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Summary

CLAIRE (Mang & Biros, 2019) is a computational framework for Constrained LArge defor-
mation diffeomorphic Image REgistration (Mang et al., 2019). It supports highly-optimized,
parallel computational kernels for (multi-node) CPU (Gholami et al., 2017; Mang et al., 2019;
Mang & Biros, 2016) and (multi-node multi-)GPU architectures (Brunn et al., 2020, 2021).
CLAIRE uses MPI for distributed-memory parallelism and can be scaled up to thousands of
cores (Mang et al., 2019; Mang & Biros, 2016) and GPU devices (Brunn et al., 2020).
The multi-GPU implementation uses device direct communication. The computational ker-
nels are interpolation for semi-Lagrangian time integration, and a mixture of high-order finite
difference operators and Fast-Fourier-Transforms (FFTs) for differentiation. CLAIRE uses a
Newton–Krylov solver for numerical optimization (Mang & Biros, 2015, 2017). It features
various schemes for regularization of the control problem (Mang & Biros, 2016) and differ-
ent similarity measures. CLAIRE implements different preconditioners for the reduced space
Hessian (Brunn et al., 2020; Mang et al., 2019) to optimize computational throughput and
enable fast convergence. It uses PETSc (Balay et al., n.d.) for scalable and efficient linear
algebra operations and solvers and TAO (Balay et al., n.d.; Munson et al., 2015) for numerical
optimization. CLAIRE can be downloaded at https://github.com/andreasmang/claire.

Statement of Need

Image registration is required whenever images are taken at different points in time, from
different viewpoints, and/or using different imaging modalities and these images need to be
compared, combined, or integrated (Fischer & Modersitzki, 2008; Modersitzki, 2004, 2009;
Sotiras et al., 2013). Image registration is an inverse problem. The inputs to this inverse prob-
lem are two (or more) images m0(x) (the template image) and m1(x) (the reference image) of
the same object. The task of image registration is to find a plausible map y(x) that establishes
spatial correspondences between the reference and template image, i.e., m0(x) ≈ m1(y(x)).
In CLAIRE the set of admissible spatial transformations y is limited to diffeomorphisms, i.e.,
maps y that are continuous, one-to-one, and have a smooth inverse. CLAIRE is related to a
prominent class of formulations for these types of problems referred to as large-deformation
diffeomorphic metric mapping (Beg et al., 2005; Trouvé, 1998; Younes, 2010).
Diffeomorphic image registration is an indispensable tool in medical image analysis (Sotiras
et al., 2013). Computing diffeomorphisms that map one image to another is expensive. De-
formable image registration is an infinite-dimensional problem that upon discretization leads to
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nonlinear optimality systems with millions or even billions of unknowns. For example, register-
ing two typical medical imaging datasets of size 2563 necessitates solving for about 50 million
unknowns (in our formulation). Additional complications are the ill-posedness and non-linearty
of this inverse problem (Fischer & Modersitzki, 2008). Consequently, image registration can
take several minutes on multi-core high-end CPUs. Many of the available methods reduce
the number of unknowns by using coarser resolutions either through parameterization or by
solving the problem on coarser grids; they use simplified algorithms and deliver subpar regis-
tration quality. In the age of big data, clinical population studies that require thousands of
registrations are incresingly common, and execution times of individual registrations become
more critical. We provide technology that allows solving registration problems for clinical
datasets in seconds. In addition, we have made available to the public a software that works
on multi-node, multi-GPU architectures (Brunn et al., 2020, 2021) that allows the registra-
tion of large-scale microscopic imaging data such as CLARITY imaging (Kutten et al., 2017;
Tomer et al., 2014).

Highlights

CLAIRE can be used to register images of 20483 (25 B unknowns) on 64 nodes with 256 GPUs
on TACC’s Longhorn system (Brunn et al., 2020). CLAIRE has been used for the registration
of high resolution CLARITY imaging data (Brunn et al., 2020). The GPU version of CLAIRE
can solve clinically relevant problems (50 M unknowns) in approximately 5 seconds on a single
NVIDIA Tesla V100 (Brunn et al., 2020). CLAIRE has also been applied to hundreds of
images in brain tumor imaging studies (Bakas et al., 2018; Mang et al., 2017; Scheufele et
al., 2021), and has been integrated with models for biophysics inversion (Mang et al., 2018,
2020; Scheufele et al., 2019, 2021; Scheufele, Subramanian, Mang, et al., 2020; Subramanian
et al., 2020) and Alzheimer’s disease progression (Scheufele, Subramanian, & Biros, 2020).
CLAIRE uses highly optimized computational kernels and effective, state-of-the-art algorithms
for time integration and numerical optimization. Our most recent version of CLAIRE features
a Python interface to assist users in their applications.
We provide a detailed documentation on how to execute, compile, and install CLAIRE on
various systems at our deployment page https://andreasmang.github.io/claire.

Mathematics

CLAIRE uses an optimal control formulation. The diffeomorphism y(x) is parameterized using
a smooth, stationary velocity field v(x). Given the template image m0(x) and the reference
image m1(x), this velocity is found by solving the partial-differential equation constrained
optimization problem of the form

minimizev,m dist(m(x, t = 1),m1) + α reg(v)

subject to
∂tm(x, t) + v(x) · ∇m(x, t) = 0

m(x, t = 0) = m0(x)

The first term in the objective functional measures the proximity of the deformed template
image m(x, t = 1) and the reference image m1(x). The default option availble in CLAIRE is an
L2-distance. The second term controls the regularity of v. CLAIRE features different Sobolev
norms. The default option is an H1-seminorm. The constraint models the deformation
the template image (i.e., the transport of the intensities of m0(x)). CLAIRE also features
additional hard constraints for controlling the divergence of v(x) (Mang & Biros, 2016). For
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optimization, we use the method of Lagrange multipliers and solve the associated Karush–
Kuhn–Tucker optimality system using a Newton–Krylov reduced space method (Mang & Biros,
2015, 2015).
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