Extraction et analyse des caractéristiques faciales : application à l'hypovigilance chez le conducteur
Auteur / Autrice : | Nawal Alioua |
Direction : | Abdelaziz Bensrhair, Mohammed Rziza |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique et télécommunications |
Date : | Soutenance le 28/03/2015 |
Etablissement(s) : | Rouen, INSA en cotutelle avec Université Mohammed V-Agdal (Rabat, Maroc). Faculté des sciences |
Ecole(s) doctorale(s) : | École doctorale sciences physiques mathématiques et de l'information pour l'ingénieur (Saint-Etienne-du-Rouvray, Seine-Maritime ; ....-2016) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique, de traitement de l'information et des systèmes (Saint-Etienne du Rouvray, Seine-Maritime ; 2006-...) - Laboratoire de Recherche en Informatique et Télécommunications (Rabat, Maroc) |
Ecole doctorale : Centre d'études doctorales en sciences et technologies (Rabat) | |
Jury : | Président / Présidente : Driss Aboutajdine |
Examinateurs / Examinatrices : Aouatif Amine, Ahmed Hammouch, Fawzi Nashashibi, Fabrice Mériaudeau |
Résumé
L'étude des caractéristiques faciales a suscité l'intérêt croissant de la communauté scientifique et des industriels. En effet, ces caractéristiques véhiculent des informations non verbales qui jouent un rôle clé dans la communication entre les hommes. De plus, elles sont très utiles pour permettre une interaction entre l'homme et la machine. De ce fait, l'étude automatique des caractéristiques faciales constitue une tâche primordiale pour diverses applications telles que les interfaces homme-machine, la science du comportement, la pratique clinique et la surveillance de l'état du conducteur. Dans cette thèse, nous nous intéressons à la surveillance de l'état du conducteur à travers l'analyse de ses caractéristiques faciales. Cette problématique sollicite un intérêt universel causé par le nombre croissant des accidents routiers, dont une grande partie est provoquée par une dégradation de la vigilance du conducteur, connue sous le nom de l'hypovigilance. En effet, nous pouvons distinguer trois états d'hypovigilance. Le premier, et le plus critique, est la somnolence qui se manifeste par une incapacité à se maintenir éveillé et se caractérise par les périodes de micro-sommeil correspondant à des endormissements de 2 à 6 secondes. Le second est la fatigue qui se définit par la difficulté croissante à maintenir une tâche à terme et se caractérise par une augmentation du nombre de bâillements. Le troisième est l'inattention qui se produit lorsque l'attention est détournée de l'activité de conduite et se caractérise par le maintien de la pose de la tête en une direction autre que frontale. L'objectif de cette thèse est de concevoir des approches permettant de détecter l'hypovigilance chez le conducteur en analysant ses caractéristiques faciales. En premier lieu, nous avons proposé une approche dédiée à la détection de la somnolence à partir de l'identification des périodes de micro-sommeil à travers l'analyse des yeux. En second lieu, nous avons introduit une approche permettant de relever la fatigue à partir de l'analyse de la bouche afin de détecter les bâillements. Du fait qu'il n'existe aucune base de données publique dédiée à la détection de l'hypovigilance, nous avons acquis et annoté notre propre base de données représentant différents sujets simulant des états d'hypovigilance sous des conditions d'éclairage réelles afin d'évaluer les performances de ces deux approches. En troisième lieu, nous avons développé deux nouveaux estimateurs de la pose de la tête pour permettre à la fois de détecter l'inattention du conducteur et de déterminer son état, même quand ses caractéristiques faciales (yeux et bouche) ne peuvent être analysées suite à des positions non-frontales de la tête. Nous avons évalué ces deux estimateurs sur la base de données publique Pointing'04. Ensuite, nous avons acquis et annoté une base de données représentant la variation de la pose de la tête du conducteur pour valider nos estimateurs sous un environnement de conduite.