": "anonymous",
"acl_group": ["guests"]

},
"acl_effective_mask": "READ_ALL",
"client_headers": {},
"cdmi_objectID": "000000080018F34436313131393061372D613735302D3438",
"cdmi_operation": "cdmi_read",
"cdmi_enc_key_id": "encryption_key_1"

}

This plain DAC request will be JWEencrypted using the key found in the object’s cdmi_dac_certificate3992

(key id ‘cdmi.hos­a.fr_encrypt_public’). Then it will be JWS signed using hospital B’s private signing key.3993

Since this signing key is not equal to the encryption key (in server_identity) it is embedded in the3994

JOSE protected header of the JWS (note: Base64 decode of the protected header reveals the signing key;3995

Base64 decode of the payload reveals the JWE.)3996

{
"dac_request": {

"protected":
"eyJraWQiOiJjZG1pLmhvcy1iLnVzX3NpZ25fcHJpdmF0ZSIsImp3ayI6IntcImt0
eVwiOlwiUlNBXCIsXCJraWRcIjpcImNkbWkuaG9zLWIudXNfc2lnbl9wcml2YXRl
XCIsXCJrZXlfb3BzXCI6W1widmVyaWZ5XCIsXCJzaWduXCJdLFwiblwiOlwicEVR
aFFUMVF6QmdrV2RiVW56eVkwbkZmWjRVYXJnbFVPcGFxeGlXYXk5cGhnQ0x6Tmtj
RHZ4eVdIdHFRSWE0ZHpvMDVaXzBiOXhNTElrYUI5MTJheV83MllOZHpmMWVfaUVX
Mi1OdVB4MHVSaFV3SzQ4WUo2MFlwVTdpN2ZpQWNKeVJoU1dlWGtnQXQyRndUYnkt
SjlsNW9DV1dZemRfc0U3a2NMSkc0QmkwSEtQbVhrUEVwbXpOamhsU0VsdnlodHFL
djRERG1JRk1JTDNrUGJueGNfX0RwenAyaVVpdGhvUFhpY1pJQXMtUDIybGRGMkRE
X0tzbW9SU3RQR2NuTEVYbWpKcXhoRU13Qm5UZE14TjdQNnh6bk5iQVNtdXNnR21F
XzJXdVUyS09yLVBtYm5wTnNLcm14SHRhT2trc2pZdjFyVGhzRmkxNUZmSVQyQ1dU
MnVRXCIsXCJlXCI6XCJBUUFCXCIsXCJ4NWNcIjpbXCJNSUlETURDQ0FoaWdBd0lC
QWdJQkF6QU5CZ2txaGtpRzl3MEJBUXNGQURCQ01Rc3dDUVlEVlFRR0V3SnViREVS
TUE4R0ExVUVDaE1JYkdsbGMyUnZibXN4RFRBTEJnTlZCQXNUQkdOa2JXa3hFVEFQ
QmdOVkJBTVRDSEp6WVMxeWIyOTBNQ0FYRFRFMk1UQXlOekV5TkRVd01Gb1lEems1
T1RreE1qTXhNak0xT1RVNVdqQTFNUXN3Q1FZRFZRUUdFd0oxY3pFT01Bd0dBMVVF
Q2hNRmFHOXpMV0l4RmpBVUJnTlZCQU1URFdOa2JXa3VhRzl6TFdJdWRYTXdnZ0Vp
TUEwR0NTcUdTSWIzRFFFQkFRVUFBNElCRHdBd2dnRUtBb0lCQVFDa1JDRkJQVkRN
R0NSWjF0U2ZQSmpTY1Y5bmhScXVDVlE2bHFyR0packwybUdBSXZNMlJ3Ty9ISlll
MnBBaHJoM09qVGxuL1J2M0V3c2lSb0gzWFpyTC92WmcxM04vVjcrSVJiYjQyNC9I
UzVHRlRBcmp4Z25yUmlsVHVMdCtJQnduSkdGSlo1ZVNBQzNZWEJOdkw0bjJYbWdK
WlpqTjMrd1R1Undza2JnR0xRY28rWmVROFNtYk0yT0dWSVNXL0tHMm9xL2dNT1ln
VXdndmVROXVmRnovOE9uT25hSlNLMkdnOWVKeGtnQ3o0L2JhVjBYWU1QOHF5YWhG
SzA4Wnljc1JlYU1tckdFUXpBR2ROMHpFM3MvckhPYzFzQkthNnlBYVlUL1phNVRZ
bzZ2NCtadWVrMndxdWJFZTFvNlNTeU5pL1d0T0d3V0xYa1Y4aFBZSlpQYTVBZ01C
QUFHalBEQTZNQXdHQTFVZEV3RUIvd1FDTUFBd0hRWURWUjBPQkJZRUZCeHdnVzB4
TFV3QlRSaUlTMVZ2di9KVmNPMlFNQXNHQTFVZER3UUVBd0lIZ0RBTkJna3Foa2lH
OXcwQkFRc0ZBQU9DQVFFQVI5bzMxQmR6N080d21GcFE0eEZjalFkSktSaFBiNndk
RHdyOTM5OXd5OFUxV0VFOEpEQ0FvbW9nakJlQ2RLUWVqWE1oVjR1Vkx1YllpSitj
WVRxZXh0NTJNb0pJRmUySnozNC9LbFVkYU5ENE5Jdm5teC9mWS83Qk9qQWFkY2Ny
L0NQVUxmczE5OHUybG9GNUVSYWtPM2lGajhwWFY1MjlDSFFmekpsaGh0c0VoL3p2
TXgydXpNTlpaWFlkVWxyQ0NBZGFGbWtFRDBHUHM4SGZDR1VXUytlQVNiN1ZnQXBC
N0NYb1ZJLzVKa2JzL0ZreEF3TWlxSmE2RUpyYkRkSFl0N2prVktwcmVpMWlxRVBj
Ri9MU0pNZXhGVjJVcDVISk9OMG1QMGFDclYwbFE2Nys3Mjg2Mkw1VmFjM0tjQTk0
dVBZVTUxVEJITFNBVXRLTDI5Uk9oZz09XCIsXCJNSUlEUURDQ0FpaWdBd0lCQWdJ
QkFUQU5CZ2txaGtpRzl3MEJBUXNGQURCQ01Rc3dDUVlEVlFRR0V3SnViREVSTUE4
R0ExVUVDaE1JYkdsbGMyUnZibXN4RFRBTEJnTlZCQXNUQkdOa2JXa3hFVEFQQmdO
VkJBTVRDSEp6WVMxeWIyOTBNQ0FYRFRFMk1UQXlOekV5TkRRd01Gb1lEems1T1Rr
eE1qTXhNak0xT1RVNVdqQkNNUXN3Q1FZRFZRUUdFd0p1YkRFUk1BOEdBMVVFQ2hN
SWJHbGxjMlJ2Ym1zeERUQUxCZ05WQkFzVEJHTmtiV2t4RVRBUEJnTlZCQU1UQ0hK
ellTMXliMjkwTUlJQklqQU5CZ2txaGtpRzl3MEJBUUVGQUFPQ0FROEFNSUlCQ2dL
Q0FRRUFzclVqNDZkeDVvamxhWms3WXRPTDZlK1E2Sm9HN2dWTWFYa0puMVN6bHg5
TkQvOHc0UGVPMVNRMnNrdWtkT0hBbFFSbXhkZnR6aGNjTlRNNWhtYmNuOFRBZldT
WXFRRjFSN3M3OGJWanRtYXQ2QVFQMXZTZ2l5WjhBaytpWVpFcTNjMnpWeVlRSEtL
eFd4bUZadDFIVDgvSC9CM2JYdmVYUWNFUktFK1RxNjZoOHBxVmNvY1FVdHpSRnNF

(continues on next page)

© SNIA 2020 SNIA Technical Position 319

Cloud Data Management Interface 2.0.0

(continued from previous page)
WW12MGJSMXJnaHRvcUg4bmhCNXhuZWJnVmxYakFwVytldDJTRTdyNkZqdjFhQWJH
STg5b3VKMWdzTVBlWDU2UDhBVWphY0Z0TktjNDRPYnU2SFJYWS9qbTZmMm0xRVVt
ODRFVXNKKzliNStTMng0cVB0dEpEZlNDYXNXWVl6NG1GSjhNd21GaUJHVXdmZ2VU
MmJVbTZ0N3FxYlFJREFRQUJvejh3UFRBUEJnTlZIUk1CQWY4RUJUQURBUUgvTUIw
R0ExVWREZ1FXQkJSK3RFQjJ1ZGtFWHhYMGsxNUd6dEYvNG9sMDNqQUxCZ05WSFE4
RUJBTUNBUVl3RFFZSktvWklodmNOQVFFTEJRQURnZ0VCQUlqeDFmOXJKMkIrbURT
QTNMMkdSaGpyUFJqZkk2VW4zWjUxQ2VXOWdPOVBNUTV3czVwREp5Qjc5ZEUvUThV
ZjFlOHBaeWpjaFRzUmE4R1Jkbkt5bmROMmltYXlPVlV2UG9UZDMvWlNtZmt1cmNi
ajNJNFZXOHNqSFA3Q0U4Zm1VUzhYcHJkcG8yU3hWN29uZUpDMHZ0NWV5aDhtZ2ZK
L3FTYndWYWlYdUgxV3hpNmR1QXZkeGRkTVhBeFFLUEcxS0tWTTdDWWZDZHBYL0hh
Z0NPSHpjdG8rMzc0ekZxcW5RMUt4NXJiZ3Z4TlNnbS9QRERPTXdQMDMrYmJUUjYz
S1NLMVZiZHRMQnVTNGpnYVBhYnd5eFF6L0ZjaXdUdS9ITE9RbjhUTnFEV3lvSWJz
K2VRWDJNZHMyQXB1bDhYSDIrQ2FrakJMTUxMM1RsajJ4KzZ0S1I5bz1cIl19Iiwi
YWxnIjoiUlMyNTYifQ",

"payload":
"eyJwcm90ZWN0ZWQiOiJleUpyYVdRaU9pSmpaRzFwTG1odmN5MWhMbVp5WDJWdVkz
SjVjSFJmY0hWaWJHbGpJaXdpWVd4bklqb2lVbE5CTFU5QlJWQWlMQ0psYm1NaU9p
SkJNalUyUjBOTkluMCIsImVuY3J5cHRlZF9rZXkiOiJ0WkQ4ZkpUT1hGZ3NTVi11
RXN1ZS1VYURnVVpQX3FFZWFVUFFyQmpObUF3UlpMSXlONklUc3hhclRqbDR3YjdH
UXltN0prOWw4QXlld0Fkakltby1yOUNULUhSbmR5Nlc2Nkd4bW11TGhwOV9ncjl2
WEtjeXh3QUhHeGIyZGo3dmlIQjlIRElNazZEQzB1Ri1naWZlM3VaeEhjdVVfYkRG
VGZBU0M2TEwyLTlIQ29OMzlSM2VZcC1FeWc0clhwZ2t6SkpnLTdRSUpHV3pvRFF1
d2VfeEM3Vmh5Q25vdDc2bW9RbEpSM1I5Snh6M2M4TE96ckp0YTY3YjdhS3Zodzk5
eUNPX3REb3d0WDZpNUd1cmZVbE5GN2VucmUwOWd3cUlLT3ZxQWRDTVdlSU5YWnVO
WjlZX3Y5RjVvWlF1M21BcEdib0dVdVRvRWxUMFFKd1dwaUR6bUEiLCJpdiI6InVJ
ODQyQ3ZsRUpBYTd4Y1YiLCJjaXBoZXJ0ZXh0IjoiVjBCcWtLTV93TmV6UVJuOGxv
b3VOdFhPem9tSjJLbElYaU1NT0VQSk1NTVZpd0lKY05IWHdBV01wUnBoMlRrMnlS
dUoweHBZbmRPdVBtUHdPVGljMWR4YXZvaGJEdHloTEFQS09TNWIzSk9lQTgxbWU3
enRaeFdxOFRDVVRFVkhBVTM5dERzZUQyZ0tUME0yOFR1dXpEZHhJcEtUMXJQRXZr
WThIQVBjakhZQ2pTeVpmcEhJSlpkUUhEclo0YUZBN0xETkkxWkxPOEhXMmtJbFB6
UzQ0WFdKQzYwS243THJvSXRyZ0hCWnJfZEFpNWlIQTdmU0VCSFVSRFpPQ0pfdzlr
TldLMDZfVTN3S2xVNU9DeFFYNzFMRGxCQllENlpaa2lwaExoRl91RUxvZFdKREo1
Zmg4VnhDRUJ6ZVdqckR1M3UzMXNldHJEbmRIaFNsT2VyeEswNFZuQXNETlczRXNT
a2twLXp5cFh4d2ZBRVQ0VWxiR3V0UV9FX2xsX2M4VVZjSnJhRXJoZFgzX2VNajdS
YThud2VEdGxZWjlDLWVlQkdJYzE1OTZLaVZzQlJ0c1dPZm5SLWQzdVZFREMwZnVv
alp1U3M1Mm1mWjh5dU1yeE9QWDJodzFVVGlCeHRuODdyQjRNc1ppSkwwc2VIelIz
T3d4eEFMUFJRSzFzQVNweXJRaW1jTVJBSUtGVzJUUDFjSjRmYTlIdmNTbzN0eTUx
cENSVGlmUV9CSFlLM01LaGdWMWVnZ0I2Mmw4SEs2NkE0dFlpcjJyUnhkNEZPb1U0
bXN0bVQ3aFpmOVhBRzFBMzNwSHNxSEFINng4LVJDc0FwOHlGeHd1SHg3X0s2ZzNo
ZzJNSTNHZUpBTGxMRXhyeUJ5NEF4OXQ5ZEg0SWkzZWZjZlh2LVROcmFIS0tHd3VM
QUItby1jVG1WUWZfU3dGSEtHZGNjSWgwazFYT3VXdkFmekducjJKMnhBVjBUQzdz
YWNyZHBWNzgyWkM2T2dSSVliTEs0RnhUYXpuMXY1dlZjRms4dU40NFgxV2VuM09f
RmR1UllLZ0ZPbUFyTHd4WXBMYXJSS1QzX3FPcjlOQnYtQ3FycEJPV2EwVlVtaXF5
TWxTb2VHR2plaHcwLVNuMVBTa3dWb25jNTVYTWxYcEVZc2hJb3dHN0xnb0dBakxl
MU13cjkxNWxmWnZsajFpckljbGk5MGtIWVBKTjdZVTJEMVhaM2hEV3FLTTRLWG1w
RnJaVk5qdi0yUWN0ZGt1Vk1MaHQwN2JESU51aUpDZENsS0llbWVVZlhZMW1IakxB
N1J6Tjg0SjN4UTIzVXN5eFdWLTFYRTJueEFmcmYzMG5KZG5HTi1KbEhqdFMtQW5E
cXljUGQ4VjhBcUw5UURrUm1tZmsxRnBwTUdEaW9XS1lVM2JTTGhyTHh0RzMweUQ2
bzVlb0UtUFN0aW9XcGVsN1lZcVg0aGxlNGNoNWVhWkQyRF93Ni1VOUxLbmQ2NnZq
OVptNjU2YVZrYy1SSGhNWEpQczhMeElCM2hrQ1BSMi1KN2lUaTBZYTh2d016OFJ5
LVQ2Z285b3VVU2F3MHJYbi0wNm9HNC00aXZhMnZ2UkZGaXFOS25KYTdrM1BrWDF2
cXVqQUl5Ti1ESkI2cmZNZnZxTlZmV0phNXBuNTZLY1g4TFBPeUFiSGo4WUNWT3Fo
QldtbGt1SjM4WUtpY1dWRkJfTlpSZEpseDRTUXdoQ2pLYlJtdmxENXJqeEk4NTRY
NTdzQkNQbmpaTzdvZDRpZ2lVbnlfZjNyRkZQd1lieVFmdWxkM3hMRVdSWWZCWUpu
YWRvNzB0S1VXMllOcWFzUzR3SW9ibFhFSnR5a2RPTHdQLVkybGRVMXdVbThsUHdp
VXpNZGtrY2xDWkQ2Wkx6LU9GdDdLaE9EbUxPTUdPNWlhczlzeG9DaG4zYzFMcnFQ
amd1Ui1RWFNoaUZrNmtYVU5CMnlIVEt3dmZZT0ZjUjhEbDdleVJCQ3NVUUY4STdT
ZkFWNkJrMm82ZU1jdEJGTXluWFgydU9nWXEwOWtUM0ppckhzbGl3dThZbzM1bHpW
ZGViWnlqREIxbWl2LUNKR091ZjRxbEZxRzNiYVBCQmhNa0ZFS2lWU0FJZmdDaFlu
dUc3WkxvNmVWMW4zMnRGeDFzdEdUcnpuMk13alNzektPMTJIY3VkcUZnTUREQ28w
T19OREZ4Qmh1RFB3aVNadnBGNHJWV201QktEbjBOQzNFcy1zOExGaDZJUFVTMW1l
VFB2Umx0cERJZTljQTZqdHhCQURacVphdGtreXB5ZzZGRDZzUjhUQVRDRGo0WWhT
Rzk4MVBmRFZ1S09FVjlqaTdzd3lkLW9ST2Q1UXZCa1lKUkxhckpEOGhEdWZIcHdy
MlViNENBb1JKcnJWdGM4TmJDcmlLbmZGWVBQal8yN3p1RFZKZXBxQTdpOVVTY0ZD
T25vUEx3NEFpVmxqQVRPVU93MmNzR0FqM19tLThPR2cxM3BTUHNjWDlSUm5TV1lY
cjdFdnFJaUVXNDZaNTR6NlJTNHg0Z1dqZWFzNUpHdmRsQkhoQk42bFd4QTFLa0Vs
el90NlVOSVhGSWpZRTdyVF9oUzJsWmstWGNPelZuM0gxTllZU3NpTVVLVDNvWm4t
UmliVVhoMGZjbVNWTHFRMnVuX2dQV3MyT0VUeHB3U1Y2dk9leWRjOFcwQVdhSVph

(continues on next page)

© SNIA 2020 SNIA Technical Position 320

Cloud Data Management Interface 2.0.0

(continued from previous page)
Vm43bW1MNnY2aEctTVFLSl92S3pfaTNxbkRxRUVzVjhDQVE3NTN1cWpHUVBEMUs4
VGtZeTNucnhncEh1ODY3UDJNUGpVQWFxeldTV1dNN2FQeVhCTkZNeFQ5V3Q5ZmVw
VEFheDdhLVo1VGcwS1pxS0lDQVVNYUo4OWJveG1ncG9rcGFRVWtQS1pFMjR2NGph
ZE5pT21SSHJMeE11VzVrdG5kQk5Bb0dHbm9HRTNzYWZlc24wX2NPc3M2TTVXcEhR
Z1N6VWxacF9aREJ5Q09ldFo1TmEwMjVfb2t1T2drUklKVjN4MmZPbWM2U0wwU3Fy
R1lWSEhORmZKN2lLeVNXTk5Sdkl4UmhWTmJYVXFMRl9OYUMxZDdNQmpkTHY3WlFp
Ym0yT3BmSWtmSlNNUzFKcFVwSVNRakR4djk2TFhIOHBhQXBTVDZtWnlEa0VrTW1O
b2ZXSktwM0pQNUFTTXZ2S3dsbkgxQU9rSWJYZjdRLXlyYkthY1BtWEhkZ2hjRmZa
Vi1ldU9ERzhfdTRWdGZwOEF0LVBRSkJyX1V0cVZJbHpReDBnUE5MVVdMbzdlRmlv
dEtPTEx3Vjh2MGpxcDdUUlBIVzBHc3pVWmFZb0RjYUZMaXZDaFJwVDktQks3d29w
RXhfN1FxUWUxSVhuMVNKQWRtZFpvZmdfSF9ZeWU0MVJjSnZGeWp6SmZBOGlranBs
STMxVW9WSzVaTllXSVExZ2lvUFh3U3JUVW1GeE45X3Z0aHl5Z1pYTXQzVkZiUTNB
eFBBZjlSSE5ENlpBOGFValk2R0pNb1BvX3FySkMyLW9hQzd0cTc0SURBekk3bmpM
S09VMG9IZ3RtaGhGUVB6cloyWjZOYUlLaTJIWm9yLWc3LWctN1N3ZGRxd0RDSnlO
ZXdEb3pJN3NNRFM3XzM1RkoydnRnaGZLUHFTLWhFd3JlZGtaNE1ORUg1dnRXU3F3
NHRmZDFrQmNROExtRlZmM2hfV1FWZjVqQ0lGcEZNOV9MYnV6eWVmeU9IMENSLXlJ
YlE0QXFleS1ZclA0YWJTdXF2VXBlMEFyVEdZS3pMWk5FZHhFVzliemxsYUVJaVNU
MTRBNXAzam9CUVNOQmtLRUdPMVh2RTdSVnJ3T1kyemItWWFIRkxjU0gzdDRtMFlZ
aVducFZ1RnBRZjExWVlqbTgzLXFEbHZuYUN5T19GQXBTMy1SRnhrVTZFVzRYcDZ3
eVlxNDF1amxGVHp4Q1RnMExXeklqTGlyRm1VSGpKZUlhR3lVSzZ5TGpkYkhtR0Ns
LW15T3FZR3hwNERybHVITHBkaWZHenhmQnd6OUM4MXNNbkFxYmNRWGMwcXdIMVdO
al9uX0tMblJFdUhRWFBleDV2VmZ6eWRlZUZfNE93WExSdXZ1M3ZlM3Z3VldWamRP
ZWN2a05nbkVFUDdocVhkbXpRbVlKZndxSGRwZnNSRExESDloOWpRcEI0LTNMRjg4
U2NSa1RteFlNU291bFVqcHdia25hTWZQRVMtZkgtTjVwQXNqVE0wOVFTV0Y5NENE
bHdZR1ZhZzY2UkdLcGdwU1ptMGF1dGNsSG1KOGVRMjRuRzNKdEF6bGNkVC0zNXNC
TlFsZHRkYlhkRzFxb2ZlOUpUNE5iSll1VXdwemlhNnJYNGQ5NkRqdm1VdWpqanNl
NjhCYkx2bzJQM1VyTkxUWDBjNmUtb3lHbzcwdURTN1lxb2ZIUUxhU05ORHRnZ3d1
V1IyZFRVUDdLRkk5N29Qb0ZiX1JjS3BQVVU4cDZsTjJRYkVOYy00TWNleWJYVS1U
ODR1ZnpqZkJkdHdMdkYtQ3d6Nk9lS1V1NnBPeVN2MGVnbFNJUWlmb3JPU3FGVl9y
QWdvX3NuNDVHVVhKU0dNc0FFT0NXN0lQX0E4Y1hvaFpGbi1NNW1UTU83b01fSWN1
Q0dVclNuREV2X3NNdXFLdFk0cExLbHRMT2tCTXVHU292Mm1DVHBmQjVnVnBvaGZf
UzBaUW9CWlV2UDkwU3ZLUVRuTG12QnZnVTd3OVVmY1dRTzBrNUZZSjNfREZxNHVL
VWJpNXB5cFVCT0txd0Zla3ljLXZXVGRPTGdLOW40ZkdUcjlzOG9ZejczdC1tVXZ5
a3pfdkRzWWFpWHZQbkd3My00SDhVWllXZy1GSHJfSHlLTlFQNklGSTVGdEFneW5s
QjF6SEQ2a0xXbGtGaWdfb0FjdXJ6enE3WXJJaUlOcnZFUzFUZUgwRXBwczVjZHpF
WWh0M3ZHNFMtQTJqcE5PN1pJUklzUmFUMHkxbFBOLVZEdWJxOHBFZmhyX1B0ZVM0
T21zNGNvLWxiOUJNR1BmeEp0cVRDUWJGSnJLTFBDbDJKNk5VVGtnTy0zVlgzUkIw
Rk9uUmdWRl96aVQ0amF1UFFxZDRsQ3BOMEl2S2RCb29BWGtYNzkxU2JjbmJoMUhS
cFlhblNVZENiZmZ5MGg3NTJ1MldmV3JjSUVDa29GWkRqelUtbG04bnF0OTZnS1ZH
OFpHejF1bGhIZzVfVVIxVnlZNElROVBjNHVCTk1yazRUVThNRjF6R1RsalhnT25t
UVZld0tPWmtkcFB4eWhGdExtalUzeWtoejBKMm9oMzJpaVhpbHFFeVQyQjM2Nzhz
NHF3NHNkalNTdXdCWXZZZmtRNl80SnIzNnNrUm5CQ1ZLa21mdlFtbld4S3NheWQ2
WnRPcllwZ1hjTlRfOUpYXzE5RFZiekdYbW1zTExONzRPQWg0QjZUVXciLCJ0YWci
OiJnb1QzT0V0XzZ5eVJXdEtPdFJpUTdBIn0",

"signature":
"a9idqlHPlsfvg7IEKECf_XNeKKpU5jioicQTxvpQywpT8DM5M7sy0PfrOSEL4iKJ
hGd32xQ­JwaIgT5RR0QwAM3cy15y0IMh­KkHh1H3Amsy2RIsi2jkZVpIN24OF0T4
Wf6fXfuuXjBydT­PjIjQako2Lsic­nKAJukm0f3uwHxGXN3JGlIzi4_QrYeRjI4V
b9ymaZW6soF1VaDqXulfaL7RtN_B46­Yg_N8XK5XWuIW5PZ1ZEkYFaqGzPaoMi31
ipA1vx­VlQdVxCATOx2uQOT­um6NJAlvAigyWn45CRM5ETXja_V8WkpDPlHH4A5G
SEzKUGz3tYC85Agd0­Aoig"

},
"dac_request_dest_certificate": {

"kty": "RSA",
"kid": "cdmi.hos­a.fr_encrypt_public",
"key_ops": [

"wrapKey",
"unwrapKey",
"encrypt",
"decrypt"

],
"n":

"uL7ANgD80H5sNqo3nHzovPRxgncQLhz0oQvGMVvULCkrYXMaXZ5sNv7fT6UdMSZi
T­e0sthapmEqrpeV9RKHsiF3COGl2YndUHixpEkHp8y1ggcH6iTzoBsgXMZ7OLW­
mJ2RW3rodT7k­tcozYYsTSM5egMPQSAKgt0nMnPmdNRnEyA2_NJ8Y7lNkEXyja0Q
JLstzkP8­cKS0BkEquLQEMbZVRM6U5uG69cj1i9OWvuRzPoaATKyt6Cc4f6PUu9L
OyCBUAs9dXsRrt3B8H1qe7io7FAAcOpcUDKDnLFXS1THc37DK_zEyKZcMttjCvEl
Ovt­cIaokdnxJeggv9AFGQ",

(continues on next page)

© SNIA 2020 SNIA Technical Position 321

Cloud Data Management Interface 2.0.0

(continued from previous page)
"e": "AQAB",
"x5c": [

"MIIDMDCCAhigAwIBAgIBBDANBgkqhkiG9w0BAQsFADBCMQswCQYDVQQGEwJubDER
MA8GA1UEChMIbGllc2RvbmsxDTALBgNVBAsTBGNkbWkxETAPBgNVBAMTCHJzYS1y
b290MCAXDTE2MTAyNzEyNDUwMFoYDzk5OTkxMjMxMjM1OTU5WjA1MQswCQYDVQQG
EwJmcjEOMAwGA1UEChMFaG9zLWExFjAUBgNVBAMTDWNkbWkuaG9zLWEuZnIwggEi
MA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQC4vsA2APzQfmw2qjecfOi89HGC
dxAuHPShC8YxW9QsKSthcxpdnmw2/t9PpR0xJmJP57Sy2FqmYSqul5X1EoeyIXcI
4aXZid1QeLGkSQenzLWCBwfqJPOgGyBcxns4tb6YnZFbeuh1PuT61yjNhixNIzl6
Aw9BIAqC3Scyc+Z01GcTIDb80nxjuU2QRfKNrRAkuy3OQ/z5wpLQGQSq4tAQxtlV
EzpTm4br1yPWL05a+5HM+hoBMrK3oJzh/o9S70s7IIFQCz11exGu3cHwfWp7uKjs
UABw6lxQMoOcsVdLVMdzfsMr/MTIplwy22MK8SU6+35whqiR2fEl6CC/0AUZAgMB
AAGjPDA6MAwGA1UdEwEB/wQCMAAwHQYDVR0OBBYEFBAIGICMR5H6KLKMlZAEhCCc
KwE9MAsGA1UdDwQEAwIEMDANBgkqhkiG9w0BAQsFAAOCAQEAANYSSryUU6112pYM
r83M3GWnjzu16B+4KgimZ8kbey94zNPdwmwQdSe0Xmg+1Otc6VUB40ouNnwK8efB
aWBtXwCA7Nb715nTqo2+rn+X+A0mGrYaKkToPEe8ZYwDcOlOpNC9JFE+QgP9/CJa
AaWrf95W+4kra2WnA4Bhqu2WWXnQkL47/nKcGVZgQAH+mVnxPaI0gELYdonXU/S2
8HqxoyjpGL/vmyc46zUbxYsgx/jiE7J0fJVP6Yk/3dlNYCCpLtV8VmzFAQAeCcn8
AWowFcd09a4SY09rn1MUv/rrvXpzflfn9j7PtRRFj2e/KhitmOH1zKDuYzREpUOu
TDlPIQ==",

"MIIDQDCCAiigAwIBAgIBATANBgkqhkiG9w0BAQsFADBCMQswCQYDVQQGEwJubDER
MA8GA1UEChMIbGllc2RvbmsxDTALBgNVBAsTBGNkbWkxETAPBgNVBAMTCHJzYS1y
b290MCAXDTE2MTAyNzEyNDQwMFoYDzk5OTkxMjMxMjM1OTU5WjBCMQswCQYDVQQG
EwJubDERMA8GA1UEChMIbGllc2RvbmsxDTALBgNVBAsTBGNkbWkxETAPBgNVBAMT
CHJzYS1yb290MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsrUj46dx
5ojlaZk7YtOL6e+Q6JoG7gVMaXkJn1Szlx9ND/8w4PeO1SQ2skukdOHAlQRmxdft
zhccNTM5hmbcn8TAfWSYqQF1R7s78bVjtmat6AQP1vSgiyZ8Ak+iYZEq3c2zVyYQ
HKKxWxmFZt1HT8/H/B3bXveXQcERKE+Tq66h8pqVcocQUtzRFsEYmv0bR1rghtoq
H8nhB5xnebgVlXjApW+et2SE7r6Fjv1aAbGI89ouJ1gsMPeX56P8AUjacFtNKc44
Obu6HRXY/jm6f2m1EUm84EUsJ+9b5+S2x4qPttJDfSCasWYYz4mFJ8MwmFiBGUwf
geT2bUm6t7qqbQIDAQABoz8wPTAPBgNVHRMBAf8EBTADAQH/MB0GA1UdDgQWBBR+
tEB2udkEXxX0k15GztF/4ol03jALBgNVHQ8EBAMCAQYwDQYJKoZIhvcNAQELBQAD
ggEBAIjx1f9rJ2B+mDSA3L2GRhjrPRjfI6Un3Z51CeW9gO9PMQ5ws5pDJyB79dE/
Q8Uf1e8pZyjchTsRa8GRdnKyndN2imayOVUvPoTd3/ZSmfkurcbj3I4VW8sjHP7C
E8fmUS8Xprdpo2SxV7oneJC0vt5eyh8mgfJ/qSbwVaiXuH1Wxi6duAvdxddMXAxQ
KPG1KKVM7CYfCdpX/HagCOHzcto+374zFqqnQ1Kx5rbgvxNSgm/PDDOMwP03+bbT
R63KSK1VbdtLBuS4jgaPabwyxQz/FciwTu/HLOQn8TNqDWyoIbs+eQX2Mds2Apul
8XH2+CakjBLMLL3Tlj2x+6tKR9o="
]

},
"dac_request_dest_uri": "https://cdmi.hos­a.fr:9001/dac/"

}

The DAC provider at hospital A will retrieve the signing key from the JOSE protected header, validate it using3997

the included X.509 certificates, and then verify/decrypt. It creates the following (plain) DAC response. Note3998

that it included the object decryption key.3999

{
"dac_response_version": "1",
"dac_response_id": "73da04e1­2182­447e­8342­f4b9f06ec936",
"dac_applied_mask": "ALL_PERMS",
"dac_object_key": {

"kty": "oct",
"kid": "encryption_key_1",
"use": "enc",
"alg": "A256KW",
"k": "1mk_8n9GZJTLDUEuxBYT­9GO8bC_fR2qqt03rVSRFak"

},
"dac_response_headers": {

"CDMI­DAC­AuthInfo": "Key successfully obtained from KMS."
},
"dac_key_cache_expiry": "2017­04­06T14:42:47.393Z",
"dac_response_cache_expiry": "2017­04­06T14:42:47.393Z"

}

As before, DAC response will be JWE encrypted using the key in server_identity. The result will be:4000

{
(continues on next page)

© SNIA 2020 SNIA Technical Position 322

Cloud Data Management Interface 2.0.0

(continued from previous page)
"dac_response": {

"protected":
"eyJraWQiOiJjZG1pLmhvcy1hLmZyX3NpZ25fcHJpdmF0ZSIsImp3ayI6IntcImt0
eVwiOlwiUlNBXCIsXCJraWRcIjpcImNkbWkuaG9zLWEuZnJfc2lnbl9wcml2YXRl
XCIsXCJrZXlfb3BzXCI6W1widmVyaWZ5XCIsXCJzaWduXCJdLFwiblwiOlwiblQ2
Rjc1aVZGZkdQLXdramdneVhacFdvRWhxNmZTWkNfRENTYXNLLUdVdXdWaUhETUJG
cXVreUM4ZmsxajNBY0JyTTlIZERIbnFrVzRfM2YzOVdZMlMtRFY5YjhkWWpRRHJl
TDFfcHBNRVg2enJnN1hBWEJJa1ViT2h1dXJOTVNBNENlQXlCY2xqWUJpQ3dvTWxv
aUNGb2RsbFYzUDZwekVLNjduTHNfYWVfTHVaUmRzaFhXakotYm9qQzZiNGhJcWVx
UFh0dXBPekl5MDBKLVZydHNGUTBZaDN2dWRmbVVJTkZSTFl6c1lzY1Y3TVR4TUd5
S1hIMXE0ekdHSHZmSlpTS0MxTEtYYk9Dc3JhaHVrUFVhY0tBSFBqbTNKaHpONTR6
amVYTGxnaDZPT2x4X2Eza1V4YlBFTl8zYjhHTDhOVUhuWFljcUNjVDVXUUV2ZUZw
OFlRXCIsXCJlXCI6XCJBUUFCXCIsXCJ4NWNcIjpbXCJNSUlETURDQ0FoaWdBd0lC
QWdJQkFqQU5CZ2txaGtpRzl3MEJBUXNGQURCQ01Rc3dDUVlEVlFRR0V3SnViREVS
TUE4R0ExVUVDaE1JYkdsbGMyUnZibXN4RFRBTEJnTlZCQXNUQkdOa2JXa3hFVEFQ
QmdOVkJBTVRDSEp6WVMxeWIyOTBNQ0FYRFRFMk1UQXlOekV5TkRVd01Gb1lEems1
T1RreE1qTXhNak0xT1RVNVdqQTFNUXN3Q1FZRFZRUUdFd0ptY2pFT01Bd0dBMVVF
Q2hNRmFHOXpMV0V4RmpBVUJnTlZCQU1URFdOa2JXa3VhRzl6TFdFdVpuSXdnZ0Vp
TUEwR0NTcUdTSWIzRFFFQkFRVUFBNElCRHdBd2dnRUtBb0lCQVFDZFBvWHZtSlVW
OFkvN0NTT0NESmRtbGFnU0dycDlKa0w4TUpKcXdyNFpTN0JXSWNNd0VXcTZUSUx4
K1RXUGNCd0dzejBkME1lZXFSYmovZC9mMVpqWkw0TlgxdngxaU5BT3Q0dlgrbWt3
UmZyT3VEdGNCY0VpUlJzNkc2NnMweElEZ0o0RElGeVdOZ0dJTENneVdpSUlXaDJX
VlhjL3FuTVFycnVjdXo5cDc4dTVsRjJ5RmRhTW41dWlNTHB2aUVpcDZvOWUyNms3
TWpMVFFuNVd1MndWRFJpSGUrNTErWlFnMFZFdGpPeGl4eFhzeFBFd2JJcGNmV3Jq
TVlZZTk4bGxJb0xVc3BkczRLeXRxRzZROVJwd29BYytPYmNtSE0zbmpPTjVjdVdD
SG80NlhIOXJlUlRGczhRMy9kdndZdncxUWVkZGh5b0p4UGxaQVM5NFdueGhBZ01C
QUFHalBEQTZNQXdHQTFVZEV3RUIvd1FDTUFBd0hRWURWUjBPQkJZRUZNWThmOW9h
aXhYTkFWSW1Nby9heE9kN205clFNQXNHQTFVZER3UUVBd0lIZ0RBTkJna3Foa2lH
OXcwQkFRc0ZBQU9DQVFFQWJPejR5akdLektpM0pVQTJ0WVVOeFhoQ1RKbnBVUGZB
WDhRdGs5ZEJXTzZhVXNsSzJlTkh1TzZjL2tKMG0vKzR4LzJiczJlU0dISmRldU9w
dzd3QmQwTDB6L1hUeStFVHRQM0k1TEovYzhNdmN6NTQyZCtMQUpXdlZtU1hIQU82
QjZRZDJtSkJ5aGFMU3k2YWUxK3BwcmE5Yk1aYjFTVWVxc3ZtZ1R5Z2h2Y3NkVzky
TUhBUHlxU1hxTmthaTNhNW5kbE14YjdqcWFhMzNCZkxTOHhVcE1FQ0wvaGJ4L0dH
WXcxZXIzSUFCVDBCeG9JQXp0c0tHQTFUOWh2cnA4NCtFNjJhcnZrU1lHUk8zQmpu
SGRHcGdnRUhRMmhGNkR1UFIvRGVyV2d2R0MyREN0cFNxVzJTTklaUFprb2tsZ3pE
QnVXdVlHYjl4d1RWa0psWVRpSzFOdz09XCIsXCJNSUlEUURDQ0FpaWdBd0lCQWdJ
QkFUQU5CZ2txaGtpRzl3MEJBUXNGQURCQ01Rc3dDUVlEVlFRR0V3SnViREVSTUE4
R0ExVUVDaE1JYkdsbGMyUnZibXN4RFRBTEJnTlZCQXNUQkdOa2JXa3hFVEFQQmdO
VkJBTVRDSEp6WVMxeWIyOTBNQ0FYRFRFMk1UQXlOekV5TkRRd01Gb1lEems1T1Rr
eE1qTXhNak0xT1RVNVdqQkNNUXN3Q1FZRFZRUUdFd0p1YkRFUk1BOEdBMVVFQ2hN
SWJHbGxjMlJ2Ym1zeERUQUxCZ05WQkFzVEJHTmtiV2t4RVRBUEJnTlZCQU1UQ0hK
ellTMXliMjkwTUlJQklqQU5CZ2txaGtpRzl3MEJBUUVGQUFPQ0FROEFNSUlCQ2dL
Q0FRRUFzclVqNDZkeDVvamxhWms3WXRPTDZlK1E2Sm9HN2dWTWFYa0puMVN6bHg5
TkQvOHc0UGVPMVNRMnNrdWtkT0hBbFFSbXhkZnR6aGNjTlRNNWhtYmNuOFRBZldT
WXFRRjFSN3M3OGJWanRtYXQ2QVFQMXZTZ2l5WjhBaytpWVpFcTNjMnpWeVlRSEtL
eFd4bUZadDFIVDgvSC9CM2JYdmVYUWNFUktFK1RxNjZoOHBxVmNvY1FVdHpSRnNF
WW12MGJSMXJnaHRvcUg4bmhCNXhuZWJnVmxYakFwVytldDJTRTdyNkZqdjFhQWJH
STg5b3VKMWdzTVBlWDU2UDhBVWphY0Z0TktjNDRPYnU2SFJYWS9qbTZmMm0xRVVt
ODRFVXNKKzliNStTMng0cVB0dEpEZlNDYXNXWVl6NG1GSjhNd21GaUJHVXdmZ2VU
MmJVbTZ0N3FxYlFJREFRQUJvejh3UFRBUEJnTlZIUk1CQWY4RUJUQURBUUgvTUIw
R0ExVWREZ1FXQkJSK3RFQjJ1ZGtFWHhYMGsxNUd6dEYvNG9sMDNqQUxCZ05WSFE4
RUJBTUNBUVl3RFFZSktvWklodmNOQVFFTEJRQURnZ0VCQUlqeDFmOXJKMkIrbURT
QTNMMkdSaGpyUFJqZkk2VW4zWjUxQ2VXOWdPOVBNUTV3czVwREp5Qjc5ZEUvUThV
ZjFlOHBaeWpjaFRzUmE4R1Jkbkt5bmROMmltYXlPVlV2UG9UZDMvWlNtZmt1cmNi
ajNJNFZXOHNqSFA3Q0U4Zm1VUzhYcHJkcG8yU3hWN29uZUpDMHZ0NWV5aDhtZ2ZK
L3FTYndWYWlYdUgxV3hpNmR1QXZkeGRkTVhBeFFLUEcxS0tWTTdDWWZDZHBYL0hh
Z0NPSHpjdG8rMzc0ekZxcW5RMUt4NXJiZ3Z4TlNnbS9QRERPTXdQMDMrYmJUUjYz
S1NLMVZiZHRMQnVTNGpnYVBhYnd5eFF6L0ZjaXdUdS9ITE9RbjhUTnFEV3lvSWJz
K2VRWDJNZHMyQXB1bDhYSDIrQ2FrakJMTUxMM1RsajJ4KzZ0S1I5bz1cIl19Iiwi
YWxnIjoiUlMyNTYifQ",

"payload":
"eyJwcm90ZWN0ZWQiOiJleUpyYVdRaU9pSmpaRzFwTG1odmN5MWlMblZ6WDJWdVkz
SjVjSFJmY0hWaWJHbGpJaXdpWVd4bklqb2lVbE5CTFU5QlJWQWlMQ0psYm1NaU9p
SkJNalUyUjBOTkluMCIsImVuY3J5cHRlZF9rZXkiOiJLZ1lXVDVDOVBiN0FEOVZH
bTczSDRQSkFJUHNnbTN2ampNbmZJcXZBOEFLOEtNREowMTlNQkVHeC1tTUpIQTBo
dGhyb1F0UXA3NklDR09GLXJaNnBxajNTYm1iNFNUc3FhUjQ5aTN2Y2x1dUhRSlZM
WVNOVklWOHBJYzZLbllDWFNGMzNldHlIZ0p0bFZjXzE2RTIyUGxEVE9IWjhPRzZz
dklWa1o1cktnLVNGS1ZZbVlWeC05UC04NU1ueThRMkYtR3VBcDNiOHVZZzhFNXdx

(continues on next page)

© SNIA 2020 SNIA Technical Position 323

Cloud Data Management Interface 2.0.0

(continued from previous page)
Z1AwY2NHYVNjZF82cFUzdk83aUZGWlVLLV8ycHlzQWdRMlo3Zkl0a0lSWnVPdFFf
RkpNaThLcFdKc3lMNFNDanZSNkxFSVBIekdTMUtkTmNEVTVrU28yc3pkanQ0WENH
Sk9WSkc4dFhfWmZRTjh6RzdpTktJcXhiTVYwRUZVOWRjUzBkeWciLCJpdiI6Im9n
Z3hKM3g4YjBhb2xlSDQiLCJjaXBoZXJ0ZXh0IjoiLWhkM1A3UGM5emtpQ0hhYnda
ZVhWU29rYmNXcmdqQ1QyU0FZaFFGYzNMNFY4b2ZLYVNYR3UtazF3T014OHhZY1FH
Slo4Mk12b2tEUXNGRnZaQjBNUG9hdEljQWtmTms0VURqREcxNi1zVGc3QURKeV9p
TkdmZ1dkUy1XU3QxWW1PZW5HaXBYNEZWM3ZyNU9URlE4X3hCRHdYSHRiU05KX3Jy
RlVWX2R3TnJQdUdiSlYzSXhOYi01RFJ1Rkl1Z0ptY0JXelJYRW1LeUEyZEdZTG1V
eEF3WFpWT18wYm1KVkxzZzlKa1puczU3YXNqR1Fna0c4ZzhCNDlnTEl0QWRFQXpJ
SFlrNTVpUkRvQk9WRnhGR284Vlc1ZFNrM05ldi1mZ1JxYzFDZEdodEZuTnlzUjUy
akhtMFprMzRoeTJRLWZVNnNTVXBwMU5vVmw3YTd1NWMxdEVZSGRNVU9fWWtHV0g0
dFIxeWdmbG94dFY3ODRMYXdObGNCYlV6NFpvWXFKeXg2amEzdGxHaUpxaWdLZ043
WENTT0R6RXF0QVRQeXBITnVfYXJHRm9LNmk3cGdKZXcwYUxMQWJQOFA0SFJHTVZ6
Q1V6dktDbDdKYS1XTE81U1UwS0ViLVhJZGdHX195a005WTJqUVQzdi1MUjNNRG1q
WlE0ZDM4cG9BS1lfSHJCWDg1Z1dMQXFzY3MyRHhwRTlIZm9xaXk0T2tscVlaa3Js
MUpNT1dTQVZkWWNqckhjc3Y3VjZGSUJGV2Vjc1Nwb185ZUsxOCIsInRhZyI6IkJ6
NFZZeHdtNFkyU1Y4bDVUckMwUEEifQ",

"signature":
"RjUCI3Q_zfBJyeHjYfldsd6MppSDNUAIzC77lsbM1MiKfLDi8oN0999gpByS7Sx6
kCXqsNkV4T0z_qaqy4UY9JrdjMRTNFPXJMwhqbBem­s6dJT6VquF3GBQTU8wb4OK
5E8rGvTcWw­Hd0SfpjGoJtgv5RmpzfVgdvANZcJfST­rOra3EnPitOf8dJ95Db3t
78mEbMfqdoobk1Dnc39DvpnzD61TIoxWoZj3UGcBcvNPsl2XijS6yZlgAsrQbGnX
xWx­PCwEACZoVekzt­YV5QUFH2Jqb1pGeUUCwoFv1ON90iXVusIdWWnJO51gSKwg
i80ZxOSSBwF6b9WIeXHe5g"

},
"dac_response_dest_certificate": {

"kty": "RSA",
"kid": "cdmi.hos­b.us_encrypt_public",
"key_ops": [

"wrapKey",
"unwrapKey",
"encrypt",
"decrypt"

],
"n":

"oQMQkY85UzwO7K6H0QQNfAiRMN3ZfhK0aXEKx7YwvrCU9IKOquZ1OYZ9Cv8556_8
E8yZm02JDWOBOaSsGHU835jvXf12f4MywKGWj5FtIGL­j9kXF6SWq3zuLVYlXpMI
KsJngHMVFca_­ZhZ2vLsrnDR1aCNEC48gR26ewp6WX1ptnSc1W4x3Mj­ONMVzxVE
7XNlwYysTgDtonmTQD­YG6_KhhAPx0YowMbUWv_cMQvXsi7MMDyZn6fxfq4zQmQ2
V5RtUy5msd6K3beDzS4LmZhsJmjU7YnhOj0pZby4Zckm43npjXPAuwPhzK2OW7qb
fkv0qm4rsFWUcuNh8lBsDw",

"e": "AQAB",
"x5c": [

"MIIDMDCCAhigAwIBAgIBBTANBgkqhkiG9w0BAQsFADBCMQswCQYDVQQGEwJubDER
MA8GA1UEChMIbGllc2RvbmsxDTALBgNVBAsTBGNkbWkxETAPBgNVBAMTCHJzYS1y
b290MCAXDTE2MTAyNzEyNDUwMFoYDzk5OTkxMjMxMjM1OTU5WjA1MQswCQYDVQQG
EwJ1czEOMAwGA1UEChMFaG9zLWIxFjAUBgNVBAMTDWNkbWkuaG9zLWIudXMwggEi
MA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQChAxCRjzlTPA7srofRBA18CJEw
3dl+ErRpcQrHtjC+sJT0go6q5nU5hn0K\/znnr\/wTzJmbTYkNY4E5pKwYdTzfmO
9d\/XZ\/gzLAoZaPkW0gYv6P2RcXpJarfO4tViVekwgqwmeAcxUVxr\/5mFna8uy
ucNHVoI0QLjyBHbp7CnpZfWm2dJzVbjHcyP440xXPFUTtc2XBjKxOAO2ieZNAP5g
br8qGEA\/HRijAxtRa\/9wxC9eyLswwPJmfp\/F+rjNCZDZXlG1TLmax3ordt4PN
LguZmGwmaNTtieE6PSllvLhlySbjeemNc8C7A+HMrY5bupt+S\/SqbiuwVZRy42H
yUGwPAgMBAAGjPDA6MAwGA1UdEwEB\/wQCMAAwHQYDVR0OBBYEFH7NJvMIfTQtZn
nyiIdLNkjCgwSIMAsGA1UdDwQEAwIEMDANBgkqhkiG9w0BAQsFAAOCAQEAdiADIv
0v09SUDcPL+BKysvchn\/Sgx5KBu7n9KFwE31Dhx2zvT6ruL8kXdekPH9cfrDafW
6I\/vnbzAVj02i5pM2cHayj13fTOWSVwpcQuvkoIF9eVIWONkemMMf7M7jpTw07z
7S2T5usaDmMNpqj8y5pRpQo3PnBVxpEZJ0XaSdfuiHtVLDq8gDZCq6Hc2tt7JM3W
njnQgs+1lSGRuqWOcpmVONIoqvhiolNDZV35Z7puRwqck1N2f1qyHHGBWXfCN9U4
ci6q1BnWBIFV+hURge8NSbpqawolaNueUbTcKjN3JsMC4ZxhMF9rN3uuPn+UAYkA
yQkcSmGSMM07wcAkMg==",

"MIIDQDCCAiigAwIBAgIBATANBgkqhkiG9w0BAQsFADBCMQswCQYDVQQGEwJubDER
MA8GA1UEChMIbGllc2RvbmsxDTALBgNVBAsTBGNkbWkxETAPBgNVBAMTCHJzYS1y
b290MCAXDTE2MTAyNzEyNDQwMFoYDzk5OTkxMjMxMjM1OTU5WjBCMQswCQYDVQQG
EwJubDERMA8GA1UEChMIbGllc2RvbmsxDTALBgNVBAsTBGNkbWkxETAPBgNVBAMT
CHJzYS1yb290MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsrUj46dx
5ojlaZk7YtOL6e+Q6JoG7gVMaXkJn1Szlx9ND\/8w4PeO1SQ2skukdOHAlQRmxdf
tzhccNTM5hmbcn8TAfWSYqQF1R7s78bVjtmat6AQP1vSgiyZ8Ak+iYZEq3c2zVyY

(continues on next page)

© SNIA 2020 SNIA Technical Position 324

Cloud Data Management Interface 2.0.0

(continued from previous page)
QHKKxWxmFZt1HT8\/H\/B3bXveXQcERKE+Tq66h8pqVcocQUtzRFsEYmv0bR1rgh
toqH8nhB5xnebgVlXjApW+et2SE7r6Fjv1aAbGI89ouJ1gsMPeX56P8AUjacFtNK
c44Obu6HRXY\/jm6f2m1EUm84EUsJ+9b5+S2x4qPttJDfSCasWYYz4mFJ8MwmFiB
GUwfgeT2bUm6t7qqbQIDAQABoz8wPTAPBgNVHRMBAf8EBTADAQH\/MB0GA1UdDgQ
WBBR+tEB2udkEXxX0k15GztF\/4ol03jALBgNVHQ8EBAMCAQYwDQYJKoZIhvcNAQ
ELBQADggEBAIjx1f9rJ2B+mDSA3L2GRhjrPRjfI6Un3Z51CeW9gO9PMQ5ws5pDJy
B79dE\/Q8Uf1e8pZyjchTsRa8GRdnKyndN2imayOVUvPoTd3\/ZSmfkurcbj3I4V
W8sjHP7CE8fmUS8Xprdpo2SxV7oneJC0vt5eyh8mgfJ\/qSbwVaiXuH1Wxi6duAv
dxddMXAxQKPG1KKVM7CYfCdpX\/HagCOHzcto+374zFqqnQ1Kx5rbgvxNSgm\/PD
DOMwP03+bbTR63KSK1VbdtLBuS4jgaPabwyxQz\/FciwTu\/HLOQn8TNqDWyoIbs
+eQX2Mds2Apul8XH2+CakjBLMLL3Tlj2x+6tKR9o="

]
}

}

The CDMI server at Hospital B can now decrypt this message, process the access control decision, and4001

use the object key to decrypt the encrypted object:4002

<­­ HTTP/1.1 200 OK
<­­ Content­Type: text/plain
<­­ Content­Length: 33
<­­
<­­ This is an unencrypted text file.

© SNIA 2020 SNIA Technical Position 325

Cloud Data Management Interface 2.0.0

Clause 254003

Data object versions4004

25.1 Overview4005

Data object versioning supports multiple client use cases:4006

• Clients can preserve all data written to a data object over time by using versions to retain all updates made to a4007

data object.4008

• Clients can control how long and much many historical versions are retained by specifying constraints in data4009

system metadata.4010

• Clients can restore the contents of a historical version by copying it into the version­enabled data object.4011

• Clients can consistently retrieve data object values using multiple parallel or sequential transactions without wor­4012

ring about corruption due to concurrent updates by using the current version data object.4013

• Clients can detect where concurrent updates have occurred and can access any overwritten data by iterating4014

through historical versions.4015

• Distributed CDMI implementations can merge concurrent changes made on different, eventually consistent nodes4016

without resulting in data loss.4017

Version­enabled data objects allow the previous state of a data object to be retained when an update is performed. In a4018

non­version­enabled data object, each update changes the state of the object and the previous state is lost. This mode4019

of operation is shown in Fig. 20.4020

CDMI
Client

PUT /a.txt"value" : "First"

CDMI
Server

HTTP 201 CREATED

PUT /a.txt"value" : "Second"

HTTP 204

NO CONTENT

PUT /a.txt"value" : "Third"

HTTP 204

NO CONTENT

Non-Versioned-Enabled
Data Object

/a.txt
/cdmi_objectid/00007ED…211
"value" : "First"

/a.txt
/cdmi_objectid/00007ED…211
"value" : "Second"

/a.txt
/cdmi_objectid/00007ED…211
"value" : "Third"

Fig. 20: Updates to a non­version­enabled data object

© SNIA 2020 SNIA Technical Position 326

Cloud Data Management Interface 2.0.0

When a data object has versioning enabled, each update creates a new “current version” with the same contents of4021

the version­enabled data object, with the previous current version becoming a historical version. The current version4022

and all historical versions can be accessed by ID, and are immutable. The version­enabled data object continues to be4023

mutable and has the same behaviors to clients as a non­version­enabled data object. This behavior is shown in Fig. 214024

from the perspective of a client.4025

PUT /b.txt"value" : "First"

CDMI
Server

HTTP 201 CREATED

Version-Enabled
Data Object

/b.txt
/cdmi_objectid/00007ED…38F
"value" : "First"

PUT /b.txt"value" : "Second"

HTTP 204

NO CONTENT

/b.txt
/cdmi_objectid/00007ED…38F
"value" : "Second"

PUT /b.txt"value" : "Third"

HTTP 204

NO CONTENT

/b.txt
/cdmi_objectid/00007ED…38F
"value" : "Third"

Current Version Historical Versions

/cdmi_objectid/00007ED…8EA
"value" : "First"

/cdmi_objectid/00007ED…8EA
"value" : "First"

/cdmi_objectid/00007ED…552
"value" : "Second"

/cdmi_objectid/00007ED…D21
"value" : “Third"

/cdmi_objectid/00007ED…552
"value" : "Second"

/cdmi_objectid/00007ED…8EA
"value" : "First"

·· = ··

·· = ··

·· = ··

CDMI
Client

Fig. 21: Updates to a version­enabled data object

Using this approach, CDMI clients that are not aware of versioning can continue to access version­enabled data objects4026

the same way as non­version­enabled data objects, while CDMI clients that are aware of versioning can access and4027

manage the immutable versions associated with the version­enabled data object.4028

Versioning is enabled for a data object by adding a data system metadata item that indicates that versioning is desired.4029

Version­enabled data objects and all associated versions contain additional storage system metadata items. These4030

metadata items allow a client to discover the versions that are associated with a version­enabled data object and to4031

iterate through these versions.4032

The maximum number of versions to be retained, maximum age of versions to be retained, and the maximum space4033

that can be consumed by versions is controlled by data system metadata.4034

When a data object is version enabled, it always contains at least one version, the “current version”. The current version4035

has the same contents as the version­enabled data object but has a different identifier (URI and Object Identifier) and is4036

immutable. When a version­enabled data object is changed, a new current version is created, and the previous current4037

version becomes a historical version.4038

© SNIA 2020 SNIA Technical Position 327

Cloud Data Management Interface 2.0.0

25.2 Traversing version­enabled data objects4039

Version­enabled data objects have additional metadata items that allow a client to discover and traverse historical4040

versions.4041

Version­enabled data objects shall contain the following metadata items, as shown in Table 159.4042

Table 159: Version­enabled data object metadata items
Metadata Item Name Type Description Requirement
cdmi_version_current JSON

String
The URI of the current version of the version­enabled
data object. This metadata item shall be present in
the version­enabled data object and all historical
versions.

Conditional

cdmi_version_oldest JSON
Array
of
JSON
Strings

One or more URIs of the oldest version(s). This
metadata item shall be present in the version­enabled
data object, the current version and all historical
versions except the oldest historical versions.

Conditional

cdmi_version_object JSON
String

The URI of the version­enabled data object. This
metadata item shall be present in the current version
and all historical versions.

Conditional

cdmi_version_parent JSON
String

The URI of the previous historical version. This
metadata item shall be present in the current version
and all historical versions except the oldest historical
versions.

Conditional

cdmi_version_children JSON
Array
of
JSON
Strings

One or more URIs of historical versions (or the
current version) created by updating a given historical
version. This metadata item shall be present in all
historical versions.

Conditional

Situations where a version­enabled data object or a historical data object may have multiple oldest versions or multiple4043

children is explained in 25.3.4044

To visualize how these metadata items allow a client to traverse data object versions, the linkages between the version­4045

enabled data object and data object versions in the final state of Fig. 21 is shown in Fig. 22.4046

/b.txt
/cdmi_objectid/00007ED…38F
"value" : "First"

/cdmi_objectid/00007ED…8EA
"value" : "First"

/cdmi_objectid/00007ED…552
"value" : "Second"

/cdmi_objectid/00007ED…D21
"value" : "Third"

cdmi_version_current

cdmi_version_object

cdmi_version_current

cdmi_version_children

cdmi_version_oldest

cdmi_version_parent

cdmi_version_children

cdmi_version_parent

Fig. 22: Linkages between a version­enabled data object and data object versions

A client accessing the version­enabled data object (/b.txt) can traverse to the current version and to the oldest version.4047

A client accessing a data object version can traverse to the version­enabled data object, to the current version, to the4048

parent version, to child versions, and to the oldest version.4049

© SNIA 2020 SNIA Technical Position 328

Cloud Data Management Interface 2.0.0

25.3 Concurrent updates and version­enabled data objects4050

When multiple concurrent updates are performed against a version­enabled data object, each update is performed4051

against the state of the object at the time the update starts. The change to the state resulting from the update to the4052

object becomes visible to clients at the time the update completes.4053

Two different types of concurrent updates can occur: overlapping updates and nested updates.4054

Fig. 23 and Fig. 24 show the update sequence and resulting version linkages for overlapping updates:4055

CDMI
Client A

PUT /b.txt"value" : "First"

CDMI
Server

HTTP 201 CREATED

Version-Enabled
Data Object

/b.txt
/cdmi_objectid/00007ED…38F
"value" : "First"

PUT /b.txt"value" : "Second"

HTTP 204

NO CONTENT

/b.txt
/cdmi_objectid/00007ED…38F
"value" : "Second"

PUT /b.txt

"value" : "Third"

/b.txt
/cdmi_objectid/00007ED…38F
"value" : "Third"

Current Version Historical Versions

/cdmi_objectid/00007ED…8EA
"value" : "First"

/cdmi_objectid/00007ED…8EA
"value" : "First"

/cdmi_objectid/00007ED…552
"value" : "Second"

/cdmi_objectid/00007ED…D21
"value" : “Third"

/cdmi_objectid/00007ED…552
"value" : "Second"

/cdmi_objectid/00007ED…8EA
"value" : "First"

·· = ··

·· = ··

·· = ··

CDMI
Client B

HTTP 204NO CONTENT

Fig. 23: Overlapping concurrent updates

/b.txt
/cdmi_objectid/00007ED…38F
"value" : "First"

/cdmi_objectid/00007ED…8EA
"value" : "First"

/cdmi_objectid/00007ED…552
"value" : "Second"

/cdmi_objectid/00007ED…D21
"value" : "Third"

cdmi_version_current

cdmi_version_parent

cdmi_version_object

cdmi_version_current

cdmi_version_children

cdmi_version_oldest

Fig. 24: Linkages for overlapping updates

In the sequence shown in Fig. 23, both the “Second” and “Third” updates are performed against the “First” state. As4056

the “Third” update completes last, it becomes the current version. In this example, historical version 00007ED...4057

8EA would have two children, versions 00007ED...552 and 00007ED...D21. Both versions 00007ED...552 and4058

00007ED...D21 would have the same parent 00007ED...8EA.4059

© SNIA 2020 SNIA Technical Position 329

Cloud Data Management Interface 2.0.0

Fig. 25 and Fig. 26 show the update sequence and resulting version linkages for nested updates:4060

CDMI
Client A

PUT /b.txt"value" : "First"

CDMI
Server

HTTP 201 CREATED

Version-Enabled
Data Object

/b.txt
/cdmi_objectid/00007ED…38F
"value" : "First"

PUT /b.txt"value" : "Second"

HTTP 204

NO CONTENT

/b.txt
/cdmi_objectid/00007ED…38F
"value" : “Third”

PUT /b.txt

"value" : "Third"

/b.txt
/cdmi_objectid/00007ED…38F
"value" : “Second”

Current Version Historical Versions

/cdmi_objectid/00007ED…8EA
"value" : "First"

/cdmi_objectid/00007ED…8EA
"value" : "First"

/cdmi_objectid/00007ED…D21
"value" : “Third"

/cdmi_objectid/00007ED…552
"value" : "Second"

/cdmi_objectid/00007ED…D21
"value" : “Third"

/cdmi_objectid/00007ED…8EA
"value" : "First"

·· = ··

·· = ··

·· = ··

CDMI
Client B

HTTP 204NO CONTENT

Fig. 25: Nested concurrent updates

/b.txt
/cdmi_objectid/00007ED…38F
"value" : "First"

/cdmi_objectid/00007ED…8EA
"value" : "First"

/cdmi_objectid/00007ED…D21
"value" : "Third"

/cdmi_objectid/00007ED…552
"value" : "Second"

cdmi_version_current

cdmi_version_parent

cdmi_version_object

cdmi_version_current

cdmi_version_children

cdmi_version_oldest

Fig. 26: Linkages for nested updates

In the sequence shown in these figures, both the “Second” and “Third” updates are performed against the “First” state.4061

As the “Second” update completes last, it becomes the current version. In this example, historical version 00007ED..4062

.8EA would have two children, versions 00007ED...552 and 00007ED...D21. Both versions 00007ED...552 and4063

00007ED...D21 would have the same parent 00007ED...8EA.4064

Both of these data structures are equivalent, with the only difference being which update completed last.4065

© SNIA 2020 SNIA Technical Position 330

Cloud Data Management Interface 2.0.0

25.4 Capabilities for version­enabled data objects4066

The relationship between version­enabled data objects, data object versions, and capabilities is shown in Fig. 27.4067

“cdmi_cababilities/“

“dataobject/“

“dataobject_version/“

capabilitiesURI

capabilitiesURI

capabilitiesURI

capabilitiesURI

capabilitiesURI
cdmi_objectid/00007ED…8EA

/b.txt
/cdmi_objectid/00007ED…38F

/cdmi_objectid/00007ED…D21

/cdmi_objectid/00007ED…552

“/” Root URI

Fig. 27: Version to capabilityURI relationships

Data object versions are immutable but may be deleted by a client or by the system, depending on the data system4068

metadata specified.4069

© SNIA 2020 SNIA Technical Position 331

Cloud Data Management Interface 2.0.0

25.5 Updates triggering version creation4070

If versioning is enabled by setting the value of the cdmi_versions metadata item in the version­enabled data object4071

to “value”, the following updates will trigger the creation of a new version:4072

• changing the mimetype,4073

• changing the value, or4074

• changing the valuetransferencoding.4075

If versioning is enabled by setting the value of the cdmi_versions metadata item in the version­enabled data object4076

to “user”, the following updates will trigger the creation of a new version:4077

• changing the mimetype,4078

• changing the value,4079

• changing the valuetransferencoding, or4080

• adding, modifying, or removing user metadata.4081

If versioning is enabled by setting the value of the cdmi_versions metadata item in the version­enabled data object4082

to “all”, then all updates to the data object will trigger the creation of a new version.4083

While ACLs for historical versions are left unchanged, the effective ACL, owner, and domain of historical versions shall4084

be the ACL, owner, and domain of the current version­enabled data object. This means that changing the ACL of a4085

versioned data object also overrides the historical version ACL for all previous versions.4086

Modifications performed with the X­CDMI­Partial header shall not trigger the creation of a new version until the4087

completionStatus is changed from “Processing” to “Complete”.4088

© SNIA 2020 SNIA Technical Position 332

Cloud Data Management Interface 2.0.0

25.6 Operations on version­enabled data objects4089

Moving a version­enabled data object within a system is considered to be an update to the name and/or parentURI4090

fields.4091

Moving a version­enabled data object between systems moves all data object versions associated with the version­4092

enabled data object and preserves all identifiers. If the destination name and/or URI are different, the move is considered4093

to be an update to the name and/or parentURI fields.4094

Copying a version­enabled data object shall only copy the current version of the version­enabled data object. Versions4095

of the version­enabled data object are not copied.4096

Deleting a version­enabled data object shall also delete all versions associated with that version­enabled data object.4097

Disabling versioning for a version­enabled data object shall preserve all versions. Previously existing versioning meta­4098

data shall remain present while versioning is disabled. Re­enabling versioning for a data object that previously was4099

version­enabled shall result in the creation of a new current version.4100

If a version­enabled data object is placed under retention or hold, the retention behaviors of the version­enabled data4101

object shall be applied to the data object versions.4102

No additional notifications are defined for version­enabled data objects. When a version­enabled data object is updated,4103

an additional creation notification message shall be generated for the created data object version. Likewise, when a4104

data object version is accessed or deleted, a notification message is generated. If a limited number, size, or age for4105

versions is requested and a change to a version­enabled data object results in a version being automatically deleted,4106

then the system shall generate a corresponding deletion notification message for the deleted data object version.4107

© SNIA 2020 SNIA Technical Position 333

Cloud Data Management Interface 2.0.0

25.7 Operations on data object versions4108

A data object version is presented to the client as a standard CDMI data object.4109

Moving, copying over, deserializing over, and updating a data object version shall not be permitted and shall result in4110

an HTTP status code of 403 Forbidden.4111

Copying a data object version is permitted. For example, to promote a version to become the current version of a4112

version­enabled data object, the URI of the data object version is used in the copy field when performing an update to4113

the URI of the version­enabled data object. Updates may also be performed as part of the copy operation.4114

Deleting the current version or historical versions shall maintain the relationships in Table 159.4115

Deleting the current version shall revert the current version to the parent. If there is no parent version, deleting the4116

current version shall result in an HTTP status code of 403 Forbidden.4117

Deleting a historical version shall only be permitted when the client has ACL permissions to delete the historical version4118

and has ACL permissions to delete the version­enabled data object.4119

Deleting a historical version shall use the domainURI metadata of the version­enabled data object.4120

Reading a historical version shall update the cdmi_acount and cdmi_atime of the historical version, when present.4121

Reading a historical version shall only be permitted when the client has ACL permissions to read the historical version4122

and has ACL permissions to read the version­enabled data object.4123

Reading a historical version shall use the domainURI metadata of the version­enabled data object.4124

Standard notification messages are sent when data object versions are read or deleted.4125

© SNIA 2020 SNIA Technical Position 334

Cloud Data Management Interface 2.0.0

25.8 Query of data object versions4126

Data object versions are regular CDMI objects, consequently they will be included in query results unless explicitly4127

excluded.4128

Querying for data object versions is performed by including the scope:4129

"metadata" : {
"cdmi_version_children" : "*"

}

Querying for version­enabled data objects (but not their versions) is performed by including the scope:4130

"metadata" : {
"cdmi_versioning" : "*"

}

Querying for non­versioned data objects with no versions is performed by including the scope:4131

"metadata" : {
"cdmi_version_current" : "!*"

}

Querying for non­versioned data objects with versions is performed by including the scope:4132

"metadata" : {
"cdmi_versioning" : "!*",
"cdmi_version_current" : "*"

}

© SNIA 2020 SNIA Technical Position 335

Cloud Data Management Interface 2.0.0

25.9 Version­enabled data object serialization4133

Version­enabled data objects are serialized by performing the following steps:4134

• Serialize the current version and all historical versions as described in 15.2.4135

• Place the serialized current version and historical versions into a JSON Array.4136

• Serialize the version­enabled data object as described in 15.2.4137

• Replace the value field in the serialized version­enabled data object with the JSON Array containing the serialized4138

current version and historical versions.4139

Serializing a non­version­enabled data object that has versions shall follow the same process.4140

EXAMPLE 1: A version­enabled data object with two historical versions is serialized.4141

{
"objectType" : "application/cdmi­object",
"objectID" : "00007ED900100DA32EC94351F8970400",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi_size" : "33",
"cdmi_versioning" : "user",
"cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
"cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
"cdmi_version_oldest" : [

"/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
],

...
},
"value" : [

{
"objectType" : "application/cdmi­object",
"objectID" : "00007ED90010F077F4EB1C99C87524CC",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/dataobject_version/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi_size" : "33",
"cdmi_version_object" : "/cdmi_objectid/

↪→00007ED900100DA32EC94351F8970400",
"cdmi_version_current" : "/cdmi_objectid/

↪→00007ED90010F077F4EB1C99C87524CC",
"cdmi_version_oldest" : [

"/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
],
"cdmi_version_parent" : "/cdmi_objectid/

↪→00007ED9001005192891EEBE599D94BB",
"cdmi_version_children" : [],

...
},
"valuerange" : "0­32",
"valuetransferencoding" : "utf­8",
"value" : "Third version of this Data Object"

},
{

"objectType" : "application/cdmi­object",
(continues on next page)

© SNIA 2020 SNIA Technical Position 336

Cloud Data Management Interface 2.0.0

(continued from previous page)
"objectID" : "00007ED9001005192891EEBE599D94BB",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/dataobject_version/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi_size" : "34",
"cdmi_version_object" : "/cdmi_objectid/

↪→00007ED900100DA32EC94351F8970400",
"cdmi_version_current" : "/cdmi_objectid/

↪→00007ED90010F077F4EB1C99C87524CC",
"cdmi_version_oldest" : [

"/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
],
"cdmi_version_parent" : "/cdmi_objectid/

↪→00007ED90010512EB55A9304EAC5D4AA",
"cdmi_version_children" : [

"/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC"
],

...
},
"valuerange" : "0­33",
"valuetransferencoding" : "utf­8",
"value" : "Second version of this Data Object"

},
{

"objectType" : "application/cdmi­object",
"objectID" : "00007ED90010512EB55A9304EAC5D4AA",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/dataobject_version/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi_size" : "33",
"cdmi_version_object" : "/cdmi_objectid/

↪→00007ED900100DA32EC94351F8970400",
"cdmi_version_current" : "/cdmi_objectid/

↪→00007ED90010F077F4EB1C99C87524CC",
"cdmi_version_oldest" : [

"/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
],
"cdmi_version_children" : [

"/cdmi_objectid/00007ED9001005192891EEBE599D94BB"
],

...
},
"valuerange" : "0­32",
"valuetransferencoding" : "utf­8",
"value" : "First version of this Data Object"

}
]

}

Deserializing a version­enabled data object or a non­version­enabled data object with versions shall restore the data4142

object and all serialized versions.4143

Individually serializing and deserializing current versions or historical versions shall not be permitted.4144

Deserializing a serialized any data object with versions onto a system that does not support versions shall result in an4145

HTTP status code of 400 Bad Request.4146

© SNIA 2020 SNIA Technical Position 337

Cloud Data Management Interface 2.0.0

Part V4147

CDMI Annexes4148

© SNIA 2020 SNIA Technical Position 338

Cloud Data Management Interface 2.0.0

Clause 264149

Extensions4150

26.1 Overview4151

CDMI extensions describe non­normative additional functionality for extending the CDMI International Standard. Each4152

extension is first written as a standalone document that describes the changes that are required to implement the4153

functionality being added into this International Standard.4154

When one or more vendors have implemented a CDMI extension, it is eligible to be added to this annex. When multiple4155

vendors have implemented a CDMI extension and demonstrated interoperability, the extension is eligible to be merged4156

into the CDMI International Standard itself, at which point it becomes normative.4157

CDMI extensions shall not break or modify existing functionality, and thus do not result in compatibility problems with4158

existing clients. Compatibility is typically accomplished by relaxing restrictions imposed in the current CDMI International4159

Standard, adding new fields, or using reserved names for metadata. The clients that are using CDMI capabilities can4160

identify the functionality that is associated with these CDMI extensions.4161

© SNIA 2020 SNIA Technical Position 339

Cloud Data Management Interface 2.0.0

26.2 Summary metadata for bandwidth4162

26.2.1 Overview4163

Domain summaries provide summary measurement information about domain usage and billing. Some systems may4164

track additional usage and billing information related to network bandwidth. This extension proposes a set of additional,4165

optional contents for domain summary objects.4166

26.2.2 Changes to specification4167

Add new terms to clause 3:4168

4169

private network segment a single IP address or range of IP addresses that are considered internal (e.g., LAN)4170

public network segment a single IP address or range of IP addresses that are considered external (e.g., WAN)4171

4172

4173

Add table entries to end of Table 79 in 10.3:4174

4175

Metadata name Type Description Requirement
cdmi_summary_network_bytes JSON

string
Total number of bytes read/written to/from
public/private network segments

Optional

cdmi_summary_reads_private JSON
string

Total number of bytes read from private
network segment

Optional

cdmi_summary_reads_private_min JSON
string

Minimum number of bytes read from
private network segment for the given
interval

Optional

cdmi_summary_reads_private_max JSON
string

Maximum number of bytes read from
private network segment for the given
interval

Optional

cdmi_summary_reads_private_avg JSON
string

Average number of bytes read from private
network segment for the given interval

Optional

cdmi_summary_writes_private JSON
string

Total number of bytes written to private
network segment

Optional

cdmi_summary_writes_private_min JSON
string

Minimum number of bytes written to private
network segment for the given interval

Optional

cdmi_summary_writes_private_max JSON
string

Maximum number of bytes written to
private network segment for the given
interval

Optional

cdmi_summary_writes_private_avg JSON
string

Average number of bytes written to private
network segment for the given interval

Optional

cdmi_summary_reads_public JSON
string

Total number of bytes read from public
network segment

Optional

cdmi_summary_reads_public_min JSON
string

Minimum number of bytes read from public
network segment for the given interval

Optional

cdmi_summary_reads_public_max JSON
string

Maximum number of bytes read from
public network segment for the given
interval

Optional

cdmi_summary_reads_public_avg JSON
string

Average number of bytes read from public
network segment for the given interval

Optional

cdmi_summary_writes_public JSON
string

Total number of bytes written to public
network segment

Optional

continues on next page

© SNIA 2020 SNIA Technical Position 340

Cloud Data Management Interface 2.0.0

Table 160 – continued from previous page
Metadata name Type Description Requirement
cdmi_summary_writes_public_min JSON

string
Minimum number of bytes written to public
network segment for the given interval

Optional

cdmi_summary_writes_public_max JSON
string

Maximum number of bytes written to public
network segment for the given interval

Optional

cdmi_summary_writes_public_avg JSON
string

Average number of bytes written to public
network segment for the given interval

Optional

cdmi_summary_reads_total JSON
string

Total number of bytes read from both
public and private network segments

Optional

cdmi_summary_writes_total JSON
string

Total number of bytes written to both public
and private network segments

Optional

© SNIA 2020 SNIA Technical Position 341

Cloud Data Management Interface 2.0.0

26.3 Expiring access control entries (ACEs)4176

26.3.1 Overview4177

A common trait of cloud storage services is the ability to share an object with other clients for a limited time. This4178

extension adds an attribute of ACEs used in ACLs that imposes a time limit (expiration) on the ACE. Once the ACE4179

expires, the ACE is no longer valid or included in the authorization calculation for the object.4180

26.3.2 Changes to specification4181

Insert into 17.2.7:4182

After the bullet item:4183

• ACEs that do not refer to the principal P requesting the operation are ignored.4184

Insert bullet:4185

• ACEs that have an expiration value less than the current time are ignored.4186

Change 17.2.7:4187

Original text:4188

ACE = { acetype , identifier , aceflags , acemask , acetime }

Revised text:4189

ACE = { acetype , identifier , aceflags , acemask , acetime, expiration }

Insert into 17.2.7 after “acemask = uint_t | acemaskstring”:4190

expiration = uint_t

Insert into 17.2.7 after “When ACE masks…”:4191

When ACE expiration is presented in string format, it shall be specified in ISO­8601 point­in­time format as4192

described in 5.6.4193

Insert a new sub­clause after 17.2.10: “ACE expiration”4194

An ACE may have an optional expiration associated with it. The expiration is a point­in­time value, in ISO­4195

8601 point­in­time format, as described in 5.6, which specifies that the ACE is no longer valid and shall be4196

ignored after the time specified.4197

© SNIA 2020 SNIA Technical Position 342

Cloud Data Management Interface 2.0.0

26.4 Group storage system metadata4198

26.4.1 Overview4199

ACLs in CDMI can refer to the owner of an object by specifying an ACEWho of "OWNER@". This reference corresponds4200

to the contents of the cdmi_owner storage system metadata. However, no cdmi_group storage system metadata4201

corresponds to an ACE Who of "GROUP@".4202

This extension defines a new storage system metadata item, cdmi_group, that allows an object to be associated with4203

a group for ACL evaluation purposes.4204

26.4.2 Changes to specification4205

Add a new row at end of table tbl_capabilities_for_data_system_metadata in 12.2.9:4206

4207

Capability name Type Definition
cdmi_group JSON string If present and "true", this capability indicates that the

cloud storage system supports group storage system
metadata to indicate a group associated with the object.

4208

4209

4210

Add a new row below "cdmi_owner" in Table 141 of 16.2:4211

4212

Metadata name Type Description Requirement
cdmi_group JSON

string
The name of the group that is associated with the
object.

Optional

4213

4214

4215

© SNIA 2020 SNIA Technical Position 343

Cloud Data Management Interface 2.0.0

26.5 Header­based metadata4216

26.5.1 Overview4217

The CDMI protocol enables CDMI­aware clients to store and retrieve structured metadata using JSON bodies, but does4218

not permit HTTP­based clients to access this metadata. This extension extends CDMI metadata to permit HTTP header4219

metadata to be stored and retrieved as a subset of CDMI metadata.4220

Due to limitations associated with HTTP headers, certain restrictions must be placed on metadata that is accessible via4221

headers.4222

26.5.2 Changes to specification4223

Add a new row at end of table Table 9 in 6.2:4224

4225

Header Type Description Requirement
x­*­meta­* Header

string
If the “cdmi_header_metadata” capability is present, for each
request header matching the pattern "x­*­meta­*", a new
user metadata item shall be created, with the metadata name
set to the header field­name, and the metadata value set to
the header field­value.
If the number of headers, the length of any of the headers, or
the total size of the headers exceeds the limits specified in
RFC 2616, or specified by the
cdmi_header_metadata_maxitems,
cdmi_header_metadata_maxsize, or the
cdmi_header_metadata_maxtotalsize capabilities, a
400 Bad Request shall be returned to the client.

Conditional

4226

4227

4228

Add new example at end of 6.2:4229

4230

EXAMPLE 1: PUT to the container URI the data object name, contents, and metadata:4231

­­> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: text/plain;charset=utf­8
­­> X­CDMI­Meta­Colour: Yellow
­­> X­Object­Meta­Shape: Square
­­> Content­Length: 37
­­>
­­> This is the Value of this Data Object

<­­ HTTP/1.1 201 Created

4232

4233

After 6.2, add a new clause “Inspect a Data Object using HTTP”:4234

4235

© SNIA 2020 SNIA Technical Position 344

Cloud Data Management Interface 2.0.0

26.5.3 Synopsis4236

To check for the presence of a data object, the following request shall be performed:4237

• HEAD <root URI>/<ContainerName>/<DataObjectName>4238

Where:4239

• <root URI> is the path to the CDMI cloud.4240

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., "/") between4241

each pair of container names.4242

• <DataObjectName> is the name specified for the data object to be checked.4243

The object shall also also be able to be checked at <root URI>/cdmi_objectid/<objectID>.4244

26.5.4 Capabilities4245

The following capabilities describe the supported operations that may be performed when reading an existing data4246

object:4247

• Support for the ability to read the metadata of an existing data object is indicated by the presence of the4248

cdmi_read_metadata capability in the specified object.4249

26.5.5 Request headers4250

Request headers may be provided as per RFC 2616.4251

26.5.6 Request message body4252

A request message body shall not be provided.4253

26.5.7 Response headers4254

The HTTP response headers for checking for the presence of a data object using HTTP are shown in Table 161.4255

Table 161: Response headers ­ Inspect a data object using HTTP
4256

Header Type Description Requirement
Content­Type Header

string
The content type returned shall be the mimetype field in the
data object.

Mandatory

Location Header
string

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

x­*­meta­* Header
string

If the "cdmi_header_metadata" capability is present, for
each user metadata item in the “metadata” field with a
metadata name that is a case­insensitive match to the pattern
"x­*­meta­*", a corresponding response header shall be
returned to the client where the header field­name shall be
the metadata item name, and the header field­value shall be
the metadata item value.
If a header value to be return is not conformant with RFC
2616, the server may omit the field from the response
headers.

Conditional

4257

© SNIA 2020 SNIA Technical Position 345

Cloud Data Management Interface 2.0.0

26.5.8 Response message body4258

No response body shall be provded, as per RFC 2616.4259

26.5.9 Response status4260

The HTTP status codes that occur when checking the presence of a data object using HTTP are described in Table 162.4261

Table 162: HTTP status codes ­ Inspect a data object using HTTP
4262

HTTP status Description
200 OK The queue object content was returned in the response.
302 Found The resource is a reference to another resource.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.

4263

26.5.10 Example4264

EXAMPLE 1: HEAD to the data object URI to check for the presence of a data object with header metadata:4265

­­> HEAD /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 200 OK
<­­ Content­Type: text/plain
<­­ Content­Length: 37
<­­ X­CDMI­Meta­Colour: Yellow
<­­ X­Object­Meta­Shape: Square

4266

4267

Add a new row at end of table Table 13 in 6.3:4268

4269

Header Type Description Requirement
x­*­meta­* Header

string
If the "cdmi_header_metadata" capability is present, for
each user metadata item in the “metadata” field with a
metadata name that is a case­insensitive match to the pattern
"x­*­meta­*", a corresponding response header shall be
returned to the client where the header field­name shall be
the metadata item name, and the header field­value shall be
the metadata item value.
If a header value to be return is not conformant with RFC
2616, the server may omit the field from the response
headers.

Conditional

4270

4271

4272

Add new example at end of 6.3:4273

4274

EXAMPLE 6: GET to the data object URI to read the value of the data object with header metadata:4275

© SNIA 2020 SNIA Technical Position 346

Cloud Data Management Interface 2.0.0

­­> GET /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 200 OK
<­­ Content­Type: text/plain
<­­ Content­Length: 37
<­­ X­CDMI­Meta­Colour: Yellow
<­­ X­Object­Meta­Shape: Square
<­­
<­­ This is the Value of this Data Object

4276

4277

Add a new row at end of table Table 16 in 6.4:4278

4279

Header Type Description Requirement
x­*­meta­* Header

string
If the "cdmi_header_metadata" capability is present, for
each request header matching the pattern "x­*­meta­*", a
new user metadata item shall be created, or an existing
metadata item shall be updated, with the metadata name set
to the header field­name, and the metadata value set to the
header field­ value.
If a metadata item already exists where the metadata name
and the header field­name differ only in case, the existing
metadata item value shall be updated.
If an empty header field­value is specified, the corresponding
metadata item shall be removed from the object.
If the number of headers, the length of any of the headers, or
the total size of the headers exceeds the limits specified in
RFC 2616, or specified by the
cdmi_header_metadata_maxitems,
cdmi_header_metadata_maxsize, or the
cdmi_header_metadata_maxtotalsize capabilities, a
400 Bad Request shall be returned to the client.

Conditional

4280

4281

4282

Add new example at end of 6.4:4283

4284

EXAMPLE 3: PUT to the data object URI to update the value and metadata of the data object:4285

­­> PUT /cdmi/2.0.0/MyContainer/MyDataObject.txt HTTP/1.1
­­> Host: cloud.example.com
­­> Content­Type: text/plain;charset=utf­8
­­> X­CDMI­Meta­Colour: Green
­­> Content­Length: 41
­­>
­­> This is the new Value of this Data Object

<­­ HTTP/1.1 204 No Content

4286

4287

Add a new table to Request Headers in 7.2:4288

4289

© SNIA 2020 SNIA Technical Position 347

Cloud Data Management Interface 2.0.0

Table 163: Request headers ­ Create a container object using HTTP
4290

Header Type Description Requirement
x­*­meta­* Header

string
If the “cdmi_header_metadata” capability is present, for each
request header matching the pattern "x­*­meta­*", a new
user metadata item shall be created, with the metadata name
set to the header field­name, and the metadata value set to
the header field­value.
If the number of headers, the length of any of the headers, or
the total size of the headers exceeds the limits specified in
RFC 2616, or specified by the
cdmi_header_metadata_maxitems,
cdmi_header_metadata_maxsize, or the
cdmi_header_metadata_maxtotalsize capabilities, a
400 Bad Request shall be returned to the client.

Conditional

4291

4292

4293

Add new example at end of 7.2:4294

4295

EXAMPLE 2: PUT to the URI the container object name and metadata:4296

­­> PUT /cdmi/2.0.0/MyContainer/ HTTP/1.1
­­> Host: cloud.example.com
­­> X­CDMI­Meta­Colour: Yellow

<­­ HTTP/1.1 201 Created

4297

4298

After 7.2, add a new sub­clause “Inspect a container object using HTTP”:4299

4300

26.5.11 Synopsis4301

To check for the presence of a container object, the following request shall be performed:4302

• HEAD <root URI>/<ContainerName>/<TheContainerName>/4303

Where:4304

• <root URI> is the path to the CDMI cloud.4305

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., "/") between4306

each pair of container names.4307

• <TheContainerName> is the name specified for the container object to be checked.4308

The container object shall also also be able to be checked at <root URI>/cdmi_objectid/<objectID>.4309

© SNIA 2020 SNIA Technical Position 348

Cloud Data Management Interface 2.0.0

26.5.12 Capabilities4310

The following capabilities describe the supported operations that may be performed when reading an existing container4311

object:4312

• Support for the ability to read the metadata of an existing conatiner object is indicated by the presence of the4313

cdmi_read_metadata capability in the specified container object.4314

26.5.13 Request headers4315

Request headers may be provided as per RFC 2616.4316

26.5.14 Request message body4317

A request message body shall not be provided.4318

26.5.15 Response headers4319

The HTTP response headers for checking for the presence of a CDMI container object using HTTP are shown in Table4320

164.4321

Table 164: Response Headers ­ Inspect a container object using HTTP
4322

Header Type Description Requirement
Content­Type Header

string
"application/cdmi­container" Mandatory

Location Header
string

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

x­*­meta­* Header
string

If the "cdmi_header_metadata" capability is present, for
each user metadata item in the “metadata” field with a
metadata name that is a case­insensitive match to the pattern
"x­*­meta­*", a corresponding response header shall be
returned to the client where the header field­name shall be
the metadata item name, and the header field­value shall be
the metadata item value.
If a header value to be return is not conformant with RFC
2616, the server may omit the field from the response
headers.

Conditional

4323

26.5.16 Response message body4324

No response body shall be provded, as per RFC 2616.4325

26.5.17 Response status4326

The HTTP status codes that occur when checking the presence of a container object using HTTP are described in Table4327

165.4328

© SNIA 2020 SNIA Technical Position 349

Cloud Data Management Interface 2.0.0

Table 165: HTTP status codes ­ Inspect a container object using HTTP
4329

HTTP Status Description
200 OK The queue object content was returned in the response.
302 Found The resource is a reference to another resource.
400 Bad Request The request contains invalid parameters or field names.
401 Unauthorized The authentication credentials are missing or invalid.
403 Forbidden The client lacks the proper authorization to perform this request.
404 Not Found The resource was not found at the specified URI.

4330

26.5.18 Example4331

EXAMPLE 1: HEAD to the container object URI to check for the presence of a container object with header metadata:4332

­­> HEAD /cdmi/2.0.0/MyContainer/ HTTP/1.1
­­> Host: cloud.example.com

<­­ HTTP/1.1 200 OK
<­­ Content­Type: application/cdmi­container
<­­ X­CDMI­Meta­Colour: Yellow

4333

4334

Replace contents of 7.3 with:4335

4336

26.5.19 Synopsis4337

Reading a container object using HTTP is not defined by this version of this international standard. 9.4 describes how4338

to read a container object using CDMI.4339

A server implementation is free to respond to HTTP GETs for Container Objects in any way that conforms with RFC4340

2616.4341

If container object metadata items matching the pattern "x­*­meta­*" are present, these metadata items shall be4342

returned as response headers as per 9.4.4343

4344

4345

Replace contents of 7.4 with:4346

4347

26.5.20 Synopsis4348

Updating a container object using HTTP is not defined by this version of this international standard. clause 9.5 describes4349

how to update a container object using CDMI.4350

A server implementation is free to respond to HTTP PUTs for existing Container Objects in any way that conforms with4351

RFC 2616.4352

If container object metadata items matching the pattern "x­*­meta­*" are present, these metadata items shall be4353

returned as response headers as per 9.5.4354

4355

4356

Add new rows to end of tbl_system_wide_capabilities in 12.2.7:4357

© SNIA 2020 SNIA Technical Position 350

Cloud Data Management Interface 2.0.0

4358

Capability name Type Definition
cdmi_header_metadata JSON string If present and "true", this capability indicates that the

cloud storage system supports header­visible metadata.
cdmi_header_metadata_maxitems JSON string If present, this capability indicates the maximum number

of user­defined header metadata items supported per
object. If absent, there is no additional limit placed on
the number of user­defined metadata items.

cdmi_header_metadata_maxsize JSON string If present, this capability indicates the maximum size, in
bytes, of each user­defined header metadata item. If
absent, there is no additional limit placed on the size of
user­defined metadata items.

cdmi_header_metadata_maxtotalsizeJSON string If present, this capability indicates the maximum size, in
bytes, of all user­defined header metadata per object. If
absent, there is no additional limit placed on the size of
user­defined metadata.

4359

4360

Add to end of 16.5:4361

4362

If metadata items with a name is a case­insensitive match to the pattern "x­*­meta­*" are created or updated through4363

a CDMI request, the following conditions shall be true, or else a 400 Bad Request result code shall be returned to4364

the client:4365

• The metadata name shall be a valid HTTP header field­name4366

• The metadata value that is a valid HTTP header field­value4367

• The number of matching headers shall not exceed the limits specified by RFC 2616, and shall not exceed the4368

number specified in the cdmi_header_metadata_maxitems capability.4369

• The size of each matching header shall not exceed the limits specified by RFC 2616, and shall not exceed the4370

number specified in the cdmi_header_metadata_maxsize capability.4371

• The total size of all of the matching headers shall not exceed the limits specified by RFC 2616, and shall not4372

exceed the number specified in the cdmi_header_metadata_maxtotalsize capability.4373

© SNIA 2020 SNIA Technical Position 351

Cloud Data Management Interface 2.0.0

26.6 Immediate query4374

26.6.1 Overview4375

CDMI provides a query mechanism based around the concept of persistance. A query queue is created, metadata4376

is specified that defines the query operation, the query is performed asynchronously, and results are populated in the4377

queue and then read by the client as separate operations.4378

This architecture, while providing significant value, is complex for clients that do not need to persist the results of a4379

query. Specifically, a client must: a) asynchronously poll the query queue to determine when results are present and4380

when the query has completed, and b) delete the queue when results are no longer needed.4381

To provide a simpler interface for simple queries where a small number of results are expected and persistence is not4382

required, the TWG has proposed the following approach to allow query queues to optionally not be persistent, with the4383

results being returned immediately as the response to the initial query queue creation.4384

In addition, functionality that permits results to be returned immediately has been added to creating asynchronous query4385

queues.4386

26.6.2 Changes to specification4387

Modify existing cdmi_query entry in tbl_system_wide_capabilities in 12.2.7:4388

4389

Capability name Type Definition
cdmi_query JSON string If present and “true”, the CDMI server supports

persistent query queues.

4390

4391

4392

Add a new row at end of table tbl_system_wide_capabilities in 12.2.7:4393

4394

Capability name Type Definition
cdmi_query_immediate JSON string If present and “true”, the CDMI server supports

immediate query queues.

4395

4396

4397

Replace the first paragraph of Overview in clause 22 with:4398

4399

A cloud storage system may optionally implement metadata and/or full­text query functionality. The implementation of4400

query is indicated by the presence of the cloud storage system­wide capabilities for query and requires support for CDMI4401

queues when persisting query results.4402

4403

4404

Replace the third paragraph of Overview in clause 22 with:4405

4406

When a client wishes to perform queries, it shall first determine if the system is capable of providing query functionality4407

by checking to see if the cdmi_query or cdmi_query_immediate capabilities are present in the root container4408

capabilities. If these capabilities are not present and queues are supported, creating a query queue shall be successful,4409

but no query results shall be enqueued into the query queue.4410

© SNIA 2020 SNIA Technical Position 352

Cloud Data Management Interface 2.0.0

4411

4412

Modify existing cdmi_queue_type entry in Table 152 in 22:4413

4414

Table 167: Required metadata for a query queue
Metadata name Type Description Requirement
cdmi_queue_type JSON

string
Queue type indicates how the cloud storage system
shall manage the queue object. The defined values
are:

• "cdmi_query_queue" – Perform an
asynchronous query, which may return none,
some, or all results in the request response
body. A new queue object shall be created.

• "cdmi_query_immediate" – Perform a
synchronous query, returning all matching
results in the request response body. The
query queue object may not be accessible and
shall be automatically deleted when the query
completes.

Mandatory

4415

4416

Add new clause “Immediate Queries” to end of 22:4417

4418

If "cdmi_query_immediate" is specified in cdmi_queue_type, all query results shall be immediately returned in4419

the response body as shown in the following example.4420

EXAMPLE 3: Perform an Immediate Query:4421

­­> PUT /cdmi/2.0.0/MyContainer/myQuery HTTP/1.1
­­> Host: cloud.example.com
­­> Accept: application/cdmi­queue
­­> Content­Type: application/cdmi­queue
­­>
­­> {
­­> "metadata" : {
­­> "cdmi_queue_type" : "cdmi_query_immediate",
­­> "cdmi_scope_specification" : [
­­> {
­­> "domainURI" : "== /cdmi_domains/MyDomain/",
­­> "parentURI" : "starts /sandbox",
­­> "metadata" : {
­­> "cdmi_size" : "#> 100000"
­­> }
­­> }
­­>],
­­> "cdmi_results_specification" : {
­­> "objectID" : "",
­­> "metadata" : {
­­> "cdmi_size" : ""
­­> }
­­> }
­­> }
­­> }

<­­ HTTP/1.1 201 Created
<­­ Content­Type: application/cdmi­queue
<­­ Location: https://cloud.example.com/cdmi/2.0.0/MyContainer/myQuery
<­­

(continues on next page)

© SNIA 2020 SNIA Technical Position 353

Cloud Data Management Interface 2.0.0

(continued from previous page)
<­­ {
<­­ "objectType" : "application/cdmi­queue",
<­­ "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
<­­ "objectName" : "myQuery",
<­­ "parentURI " : "/MyContainer/",
<­­ "parentID" : "0000706D0010B84FAD185C425D8B537E",
<­­ "domainURI" : "/cdmi_domains/MyDomain/",
<­­ "capabilitiesURI" : "/cdmi_capabilities/queue/",
<­­ "completionStatus" : "Complete",
<­­ "metadata" : {
<­­ "cdmi_queue_type" : "cdmi_query_immediate",
<­­ "cdmi_scope_specification" : [
<­­ {
<­­ "domainURI" : "== /cdmi_domains/MyDomain/",
<­­ "parentURI" : "starts /sandbox",
<­­ "metadata" : {
<­­ "cdmi_size" : "#> 100000"
<­­ }
<­­ }
<­­],
<­­ "cdmi_results_specification" : {
<­­ "objectID" : "",
<­­ "metadata" : {
<­­ "cdmi_size" : ""
<­­ }
<­­ }
<­­ },
<­­ "queueValues" : "0­0",
<­­ "mimetype": ["application/json"],
<­­ "valuerange": ["0­111"],
<­­ "valuetransferencoding": ["base64"],
<­­ "value": "ew0KCQkJIm9iamVjdElEIiA6ICIwMDAwN0U3RjAwMTBFQjkwOTJ
<­­ CMjlGNkNENkFENjgyNCIsDQoJCQkibWV0YWRhdGEiIDogew0KCQ
<­­ kJCSJjZG1pX3NpemUiIDogIjEwODI2MyINCgkJCX0NCgkJfQ0K"
<­­ }

Where the value of the above base64 encoded value is:4422

EXAMPLE 4: An example of the metadata associated with a query queue is as follows:4423

{
"objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
"metadata" : {

"cdmi_size" : "108263"
}

}

© SNIA 2020 SNIA Technical Position 354

Cloud Data Management Interface 2.0.0

Part VI4424

References4425

© SNIA 2020 SNIA Technical Position 355

Cloud Data Management Interface 2.0.0

Bibliography4426

[1] Carl Beame, Robert Thurlow, Brent Callaghan, David Robinson, David Noveck, Mike Eisler, and Spencer Shepler.4427

Network File System (NFS) version 4 Protocol. RFC 3530, April 2003. URL: https://rfc­editor.org/rfc/rfc3530.txt,4428

doi:10.17487/RFC3530.4429

[2] Tim Berners­Lee, Roy T. Fielding, and Larry M Masinter. Uniform Resource Identifier (URI): Generic Syntax. RFC4430

3986, January 2005. URL: https://rfc­editor.org/rfc/rfc3986.txt, doi:10.17487/RFC3986.4431

[3] Scott O. Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119, March 1997. URL: https:4432

//rfc­editor.org/rfc/rfc2119.txt, doi:10.17487/RFC2119.4433

[4] Mallikarjun Chadalapaka, Julian Satran, Kalman Meth, and David L. Black. Internet Small Computer Sys­4434

tem Interface (iSCSI) Protocol (Consolidated). RFC 7143, April 2014. URL: https://rfc­editor.org/rfc/rfc7143.txt,4435

doi:10.17487/RFC7143.4436

[5] Douglas Crockford. The application/json Media Type for JavaScript Object Notation (JSON). RFC 4627, July 2006.4437

URL: https://rfc­editor.org/rfc/rfc4627.txt, doi:10.17487/RFC4627.4438

[6] Lisa M. Dusseault. HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV). RFC 4918, June4439

2007. URL: https://rfc­editor.org/rfc/rfc4918.txt, doi:10.17487/RFC4918.4440

[7] Roy Thomas Fielding. REST: Architectural Styles and the Design of Network­based Software Architectures. PhD4441

thesis, University of California, Irvine, 2000. URL: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.4442

[8] Professor John Franks, Phillip Hallam­Baker, Lawrence C. Stewart, Jeffery L. Hostetler, Scott Lawrence, Paul J.4443

Leach, and Ari Luotonen. HTTP Authentication: Basic and Digest Access Authentication. RFC 2617, June 1999.4444

URL: https://rfc­editor.org/rfc/rfc2617.txt, doi:10.17487/RFC2617.4445

[9] Ned Freed and Dr. Nathaniel S. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One: For­4446

mat of Internet Message Bodies. RFC 2045, November 1996. URL: https://rfc­editor.org/rfc/rfc2045.txt,4447

doi:10.17487/RFC2045.4448

[10] Ned Freed and Dr. Nathaniel S. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types.4449

RFC 2046, November 1996. URL: https://rfc­editor.org/rfc/rfc2046.txt, doi:10.17487/RFC2046.4450

[11] Tony Hansen and Alexey Melnikov. Additional Media Type Structured Syntax Suffixes. RFC 6839, January 2013.4451

URL: https://rfc­editor.org/rfc/rfc6839.txt, doi:10.17487/RFC6839.4452

[12] Russ Housley. Cryptographic Message Syntax (CMS). RFC 5652, September 2009. URL: https://rfc­editor.org/rfc/4453

rfc5652.txt, doi:10.17487/RFC5652.4454

[13] Russ Housley, Tim Polk, Dr. Warwick S. Ford, and David Solo. Internet X.509 Public Key Infrastructure Certifi­4455

cate and Certificate Revocation List (CRL) Profile. RFC 3280, May 2002. URL: https://rfc­editor.org/rfc/rfc3280.txt,4456

doi:10.17487/RFC3280.4457

[14] Karthik Jaganathan, Larry Zhu, and John Brezak. SPNEGO­based Kerberos and NTLM HTTP Authentication in4458

Microsoft Windows. RFC 4559, June 2006. URL: https://rfc­editor.org/rfc/rfc4559.txt, doi:10.17487/RFC4559.4459

[15] Michael Jones. JSON Web Algorithms (JWA). RFC 7518, May 2015. URL: https://rfc­editor.org/rfc/rfc7518.txt,4460

doi:10.17487/RFC7518.4461

[16] Michael Jones. JSON Web Key (JWK). RFC 7517, May 2015. URL: https://rfc­editor.org/rfc/rfc7517.txt,4462

doi:10.17487/RFC7517.4463

[17] Michael Jones, John Bradley, and Nat Sakimura. JSON Web Signature (JWS). RFC 7515, May 2015. URL: https:4464

//rfc­editor.org/rfc/rfc7515.txt, doi:10.17487/RFC7515.4465

[18] Michael Jones and Joe Hildebrand. JSON Web Encryption (JWE). RFC 7516, May 2015. URL: https://rfc­editor.4466

org/rfc/rfc7516.txt, doi:10.17487/RFC7516.4467

© SNIA 2020 SNIA Technical Position 356

https://rfc-editor.org/rfc/rfc3530.txt
https://doi.org/10.17487/RFC3530
https://rfc-editor.org/rfc/rfc3986.txt
https://doi.org/10.17487/RFC3986
https://rfc-editor.org/rfc/rfc2119.txt
https://rfc-editor.org/rfc/rfc2119.txt
https://rfc-editor.org/rfc/rfc2119.txt
https://doi.org/10.17487/RFC2119
https://rfc-editor.org/rfc/rfc7143.txt
https://doi.org/10.17487/RFC7143
https://rfc-editor.org/rfc/rfc4627.txt
https://doi.org/10.17487/RFC4627
https://rfc-editor.org/rfc/rfc4918.txt
https://doi.org/10.17487/RFC4918
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://rfc-editor.org/rfc/rfc2617.txt
https://doi.org/10.17487/RFC2617
https://rfc-editor.org/rfc/rfc2045.txt
https://doi.org/10.17487/RFC2045
https://rfc-editor.org/rfc/rfc2046.txt
https://doi.org/10.17487/RFC2046
https://rfc-editor.org/rfc/rfc6839.txt
https://doi.org/10.17487/RFC6839
https://rfc-editor.org/rfc/rfc5652.txt
https://rfc-editor.org/rfc/rfc5652.txt
https://rfc-editor.org/rfc/rfc5652.txt
https://doi.org/10.17487/RFC5652
https://rfc-editor.org/rfc/rfc3280.txt
https://doi.org/10.17487/RFC3280
https://rfc-editor.org/rfc/rfc4559.txt
https://doi.org/10.17487/RFC4559
https://rfc-editor.org/rfc/rfc7518.txt
https://doi.org/10.17487/RFC7518
https://rfc-editor.org/rfc/rfc7517.txt
https://doi.org/10.17487/RFC7517
https://rfc-editor.org/rfc/rfc7515.txt
https://rfc-editor.org/rfc/rfc7515.txt
https://rfc-editor.org/rfc/rfc7515.txt
https://doi.org/10.17487/RFC7515
https://rfc-editor.org/rfc/rfc7516.txt
https://rfc-editor.org/rfc/rfc7516.txt
https://rfc-editor.org/rfc/rfc7516.txt
https://doi.org/10.17487/RFC7516

Cloud Data Management Interface 2.0.0

[19] Simon Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648, October 2006. URL: https:4468

//rfc­editor.org/rfc/rfc4648.txt, doi:10.17487/RFC4648.4469

[20] Larry M Masinter and Ernesto Nebel. Form­based File Upload in HTML. RFC 1867, November 1995. URL: https:4470

//rfc­editor.org/rfc/rfc1867.txt, doi:10.17487/RFC1867.4471

[21] Keith McCloghrie, Jürgen Schönwälder, David T. Perkins, and Keith McCloghrie. Structure of Management Infor­4472

mation Version 2 (SMIv2). RFC 2578, April 1999. URL: https://rfc­editor.org/rfc/rfc2578.txt, doi:10.17487/RFC2578.4473

[22] Keith Moore. MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non­4474

ASCII Text. RFC 2047, November 1996. URL: https://rfc­editor.org/rfc/rfc2047.txt, doi:10.17487/RFC2047.4475

[23] Henrik Frystyk Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys, Paul J. Leach, and Tim4476

Berners­Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, June 1999. URL: https://rfc­editor.org/rfc/4477

rfc2616.txt, doi:10.17487/RFC2616.4478

[24] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August 2018. URL: https:4479

//rfc­editor.org/rfc/rfc8446.txt, doi:10.17487/RFC8446.4480

[25] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, August 2008.4481

URL: https://rfc­editor.org/rfc/rfc5246.txt, doi:10.17487/RFC5246.4482

[26] Krishna Sankar and Arnold Jones. Cloud Data Management Interface (CDMI) Media Types. RFC 6208, April 2011.4483

URL: https://rfc­editor.org/rfc/rfc6208.txt, doi:10.17487/RFC6208.4484

[27] Jamie Zawinski, Larry M Masinter, and Martin J. Dürst. The ‘mailto’ URI Scheme. RFC 6068, October 2010. URL:4485

https://rfc­editor.org/rfc/rfc6068.txt, doi:10.17487/RFC6068.4486

[28] ISO/IEC Joint Directives Maintenance Team. ISO/IEC directives, part 2 – principles and rules for the structure4487

and drafting of ISO and IEC documents. ISO/IEC Directives, Part 2, 2018, 2018. URL: https://www.iso.org/4488

directives­and­policies.html.4489

[29] ISO/IEC JTC 1/SC 25 Interconnection of information technology equipment. Information technology – small com­4490

puter system interface (SCSI) – part 414: SCSI architecture model­4 (sam­4). ISO/IEC 14776­414:2009, June4491

2009. URL: https://www.iso.org/standard/53961.html.4492

[30] ISO/IEC JTC 1/SC 27 Information security, cybersecurity and privacy protection. Information technology – security4493

techniques – storage security. ISO/IEC 27040:2015, January 2015. URL: https://www.iso.org/standard/44404.html.4494

[31] ISO/IEC JTC 1/SC 38 Cloud Computing and Distributed Platforms. Information technology – cloud computing –4495

overview and vocabulary. ISO/IEC 17788:2014, October 2014. URL: https://www.iso.org/standard/60544.html.4496

[32] ISO/TC 154 Processes, data elements and documents in commerce, industry and administration. Date and time4497

– representations for information interchange – part 1: basic rules. ISO 8601­1:2019, February 2019. URL: https:4498

//www.iso.org/standard/70907.html.4499

[33] ISO/TC 154 Processes, data elements and documents in commerce, industry and administration. Date and time4500

– representations for information interchange – part 2: extensions. ISO 8601­2:2019, February 2019. URL: https:4501

//www.iso.org/standard/70907.html.4502

[34] ISO/TC 20/SC 13 Space data and information transfer systems. Space data and information transfer systems –4503

open archival information system (OAIS) – reference model. ISO 14721:2012, August 2012. URL: https://www.iso.4504

org/standard/57284.html.4505

[35] ISO/TC 46 Information and documentation. Codes for the representation of names of countries and their subdivi­4506

sions – part 1: country codes. ISO 3166­1:2013, November 2013. URL: https://www.iso.org/standard/63545.html.4507

[36] ISO/TC 46 Information and documentation. Codes for the representation of names of countries and their subdivi­4508

sions – part 2: country subdivision code. ISO 3166­2:2013, November 2013. URL: https://www.iso.org/standard/4509

63546.html.4510

[37] ISO/TC 46 Information and documentation. Codes for the representation of names of countries and their sub­4511

divisions – part 3: code for formerly used names of countries. ISO 3166­3:2013, November 2013. URL: https:4512

//www.iso.org/standard/63547.html.4513

[38] ISO/TC 68/SC 8 Reference data for financial services. Codes for the representation of currencies. ISO 4217:2015,4514

August 2015. URL: https://www.iso.org/standard/64758.html.4515

[39] ISO/TC JTC 1/SC 27 Information security, cybersecurity and privacy protection. TLS specification for storage sys­4516

tems. ISO 20648:2016, August 2016. URL: https://www.iso.org/obp/ui/#iso:std:iso­iec:20648:ed­1:v1:en.4517

[40] Open Grid Forum. Open cloud computing interface v1.1. June 2011. URL: http://occi­wg.org/about/specification/.4518

[41] POSIX ­ Austin Joint Working Group. IEEE standard for information technology–portable operating system inter­4519

face (POSIX(r)) base specifications, issue 7. IEEE 1003.1­2017, December 2017. URL: https://standards.ieee.org/4520

standard/1003_1­2017.html.4521

© SNIA 2020 SNIA Technical Position 357

https://rfc-editor.org/rfc/rfc4648.txt
https://rfc-editor.org/rfc/rfc4648.txt
https://rfc-editor.org/rfc/rfc4648.txt
https://doi.org/10.17487/RFC4648
https://rfc-editor.org/rfc/rfc1867.txt
https://rfc-editor.org/rfc/rfc1867.txt
https://rfc-editor.org/rfc/rfc1867.txt
https://doi.org/10.17487/RFC1867
https://rfc-editor.org/rfc/rfc2578.txt
https://doi.org/10.17487/RFC2578
https://rfc-editor.org/rfc/rfc2047.txt
https://doi.org/10.17487/RFC2047
https://rfc-editor.org/rfc/rfc2616.txt
https://rfc-editor.org/rfc/rfc2616.txt
https://rfc-editor.org/rfc/rfc2616.txt
https://doi.org/10.17487/RFC2616
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.17487/RFC8446
https://rfc-editor.org/rfc/rfc5246.txt
https://doi.org/10.17487/RFC5246
https://rfc-editor.org/rfc/rfc6208.txt
https://doi.org/10.17487/RFC6208
https://rfc-editor.org/rfc/rfc6068.txt
https://doi.org/10.17487/RFC6068
https://www.iso.org/directives-and-policies.html
https://www.iso.org/directives-and-policies.html
https://www.iso.org/directives-and-policies.html
https://www.iso.org/standard/53961.html
https://www.iso.org/standard/44404.html
https://www.iso.org/standard/60544.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/57284.html
https://www.iso.org/standard/57284.html
https://www.iso.org/standard/57284.html
https://www.iso.org/standard/63545.html
https://www.iso.org/standard/63546.html
https://www.iso.org/standard/63546.html
https://www.iso.org/standard/63546.html
https://www.iso.org/standard/63547.html
https://www.iso.org/standard/63547.html
https://www.iso.org/standard/63547.html
https://www.iso.org/standard/64758.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:20648:ed-1:v1:en
http://occi-wg.org/about/specification/
https://standards.ieee.org/standard/1003_1-2017.html
https://standards.ieee.org/standard/1003_1-2017.html
https://standards.ieee.org/standard/1003_1-2017.html

Cloud Data Management Interface 2.0.0

[42] Storage Networking Industry Association. TLS specification for storage systems v1.1.0. November 2020. URL:4522

https://www.snia.org/tech_activities/standards/curr_standards/tls.4523

[43] Information technology – open systems interconnection – the directory – part 8: public­key and attribute certificate4524

frameworks. ISO/IEC 9594­8:2017, May 2017. URL: https://www.iso.org/standard/72557.html.4525

© SNIA 2020 SNIA Technical Position 358

https://www.snia.org/tech_activities/standards/curr_standards/tls
https://www.iso.org/standard/72557.html

	I CDMI Preamble
	Scope
	Normative references
	Terms, acronyms, and definitions
	Conventions
	Interface format
	Typographical conventions
	Request and response body requirements
	Key Word requirements

	Overview of Cloud Storage
	Overview
	Reference model for cloud storage interfaces
	Cloud data management interface
	Security
	Required HTTP support
	Time representations
	Backwards compatibility
	Object references

	II Basic Cloud Storage
	Data Object Resource Operations using HTTP
	Overview
	Create a data object using HTTP
	Read a data object using HTTP
	Update a data object using HTTP
	Delete a data object using HTTP

	Container Object Resource Operations using HTTP
	Overview
	Create a container object using HTTP
	Read a container object using HTTP
	Update a container object using HTTP
	Delete a container object using HTTP
	Create (POST) a new data object using HTTP

	III CDMI Core
	Data Object Resource Operations using CDMI
	Overview
	Data object details
	Create a data object using CDMI
	Read a data object using CDMI
	Update a data object using CDMI
	Delete a data object using CDMI

	Container Object Resource Operations using CDMI
	Overview
	Container object details
	Create a container object using CDMI
	Read a container object using CDMI
	Update a container object using CDMI
	Delete a container object using CDMI
	Create (POST) a new data object using CDMI
	Create (POST) a new queue object using CDMI

	IV CDMI Advanced
	Domain object resource operations using CDMI
	Overview
	Domain object details
	Domain object summaries
	Domain object membership
	Create a domain object using CDMI
	Read a domain object using CDMI
	Update a domain object using CDMI
	Delete a domain object using CDMI

	Queue object resource operations using CDMI
	Overview
	Queue object details
	Create a queue object using CDMI
	Read a queue object using CDMI
	Update a queue object using CDMI
	Delete a queue object using CDMI
	Enqueue a new queue object value using CDMI
	Delete a queue object value using CDMI

	Capability object resource operations using CDMI
	Overview
	Capability object details
	Read a capabilities object using CDMI

	Exported protocols
	Overview
	Container object export details
	NFS exported protocol
	SMB exported protocol
	iSCSI exported protocol
	WebDAV exported protocol
	OCCI exported protocol

	CDMI snapshots
	Overview
	Creating a snapshot
	Deleting a snapshot

	Serialization/deserialization
	Overview
	Canonical format
	Exporting serialized data
	Importing serialized data

	Metadata
	Overview
	Support for storage system metadata
	Support for data system metadata
	Support for provided data system metadata
	Support for user metadata
	Metadata update operations

	Access control
	Overview
	Access control flow

	Retention and hold management
	Overview
	Retention management disciplines
	CDMI retention
	CDMI hold
	CDMI auto-deletion
	Retention security considerations

	Scope specification
	Overview
	Examples
	Query matching expressions

	Results specification
	Overview
	Examples

	Notification queues
	Overview
	Metadata

	Query queues
	Overview
	Extending CDMI query

	Encrypted objects
	Overview
	Encryption operations
	Example uses of encrypted objects
	KMS integration
	CMS format
	JOSE format
	Signature/digest verification
	Error handling

	Delegated access control
	Overview
	Delegated access control (DAC)
	Delegated access control message exchange
	Client header passthrough
	DAC request
	Packaged DAC request
	DAC response
	Packaged DAC response
	Error handling
	Examples

	Data object versions
	Overview
	Traversing version-enabled data objects
	Concurrent updates and version-enabled data objects
	Capabilities for version-enabled data objects
	Updates triggering version creation
	Operations on version-enabled data objects
	Operations on data object versions
	Query of data object versions
	Version-enabled data object serialization

	V CDMI Annexes
	Extensions
	Overview
	Summary metadata for bandwidth
	Expiring access control entries (ACEs)
	Group storage system metadata
	Header-based metadata
	Immediate query

	VI References
	Bibliography

