Thèse soutenue

Optimisation de la performance des applications de mémoire transactionnelle sur des plates-formes multicoeurs : une approche basée sur l'apprentissage automatique

FR  |  
EN
Auteur / Autrice : Márcio Castro
Direction : Jean-François Méhaut
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 03/12/2012
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....)
Partenaire(s) de recherche : Equipe de recherche : Laboratoire d'Informatique de Grenoble
Jury : Président / Présidente : Philippe Olivier A. Navaux
Examinateurs / Examinatrices : Jean-François Méhaut, Miguel Santana, Luiz gustavo leao Fernandes
Rapporteurs / Rapporteuses : Pascal Felber, Raymond Namyst

Résumé

FR  |  
EN

Le concept de processeur multicœurs constitue le facteur dominant pour offrir des hautes performances aux applications parallèles. Afin de développer des applications parallèles capable de tirer profit de ces plate-formes, les développeurs doivent prendre en compte plusieurs aspects, allant de l'architecture aux caractéristiques propres à l'application. Dans ce contexte, la Mémoire Transactionnelle (Transactional Memory – TM) apparaît comme une alternative intéressante à la synchronisation basée sur les verrous pour ces plates-formes. Elle permet aux programmeurs d'écrire du code parallèle encapsulé dans des transactions, offrant des garanties comme l'atomicité et l'isolement. Lors de l'exécution, les opérations sont exécutées spéculativement et les conflits sont résolus par ré-exécution des transactions en conflit. Bien que le modèle de TM ait pour but de simplifier la programmation concurrente, les meilleures performances ne pourront être obtenues que si l'exécutif est capable de s'adapter aux caractéristiques des applications et de la plate-forme. Les contributions de cette thèse concernent l'analyse et l'amélioration des performances des applications basées sur la Mémoire Transactionnelle Logicielle (Software Transactional Memory – STM) pour des plates-formes multicœurs. Dans un premier temps, nous montrons que le modèle de TM et ses performances sont difficiles à analyser. Pour s'attaquer à ce problème, nous proposons un mécanisme de traçage générique et portable qui permet de récupérer des événements spécifiques à la TM afin de mieux analyser les performances des applications. Par exemple, les données tracées peuvent être utilisées pour détecter si l'application présente des points de contention ou si cette contention est répartie sur toute l'exécution. Notre approche peut être utilisée sur différentes applications et systèmes STM sans modifier leurs codes sources. Ensuite, nous abordons l'amélioration des performances des applications sur des plate-formes multicœurs. Nous soulignons que le placement des threads (thread mapping) est très important et peut améliorer considérablement les performances globales obtenues. Pour faire face à la grande diversité des applications, des systèmes STM et des plates-formes, nous proposons une approche basée sur l'Apprentissage Automatique (Machine Learning) pour prédire automatiquement les stratégies de placement de threads appropriées pour les applications de TM. Au cours d'une phase d'apprentissage préliminaire, nous construisons les profiles des applications s'exécutant sur différents systèmes STM pour obtenir un prédicteur. Nous utilisons ensuite ce prédicteur pour placer les threads de façon statique ou dynamique dans un système STM récent. Finalement, nous effectuons une évaluation expérimentale et nous montrons que l'approche statique est suffisamment précise et améliore les performances d'un ensemble d'applications d'un maximum de 18%. En ce qui concerne l'approche dynamique, nous montrons que l'on peut détecter des changements de phase d'exécution des applications composées des diverses charges de travail, en prévoyant une stratégie de placement appropriée pour chaque phase. Sur ces applications, nous avons obtenu des améliorations de performances d'un maximum de 31% par rapport à la meilleure stratégie statique.