
International Conference On
Software Test Automation

March 5-8, 2001
San Jose, CA, USA

P R E S E N T A T I O N

Thursday, March 8, 2001
10:30 AM

COMMON MISTAKES IN TEST

AUTOMATION

Mark Fewster
Grove Consultants

M5
Presentation
Paper
Bio

Common Mistakes in
Test Automation

Prepared and presented

by

Mark Fewster

Grove Consultants

Llwyncynhwyra, Cwmdu
Llandeilo, SA19 7EW, UK

Tel: +44 1558 685180 mark@grove.co.uk
Fax: +44 1558 685181 www.grove.co.uk

© Grove Consultants, 2001

Confusing automating and testing

EvolvableEconomic

A good test case?

Interactive
Test

First Run of
Automated Test

Effective

Exemplary

Economic

Automated
Test

Good automation

n decreasing cost of building new tests

-- reuse of tried, tested & documented scripts & datareuse of tried, tested & documented scripts & data

-- descriptive approach to automating testsdescriptive approach to automating tests

n efficient failure analysis and debugging

-- provides information to aid analysis and allowsprovides information to aid analysis and allows
developer to control and interrupt executiondeveloper to control and interrupt execution

n small maintenance cost

-- frequent software changes do not force changes onfrequent software changes do not force changes on
automated testsautomated tests

Believe capture/replay = automation

Replay

Audit trail
(from tool)

LogLogSUTTest script:
- test input
Test script:
- test input

Main Menu
1. Generate report
2. Edit report definition
3. Utilities
4. Exit

Captured test scripts

n may not be very readable

-- it is a programming language after all!it is a programming language after all!

n will not be very understandable

-- during maintenance will need to know more thanduring maintenance will need to know more than
can ever be ‘automatically commented’can ever be ‘automatically commented’

n will not be resilient to many software changes

-- will never cope with most types of software changewill never cope with most types of software change

n do not include verification, unless ...

-- restricted to screen based comparisonsrestricted to screen based comparisons

Build cost vs. maintenance cost

Simple
implementation

Sophisticated
implementation

Cost Effort to implement
Maintenance cost

Second
version

Third
version

Verify only screen based information
&

Use only screen based comparison

Screen display OK, all OK?

n assumes correct screen display means all OK

-- outcome elsewhere often more important and canoutcome elsewhere often more important and can
erroneously differ from that on the screenerroneously differ from that on the screen

n tools make it easy to verify screen output

-- most tools allow screen comparisons to be specifiedmost tools allow screen comparisons to be specified
as a test is being recordedas a test is being recorded

-- excellent facilities for dynamic comparisonexcellent facilities for dynamic comparison

-- use this approach for other information?use this approach for other information?

Use only screen based comparison

n display results for screen comparison

-- display report files, etc. on screen one page at a timedisplay report files, etc. on screen one page at a time

-- makes test script more complex and moremakes test script more complex and more
vulnerable to software changesvulnerable to software changes

n down-load results to PC for verification

-- down-load from server / mainframedown-load from server / mainframe

-- takes longertakes longer

-- restricts type and extent of comparisonrestricts type and extent of comparison

Let testware organisation evolve
naturally

Automation testware

DiffsDiffs
Script

(binary)
Script

(binary)
LogLogScript

(ascii)
Script
(ascii)

Captured
Screen

Data

Captured
Screen

Data

Client
accounts

Account
types

Input
Data

Input
Data

Client
names

Accounts
Report

Accounts
Report

Account
details

Expected
Screen

Data

Expected
Screen

Data

Expected
Accounts

Report

Expected
Accounts

ReportTest
Report
Test

Report

Doc.Doc.

Key issues

n scale

-- a large number of items needed for each testa large number of items needed for each test

-- for many tests, 1000’s of items to managefor many tests, 1000’s of items to manage

n re-use

-- shared items (scripts and data) can be usedshared items (scripts and data) can be used
numerous times but maintained only oncenumerous times but maintained only once

n multiple versions

-- as software changes so too will some tests, the oldas software changes so too will some tests, the old
versions may still be neededversions may still be needed

Localised regimes

n “everyone will do the sensible thing”

-- most will do something sensible, but differentmost will do something sensible, but different

n “use the tool however it best suites you”

-- ignores cost of learning how best to automateignores cost of learning how best to automate

n problems include:

-- effort wasted repeatedly solving the same problemseffort wasted repeatedly solving the same problems
in different waysin different ways

-- no re-use between teamsno re-use between teams

-- multiple learning curvesmultiple learning curves

Trying to automate too much

Automate too much too soon

n too much to learn in one go

-- how to use the tool, how to implement testshow to use the tool, how to implement tests
efficiently, how to minimise maintenance, how toefficiently, how to minimise maintenance, how to
minimise analysis effortminimise analysis effort

n early automated tests are usually poor

-- initial enthusiasm overlooks long terminitial enthusiasm overlooks long term
consequencesconsequences

-- high maintenance cost, difficult to debughigh maintenance cost, difficult to debug

n automation likely to die at next s/w release

Start with only a few tests

n automate only 10-20 good tests on stable s/w

-- implement them in different ways (to learn the toolimplement them in different ways (to learn the tool
and relative merits of different approaches)and relative merits of different approaches)

n then run them on a later version of s/w

-- to learn how different software changes affect testto learn how different software changes affect test
maintenance effortmaintenance effort

n then run them on an unstable version of s/w

-- to learn impact of different implementations onto learn impact of different implementations on
analysis effortanalysis effort

Automate too much long term

n test suite grows larger, maintenance costs too

-- maintenance effort is cumulative, benefits are notmaintenance effort is cumulative, benefits are not

n the test suite takes on a life of its own

-- testers depart, others arrive, test suite grows largertesters depart, others arrive, test suite grows larger
nobody knows exactly what they all do …nobody knows exactly what they all do … daren’t daren’t
throw away tests in case they’re importantthrow away tests in case they’re important

n inappropriate tests are automated

-- automation becomes an end in itselfautomation becomes an end in itself

n automated tests are best at regression testing

Conclusions

n learn from and avoid these

-- you’re not so differentyou’re not so different

-- they will cut down the benefits of automation orthey will cut down the benefits of automation or
even kill off your attempt altogethereven kill off your attempt altogether

n automation requires planning & up-front effort

-- easiest solutions are rarely the best long termeasiest solutions are rarely the best long term

n start small, recognise different skills

-- control evolution before it rules youcontrol evolution before it rules you

 Grove Consultants, 2001 Page 1

Common Mistakes in
Test Automation

Mark Fewster
Grove Consultants

Llwyncynhwyra
Cwmdu
Llandeilo

SA19 7EW
UK

Tel: +44 1558 685180
Fax: +44 1558 685181

Email: mark@grove.co.uk
www.grove.co.uk

Abstract

Automating the execution of tests is becoming more and more popular as the need to improve
software quality amidst increasing system complexity becomes ever stronger. The appeal of having
the computer run the tests in a fraction of the time it takes to perform them manually has led many
organisations to attempt test automation without a clear understanding of all that is involved.

Consequently, many attempts have failed to achieve real or lasting benefits. This paper highlights a
few of the more common mistakes that have contributed to these failures and offers some thoughts
on how they may be avoided.

Page 2 Grove Consultants, 2001

1. Confusing automation and testing

Testing is a skill. While this may come as a surprise to some people it is a simple fact. For any
system there are an astronomical number of possible test cases and yet practically we have time to
run only a very small number of them. Yet this small number of test cases is expected to find most
of the bugs in the software, so the job of selecting which test cases to build and run is an important
one. Both experiment and experience has told us that selecting test cases at random is not an
effective approach to testing. A more thoughtful approach is required if good test cases are to be
developed.

What exactly is a good test case? Well, there are four attributes that describe the quality of a test
case, that is, how good it is. Perhaps the most important of these is its effectiveness, whether or not
it finds bugs, or at least, whether or not it is likely to find bugs. Another attribute reflects how much
the test case does. A good test case should be exemplary, that is, it should test more than one thing
thereby reducing the total number test cases required. The other two attributes are both cost
considerations: how economical a test case is to perform, analyse and debug; and how evolvable it
is, that is, how much maintenance effort is required on the test case each time the software changes.

These four attributes must often be balanced one against another. For example, a single test case
that tests a lot of things is likely to cost a lot to perform, analyse and debug. It may also require a
lot of maintenance each time the software changes. Thus a high measure on the exemplary scale is
likely to result in low measures on the economic and evolvable scales.

Thus testing is indeed a skill, not only must testers ensure that the test cases they use are going to
find a high proportion of the bugs but they must also ensure that the test cases are well designed to
avoid excessive costs.

Automating tests is also a skill but a very different skill which often requires a lot of effort. For
most organisations it is expensive to automate a test compared with the cost of performing it once
manually, so they have to ensure that each test automated will need to be performed many times
throughout its useful life.

Effective

EvolvableEconomic

Exemplary

Interactive
Test

Automated
Test (after
many runs)

First Run of
Automated Test

Figure 1 The 'goodness' of a test case can be illustrated by considering the four attributes in this Keviat diagram. The
greater the measure of each attribute the greater the area enclosed by the joining lines and the better the test case.

Whether a test is automated or performed manually affects neither its effectiveness nor how
exemplary it is. It doesn’t matter how clever you are at automating a test or how well you do it, if
the test itself achieves nothing then all you end up with is a test that achieves nothing faster.
Automating a test affects only how economic and evolvable it is. Once implemented, an automated

 Grove Consultants, 2001 Page 3

test is generally much more economic, the cost of running it being a mere fraction of the effort to
perform it manually. However, automated tests generally cost more to create and maintain. The
better the approach to automating tests the cheaper it will be to implement new automated test in the
long term. Similarly, if no thought is given to maintenance when tests are automated, updating an
entire automated test suite can cost as much, if not more, than the cost of performing all the tests
manually.

For an effective and efficient automated suite of tests you have to start with the raw ingredient of a
good test suite, a set of tests skilfully designed by a tester to exercise the most important things.
You then have to apply automation skills to automate the tests in such a way that they can be
created and maintained at a reasonable cost.

Figure 1 depicts the four quality attributes of a test case in a Keviat diagram and compares the likely
measures of each on the same test case when it is performed manually (shown as an interactive test
in the figure) and after it has been automated.

2. Believe capture/replay = automation

Capture / replay technology is indeed a useful part of test automation but it is only a very small part
of it. The ability to capture all the keystrokes and mouse movements a tester makes is an enticing
proposition, particularly when these exact keystrokes and mouse movements can be replayed by
the tool time and time again. The test tool records the information in a file called a script. When it is
replayed, the tool reads the script and passes the same inputs and mouse movements on to the
software under test which usually has no idea that it is tool controlling it rather than a real person sat
at the keyboard. In addition, the test tool generates a log file, recording precise information on when
the replay was performed and perhaps some details of the machine. Figure 2 depicts the replay of a
single test case.

Audit trail
(from tool)

LogLogSUTTest script:
- test input
Test script:
- test input

Main Menu
1. Generate report
2. Edit report definition
3. Utilities
4. Exit

Figure 2 Capture/replay tools offer an inviting way to automate tests but it is checking the results that may be overlooked.

For many people this seems to be all that is required to automate tests. After all, what else is there
to testing but entering a whole series of inputs? However, merely replaying the captured input to the
software under test does not amount to performing a whole test.

For a start there is no verification of the results. How will we know if the software generated the
same outputs? If the tester is required to sit and watch each test be replayed he or she may as well
have been typing them in as they are unlikely to be able to keep up with the progress of the tool,
particularly if it is a long test. It is necessary for the tool to perform some checking of the output
from the application to determine that its behaviour is the same as when the inputs were first
recorded. This implies that as well as recording the inputs the tool must record at least some of the

Page 4 Grove Consultants, 2001

output from the software under test. But which particular outputs? How often and is an exact match
required every time? These are questions that have to be answered by the tester as the inputs are
captured, or possibly (depending on the particular test tool in use) during a replay.

Alternatively, the testers may prefer to edit the script, inserting the required instructions to the tool
to perform comparison between the actual output from the software under test and the expected
output now determined by the tester. This pre-supposes that the tester will be able to understand
the script sufficiently well to make the right changes in the right places. It also assumes that the
tester will know exactly what instructions to edit into the script, their precise syntax and how to
specify the expected output.

In either approach, the tests themselves may not end up as particularly good tests. Even if it was
thought out carefully at the start, the omission of just one important comparison or the inclusion of
one unnecessary or erroneous comparison can destroy a good test. Such tests may then never spot
that important bug or may repeatedly fail good software.

Scripts generated by testing tools are usually not very readable. Well, OK, they may be readable
(“click left mouse button”, “enter 17645”, and “click OK”) but will the whole serious of possibly
hundreds of individual actions really convey what has been going on and where comparison
instructions are to be inserted? Scripts are programming languages so anyone editing them has to
have some understanding of programming. Also, it may be possible for the person who has just
recorded the script to understand it immediately after they have recorded it, but after some time has
elapsed or for anyone else this will be rather more difficult.

Even if the comparison instructions are inserted by the tool under the testers control, the script is
likely to need editing at some stage in its life. This is most likely when the software under test
changes. A new field here, a new window there, will soon cause untold misery for testers who then
have to trawl through each of their recorded scripts looking for the places that need updating. Of
course, the scripts could be re-recorded but then this rather defeats the object of recording them in
the first place.

Recording test cases that are performed once manually so they can be replayed is a cheap way of
starting test automation which is probably why it is so appealing to those who opt for this
approach. However, as they soon discover, even if they do overcome the test quality problems the
cost of maintaining the automated tests becomes prohibitive as soon as the software changes. If we
are to minimise the growing test maintenance costs, it is necessary to invest more effort up front
implementing automated tests in a way that is designed to avoid maintenance costs rather than avoid
implementation costs. Figure 3 depicts this in the form of a graph.

Simple
implementation

Sophisticated
implementation

Effort to implement
Maintenance cost

Cost

Figure 3 The cost of test maintenance is related to the cost of test implementation. It is necessary to spend time building the
test in order to avoid high maintenance costs later on.

 Grove Consultants, 2001 Page 5

3. Verify only screen based information

Testers are often only seen sat in front of a computer screen so it is perhaps natural to assume that
it only the information that is output to the screen by the software under test that it checked. This
view is further strengthened by many of the testing tools that make it particularly easy to check
information that appears on the screen both during a test and after it has been executed.

However, this assumes that a correct screen display means that all is OK, but it is often the output
that ends up elsewhere that is far more important. Just because information appears on the screen
correctly does not always guarantee that it will be recorded elsewhere correctly.

For good testing it is often necessary to check these other outputs from the software under test.
Perhaps not only the files and database records that have been created and changed, but also those
that have not been changed and those that have (or at least should have) been deleted or removed.
Checking some of these other aspects of the outcome of a test (rather than merely the output) will
make tests more sensitive to unexpected changes and help ensure that more bugs are found.

Without a good mechanism to enable comparison of results other than those that appear on the
screen, tests that undertake these comparisons can become very complex and unwieldy. A
common solution is to have the information presented on the screen after the test has completed.
This is the subject of the next common mistake.

4. Use only screen based comparison

Many testing tools make screen based comparisons very easy indeed. It is a simple matter of
capturing the display on a screen or a portion of it and instructing the tool to make the same capture
at the same point in the test and compare the result with the original version. As described at the
end of the previous common mistake, this can easily be used to compare information that did not
originally appear on the screen but was a part of the overall outcome of the test.

However, the amount of information in files and databases is often huge and to display it all on the
screen one page at a time is usually impractical if not impossible. Thus, compromise sets in.
Because it becomes so difficult to do, little comparison of the tests true outcome is performed.
Where a tester does labour long and hard to ensure that the important information is checked, the
test becomes complex and unwieldy once again, and worse still, very sensitive to a wide range of
changes that frequently occur with each new release of the software under test. Of course, this in
turn adversely impacts the maintenance costs for the test.

In one case, I came across a situation where a PC based tool vendor had struggled long and hard to
perform a comparison of a large file generated on a mainframe computer. The file was brought
down to the PC one page at a time where the tool then performed a comparison with the original
version. It turned out that the file comprised records that exceeded the maximum record length that
the tool could handle. This, together with the length of time the whole process took caused the
whole idea of automated comparison of this file to be abandoned.

In this case, and many others like it, it would have been relatively simple to invoke a comparison
process on the mainframe computer to compare the whole file (or just a part of it) in one go. This
would have been completed in a matter of seconds (compared with something exceeding an hour
when downloaded to the PC).

5. Let testware organisation evolve naturally

Like a number of other common mistakes, this one isn’t made through a deliberate decision (by
choice) rather it is made through not realising the need to plan and manage where all the data files,
databases, scripts, expected results, etc., etc., everything that makes up the tests, is required to run
them and results from their execution, in short: the testware.

Page 6 Grove Consultants, 2001

There are three key issues to address: scale, re-use; and multiple versions. Scale is simply the
number of things that comprise the testware. For any one test there can be several (10, 15 or even
20) things (files) that are unique (files and records containing test input, test data, scripts, expected
results, actual results and differences, log files, audit trails and reports). Figure 4 depicts one such
test case.

Re-use is an important consideration for efficient automation. The ability to share scripts and test
data not only reduces the effort required to build new tests but also reduces the effort required for
maintenance. But, re-use will only be possible if testers can easily (and quickly) find out what there
is to re-use, quickly locate it and understand how to use it. I’m told a programmer will spend up to
2 minutes looking for a re-useable function before he or she will give up and write their own. I’m
sure this applies to testers and that it can be a lot less than 2 minutes. Of course, while test
automation is implemented by only one or two people this will not be much of a problem if a
problem at all, at least while those people remain on the automation team. But once more people
become involved, either on the same project or on other projects, the need for more formal
organisation (indeed a standard / common organisation) becomes much greater.

Script
(ascii)

Script
(ascii)

Script
(binary)
Script
(binary)

Input
Data

Input
Data

Accounts
Report

Accounts
Report

DiffsDiffs
LogLog

Captured
Screen
Data

Captured
Screen
Data

Expected
Screen
Data

Expected
Screen
Data

Client
accounts

Account
types

Client
names

Account
details

Expected
Accounts

Report

Expected
Accounts

ReportTest
Report
Test

Report

Doc.Doc.

Figure 4 Executing a single test inevitably results in a large number of different files and types of information, all of which
have to be stored somewhere. Configuration management is essential for efficient test automation.

Multiple versions can be a real problem in environments where previous versions of software have
to be supported while a new version is being prepared. When an emergency bug fix is undertaken,
we would like to run as many of our automated tests as seems appropriate to ensure that the bug fix
has not had any adverse affects on the rest of the software. But if we have had to change our tests
to make them compatible with the new version of the software this will not be possible unless we
have saved the old versions of the tests. Of course the problem becomes even worse if we have to
manage more than one old version or more than one software system.

If we have only a relatively few automated tests it will be practical to simply copy the whole set of
automated tests for each new version of the software. Of course bug fixes to the tests themselves
may then have to be repeated across two or more sets but this should be a relatively rare
occurrence. However, if we have a large number of tests this approach soon becomes impractical.
In this case, we have to look to configuration management for an effective answer.

6. Trying to automate too much

There are two aspects to this: automating too much too soon; and automating too much, full stop.
Automating too much early on leaves you with a lot of poorly automated tests which are difficult
(and therefore, costly) to maintain and susceptible to software changes.

 Grove Consultants, 2001 Page 7

It is much better to start small. Identify a few good, but diverse, tests (say 10 or 20 tests, or 2 to 3
hours worth of interactive testing) and automate them on an old (stable) version of software,
perhaps a number of times, exploring different techniques and approaches. The aim here should be
to find out just what the tool can do and how different tests can best be automated taking into
account the end quality of the automation (that is, how easy it is to implement, analyse, and
maintain). Next, run the tests on a later version (but still stable) of the software to explore the test
maintenance issues. This may cause you to look for different ways of implementing automated tests
that avoid or at least reduce some of the maintenance costs. Then run the tests on an unstable
version of the software so you can learn what is involved in analysing failures and explore further
implementation enhancements to make this task easier and therefore, reduce the analyse effort.

The other aspect, that of automating too much long term may at first seem unlikely. Intuitively, the
more tests that are automated the better. But this may not be the case. Continually adding more and
more automated tests can result in unnecessary duplication and redundancy and a cumulative
maintenance cost. James Bach has an excellent way of describing this [BACH97]. James points out
that eventually the test suite will take on a life of its own, testers will depart, new testers will arrive
and the test suite grows ever larger. Nobody will know exactly what all the tests do and nobody will
be willing to remove any of them, just in case they are important.

In this situation many inappropriate tests will be automated as automation becomes an end it itself.
People will automate tests because “that’s what we do here - automate tests” regardless of the
relative benefits of doing so.

James Bach [BACH97] reports a case history in which it was discovered that 80% of the bugs
found by testing were found by manual tests and not the automated tests despite the fact that the
automated tests had been developed of a number of years and formed a large part of the testing that
took place. A sobering thought indeed.

Acknowledgements

My thanks to Brian Marick for unwittingly giving me the idea for this paper following his
presentation of his own “Classic Testing Mistakes” paper at the Star’97 Conference [MARI97].

References

BACH97 James Bach, “Test Automation Snake Oil” presented at the 14th International
Conference on Testing Computer Software, Washington, USA.

BEIZ90 Boris Beizer, “Software Testing Techniques”, 2nd Edition published by Van
Nostrand Reinhold.

MARI97 Brian Marick, “Classic Testing Mistakes” presented at the 6th International
Conference on Software Testing Analysis and Review, May 1997 San Jose,
California, USA.

Mark Fewster

Mark has nearly twenty years of industrial experience in software testing
specializing in the area of Software Testing Tools and Test Automation. This
includes the development of a test execution tool and its successful introduction
into general use within the organization.

Since joining Grove Consultants in 1993, Mark has provided consultancy and
training in software testing, particularly in the application of testing techniques
and test automation. He has published papers in respected journals and is a
popular speaker at national and international conferences and seminars.

Mark serves on the committee of British Computer Society's Specialist Interest
Group in Software Testing (BCS SIGIST) and is also a member of the
Information Systems Examination Board (ISEB) working on a qualification
scheme for testing professionals.

Mark has co-authored a book with Dorothy Graham, Software Test Automation
published by Addison-Wesley.

	Title Page
	Presentation
	Paper
	Bio

