
The Cryosphere, 11, 229–246, 2017
www.the-cryosphere.net/11/229/2017/
doi:10.5194/tc-11-229-2017
© Author(s) 2017. CC Attribution 3.0 License.

Microstructure representation of snow in coupled snowpack and
microwave emission models
Melody Sandells1, Richard Essery2, Nick Rutter3, Leanne Wake3, Leena Leppänen4, and Juha Lemmetyinen5

1CORES Science and Engineering Limited, Burnopfield, UK
2University of Edinburgh, Edinburgh, UK
3Northumbria University, Newcastle-upon-Tyne, UK
4Finnish Meteorological Institute, Arctic Research Centre, Sodankylä, Finland
5Finnish Meteorological Institute, Helsinki, Finland

Correspondence to: Melody Sandells (melody.sandells@coresscience.co.uk)

Received: 17 July 2016 – Published in The Cryosphere Discuss.: 26 July 2016
Revised: 3 November 2016 – Accepted: 19 December 2016 – Published: 27 January 2017

Abstract. This is the first study to encompass a wide range
of coupled snow evolution and microwave emission mod-
els in a common modelling framework in order to gener-
alise the link between snowpack microstructure predicted
by the snow evolution models and microstructure required
to reproduce observations of brightness temperature as sim-
ulated by snow emission models. Brightness temperatures
at 18.7 and 36.5 GHz were simulated by 1323 ensemble
members, formed from 63 Jules Investigation Model snow-
pack simulations, three microstructure evolution functions,
and seven microwave emission model configurations. Two
years of meteorological data from the Sodankylä Arctic Re-
search Centre, Finland, were used to drive the model over
the 2011–2012 and 2012–2013 winter periods. Comparisons
between simulated snow grain diameters and field measure-
ments with an IceCube instrument showed that the evolution
functions from SNTHERM simulated snow grain diameters
that were too large (mean error 0.12 to 0.16 mm), whereas
MOSES and SNICAR microstructure evolution functions
simulated grain diameters that were too small (mean error
−0.16 to−0.24 mm for MOSES and−0.14 to−0.18 mm for
SNICAR). No model (HUT, MEMLS, or DMRT-ML) pro-
vided a consistently good fit across all frequencies and polar-
isations. The smallest absolute values of mean bias in bright-
ness temperature over a season for a particular frequency and
polarisation ranged from 0.7 to 6.9 K.

Optimal scaling factors for the snow microstructure
were presented to compare compatibility between snow-
pack model microstructure and emission model microstruc-
ture. Scale factors ranged between 0.3 for the SNTHERM–

empirical MEMLS model combination (2011–2012) and 3.3
for DMRT-ML in conjunction with MOSES microstruc-
ture (2012–2013). Differences in scale factors between mi-
crostructure models were generally greater than the differ-
ences between microwave emission models, suggesting that
more accurate simulations in coupled snowpack–microwave
model systems will be achieved primarily through improve-
ments in the snowpack microstructure representation, fol-
lowed by improvements in the emission models. Other snow-
pack parameterisations in the snowpack model, mainly den-
sification, led to a mean brightness temperature difference of
11 K at 36.5 GHz H-pol and 18 K at V-pol when the Jules In-
vestigation Model ensemble was applied to the MOSES mi-
crostructure and empirical MEMLS emission model for the
2011–2012 season. The impact of snowpack parameterisa-
tion increases as the microwave scattering increases. Con-
sistency between snowpack microstructure and microwave
emission models, and the choice of snowpack densification
algorithms should be considered in the design of snow mass
retrieval systems and microwave data assimilation systems.

1 Introduction

Global observations of the snow cover extent from optical
and microwave satellite observations combined with in situ
data have shown a reduction in the spring snow cover (Brown
et al., 2010; Brown and Robinson, 2011). Observed decline
in snow cover extent during 2008–2011 exceeded that pre-
dicted by climate models (Derksen and Brown, 2012). Ob-
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230 M. Sandells et al.: Microstructure in snow models

servations also indicate that duration of snow cover is also
reducing, but they cannot determine whether mass or volume
of snow has changed.

Microwave, altimetry, or coarser-scale gravity satellite
sensors offer the only feasible way to measure snow mass or
depth on a global scale, with microwave observations span-
ning the longest timescale of these. However, microwave al-
gorithms such as those developed by Chang et al. (1987) and
Kelly (2009) can result in large errors because of the high
sensitivity of applied forward models to parameterization of
the snow microstructure (Davenport et al., 2012). In partic-
ular, the assumption of a fixed snow scatterer radius in the
Chang et al. (1987) algorithm does not reflect the naturally
changing snowpack structure. Errors in snow mass products
derived from these algorithms mean that the products are dif-
ficult to use for evaluation of snow mass in climate models
(Clifford, 2010) and unsuitable for assimilation into land sur-
face models for streamflow forecasts (Andreadis and Letten-
maier, 2006). Development of the assimilation-based tech-
nique in GlobSnow allows changes in the snow microstruc-
ture to be taken into account through inversion of ground-
based observations of snow depth and coinciding microwave
brightness temperatures (Takala et al., 2011). Although more
accurate than other global products, some errors remain, and
the GlobSnow accuracy relies on the proximity and repre-
sentativity of the ground stations (Hancock et al., 2013). In
addition, the intermediate retrieval of the snow “grain size”
in GlobSnow is a parameter that also incorporates other land
surface features, so is not a true representation of the snow
effective diameter (Lemmetyinen et al., 2015).

Snowpack evolution models offer a way to estimate
temporal changes in snow microstructural parameters and
stratigraphy (e.g. Lehning et al., 2002; Brun et al., 1992).
Intercomparison studies have shown large differences be-
tween snow evolution models driven by the same forcing
data (Rutter et al., 2009). Given that the mass inputs were the
same for the 33 snow models considered in the SNOWMIP2
study of Rutter et al. (2009), it is differences in the inter-
nal snow physics and model structure (layering assumptions)
that result in the wide range of simulated depth and snow
mass. Temperature, temperature gradient, and density drive
changes in the snow microstructure (e.g. Flanner and Zender,
2006), so it is likely that different snow physics assumptions
in a coupled snowpack and emission model result in differ-
ent thermal structures, microstructure parameterisations, and
ultimately different microwave extinction behaviour.

Theoretical differences between specific electromagnetic
models have been examined in Löwe and Picard (2015),
Pan et al. (2015), and other intercomparisons carried out by
Tedesco and Kim (2006). These studies are useful for inter-
preting differences in electromagnetic model outputs for a
snapshot profile of the snowpack properties. Given the de-
pendence of microwave scattering on snow microstructure,
a satellite retrieval system needs some quantification of mi-
crostructure. Snowpack evolution modelling offers a means

to quantify the metamorphic changes in snow microstructure.
Indeed, snowpack evolution models have been coupled with
microwave emission models to demonstrate the potential of
this approach for snow remote sensing applications (Langlois
et al., 2012; Andreadis and Lettenmaier, 2012; Brucker et al.,
2011; Picard et al., 2009). These studies all examined the ac-
curacy of a single snowpack model coupled with a single mi-
crowave emission model.

The purpose of this study is to inform future design of re-
trieval and assimilation systems where snowpack evolution
models may be used to provide microstructural parameters
for microwave emission models, by examining how particu-
lar snowpack and emission model choices lead to a variation
in simulated brightness temperatures throughout the winter
period, and evaluate how the simulated values compare to
observations. The Jules Investigation Model (JIM; Essery
et al., 2013) has been coupled with three widely used mi-
crowave emission models: the Dense Media Radiative Trans-
fer Multi-Layer model (DMRT-ML; Picard et al., 2013), the
Microwave Emission Model of Multi-Layer Snow (MEMLS;
Wiesmann and Mätzler, 1999), and the Helsinki Univer-
sity of Technology (HUT) multi-layer model (Lemmetyinen
et al., 2010; Pulliainen et al., 1999). Snowpack microstruc-
ture metamorphism is represented here by three different
options with differing complexity for grain diameter evolu-
tion (or equivalently the specific surface area, SSA). These
models are the grain growth models of SNTHERM (SNT;
Jordan, 1991), SNICAR (SNI; Flanner and Zender, 2006),
and MOSES (MOS; Essery et al., 2001). This allowed quan-
tification of the seasonal variation in uncertainty in bright-
ness temperature simulations from 1323 coupled snowpack–
emission model systems, as evaluated against ground-based
observations of brightness temperature.

The study approach, model descriptions, and field mea-
surements are given in Sect. 2. Comparisons between sim-
ulations and between simulations and observations are pre-
sented in Sect. 3, and the implications for future approaches
to the remote sensing of snow mass are discussed in Sect. 4.

2 Models and methods

This study builds on the work of Essery et al. (2013), who
incorporated many published snow model parameterisations
within a single model framework, the JIM, which is de-
scribed in Sect. 2.1. As this earlier study did not incorporate
snow microstructure changes, JIM was coupled with three
microstructure evolution functions for this study, described
in Sect. 2.2, and three distinct snow emission models, de-
tailed in Sect. 2.3. Steps necessary to form the model ensem-
ble, including assumptions about the representation of the
soil, are given in Sect. 2.4. A description of the field site,
driving, and evaluation data for the simulations in this paper
are presented in Sect. 2.5.
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Table 1. Equations for options governing the representation of processes in the JIM model subset.

Option Description Model parameterization

Compaction: 0 Physical 1
ρs

dρs
dt =

Msg
η + c1 exp

[
− c2 (Tm− Ts)− c3max(0,ρs− ρ0)

]
1 Empirical ρs (t + δt)= ρmax+

[
ρs(t)− ρmax

]
exp

(
−δt/τρ

)
2 Constant ρs = 250 kgm−3

Fresh snow density: 0 Empirical ρf =max
[
af+ bf (Ta− Tm)+ cfU

1/2
a ,ρmin

]
1 Empirical ρf = ρmin+max

[
df(Ta− Tm+ ef)

3/2,0
]

2 Constant ρf = 100 kgm−3

Thermal conductivity: 0 Empirical λs = λa+
(
aλρs+ bλρ

2
s

)
(λi− λa)

1 Empirical λs = cλ

(
ρs
ρw

)nλ
2 Constant λs = 0.265 Wm−1 K−1

Maximum liquid water: 0 Empirical γw,max
ρs
= rmin+ (rmax− rmin) max

(
1− ρs

ρr
,0
)

1 Constant γw,max = ρw
(

1− γi
ρi

)
Swi

2 None γw,max = 0 kgm−3

JIM variables are snow density ρs, overlying snow mass Ms, snow temperature Ts, air temperature Ta, wind speed Ua, snow effective thermal
conductivity λs, partial density of liquid water γw, and partial density of ice γi. Other symbols represent constants, given in Essery et al.
(2013).

2.1 Snow model parameterisation

Essery et al. (2013) developed the JIM, a system of 1701
snowpack evolution models to provide a systematic method
and common framework to examine how the range of snow-
pack parameterisations used in land surface models impacts
the simulation of snow parameters. Based on this work, a
more computationally efficient version, a factorial snowpack
model has been developed (Essery, 2015) that allows for
32 model configurations. JIM is based on an Eulerian grid
scheme (fixed layer structure), which requires mass redis-
tribution between layers with precipitation events. An alter-
native approach is a Lagrangian grid scheme: a deforming
layer structure that retains much of the same snow material
throughout the season (e.g. Jordan, 1991; Brun et al., 1992;
Lehning et al., 2002). For this paper, a subset of the origi-
nal JIM members was selected as these were expected to in-
fluence the parameters important for microwave modelling.
The subset includes variation in the representation of com-
paction, the density of newly deposited snow, thermal con-
ductivity, and liquid-water flow (snow hydrology). Table 1
summarises the different approaches taken. Note that a vari-
able fresh snow density (options 0 and 1) cannot be used
when the snowpack has fixed density (compaction option 2),
so there are only 63 model configurations in the model sub-
set rather than 81. For all other snowpack parameterisations,
option “1” from Essery et al. (2013) were used for albedo,
surface exchange, and snow fraction representations to form
the JIM subset.

2.2 Microstructure evolution

JIM subset outputs were used to drive three microstructure
models of differing complexity. SNT (Jordan, 1991) growth
of snow grain diameter d is based on the rate of vapour trans-
port through the snow (and therefore temperature gradient),
which leads to the microstructure evolution function of dry
snow in SNT as

∂d

∂t
=
g1

d
Deos

(
1000
Pa

)(
Ts

Tm

)6

CkTs

∣∣∣∣∂Ts

∂z

∣∣∣∣ , (1)

where g1 and Deos are empirical constants, Pa is the atmo-
spheric pressure, CkTs is the variation of saturation vapour
pressure with snow temperature Ts, Tm = 273.15 K, and ∂Ts

∂z
is the temperature gradient. Grain growth under wet condi-
tions is more rapid, with empirical constant g2 and is depen-
dent on the liquid fractional volume, fl by

∂d

∂t
=
g2

d
(fl+ 0.05) fl < 0.09, (2)

∂d

∂t
=
g2

d
(0.14) fl ≥ 0.09. (3)

SNI microstructure evolution is a computationally efficient
approximation to a model based on physics that uses a look-
up table for empirical parameters τ and κ , as described in
Flanner and Zender (2006). These parameters are dependent
on the snow density, temperature, and temperature gradient.
The equation of microstructure evolution in SNI is based on
snow SSA:

SSA(t)= SSA0

(
τ

t + τ

)1/κ

. (4)
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SSA per unit mass of ice (m2 kg−1) can then be converted to
grain diameter with D = 6/(ρiSSA) (Mätzler, 2002; Mont-
petit et al., 2012).

A third microstructure model, MOS, parameterises snow
evolution as a function of grain radius r and snow age:

r (t +1t)=

[
r(t)2+

Gr

π
1t

]1/2

− [r(t)− r0]
Sf1t

d0
, (5)

where Gr is an empirical temperature-dependent grain area
growth rate, Sf is the snowfall rate in time interval 1t , and
d0 is a constant representing the mass of fresh snow required
to reset the snow albedo to its maximum value.

Other microstructure parameterisations are available,
namely the Crocus (Vionnet et al., 2012) and SNOWPACK
(Lehning et al., 2002) microstructure evolution functions. It
is not currently possible to couple these with the JIM model
due to the Eulerian grid structure of JIM. Mass transfer be-
tween layers allows numerical averaging of concepts such as
grain diameter and SSA, but not shape-dependent concepts
such as dendricity and sphericity. Therefore the Crocus and
SNOWPACK functions have not been included in this study.

2.3 Microwave emission models

The microwave models chosen for this application span a
range of physical complexity in their representation of the
snow. The HUT model (Lemmetyinen et al., 2010) is a semi-
empirical model based on strong forward scattering assump-
tions, the MEMLS model (Wiesmann and Mätzler, 1999) is
of intermediate complexity and contains the improved Born
approximation (Mätzler, 1998), and the DMRT-ML model
(Picard et al., 2013) is the most physically complex and is
based on quasi-crystalline approximation with coherent po-
tential (QCA-CP). Many other microwave emission models
have been developed, such as Mie scattering approach of Bo-
yarskii and Tikhonov (2000), Chang et al. (1976), and Eom
et al. (1983), strong fluctuation theory (Stogryn, 1986; Song
and Zhang, 2007), distorted Born approximation (Tsang
et al., 2000), the quasi-crystalline approximation (Grody,
2008), other QCA-CP models (Rosenfeld and Grody, 2000;
Jin, 1997), or the numerical method of Maxwell’s equations
in 3-D (Xu et al., 2012). These references are not exhaustive
but do give an illustration of the range of models available.
Here, we restrict the comparison to widely available multi-
layer models that span a range of complexity and whose com-
putational efficiency is such that entire seasons can be simu-
lated rapidly.

Of the models chosen, all are multiple layer and broadly
require the same information; i.e. they use layered informa-
tion on snow temperature, density, and layer thickness as in-
put but differ in their representation of the microstructure.
They are all based on radiative transfer theory, which is gov-

erned by the following general equation:

µ
∂T B (θs,φs,z)

∂z
= κaT (z)+

1
4π

∫
4π

9 (θs,φs;θi,φi)

·T B (θi,φi,z)d�i− κe ·T B (θs,φs,z) , (6)

where θ and φ are the zenith and azimuth angles, µ= cosθ ,
T B is the brightness temperature vector, which we will as-
sume here to consist of horizontally and vertically polarised
brightness temperature only, κa is the absorption coefficient,
and κe is the extinction coefficient, which is a sum of the
absorption coefficient and the scattering coefficient κs. The
models differ in which two coefficients determine the third.
In HUT, the derived coefficient is κs, whereas κe is de-
rived in MEMLS and κa in DMRT-ML. Other differences
between models include the representation of the phase func-
tion (single-stream model with separate up- and downwelling
components in HUT, six-stream in MEMLS and multiple
streams in DMRT-ML), specification of the absorption co-
efficient and the numerical techniques applied to solve the
radiative transfer equation (Lemmetyinen et al., 2010; Wies-
mann and Mätzler, 1999; Picard et al., 2013; Mätzler and
Wiesmann, 1999; Pan et al., 2015). Differences between
models are not restated here, but options chosen within each
model leading to different model versions are stated in the
following subsections.

2.3.1 DMRT-ML

DMRT-ML is based on a sticky hard spheres representation
of the microstructure so that the scattering coefficient given
by the QCA-CP is given as

κs =
2
9
k4

0a
3f

∣∣∣∣∣ εs− εb

1+ εs−εb
3Eeff

(1− f )

∣∣∣∣∣
2

(1− f )4(
1+ 2f − tf (1− f )

)2 , (7)

where k0 = 2π/λ is the wave number, a is the radius of the
spheres, f is the fractional volume of scatterers, εs is the per-
mittivity of the scatterers, εb is the permittivity of the back-
ground, and Eeff is the effective permittivity of the medium.
t is related to the stickiness factor τ governing the potential
of particles to coalesce. For non-sticky particles t = 0 but for
sticky particles, it is given by the largest of the two solutions
to the quadratic equation:

f

12
t2−

(
τ +

f

1− f

)
t +

1+ f/2
(1− f )2

= 0. (8)

Whilst Löwe and Picard (2015) have shown that it may be
possible to determine stickiness from micro-CT measure-
ments of the snow, an appropriate value of stickiness is not
known for the field observations used in this paper. Roy et al.
(2013) and Löwe and Picard (2015) showed that non-sticky
representation in DMRT-ML is inappropriate. For this model
ensemble, two DMRT-ML configurations have been chosen
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to capture the range of brightness temperatures simulated:
“DMRT less sticky” (τ = 0.2) and “DMRT very sticky” (τ =
0.1). These two values represent reasonable values used by
others (e.g. Tsang et al., 2007; Shih et al., 1997).

2.3.2 MEMLS

Within MEMLS there are a suite of options for the calcula-
tion of the scattering coefficient. Two of the options within
MEMLS were selected for this study to cover both empir-
ical and theoretical approaches: “MEMLS empirical” and
“MEMLS IBA”. The empirical version of MEMLS used
gives the scattering coefficient as

κs =
(

9.2pec− 1.23ρ+ 0.54
)2.5

(ν/50)2.5, (9)

where the correlation length pec is in mm, density ρ is in
gcm−3, and frequency ν is in GHz. This is suitable for cor-
relation lengths 0.05< pec < 0.3 mm and density 0.1< ρ <
0.4 gcm−3.

MEMLS IBA uses the improved Born approximation the-
ory given in Mätzler (1998) and Mätzler and Wiesmann
(1999), where the scattering coefficient is given by the in-
tegral of the phase function for polarisation angle χ

κs =
1

4π

∫
4π

f (1− f )(εs− εb)
2K2Ik4

0sin2χ d�. (10)

One further assumption applied to distinguish this
MEMLS IBA configuration is that oblate grains are used
rather than small spherical scatterers or thin spherical shells.
This assumption governs the representation of the mean
square field ratio, K2, as detailed in Mätzler and Wiesmann
(1999). The microstructure length information is contained
in I :

I =
2pec(

1+ 4εeffk
2
0sin2(θ/2)p2

ec

)2 . (11)

It should be noted that the choice of oblate grains also af-
fects the effective permittivity in I , represented by an empir-
ical, density-dependent effective permittivity (Wiesmann and
Mätzler, 1999, Eqs. 45–47) for this case.

2.3.3 HUT

HUT has three options for the extinction coefficient. These
are nominally suited to different grain diameter (d0) ranges,
with some overlap between them. All three versions (termed
HUT H87, HUT R04, HUT K10) have been included in this
version of the model ensemble. HUT H87 is based on the
work of Hallikainen et al. (1987):

κe = 0.0018ν2.8d1.9
0 . (12)

This is nominally appropriate for frequency range ν = 18–
60 GHz and d0 < 1.6 mm.

The extinction coefficient in HUT H04, with a validity
range of 1.3< d0 < 4 mm was derived by Roy et al. (2004):

κe = 2ν0.8d1.2
0 . (13)

Kontu and Pulliainen (2010) gave the extinction coeffi-
cient for maritime snow, used here in the HUT K10 simu-
lations as

κe = 0.08ν1.75d1.8
0 . (14)

Scaling of the grain diameter by the relationship recom-
mended in Kontu and Pulliainen (2010) has not been applied
here as it was developed for snow microstructure observa-
tions rather than simulated snowpack microstructure.

2.4 Model framework

Interfacing of the various model inputs and outputs was
enabled through the development of the ensemble frame-
work, via a combination of shell script and Octave/MATLAB
code. The DMRT-ML model was run from the shell script,
which subsequently calls an Octave/MATLAB script to run
HUT and MEMLS. HUT and MEMLS run alternately in
this framework as the soil parameters (common between
DMRT-ML and HUT) are used to calculate soil reflectiv-
ity in HUT, which is then used as the lower boundary con-
dition in MEMLS. Internal parallelisation of the MATLAB
code of HUT-MEMLS means that a season-long simulation
of one HUT-MEMLS combination with one grain scaling
factor takes 9 min over eight cores. For the DMRT-ML FOR-
TRAN code, external bash shell parallelisation reduces exe-
cution time from 16 to ca. 2 h for one grain scale factor and
two parameterisations of stickiness. Over 29 million individ-
ual brightness temperatures were simulated for this study.

For the purposes of this study, the effective sphere size
in JIM, DMRT-ML, and HUT is assumed to be identical
i.e. dHUT = 2× rDMRT = dJIM. This may not be a good as-
sumption as the empirical extinction coefficient model used
in HUT was based on observations of the maximum grain
extent rather than effective diameter, which was almost im-
possible to measure at the time of the original work. The ex-
ponential correlation length in MEMLS (in mm) is calculated
from the theoretical relationship to the effective grain diam-
eter from JIM (in µm) as Montpetit et al. (2013) and Mätzler
(2002):

pec =
2
3

(
1−

ρs

ρi

)
dJIM

1000
. (15)

Figure 1 illustrates the flow of information in the model
ensemble. Meteorological data are used to drive the 189 con-
figurations of JIM (3 microstructural models for each of the
63 snowpack parameterisations). The outputs from JIM are
then reformatted for each of the three electromagnetic mod-
els. Table 2 gives a summary of the main differences in inputs
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Figure 1. Flowchart showing flow of information from JIM snow evolution model outputs to outputs from the various microwave emission
models.

Table 2. Electromagnetic model inputs, as a function of JIM snowpack model outputs.

JIM DMRT-ML MEMLS HUT
output input input input

Temperature TJIM [K] TJIM [K] TJIM [K] TJIM− 273.15 [◦C]

Density ρJIM [kgm−3] ρJIM [kgm−3] ρJIM [kgm−3] ρJIM
1000 [gcm−3]

Layer size 1zJIM [m] 1zJIM [m] 1zJIM
100 [cm] ρJIM1zJIM [mmswe]

Microstructure dJIM [µm] dJIM [µm] 2
3

(
1− ρs

ρi

)
dJIM
1000 [mm] dJIM

1000 [mm]

Layer number 1= base 1= base 1= base 1= top

Soil permittivity – εobs r0,HUT εobs

Note that for the purposes of the ensemble, DMRT-ML was adapted to allow the input of diameter rather than radius. HUT was adapted to
ensure Fresnel reflectivity for a smooth soil surface and to output the soil reflectivity r0,HUT at both polarisations for use in MEMLS
simulations.

between models. The electromagnetic model inputs are then
used to drive the two DMRT-ML model versions (τ = 0.1,
τ = 0.2), the two MEMLS model versions (empirical, IBA
with oblate grains), and the three HUT versions (three differ-
ent extinction coefficient models). Meteorological and field
data used to drive and evaluate the ensemble are described in
the following section.

2.5 Data

Model runs for this study were performed for the Inten-
sive Observation Area (IOA) of the Finnish Meteorologi-
cal Institute Arctic Research Centre (FMI-ARC). The site
provides a wealth of forcing and evaluation data, includ-
ing automated soil, snow and meteorological observations,
ground-based microwave radiometry, and a programme of
manual snow profile observations. Air temperature, solar ra-

diation, and precipitation observations from this site for the
two seasons of simulations are shown in Fig. 2. November
rain events occurred in both years, as well as in early De-
cember in 2011–2012. Layers with melt–freeze polycrystals
and other melt forms were detected in snow observations dur-
ing both seasons. Metadata and details on the meteorological
instruments are given in Essery et al. (2016). Dual polarisa-
tion microwave radiometers, including at frequencies of 18.7
and 36.5 GHz, are situated on a 4 m tower pointing inwards
on the edge of a large clearing surrounded by a mainly pine
forest. Further details about the IOA site are given in Lem-
metyinen et al. (2016). Details on the manual snow profile
observation programme are given by Leppänen et al. (2016).

Simulations were carried out for the winters of 2011–2012
and 2012–2013 as there were 49 approximately bi-weekly
snow pit observations over these 2 years available for snow-
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Figure 2. Air temperature, solar radiation, and precipitation data measured at the Sodankylä site, used as inputs for the JIM simulations.

pack model evaluation. Snow samples from 31 of these pits
were extracted and used to measure profiles of the SSA with
the IceCube instrument (Zuanon, 2013). A bulk grain di-
ameter was calculated for the analysis from the snow wa-
ter equivalent (SWE)-weighted mean SSA, excluding layers
without observations. For these two seasons, the real com-
ponent of the soil permittivity measurements were available
at 100 MHz, measured at three locations in the observation
area with Delta-T devices ML2x sensors, installed horizon-
tally at a depth of approximately 2 cm beneath the organic
surface layer. Mean measurements from the stable winter pe-
riod (1 December–31 March) were chosen as representative
for the entire season, which resulted in values of soil permit-
tivity of 4.4 in 2011–2012 and 4.6 in 2012–2014. For the JIM
simulations in this paper, a scaling factor of 1.11 was applied
to the 2011–2012 precipitation data, and a scaling factor of
1.06 was applied to the 2012–2013 data to match the mea-
sured snow accumulation on the ground better. These factors
differ slightly from the values used in the 7-year consolidated
data set of Essery et al. (2016).

2.6 Simulation methodology

Choices in the snowpack evolution parameterisations made
here lead to 189 unique JIM snowpack models. Modelled
snowpack profiles of layer thickness, temperature, density,
and grain diameter were output daily at noon for this study.
These were then applied to the seven microwave emission
model combinations, resulting in 1323 sets of brightness
temperature simulations per day.

In order to illustrate and analyse the effects of assump-
tions regarding snowpack evolution and microwave scatter-
ing on simulated brightness temperatures over the course of

the winter season, the remainder of the paper will do the fol-
lowing:

1. Present the range of brightness temperatures expected
for any generic combination of snowpack and emission
model.

2. Apply a range of scaling factors (0.1≤8≤ 5.0) to sim-
ulated JIM snowpack diameters (doptimal =8dJIM) and
calculate the degree of misfit between simulated and ob-
served brightness temperatures using the following cost
function (CF):

CF=
ndays∑ ν∑ pol∑(

TBsim − TBobs

2

)2

. (16)

The cost function term is summed over the two polar-
isations (H- and V-pol) for the two frequencies (18.7
and 36.5 GHz) over the number of days (ndays) when
observations and simulations are both available. Due
to the observation schedule at the Sodankylä site, the
noon “observations” for comparison with the simula-
tions were determined as the mean of the 10 am and
2 pm observations. If observations were missing from
either or both of these times, the brightness temperature
for that day was excluded from the CF calculation. Op-
timal 8 were found from the minimisation of the CF.

3. Isolate the effect of snowpack parameterisations on sim-
ulated brightness temperature by presenting simulation
results grouped by parameterisations of densification,
liquid-water flow, initial snow density, and thermal con-
ductivity. This will determine which factors govern the
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Figure 3. Snow depth and water equivalent simulated by the Jules Investigation Model subset used in this study. Grey lines indicate individual
JIM subset member simulations. Note that erroneous positive SWE observation points have been removed at the end of the season when snow
depth is zero, as this is a sensor artifact related to soil moisture changes.

spread in brightness temperature and are therefore im-
portant for the design of snow retrieval assimilation sys-
tems.

3 Results

Snow depth and SWE simulated by the JIM is shown in
Fig. 3. There is a small difference between the automatic
measurements and the manual field observations attributable
to the spatial variability of the snow and difference in
measurement location. Ultrasonic snow depth measurements
were on average 12 mm deeper than the snow pit observa-
tions in 2011–2012 but were 29 mm shallower than snow pit
measurements in 2012–2013. SWE measured automatically
by the gamma ray sensor had a mean value of 3.6 mm SWE
greater than the pit observations in 2011–2012 but 5.9 mm
less in 2012–2013.

Although the precipitation inputs were scaled due to
known sensor undercatch problems, in 2011–2012 the SWE
was underestimated until the end of January, then overesti-
mated until the melt period. Compared with snow pit obser-
vations, the SWE bias prior to 1 February was −14.2 mm.
Between 1 February and 31 March, the SWE bias was
19.1 mm. From 1 April until the end of the season, the bias
was −24.5 mm water equivalent. In 2012–2013, simulated
SWE was overestimated for most of the season, with a mean
bias of 13.7 mm compared with the snow pit observation.
Simulated SWE is relatively insensitive to the snow parame-
terisation in the accumulation period, but three distinct model
groups emerge in the melt period, which are due to the three
different representations of the liquid-water flow. The snow-
pack model parameterisations have a greater impact on the
snow depth, which is to be expected as this is directly af-
fected by the representation of densification and initial snow
density.

Figure 4 demonstrates the impact of the snow model pa-
rameterisations on snow grain diameter growth, as simulated
with the MOS, SNI, and SNT microstructure evolution func-
tions. Each microstructure model results in a spread of bulk
grain diameter due to the 63 snowpack parameterisations,
but in general the difference between microstructure mod-
els is greater than the difference due to snowpack parame-
terisations. The simulation range is greatest at the start and
at the end of the season, when the snowpacks can be sub-
ject to the largest temperature gradients or liquid-water de-
pendent growth. In both years of simulation, the mid-season
bulk grain diameter is smallest with MOS and largest with
SNT. MOS and SNI are similar in magnitude, but SNT bulk
grain diameters were approximately twice as large on aver-
age, with a mean ratio over the season of 1.9–2.2, as shown in
Table 3. SNT bulk grain diameter was up to 3.2 times larger
than MOS bulk grain diameter. Visual estimation of the snow
grain diameter gave values that were always larger than all of
the simulations. Measured SSA-derived bulk grain diameters
generally lay in between the SNT simulations and the sim-
ulations with SNI and MOS. The mean absolute error and
mean relative difference for these simulations are presented
in Table 4. SNT had the lowest bias (0.12 mm) in 2011–2012,
whereas SNI had the lowest bias (−0.14 mm) in 2012–2013.
Bulk grain diameter simulated by the microstructure models
led to a mean difference of between −53 and +45 % relative
to the observations.

Simulation of mean and range of brightness temperature
from the three emission models driven by all snowpack and
microstructure model combinations is shown in Fig. 5. Note
that excessively low brightness temperatures on 1 Novem-
ber 2011 were excluded from this figure as the snowpack for
some JIM members was extremely thin with an unphysically
high snow density. In general, HUT with three representa-
tions of extinction coefficient showed the smallest range of

The Cryosphere, 11, 229–246, 2017 www.the-cryosphere.net/11/229/2017/



M. Sandells et al.: Microstructure in snow models 237

Figure 4. Bulk grain diameter evolution for the MOS, SNT, and
SNI microstructure evolution models and the spread in model re-
sults. Observations of bulk diameter were derived from macro-
photography (Visual) and from SSA measurements from the Ice-
Cube instrument.

Table 3. Comparison of grain diameters simulated by different mi-
crostructure models. The mean and max ratio between pairs of mod-
els is given in columns. Where the 2012–2013 values differ, these
are given in parentheses.

Mean Max

SNI /MOS 1.2 (1.1) 1.4 (1.3)
SNT /MOS 2.2 3.1 (3.2)
SNT /SNI 1.9 (2.0) 2.5

brightness temperature, whereas DMRT-ML (covering both
very sticky and less sticky assumptions) had a much greater
range, which was nearly as large as MEMLS (empirical rep-
resentation and improved Born approximation with oblate
grains). This is demonstrated by the ratio between the sea-
sonal mean ranges of brightness temperature presented in Ta-

Table 4. Mean absolute error (mm) between bulk grain diameter
simulated with the microstructure models compared with observa-
tions derived from SSA measurements with IceCube. Smallest bias
for each year is shown in bold. Percentages are given in parentheses.

2011–2012 2012–2013

MOS −0.24 (−53 %) −0.16 (−34 %)
SNI −0.18 (−40 %) −0.14 (−31 %)
SNT 0.12 (32 %) 0.16 (45 %)

Table 5. Ratio of mean brightness temperature ranges simulated by
two microwave emission models. The mean and max ratio between
pairs of models is given in columns.

19V 19H 37V 37H

2011–2012

DMRTML/HUT 1.6 1.2 3.8 3.1
MEMLS/HUT 3.7 1.9 4.5 3.2
MEMLS/DMRTML 2.4 1.5 1.2 1.0

2012–2013

DMRTML/HUT 2.0 1.6 3.3 3.0
MEMLS/HUT 3.9 2.4 3.9 3.2
MEMLS/DMRTML 2.0 1.5 1.2 1.1

ble 5, where the ranges compared with HUT had a ratio of
greater than 1. MEMLS had a larger range than DMRT-ML,
although at 37 GHz the difference was small. As illustrated in
Fig. 5, at 19 GHz, the mean of DMRT-ML simulations were
highest and the mean of MEMLS simulations were gener-
ally lowest (with the exception of 19H in 2011–2012). At
37 GHz, horizontal and vertical polarisation, HUT gives the
highest mean brightness temperature in both years, although
the mean DMRT-ML brightness temperature is within 3 K of
HUT at horizonal polarisation (both years). MEMLS mean
brightness temperatures are the lowest at 37 GHz at both hor-
izontal and vertical polarisation in both years. All ranges ex-
hibit a distinctive “wedge” shape, where the ranges generally
increase throughout the season until the collapse of the range
in the melt period.

Compared with the brightness temperature observations,
no model gives a consistently better performance across
both frequencies and both polarisations. This is illustrated
in Table 6, where mean bias and root mean square error
(RMSE) for each season has been presented for each fre-
quency and polarisation combination. The lowest bias was
less than 7 K in magnitude, whereas the lowest RMSE for
each frequency/polarisation was less than 13 K. For both
years, DMRT-ML gave the lowest bias at 19H and MEMLS
gave the lowest bias at 37 GHz (V and H). At 19V DMRT-
ML had the lowest bias in 2011–2012 whereas HUT had the
lowest bias in 2012–2013. Figure 5 shows that the observed
brightness temperature is generally within the range simu-
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Figure 5. Range and mean of brightness temperature over the two winter seasons as simulated with the DMRT-ML, MEMLS, and HUT
models, driven by 63 JIM outputs and 3 microstructure evolution models. Black lines indicate the observed brightness temperatures. Vertical
dashed lines enclose the period of analysis (1 November–31 March).
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Table 6. Mean bias and RMSE in brightness temperature (K) sim-
ulated by DMRT-ML (very sticky and less sticky), MEMLS (em-
pirical and IBA oblate), and HUT (H87, R04, and K10) forced
by 189 JIM–microstructure model combinations. Only days in
the period from 1 November to 31 March, where all four fre-
quency/polarisation measurements were available, were included in
the analysis. Bold values indicate the lowest bias/RMSE for each
frequency/polarisation.

19V 19H 37V 37H

2011–2012

DMRTML 0.7 −5.4 10.4 8.7
Bias MEMLS −7.8 −16.3 −6.9 −6.2

HUT −1.3 −18.8 20.6 7.6

DMRTML 5.5 11.4 12.2 12.2
RMSE MEMLS 11.3 20.4 13.0 13.1

HUT 6.1 22.4 21.1 11.7

2012–2013

DMRTML 5.6 6.9 25.2 24.5
Bias MEMLS −9.3 −11.4 −0.9 1.5

HUT 2.9 −8.0 39.2 26.4

DMRTML 6.4 9.8 26.2 27.0
RMSE MEMLS 11.4 13.2 7.0 7.0

HUT 4.2 9.8 40.2 28.9

Table 7. Optimal microwave microstructure scale factors dependent
on snow microstructure evolution function, based on minimisations
of cost function between 1 November and 31 March in each year.

DMRTML MEMLS HUT

less very IBA EMP H87 R04 K10

2011–2012

SNT 1.1 0.6 0.5 0.3 0.9 0.5 0.7
MOS 3.3 1.6 1.7 1.0 2.6 1.4 2.2
SNI 2.5 1.3 1.2 0.8 1.9 1.1 1.7

2012–2013

SNT 1.3 0.7 0.7 0.5 1.2 1.1 1.1
MOS 3.1 1.7 1.6 1.1 3.2 2.7 2.9
SNI 2.8 1.5 1.5 1.1 2.9 2.3 2.6

A value of 1.0 indicates that the snow grain diameter simulated by a particular form of
the snow model may be used directly in the microwave model to give the best agreement
with measured brightness temperature.

lated by each of the three microwave emission models, with
the exception of 19H in 2011–2012 (MEMLS and HUT) and
37H/V in 2012–2013 (HUT). End of season brightness tem-
perature observations are not replicated in the simulations as
the liquid-water content of the snowpack model is currently
decoupled from the electromagnetic snow model, so the sim-
ulations only represent dry snow brightness temperature.

Table 8. Mean bias and RMSE in brightness temperature (K) sim-
ulated by DMRT-ML (sticky and non-sticky), MEMLS (empiri-
cal and IBA oblate), and HUT (H87, R04, and K10) forced by
189 JIM–microstructure model combinations, with optimal mi-
crostructure scale factors from Table 7 applied. Only days in
the period from 1 November to 31 March, where all four fre-
quency/polarisation measurements were available, were included in
the analysis. Bold values indicate the lowest bias/RMSE for each
frequency/polarisation.

19V 19H 37V 37H

2011–2012

DMRTML 1.0 −5.1 6.6 5.6
Bias MEMLS −0.3 −11.3 13.1 10.5

HUT −1.3 −18.8 19.1 6.2

DMRTML 5.6 11.2 9.3 9.5
RMSE MEMLS 5.7 15.5 14.0 12.7

HUT 6.1 22.4 19.5 10.7

2012–2013

DMRTML 3.7 5.6 −0.3 1.4
Bias MEMLS −1.2 −5.1 6.0 9.1

HUT −4.4 −14.3 18.0 7.5

DMRTML 4.7 8.8 5.2 7.5
RMSE MEMLS 3.9 7.6 9.3 11.7

HUT 6.2 15.4 19.8 11.2

Table 7 indicates scaling factors that would need to be
applied to the grain diameter in order to allow a particular
microstructure evolution function to minimise the CF given
in Eq. (16), i.e. the best agreement with observed brightness
temperature for all four frequency and polarisation combi-
nations. A scale factor of 1 suggests a perfect fit between
snowpack microstructure and microwave microstructure. A
scale factor of less than 1 indicates a snowpack grain diam-
eter overestimate, whereas a scale factor of greater than 1 is
an underestimate. For SNT microstructure, a scale factor of
less than 1 was required in 2011–2012 for all emission mod-
els with the exception of the less sticky (τ = 0.2) applica-
tion of DMRT-ML. This indicates that the SNT microstruc-
ture resulted in grain diameters larger than that required by
the emission models for that year. In 2012–2013 SNT mi-
crostructure required slight scaling to increase the grain di-
ameter for HUT and for less sticky DMRT-ML, but down-
scaling for very sticky hard spheres in DMRT-ML and for
MEMLS. With the exception of the application to empirical
MEMLS in 2011–2012, the SNI and MOS grain diameters
were too small and required scaling upwards. A CF mini-
mum was achieved for empirical MEMLS driven by MOS
microstructure with no scaling whatsoever in 2011–2012.
The pattern is consistent between years, with the greatest in-
terannual difference in scale factor for HUT.
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Figure 6. Variability in brightness temperature simulated with em-
pirical MEMLS, driven by the MOSES microstructure model and
63 JIM snowpack outputs (no scaling of microstructure was re-
quired).

Once the microstructure differences have been isolated
through application of the optimal scale factor, as shown
in Table 8, DMRT-ML bias and RMSE improved, with
the exception of the small increase in 19V bias in 2011–
2012. For MEMLS, improvements in bias and RMSE at the
lower frequency were at the expense of the higher frequency
in both years. The opposite occurred for HUT in 2012–
2013, whereas in 2011–2012 the bias and RMSE decreased
at all frequencies and polarisations apart from a marginal
(< 0.04 K) increase in RMSE at 19V.

Differences in brightness temperature also exist in the sim-
ulations due to the snowpack parameterisation (i.e. 63 JIM
combinations). Empirical MEMLS with MOS microstruc-
ture in the 2011–2012 season was chosen as a test case to
illustrate the effects of snowpack parameterisation on the
brightness temperature because of the equivalence of snow-
pack and emission model microstructure (no scaling re-
quired). This subset of 63 simulations for 37H brightness
temperature in 2011–2012 is shown in Fig. 6. There is a sea-
sonal dependence in the range, with model divergence from
mid-January onwards. 1 February and 1 May were chosen for
cluster analysis to determine which parameterisations caused
the split in simulations, as shown in Fig. 7.

Clear groupings of simulations in Fig. 7, upper left, indi-
cate that the snowpack densification parameterisation has a
distinguishable effect on the simulation of brightness tem-
perature. A physical representation of densification (param-
eterization= 0) gave the lowest brightness temperatures on
the 1 February, but the highest by 1 May. In contrast, where
no compaction is simulated, i.e. snow density is constant
throughout the season (parameterization= 2), the opposite
is true. An empirical representation of densification (param-
eterization= 1) results in brightness temperatures generally
between those of the physical, and of no densification. Ther-

mal conductivity has no effect on the simulation of bright-
ness temperature, whereas subtle differences are attributable
to the fresh snow density value and to the representation
of snow hydrology. There is no discernible difference be-
tween fresh snow density parameterisation schemes 0 and 1,
whereas 2 gives a different set of brightness temperatures.
Snow hydrology has very little effect in the early season but
can lead to differences in the melt period. Overall, the snow-
pack parameterisations with MOSES microstructure and em-
pirical MEMLS lead to a mean difference in the 36.5 GHz
brightness temperature of 11 K at H-pol and 18 K at V-pol.
The maximum difference in 36.5 GHz brightness tempera-
ture was 33 K at H-pol and 54 K at V-pol for the 2011–2012
season. The maximum difference between H and V polarisa-
tion for all unscaled microstructure–electromagnetic model
combinations is demonstrated in Table 9. Large differences
in the maximum brightness temperature difference as a re-
sult of the 63 snowpack configurations occurred for the SNT
microstructure. Except for DMRT-ML less sticky and HUT
with MOS or SNI microstructure, the V-pol difference is
greater than the H-pol difference.

4 Discussion

The biggest difference to obtaining accurate simulations
would be made by improving the microstructure evolution
models within snowpack models because the optimal scale
factors are generally larger between microstructure models
than between emission models. SNTHERM grains tend to
be too large for the emission models and generally require
scaling down to smaller values. SNICAR grains are in the
mid-range and require a small amount of scaling, gener-
ally upwards to larger grains. MOSES grains are the small-
est and generally require higher scale factors than SNICAR.
These patterns are consistent, regardless of the electromag-
netic radiative transfer model used. Differences between mi-
crostructure evolution models are so large because they were
developed in models with different purposes. MOSES is a
large-scale land surface model, requiring snow grain size for
albedo calculations (Essery et al., 2001). SNICAR is a snow
albedo model (Flanner and Zender, 2006). SNTHERM, in
contrast, was developed to predict surface temperature and
uses grain diameter in the simulation of liquid-water flow as
well as albedo (Jordan, 1991). SNICAR and MOSES grain
sizes are closer to the SSA-derived grain diameter as a result.
SNTHERM simulates a grain size that is closer in concept
to the visual estimates of grain diameter than the other two
models. The large spread when coupling snowpack evolution
and microwave models, due to the differences in the mod-
elling of snow microstructure, is consistent with the wide
range of studies that have investigated how to link snowpack
observations of microstructure to the microstructure param-
eter required in electromagnetic models (e.g Kendra et al.,
1998; Du et al., 2005; Tedesco et al., 2006; Liang et al., 2008;
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Figure 7. Cluster analysis of brightness temperature simulated by MOSES microstructure and empirical MEMLS for 1 February 2012
(black dots) and 1 May 2012 (red dots) according to model parameterization choices. Brightness temperature simulations are split according
to the different representations for each process representation. Values 0, 1, 2 relate to parameterisations given in Essery et al. (2013) and as
described in Sect. 2.1. Where distinct clusters occur that differ between parameterisations, this indicates sensitivity to the parameterization.

Table 9. Maximum difference in brightness temperature in K (H-pol/V-pol) due to 63 snowpack parameterisations for each unscaled snow
microstructure evolution function (2011–2012 season).

DMRTML MEMLS HUT

less very IBA EMP H87 R04 K10

SNT 50/63 148/169 88/113 126/153 27/34 26/33 28/36
MOS 22/15 41/45 24/25 33/54 20/9 21/14 20/11
SNI 22/15 59/67 24/43 55/77 20/13 21/18 20/15

Durand et al., 2008; Brucker et al., 2011; Xu et al., 2012;
Montpetit et al., 2013; Roy et al., 2013; Rutter et al., 2014;
Picard et al., 2014).

Nevertheless there are differences between microwave
emission models for a particular microstructure evolution
model and even differences within the same family of emis-
sion models. “Improvement” in the microstructure for a par-
ticular model combination may lead to less accurate simu-
lations at some frequencies and polarisations, which high-
lights that there is more to understand. In part, this may be
due to the methodology of this study as the CF is calculated
per microstructure–electromagnetic model configuration, yet
the bias and RMSE are presented for each electromagnetic
model family. An individual contribution can influence the
group in a non-intuitive way.

Here, the lowest bias and RMSE for unscaled microstruc-
ture simulations were −6.9 to +6.9 K and 4.2 to 12.2 K,
respectively, but depended on microwave model, frequency,

and polarisation. In an attempt to put these results into con-
text, there are a number of studies that have quantified bright-
ness temperature simulation errors for these models. These
fall into different categories, depending on sensor character-
istics, the source of the evaluation data (ground-based, air-
borne, satellite) and presence of ice lenses (Derksen et al.,
2012), the treatment of the snow microstructure (Picard
et al., 2014), snow type, observation angle, and the spe-
cific electromagnetic model (Tedesco and Kim, 2006), and
the underlying substrate (Lemmetyinen et al., 2009; Derk-
sen et al., 2014). Examples of unscaled field observations
of microstructure compared with ground-based observations
include the HUT simulations of Derksen et al. (2012), who
found an RMSE of 10–34 K, and Rutter et al. (2014), who
found a bias of 34–68 K that was reduced to< 0.6 K upon ap-
plication of grain scale factors of 2.6–5.3. Scaling, or best-fit,
relationships were used by Durand et al. (2008) (mean abso-
lute error 3.1 K at V-pol and 9.3 K at H-pol), Montpetit et al.
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(2013) (RMSE 8–20 K), Brucker et al. (2011) (RMSE 1.5 K),
Picard et al. (2014) (RMSE 1–11 K), and Roy et al. (2013)
(RMSE 12–16 K). However, in some cases the frequency-
dependent results have been combined and in others kept sep-
arate.

For DMRT-ML, consideration of the stickiness is impera-
tive. Two constant values were considered here: extremely
cohesive or less sticky particles. Löwe and Picard (2015)
have made progress in understanding stickiness from micro-
CT data. There are theoretical limits, based on snow density
(Löwe and Picard, 2015, Eqs. 35–36), but in general sticki-
ness is independent of diameter and of density and a constant
value should not be used, as was done here. Further research
is needed in this regard.

For the HUT radiative transfer model, the optimum combi-
nations of snowpack and microwave model are dependent on
both models and, therefore, the end application. The SNT mi-
crostructure is most closely matched to the microstructure of
the Hallikainen et al. (1987) extinction model. Both were de-
veloped with a similar concept of microstructure. With MOS
or SNI microstructure, Roy et al. (2004) would be most ap-
propriate. Kontu and Pulliainen (2010) is more broadly appli-
cable as the scale factor always lies between R04 and H87,
regardless of the microstructure model. Therefore K10 may
be better choice if a range of microstructure models is con-
sidered in a data assimilation retrieval scheme but with only
one observation operator.

In the case of MEMLS, there are some differences be-
tween the empirical model and IBA, but the microstructure
model really matters. IBA is a more appropriate model for
the larger SNT grains and endorses the recommendation of
Mätzler and Wiesmann (1999) for IBA in the simulation of
larger grains. The microstructural concept of MOS matches
the microstructure of empirical MEMLS very well, with no
scaling required in 2011–2012, although SNI is equally ap-
propriate in 2012–2013.

There is little variation between years for the DMRT-ML
(sticky) and MEMLS models, and a consistent pattern for
HUT. Other studies have investigated the microstructural link
between snowpack and microwave models. Wiesmann et al.
(2000) found that the scale factor between exponential corre-
lation length in MEMLS and grain diameter in SNTHERM
for the Weissfluhjoch site in Davos, Switzerland, was 0.16.
Applying Eq. (15) for snow of density 250 kgm−3, the scale
factor to relate the grain diameter of SNTHERM to the ex-
ponential length in MEMLS for the Sodankylä site would be
0.24 for IBA and 0.15 for empirical MEMLS for the 2011–
2012 data set. This is entirely consistent with the Wiesmann
et al. (2000) study, in spite of the different locations and
snowpack conditions.

Wiesmann et al. (2000) also reported a relationship for
Crocus simulations, as did Brucker et al. (2011). At this
stage it is not possible to make comparisons of this work
with those studies because the Crocus evolution model has
not been included in this study due to the difficulty of ap-

plying these models to the Eulerian frame snowpack model
scheme used here. These two studies are, however, consistent
with each other. Wiesmann et al. (2000) found a snow-type-
dependent scale factor of 0.3–0.4 between MEMLS corre-
lation length and Crocus grain diameter, whereas the range
in Brucker et al. (2011) was 0.4–0.25 for snow density be-
tween 100 and 400 kgm−3. The scaling factor between the
SNOWPACK-derived correlation length and the correlation
length of MEMLS was found to be 0.1 (Langlois et al., 2012)
but, again, a comparison with this work is not possible as
the SNOWPACK grain evolution model has similar require-
ments to the Crocus microstructure model as they have a
common origin.

When isolating the spread in brightness temperature due
to snowpack parameterisations, this spread is largely due to
the snowpack model representation of the densification pro-
cess, with a variable impact throughout the season. After the
microstructure model, snow compaction must be considered
carefully in the design of a coupled snowpack–microwave
model. Liquid-water flow representation in the snowpack
model may become important in the melt period, particularly
for a snowpack with mid-winter melt periods or if the snow-
pack model is used to provide information on SWE during
melt when microwave observations cannot. If fresh snow is
assumed to have a constant density in a retrieval or assimi-
lation system then that value will have an impact but is less
important than compaction. Thermal conductivity has no dis-
cernable impact on the brightness temperature simulations so
the choice of its representation is largely irrelevant for snow
mass retrieval and assimilation systems.

Although empirical MEMLS driven by MOSES was cho-
sen as an example to demonstrate the impact of parameteri-
sations, this was purely because of the apparent consistency
between the MOSES grain diameter converted to exponential
correlation length and MEMLS simulations for 2011–2012
at this site. This is not a general endorsement of empirical
models, as those based on physics are expected to be more
universally applicable, but the specific application of these
models will dictate the balance of accuracy versus simplicity.
Extending the analysis beyond this example, snow parame-
terisations affect other unscaled model combinations to vary-
ing degrees. Microstructure scaling factors in Table 7 can be
used as a proxy for the degree of scattering in the unscaled
simulations. A higher scale factor acts to increase the simu-
lated scattering, so for a scale factor < 1 too much scattering
occurs in the unscaled simulations. Snowpack parameterisa-
tions have a greater impact for a higher degree of scattering,
larger at V-pol than H-pol. This is because scattering is al-
ready greater at H-pol so the spread in H-pol simulations
as a result of snowpack parameterisations is suppressed by
the existing level of scattering. The converse applies for high
scaling factors (e.g. MOS with less sticky DMRT-ML).

Although the differences in scale factors between mi-
crostructure models are larger than the differences in scale
factors between microwave models, this does not negate the
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need for developments in the microwave models. This is
highlighted by the treatment of field observations of SSA
to derive optical diameter as even these require some form
of scaling (e.g. Montpetit et al., 2013; Picard et al., 2014;
Rutter et al., 2014). Use of scale factors can improve bright-
ness temperature accuracy at some frequency and polarisa-
tions but may decrease the accuracy at others. The necessity
of scale factors indicate the need for a deeper understanding
in the role of microstructure in the microwave models. Much
of this is discussed from a theoretical perspective by Löwe
and Picard (2015). With a sticky hard sphere model of the
microstructure, even if the stickiness is known, Löwe and
Picard (2015) showed that a scale factor to relate the mea-
sured optical diameter to microwave diameter depends on
the type of metamorphism the snow has been subjected to.
Indeed, here, constant scale factors have been applied with
no attempt to assess how these may change over the season.
They do not account for the anisotropic nature of the snow,
which adds to the complexity both in the modelling of the
snowpack (Löwe et al., 2013) and in microwave scattering
(Leinss et al., 2016). Some of the fundamental questions on
how to relate snowpack and microwave microstructure may
be addressed with a better microstructure descriptor of the
snowpack rather than a single length scale and would bene-
fit from easy interchangeability between different microwave
models and different snowpack evolution models. Ultimately
a consistent microstructural treatment will be needed in both
snowpack evolution and microwave models.

5 Conclusions

Future snow mass and depth retrievals systems may rely on
snowpack models to provide snow microstructural parame-
ters. To improve accuracy in seasonal simulations of bright-
ness temperature, the largest gains will be achieved by im-
proving the microstructural representation within snowpack
models, followed by improvements in the emission models
to use accurate microstructural information and reduce bias
and RMSE at all frequencies and polarisations simultane-
ously. For the design of retrieval systems with current ca-
pabilities, particular model combinations may be more suit-
able than others, and careful consideration must be given to
snow compaction processes. Snow process representation be-
comes increasingly important as the snowpack scatters more.
The future lies in a better and consistent treatment of snow
microstructure in both snowpack and emission model devel-
opments.

6 Code availability

Code to analyse the data is available on GitHub: https://
github.com/mjsandells/TC_Sandells_2017.

7 Data availability

Data are available at the repository
doi:10.6084/m9.figshare.4552822 (Sandells et al., 2017).
These include JIM outputs, the non-scaled grain diameter
and optimal grain diameter brightness temperature simula-
tions, and observations of brightness temperature and grain
size. The full brightness temperature data set (all scaling
factors) is too large to place in a repository but can be made
available upon request.
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