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Abstract

Robots have become significantly more power-
ful and intelligent over the last decade, and are
moving in to more service oriented roles. As a
result robots will more often be used by peo-
ple with minimal technical skills and so there
is a need for easier to use and more flexible
programming systems. This paper reviews the
current state of the art in robot programming
systems. A distinction is made between manual
and automatic programming systems. Manual
systems require the user/programmer to create
the robot program directly, by hand, while au-
tomatic systems generate a robot program as
a result of interaction between the robot and
the human; there are a variety of methods in-
cluding learning, programming by demonstra-
tion and instructive systems.

1 Introduction

Robots are complex machines and significant technical
knowledge and skill are needed to control them. While
simpler robots exist, for example the Roomba vacuuming
robot from iRobot [2003], in these cases the robots are
specifically designed for a single application, and the con-
trol method reflects this simplicity. The Roomba robot’s
control panel allows a user to select different room sizes
and to start the vacuuming process with a single button
push.

However, most robots do not have simple interfaces
and are not targeted at a single, simple function such as
vacuuming floors. Most robots have complex interfaces,
usually involving a text–based programming language
with few high–level abstractions. While the average user
will not want to program their robot at a low level, a
system is needed that provides the required level of user
control over the robot’s tasks.

Robots are becoming more powerful, with more sen-
sors, more intelligence, and cheaper components. As a

result robots are moving out of controlled industrial en-
vironments and into uncontrolled service environments
such as homes, hospitals, and workplaces where they
perform tasks ranging from delivery services to enter-
tainment. It is this increase in the exposure of robots to
unskilled people that requires robots to become easier to
program and manage.

1.1 Reviewing robot programming

This paper reviews the current state of the art in robot
programming systems, in the the related area of robot
software architectures, and related trends. We do not
aim to enumerate all existing robot programming sys-
tems. A review of robot programming systems was con-
ducted in 1983 by Tomás Lozano–Pérez [1982]. At that
time, robots were only common in industrial environ-
ments, the range of programming methods was very lim-
ited, and the review examined only industrial robot pro-
gramming systems. A new review is necessary to deter-
mine what has been achieved in the intervening time,
and what the next steps should be to provide convenient
control for the general population as robots become ubiq-
uitous in our lives.

Lozano–Pérez divided programming systems into
three categories: guiding systems, robot–level program-
ming systems and task–level programming systems. For
guiding systems the robot was manually moved to each
desired position and the joint positions recorded. For
robot–level systems a programming language was pro-
vided with the robot. Finally, task–level systems speci-
fied the goals to be achieved (for example, the positions
of objects).

By contrast, this paper divides the field of robot pro-
gramming into automatic programming, manual pro-
gramming and software architectures, as shown in Fig. 1.
The first two distinguish programming according to the
actual method used, which is the crucial distinction for
users and programmers. In automatic programming sys-
tems the user/programmer has little or no direct con-
trol over the robot code. These include learning sys-
tems, Programming by Demonstration and Instructive
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Figure 1: A robot programming system may use auto-
matic or manual programming. Software architectures
also play an important role.

Systems. Manual systems require the user/programmer
to directly enter the desired behaviour of the robot, usu-
ally using a graphical or text–based programming lan-
guage. Software architectures are important to all pro-
gramming systems, as they provide the underlying sup-
port, such as communication, as well as access to the
robots themselves.

Section 2 will concentrate on manual programming
systems, while Section 3 will concentrate on automatic
programming systems. Section 4 gives conclusions on
the trends in robot programming systems. A review of
software architectures is beyond the scope of this paper.

2 Manual Programming Systems

Users of a manual programming systems must create the
robot program by hand, which is typically performed
without the robot. The finished program is loaded into
the robot afterwards. These are often off-line program-
ming systems, where a robot is not present while pro-
gramming. It is conceivable for manual programming
to control a robot online, using for example an inter-
preted language, where there are no safety concerns (eg
the Lego Mindstorm [2003]).

As shown in Fig. 2, manual programming systems can
be divided into text–based and graphical systems (also
known as icon–based systems). Graphical programming
is not considered automatic programming because the
user must create the robot program code by hand before
running it on the robotic system. There is a direct corre-
spondence between the graphical icons and the program
statements.

2.1 Text–based Systems

A text–based system uses a traditional programming
language approach and is one of the most common meth-
ods, particularly in industrial environments where it is
often used in conjunction with Programming by Demon-
stration (see Section 3.2). Text–based systems can be
distinguished by the type of language used, in terms of
the type of programming performed by the user. This
division can be seen in Fig. 2 and is explained in the
remainder of this section.
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Figure 2: Categories of manual programming systems.
A manual system may use a text–based or graphical in-
terface for entering the program.

Controller-Specific Languages

Controller–specific languages were the original method of
controlling industrial robots, and are still the most com-
mon method today. Every robot controller has some
form of machine language, and there is usually a pro-
gramming language to go with it that can be used to
create programs for that robot. These programming
languages are usually very simple, with a BASIC–like
syntax and simple commands for controlling the robot
and program flow. A good example is the language pro-
vided by KUKA [2003] for its industrial robots, shown
in Fig. 3. Programs written in this language can be run
on a suitable KUKA robot or tested in the simulation
system provided by KUKA.

Despite having existed for as long as industrial robots
have been in use, controller–specific languages have
seen only minor advances. In one case, Freund and
Luedemann-Ravit [2002] have created a system that al-
lows industrial robot programs to be generalised around
some aspect of a task, with a customised version of the
robot program being generated as necessary before be-
ing downloaded into a robot controller. The system uses
a “generation plan” to provide the basic program for a
task. For example, a task to cut shaped pieces of metal
could be customised by the shape of the final result.
While such a system can help reduce the time for pro-
ducing programs for related products, it does not reduce
the initial time to develop the robot program.
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Figure 3: The KUKA programming environment and robot programming language.

Freund et al. [2001] have also done some work to ease
the use of simulation systems in industrial environments.
Because of the abundance of control languages, a simu-
lator system must be able to understand the language
of each program it is to simulate. Robot manufacturers
often provide a simulation system with the programming
language, but this once again increases the training time
for staff. To enable a single simulation system to be used
for multiple languages, translators are typically used.
Freund et al. created a translator framework that can
significantly reduce the time required to develop these
translators. It is now in use on the COSIMIR [2003]
simulation system in commercial environments.

Controller–specific languages have some drawbacks.
The biggest problem is the lack of a universal stan-
dard between languages from different robot manufac-
turers. If a factory uses robots from many different
manufacturers then they will need to either train their
programmers for each one, or pay the manufacturer to
develop the required programs for them. Either method
increases significantly the time and costs for developing
new robot programs. Commercial systems have concen-
trated their advances on overcoming this by providing
more advanced programming systems that remove the
need for the programmer to actually write the robot code
by hand. Instead, the programmer can for example se-
lect instructions from a list. These systems are designed
to significantly reduce programming time, but are gener-
ally application-specific. Examples include systems from

KUKA [2003] and ABB [2003].

Generic Procedural Languages

Generic languages provide an alternative to controller–
specific languages for programming robots. “Generic”
means a high–level multi–purpose language, for example
C++, that has been extended in some way to provide
robot–specific functionality. This is particularly com-
mon in research environments, where generic languages
are extended to meet the needs of the research project.
The choice of the base language varies, depending upon
what the researchers are trying to achieve (for example,
procedural or behavioural programming). A language
developed in this way may be aimed at system program-
ming or application level programming.

The most common extension to a multi–purpose lan-
guage is a robot abstraction, which is a set of classes,
methods, or similar constructs that provides access to
common robot functions in a simple way. They remove
the need to handle low–level functionality such as setting
output ports high to turn on motors or translating raw
sensor data. For example, an abstraction may provide
a method to have the robot move a manipulator to a
certain position. It might also provide higher–level ab-
stractions, such as methods to make the robot move to
a point using path planning. It is common now for a re-
search robot from a manufacturer to provide such a sys-
tem with their robots. However, these abstractions suffer
from the same fault as controller–specific languages for
industrial robots. They are still specific to the robot
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they are designed for.

To improve this situation, many researches have devel-
oped their own robot abstraction systems. Player/stage
is a commonly used robot programming system, that
provides drivers for many robots and abstractions for
controlling them [Vaughan et al., 2003]. Kanayama and
Wu [2000] have developed a “Motion Description Lan-
guage” extension to Java that provides high–level ab-
stractions for mobile robots. To prevent the abstraction
from being limited to one robot architecture they use
Java classes to provide common abstractions and pro-
gramming interfaces. Each robot needs a customised
version of the Vehicle class, because of the specific robot
hardware differences. Other services, such as path plan-
ning, are also represented by classes.

Others have implemented similar systems, including
Hardin et al. [2002], who developed a system primar-
ily used on Lego Mindstorms robots [Lego, 2003]. As
well as Java, abstractions have been created for many
other generic languages, including C++ [Hopler and Ot-
ter, 2001, which also provides real-time extensions], [Lof-
fler et al., 2001] and Python, known as Pyro [2003]. Pyro
is a particularly extensive system, providing classes and
abstractions for robots and algorithms. Even eXtensible
Markup Language (XML) has been used for describing
robot motion, in a form that can be transmitted over
networks and then played back on a suitable robot body
[Kitagishi et al., 2002].

It is interesting to note that a abstractions are com-
monly implemented using an object–oriented method-
ology. McKee et al. [2001] state that a rigorous
object–oriented approach to robotics is important to
clearly define robotic entities relationships. They de-
scribe the MARS model of object-oriented robots, and
define robots comprised of “resources,” which are then
modelled as “modules.” They draw clear parallels be-
tween object-oriented concepts such as inheritance, and
the modules of a robot. A good example is a tool on the
end of an arm. Simply by being on the end of an arm,
the tool inherits the ability to move.

Thrun [2000] has developed CES, an extension for
C++ that provides probabilistic programming support.
The use of probabilistic methods allows robot programs
to overcome problems caused by such things as sen-
sor noise. However, writing programs with probabilistic
methods is difficult. CES provides a set of C++ tem-
plates for probability distributions on variable types. It
also provides methods for learning, which can be used
in conjunction with standard programming practices to
create a system where parts are coded by hand while
other parts are trained. The system was tested by cre-
ating a mail delivery program for a mobile robot. The
program required only 137 lines of code and two hours
of training. While the use of this language does require

a good knowledge of statistical methods, it shows that
such a programming system is possible in a general pur-
pose language. If combined with a suitable method to
remove the need for low-level robot control, it could be
a powerful system for creating learning robots.

Behaviour–based Languages

Behaviour–based languages provide an alternative ap-
proach to the procedural languages of the previous sec-
tions. They typically specify how the robot should react
to different conditions, rather than providing a procedu-
ral description. For example, a set of behaviours could
be to follow a wall from one point to another. A be-
havioural system is more likely to be used by a robot
developer than the end user. The developer would use
it to define functionality that the end user would use to
perform tasks.

Functional Reactive Programming (FRP) is a good ex-
ample of a behavioural programming paradigm. In FRP,
both continuous and discrete events can be used to trig-
ger actions. Recently, there have been two language ex-
tensions of note based on a functional language, Yampa
[Hudak et al., 2003] and Frob [Peterson et al., 1999;
2001]. The language used in both cases is Haskell. These
systems allow the programmer to specify how the robot
reactions using very little code compared with procedu-
ral languages. The descriptions are based on behaviours
and events. For example, in Yampa it is possible to write
a wall following algorithm with just eight lines of code
(building on some lower–level functions), shown in Fig.4.

While Yampa focuses mainly on the behavioural as-
pects, Frob is also designed with modularity in mind. It
allows blocks of code to interact through interfaces, thus
supporting code reuse. It provides pre-defined controller
and sensor interfaces and a communications infrastruc-
ture. It also makes use of “tasks” to create sequentiality
within the program.

FRP is not limited to languages such as Haskell. Dai
et al. [2002] have implemented an FRP system in C++.
It provides similar functionality to Frob, but also allows
existing C++ code. It is simpler to use than Yampa
and Frob, both of which require a good knowledge of
functional programming.

One obvious trend is the change away from simple,
command based languages, and towards higher–level lan-
guages that provide more support to the user, which is
illustrated by the increasing popularity of behavioural
languages. With more intelligent programming systems,
the programmer is required to do less work to achieve
the same results, increasing productivity.

2.2 Graphical Systems

Graphical (or icon–based) programming systems pro-
vide an alternative to text–based methods for manual
programming. Although they are manual programming
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rcFollowLeftWall :: Velocity -> Distance -> SimbotController

rcFollowLeftWall v d _ = proc sbi -> do

let r = rfLeft sbi

dr <- derivative -< r

let omega = kp*(r-d) + kd*dr

kd = 5

kp = v*(kd^2)/4

returnA -< mrFinalize (ddVelTR v (lim 0.2 omega))

Figure 4: A wall following algorithm implemented using Yampa.

Figure 5: The Lego Mindstorms graphical programming
environment, used to create simple programs for Lego
robots.

methods, they are a small step closer to automatic pro-
gramming, as they provide a graphical medium for pro-
gramming. They require manual input to specify ac-
tions and program flow. Graphical systems typically use
a graph, flow–chart or diagram view of the robot sys-
tem. One advantage of graphical systems is their ease
of use, which is achieved at the cost of text–based pro-
gramming’s flexibility. They are typically used for robot
applications rather than system programming.

Perhaps the most successful graphical system using
the flow–chart approach is employed by the Lego Mind-
storms robotics kit [Lego, 2003], illustrated in Fig. 5. It
is aimed at children, and so is simple by design. Blocks
representing low-level actions are stacked like puzzle
pieces to produce a sequence of actions. The sequences
can be combined together to form a new block that can
then be placed in a new stack, thus forming a simple hi-
erarchy. A sequence is either attached to the main robot
process, which defines its standard behaviour, or to a
sensor where it defines the action taken when that sen-
sor is triggered. While simple, this system allows for the
creation of sophisticated behaviours.

In industrial environments, graphical systems enable
rapid configuration of a robot to perform a required task.
Bischoff et al. [2002] have produced a prototype style
guide for defining the icons in a flow–chart system based
on an emerging ISO standard (15187). Usability tests
show that both experts and beginners found the graph-
ical system easier for handling robots, for changing pro-
grams and for program overview. Touch screens are be-
coming popular for programming robots, and graphical
systems using icons are ideally suited to this interface.

A graphical system for off-line programming of weld-
ing robots has been developed by Dai and Kampker
[2000]. The main aim is to provide a user friendly inter-
face for integrating sensor information in robot programs
and so increase sensor use in welding robot programs.
This is needed to overcome problems such as uncertainty
of thermal effects. An icon–oriented interface provides
the main programming method, with macros defined for
sensor operations in a sensor editor. Macros make it
easy to incorporate new sensors. The method could be
used with any robot program where sensor information
is used to mitigate inaccuracies.

A graph approach has been taken by Bredenfeld and
Indiveri [2001] for their Dual Dynamics (DD–) Designer
system, which takes a behaviour-based approach to con-
trolling groups of mobile robots. The graphical program-
ming interface uses a data processor hyper-graph, which
is made up of data processing elements connected to-
gether by states. This approach allows the interaction
between robot system elements to be specified.

3 Automatic Programming Systems

Automatic programming systems provide little or no di-
rect control over the program code the robot will run.
Instead, robot code is generated from information en-
tered into the system in a variety of indirect ways. Often
a robot system must be running while automatic “pro-
gramming” is performed, and these systems have been
referred to as “online” programming systems. However,
automatic programming may also be performed on simu-
lated or virtual robots, for example in industrial robotic
CAD systems. In this case the real robot is off-line but
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Figure 6: Categories of automatic programming systems.
Learning systems, programming by demonstration and
instructive systems are all methods of teaching robots to
perform tasks.

the virtual robot is online. For example, the IGRIP
[2003] system provides full simulation capabilities for cre-
ating and verifying robot programs.

Fig. 6 shows the three categories that automatic sys-
tems can be placed into: learning systems, programming
by demonstration (PbD) and instructive systems. These
are discussed in the following sections.

3.1 Learning Systems

Learning systems create a program by inductive infer-
ence from user provided examples and self–exploration
by the robot. In the long run it will be crucial for a robot
to improve its performance in these ways. A full review
is beyond the scope of this paper. Examples include
a hierarchy of neural networks developed for learning
the motion of a human arm in 3D [Billard and Schaal,
2001], and a robot that can learn simple behaviours and
chain these together to form larger behaviours [Weng
and Zhang, 2002]. Smart and Kaelbling [2002] propose
reinforcement learning for programming mobile robots.
In the first phase the robot watches as the task is per-
formed. In the second phase the robot attempts to per-
form the task on its own.

3.2 Programming By Demonstration

This is the most common method of automatic pro-
gramming. Fig. 6 shows that PbD systems may use
touch/pendants for the demonstration, or they may use
other, more natural communication methods such as ges-
tures and voice.

A traditional PbD system uses a teach-pendant to
demonstrate the movements the robot should perform.
This technique has been used for industrial manipulators
for many years. The demonstrator performs the task

(for example, an assembly task) using the teach pen-
dant. The position of the pendant is recorded and the
results used to generate a robot program that will move
the robot arm through the same motions. Alternatively,
the demonstrator may move the robot arm through the
required motions either physically or using a controller.
In this case, the joint positions are recorded and used to
generate the robot program. Though simple, this type
of system has been effective at rapidly creating assem-
bly programs. Myers et al. [2001] describe an imple-
mentation by Intelligent Automation, Inc. It uses PbD
to demonstrate subtasks, which are then grouped into
sequential tasks by a programmer.

There are two current PbD research directions. The
first is to produce better robot programs from the
demonstrations, for example by combining multiple
demonstrations and breaking down the information col-
lected into segments. The second is to enhance demon-
strations through the use of multi-modal communica-
tions systems.

Significant work has been conducted in recent years
to develop PbD systems that are able to take the infor-
mation produced from a demonstration, such as sensor
and joint data, and extract more useful information from
it, particularly for industrial tasks. Traditional PbD sys-
tems simply record and play back a single demonstration
with no variation to account for changes or errors in the
world. Much current research aims to introduce some
intelligence to PbD systems to allow for flexible task ex-
ecution rather than pure imitation.

Ehrenmann et al. [2002] describe a method for seg-
menting demonstrated data into moves (found by seg-
menting between grasps) and grasps (specifically, the ac-
tions performed during a grasp). The results of the seg-
mentation can be stored for later playback on a robot.
[Chen and McCarragher, 1998; 2000; Chen and Zelinsky,
2001] describe the progressive development of a simi-
lar system in which multiple demonstrations are used to
build a partial view of the robot’s configuration space.
Optimal paths are generated between steps in a task.
The motivation is that demonstrations rarely contain the
best path between steps. This introduces significant flex-
ibility to task performance. For example, the task can be
biased towards maximum execution speed or maximum
accuracy.

Ogawara et al. [2002] developed a system that inte-
grates observations from multiple demonstrations. The
demonstrated data is segmented to find important states
such as grasps and moves. The multiple demonstrations
are used to determine which segments are important to
the task, and from this a flexible task model is built, for
later execution on the robot.

The modality of the demonstration is also important;
it may be touch, vision, gestures or voice. All have seen
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active research in recent years. Grunwald et al. [2001]
developed a method for natural touch in PbD. Rather
than having to grip a robot arm at a certain point to
move it for the demonstration, the demonstrator may
hold the robot arm at any point, much as they would
hold a human arm when indicating the movements that
should be performed for a task. Without a requirement
that the robot be gripped in a certain place, the robot
becomes easier and more natural for a non-technical per-
son to use.

Vision is also an important method of receiving
demonstration information. However, it is difficult to
produce a robust vision–based system that can oper-
ate in the typically cluttered environments of the real
world. Special markers often must be used to indicate
which objects the robot should be paying attention to
during the demonstration, and the data from the demon-
stration is not as accurate as data from sensors on the
robot. Yokokohji et al. [2002] developed a system to use
cameras mounted close to the demonstrator’s viewpoint,
for acquiring the demonstration data. Both the demon-
strator’s hand motion and head motion are captured by
tracking landmarks. Tests included the task of retriev-
ing a CD from a CD rack, which showed that the task
could be reproduced with sufficient accuracy. However,
markers are required on all objects of interest in order
to find landmarks.

Takamatsu et al. [2002] describe a method of produc-
ing more robust programs by correcting possible errors
in demonstrated data from vision–based PbD. Contact
states are checked to ensure they don’t create such prob-
lems as having two objects in the same place. This en-
sures that incorrect results from a vision system do not
produce erroneous programs.

There have been other advances in PbD systems.
Onda et al. [2002] developed a virtual environment
where demonstrations are performed. Contact state in-
formation can easily be retrieved from such an environ-
ment. Standard contact states may be replaced with
special behaviours to overcome differences between the
virtual world and various iterations of the real world.
Instead of simply attempting to push a peg into a hole,
the system will make the robot perform a search pattern
to ensure the peg is correctly aligned with the hole and
then move it in such a way that it goes into the hole
smoothly. This is an imitation of how humans perform
such a task, that is visually lining up the peg and the
hole before moving it around until it goes in.

Other advances include the use of sensors on the fin-
gers to detect fine manipulation of objects, for exam-
ple turning a screw [Zollner et al., 2002]. Friedrich et
al. [1998] allow the results of the demonstration to be
graphically viewed once the demonstration is complete.
This allows the programmer to see what the robot will

do as a result of the demonstration, and also allows dif-
ferent parts of the demonstration to be edited, moved
around, and even used separately, producing code reuse
for a PbD system.

Traditional robot CAD programming systems also
provide a virtual, simulation environment in which a user
may manipulate a robot to perform a task, and this is
a form of PbD. Although the robot is off-line, the robot
simulation is online.

The key trend in PbD is the increased intelligence of
the programming system. Rather than just playing back
a single demonstration, as was originally done, PbD sys-
tems are now capable of interpreting a demonstration
and then using the interpreted data to produce robust,
flexible programs capable of handling complex, changing
worlds. PbD methods may include learning; some of the
task description may be acquired by learning from the
demonstrations.

3.3 Instructive Systems

Instructive systems are given a sequence of instructions,
usually in real–time. The technique is best suited for
commanding robots to carry out tasks that they have al-
ready been trained or programmed to perform; it could
be considered the highest level of programming. Typi-
cally, gesture recognition or voice recognition is used.

Voyles and Khosla [1999] explored gesture–based pro-
gramming using “Gesture Interpretation Agents.” This
is integrated into a PbD system. Steil et al. [2001] inves-
tigated the use of gestures for controlling the vision based
robot GRAVIS. Gestures are used to direct the attention
of the robot, and so enable its vision system to more eas-
ily find objects that are specified in instructions. This
is useful for overcoming the problems caused by clutter
in human environments. Strobel [2002] et al. used hand
gestures for controlling a domestic cleaning robot. Static
hand and arm gestures are captured with the robot’s
stereo vision system, or dynamic gestures are captured
with a magnetic tracking system. Spatial knowledge is
used to help determine the intent behind the gesture.
The user could point to a surface that should be cleaned.
Gesture recognition is useful for indicating objects in a
scene that instructions apply to.

Language–based communication is the most natural
method for humans to communicate instructions to one
another, so it is a good candidate for robot instruction.
A natural language system for providing directions to a
robot is described by Lauria et al. [2002]. Natural lan-
guage is used to teach the robot how to move to differ-
ent locations by specified routes. It has fourteen motion
primitives that are linked to natural language constructs.
Unknown commands may be used by the user at some
point, and some form of clarification and learning system
would be needed.
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Multi-modal communication has potential for simple
robot programming. Vision systems provide a view of
the world, and are used for gesture recognition (for ex-
ample, gesturing commands or pointing at an object in
the world). Gesture recognition and natural language
recognition are used to give and clarify instructions to a
robot. McGuire et al. [2002] describe a continuation of
the work in [Steil et al., 2001], mentioned earlier. The
authors argue that a multi-modal system is a necessity
for robots aimed at “more cognitively oriented environ-
ments” such as homes. They aim for human-like interac-
tion. Information from all sources (vision, gestures and
voice) may be used. For example, an instruction to pick
up “that cube” could be given with voice while a gesture
is used to indicate the cube to pick up, and the vision
system provides a location for the cube.

Instructive systems have great potential for provid-
ing a high-level control method for robots. However,
they still rely on the underlying trained or programmed
abilities. These can be implemented only using other
programming systems such as manual programming and
through training with PbD systems.

4 Conclusions

Robot programming systems have become significantly
more powerful and intelligent, moving beyond basic,
text-based languages and record-and-play programming
by demonstration, to more intelligent systems that
provide considerable support to the user/programmer.
Text-based languages are becoming higher–level, reduc-
ing the work required to implement systems. Graphical
and automatic systems are becoming more powerful, al-
lowing people with little or no technical skills to program
robots.

The strongest trend is the addition of intelligence to
programming systems to remove some of the burden
from the programmer, both for manual programming
systems and automatic programming systems. Text–
based systems often supply much of the required low–
level support, and programming by demonstration sys-
tems are becoming capable of building flexible task plans
from demonstrations rather than just playing back the
recorded data. Instructive systems are useful for provid-
ing a final, high level of control.

The development of these systems needs to be driven
forward, beginning with solutions for robot developers
that can then be scaled up to consumer solutions. The
aim of these systems should be an environment that
provides a consistent, simple interface for programming
robots. Such a system would allow the general popula-
tion to program robots with ease.
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gramming. Technical Report Memo 698, MIT AI, De-
cember 1982, revised April 1983 1982. Also published
in Proceedings of the IEEE, Vol 71, July 1983, pp.821–
841 (Invited), and IEEE Tutorial on Robotics, IEEE
Computer Society, 1986, pp.455–475.

[McGuire et al., 2002] P. McGuire, J. Fritsch, J.J. Steil,
F. Rothling, G.A. Fink, S. Wachsmuth, G. Sagerer,
and H. Ritter. Multi-modal human-machine commu-
nication for instructing robot grasping tasks. In In-
telligent Robots and System, 2002. IEEE/RSJ Inter-
national Conference on, volume 2, pages 1082–1088,
2002.

[McKee et al., 2001] G.T. McKee, J.A. Fryer, and P.S.
Schenker. Object-oriented concepts for modular
robotics systems. In Technology of Object-Oriented
Languages and Systems, 2001. TOOLS 39. 39th In-
ternational Conference and Exhibition on, pages 229–
238, 2001.

[Myers et al., 2001] D.R. Myers, M.J. Pritchard, and
M.D.J. Brown. Automated programming of an indus-
trial robot through teach-by showing. In Proceedings
of the IEEE Intl. Conf. on Robotics and Automation
(ICRA ’01), volume 4, pages 4078–4083, May 2001.

[Ogawara et al., 2002] K. Ogawara, J. Takamatsu,
H. Kimura, and K. Ikeuchi. Generation of a task model

9



by integrating multiple observations of human demon-
strations. In Proceedings of the IEEE Intl. Conf.
on Robotics and Automation (ICRA ’02), volume 2,
pages 1545–1550, May 2002.

[Onda et al., 2002] H. Onda, T. Suehiro, and K. Kita-
gaki. Teaching by demonstration of assembly mo-
tion in vr - non-deterministic search-type motion in
the teaching stage. In Intelligent Robots and Sys-
tem, 2002. IEEE/RSJ International Conference on,
volume 3, pages 3066–3072, 2002.

[Peterson et al., 1999] J. Peterson, G.D. Hager, and
P. Hudak. A language for declarative robotic pro-
gramming. In Proceedings of the IEEE Intl. Conf.
on Robotics and Automation (ICRA ’99), volume 2,
pages 1144–1151, May 1999.

[Peterson et al., 2001] J. Peterson, G. Hager, and
A. Serjentov. Composable robot controllers. In Com-
putational Intelligence in Robotics and Automation,
2001. Proceedings 2001 IEEE International Sympo-
sium on, pages 149–154, 2001.

[Pyro, 2003] Pyro, Python Robotics. http:

//emergent.brynmawr.edu/pyro/?page=Pyro,
2003.

[Smart and Kaelbling, 2002] W.D. Smart and L. Pack
Kaelbling. Effective reinforcement learning for mo-
bile robots. In Proceedings of the IEEE Intl. Conf.
on Robotics and Automation (ICRA ’02), volume 4,
pages 3404–3410, May 2002.

[Steil et al., 2001] J.J. Steil, G. Heidemann, J. Jockusch,
R. Rae, N. Jungclaus, and H. Ritter. Guiding atten-
tion for grasping tasks by gestural instruction: the
gravis-robot architecture. In Intelligent Robots and
Systems, 2001. Proceedings. 2001 IEEE/RSJ Interna-
tional Conference on, volume 3, pages 1570–1577, Nov
2001.

[Strobel et al., 2002] M. Strobel, J. Illmann, B. Kluge,
and F. Marrone. Using spatial context knowledge in
gesture recognition for commanding a domestic ser-
vice robot. In Robot and Human Interactive Commu-
nication, 2002. Proceedings. 11th IEEE International
Workshop on, pages 468–473, 2002.

[Takamatsu et al., 2002] J. Takamatsu, K. Ogawara,
H. Kimura, and K. Ikeuchi. Correcting observation
errors for assembly task recognition. In Intelligent
Robots and System, 2002. IEEE/RSJ International
Conference on, volume 1, pages 232–237, 2002.

[Thrun, 2000] S. Thrun. Towards programming tools
for robots that integrate probabilistic computation
and learning. In Proceedings of the IEEE Intl. Conf.
on Robotics and Automation (ICRA ’00), volume 1,
pages 306–312, apr 2000.

[Vaughan et al., 2003] Richard T. Vaughan, Brian P.
Gerkey, and Andrew Howard. On device abstractions
for portable, reusable robot code. In Proceedings of the
2003 IEEE/RSJ Intl. Conference on Intelligent Robots
and Systems (IROS03), pages 2421–2427, Las Vegas,
Nevada, October 2003.

[Voyles and Khosla, 1999] R.M. Voyles and P.K.
Khosla. Gesture-based programming: a preliminary
demonstration. In Proceedings of the IEEE Intl. Conf.
on Robotics and Automation (ICRA ’99), volume 1,
pages 708–713, May 1999.

[Weng and Zhang, 2002] Juyang Weng and Yilu Zhang.
Action chaining by a developmental robot with a value
system. In Development and Learning, 2002. Proceed-
ings. The 2nd International Conference on, pages 53–
60, 2002.

[Yokokohji et al., 2002] Y. Yokokohji, Y. Kitaoka, and
T. Yoshikawa. Motion capture from demonstrator’s
viewpoint and its application to robot teaching. In
Proceedings of the IEEE Intl. Conf. on Robotics and
Automation (ICRA ’02), volume 2, pages 1551–1558,
May 2002.

[Zollner et al., 2002] R. Zollner, O. Rogalla, R. Dill-
mann, and M. Zollner. Understanding users inten-
tion: programming fine manipulation tasks by demon-
stration. In Intelligent Robots and System, 2002.
IEEE/RSJ International Conference on, volume 2,
pages 1114–1119, 2002.

10


