INFORMS Journal on Computing

Vol. 27, No. 2, Spring 2015, pp. 204-220
ISSN 1091-9856 (print) | ISSN 1526-5528 (online)

1 liorms |

http:/ /dx.doi.org/10.1287 /ijoc.2014.0621
©2015 INFORMS

The Generalized Regenerator Location Problem

Si Chen

Arthur J. Bauernfeind College of Business, Murray State University, Murray, Kentucky 42071,
si.chen@murraystate.edu

Ivana Ljubi¢

Department of Statistics and Operations Research, University of Vienna, Vienna, 1090 Austria,
ivana.ljubic@univie.ac.at

S. Raghavan

Smith School of Business and Institute for Systems Research, University of Maryland, College Park, Maryland 20742,
raghavan@umd.edu

n an optical network a signal can only travel a maximum distance 4

nax before its quality deteriorates to

the point that it must be regenerated by installing regenerators at nodes of the network. As the cost of a
regenerator is high, we wish to deploy as few regenerators as possible in the network, while ensuring all nodes
can communicate with each other. In this paper we introduce the generalized regenerator location problem (GRLP)
in which we are given a set S of nodes that corresponds to candidate locations for regenerators, and a set T of
nodes that must communicate with each other. If S=T = N, we obtain the regenerator location problem (RLP),
which we have studied previously and shown to be NP-complete. Our solution procedure to the RLP is based
on its equivalence to the maximum leaf spanning tree problem (MLSTP). Unfortunately, this equivalence does
not apply to the GRLP, nor do the procedures developed previously for the RLP. To solve the GRLP, we propose
reduction procedures, two construction heuristics, and a local search procedure that we collectively refer to
as a heuristic framework. We also establish a correspondence between the (node-weighted) directed Steiner
forest problem and the GRLP. Using this fact, we provide several ways to derive natural and extended integer
programming (IP) and mixed-integer programming (MIP) models for the GRLP and compare the strength of
these models. Using the strongest model derived on the natural node selection variables we develop a branch-
and-cut approach to solve the problem to optimality. The results indicate that the exact approach can easily
solve instances with up to 200 nodes to optimality, whereas the heuristic framework is a high-quality approach

for solving large-scale instances.
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1. Introduction

In today’s society the Internet has become ubiqui-
tous. The number of services and applications based
on Internet protocol (IP) have grown exponentially
over the last decade. Much of this growth has been
fueled by modern optical networks that provide high
capacity transport infrastructure for advanced digital
services. This paper deals with an important and fun-
damental problem concerning the geographical reach
of an optical network. An optical signal can only
travel a maximum distance (say d,,,,) before its qual-
ity deteriorates (due to transmission impairments in
the fiber) and needs to be regenerated. To accom-
plish this, regenerators that convert the optical signal
to an electronic one (using 3R regeneration to ream-
plify, reshape, and retime the signal, see Borella et al.
1997, Mukherjee 2000, Zymolka 2006) and then back
to an optical one are installed at nodes of the optical
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network. Traditionally, optical networks have been
designed to be opaque, in the sense that regenerators
have been installed at every node of the network.
However, this strategy is expensive and energy con-
suming (because each optical signal is converted to
an electrical one and back to an optical one at each
node of the network). To lower the costs of the optical
network, since the cost of regenerators is very high
(for example, Mertzios et al. 2012, indicate a cost of
$160,000 per regenerator), we wish to instead design
a translucent optical network (Rumley and Gaumier
2009) and deploy regenerators at a subset of nodes in
the network (i.e., to deploy fewer regenerators) while
ensuring all nodes can communicate with each other
(i.e., send a signal to each other).

In this context our paper studies the following net-
work design problem that we refer to as the general-
ized regenerator location problem (GRLP). We are given
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a network G = (N, F) where N denotes the set of
nodes and F denotes the set of edges. Set SC N is the
candidate locations where regenerators can be placed,
T C N is the set of terminal nodes that must commu-
nicate with each other. A mapping ¢: F — R* defines
the length of edges. A maximum distance of 4, >0
determines how far a signal can traverse before its
quality deteriorates and needs to be regenerated. Our
goal is to determine a minimum cardinality subset
of nodes L € S such that for every pair of nodes in
T there exists a simple path in G with the property
that there is no subpath (i.e., a subsequence of edges
on the path) with length > d ., without regenerators
placed on its internal nodes. (The length of a sim-
ple path P between u and v is defined as the sum of
lengths of its edges, and the nodes other than u and
v visited along that path are called internal nodes.)
When S =T = N, we obtain a special case of the
GRLP that we refer to as the regenerator location prob-
lem (RLP). In the RLP, all nodes serve as terminals
as well as candidate locations for placement of regen-
erators. In our earlier work (see Chen et al. 2010),
we introduced the RLP and presented three heuris-
tics and a branch-and-cut approach for it. In particu-
lar, we established a correspondence between the RLP
and the maximum leaf spanning tree problem (MLSTP).
In this paper, we focus on the GRLP (which turns out
to be significantly more challenging) for several rea-
sons. In practice it is not necessarily the case that all
nodes in the network need to communicate with each
other (i.e., T # N). Furthermore, for administrative
reasons (e.g., ease of maintenance) a service provider
may wish to restrict the set of locations where regen-
erators may be installed (i.e., S # N). Thus, the solu-
tion to the RLP may not accurately reflect some of
the practical constraints that a service provider may
wish to ensure (in the first situation the solution to
the RLP may install more regenerators than necessary
to ensure all nodes in N can communicate, whereas in
the second situation it may install a regenerator at a
node where it may not be desirable to do so). Unfor-
tunately, for the GRLP, the correspondence with the
MLSTP does not hold. Consequently, our earlier work
for the RLP cannot be applied to the GRLP.
Although regenerator placement is a significant
issue in optical network design, prior to our earlier
work in Chen and Raghavan (2007), the RLP seems
to have been relatively ignored by the academic liter-
ature on telecommunications network design. At the
time of submission of our earlier work (Chen et al.
2010) we had only come across two papers (Gouveia
et al. 2003, Yetginer and Karasan 2003) that discussed
the issue of regenerator placement within the context
of a larger network design problem. Since then, inter-
est in the RLP has grown significantly and additional
papers have appeared in the literature that discuss

the RLP (Bathula et al. 2013, Flammini et al. 2011,
Lucerna et al. 2009, Mertzios et al. 2012, Pachnicke
et al. 2008), although still in the restrictive form
where regenerators can be placed at every node of
the network.

Our Contribution. In this paper, we develop a math-
ematical programming approach for the GRLP by
establishing a connection between the GRLP and a
particular node-weighted directed Steiner forest prob-
lem (NWDSFP). With this connection, we devise a
simple cut formulation in the space of the natural
node selection variables. We then describe two equiv-
alent extended formulations (a typical multicom-
modity and directed cut formulation) for the GRLP.
Using a technique of disaggregation we develop a
stronger extended formulation for the GRLP. We
show this disaggregation is equivalent to a node-
splitting approach, and show that this node-splitting
model provides a stronger model for the GRLP using
the natural variables—specifically a model that con-
tains separating node-cuts in the space of the natural
node selection variables. Because the separating node-
cut model provides a strong formulation with the
fewest number of variables (which can make quite
a significant difference in terms of computational
performance), we develop a branch-and-cut (B&C)
approach on this model to provide exact solutions
for the GRLP. This approach is quite amenable to
solving to optimality instances with up to 200 nodes.
We also devise a preprocessing procedure, two con-
struction heuristics, and a local search procedure. Two
heuristic frameworks are proposed, in which the pre-
processing, followed by one of the two construction
heuristics and the local search procedure, is applied.
These heuristic frameworks are extremely fast and
produce high-quality solutions for the GRLP. Specifi-
cally, of 450 instances studied in this paper (ranging
from 50 to 500 nodes) the B&C approach solves 346
instances to optimality within the given time limit
of one hour per instance. Of these 346 instances our
heuristic frameworks found the optimal solution 307
times. Even for the largest 500-node problems, our
heuristic frameworks typically run in about half a
minute per instance.

Organization of the Paper. The rest of this paper is
organized as follows. Before we conclude this intro-
ductory section we provide a brief literature review
on the RLP. In §2 we describe a graph transformation
procedure that greatly simplifies conceptualization of
the GRLP, and propose a set of preprocessing steps to
reduce the size of GRLP instances. Section 3 discusses
both natural and extended formulations for the GRLP,
shows how to strengthen them, and establishes the
equivalence of the different formulations. Section 4
describes two heuristics and a local search procedure
for the GRLP. Section 5 describes the weighted GRLP
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and explains how to adapt our B&C procedure and
heuristics to it. Section 6 presents our computational
experiments, and §7 provides concluding remarks.

1.1. Related Literature

Regenerator technology and its use within an opti-
cal network has been well known for quite a long
time. However, until our earlier work (Chen et al.
2010), the RLP does not seem to have been consid-
ered as a stand alone network design problem within
the academic research community. Frequently, in opti-
cal network design problems, constraints related to
regeneration are ignored and dealt with once routing
paths have been determined for optical transmission,
or costs associated with regenerators were ignored
(Gouveia et al. 2003). Because network design is often
done in a hierarchical fashion, addressing the RLP
or GRLP at the outset of the network design plan-
ning process ensures that regenerators are placed at
nodes of the network so that all nodes of the network
that need to communicate may communicate with-
out worry of physical impairments of the signal. This
greatly simplifies the design process, and is extremely
useful for telecommunications managers.

In Chen et al. (2010) we established a correspon-
dence between the RLP and MLSTP. We then devised
three heuristics and a branch-and-cut algorithm for
the RLP. The branch-and-cut approach was based
on formulating the RLP as a Steiner arborescence
problem (SAP) with a unit degree on the root node
on a directed graph in which nodes are split into
arcs. Due to the correspondence between the RLP
and MLSTP, these procedures are equally applica-
ble to the MLSTP as well. Independently and subse-
quent to our work, Lucena et al. (2010) considered
the MLSTP and proposed two different formulations
for it. The first one is based on a model developed
by Fernandes and Gouveia (1998) for the minimum
spanning tree problem with a constraint on the num-
ber of leaves. The second one is identical to the SAP
model proposed in Chen et al. (2010). Lucena et al.
(2010) also (independently) proposed a heuristic for
the MLSTP, which is identical to the heuristic called
H1 in Chen et al. (2010).

Flammini et al. (2011) developed an approxima-
tion algorithm for the RLP with approximation ratio
O(logn). They showed that the RLP is not approx-
imable in polynomial time with an approximation fac-
tor better than (1 —€)logn. Sen et al. (2010) point out
some errors in Flammini et al. (2011). By making the
connection between the RLP and the minimum con-
nected dominating set problem (MCDSP)! the authors

! This connection is also implicit from the correspondence between
the RLP and MLSTP shown in Chen et al. (2010) and the cor-
respondence between the MLSTP and MCDSP shown in Lucena
et al. (2010).

show that there is a (logd + 2)-approximation algo-
rithm for the RLP, where 6 denotes the maximum
degree of the input graph. In some design scenarios,
rather than focusing on minimizing the number of
regenerator locations, the focus is on minimizing the
total number of regenerators installed with the pro-
vision that at each location, multiple regenerators
need to be installed (one for each pair of nodes
that communicates through that location and needs
a regenerator at that location). Mertzios et al. (2012)
studied the complexity of this problem and showed
that it does not admit a polynomial-time approxima-
tion scheme. While the papers discussed so far focus
solely on the location of regenerators, recently, Patel
et al. (2010) considered the regenerator placement and
traffic grooming problem together. In other words, in
addition to determining the location of regenerators,
they also determine a logical topology of the network
(links on this logical topology are lightpaths) and
route traffic over this logical topology. They described
separate heuristics for the RLP and traffic groom-
ing problem, and discussed how to combine the two
heuristics to consider both problems together.

Several recent papers discuss extensions of the RLP.
Mertzios et al. (2011) introduce an online version of
the RLP. Bathula et al. (2013) consider the RLP with
additional routing restrictions. Yildiz and Karasan
(2015) add node-survivability restrictions to the RLP.
In one variant the solution has to remain connected
after failure of any single regenerator node, and in
another variant, the solution has to remain connected
after failure of any single node in the network. To the
best of our knowledge, the GRLP has not been con-
sidered previously in the literature.

2. Preliminaries
In Chen et al. (2010) we showed that the RLP is
NP-complete. Since the GRLP generalizes the RLP,
its NP-completeness follows immediately. Alterna-
tively, to show the NP-completeness of the GRLP
directly, one might consider a transformation from the
hitting set problem as shown in Chen et al. (2009).
Before solving the GRLP, it is useful to consider
a graph transformation into a communication graph B
that is described in this section. We also address ques-
tions related to checking the feasibility of the input
graph. Finally, in this section we show how to effi-
ciently reduce the size of the input graph, by applying
several reduction procedures.

2.1. The Communication Graph

Given a graph G = (N, F) with edge lengths ¢, let
d(u, v) denote the length of the shortest path between
nodes u and v in G. We now generate a graph B =
(N, E), called the communication graph, such that E =
{e={u,v}|u, veN, d(u,v) <d,,} In other words, if

max}
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the length of the shortest path d(u, v) between a pair
of nodes (u, v) in G is < d,,,, we construct edge {u, v}
in B. Observe that if every pair of nodes in T has an
edge connecting them in B, then no regenerators are
required. On the other hand, every node pair in T that
is not connected by an edge in B requires regenerators
to communicate. We call such node pairs not directly
connected or NDC node pairs. Without loss of generality,
we will assume that the NDC node pairs are defined as
(t;,t,), where t;, t, € T and t; < t,. The set of all NDC
node pairs will be denoted by NDC. It should be clear
that it suffices to consider the GRLP on the communi-
cation graph B. In other words, given the communica-
tion graph B, the GRLP on B searches for the minimum
cardinality set of nodes L € S to place regenerators,
such that for every NDC node pair in T there exists
a path with regenerators placed at all its internal
nodes.

LemmA 1. Without loss of generality, we can assume
that for any GRLP instance, {S, T} is a proper partition of
N,ie,SNT=@,SUT=N,and S, T # .

Proor. Assume that in a graph G we have that SU
T # N. The nodes from N\{SU T} will not be candi-
dates for placing regenerators, nor will they be part of
a NDC node pair. Since the communication graph B
already specifies nodes that can communicate without
regenerators, the nodes in N\{SU T} can be deleted
from B.

Assume now that SN T # &. We show how to trans-
form B into a communication graph B’ = (N’, E’) in
which the set of potential regenerator locations (S’)
and the set of terminal nodes (1”) are disjoint, without
changing the value of the solution. To do so, we basi-
cally split every node i € TN S into a node s; € " and
anode t; € T" and reconnect them as follows:

N’ = [s]ie TNS}Ult,]ie TNS)ULj|j¢TNS),
E' = {{s;, s}, {ti, ;). {s; ;) (s t:} i, jY €E, i, je TNS}

Of{sp ), 7)1l ) €E, i€ TNS, j¢ TNS)
O{i, )i, j)€E, i, j¢TNS).

Figures 1(a) and 1(b) illustrate this transformation. It
is easy to verify that any feasible solution on B can
be transformed into an equivalent one on B’ with the
same number of regenerators, and vice versa. O

Given the previous lemma, in the rest of the paper
we will assume that the GRLP is posed on a commu-
nication graph, and the sets S and T form a proper
partition of N. We call nodes in S, s-nodes, and nodes in
T, t-nodes. Any maximally connected component con-
sisting of s-nodes only will be called an S-component.
The number of all S-components in B will be denoted
by ng. Given a node u € T and an arbitrary set N € N,
we define N—degree of u as degy (1) = |{{u, v}|v e N,
v#ul|. If degy(u) =1, we say that u has a unit N-
degree.

2.2. Checking Feasibility of the GRLP

Observe that the necessary and sufficient condition for
an instance of the GRLP to be feasible is that the two
end points of every NDC node pair are connected to at
least one common S-component. For the input graph
B’ given in Figure 1(b), we identify two S-components
of B’ and replace them with super-nodes S; and S,, as
shown in Figure 1(c). This instance is feasible since the
two end points of every NDC node pair are connected
to at least one common S-component.

To check feasibility of a GRLP instance, one has to
consider all NDC pairs (there are O(|T|*) of them in
the worst case) and check that they are connected to a
common S-component (115 € O(|S|)). Therefore, the fea-
sibility check can be done in O(|T|?-|S]|) time. For the
rest of the paper, we will assume that a given instance
of the GRLP is feasible.

2.3. Preprocessing for the GRLP
Observe that in the communication graph B the fol-
lowing properties hold.

(a) Graph B with S = {1, 3, 6} and
T={1,2,4,5}.

T'={1,,2,4,5}.

Figure 1

(b) Transformation into B’ with
S'NT' =2,8 ={s,3,6},and

(c) Checking feasibility: Merged
s-nodes into 2 S-components,
Sy ={s;,3} and S, = {6}.

Eliminating Nodes from SN T in the Communication Graph B and Checking Feasibility
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(PO) If an s-node i has unit degree, removal of
node i from B will not change the problem;

(P1) If all the neighbors of an s-node i are connected
to each other, removal of node 7 from B will not change
the problem;

(P2) If a t-node i is not in any NDC node pair,
removal of node 7 from B will not change the problem;

(P3) If a t-node i has unit S-degree (i.e., it is only
connected to one s-node /), every feasible solution
must include a regenerator deployed at the s-node
connected to node i (i.e., node /);

(P4) If the two end points of a NDC node pair (i, k)
are connected to only one common S-component, say
Sj C S, and i (or k) has unit Sj—degree, any feasible solu-
tion must deploy a regenerator at the corresponding
adjacent node / € S;.

We now propose a preprocessing procedure that
repeatedly uses the properties (P0)—(P4) to reduce the
input graph B. Let us denote by L C S, the set of
locations where regenerators are placed, and by Q €
{1, ..., ng} the set of indices of S-components in which
regenerators are placed. When removing a node u
from B, we will denote it by B\u. In that case, the node
will be removed from N (and, correspondingly, from
T or S), and all its neighboring edges will be removed
from E. The psuedo-code of the preprocessing proce-
dure is given in the online supplement (available as
supplemental material at http://dx.doi.org/10.1287/
ijjoc.2014.0621).

In each preprocessing iteration, we check the prop-
erties (P0)-(P4), and, if the set L of regenerators that
can be fixed is nonempty, our preprocessor uses a sub-
routine called UPDATE(B, L, Q) whose pseudocode
is provided in the online supplement. The procedure
essentially identifies all the node pairs that can be con-
nected after deploying regenerators in L, and adds to
B the edges associated with these node pairs. Thereby,
the connectivity of B is iteratively improved and the
number of NDC node pairs reduced. In addition, the
UPDATE procedure deletes nodes from B where we
have fixed the location of regenerators. This can sig-
nificantly reduce the number of s-nodes of the com-
munication graph B. The UPDATE procedure is used
later in §4 within the construction heuristics and the
post-optimization.

LeEMMA 2. The running time of the preprocessing proce-
dure is O(|S|*|N?).

ProOF. See online supplement. [J

3. Mathematical Programming
Approach

In this section we first show how to transform a GRLP
instance given on B into a special instance of the node-
weighted directed Steiner forest problem (NWDSFP)

on an auxiliary graph H. Using this transformation,
we study a natural formulation (in the space of node
selection variables) and two extended formulations
for the GRLP. We show how to strengthen one of the
extended formulations by a disaggregation technique.
We also obtain this strengthening in the natural for-
mulation (and the other extended flow formulation)
by “splitting” s-nodes. Using the strengthened formu-
lation on the natural variables, we propose a branch-
and-cut algorithm that is described in §3.4.

3.1. Transforming the GRLP Into a Particular
Node-Weighted Directed Steiner Forest
Problem

When modeling the GRLP, we want to find a solu-

tion such that any NDC node pair (¢, ,) is connected

via a path where all the internal nodes are from S. To
forbid t-nodes along a path between any two NDC
node pairs, we will work on a directed graph H in
which t-nodes will have either in- or out-degree equal
to zero. The construction of H is described in the fol-
lowing. During this transformation, we create a set of
origin-destination pairs, denoted by D that correspond
to the NDC node pairs from B. The directed graph
H = (Vy, Ay) is defined as follows:

V, =V,UV,US,

where V, and V|, are created as follows.

For v € T, such that there exists a (v, [) € NDC, cre-
ate anode v, € V.. For each v € T, such that there exists
a (I, v) e NDC, create a node v, € V},. The arc set

AH={(i,j)|{i,j}eE,iEVO,jES,
orieS, jeVy, ori,jeS}.

The cost of each arc (i, j) € Ay is defined as c; =0.
Node weights are defined as: w; =1 if i € S, and
w; =0 if i € V, U V,. Figure 2 illustrates this trans-
formation. We now define the NWDSFP as follows.
Given a directed graph H = (Vy, Ay), a collection of
origin-destination pairs D € V}; x V, and node and
arc weights, w: Vy; — R* and c¢: Ay — RY, respec-
tively, the node-weighted directed Steiner forest problem
(NWDSFP) searches for a subgraph H' = (V’, A’) of H
that contains a directed path for every pair of nodes
from D and that minimizes > ;. W; + >, Ca-

One can easily show that the GRLP can be trans-
formed into a special instance of the NWDSFP (one
where arc costs are zero and the set of origins and
destinations are disjoint) on the graph H obtained as
described earlier.

LemMAa 3. Given a feasible solution to a GRLP instance
on the communication graph B it can be transformed to
a feasible solution of equal cost to the instance of the
NWDSEFP on the graph H, and vice versa.
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(a) Communication graph B with NDC
node pairs (1, 2), (1, 3), and (2, 3).

Figure 2 Transformation of a GRLP Instance into a NWDSFP Instance

3.2. Natural and Extended Formulations on H

For each origin node r € V5, denote by Vj(r) ={i €
Vp | (r, i) € D} the set of its destination nodes. A solu-
tion to the GRLP on H can be seen as a union of Steiner
arborescences rooted at r with V(r) nodes as termi-
nals (that are leaves).

We can introduce a natural formulation on the node
selection variables, as follows. We create binary vari-
ables y; € {0, 1}, i € S that are set to one if node i € S
is in the solution (and 0 otherwise). Furthermore, we
fix y; =1 for i € Vo U Vp,. (In this and in the following
models, y variables assigned to V, UV}, can easily be
removed from the formulation, but they are kept for
the sake of better readability.) Given W C V};, denote
by 6= (W) ={(i,j)|i ¢ W,j € W}. The natural formu-
lation is based on the observation that given a choice
of binary values for the y; variables, a feasible solu-
tion to the GRLP exists if after setting arc capacities
to min{y;, y;} for every (i, j) € Ay the directed graph
contains Steiner arborescences (from each origin node
r € Vp to V5 (r)). The natural formulation then reads as:

(CUT,) min } y, 1)
ieS
st. ) min{y,y}=1 VreV,,
(i, j)€d=(W)
VWS Vy\rl, WnVp(r)#2, (2)
y=1 VieVyUuV, (3)
y;€1{0,1} VieS. 4)

Constraints (2) represent a compact way of writ-
ing 2" MWl many inequalities per each constraint
of type (2). Indeed, for any index set of arcs I =
{1,..., |II}, inequality > ; ;e minf{y;, y;} > 1 can be
replaced by the following collection of 2/ inequalities:
>, el k=ioj Yk = 1. (For example if I = {(1,2), (3,4)},
then the collection of inequalities is y; +y; > 1, y; +
vzl p+y;zlandy,+y,21)

(b) Directed graph H with V, = {1,2,},
Vp =1{24 3}, and the set of NDC node pairs
D ={(1,2), (1, 3), (2,,3)}.

Alternatively, one may also consider an extended
formulation of CUT,, by introducing binary arc vari-
ables x; € {0, 1}, which will be set to one if the arc
(i,j) € Ay is used along a path between an origin-
destination pair (o0, d) € D, and to zero otherwise. Fur-
thermore, for ease of notation, given any vector x over
a ground set, and a subset of elements U in the ground
set, let x(U) = > ;, jeu ¥;; denote the sum of the ele-
ments of the vector taken over the subset U. In the cor-
responding model, which we will refer to as CUT
inequalities (2) are replaced by:

x, Y’

x(6(W)) =1 VreV,,
VWS Vu\{r}, WNVp(r)#2, (5)
x; < minfy;, y;} V(i) € Ay, (6)
x; € {0, 1} V(i j) € Ay. (7)

We now describe a compact extended multicom-
modity flow formulation on H. In this model, for
every origin-destination pair (o,d) € D, we create
a commodity with unit requirement. Let f,;‘ repre-
sent the amount of flow of commodity k sent on arc
(i, j) € Ay. Notice that given a choice of binary values
for the y; variables, a feasible solution to the problem
exists if after setting arc capacities to min{y;, y;} for
every (i, j) € Ay the directed graph supports the flow.
In the multicommodity flow model (MCF,) inequali-
ties (2) in CUT, are replaced by:

X fi- X i

(i,j)eAn (j,eAn
-1, i=d;
=11, i=o0 VieVy, Vk=(o,d)eD; (8)

0, otherwise,

0<f; <min{y;, y;} V(i,j)e AyVkeD. (9)
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Let v;p(M) denote the value of the LP-relaxation
of a MIP model M, P,, denote the feasible space of
its linear relaxation, and let Proj y(PM) denote its pro-
jection onto the space of (y;);.s variables. The fol-
lowing lemma easily follows in a straightforward
fashion from the max-flow min-cut theorem (Ford and
Fulkerson 1956).

LemMA 4. The formulations CUTy, MCFy, and CUT, v
are equally strong and their projections onto the space of the
y variables are identical; i.e., v;p(CUT,) = v p(MCF,) =
vp(CUT, ) and P cuT, = Proj, (P MCF}/) = Proj, (P CUTW)-

3.3. Strengthening

To build a stronger model, we first consider CUT, ,
and disaggregate node and arc variables as follows. To
each origin node r € V;, we assign the set of binary
arc and node variables, x;; and y;, respectively, that are
set to one if the arborescence rooted at r uses these
arcs/nodes to connect to its destination nodes V(7).

The formulation then reads as follows:
(DCUT,, y)
min ) y; (10)

ieS

st x"(6-(W)) =1, VreV,, YWCVy\(r},

WNV(r)£2, (11)

x'(87 (i) = ]1/ Z;j/’D(r), VreV, (12)
yi <y; VYreVyVies, (13)
yi=1 VieVyUV,, (14)
x;€{0,1} V(i,j)e Ay, VreVy, (15)
y,y;€{0,1} VieVy, VreV,. (16)

In the above, 6 ({i}) is shortened to 67 (i). Notice
that for each arborescence rooted at node r we have

enforced the indegree constraints that state the inde-
gree of each node of an arborescence is equal to one.
This strengthens the model.

LemMA 5. The model DCUT, |, is strictly stronger than
the model CUT, ,. In other words, v p(DCUT, ,) >
op(CUT,,,) and there are instances for which strict
inequality holds.

Proor. To prove this result it suffices to consider
minimal feasible solutions (x”,y”,y’) € Ppcur, - Let
xj; = max, x';. Then it is easy to verify that x,y)
is also feasible to inequalities (3) and (5). With
regards to inequality (6), since x'j; < x"(87(j)) =y’;,
x;; <Y; is automatically satisfied. In a minimal solu-
tion, for each arborescence at node 7, x’; < x7(8(i))
(this is a consequence of max-flow min-cut). Since
X' < x/’(S‘(i))zy’:,xij < y; is also automatically
satisfied. Figure 3 illustrates an example that shows
that ©;,(DCUT, ,) can be strictly greater than

vp(CUT, ). O

We now show how this same strengthening can be
achieved using a node-splitting technique in the nat-
ural and extended flow formulation. The graph H
is_transformed into an extended directed graph H =
(Vy, Ap) such that:

Vi, =V,UV,uS'us’,

where S’ ={i"|ie S} and S"={i"|ie S},
Ay =AUA, where Ag={(i',i")|ieS}, and
A= U ("), jeStu{(", j)lieS, je Vp)
(i, )eAn

u{(i,j)]ieVy, jeS).

/

In other words, for every node i in S we create two
nodes i’ and i” corresponding to the node’s input and
output functions. Thereby, the cost of an arc a € A is
set to zero, and the cost of an arc a € A; is set to one.

(a) An optimal LP-solution of the model CUT, ,.
vpp(CUT, ) =2.5. For all arcs shown above, ’
X = 0.5, and for all i € S, y; = 0.5. This solution
is infeasible for DCUT, , because the s-node in
the middle violates (13).

Figure 3

(b) An optimal LP-solution of the model DCUT, 3
v p(DCUT, ) = 3. For all arcs shown above,
X = 1, and for all nonisolated i € S, y;= 1.

Example Showing That DCUT, , Is Strictly Stronger Than CUT, ,



Chen, Ljubié, and Raghavan: The Generalized Regenerator Location Problem

INFORMS Journal on Computing 27(2), pp. 204-220, ©2015 INFORMS

211

Figure 4
Note. Dashed arrows correspond to the s-nodes that are split.

Figure 4 illustrates this transformation and it is easy
to see that the following result holds.

LemMA 6. Given a feasible solution to a GRLP instance
on the communication graph B, it can be transformed to a
feasible solution of equal cost to the directed Steiner forest
problem (DSFP) on the extended directed graph H, and vice
versa.

Strengthened Node-Cut Formulation on H: For every
arc (i,j) € Ay, we introduce a binary variable
z; €{0,1} that is set to 1 if the arc is used in estab-
lishing a connection between some 0 € V, and d € V)
((0, d) € D), and 0 otherwise. The following cut-set for-
mulation models multiple Steiner arborescences on H:

min{ Y CiZi

(i, j)eds

Y zi=1,reV, WCV\{r},
(i, j)ed=(W)

WNVp(r)#9,z;€{0, 1}}

We will refer to this model as SCUT. Later in this sec-
tion, we will explain how SCUT yields the strength-
ened model in the natural space of the node variables.

Strengthened Flow Formulation on H: Alternatively,
one could consider a multicommodity flow formula-
tion on A 1, where commodities are defined identically
to MCF,. Instead of using the z;; arc variables in the
model we will use the node selectlon variables with
the understanding that arc capacities are min{y;, y;}
for the arcs in A and y; for the arcs in Ag. In other
words, although we have conceptually split the nodes
to obtain H, we will write the formulation on H. That
yields the strengthened multicommodity flow formu-
lation (MCF;), which is identical to MCF, with the
additional inequality

3 fj’jfyi VieS, Vk=(o,d)eD. (17)
(j, eAn

We now show the equivalence of these alternate
strengthened formulations for the GRLP.

Node-Splitting Transformation of the Graph Given in Figure 2(b)

Formulations
are equally strong; i.e.,

THEOREM 1.
DCUT, y

SCUT, MCF;’, and

91p(SCUT) = v;,(MCF,) = v;,,(DCUT, ).

Proor. First we show vLP(DCUT ) = ULP(MCF+)
Given any feasible solution (X", y", y) e DCUT, ,, w
can construct a feasible solution to (f y) € MCF+ as
follows. The y vector is set identically. All that remams
is to argue that feasible flow values can be found that
satisfy constraints (8), (9), and (17). Consider 2}, to
represent the capacity of flow originating at node r
on arc (i, j). Then, by max-flow min-cut arguments, it
follows that it is possible to find values of flows (f)
obeying the capacities such that an origin node r € V5
can send one unit of flow to each of its destina-
tion nodes in V. Consequently, constraint (8) is sat-
isfied. Furthermore, for any commodity k, *(8(i)) <
XE@) =9l <1, and constraint (17) is also satis-
fied. Noting that f¥ < fk ~(j)) and constraint (17),
we obtain f," <7 Also f" < f%(8*(i)). But from
constraint (8), FREH() = fk &7(i)); and from con-
straint (17), fk(6 (1)) < ;. Thus, f < ¢;, and con-
straint (9) is satisfied. (This also indicates that in the
presence of constraints (8) and (17), constraint set (9)
is redundant and can be dropped from MCF;.)

Next we show v, p (MCF;) > v;p(SCUT). Given any

feasible solution (£, y) € MCF; we construct a solu-
tion z € Pycyr by setting Z;,» = y;, for all i € S, and Z;;
max; f otherwise. By max-flow min-cut arguments,
it follows that on the extended directed graph H with
capacities equal to z, we are able to send one unit
of flow from each r € V,, to each d € V(r). In other
words, the solution z is feasible for the model SCUT.
Finally, we show v;p(SCUT) > v ,(DCUT, ,), which
completes the proof. To prove this inequality, it suf-
fices to consider minimal feasible solutions from Pgyy.
Given a minimal feasible Z € Py, we will show that
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there always exists a solution (x, §", §) feasible for the
DCUT,,, model, with the same objective value. We set
J;i=2;p, forallieSand §; =1, for i € V, U V. On the
graph H with arc capacities defined using z values,
we are able to send one unit of flow from every r € V,
to every d € Vj(r). Without explicitly stating the cor-
responding multicommodity flow formulation on H,
let fij.r’d) denote the amount of flow for a commodity
(r,d) € D sent along an arc (i, j) € A,;. We now define
the values of X" and y" as follows:
maXgev,, (r) fl(y] 9,
& = Ymaxger, o fi 7
maX,cy, () fif,yr’jd), ieS, jeVp;

§r=%"(57(i), i eS.

i,jeS;
ieVy, jeSs;

reVy, (i,j)e Ay and

By construction of the flow and the definition of
X", we also have that £"(6~(i)) = 1, for all r € V,; and
i€ Vp(r) and hence, together with the definition of
y’, constraints (11) and (12) are satisfied. The con-
structed vector (X', ', ¥) also satisfies constraints (13),
due to the minimality of the capacity vector z. Indeed,
assume that our choice of the flow f causes a viola-
tion of the constraint §j/ < 7, for some r € V, and i €
S. This implies that, without loss of generality, there
exist exactly two commodities, say d,, d, € V(r), such
that f0~%) and f %) are routed over (i,i") in H, but
they are not routed over the same collection of paths
between r and 7. In that case, rerouting the flow of one
of the two commodities still induces a feasible solu-
tion, with at least one z capacity being reduced. But,
this is in contradiction to our assumption that Z is a
minimal feasible solution in Py-yp. O

Given the specific cost structure of the GRLP, we are
not interested in all possible cut sets separating the
set of terminals Vj(r) from its root r € V,,, but rather
on those cut sets among them consisting solely of split
arcs represented by Ag. This means that for modeling the
GRLP on the extended directed graph H, it is sufficient
to change the objective function to > 4, zy» and
look at the following family of cut sets:

W= J{W|WCSV\(r}, WNVp(r)# o
<o and 5-(W)NA=o)}. (18)

The correctness of this claim follows from observing
that setting z;; =1 for all (i, j) € A will not change the
value of the objective function. Thus the only cuts of
interest in the above model are the ones that do not
contain arcs in A. In terms of the natural variables
the cut sets defined by (18) correspond to the (7, d)
separating nodecuts in H, i.e., to the subsets of nodes
Ws C S, such that for at least one NDC node pair (7, d),
eliminating nodes from W and H results in a graph

in which the nodes r and d are disconnected. Let
denote the union of all (7, d) separating node cuts in
H, for all r € V, d € V. We can then rewrite the SCUT
model for the GRLP in terms of the natural variables
(where z;,, is replaced by the node variables y;, for all
i €S) as follows:

(NSCUT) min )y,
ieS
st. Y y;=1, VW; enN, (19)
ieWs
y;€{0,1} VieSs. (20)

Note that it suffices to consider minimal separating
node cuts in H to define the model NSCUT.

3.4. Branch-and-Cut Algorithm

For solving the GRLP to optimality, among all mod-
els presented previously, we chose the NSCUT model.
As noted, NSCUT is essentially a strengthened formu-
lation in the natural space of node variables. Since it
has significantly fewer variables than either DCUT, ,
or MCF;r (which are equally strong) it is better suited
for computational purposes (in terms of solving large
instances). Although it has an exponential number of
constraints, the separation problem is fairly easy to
solve. We now discuss the main algorithmic issues
of an efficient implementation of the branch-and-cut
framework for solving the NSCUT formulation.

3.4.1. Constructing the DSFP. When transform-
ing a GRLP instance into an instance of the directed
Steiner forest problem, we need to decide how to set
up the set D of ordered NDC node pairs so that the
number of arborescences that need to be simultane-
ously constructed, is minimized. To do so, we proceed
in a greedy fashion as shown in Algorithm 1.

Algorithm 1 (OrderingNDCPairs(NDC))
D=g;
repeat
Let r € T be the node with the highest
frequency in NDC node pairs;
for each (r, i) or (i, r) in NDC do
Vo=VoUlr), Vo=V, Ui}, D=DU{(r, i)};
NDC = NDC \{(r, i), (i, r)};
until NDC is empty;
return D.

3.4.2. Initialization. To speed up the performance
of the branch-and-cut algorithm, one might consider
the following set of inequalities in the initialization
phase.

In-degree and Out-degree Inequalities: The following
in-degree inequalities state that among all adjacent
s-nodes of a destination node k € V, at least one
needs to be passed through: >, ; vca, ;i = 1, for all
k € V. Similarly, the following out-degree inequalities
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ensure that among all adjacent s-nodes of a source
node r € V5, at least one needs to be passed through:
Yir, ey ¥i = 1, for all € V. Both groups of inequal-
ities are special cases of node-cut inequalities (19).

Flow-Balance Inequalities: Denote by S™ the set of all
internal s-nodes, i.e., s-nodes that are not adjacent to a
t-node. Observe that if a solution contains an s-node
from S™, then there must be some other s-node adja-
cent to V, in the solution. Similarly, there must also be
some other s-node adjacent to V, in the solution. To
state this in the enhanced directed graph H, we use
the following inequalities: y; < 3 4. yyea, Yk and y; <
>k (k, iyeay Yo for all i € S™.

We found that, although some instances were solved
faster, on average the first group of constraints slowed
down the performance of the branch-and-cut proce-
dure. For the instances considered in our computa-
tional work the second group of constraints generally
did not apply (i.e., the set S™ was typically empty).
Therefore, in the computational results presented in
§6, we did not add any cuts in the initialization phase
except the trivial ones (0 <y; <1, for all i € 5).

3.4.3. Separation. The cut-set inequalities (19) can
be separated in polynomial time. The separation algo-
rithm relies on the calculation of multiple maximum
flows on the extended directed graph H. Here, we explain
an efficient way to do that. Given a fractional solution
y’ of the current LP-relaxation, we define the capacities
on the arcs of the support graph as follows:

cap = 1V o=@, i"),ies;
Puo = 1, otherwise.

This way, only the cuts from the collection %’ (on H)
defined earlier (which correspond to node cuts for the
collection /' on H) will be separated. Before running
the separation, the nodes of the set V|, are sorted into
decreasing order according to the number of terminals
of the arborescence rooted at r (|V(r)|), and a pool
of node cuts is built. Using nested and back-cuts (as
described in e.g., Ljubi¢ and Gollowitzer 2013) up to
100 cuts are added into this pool, and then inserted
into the master LP whose value is then recalculated.
Detected violated node cuts are inserted as global cuts
into the model, in every node of the branch-and-cut
tree. Finally, our separation algorithm makes use of
minimum-cardinality cuts (see, e.g., Ljubi¢ and Gol-
lowitzer 2013); i.e., during the separation procedure,
among all node cuts with equal violation, those with
the smallest cardinality are preferred.

4. Heuristic Approach
As the exact approach presented earlier is unable
to solve large-scale GRLP instances, in this section

we consider heuristic approaches. We propose two
construction heuristics, referred to as GH1 and GH2
for the GRLP. We then explain a local search proce-
dure, called p-for-g, in which p regenerator locations
are replaced by g4 new ones (p > g >1). The overall
heuristic framework then works as follows: (1) prepro-
cessing; (2) GH1 or GH2; (3) post-optimization (local
search procedure).

4.1. Heuristic GH1
Our first heuristic GH1 focuses on S-components.
At each iteration we identify a node t € T with the
lowest T-degree (ties are broken randomly). We then
examine all the neighboring S-components S; that are
connected to . In each of the components S;, we deter-
mine a set of nodes L; € S; on which the regenerators
are to be placed. Algorithm 2 provides the pseudo-
code of the procedure PLACE_REGENS that identifies
L; for a given component S; and node . We illustrate
the algorithm in two examples given next. We assign
weight w(L)) to each L; by taking the ratio of the num-
ber of NDC node pairs that can be reduced after we
deploy a regenerator at every node in L; and the size
of L;. Let L™ C S; denote the subset with the highest
weight among all L;’s. GH1 deploys a regenerator at
every node in L. We then update the graph B (with
UPDATE(B, L™, Q ={1,2, ..., ng})), and repeat the
whole process while there exist NDC node pairs in B.

We first use a simple example given in Figure 5
to illustrate basic ideas of the heuristic. Initially all
t-nodes have T-degree equal to zero. GH1 arbitrar-
ily chooses node t,. Node f; is connected to three
S-components: S; = {s¢}, S, = {51, 5,, 53}, and S; = {s;}. If
we place regenerators at all nodes from S; (i.e., L; = Sj,
1 <j <3), the weights for L;, L,, and L; will be equal
to 1, 10/3, and 1, respectively. GH1 sets Lg‘a" =L, and
places a regenerator at each of the nodes s;, s,, and s;.
In this case, after we update the graph, we obtain a
feasible solution and the algorithm stops.

In general, it is not necessary to place regenerators
at all s-nodes within a component S; and our proce-
dure PLACE_REGENS takes this into account. We first

Figure 5 Illustration of Heuristic GH1: Input Graph B and a Solution

Found by GH1
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select an arbitrary s-node s* € S; adjacent to ¢ and per-
form a restricted breadth-first-search (BFS) (denoted by
RESTRICTED_BFS in Algorithm 2) in which the BFS
is performed on the subgraph of B induced by the set
of nodes S;UT with s* being a root. The search in one
direction is interrupted each time a f-node is encoun-
tered. That way, all t-nodes adjacent to the given §;
are leaves of the resulting BFS tree that we denote
by Tgrs = (Virs, Egrs)- In a subsequent iterative pro-
cess, we eliminate s-nodes that are leaves of that tree.
Observe at this point that if regenerators are placed
at all the internal nodes of Ty, all t-nodes adjacent
to the given S; can communicate. Rather than doing
so, we try to rearrange the edges in Ty, so that the
number of its internal s-nodes is minimized. The idea
is to try to reduce the number of internal s-nodes in
Tgrs without sacrificing the number of NDC node pairs
that can be reduced after a regenerator is added to
each one of these internal nodes. At each iteration the
number of s-nodes on the longest branch (from s*) in
Tgrs represents the minimum number of regenerators
that need to be deployed before the node ¢ can com-
municate with a leaf node [ € T via §; (this is because
breadth-first-search is used to construct Typg). We try
to make the best use of the longest branch by merg-
ing it with other branches (or parts of these branches).
We then eliminate parts of the truncated branches
from Tgpg consisting of s-nodes that are not used to
connect NDC nodes pairs. Finally, the set L; corre-
sponds to the set of all internal s-nodes of the resulting
tree Tgps.

Algorithm 2 (PLACE_REGENS(S;, t))
Arbitrarily select a neighboring s-node of ¢, say
st eS;
Tops = ({/BFS, Egps) = RESTRICTED_BFS(S; U T, s%);
Mark all s-nodes from Vi N'S; as “unmerged”;
Iteratively eliminate from Typg s-nodes that are
leaves, until there are no such nodes left;
while 35 € §; N Vg labeled as “unmerged” do
Select a longest (from s*) “unmerged” branch
B in Typ;
for each s-node | € 4 do
for each e={k, I} €E do
if k € Vg and e ¢ Eggg then
Delete the edge from k to its predecessor
in Eggs;
Egps = Egrs U {e};
Mark / as “merged”;
Iteratively eliminate from Vjpg s-nodes that are
leaves, until there are no such nodes left;
return L; = Vg N S;.

Figure 6 illustrates the procedure PLACE_REGENS
for given S, = {s;, 5,, S3, 54, S5, S, S;} and the identi-
fied t-node t; and s* = s,. The BFS tree Tygg is con-
structed through Figures 6(a)—(c). The merging process
is shown in Figures 6(d)—(f). The longest unmerged
branch from s, consists of {s;, s,, s, f;} (ties are broken
randomly). While scanning this path, we delete edges
{s,, 1,} and {s;, s;} and replace them with {s,, t,} and
{s7, 55}, respectively. Nodes s, and s; become leaves
and after their deletion, we obtain a tree Ty such that

Figure 6

lllustration of the RESTRICTED_BFS ((a)—(c)) and PLACE_REGENS ((d)-(f)) Procedure
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Ly =1{sy, 84, 8, 57}. Since six NDC node pairs—(t, t,),
(t1, t3), (11, L), (t,, t3), (£, t,), and (5, t;)—can commu-
nicate after a regenerator is placed at each of the nodes
from L,, we have w(L,) =6/4=1.5.

LemMA 7. Heuristic GH1 runs in O(|T||S||N|?) time.

ProoF. See online supplement. [J

4.2, Heuristic GH2

Heuristic GH2 is a somewhat greedier version of the
heuristic GH1. The main difference between GH1 and
GH2 lies in the way we place regenerators, once the
BFS tree Tgps is found. As opposed to GH1, GH2
focuses on placing regenerators only on the longest
branch in Tyg. For each neighboring S-component S;
of a selected node t € T, in the corresponding BFS tree
we identify the longest branch. Let B; denote the set
of internal nodes in the identified branch. GH2 then
computes w(B;) by taking the ratio of the number of
NDC node pairs that can be reduced after a regener-
ator is placed at every node in B; and the size of B,.
The branch B™ with the largest w(B;) value among
all neighboring S-components of t is then selected for
deploying regenerators. The graph B is then updated
(using the UPDATE-procedure), a new t-node with the
lowest degree is selected, and the whole procedure is
repeated until all NDC node pairs can communicate
with each other. We note that the running times of the
heuristic GH2 remain unchanged from the modifica-
tions it makes on GHI.

4.3. Local Search Procedure

The post-optimization local search (POLS) procedure
consists of a basic subroutine called p-for-q. POLS is
applied to the solutions obtained from GH1 or GH2 to
improve upon them. Subroutine p-for-q is a local search
procedure that tries to replace p regenerator locations
in the current solution with g new regenerator loca-
tions. When p-for-q results in a feasible solution, its
application reduces the number of regenerators in the
solution by (p — q). We consider two variants of this
procedure: (1) p-for-q replacement within the same S-
component, and (2) p-for-q replacement between two
different S-components. In the first case, for a given
S-component S;, and a set of regenerators placed in
L; C S;, we try to replace p regenerator locations P C L;
by g new ones, Q € S;\L,. In the second case, for two
disjoint S-components (S;, S;) and two sets of locations
where regenerators are placed, L; € S; and L]- C S]», we
try to replace p regenerator locations P C L; with g new
locations, Q € S;\L;.

Given a feasible solution L € S, we iteratively apply
p-for-g moves until we end up with a solution that can-
not be improved anymore (our local search selects the
first improvement). Then we change the neighborhood
by switching to new values for p and g and repeat the

same process again. We implement 2-for-1, 3-for-2, and
4-for-3 improvement, within each S-component, and
2-for-1 improvement between two S-components.

LemMA 8. Each single p-for-q move takes at most
O(|S||N|?) time.

PrOOF. See online supplement. O

The number of possible p-for-q moves is bounded
by |S|P*1. In case the moves are performed within
the same S-component, the search of the p-for-g
neighborhood takes at most Y1, O(|S|P*1|S|IN|?) =
O(|S|FT72|N|?) time. Similarly, if the moves are per-
formed between two distinct components, the search
will take at most O(|S|P+9+3|N|?) time (this is because
for each fixed S-component from which p nodes are to
be replaced, there are O(|S|) possibilities to select the

other component for the exchange).

5. Weighted GRLP

The weighted version of the GRLP (WGRLP) is moti-
vated by recognizing that in many real-world situ-
ations the cost of installing regenerators at different
nodes of a network may vary due to real estate costs.
In particular, installing and maintaining a regenerator
at a dense urban area may be much more expensive
than in a small town (or a rural area). Mathematically,
the WGRLP is identical to the GRLP, except that the
objective is to minimize the weighted sum of nodes
selected as regenerator locations. If we let w; denote
the weight of node i, the objective of the WGRLP is to
minimize },; w;, while the objective of the GRLP is
to minimize ) ,.; 1=L|.

The construction of the communication graph B and
the preprocessing procedure described in §2 do not
depend on weights and thus remain unchanged for
the WGRLP. Regarding the MIP formulations pro-
posed in §3, we only need to change the objec-
tive function to address the WGRLP. With respect to
heuristics, we only need to make minor modifica-
tions. More precisely, for both of the heuristics we
define the longest branch as the one with the highest
total weight of all its internal unmerged nodes. That
way, we always select the branch that maximizes the
number of NDC node pairs eliminated per unit cost.
Finally, it is straightforward to incorporate weights
into the POLS procedure and its running time per sin-
gle p-for- move remains unchanged. In addition to
the moves implemented for the GRLP, we also allow
the following four moves if they lead to a feasible
solution with reduced total weight: 3-for-3, 2-for-2, and
1-for-1 within each S-component, and 2-for-2* between
S-components where two regenerator locations in one
S-component are replaced by one regenerator location
from the same S-component and one from another S-
component.
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6. Computational Results

For solving the linear programming relaxations and
for a generic implementation of the branch-and-cut
approach, we used the commercial packages IBM
CPLEX (version 12.5) and Concert Technology
(CPLEX 2012). Our experiments were performed
on an Intel Core i7 (2600) 3.4 GHz machine with
16 GB RAM, where each run was performed on
a single processor. All implementations are done
using C++ programming language. For calculating
the maximum flow we adapted the implementation
of Cherkassky and Goldberg (1997).

6.1. Data Sets

In our study on the RLP in Chen et al. (2010), we
generated three types of networks: (i) randomly gen-
erated networks in which the communication graph
was generated explicitly; (ii) networks with random
distances; and (iii) Euclidean networks. We found that
the instances of the first group (where the communica-
tion graph was generated directly) were much harder
to solve than the other two types of networks. Conse-
quently, in our computational study on the GRLP, we
focus on randomly generated communication graphs
B. The instance generator procedure described next
guarantees that the sets S and T are disjoint and that
the instances are feasible.

Set 1 (GRLP Instances): Each instance of this set is
generated according to two parameters: the first one,
n, controls the number of nodes (|N|), and the other
one, p € [0, 1], determines the percentage of s-nodes
among them. The number of S-components, ng, is
a random integer value chosen from {2, ...,5} with
equal probability. Each s-node is randomly assigned
to one of the S-components with probability 1/n;.
Notice that the probability of a particular S-component
being empty is ((ns — 1)/ns)!l. When this happens,
we move a randomly chosen s-node into the empty
S-component. This makes sure that there are no
empty S-components. We define the density of an
S-component as d; = 2|E;|/(|S;[(|S;| — 1)), where |E||
is the number of edges in the S-component S; and
|S;| its number of nodes. Each S; has a 50-50 chance
of getting assigned either a high (d; = 70%) or low
density (d; = 30%). To ensure connectivity of each S-
component S;, we first generate a tree spanning all its
nodes and then randomly add edges until its density
reaches the assigned level d;. Each t-node ¢ and an
S-component S; are connected according to the param-
eter 4 whose value is randomly chosen from the set
{0, 1/1S;1, 2/IS;l, - .-, (IS;| —=1)/1S;|} with equal probabil-
ity for each element. We then randomly generate g x
|S;| distinct edges between ¢ and S;. Observe that the
probability of a t-node ¢ being isolated is H}E 1(1/1S;)-
When this happens, we arbitrarily choose a com-
ponent S; and randomly select q € {1/|S;|,2/|S;|, ...,

(IS;)] — 1)/|S;]} with equal probability given to each
element. This makes sure that every t-node is con-
nected to at least one s-node. In the resulting graph,
we check every pair of t-nodes: only if they share at
least one common S-component do we add them to
the set of NDC node pairs. This final step guarantees
that all generated instances are feasible. Setl contains
10 instances for each n € {50, 75, 100, 125, 150} and
each p € {0.25, 0.5, 0.75}.

Set 2 (WGRLP Instances): We generate instances for
WGRLP using the same underlying graphs as in Set1.
We only modify these graphs by assigning to each s-
node an integer weight randomly chosen from {2, 3, 4}
with equal probability.

Set 3 (Large-scale GRLP Instances): This set of in-
stances is generated following the same rules as for
the Setl. Set3 contains 10 instances for each n € {175,
200, 300, 400, 500} and each p € {0.25, 0.5, 0.75}.

6.2. Results

For the sets of generated benchmark instances, we
now report on the results obtained by running the
branch-and-cut algorithm (B&C) described in §3, and
by running the two heuristic frameworks described
in §4 (preprocessing, construction heuristic and local
search), that we will refer to as GH1-Framework and
GH2-Framework. We will use the B&C algorithm to
measure the quality of heuristic solutions, by compar-
ing the corresponding solution values. B&C was given
a time limit of one hour.

Tables 1, 2, and 4 summarize the computational
results for Setl, Set2, and Set3, respectively. Each
row of these three tables aggregates results from
10 instances with the same parameter settings. The
parameter settings are specified in the first two
columns “n” and “p(%).” Column “#red” in Table 1
reports on the average number of nodes eliminated
in the preprocessing procedure. (Since the graphs for
Set 2 are identical to Set 1 and thus the preprocess-
ing identical, we do not repeat this information in
Table 2. Because preprocessing did not reduce the size
of any of the large instances in Set 3, we do not include
this column in Table 4.) Blocks “GH1-framework” and
“GH2-framework” report the computational results
for the two heuristic frameworks, respectively. In par-
ticular, “NR” is the average number of regenerators
obtained by the heuristic framework; “RT” reports
the average running time in seconds; and “#opt”
reports the number of optimal solutions obtained by
the heuristic framework (in the case where the opti-
mum is known). In columns denoted by “#imp” we
report the number of times the post-optimization local
search improved the solution found by the underly-
ing construction heuristic. Column “#PO” denotes the
average number of regenerators that were reduced
after applying the POLS procedure. For the B&C algo-
rithm we report the following values: lower and upper
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bounds (“LB” and “UB,” respectively) and the running
time (“RT”) averaged over 10 instances per group. The
“#opt” column shows how many (of the 10) instances
B&C solved to optimality. For the set of the WGRLP
instances (Set 2), instead of “NR,” we report “Obj” val-
ues, i.e., the objective function values averaged over
10 instances per group. When the B&C algorithm ter-
minates without solving the problem to optimality, we
round up the fractional lower bound. If the heuris-
tic solution equals this lower bound, we state that the
heuristic has found the optimal solution. To demon-
strate the quality of the NSCUT formulation, column
LB, shown in Tables 1 and 2 reports the LP-relaxation
values obtained at the root node.

Set 1. Of 150 instances of this group, B&C solves all
but one to provable optimality within the time limit
of one hour. Regarding the overall performance of the
B&C approach, we observe that, for a fixed number
of nodes 1, instances with p = 0.5 (the percentage of
s-nodes in B) appear to be more challenging than the
remaining ones. This can be explained by the fact that
the computational complexity of the exact approach is
directly proportional to the two values: (a) the number
of NDC node pairs and (b) the number of s-nodes in
the input graph. Increasing the values of p (i.e., setting
p = 0.75) implies fewer NDC node pairs, and therefore,
fewer cutting planes that need to be inserted before the
optimal solution is found. On the other hand, lower-
ing the values of p (i.e., setting p = 0.25) implies lower
percentage of s-nodes, and therefore, the reduction of
the size of the search space (as there are fewer z vari-
ables involved).

Comparing the two heuristic frameworks, from
Table 1, we conclude that the GH1-Framework is
marginally better than the GH2-Framework in terms
of the number of times it finds the best solution. Notice

Table 1 Computational Results for Set 1

that the two heuristic frameworks have approximately
the same running times. Looking closer at the dif-
ference between the better among the two heuristic
frameworks and the optimal solution value (or, the
lower bound in one remaining case), we observed
that in 134 cases optimal solutions were found, for
13 instances, this difference was equal to one, and for
the remaining three cases, this difference was equal
to two. Both heuristic approaches solved each single
Set 1 instance within a few seconds, whereas the run-
ning times of the branch-and-cut algorithm exponen-
tially increase with the number of nodes and NDC
node pairs. Of the 150 instances, preprocessing helped
in 83. Interestingly, no regenerators were fixed in the
preprocessing.

Comparing the two heuristic frameworks we find
that the GHI-Framework provides the best solu-
tion in 146 instances, finds the optimal solution in
132 instances, and POLS was useful (i.e., found an
improvement to the greedy solution) in 143 instances.
The GH2-Framework provides the best solution in 144
instances, finds the optimal solution in 128 instances,
and POLS was useful in 141 instances. The GHI-
Framework solely provides the best heuristic solution
in six instances, whereas the GH2-Framework solely
provides the best heuristic solution in four instances.
Hence, there are always instances where each one of
the heuristics solely provides the best solution. We also
compare the performance of the construction heuris-
tics GH1 and GH2, before applying the POLS. The
values provided in the column denoted by “#PO”
indicate that the POLS was slightly more effective for
GH]1, indicating that the values of GH1 were slightly
worse than those obtained by GH2. We may also con-
clude that the POLS plays a significant role in the per-
formance of the proposed heuristic frameworks.

GH1-framework

GH2-framework B&C

n p (%)  #red NR RT  #opt #PO

RT  #opt #PO #mp UB LB LB, RT  #opt

50 25 2.2 72 00 10 1.9 9 7.2

50 0 7.7 00 8 2.0 7 7.7

75 0.9 43 00 10 2.7 8 43

75 25 0.3 98 00 9 1.8 10 9.8

50 1.4 96 0.0 7 5.0 10 9.5

75 9.7 55 00 10 3.6 9 5.6

100 25 83 118 00 9 3.1 10 11.8
50 3 109 0.0 9 6.5 10 11

75 0 72 00 8 4.3 10 7.3

125 25 0 141 0.0 10 3.9 10 141
50 09 121 02 9 6.5 10 12

75 1.7 84 00 8 59 10 8.5

150 25 05 145 0.1 10 44 10 14.5

50 116 123 04 8 9.4 10 12.3

75 16.9 95 0.1 7 6.5 10 9.5

0.0 10 1.5 9 7.2 7.2 7.2 0.2 10

0.0 8 1.6 7 7.5 7.5 7.4 0.2 10
0.0 10 2.1 7 43 43 41 0.1 10
0.0 9 1.2 9 9.7 9.7 9.5 1.4 10
0.0 8 3.8 10 9.2 9.2 8.3 2.2 10
0.0 9 2.9 9 55 5.5 4.6 0.6 10
0.0 9 17 10 117 117 110 6.7 10
0.0 8 3.9 10 108 108 9.0 215 10
0.0 7 3.1 10 7.0 7.0 6.1 3.2 10
0.0 10 3.1 10 141 141 127 31.7 10
0.1 9 5.1 10 1.9 119 95 2371 10
0.1 6 54 10 8.1 8.1 6.8 14.2 10
0.1 10 41 10 145 145 122 2598 10
0.5 8 6.9 10 122 120 95 838.6 9
0.2 7 4.9 10 9.1 9.1 7.3 4034 10
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Table 2 Computational Results for Weighted Instances (Set 2)
GH1-Framework GH2-Framework B&C

n D (%) obj RT #opt #P0O #imp obj RT #opt #P0O #imp UB LB LB, RT #opt

50 25 214 00 9 6.8 10 214 00 9 55 10 213 213 209 0.2 10

50 214 00 9 9.2 10 213 0.0 10 71 10 213 213 211 0.2 10

75 115 00 8 11.5 10 115 00 8 8.3 9 11.3 113 110 0.1 10

75 25 284 00 9 6.6 10 284 00 9 54 10 282 282 274 1.2 10

50 26.1 0.0 8 16.5 10 258 0.0 9 159 10 257 257 234 22 10

75 145 0.0 8 12.8 10 142 00 8 98 10 13.9 139 139 0.4 10

100 25 35.1 0.0 9 10.9 10 350 00 10 69 10 350 350 334 5.2 10

50 288 00 9 24.1 10 289 02 9 16.0 10 286 286 254 15.9 10

75 19.1 0.0 6 14.6 10 189 01 8 143 10 18.7 187  16.1 2.3 10

125 25 426 0.1 10 16.7 10 426 0.1 10 133 10 426 426 385 35.1 10

50 325 02 7 24.8 10 323 05 8 181 10 316 316 264 1247 10

75 208 0.2 5 22.4 10 209 00 7 202 10 20.1 20.1 17.3 9.6 10

150 25 420 0.1 9 19.4 10 421 0.3 9 155 10 419 49 372 146.1 10

50 333 1.2 7 33.3 10 328 06 8 263 10 323 323 271 562.3 10

75 22.1 0.2 7 24.3 10 219 05 9 218 10 214 214 1838 31.2 10

Set 2. Table 2 reports computational results for Set 2.
The B&C procedure solves all 150 instances to opti-
mality, and needs, on average, less time than solv-
ing the same instances of Set 1. This can be explained
by the fact that WGRLP solutions are less symmetric
than the corresponding unweighted ones. The better
of the two heuristic frameworks finds optimal solu-
tion in 134 cases; in eight cases the difference between
the heuristic and the optimal solution is equal to
one; and in the remaining eight cases this difference
varies between 2 and 5. Comparing the two heuris-
tic frameworks we find that the GH1-Framework pro-
vides the best solution in 135 instances, finds the
optimal solution in 120 instances, and POLS was use-
ful in all instances. The GH2-Framework provides the
best solution in 145 instances, finds the optimal solu-
tion in 131 instances, and POLS was useful in all
but one instance. In five instances the GH1-Frame-
work was solely the best heuristic approach, whereas
the GH2-Framework was solely the best heuristic
approach in 15 instances. Hence, we conclude that the
GH2-Framework performs marginally better than
the GH1-Framework. Notice that, as for Set 1, the run-
ning times of the two frameworks are about the same.

Table 3 compares the number of branch-and-bound
nodes (BBnodes) in the B&C procedure on Sets 1 and 2.
When BBnodes = 0, it indicates that the problem was
solved to optimality at the root node. Table 3 shows
that as the number of nodes increases, the number
of BBnodes increases. For input graphs with more
than 75 nodes, problems are seldom solved at the root
node. Furthermore, the number of BBnodes signifi-
cantly increases as p gets closer to 50%.

Set 3. Table 4 shows the corresponding results for
the large-scale instances (Set 3). Since the running time
of the POLS increases with the number of nodes, for
graphs with n > 300 we used only 2-for-1 local search.

Of 150 instances, the branch-and-cut procedure finds
optimal solutions only in 47 cases. The value of the
best found heuristic solution is given as the upper cut-
off tolerance to the branch and cut; i.e., CPLEX cuts
off or discards any solutions that are greater than the
specified upper cutoff value. This way, five heuris-
tic solutions were indirectly proved to be optimal.
Of these 47 instances, the better of the two heuristic
solutions is optimal in 39 cases. Comparing the two
heuristic approaches we find that the GH1-Framework
provides the best solution in 142 instances, finds the
optimal solution in 39 instances, and POLS was use-
ful in all instances. The GH2-Framework provides
the best solution in 130 instances, finds the optimal
solution in 34 instances, and POLS was useful in all
instances. In 20 instances the GH1-Framework was
solely the best heuristic approach, whereas the GH2-
Framework was solely the best heuristic approach

Table 3 Number of Branch-and-Bound Nodes (Set 1 and Set 2)
Set 1 Set 2
n  p (%) Median Mean BBnodes=0 Median Mean BBnodes=0
50 25 0.5 11 5 0 1.1 6
50 50 25 25 2 25 28 2
50 75 1 24 4 1 1667 4
75 25 3 3.1 2 2 2.2 3
75 50 35 10.2 3 4 11.1 0
7% 75 7 8.5 1 5 6 0
100 25 6 6.7 2 5 5.7 0
100 50 41 47.2 1 185 411 0
100 75 8 9.8 0 75 101 0
125 25 13 14.9 1 17 221 0
125 50 128 485 0 165.5 186.9 0
125 75 13 33.3 2 20 21.8 0
150 25 165 2146 0 30 7 0
150 50 301 5221 0 154 433 0
150 75 111 1,427 0 16.5 43.6 0
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Table 4 Computational Results for Large Scale Instances (Set 3)
GH1-framework GH2-framework B&C
n p (%) NR RT #opt #P0O #imp NR RT #opt #P0O #imp UB LB RT #opt
175 25 16.4 0.1 8 7.3 10 16.5 0.3 8 48 10 16.3 16.2 1,625.5 9
50 13.2 1.0 4 8.7 10 13.4 1.0 2 7.8 10 13.1 12.3 2,667.0 5
75 9.7 0.4 8 7.7 10 9.6 0.4 7 7.0 10 9.1 9.1 245.3 10
200 25 17.4 0.3 5 75 10 17.5 04 4 4.4 10 17.4 16.2 2,869.0 5
50 13.0 2.6 3 9.9 10 13.0 2.8 3 8.1 10 12.8 11.3 3,142.0 4
75 10.6 17 7 9.9 10 10.5 1.7 7 7.6 10 10.0 10.0 1,116.0 10
300 25 16.8 1.0 2 7.9 10 17.4 1.3 2 5.5 10 16.8 15.3 3,600.0 2
50 15.4 1.2 1 94 10 16.1 2.4 1 6.5 10 15.3 12.6 3,600.0 1
75 12.5 15 1 8.4 10 12.9 2.1 0 6.7 10 12.4 9.9 3,600.0 1
400 25 22.4 74 0 9.6 10 22.4 8.9 0 7.0 10 21.9 13.3 3,600.0 0
50 19.8 20.3 0 1.4 10 20.0 18.8 0 104 10 19.6 1.1 3,600.0 0
75 14.7 4.7 0 11.6 10 14.4 6.0 0 10.2 10 14.4 9.5 3,600.0 0
500 25 25.0 21.6 0 11.3 10 24.8 28.4 0 9.5 10 24.8 12.1 3,600.0 0
50 214 20.3 0 13.5 10 214 33.2 0 1.7 10 214 8.8 3,600.0 0
75 12.7 324 0 8.4 10 15.0 28.2 0 9.0 10 12.7 7.6 3,600.0 0

in eight instances; i.e., there are always instances
where each one of the approaches solely provides
the best solution. However, the GH1-Framework per-
forms marginally better than the GH2-Framework.
Notice that, as for the previous two instance groups,
the running times of the two heuristic frameworks are
about the same.

7. Conclusions
In this paper, we introduced and addressed the gen-
eralized regenerator location problem, which is an
important and fundamental problem that arises in the
design of fiber optic networks. We developed a graph
transformation procedure that simplifies conceptual-
ization of the problem. We also addressed the node-
weighted version of the problem (WGRLP) that allows
for modeling location-dependent regenerator costs.
Several safe preprocessing procedures are introduced.
Although the RLP has been studied previously, the
procedures developed to solve it do not apply to the
GRLP. We show that the GRLP can be transformed
into a particular instance of the NWDSFP on a directed
graph. Using this transformation, we developed a nat-
ural formulation and two extended formulations for
the GRLP. We then showed how to strengthen these
three formulations by disaggregation in one extended
formulation and by node-splitting in the natural for-
mulation and the flow-based extended formulation.
We proved the equivalence of these three strengthened
formulations, and developed a branch-and-cut proce-
dure for the strengthened formulation on the natural
node selection variables (NSCUT). We also proposed
two construction heuristics and a local search proce-
dure (a post-optimizer) that tries to reduce the cost of
the solution by replacing p regenerator locations by g
new ones (p > g > 1).

Our computational study was conducted on a set
of 150 unweighted (Set 1) and 150 weighted (Set 2)
instances with between 50 and 150 nodes and with
different densities. Additionally, we tested 150 larger
graphs (Set 3) with between 175 and 500 nodes. The
results obtained indicate that in both the weighted and
unweighted case the quality of the heuristic solutions
is quite good. While the running time of the heuristics
showed a minor increase with the increase of the size
of input graphs, the branch-and-cut algorithm showed
certain limitations. Due to the exponential increase
of the running time of the branch-and-cut algorithm,
at present, for 104 of 450 instances, optimal solution
values remain unknown. In that context, both heuris-
tics, whose running times remain less than one minute
even for the largest test instances, appear to be a viable
approach for real-world problems dealing with large-
scale instances.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287 /ijoc.2014.0621.
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