Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,032)
  • Open Access

    REVIEW

    Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review

    Md Naeem Hossain1, Md Mustafizur Rahman1,2,*, Devarajan Ramasamy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 951-996, 2024, DOI:10.32604/cmes.2024.056022 - 27 September 2024

    Abstract Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically. Hence, there is a growing demand for advanced fault diagnosis technologies to mitigate the impact of these limitations on unplanned vehicular downtime caused by unanticipated vehicle breakdowns. Due to vehicles’ increasingly complex and autonomous nature, there is a growing urgency to investigate novel diagnosis methodologies for improving safety, reliability, and maintainability. While Artificial Intelligence (AI) has provided a great opportunity in this area, a systematic review of the feasibility and application of AI for Vehicle Fault Diagnosis (VFD)… More > Graphic Abstract

    Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review

  • Open Access

    ARTICLE

    The Machine Learning Ensemble for Analyzing Internet of Things Networks: Botnet Detection and Device Identification

    Seung-Ju Han, Seong-Su Yoon, Ieck-Chae Euom*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1495-1518, 2024, DOI:10.32604/cmes.2024.053457 - 27 September 2024

    Abstract The rapid proliferation of Internet of Things (IoT) technology has facilitated automation across various sectors. Nevertheless, this advancement has also resulted in a notable surge in cyberattacks, notably botnets. As a result, research on network analysis has become vital. Machine learning-based techniques for network analysis provide a more extensive and adaptable approach in comparison to traditional rule-based methods. In this paper, we propose a framework for analyzing communications between IoT devices using supervised learning and ensemble techniques and present experimental results that validate the efficacy of the proposed framework. The results indicate that using the More >

  • Open Access

    ARTICLE

    Advancing 5G Network Applications Lifecycle Security: An ML-Driven Approach

    Ana Hermosilla1,2,*, Jorge Gallego-Madrid1, Pedro Martinez-Julia3, Jordi Ortiz4, Ved P. Kafle3, Antonio Skarmeta1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1447-1471, 2024, DOI:10.32604/cmes.2024.053379 - 27 September 2024

    Abstract As 5th Generation (5G) and Beyond 5G (B5G) networks become increasingly prevalent, ensuring not only network security but also the security and reliability of the applications, the so-called network applications, becomes of paramount importance. This paper introduces a novel integrated model architecture, combining a network application validation framework with an AI-driven reactive system to enhance security in real-time. The proposed model leverages machine learning (ML) and artificial intelligence (AI) to dynamically monitor and respond to security threats, effectively mitigating potential risks before they impact the network infrastructure. This dual approach not only validates the functionality… More >

  • Open Access

    ARTICLE

    Multi-Binary Classifiers Using Optimal Feature Selection for Memory-Saving Intrusion Detection Systems

    Ye-Seul Kil1,#, Yu-Ran Jeon1,#, Sun-Jin Lee1, Il-Gu Lee1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1473-1493, 2024, DOI:10.32604/cmes.2024.052637 - 27 September 2024

    Abstract With the rise of remote work and the digital industry, advanced cyberattacks have become more diverse and complex in terms of attack types and characteristics, rendering them difficult to detect with conventional intrusion detection methods. Signature-based intrusion detection methods can be used to detect attacks; however, they cannot detect new malware. Endpoint detection and response (EDR) tools are attracting attention as a means of detecting attacks on endpoints in real-time to overcome the limitations of signature-based intrusion detection techniques. However, EDR tools are restricted by the continuous generation of unnecessary logs, resulting in poor detection… More >

  • Open Access

    ARTICLE

    Intelligent Diagnosis of Highway Bridge Technical Condition Based on Defect Information

    Yanxue Ma1, Xiaoling Liu1,*, Bing Wang2, Ying Liu1

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 871-889, 2024, DOI:10.32604/sdhm.2024.052683 - 20 September 2024

    Abstract In the bridge technical condition assessment standards, the evaluation of bridge conditions primarily relies on the defects identified through manual inspections, which are determined using the comprehensive hierarchical analysis method. However, the relationship between the defects and the technical condition of the bridges warrants further exploration. To address this situation, this paper proposes a machine learning-based intelligent diagnosis model for the technical condition of highway bridges. Firstly, collect the inspection records of highway bridges in a certain region of China, then standardize the severity of diverse defects in accordance with relevant specifications. Secondly, in order… More >

  • Open Access

    ARTICLE

    Fuzzy Machine Learning-Based Algorithms for Mapping Cumin and Fennel Spices Crop Fields Using Sentinel-2 Satellite Data

    Shilpa Suman1, Abhishek Rawat2,*, Anil Kumar3, S. K. Tiwari4

    Revue Internationale de Géomatique, Vol.33, pp. 363-381, 2024, DOI:10.32604/rig.2024.053981 - 18 September 2024

    Abstract In this study, the impact of the training sample selection method on the performance of fuzzy-based Possibilistic c-means (PCM) and Noise Clustering (NC) classifiers were examined and mapped the cumin and fennel rabi crop. Two training sample selection approaches that have been investigated in this study are “mean” and “individual sample as mean”. Both training sample techniques were applied to the PCM and NC classifiers to classify the two indices approach. Both approaches have been studied to decrease spectral information in temporal data processing. The Modified Soil Adjusted Vegetation Index 2 (MSAVI-2) and Class-Based Sensor… More >

  • Open Access

    ARTICLE

    A Study on Outlier Detection and Feature Engineering Strategies in Machine Learning for Heart Disease Prediction

    Varada Rajkumar Kukkala1, Surapaneni Phani Praveen2, Naga Satya Koti Mani Kumar Tirumanadham3, Parvathaneni Naga Srinivasu4,5,*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1085-1112, 2024, DOI:10.32604/csse.2024.053603 - 13 September 2024

    Abstract This paper investigates the application of machine learning to develop a response model to cardiovascular problems and the use of AdaBoost which incorporates an application of Outlier Detection methodologies namely; Z-Score incorporated with Grey Wolf Optimization (GWO) as well as Interquartile Range (IQR) coupled with Ant Colony Optimization (ACO). Using a performance index, it is shown that when compared with the Z-Score and GWO with AdaBoost, the IQR and ACO, with AdaBoost are not very accurate (89.0% vs. 86.0%) and less discriminative (Area Under the Curve (AUC) score of 93.0% vs. 91.0%). The Z-Score and GWO… More >

  • Open Access

    ARTICLE

    Efficient Intelligent E-Learning Behavior-Based Analytics of Student’s Performance Using Deep Forest Model

    Raed Alotaibi1, Omar Reyad2,3, Mohamed Esmail Karar4,*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1133-1147, 2024, DOI:10.32604/csse.2024.053358 - 13 September 2024

    Abstract E-learning behavior data indicates several students’ activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures. This article proposes a new analytics system to support academic evaluation for students via e-learning activities to overcome the challenges faced by traditional learning environments. The proposed e-learning analytics system includes a new deep forest model. It consists of multistage cascade random forests with minimal hyperparameters compared to traditional deep neural networks. The developed forest model can analyze each student’s activities during the use of an e-learning… More >

  • Open Access

    ARTICLE

    Modern Mobile Malware Detection Framework Using Machine Learning and Random Forest Algorithm

    Mohammad Ababneh*, Ayat Al-Droos, Ammar El-Hassan

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1171-1191, 2024, DOI:10.32604/csse.2024.052875 - 13 September 2024

    Abstract With the high level of proliferation of connected mobile devices, the risk of intrusion becomes higher. Artificial Intelligence (AI) and Machine Learning (ML) algorithms started to feature in protection software and showed effective results. These algorithms are nonetheless hindered by the lack of rich datasets and compounded by the appearance of new categories of malware such that the race between attackers’ malware, especially with the assistance of Artificial Intelligence tools and protection solutions makes these systems and frameworks lose effectiveness quickly. In this article, we present a framework for mobile malware detection based on a… More >

  • Open Access

    ARTICLE

    A Stacking Machine Learning Model for Student Performance Prediction Based on Class Activities in E-Learning

    Mohammad Javad Shayegan*, Rosa Akhtari

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1251-1272, 2024, DOI:10.32604/csse.2024.052587 - 13 September 2024

    Abstract After the spread of COVID-19, e-learning systems have become crucial tools in educational systems worldwide, spanning all levels of education. This widespread use of e-learning platforms has resulted in the accumulation of vast amounts of valuable data, making it an attractive resource for predicting student performance. In this study, we aimed to predict student performance based on the analysis of data collected from the OULAD and Deeds datasets. The stacking method was employed for modeling in this research. The proposed model utilized weak learners, including nearest neighbor, decision tree, random forest, enhanced gradient, simple Bayes, More >

Displaying 1-10 on page 1 of 1032. Per Page